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Preface

The Indian Society of Industrial and Applied Mathematics (ISTAM) was established
during a national symposium on differential equations in September 1990 at Aligarh
Muslim University. Since then it has been organizing national and international
conferences, seminars, workshops and symposiums in different parts of India.
Proceedings of these academic activities have been published by reputed publishers
including Longman (Pitman Research Notes in Mathematics), Kluwer Academic
Publications (Now part of Springer Group), Taylor and Francis Publications, etc.

The present volume contains invited talks and some contributory talks of
11th International Biennial Conference on “Emerging Mathematical Methods,
Models and Algorithms for Science and Technology” organized under the auspices
of the society. This international conference was organized at Gautam Buddha
University, National Capital Region, India, from December 15-16, 2012. This
conference commemorates 125th birth year of the Mathematics Wizard Srinivasa
Ramanujan. The conference was attended by more than 200 persons belonging to
different specializations of mathematics, engineering, physics, computer science,
information technology, and management studies coming from various states of
India and countries like USA, Germany, France, Italy, Turkey, Saudi Arabia, and
Oman. The conference was really interdisciplinary in nature, where applications of
mathematical concepts to emerging technologies were focused.

The conference was inaugurated by Prof. Krishan Lal, President of the
Indian National Science Academy (INSA) and eminent academicians such as
Prof. H.P. Dikshit (Chairman EPCO. Institute of Environmental Studies, Govt. of
Madhya Pradesh and former Vice-Chancellor of IGNOU), Prof. U.B. Desai,
Director IIT Hyderabad (a renowned expert of information Technology and Tele
Communication), Prof. N.K. Gupta, IIT Delhi (a renowned expert of Impact
Problems and former Vice-President of INSA and Current President ISIAM),
Prof. Moinuddin, Pro. Vice-Chancellor Delhi Technical University (Former
Director NIT, Jalandhar), Prof. Aparajita Ojha, Director IIIT Jabalpur, Prof. Rajat
Gupta, Director NIT, Srinagar, Prof. M. Brokate, former Dean School of
Mathematical Sciences, Technical University Munich, Germany, Prof. R. Lozi,
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CNRS & Nice University France et al. participated and delivered lectures. A special
session on 125th birthday celebration of Ramanujan was also organized during the
conference, and Prof. Dinesh Singh, Vice-Chancellor, Delhi University was the
chief guest of this function.

On this occasion, Prof. U.B. Desai was conferred Dr. Zakir Husain Award
2011/2012 for his valuable contribution in the emerging areas like cyber physical
systems, cognitive radio, wireless communication, wireless sensor networks,
additive signal, and image processing. He has extensively used mathematical
concepts such as wavelets and multiresolution analysis, artificial neural network,
and fractals in his research works.

In the inaugural address, Prof. Krishan Lal highlighted the importance of
mathematics for industrial and technological development of any nation.
He expressed the serious concern of the scientists, engineers, and all well-wishers of
our nation on dwindling standard of mathematics and especially applications of
mathematics. He emphasized that the need of the hour is to attract talented young
researchers towards applications of mathematics in emerging areas of science and
technology. All invited speakers on this occasion echoed the same sentiment.

During the inaugural function, Prof. Pammy Manchanda, Convener Scientific
Committee read the messages of the Hon’ble President of India, Hon’ble Union
Minister of Communication and Information Technology, Minister of External
Affairs, Minister of Water resources, Governors of Bengal, Jammu and Kashmir,
Uttrakhand, Minister of State for Human Resource Development, and 10 other
dignitaries including Prof. Barbara Lee Keyfitz, President International Council of
Industrial and Applied Mathematics (www.iciam.org).

The invited and contributory talks published in the proceedings provide valuable
information on certain current trends in mathematical models, methods, and algo-
rithms. Rene Lozi discusses the cryptography-based chaos which provides a new
mechanism for undersampling chaotic numbers obtained by the ring coupling of
one-dimensional maps in Chap. 1. In Chap. 2, D.K. Chaturvedi provides the vital
information about applications of soft computing techniques. Image decomposition—
reconstruction is very important in image analysis and it has a wide range of
applications in radar imaging which is discussed by Gaik Ambartsoumian and
Venkateswaran P. Krishnan in Chaps. 3 and 4 respectively. Two-dimensional
nonlinear elliptic boundary value problems by cubic spline approximation method is
explored by R.K. Mohanty in Chap. 5. Application of Monte Carlo simula-
tion to pricing of path-dependent European-type options is discussed by Siddhartha
P. Chakrabarty in Chap. 6. Messaoud Boulbrachene’s paper deals with the finite
element approximation of the impluse control quasivariational inequality in Chap. 7.
In Chap. 8, Chefi Triki and Nasr Al-Hinai give an overview of the Periodic Petrol
Station Replenishment Problem. Mushahid Husain and Ayub Khan present their
recent work in nanotechnology in Chap. 9. Chapter 10 contains results on gener-
alized monotone mappings by R. Rais et al.

Rashmi Bhardwaj highlights the application of wavelet and fractal methods to
environmental problems, especially problem of air and water pollution in Chap. 11.
Mohd Ahmad Ansari provides an algorithm by context modeling of medical image
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compression using discrete wavelet transform in Chap. 12. In Chap. 13,
K. Srinivasa Rao (first DST-Ramanujan Professor) gives an elegant account of the
life and work of Ramanujan, a creative genius. Sushil Kumar et al. study the
dispersion in steady and oscillatory flows through curved channels with absorbing
boundaries in Chap. 14. Noor-e-Zahra explains the basic ingredients of a new
technology, compression—sensing in Chap. 15. Ruchira Aneja’s paper is devoted
to the emergence of shearlets and its applications in Chap. 16. Nagma Irfan et al.
discuss the application of CAS wavelets in numerical evaluation of Hankel trans-
forms arising in seismology in Chap. 17.

The main message conveyed through the conference is that mathematics has
great potential to analyze and understand the challenging problems of nanotech-
nology, biotechnology, medical science, oil industry, environmental sciences,
engineering, and financial technology. It has been emphasized throughout the
conference that young researchers of the country should embark on those areas of
mathematics which have significant applications in these fields.

I take this opportunity to thank Profs. Pammy Manchanda and Rashmi Bhardwaj
coeditors of the proceedings for their valuable help.

Prof. Abul Hasan Siddiqi
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Summary

Dr. Zakir Husain Memorial Lecture; Smarter Societies:
Cyber Physical System

We live in a highly connected world and connectivity is exploding. By 2015 we
will have 15 billion devices connected to the Internet and by 2020 the number of
connected devices is expected to reach 50 billion; in 2011 amount of data trans-
mitted around the world exceeded 2 zettabytes, i.e., 2 X 10721 bytes; by 2020 the
world will generate 100 zettabytes. By 2017 a trillion wireless devices will be there
serving 7 billion people. These numbers are mind-boggling, and they are creating
not just technological challenges but also profound mathematical challenges. Many
believe, to tackle the mathematical challenges of 50 billion Internet-connected
devices or a trillion wireless devices it may require some new mathematics.
Coupled with these mathematical challenges, the networked world is throwing new
challenges in innovations and enhanced business opportunities. The challenges get
compounded due to the deluge of information. Our psyche is governed by the
networked world and with time we are moving to a smarter society.

The attributes of smarter society are (but not limited to): highly connected
society, ubiquitous communication, strong connectivity between physical world
and cyber world, everything will be connected to the Internet; data analytics will be
backbone, and this will involve complex multivariable predictive algorithms and
data interpretation involving high-level machine learning algorithms. In short, we
will move towards a society where there will be seamless intelligent interaction
between computers and humans.

This talk focused on a major subset of the smarter society, namely, cyber
physical systems (CPS) or Internet of things (IoT). CPS and IoT are going to
change the world in the coming days.

XV
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Fig. 1 Cyber physical system

Cyber physical system is a system which integrates the cyber world with the
physical world using sensors and actuators; CPS closes the loop in the Internet.
Applications of CPS will be there in all walks of life: agriculture, power systems,
medical systems and health care, transportation, finance, smart structures, and many
more. Many believe that the impact of CPS would be as big as or even bigger than
the Internet (Fig. 1).

The key building blocks of CPS are: Communication, computing, control,
sensing, and cognition. Communication, computing, and control are fairly mature;
a lot of work needs to be done in sensors and cognition. Sensor technology has
always worked in a niche domain and thus sensors are quite expensive—one needs
major research to make sensors affordable and pervasive.

Internet of things (IoT) is very closely related to CPS. In IoT everything and
anything is Internet enabled. IoT can be viewed as convergence of Internet, signal
processing, VLSI, communication, and sensing. IoT has the same application
domain as CPS.

CPS and IoT offer many technological and mathematical challenges. Below,
very briefly, a description is provided for a few of the mathematical challenges.

One of key challenge is to have a mathematical model for CPS—this is chal-
lenging as CPS involves discrete components, continuous components, concurrent
interactions between discrete and continuous components, and infinite execution.
At present most of the work revolves around the use of hybrid automata for
modeling CPS. A hybrid automata will model a CPS system with initial states H
and a set of safe states M; this entails two key mathematical problems:

1. Stability: Does every execution of the CPS starting in any of the initial states
from H always stay in the safe states M

2. Reachability: Does starting in any initial state from set H, the CPS system will
always reach in finite steps (or asymptotically) the set of desirable states

It is likely that instead of hybrid automata, one may need a new kind of math to
faithfully model a CPS system.
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Smart green buildings are the thing of the future. A lot work involves
technological challenges in building and making the system work. Nevertheless, to
get a better understanding of smart green buildings and to take the idea forward,
mathematical analysis is essential. We consider a smart building as:

1. A graph G = (V, E) with |[V| =n and |[E| = m.

2. Let some special vertices be designated as “entry” vertices and some as “exit”
vertices (representing movement in the building). These vertices are not nec-
essarily disjoint; the same vertex, at times can serve an entry vertex and at some
other time as an exit vertex.

3. Each vertex represents a room and each edge represents a connection between
two rooms.

4. People enter and leave the graph at the entry and exit vertices, say in a Poisson
fashion.

5. The edges are weighted by the distance between the rooms and the probabilities
of a person moving in either direction along the edge.

6. Each person that enters the building executes a random walk on the vertices and
exits the system.

7. Define occupancy of a vertex as the number of people in the corresponding
room at any given point in time.

Problem

Find the cumulative occupancy of any given room over a period of time or at any
given time based on which the energy consumption is optimized.

In the above formulation, one can bring in other constraints like available energy
(solar, battery, wind, etc.), available information on ambient conditions (tempera-
ture, humidity, wind velocity, solar lighting, etc.) and set up a realistic optimization
problem. Given a smart room system description, one has the following mathe-
matical challenge:

1. Model the system with sensor inputs (temperature, state of windows, PIR, etc.)
and actuation strategies (for ACs, lights, fans, etc.) as possibly a hybrid system

2. Formally prove that the system maintains the desired ambient conditions

. Prove the kind of energy saving that would be achieved with the system

4. Mathematically design optimal strategies to achieve the specified ambient
conditions

5. Extend it to a system of interconnected rooms

W

Another problem in today’s time is green communication. We have all tasted the
benefits of cellular phones, but behind it there is tremendous energy consumption to
keep the base stations alive. Tower diesel genset runs 3-5 h in urban areas and
8-10 h in rural areas. The estimated diesel consumption for all such cell towers is
approximately, 3 billion liters per year. Cloud-based radio access network (CRAN)
which can support mobility at very high speeds is likely to be a much more
energy-efficient technology for mobile communication than the present technology.
CRAN involves:



Xviii Summary

AN B W=

B~ W

. Opportunistic placement of cells (where fiber permits)

. Large number of low-power antenna ports (ATP)

. As low as 50-m interpoint spacing

. Connected via fiber to a central controller known as remote base station (RBS)
. Centralized (Cloud) baseband processing at RBSs

. Fast hand-off at baseband level (implicit hand-off)

Some of the mathematical challenges that emerge are:

. Self-optimization and self-organization of the network and mathematically

modeling self-organizing networks

. Modeling and analysis of large distributed multi-input-multi-output dynamically

changing network

. Centralized coordinated scheduling for antenna ports
. Joint resource allocation among ATPs and users
. Cross-layer optimization: Typically non-convex optimization

Cognitive radio (CR) is a technology which can very highly optimize the use of

a scarce resource—spectrum. CR is defined as a transceiver that can combine its
awareness of the environment with knowledge of its user’s needs, and adapt its
parameters intelligently to achieve reliable and spectrally efficient communication.
CR involves sensing the spectrum continuously, and whenever a spectrum whole
(white space) is available you transmit some bits of data. The CR user is typically
the secondary user who either underlays its communication or interweaves its
communication with respect to the primary user—thereby increasing spectral uti-
lization and efficiency (Fig. 2).

Fig. 2 Typical cognitive /
radio environment Radio
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At IIT Hyderabad, we have made measurements and showed that there are

significant spectral holes even in GSM communication. Moreover, a complete CR
networking technology and prototype has been developed at IIT Hyderabad for a
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Fig. 3 Black spaces between greens show spectral holes in GSM band

CR base station that can exploit these spectral holes in GSM band. Any GSM
handset will work as the CR receiver (Fig. 3).

There are many mathematical challenges in CR from the information theoretic
perspective—the key challenge being to investigate information theoretic limits of
CR networks with practical constrains. In particular one could focus on: User
capacity (primary as well as secondary), data rates for primary as well secondary,
and of course a measure of spectral efficiency.

In conclusion it should be mentioned that cyber physical systems and Internet of
things are creating new technological challenges, and mathematical challenges. It is
not enough that we build things, in order to go beyond we will need mathematical
models and possibly new analysis methods. Perhaps, a new math to tackle the
exploding connectivity and sensing

I would like to thank the Indian Society of Industrial and Applied Mathematics
for conferring the Dr. Zakir Hussain award. I would like to acknowledge my team
of faculty at IITH Hyderabad, who are working on cutting-edge CPS and IoT
challenges and who helped with my presentation. Some of the team members are
Dr. Zafar Khan, Dr. Kiran Kuchi, Dr. G.V. Sharma, Dr. Panduranga Rao,
Dr. Rajalakshmi, Dr. Bheema Arjun, and many others.

Uday B. Desai
IIT Hyderabad



Chapter 1

Cryptography-Based Chaos via Geometric
Undersampling of Ring-Coupled
Attractors

René Lozi

Abstract We propose a new mechanism for undersampling chaotic numbers
obtained by the ring coupling of one-dimensional maps. In the case of two coupled
maps, this mechanism allows the building of a PRNG which passes all NIST tests.
This new geometric undersampling is very effective for generating two parallel
streams of pseudo-random numbers, as we show, computing carefully their prop-
erties, up to sequences of 10'* consecutives iterates of the ring-coupled mapping
which provides more than 3.35 x 10'” random numbers in very short time. Both
three- and four-dimensional cases can be managed in the same way. In addition, we
recall a novel method of noise-resisting ciphering. The originality lies in the use of a
chaotic pseudo-random number generator: several cogenerated sequences can be
used at different steps of the ciphering process, as they present the strong property
of being uncorrelated. Each letter of the initial alphabet of the plain text is encoded
as a subinterval of [—1, 1]. The bounds of each interval are defined in function of
the known bound of the additive noise. A pseudo-random sequence is used to
enhance the complexity of the ciphering. The transmission consists of a substitution
technique inside a chaotic carrier, depending on another cogenerated sequence. This
novel noise-resisting ciphering method can be used with geometric undersampling
when four mappings are coupled.
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1.1 Introduction

During the last decade, it has been emphasized that the undersampling of sequence
of chaotic numbers is an efficient tool to build pseudo-random number generators
(PRNG) [15]. Randomness appears to be an emergent property of complex systems
of coupled chaotic maps [16]. Several kinds of coupling can be considered as
ultra-weak coupling, ring coupling, etc. [17]. An ultra-weak coupling recovers
chaotic properties of one-dimensional maps [12, 13] when computed with floating
numbers or double-precision numbers. Chaotic undersampling with thresholds
based on one component of the coupled system adds random properties to the
chaotic sequences. Double threshold sampled sequence (i.e., using both thresholds
of different nature) improves such random properties [14]. Ring coupling deals
when p one-dimensional maps are constrained on a torus [5, 26], this coupling can
directly provide random numbers without sampling or mixing, provided the number
p of maps is large enough, although it is possible to combine these processes with it.
However, in lower dimension two and three, the chaotic numbers are not
equidistributed on the torus. Therefore we introduce a particular “geometric”
undersampling based on the property of piecewise linearity of the invariant measure
of the system of p one-dimensional ring-coupled maps. This new geometric
undersampling is very effective for generating parallel streams of pseudo-random
numbers with a very compact mapping.

Several applications in various fields (chaotic optimization, evolutionary algo-
rithms, secure information transmission, chaotic cryptography, etc.) of such
undersampling process can be found. In this article we focus on the latter ones.

e As the first example, we propose a novel noise-resisting ciphering based on a
large number of uncorrelated chaotic sequences. These cogenerated sequences
are actually used in several steps of the ciphering process. Noisy transmission
conditions are considered with realistic assumptions. The efficiency of the
proposed method for ciphering and deciphering is illustrated through numerical
simulations based on ten coupled chaotic sequences [4].

e Another example is the use of such sequences in a chaotic encryption algorithm
[27].

In Sect. 1.2, we briefly recall properties of chaotic mappings, when used alone or
ultra-weakly coupled. Section 1.3 describes the route from chaos to randomness via
chaotic undersampling, discovered during the last decade. In Sect. 1.4, we introduce
geometric undersampling in the scope of ring-coupled mapping. In Sect. 1.5, we
propose in addition, a novel method of noise-resisting ciphering. The originality lies
in the use of a chaotic pseudo-random number generator: several cogenerated
sequences can be used at different steps of the ciphering process, as they present the
strong property of being uncorrelated. This novel noise-resisting ciphering method
can be used with geometric undersampling when four mappings are coupled.
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1.2 Recovering Chaotic Properties of Numerically
Computed Chaotic Numbers

1.2.1 Numerical Approximation of Chaotic Numbers

Chaos theory studies the behavior of dynamical systems that are highly sensitive to
initial conditions, an effect which is popularly referred to as the butterfly effect.
Small differences in initial conditions (such as those due to rounding errors in
numerical computation) yield widely diverging outcomes for chaotic systems,
rendering long-term prediction impossible in general. This happens even though
these systems are deterministic, meaning that their future behavior is fully deter-
mined by their initial conditions with no random elements involved. In other words,
the deterministic nature of these systems does not make them predictable. The first
example of such chaotic continuous system in the dissipative case was pointed out
by the meteorologist E. Lorenz in 1963 [11].

In order to study numerically the properties of the Lorenz attractor, M. Hénon an
astronomer of the Observatory of Nice, France, introduced in 1976 a simplified
model of the Poincaré map of this attractor [9]. The Lorenz attractor being
imbedded in dimension three, the corresponding Poincaré map is a mapping from
the plane R? into R?. Hence the Hénon mapping is also defined in dimension two
and is associated to the dynamical system

{xn+1=yn+l—aX,21 (L1)
Yni1 = bx, ’ .
which has been extensively studied for 36 years.

More simple dynamical systems in dimension one, on the interval J = [—1, 1] C
R into itself

Xna1 = falxn), (1.2)
corresponding to the logistic map
fu=La(x) =1 —ax?, (1.3)
or the symmetric tent map
Ja=Ta(x) =1 —alx|, (1.4)

have also been fully explored in the hope of generating random numbers easily
[24]. However, when a dynamical system is realized on a computer using floating
point or double-precision numbers, the computation is of a discretization, where
finite machine arithmetic replaces continuum state space. For chaotic dynamical
systems in small dimension, the discretization often has collapsing effects to a fixed
point or to short cycles [6].
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It seems that the computation of numerical approximations of the periodic orbits
leads to unpredictable and somewhat enigmatic results. As O.E. Lanford III [10]
says “The reason is that because of the expansivity of the mapping the growth of
roundoff error normally means that the computed orbit will remain near the true
orbit with the chosen initial condition only for a relatively small number of steps
typically of the order of the number of bits of precision with which the calculation is
done. It is true that the above mapping like many ‘chaotic’ mappings satisfies a
shadowing theorem [20, 21] which ensures that the computed orbit stays near to
some true orbit over arbitrarily large numbers of steps. The flaw in this idea as an
explanation of the behavior of computed orbits is that the shadowing theorem says
that the computed orbit approximates some true orbit but not necessarily that it
approximates a typical one.”

The collapsing of iterates of dynamical systems or at least the existence of very
short periodic orbits, their nonconstant invariant measure, and the easily recognized
shape of the function in the phase space avoid the use of one-dimensional map
(logistic, baker, or tent, etc.) as a pseudo-random number generator (see [18] for a
survey).

Remark 1.1 However, the very simple implementation in computer program of
chaotic dynamical systems led some authors to use it as a base of cryptosystem [2, 3].
In addition it seems that for some applications, chaotic numbers are more efficient
than random numbers. That is the case for evolutionary algorithms [22, 25] or chaotic
optimization [1].

In this paper, we show how to overcome the poor quality of chaotic generators
using geometric undersampling. This special undersampling we introduce in this
article is one of the other undersampling processes we have studied before. In order
to explain the difference between these processes we give in Sect. 1.3 a brief survey
of them. Before doing this survey, we have to show how to stabilize the chaotic
properties of chaotic number when realized on a computer.

1.2.2 Very Long Periodic Orbits for Ultra-weakly
Coupled Tent Map

The first step in order to preserve the genuine chaotic properties of the continuous
models in numerical experiments is reached considering ultra-weak multidimen-
sional coupling of p one-dimensional dynamical systems instead of solely a
one-dimensional map.

1.2.2.1 Two-Coupled Symmetric Tent Map

In order to simplify the presentation below, we use as an example the symmetric
tent map (1.4) with the parameter value a = 2, later denoted simply as f, even
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though others as chaotic map of the interval, the logistic map, the baker transform,
etc., can be used for the same purpose (as a matter of course, the invariant measure
of the chaotic map considered is preserved).

When p = 2, the system is simply described by Eq. (1.5)

Xop1 = (1 —e1)f(x) +€1f(vn)
{yn+1 = eaf (%) + (1 — e2)f ()’ (1.5)

We use generally ¢ = 1077, & = 2¢; when computations are done using
floating points or ¢ = 10~!* for double-precision numbers. In both cases, with
these numerical values, the collapsing effect disappears and the invariant measure of
any component is the Lebesgue measure [12] as we show below. In the case of
computation using floating points, starting from most initial condition, it is possible
to find a Megaperiodic orbit (i.e., with period equal to 1,320,752). When compu-
tations are done with double-precision number, it is not possible to find any periodic
orbit up to n = 5 x 10! iterations. In [12], the computations have been performed
on a Dell computer with a Pentium IV microprocessor using a Borland C compiler
computing with ordinary (IEEE-754) double-precision numbers.

When ¢; converges towards O, the iterates of each component x,, and y, of
Eq. (1.5) converge to the Lebesgue measure (Fig. 1.1).

Fig. 1.1 Density of iterates
of two-coupled symmetric
tent maps, double precision,
Nise = 1057 & = 2y,

e1 = 107121073, Nyer = 108,
initial values x, = 0.330,
yo = 0.3387564

—a—c=0.1 =®—¢ =0.05

=+=£=0.01 =g =0.001

- | ebesgue measure
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1.2.2.2 P-Coupled Symmetric Tent Map

More generally, the coupling of p maps takes the form

X1 =F(X,) = A~ (£(X.)), (16)
where
fx) X,
f(Xa) = Xn = : (1.7)
J) x5
and
J=r
ei=1-> &, &1 S Elpot &1p
=2
J=P
€1 ep=1— 3 &; - &p &,
=12
A - I
" j=p-1
&p1 . e Eppl Epp = 1— Zl &pj
=
(1.8)
with &; =1 — jjl’ i €ij on the diagonal (the matrix A is always a stochastic

matrix iff the coupling constants verify ¢;; > 0 for every i and j).

It is noteworthy that these families of very weakly coupled maps are more
powerful than the usual formulas used to generate chaotic sequences, mainly
because only additions and multiplications are used in the computation process and
no division is required. Moreover, the computations are done using floating point or
double-precision numbers, allowing the use of the powerful floating point unit
(FPU) of the modern microprocessors. In addition, a large part of the computations
can be parallelized taking advantage of the multicore microprocessors which appear
on the market of laptop computers.

Moreover, a determining property of such coupled map is the high number of
parameters used (p x (p — 1) for p-coupled equations) which allows to choose it as
cipher keys, when used in chaos-based cryptographic algorithms, due to the high
sensitivity to the parameters values [16]. It can also be shown that using control
theory techniques, synchronization of two systems (1.6), with p = 2 or 3, can be
reached via exact (dead-beat) or asymptotic observers [8].
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1.2.2.3 Computation of Approximated Invariant Measure

In order to assess numerical computations more accurately, we define an approx-
imation Py y(x) of the invariant measure also called the probability distribution
function linked to the one-dimensional map f, when computed with floating num-
bers (or numbers in double precision). For this aim we consider a regular partition
of M small intervals (boxes) r; of J defined by

2i

si=—1+1. i=0M (1.9)

ri = [Si, Si_._l[, i = 07 M — 2and rm—1 = [SM_171] (110)

The length of each box is equal to % and the r; intervals form a partition of the
interval J

M-1

J=Jn (1.11)

All iterates f(x) belonging to these boxes are collected, after a transient regime
of Q iterations decided a priori, (i.e., the first Q iterates are neglected). Once the
computation of N + Q iterates is completed, the relative number of iterates with
respect to N/M in each box r; represents the value Py(s;). The approximated Py (x)
defined in this article is then a step function with M steps. As M may vary, we
define

PM,N(Si) :%(#}’,) (112)

where #r; is the number of iterates belonging to the interval r;. The approximate
function Py y(x) is normalized to 2 on the interval J.

Pun(x) =Pun(si), Vxer (1.13)

In the case of p-coupled maps, we are interested by the distribution of each
component (x', x?, x>, ..., & ) of X rather than the distribution of the variable X itself
in JP. We then consider the approximated probability distribution function Py v (x/)
associated with one of the several components of F(X) defined by (1.6), which are
one-dimensional maps. In this paper, we equally use Ny for M and Ny, for N,
when they are more explicit.

The discrepancies E; (in norm L;), E, (in norm L;), and E,, (in norm L.,)
between Py, n, (¥/) and the Lebesgue measure, which is the invariant measure

iter

associated with the symmetric tent map, are defined by
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EqudiwsNilcr (xj) = ||PNdisc~,Nilcr (xj) -1 HLl (114)
B Nojse N (xj) = ||PNdi<chiler (xj) -1 HL2 (1'15)
EOO:NdiscyM&er (xj) = HPNdiscaNiler (xj) -1 HL% (116)

As mentioned in earlier section, Fig. 1.1 shows the convergence of the density of
iterates of the components of two-coupled symmetric tent maps to the Lebesgue
measure when ¢; converges towards 0. Moreover, for a fixed value of Ny when
the number Nj., increases, the discrepancy between Py, . (xj ) and the Lebesgue
measure is expected to converge towards 0, except if there exist periodic orbits of
finite length lower than Ny, which captures the iterates. In this case whatsoever the
value of Ny, is, the approximated distribution function converges to the distribution
function of the periodic orbit, if it is unique, or to the average of the distribution
functions of the periodic orbits observed, if not.

Figure 1.2 shows the errors Ej y,.. ny. (') versus the number of iterates of the
approximated distribution functions, with respect to the first variable x!, for two-
and three-coupled symmetric tent maps. Same results are obtained for the other
variables x> or x°.

The three-coupled symmetric tent maps model considered here with very small
value of &, seems a sterling model of generator of chaotic numbers with a uniform
distribution of these numbers over the interval J. It produces very long periodic
orbits: Gigaperiodic orbits (i.e., with length of period between 10° and 10'%) when

log (error L,)

4 _ _ _ _ y y y
40 50 60 70 80 90 100 11,0 120 13,0

|°g (Niter)

| —— 2 coupled tent maps —e—3 coupled tent maps

Fig. 1.2 Error Ej n, v, (x') for two- and three-coupled symmetric tent map, double precision,
Ngise = 10°, &1 = 107", &5 = 2¢1, Nyr = 10°-10"% Initial values x} = 0.330, x3 = 0.3387564,
x3 = 0.331353429
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computed with simple precision numbers, and orbits of unknown length when
computed with double-precision numbers. However, these chaotic sequences are
not at all random sequences.

1.3 The Route from Chaos to Pseudo-Randomness
via Chaotic Undersampling

Chaotic numbers are not pseudo-random numbers, because the plot of the couples
of any component (xﬁ,,xﬁ, +1) of iterated points (X,,X, 1) in the corresponding
phase plane reveals the map f used as one-dimensional dynamical systems to
generate them via Eq. (1.6). Nevertheless, we have recently introduced a family of
enhanced chaotic pseudo-random number generators (CPRNG) in order to compute
faster a long series of pseudo-random numbers with a desktop computer [14, 15].
This family is based on the previous ultra-weak coupling which is improved in
order to conceal the chaotic genuine function.

In this section, we describe briefly how this first process of undersampling, the
chaotic one, works.

1.3.1 Chaotic Undersampling

In order to hide f in the phase space (x,, x!, ), two mechanisms are used. The
pivotal idea of the first mechanism is to sample chaotically the sequence
(xh, x4, xb, ..., xl,xl |, ...) generated by the Ith component x/, selecting x!, every
time the value x of the mth component x™, is strictly greater (or smaller) than a
threshold T € J, with [ # m, for 1 <[, m < p.

: I I !
That is to say to extract the subsequence (xn(o),xnm,xf,(z), .. .,xn(q),xil(qﬂ), .. )
enoted here apay (X9, X1,X2,...,X;,X5+1,-..) of the original one, in the followin
denoted h X1, X2, - Xg, Xg 415 f th 1 the foll

way:Given that 1 <[, m<p, [ #m

-y =1
{x_q — Xil(q),With n(q) = I}'élél{r > n(q—l)|x::n > T} (117)

The sequence (x_(),x_l X2, e Xgy Xg 41 - ) is then the sequence of chaotic
pseudo-random numbers.

The above mathematical formula can be best understood in algorithmic way. The
pseudo-code, for computing iterates of (1.17) corresponding to N iterates of (1.6) is:
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X, :(x,ﬂ,x,f,...,x(j’”,x(j’):seed
n=0;,q=0;
do { whilen <N
do { while (x;” < T) compute (x,f,xz e, x! x”); n++}

n’ n 27n

n?nr e

p=1 r\. ey o
B ,x”),thenn(q)—n, X, =X

compute (x’ x LR A
q,

This chaotic sampling is possible due to the independence of each component of
the iterated points X, versus the others [13].

Remark 2.1 Albeit the number NSampl;.. of pseudo-random numbers X, corre-

sponding to the computation of N iterates is not known a priori, considering that the

selecting process is again linked to the uniform distribution of the iterates of the tent
2

map on J, this number is equivalent to %

1.3.2 Chaotic Mixing

A second mechanism can improve the unpredictability of the pseudo-random
sequence generated as above, using synergistically all the components of the vector
X,, instead of two. Given p — I thresholds

T\ <Th<- - <Tp_1€J (1.18)

and the corresponding partition Jo=[-1,T4], Ji =T, Ty,
Ji = [T, Te i1 [ for L<k<p — 1, and J,_| = [T,_1, 1], with

p—1
IT=J% (1.19)
k=0

(note that this partition of J is different from the regular previous one (1.11) used for
the approximated distribution function).
The simple second mechanism is based on the chaotic undersampling combined

; ; i — 1,1 1 1,1
with a chaotic mixing of the p 1 sequences (xo,xl,xz,...,xn,an,...),

) 2 2 1 pel pei 1ol »
(B0, 03, X2 X2 ) (xg B T .),...usmgthe

n 2n+1r°"
last one (x§,x7,x5,..., 0%, % |,...) in order to distribute the iterated points with
respect to this given partition, defining the subsequence

(x_o,x_l,x_z, e Xy Xy 1y ) (in pseudo-code) by
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X(,:(x(;,xé ,,,,, x(f",x,,”):seed

do { whilen <N
do {while (xf IS Jﬂ)compute(x,’l, X, x””,x”) sn++)

1 2 p-1
compute (xn,xn,...,x” ,x,’,’)

let k be such that x” € J, ; then n(q)=n; X, =X )

Remark 2.2 In this case also, NSampl,., is not known a priori, however, consid-
ering that the selecting process is linked to the uniform distribution of the iterates of

the tent map on J, one has NSamply, ~ 2%

Remark 2.3 This second mechanism is more or less linked to the whitening process
[28, 29].

Remark 2.4 Actually, one can choose any of the components in order to sample and
mix the sequence, not only the last one.

1.3.3 Enhanced Chaotic Undersampling

On can eventually improve the CPRG previously introduced with respect to the
infinity norm instead of the L; or L, norms because the L., norm is more sensitive
than the others to reveal the concealed f [14]. For this purpose we introduce a
second kind of threshold 7" € N, together with T),...,T,_; € J such that the

subsequence (x_o, X1, X2, - Xgy Xg4 1, - ) is defined (in pseudo-code) by
X{,:(x;,x{f,...,x{'I,x{j’)=seed
n=0,q=0;

do { whilen < N

do {while (nSn(q_,)+T' and x!e J,,)
compute (x),x;,...,x/", x/);n++}
compute (x,x;,...,x/", x/)

n’ o n 2

let & be such that x e J,

then n(q)=n; g=x:“;n++;q++}
9q)

Remark 2.5 In this case also, NSampl,,, is not known a priori, it is very compli-
cated to give an equivalent to it. However, considering that the selecting process is
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linked to the uniform distribution of the iterates of the tent map on J, and to the

second threshold 77, it comes to NSampl,,,, < min{lz_—NTl , %}

Remark 2.6 The second kind of threshold 7’ can also be used with only the chaotic
sampling, without the chaotic mixing.

1.3.4 A Window of Emergence of Randomness

In [15, 16], we show that if one consider the errors Ejn ., (X) =
HPNdiscyNiter (x) -1 HLl’ E2«,Ndisc-,Nner (x) = HPNdiSC\Niler (X) -1 HLz’ and Eoodeisc-,Niler (x) =
(| PN, v () = 1| .. together with the correlated distribution functions which
assess the independence of each component of the iterated points X, versus the
others, a window of emergence comes clearly into sight for the values
e1€[1071°,1077], in the case p = 4 and ¢&; = & = i&. We have also performed
NIST test developed by the National Institute of Standards and Technology [23], in
order to check carefully the random nature of such numbers [7].

Then there is a route from chaos to randomness using the process of chaotic
undersampling.

1.4 Geometric Undersampling

The previous route from chaos to randomness uses chaotic undersampling. It is
possible to couple in another way p tent maps on the torus J? = [—1,1]’C R?,
which can directly provide random numbers without sampling or mixing, provided
p is large enough, although it is possible to combine these processes with it. After
reviewing this ring coupling in high dimension, we introduce the new geometric
undersampling in order to obtain randomness with small values of p (for example
p=2).

1.4.1 Pseudo-Random Numbers Generated
by Ring-Coupled Mapping

Consider the mapping defined on the p-dimensional torus M), : J¥ — JP
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A\ o\ U2k
¥ X2 1= 2|2+ ky x x;

Mp . = . = . (120)
B 4 1—2‘x1n’{.+ ky % x!

with the parameters k; € {—1, 1}. In order to confine every variable x/ on J”, we do,
for every iteration, the transform

. j _
?f(x,!+1< 1) add 2 (121)
if (x),; >1) substract 2

The particularity of this coupling is that each variable ' is coupled only with itself
and x*!, as displayed on Fig. 1.3a. At first glance, in order to enrich the random
properties of the map, it could seem interesting to add supplementary cross couplings
between these variables, as shown on Fig. 1.3b. However, in this case a cross
coupling is inappropriate because it would increase the determinism against ran-
domness, and therefore deteriorate the statistical properties which we are looking for.

To evaluate the random properties of these generators, the set of NIST tests have
been used again.

The random properties validations of both a four-dimensional system and a
ten-dimensional one have been carried out [5]. For this purpose, the chaotic carrier
output needs to be quantized and binarized (0 and 1) in order to be validated as
being random using NIST tests. Therefore, different methods of binarization
(converting real signals into binary ones) have been implemented and compared.

A first 1-bit binarization has been applied to the system (1.21) output, defined as
Yn = xj, with j€ [1,p]

1f(yn20) b=1
{ else b=0 (1.22)

(a) ) Q (b) . )
P 21 k! jr:1:
&0 O 0D

kl
R |

ki’“'K jkz HMK ri e jkz

o 3 _5‘_'{’ V3
Cree - P2

Fig. 1.3 a Left Ring coupling between the variables ¥. b Right Cross coupling between the
variables x’
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generator is <data/lozi_10_positif.txt>

Cl €2 €3 c4 C5 C6 C7 CB C9 Cl0 P-VALUE PROPORTION STATISTICAL TEST

8 5 13 9 9 12 6 19 8 11 0.102526 96/100 Frequency
11 16 9 10 10 10 14 3] 8 6 0.437274 99,100 BlockFreguency
11 5 8 11 10 5 11 11 13 15 0.419021 97/100 Cumulativesums
8 6 17 10 10 6 7 11 15 10 0.213309 97/100 Cumulativesums
5 8 17 15 ] 8 6 14 10 11 0.075719 95,/100 RUNS
11 11 10 13 9 ] 8 8 15 10 0.637119 99,/100 LongestRunN
<] 8 17 14 10 8 9 15 i 6 0.122325 99,/100 Ran
9 10 9 13 10 10 9 8 12 10 0.991468 99,/100 FFT
14 15 8 10 14 10 11 9 4 5 0.191687 98,100 nonover lappingTemplate
10 8 11 9 9 13 7 12 10 11 0.964295 95,/100 overlappingTemplate
13 16 -] 8 7 10 13 10 8 9 0.455937 100/100 universal
9 10 12 8 10 11 5 14 11 10 0.816537 97/100 Approximateentropy
6 5 6 5 9 11 5 6 3 5 0.637119 65,/66 randomExcursions
3 5 6 7 10 10 9 6 4 6 0.407091 65,66 rRandomexcursionsvariant
3 8 8 12 12 9 13 8 13 14 0.319084 100/100 seriall
4 3 12 18 12 8 8 14 9 12 0.028817 100/100 LinearComplexity

Fig. 1.4 Example of NIST test for k' = (D™ i=1, 4, each sequence of components satisfies the
NIST test for randomness

The results showed to be highly sensitive to the type of binarization. Eventually,
after testing several different methods, a 32-bit binarization has been chosen as
being the most suitable solution. Because the system is confined to the p-dimen-
sional torus J”, 31 bits are assigned to represent the decimal part and 1 bit to the
sign. To illustrate the results, the NIST tests for the four-dimensional system with
parameters k; € (—l)i+1 are shown in Fig. 1.4. The chosen conditions are: length
of the original sequence = 10® bits, length of bit string = 10° bits, quantity of bit
strings = 100. The output of the system has been arbitrary chosen as y = x..

Furthermore, as the results show their independence from the initial conditions,
every bit string in this test is the resulting sequence of a different randomly chosen
initial condition. The criterion for a successful test is that the p-value has to be
superior to the significance level (0.01 for this case). For the present model, all tests
were successful; thus the sequences can be accepted as being random.

1.4.2 Ring Coupling of Two-Dimensional Symmetric
Tent Map

Although the system (1.20) is a good PRNG when p 2> 4, in lower dimension two
and three, the chaotic numbers are not equidistributed on the torus (see Fig. 1.5).

In order to improve the ring-coupling mechanism in low dimension, we intro-
duce now a new type of undersampling based on geometric nature of the invariant
measure. We present this new mechanism which allows the emergence of ran-
domness from chaos, in the simplest case, the two-dimensional ring mapping M, on
the square ]2, with k' = K% = 1.
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-1 -08 -06 -04 -02 0 02 04 068 08 1

Fig. 1.5 Critical lines of the map M, on the torus J* (a square) [26]

Let M, be defined by

1 1 442
Xy 1 :1—2|xn‘+xn 123
I 2
. j _
with 1f(xn.+l< 1) add2 (1.24)

if (x),; > 1)  substract 2

1.4.2.1 Critical Lines

Figure 1.5 shows the distribution of the iterates of system (1.23) (the transient of the
first 10° iterations has been cut off). It can be observed that the attractor contains
regions where the point density is lower, and two lozenge-like holes. It is possible
to define critical lines which form a partition of the square J*. The critical lines CL
[19] are singularities of dimension one and represent an important tool for the
analysis of noninvertible maps. The holes on Fig. 1.5 are completely delimited by
segments of the critical lines CLAl, CLB4, CLCZ, CcL? 4, and CLAZ, CLB3, CLCI,
CL?3, defined below.

The critical lines separate regions of the phase space with different number of
preimages (backward iterates). In the case of piecewise linear maps, they are the
first iterates of the lines of discontinuity CL_; of the system.
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For the two-dimensional system (1.23), there are four groups of critical lines CL
with preimages CL_; given by

Critical lines A: CL%: x' =0

CLA' . x* = —2x' —1 ifx® >0
d I 1.25
o {CL?Z:xzzle—l if 22 <0 (1.25)
Critical lines B: CL?: x' = —1
CLE' : 2 =2x! if x2 <0,x! €0,0.5]
CLP : 2 = —2x! -2 if ¥ >0,x' € [-1,-0.5]
and ) OB L2 — o o if 2 <0,x) € (0.5, 1] (1.26)
CL# . x2 = —2x! if ¥ > 0,x! €[-0.5,0]
Critical lines C: CLS;: x* = 0
CL{': w2 =—L(x' +1) ifx' >0
d ! 2 1.27
an {CLlczzxzzi(x‘—i—l) if x! <0 ( )
Critical lines D: CLZ: x> = —1
CLP' .2 =% ifxl <0, 2€[0,05]
x! .
and CLY? : 2 =—-5—1 ifx! >0, 2% €[-1,-0.5] (1.28)

CLP 2= - ifxl >0, 22€[-05,0]
CLPM: @ =% +1 ifxl <0, 2€(05,1]

1.4.2.2 Markov Partition of the Square

Our aim is first to use the partition defined by these critical lines in order to do a
cell-to-cell analysis and, by the means of a Markov process, to compute explicitly
the invariant measure of iterates associated to system (1.23). Figure 1.6 displays the
32 subregions of the square J%, labeled from a to p and a’ to p'. For clarity of the
presentation, we have labeled from (I) to (IV), the four quadrants of J.

Straightforward computation shows that the images of each region, by the
mapping M, is one, two, or three regions of the same partition of the square J>.
Figure 1.7a, b display the images of the regions imbedded in the first quadrant (I).
Figures 1.8a, b display the images of the regions imbedded in the second quadrant
(II). The color is the same for every region and its corresponding image, except
when two regions are mapped on the same region, in this case there is a mix of
colors on the common part of the image.
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Fig. 1.6 The 32 subregions for a partition of the square J*

(a)

II

v &

(b)

17

Fig. 1.7 a Left The nine regions a—i of quadrant (I). b Right The images M,(I) of the nine regions

of quadrant (I)

The overall correspondence between regions of the partition and their image is
given by the Markov matrix M, which is shown in Table 1.1. The computation of
the coefficients of this matrix, which are rational numbers, is based on the ratios of

surfaces of bounded regions.

In order to display the 32 x 32 matrix M, on one page, we have labeled the

coefficients using letters which are not related to the names of the regions.
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(a) _ ) (b)

Fig. 1.8 a Left The seven regions j—p of quadrant (I). b Right The images M,(II) of the seven
regions of quadrant (II)

_ 1., _ 1. _3.._4
0=12P=29= 2" =20

L. 2. 4. 1.

S—§,[—§,M—§,V—6, (129)

1.4.2.3 Exact Computation of Invariant Measure Associated to M,

With the help of Markov matrix M,, it is straightforward to compute explicitly the
invariant measure associated to M,. For every region on Fig. 1.6, we define a
quantity of initial points called @, i = 1, 32 uniformly scattered on it, and we
compute its surface S;. We normalize both quantities to Y., Q' = |Q| = 4, and
>:S8: = |S| = 4. Hence it is possible to define the density of iterates on each region.

_g

di
S;

(1.30)
o' d'
Let O = : and D = : be the vectors of quantities and densities
0» a2
obtained applying (1.30) to every region. Then starting from an arbitrary initial
Q)
repartition of points on J2, say Qp = .|, and applying repeatedly the equation
oy’

Om+1=M0n (1.31)
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Table 1.1 Markov matrix M,

alblecldlelflglhli JJlk|ll | minjolpla'lblclalelrigihir|ifle " oo jo]p
a x| l¥ x
b tilslslu 5
e Ix|ylx
d tL]ls |s|u 5
e plalplg|rfalplaglp
f slu |s [s |t
xlylx
i s| Ju[s]s|t
x ¥ x
v|3 |+
X ¥ x
1 x |y |[x
m vioJolwlololw
n x |y [x
o x ¥ x
B Ld z v
a' x ¥ x
b [] u |s [=s |t
[ x |v | x
- tislsluls
£ Iplalplaglriaolplglp
r slu [s|s|t
* x |y [x
o tls |sjulls
’ x ¥ x
" v)] 1z |v
r x ¥ x
’ x|ylx
m' v]o Jolw Jo Jol]¥w
n' x ¥ x
o |xlv|x
P v |z v

The sequence of vectors {Q,,}

meN converges to a limit vector Q which satisfies

0-M0 (1.32)

and gives the invariant measure, the density of which is the vector D, using (1.30).

Numerical results

Starting from Qg =

Os00 =

1
QSOO
2
QSOO
3
QSOO

4
QSOO

29
0500
30
0500
31
500

32
QSOO

Qo 1/8

= © |,0, it is obtained rapidly as

o5 1/8

1/14
3/28
1/14
3/28

47
3/28
3/28

1/7

0, which gives using (1.30),
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ds00 10/7
e 5/7
Ay, 10/7
s 5/7
Dsyy = = =D.
a2, 12/7
d5o0 9/7
d5g0 o7
) N6

Remark 3.1 Computing directly this density and iterating (1.23) up to 10"" iterates,
leads to the same result.

1.4.3 Geometric Undersampling

The exact computation of the density D of the invariant measure shows that this
density is constant on each region. The geometric undersampling process consists
of magnifying a square G included in one region (as for example the square G =
[0.36, 0.64] x [0.36, 0.64] included in region m on Fig. 1.9), up to the size of the

square JZ.

Fig. 1.9 The square
G =1[0.36, 0.64] x [0.36, 0.64] ¢ . 1
in which iterates of (1.23) are b J
geometrically undersampled a £ | A
i 0
e 10
k I
d i
h P
g n
r ¢
J b
f ,
, a
n
m’ e
m \* |v v .
P h
0 g
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1.4.3.1 Algorithm of Geometric Undersampling

Let G = [xl , 1} X [xlz, xﬂ be the square in which we will undersample the iterates

xll +x) _ xl2 +x3 . .
of (1.23) and, x} .., = 15",  Xaean = 5 In algorithmic form, the pseudo-code

to geometric undersample N iterates of (1.23) is:

X, :(x,ﬁ,x(f)zseed
n=0;
do { while n < N compute (x’,xz) ;if (x,’l xj)e G then

J— 1 1 — 2 2
.X; 2 X, ]_xmelzm , : =2 X0 — xmean i g= q+[ n+ +}
X, —X X X

Remark 3.2 In this case, the undersampling process provides two streams of
pseudo-random numbers.

Remark 3.3 In this case, NSampl,, the number of geometrically undersampled
iterates is not known a priori, however, considering that the selecting process is
linked to the uniform distribution of the iterates of the tent map on J°, one has

Wy 2
NSampl,,,, ~ % x d™, where d"™ is the density of the measure in region m.

1.4.3.2 Numerical Tests

We have applied this process in the case of the square G of Fig. 1.9 with N = 10'2,
which gives NSampl,,.. =~ 3.35 x 10'°. Figure 1.10a displays the densities of the
seven regions j, k, I, m, n, o, p of quadrant (II) which are equal to

{ d'=4:a =54 =3,
T _9.7° _ 9.7 _ 6.
d=2%d=3,d=¢;
Figure 1.10b shows the uniform density of iterates in the square G =

[0.36, 0.64] x [0.36, 0.64] of quadrant (II). In Fig. 1.11, the square is magnified up

to the size of the square J2. The vertical scale is fitted near the invariant Lebesgue

measure.
We have also used NIST test to confirm the random property of the geometrical

undersampling process. They are all successful (Fig. 1.12).
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| i i o |

Fig. 1.10 a Left densities of the seven regions j, k, 1, m, n, o, and p of quadrant (I). b Right
Uniform density of iterates in the square G = [0.36, 0.64] X [0.36, 0.64] of quadrant (II)

(‘2 H\I

it W‘J*‘ i

!

‘), ll'" ] ‘ lu
ik “n ﬂﬂl} h

NA ,‘ l

03200-3250 @3250-3300 03300-3350 03350-3400 M 3400-3450

03450-3500 B3500-3550 03550-3600

Fig. 1.11 Uniform density of iterates of the square G = [0.36, 0.64] x [0.36, 0.64] magnified to
the square S
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RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

@]
—

C2 C3 C4 C5 Co C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

129 7 912 11 8 11 13 8 0.924076 99/100  Frequency

1 4 34 7 5 916 16 35 0.000000* 100/100  BlockFrequency
9 91012 11 8 9 10 10 12 0.996335 99/100  CumulativeSums
10 91212 9 7 10 10 12 0.983453 99/100  CumulativeSums
11 12 11 8 12 7 12 6 10 11 0.883171 99/100  Runs

9 913 8 9 817 810 9 0.595549  100/100 LongestRun
611 1111 9 8 14 9 13 0.798139 100/100 Rank

1510 7 8 8
12910 13 9
12 610 6 13
18 12 13 11 9
1 812 11 11

o)

—_

8
516 7 6 0153763  97/100 FFT

7 15 4 10 0.474986  98/100 NonOverlappingTemplate
8 8 17 14 0.145326  99/100  OverlappingTemplate
5
8
-

8
1
6
8 9 50.145326  99/100  Universal

0 7 8 0.883171 99/100  ApproximateEntropy

5 6 11 0.145326 59/59  RandomExcursions
7 8 0.637119 59/59  RandomExcursions

1
1

[N

4

7 8 0.334538 59/59 RandomExcursionsVariant

9 4 0.224821 98/100  Serial

0 12 0.798139 99/100  LinearComplexity

The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is
approximately = 96 for a sample size = 100 binary sequences.

Fig. 1.12 Geometrical undersampling: each sequence of components satisfies the NIST test for
randomness

1.5 Noise-Resisting Ciphering

As a first example, we propose a novel noise-resisting ciphering based on a large
number of uncorrelated chaotic sequences. These cogenerated sequences are
actually used in several steps of the ciphering process. Noisy transmission condi-
tions are considered with realistic assumptions. The efficiency of the proposed
method for ciphering and deciphering is illustrated through numerical simulations
based on ten coupled chaotic sequences [5]. It can be also adapted to geometric
undersampling, provided this undersampling is done in dimension four.

In this section, we detail the noise-resisting ciphered transmission principle, con-
sisting of two steps: the ciphering process and the transmission process (see Figs. 1.13,
1.14). Both resort to the coupled chaotic pseudo-random generated sequences.

1.5.1 Ciphering Principle

We begin with some notations that will be used in the sequel. The plain text is
denoted by (f),_; y: the letters #, for k=1,...,N belong to the alphabet
{L,...,1;} composed of = letters.

The ciphered text is a sequence of real numbers denoted by yx, k = 1,...,N and
each y; belongs to the interval J =[—1,1] C R. The transmitted signal (at the
transmitter side) is denoted by s,,, while the received signal is 5,, (at the receiver side).
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Extemal

noise

P Free
— [strams
—-

PRNG

Plam text

Fig. 1.13 General scheme of the ciphering and the ciphered transmission principle (coding and

transmitting)
Noised and crypted
signal l
Synchronizing
—
> Free
> |streams
—
Cms-
PRN —| >

decoding
Finding the

Undo

uniformizing

x?
S5

decoding

]

Fig. 1.14 General scheme of the ciphering and the ciphered transmission principle (receiving and

decoding)
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In this paper, we consider noisy transmission conditions, which means that
Sp = Sy + o, where o, > 0 denotes an unknown additive noise at time n. We make
the following classical assumption: the additive noise is bounded by a known bound
K, which means that

Isn — Snll = 0 <K, ¥n>0 (1.33)

We first detail how to transform each letter of the plain text #; into a real number
yr € [-1,1] with an original noise-resisting method. In the second step, the
sequence {y,} will be transformed to obtain a uniform distribution on the interval
[—1,1].

e Define a partition as follows:

L= | I (1.34)

m=1,1

with a,, b,, the bounds of each interval I, i.e., L, = [au, by

In fact, owing to the presence of additive noise, not all real numbers inside 1,
can be selected, one must add an interval of length K at each side of the interval 1,,.
Therefore some smaller intervals need to be defined.

e Define a subinterval I/, to be included in the corresponding interval I,, such that

I, =ld,, b,] CI, (1.35)

m m’

and
la,, — K, b, +K| C I (1.36)

where we recall that K is the upper bound of the noise, see (1.33).

Then the coding consists of random (i.e., with another pseudo-random sequence
generated by (1.20): 2!, or the geometric undersampling in dimension four)
choosing for each letter 7 of the plain text a real number y; inside the interval I,
(and not I,,)) if t; = [,,. Each interval Ir’n corresponds to a letter /,,, form =1,..., .
Remark that each letter has a frequency of apparition in the plain text, depending on
the initial language. Therefore, one must carefully choose the length of each interval
I in proportion to the corresponding frequency of the letter /,,. An illustration is
given by Fig. 1.15 for an alphabet with three letters: the letter A has a frequency of
10 %, the letter B of 30 %, and the letter C of 60 %.

e Once this first step of the coding is achieved, one has to ensure that the ciphered
text has a random-like distribution inside [—1,1]. With the aforementioned
coding alone, this property cannot be ensured, as it can be seen in Fig. 1.16.
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Fig. 1.15 Repartition of an i ' ' ' ' * ; . T
alphabet of three letters A B c

-1 08 06 -04 D2 0 02 04 06 08 1

Fig. 1.16 Signal to be ' T T T T T T T -
transmitted without 2t — J
transformation
16} i
1F J
o5t i
U L L 1 1 1 1 1 L

0 02 04 06 08 1 12 14 16 18 2

Since one needs to leave some holes at the edges of the intervals I, to resist the
additive noise, the transmitted signal cannot have a random-like repartition. So we
propose to transform the ciphered data y; before transmitting it.

For all steps n € N such that an encrypted letter is transmitted, we propose to
transmit not directly y, but:

Va+ X072 if y, +x072 € [—1,1]
V=4 Wt 242 ify,+x i< —1 (1.37)
Yok 2 =2 ify, +x02 > 1

For simplicity of presentation, in the sequel, y, will denote y,, the ciphered
message to transmit.

Then the obtained signal to transmit has the desired uniform repartition, as
illustrated by Fig. 1.17.
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Fig. 1.17 Signal to be 1.4
transmitted after
transformation 12} ]
1} J
08 5
06 5
0.4 4
02 4
0 L 1 1 L
0 05 1 15 2 25

1.5.2 Transmission Principle

We now present how to transmit the ciphered text using substitution method in a
new pseudo-random sequence. The transmitted signal is denoted by s,,.

The ciphered text y;, defined by (1.37), is not directly transmitted, it is chaoti-
cally hidden in a chaotic carrier signal as explained below.

The ciphering makes use of two coupled chaotic sequences: x! is used as chaotic
carrier, while x¥ is used to select the substitution times.

1 SE AP
sn:{x” ifx)<T (138)

Yn(k) if xﬁ >T

where T is a predefined threshold. For example, as the x is equally distributed on
the interval [—1, 1], if one chooses T = 0.8, one ciphered letter will be transmitted
in average of each ten elements of the sequence x!. If one chooses T = 0.98, one
element over 100 is replaced by a letter.

We do not detail here the sequence k(n), as it is easily understandable that k(n)
increase by +1 each time s, = y(,) in order to transmit each element of the ciphered
sequence Y.

1.5.3 Decoding Principle

At the receiver end, suppose that the same PRNG defined by (1.20) is available.
The transmitter and the authorized receiver have fixed the same parameters and
same initial values; therefore the ciphering is a symmetrical one.
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According to the substitution principle defined by (1.38) and the hypothesis
(1.33) on the additive noise, the received signal can be expressed as

Sy = x:l + oy OF Yi(n) + oty (1.39)

Since the initial conditions of the chaotic pseudo-random number generator
(1.20) are assumed to be public, the receiver exactly knows when x! is smaller or
larger than the threshold 7, so the receiver is able to reconstruct the sequence
(Vk(n) + o) i.e., the sequence y, + B, where f, = o, for g = k(n).

As B,<K, there exists m € {1,2,...,n}, such that §, € I,,.

The receiver, also, exactly knows the value of x{;’z and deduces from the rules
(1.37) the value of y,. Then the knowledge of the correspondence between the
interval ,, and the letter /,, enables the receiver to retrieve the initial message.

1.5.4 Numerical Illustration

Now we summarize the main steps of the proposed algorithm:

(1) Choose the secret parameters k; = 1 or k; = —1, fori € {1,2,...,p}.

(2) Define the initial conditions shared by the transmitter and the receiver.

(3) Iterate the PRNG (1.20) with the previous initial conditions, at both the
transmitter and the receiver side.

(4) Apply the ciphering and transmission principle as detailed before.

The Fig. 1.18 shows the noisy signal at the receiver side (recall that the trans-
mitted signal is given by Fig. 1.17). Notice that the Figs. 1.16, 1.17 and 1.18
represent our simulations with 10” iterations.

Fig. 1.18 Received noisy
signal

0B}

06} 1

04t 1

02t 4

0 0s 1 15 2 25
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1.6 Conclusion

We have proposed a new mechanism of undersampling of chaotic number obtained
by the ring-coupling mechanism of one-dimensional maps. In the case of two
coupled maps, this mechanism allows the building of a PRNG which passes all
NIST tests.

This new geometric undersampling is very effective for generating two parallel
streams of pseudo-random numbers, as we have shown, computing carefully their
properties up to sequences of 10'* consecutives iterates of (1.23) which provides
more than 3.35 x 10'° random numbers in very short time. In a forthcoming paper
we will test both three- and four-dimensional cases.

In addition we have proposed a novel method of noise-resisting ciphering. The
originality lies in the use of a chaotic pseudo-random number generator: several
cogenerated sequences can be used at different steps of the ciphering process, as
they present the strong property of being uncorrelated. Each letter of the initial
alphabet of the plain text is encoded as a subinterval of [—1, 1]. The bounds of each
interval are defined in function of the known bound of the additive noise.
A pseudo-random sequence is used to enhance the complexity of the ciphering. The
transmission consists of a substitution technique inside a chaotic carrier, depending
on another cogenerated sequence. The efficiency of the proposed scheme is illus-
trated on some numerical simulations.

Cryptography is a wide field of research, in which the brilliant formulas of
Srinivasan Ramanujan have been largely used. May be, it will be possible, in a near
future, to link such formulas with chaos in the domain of emergent randomness.
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Chapter 2
Soft Computing Techniques and Their
Applications

D.K. Chaturvedi

Abstract The modern science is still striving to develop consciousness-based
machine. The forecasting is an intuition-based or consciousness-based problem. It is
an important problem for planning, decision-making and designing of an appro-
priate controller for the systems. The paper deals with the synergism of soft
computing techniques mainly artificial neural network, fuzzy logic systems, and
genetic algorithms and their applications in forecasting.

Keywords Arttificial neural network - Fuzzy systems - Genetic algorithms -
Synergism of soft computing techniques - Forecasting

2.1 Introduction

In the last century, enormous industrial and technological developments had taken
place. Technology had developed laterally well up to the biggest giant-sized com-
plexes and also to the smallest molecular nano-mechanisms. Thus, having explored
to the maxima of the two extreme fields, technology is exploring now vertically to
reach the dizzy heights of soft computing, subtle soft computing, and the millennium
wonder of reaching the almost unchartered height of evolving consciousness in
computers (machines). This presentation makes its small and humble contribution to
this new astounding scenario and possibly the greatest of all mechanical wonders, to
transfer consciousness of man to machine [1]. Prior to World War II, numerical
calculations were done with mechanical calculators. Simulated by military require-
ments during World War I, the first version modern digital computers began to make
their appearance in late 1940s and early 1950s. During that pioneering period, a
number of different approaches to digital computer organization and digital com-
puting techniques were investigated. Primarily, as a result of the constraints imposed
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by the available electronics technology, the designers of digital computers soon
focused their attention on the concept of computer system architecture, which was
championed by Dr. John Von Neumann, who first implemented it in the computer
constructed for the Institute of Advanced Studies at Princeton. Because of the per-
vasiveness of the Von Neumann architecture in digital computers, during the 1950s
and 1960s, most numerical analysts and other computer users concentrated their
efforts on developing algorithms and software packages suitable to these types of
computers. In 1960s and 1970s, there were numerous modifications and improve-
ments to computers of the earlier generation. The “bottle neck” of Neumann com-
puters was the memory buffer sizes and speeds on it. In the 1990s, there was a
quantum leap in the size of computer memory and speeds. As a result of this,
supercomputers have been developed, which could do lakhs of calculations within a
fraction of a second. Supercomputers can also do all routine tasks, and it could handle
it better with multi-coordination than a human being, and thus reducing a series of
simple logical operations. It could store vast information and process the same in a
flash. It does not also suffer from the human moods and many vagaries of mind.

But, the supercomputers cannot infer or acquire any knowledge from its information
contents. It cannot think sensibly and talk intelligently. It could not recognize a person or
could not relate his family background. On the other hand, as human beings, we con-
tinuously evolve our value judgment about the information we receive and instinctively
process them. Our judgment is based on our feelings, tastes, knowledge, and experience.
But computers are incapable of such judgments. A computer can be programmed
(instructed), i.e., to generate poetry or music, but it cannot appraise or judge its quality.

Hence, there is a genuine and compulsory need for some other logic, which can
handle such real-life scenario. In 1965, Prof. Lofti A. Zadeh at the University of
California introduced an identification tool by which this degree of truth can be
handled by fuzzy set theoretic approach. With the invention of fuzzy chips in 1980s
fuzzy logic received a great boost in the industry.

Now in this twenty-first century fuzzy logic, artificial neural network (ANN),
and evolutionary algorithms (EA) are receiving intensive attention in both aca-
demics and industry [1-15]. All these techniques are kept under one umbrella called
“soft computing.” Enormous research had already been done on soft computing
techniques to identify a model and control of its different systems.

This paper deals with the synergism of soft computing techniques which are
fuzzy logic, ANN, and EA for electrical load forecasting problem. The wavelet
transform is used to decompose the past load pattern and used for training and
testing of proposed method.

2.2 Wavelet Analysis

The underlying mathematical structure for wavelet bases of a function space is a
multiscale decomposition of a signal, known as multi resolution or multiscale
analysis. It is called the heart of wavelet analysis.
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Fig. 2.1 Wavelet winter season data
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The first step of discrete wavelet transform corresponds to the mapping f to its
wavelet coefficients and from these coefficients two components are received,
namely a smooth version, named approximation and a second component that
corresponds to the deviations or the so-called details of the signal. A decomposition
of f into a low-frequency part @, and a high-frequency part d, is represented by
f=a; + d,. The same procedure is performed on a; in order to obtain decompo-
sition in finer scales: a; = a, + d,. A recursive decomposition for the low-frequency
parts follows the directions that are illustrated in the following diagram.

dy d, d; dy....d,

The resulting low-frequency parts ay, a,, ... ay are approximations of f, and the
high-frequency parts dy, d,, ... dy contain the details of f. Figure 2.1 illustrates a
wavelet decomposition into four levels and corresponds to as, dy, d», and d;.

f=di+dry+ds+ - +dy_1 +dy+an.

2.3 Generalized Neural Network

In a simple neuron model the aggregation function is summation, which has been
modified to obtain a generalized neuron network (GNN) model using fuzzy com-
pensatory operators as aggregation operators to overcome the problems such as
large number of neurons and layers required for complex function approximation,
which affect not only the training time but also the fault tolerant capabilities of the
artificial neural network (ANN) [2].
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The common ANN is consisting of summation as aggregation function. As men-
tioned by Minsky and Parpet [16] in their book that linear perceptron could not be
trained for non-separable problems. The multilayer ANN introduced to overcome the
problems of perceptron and it was found that three-layer ANN could map any func-
tion. The three-layer ANN with simple back-propagation learning algorithm requires
large training time. Then large number of back-propagation variants came up with
time to improve its training performance. Basically, the training time of ANN depends
on the number of unknown weights to be determined. This large number of unknown
weights in huge ANN is required to map with complex functions. To obtain large
number of weights, large number of training data is required. It is very difficult or
sometimes impossible to collect accurate and sufficient training data for real-life
problems. The noisy training data affect the testing performance of ANN.

The general structure of the common neuron is an aggregation function and its
transformation through a filter. It is shown in the literature [4] that the ANNs can be
universal function approximators for given input—output data. The common neuron
structure has summation or product as the aggregation function with linear or
nonlinear (sigmoid, radial basis, tangent hyperbolic, etc.) as the threshold function.

Different structures at neuron level have been tried to overcome
above-mentioned drawbacks of ANN [1]. In this regard ANN consisting of X
neurons (Z-ANN), ANN consisting of IT neurons (IT-ANN), and combination of the
above two have been tried and the results obtained are quite encouraging [1].

The proposed generalized neuron model shown in Fig. 2.2 has summation and
product as aggregation and sigmoid and Gaussian as activation functions. The final
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A
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I
| Wi,
/
V Threshold function
Aggregation Operator

Fig. 2.2 Generalized neural network (GNN)
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Fig. 2.3 Mechanism for short-term load forecasting

output of the neuron is a function of output of all activation functions. The learning
of GNN is explained in [1].

The are many advantages of GNN such as less number of unknown weights, less
training time, less number of training patterns, less complexity, and more flexibility.

The basic idea is to use the wavelet transforms and predict the data by synergism
of soft computing techniques GNN-W-GA-F for individual coefficients of wavelet
transform represented by as, d;, d>, and d5. The input to the architecture to predict
the wavelet coefficients is explained in Fig. 2.3.

2.4 Adaptive GA with Fuzzy System (GA-F)

Genetic algorithm (GA) simulates the strategy of evolution and survival of fittest. It
is a powerful domain-free approach integrated with GNN as a learning tool. The
GNN-GA integrated approach is applied to different problems to test this approach.
It is well known that the GA optimization is slow and depends on the number of
variables. To improve the convergence of GA, adaptive GA is developed, in which,
the GA parameters are modified using fuzzy rules [S]. The initial parameters of
GAF are given below:
GAF Parameters

e Population size: 50
e Initial crossover probability: 0.9
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e Initial mutation probability: 0.1
e Selection operator: tournament selection
e Number of generations: 100

2.5 Short-Term Load Forecasting Using Generalized
Neural Network-Wavelet-Genetic Algorithm-Fuzzy
System (GNN-W-GA-F)

The neural network (NN) is widely used for short-term load forecasting applications
in the past few decades. To improve the performance of ANN, GNN is developed.
The GNN is then used to predict each wavelet component separately and combine
the (predicted components) to get forecasted load.

The following steps are used in forecasting using GNN-W-GA-F.

Step-1

Step-11

Step-111

Data collection

The electrical load data was collected from 33/11 kV substation of
Dayalbagh Educational Institute (D.E.I.) Dayalbagh Agra. India has been
recorded at every 1 h interval for each day for 1 year. The week con-
taining no national holidays, Saturday, and Sunday, or religious holidays
are not considered as desired data in the forecasting model. Furthermore,
special holidays cannot be used as inputs since they have lower loads than
a regular Monday to Friday and mislead the training.

Preprocessing of Data

The data collected in earlier step is preprocessed.

(a) Filtering of data
In this preprocessing of data, the data is de-noised, i.e., remove bad
data. The data of Saturday and Sunday is removed, because the load
patterns of these days are quite different and also they are not used in
forecasting. Also the error data due to sensor problem or any other
fault is removed.

(b) Normalization of data
The filtered and de-noised data is then used for electrical load fore-
casting after normalizing them.
The normalization range used in normalization process is from 0.1 to
0.9 and not in the range 0—1. This is because in extrapolation there is
a tolerance of 0.1 on both sides.

Wavelet decomposition of Electrical load pattern

The wavelet transform is used to decompose the normalized electrical
load pattern into a number of wavelet components as shown in Fig. 2.1.
The original normalized signal of load demand is decomposed to high-
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Step-IV

Step-V

Step-VI

and low-frequency component by using db8, mother wavelet (db8) for
calculating the coefficient of the details (d) and approximate
(a) components.

Selection of training pattern

The first step for training is obtaining an accurate and sufficient historical
data after preprocessing. The data should be chosen that is relevant to the
model. How well the data is chosen is the defining factor in how well the
model output will match the event being modeled. There should be some
correlation between the training data and the testing data. In the load data,
for example, all the Monday’s data look alike and this holds good for all
the days of the week with some variations.

The wavelet-decomposed components are used for training.

The training patterns are consisting of decomposed wavelet components
of given load pattern at time #, # — 1, r — 2 (past three points) as input and
the forecasted wavelet component at # + 1 as output. Hence, training
patterns expressed as pair of set of input and output.

Training Pattern = [Input vector] —

[Output Vector]

Roughly 85 % of total load data is used for training and rest 15 % load
data is used for testing of models. The pseudo code of GNN-W-GA-F is
given below.

Begin GNN-W-GAF
Collect a set of data.
Decompose the data into wavelet components
Initialize parameters of GAF and GNN-W
For | =1:Gmax
while pop < popmax
Evaluate the fitness using GNN-W
end
generation= generation + 1
Modify crossover, mutation rate using FS
select parental chromosomes
Perform GA operators
Get new population
End

Forecasting using GNN-W

The forecasting models using GNN-W-GA-F for wavelet components
have been used after proper training.

Reconstruction of forecasted load

The forecasted load pattern is reconstructed after combining the wavelet
components. In the comparisons of model performance, the load forecast
accuracy is determined by RMSE.
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2.6 Results and Discussions

The training of a3 component using GNN-W-GAF is shown in Fig. 2.4 as maxi-
mum fitness of GA-F. Actual load and forecasted load using GNN-W-DA-F
during testing is given graphically in Fig. 2.5.
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Fig. 2.5 Testing performance of GNN-W-GAF model
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2.7 Conclusion

The paper deals with short-term electrical load forecasting problem using integrated
approach of soft computing techniques and wavelet transform. The techniques and
forecasting models were applied to datasets available from 33/11 kV substation of
Dayalbagh Educational Institute, Dayalbagh, Agra, U.P. India. The soft computing
technique, GNN-W-GA-F, has been applied to develop models for STLF. The
integrated model, i.e., GNN-W-GAF gives the least RMSE in comparison to all the
other ANN-based models.
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Chapter 3
Integral Geometry and Mathematical
Problems of Image Reconstruction

Gaik Ambartsoumian

Abstract Integral geometry is a branch of mathematics studying the representation
of functions by their integrals along various curves and surfaces. Such tasks arise
naturally in many problems of image reconstruction in medicine, remote sensing,
non-destructive testing, and some other areas. In this paper, we give a short survey
of mathematical models of several imaging modalities, which are based on gen-
eralized Radon transforms. We discuss the major mathematical problems arising in
the study of these transforms, describe the known results, and state some open
problems. The paper includes an extensive list of references providing further
sources for interested readers.

Keywords Integral geometry - Image reconstruction - Generalized Radon
transforms - Computer-assisted tomography (CAT) - Thermoacoustic tomography
(TCT)

3.1 Introduction

In many imaging applications, the data collected by imaging devices correspond to
the integrals of an unknown function along certain curves or surfaces. The math-
ematical task of image reconstruction in these cases becomes the stable recovery of
that unknown function from its integrals [1—4]. This requires the inversion of
so-called generalized Radon transforms (GRT) [3-6] (Fig. 3.1).

In this section, we describe several imaging modalities used in medicine and
other fields, consider their mathematical models, and define the corresponding
Radon transforms. We state the major problems arising in the study of these
transforms the detailed discussion of which is presented in further sections.
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Fig. 3.1 A sketch of an X-ray passing through the body in CAT

One of the most famous medical imaging techniques is the computer-assisted
tomography (CAT) which uses X-rays to produce images of the interior organs of
the human body. In simple terms, the CAT process can be described as follows. An
X-ray beam is sent through the body, and its intensity is measured at both the
source and the detector (Fig. 3.1). It is known from physics that the change of
intensity Al of the beam on a small interval Ax satisfies the following simple law:

Al

7 =/ (x)Ax, (3.1)

where f(x) is the X-ray attenuation coefficient of the human body at point x and
(x) is the intensity of the beam at point x. If the measured intensity at the source is I,
and at the detector is /; then considering infinitesimal increments of Ax in (3.1) and
solving the resulting differential equation one gets

I

p=expd -~ [ o, (32)

where the integral is taken along the line L passing through the source and the
detector.

Hence, using the measurements of I, and I at various locations of the source and
the detector one can obtain the integrals of the unknown X-ray attenuation function
fix) along various straight lines passing through the body. The grayscale graph of
fix) is exactly what the CAT scanners use to create images of the interior organs.
Thus, the mathematical task of image reconstruction in CAT is the recovery of
fix) from its integrals along straight lines.

Definition 1 The Radon transform R maps a function f on R? into the set of its
integrals along lines in R?. In particular, if 0 € [0, 27], @ = (cos 0,sin 0) and s € R,
then
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RA0.0) = [ foar= [ fisot i (33)

X-W=s

is the integral of f along lines orthogonal to w at (signed) distance S away from the
origin.

Here f'is assumed to be such that the integrals are well defined. For example, one
can take f € S (Rz), the Schwartz space. For simplicity, in this article, we will
consider mainly compactly supported functions f of certain smoothness. For details
about most general classes of ffor which the theory of GRT has been developed see
[3-6].

In the discussion above, we assume that the source and the detector move within
a fixed plane so that we get the integrals of f along all possible lines in that plane.
Thus, the reconstructed 2D image will correspond to a cross-sectional view of the
human body along that plane. Then one can vertically stack such cross-sectional
images to create a 3D image of the body interior.

Remark 2 One can consider a setup where the source and the detector are not
limited to a plane, and are placed at various locations in the space. In this case the
CAT scanner measures the integrals of the X-ray attenuation coefficient f on R
along lines in R>. The fully 3D recovery of f from such data is also an interesting
problem, which will not be addressed in this paper. For more details on this we refer
the interested reader to [1-4, 6]. Here we just mention that in dimensions n = 3 and
higher, the transform integrating a function along lines in R" is called X-ray
transform, whereas the term Radon transform refers to the transform integrating
f over hyperplanes in R". Of course, for n = 2 these transforms coincide.

The problem of 2D-image reconstruction in CAT requires the inversion of the
Radon transform defined above. In further sections, we will discuss the existence
and uniqueness of such an inversion, the inversion formulas and algorithms, as well
as their numerical implementations and stability issues. We continue this section
with discussing a few other imaging modalities and corresponding GRT.

Thermoacoustic tomography (TCT) is one of the most promising novel medical
imaging techniques [7-12]. The TCT scanner sends a short pulse of radio-
frequency (RF) electromagnetic waves through the body heating up the tissue. The
resulting thermo-elastic expansion of the tissue generates ultrasound waves which
are measured by an array of transducers outside of the body. The measured data is
then used to recover the RF-absorption coefficient f(x), and the grayscale graph of
which is used to generate the image of the body interior.

In a simple mathematical model of TCT, it is assumed that the RF energy is
deposited instantaneously and uniformly through the body, and the speed of sound
c is constant inside the body (see Fig. 3.2). Under these assumptions, the signal
registered at a given transducer location p at some moment of time ¢ corresponds to
the integral of f(x) along a sphere S(p, r) centered at p and of radius r = ct/2 (e.g.,
see [7-12]).
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Fig. 3.2 A sketch of a simple TCT model

Hence, by placing the transducer at various locations and registering the gen-
erated ultrasound signals as functions of time, the TCT scanner effectively measures
the integrals of the unknown image function f along a family of spheres. So the
image reconstruction problem in TCT is mathematically equivalent to the recovery
of ffrom its integrals along spheres.

One can place the transducers along a fixed planar curve and focus them so that
they register only the signals coming from that plane. In that case, we get a problem
of recovering a function fin R? from its integrals along a two-dimensional family of
circles in R? (one parameter specifying the center of the circle along the given curve
and the other one specifying its radius). As in the case of CAT, one can then
vertically stack these 2D images to get a 3D image of the body interior. Of course,
the fully 3D reconstruction of f from integrals over spheres in R is also possible.

Definition 3 The spherical Radon transform (SRT) Rs maps a function f on R"
into the set of its integrals along spheres in R”

Ref (p.r) = / F(x)do(x), (3.4)

fepl=r

where do(x) is area measure on the sphere |x — p| = r. (The transform is often
called circular Radon transform when n= 2, with do(x) denoting the arc length
measure on the circle.)

For SRT too, we assume in this article that fis a compactly supported function of
certain smoothness.

The image reconstruction in TCT requires the inversion of the SRT, which will
be discussed in the further sections. It is important to mention that SRT inversion is
also needed in some other imaging modalities, e.g., in photo-acoustic tomography
[11, 12], mono-static ultrasound reflection tomography [13, 14], radar and sonar
imaging [15, 16], etc.

In bi-static ultrasound tomography (URT), an emitter sends spherical sound
waves through the body and the backscattered echoes are registered by a receiver.
Assuming that the speed of sound is constant in the body, the signal registered at
any given moment by the receiver is generated by reflections from all those points
for which the sum of their distances r; and r; to the emitter and the receiver is
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Fig. 3.3 A sketch of a simple
bi-static URT model
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constant (depending on time and sound speed) [17, 18]. In other words, those points
are located on confocal ellipsoids of rotation in 3D (or ellipses in 2D) with foci at
the emitter and receiver locations, and the problem of image reconstruction boils
down to the inversion of a transform integrating functions along such ellipsoids in
3D (or ellipses in 2D) (see Fig. 3.3).

Definition 4 The elliptical Radon transform of f{x), x € R" is defined as

Ref (pespr 1) = / F(x)do(x), (3.5)

[x=pe| + [x—pr|=r

where do(x) is the area measure on the ellipsoid |x — p,| + |x — p,| = r (or arclength
in 2D).

The rest of the paper is organized as follows. In Sect. 3.2, we discuss the known
results and open problems related to the uniqueness of inversion of the generalized
Radon transforms presented here. Section 3.3 is dedicated to the inversion formulas
and algorithms of such transforms. Section 3.4 includes some additional remarks,
and we finish the paper with acknowledgements.

3.2 Uniqueness

The Radon transform Rf defined in Eq. (3.3) is a classical concept that has been
extensively studied in twentieth century. It is well known that if f € S(R?) then it is
uniquely determined by Rf(6,s), with 0 € [0,27], s € R (e.g., see [3, 5, 6]).
Various inversion formulas are known for this case, some of which will be pre-
sented in Sect. 3.3.

Notice, that the set of all lines in the plane is two-dimensional, so here we
recover a function f(x), x € R? of two variables from a two-dimensional dataset
Rf(0,s). The situation is drastically different for the spherical transform Rgf, since
the set of the circles in the plane is three-dimensional, and for the elliptic transform
Ref, since the set of ellipses in the plane is five-dimensional. (Similar mismatch
happens also if we consider f{ix) with x € R", n = 3.) Hence the inversion problems
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for Rgf and Rgf are overdetermined. To match the dimensions of the domain of
f and the GRT data, one needs to restrict both Rgf and Rgf to two-parameter
families of circles and ellipses correspondingly. Consequently, the uniqueness
results corresponding to these transforms depend on the choice of these restrictions,
thus are more complicated, and less well understood.

While there are many different ways of restricting the degrees of freedom of Rgf
to two, the imaging applications described above suggest a natural choice of
restricting the centers of integration circles to a one-dimensional set M (e.g., a
curve). From the imaging point, this curve can represent an arc of transducers
surrounding the patient’s body in TCT, or a flight trajectory of a plane in synthetic
aperture radar imaging. Similarly, one can reduce the dimension of Rgf by two
restricting the foci of the integration ellipses to a fixed simple curve (e.g., a circle).
There will still be one extra dimension left in this case, and we choose to reduce it
by forcing the distance between the foci (i.e., between the emitter and the receiver
in URT) to be constant.

With these restrictions matching the dimensions of the domain of f and GRT
data, we can now formulate several results about the unique inversion of these
restricted transforms. Let us start with a definition

Definition 5 The spherical Radon transform R is said to be injective on a set M
(M is called a set of injectivity) if for any f € C.(R") the condition Rgf(p,r) =0
for all » € R™ and all p € M implies f = 0.

In other words, if M is an injectivity set, then the restricted transform Rgf (p, r),
p € M can be uniquely inverted. Similarly,

Definition 6 The elliptical Radon transform R is said to be injective on a set M
(M is called a set of injectivity) if for any f € C.(R") the condition Rgf (p.,p,,r) =
0 for all » € R™ and all p,,p, € M implies f = 0.

In the case of n = 2, a complete description of injectivity sets for Rg was given
by Agranovsky and Quinto in [19]. To state their result, we need to introduce one
more concept.

Definition 7 For any n € N denote by 2, the Coxeter system of n lines
Lo, ..., L, in the plane: I; = {te™/"| — co <t<oo} (here we identify the plane
with the complex plane C).

In other words, a Coxeter system of n lines is a “cross” of n lines intersecting at
the origin under equal angles. Then all injectivity sets of R in R? can be described
as follows.

Theorem 8 ([19]) A set M € R? is a set of injectivity for the circular Radon
transform Rg on C.(R?) if and only if M is not contained in any set of the form
o(Zy) UF, where w is a rigid motion in the plane, Xy is a Coxeter system of N
lines, and F is a finite set.

The authors of [19] also formulated the (still unproven) conjecture for higher
dimensions.
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Conjecture 9 ([19]) The following condition is necessary and sufficient for M to be
a set of injectivity for the spherical Radon transform Rgs on C.(R"): M is not
contained in any set of the form o(X) | J F, where w is a rigid motion of R", X is the
zero set of a homogeneous harmonic polynomial, and F is an algebraic subset in
R" of co-dimension at least 2.

While the complete result in higher dimensions is still not proven, various partial
results have been established in the last decade.

In [20], we used some PDE techniques developed in [21] to prove some very
general results concerning geometry of non-injectivity sets of SRT, as well as
reproved certain known results with much simpler means (namely, finite speed of
propagation and domain of dependence for the wave equation). We formulate one
of these results below.

Let S be an algebraic hypersurface that splits R" into connected parts H,
j=1,...,m. One can define the interior metric in H/ as follows:

d’(p,q) = inf{length of y},

where the infimum is taken over all C'-curves 7 in H/ joining points p,q € H/.

Theorem 10 ([20]) Let S and H’ be as above and f € C(R") be such that
Rsf(p,r) =0forallp € S, and all r > 0. Let also x € H’, where H' is the closure
of H/. Then

dist(x, supp f NH’) = dist/ (x, supp f N H/) < dist(x, supp f NH*), k # j,

where distances dist/ are computed with respect to the metrics d/, while dist is
computed with respect to the Euclidean metric in R”". In particular, for x € S and

any j

dist(x, suppf N H/) = dist/(x, suppf N H/) = dist(x, suppf), j=1,...,m.

Notice, that the obtained necessary conditions for S to be a non-injectivity set not
only hold in arbitrary dimensions, but also they do not require f to have compact
support, and in fact do not impose any restriction on the behavior of f at infinity.
One of the corollaries of the previous theorem is the following.

Theorem 11 ([20]) Let S C R" and f(#£0) € C.(R") be such that Rgf(p,r) =0
for any p € S, and any r > 0. If the external boundary of the support of f is
connected and its curvature is bounded from below, then S is a ruled hypersurface
(union of a family of lines).

If we could also show that all these lines pass through the same point (which can
be easily done in 2D [20], but not so in higher dimensions), then this would
immediately imply the validity of Conjecture 9 for this particular case (see [20]).

For further details about the injectivity sets of the spherical transform, we refer
the reader to [20] and the references there.
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Another interesting question related to the uniqueness of inversion of Ry is the
possibility of unique reconstruction of f from Ry(p,r), where p € M for some
specific set M of dimension 1, and r is restricted to an interval 0 <r <r, (as opposed
to r > 0 used before).

In [22], we proved that in the case when M is a circle of radius R, one can get
such uniqueness results.

Theorem 12 ([22]) Let f(r, 0) be an unknown continuous function supported
inside the annulus A(e,R) = {(r,0) : r € (&,R), 0 € [0,27]}, where 0<e<R. If
Rsf (p, @) is known for ¢ € [0,27n] and p € [0,R — &, then f(r, 0) can be uniquely
recovered in A(g,R).

Theorem 13 ([22]) Let f(r, 0) be an unknown continuous function supported
inside the annulus A(R, 3R) = {(r,0) : r € (R, 3R), 0 € [0,2n]}. If Rsf(p, ) is
known for ¢ € [0,2n] and p € [0,R1], where 0<R; <2R then f(r, 0) can be
uniquely recovered in A(R, R;).

The paper also presented an exact inversion formula for SRT from this type of
radially partial data for both interior and exterior problems. Some potential fields of
application of the results of this work are intravascular ultrasound (IVUS) and
Transrectal Ultrasound (TRUS) imaging, where the exterior problem appears nat-
urally [23, 24].

For the case of the elliptic Radon transform, theorems similar to the Theorems
12 and 13 have been established in [25]. No comprehensive result similar to
Theorem 8 is known for ERT at this time.

3.3 Inversion

Exact inversion formulas for Radon-type transforms can be roughly divided into two
categories: closed backprojection type inversion formulas and expansions into series.

For the regular Radon transform R, there are various explicit inversion formulae
in the case, when Rf (), ¢) is known for all ¥ € [0,2x] and all ¢ (see [3]). For
example, if f € S(R?) (the Schwartz space), one of the most commonly used
inversion formulae is the filtered backprojection:

2n

flx,y) :%/ H(Rﬂ)(l/gxcosn//—&-ysinlﬁ)dlp, (3.6)

0

where H is the Hilbert transform defined by

Hh(t) = sgn(r) h(r) e dr, (3.7)

i
a V2
R
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and h(r) is the Fourier transform of A(?), i.e.,

1 —irt
_mk/h(t)e dr. (3.8)

A typical example of an inversion formula using series expansion is the one
described by A. Cormack in his pioneering paper [26]. Let f(¢,r) be the image
function in polar coordinates, g(0,s) = R(0,s) as in formula (3.3), with
¢, 0 € [0,27]. Then one can expand both functions into Fourier series with respect
to the corresponding angular variables:

r)= Zfl(r)ei%, 2(0,s) = Zg/(S)e”U.
! 1

Cormack showed in [26] that the /th Fourier coefficient of g depends only on Ith
Fourier coefficient of f, and that relation can be inverted, namely

als) =2 7 ) (1 —i—i)mﬁ(r)dr

s

and

i) == [ =21 () gy o

T
r

where T are the Chebyshev polynomials of the first kind.

For SRT, the first exact inversion formulas used Fourier expansion techniques in
2D [13] and 3D [14] spherical acquisition geometry. For example, the result of
Norton [13] can be stated as follows. Let R be the 2D spherical Radon transform on
the plane that integrates functions compactly supported inside the unit disk D over all
circles |x —p| = p with centers p = (cos,sinf) located on the unit circle
S. Consider the Fourier decomposition of f(r, ¢) and g(p, 0) in angular variables

ka )e*?, g(p. 0) = Ref (p. 0) Zgn )e. (3.9)

Since SRT commutes with rotations about the origin, the Fourier series
expansion with respect to the polar angle partially diagonalizes the operator, and
thus the nth Fourier coefficient g,(p) of g = Rgf will depend only on the nth
coefficient f,, of the original f. It was shown in [13] that:

gn(p) = 2mpHo{JuHu{fu}}, (3.10)
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where (H,h) (o) is the Hankel transform of an integer order n for a function A(r) on
R +

(H.h)(a) :/Jn(ar)h(r)rdr.
0

Here the standard notation J,, is used for Bessel functions. Using the fact that the
Hankel transform is self-invertible one can now easily get an exact inversion of

SRT by
fk(r):Hk{ L {gk(p)”.

Ji(0) 2mp

In [14], the authors obtained a similar result in terms of spherical harmonics
expansion of g in 3D.

In [22], we used similar techniques to derive exact inversion formulas for SRT of
functions supported inside annuli, which are interior or exterior with respect to the
data acquisition circle. The approach was based again on the rotation invariance of
SRT, which allowed to diagonalize the operator and reduce the problem to the
solution of an Abel-type integral equation with a special function kernel (in this
case including Chebyshev polynomials). The authors are currently working on the
extension of that result to 3D functions supported in spherical shells.

For the case of the elliptic Radon transform, similar results have been established
in [25].

Another approach for obtaining exact inversion formulas for SRT in the form of
series expansion was demonstrated by Kunyansky in [27]. Here the author used the
expansion of the unknown function f in the basis of eigenvalues of Dirichlet
Laplacian —A, and the known relation between SRT and the solution of wave
equation. The result in [27] holds for arbitrary closed acquisition surfaces, for which
the eigenfunctions of the Dirichlet Laplacian are explicitly known (e.g., cube, finite
cylinder, half-sphere).

Another important class of exact inversions includes closed form integral
transform type formulas. For the case of SRT various backprojection type, formulas
have been established by different authors in the spherical acquisition geometry
[8, 21, 28-30].

For example, when n = 3 the authors of [21] proved the following Filtered Back
Projection (FBP) formula

-1
f(x):@

1
Rsf” —phd 3.1
|/1 o R = ol (3.11)
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and in the case of n = 2 it was shown in [28] that if |[p| = 1 then

27 2Ry

_ 2y — pPldr
flx) = (ZERQ)ZAXO/O/ rRsf(p,r) log‘r |x — p| ’d do. (3.12)

In planar geometry backprojection type, inversion formulas for functions that are
even with respect to the plane were established in [9, 31, 32]. In case of cylindrical
geometry, similar results were found in [10]. It should be noted, that these are the
only acquisition geometries, for which closed form inversion formulas for SRT
have been discovered. For more complicated geometries, one has to use either
approximate inversion techniques described above, or the series expansion type
approaches.

3.4 Additional Remarks

e Another interesting topic in integral geometry is the description of ranges of
GRT’s. Typically, the range of a Radon-type transform satisfies infinitely many
conditions, in other words it has an infinite co-dimension in the space of smooth
functions with corresponding variables. The knowledge of these conditions may
be useful in applications to suppress the noise in data measurements, fill in some
missing data with better approximation than mere zero-filling, determine mal-
functioning hardware in the scanners, etc. To learn more about range descrip-
tions of the Radon transform R, we refer the reader to [3—6]. For the spherical
Radon transform Rg check out [33-35] and the references there. The range
description of the elliptical Radon transform R is still an open problem.

e The existence and uniqueness of an inversion for a GRT does not guarantee the
possibility of an application of such an inversion on practise. In many setups,
any existing inversion formula or algorithm is unstable, and the numerical
implementations of these formulas lead to blurry images, and/or severe artifacts.
To learn more about the stability issues of the inversion of GRT, we refer the
reader to [3, 4, 11, 12, 16] and the references there.
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Chapter 4
Microlocal Analysis of Some Synthetic
Aperture Radar Imaging Problems

Venkateswaran P. Krishnan

Abstract In this article, we analyze the microlocal properties of the linearized
forward scattering operator F, which arises in synthetic aperture radar imaging.
A frequently applied imaging technique is to study the normal operator 7*F (F* is
the L? adjoint of F). However, such an imaging technique introduces artifacts in the
image. We study the structure of these artifacts.

Keywords Synthetic aperture radar imaging - Singular Fourier integral operators -
Elliptical radon transforms - Fold and blowdown singularities

MSC 2010 Classification 35S30 - 35505 - 58J40 - 35A27

4.1 Introduction

In synthetic aperture radar (SAR) imaging, a region of interest on the surface of the
earth is illuminated by electromagnetic waves from a moving airborne platform. One
then tries to reconstruct an image of the region based on the measurement of
backscattered waves. For an in-depth treatment of SAR imaging, we refer the reader
to [3, 4]. SAR imaging is similar to other imaging problems such as sonar or seismic
imaging where acoustic or pressure waves, respectively, are used to reconstruct
objects on the ocean floor or underneath the surface of the earth [2, 5, 6, 23].

In monostatic SAR, the source and the receiver are located on the same moving
airborne platform. In bistatic SAR, the source and the receiver are on independently
moving airborne platforms. There are several advantages in considering such data
acquisition geometries (ways of acquiring data). The receivers, compared to
the transmitters, are passive and hence are more difficult to detect. Therefore, by
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separating their locations, the receivers alone can be in an unsafe environment,
while the transmitters are in a safe environment. Furthermore, bistatic SAR systems
are more resistant to electronic countermeasures such as target shaping to reduce
scattering in the direction of incident waves [21].

In this paper, we consider a bistatic SAR system where the antennas have poor
directivity and hence the beams do not focus on targets on the ground. We assume
that the transmitter and receiver traverse a one-dimensional curve and the
backscattered data is measured at each point on this curve for a certain period of
time. For the acquisition geometries we consider as in the monostatic SAR case, we
show that with a weak scattering assumption, the linear scattering operator that
relates the unknown function that models the object on the ground to the data at the
receiver is a Fourier integral operator (FIO) [8, 17, 19, 28, 29]. Now, when F is an
FIO, the canonical relation Cx associated to F tells us how the singularities of the
object are propagated to the data. The canonical relation C+ of the L* adjoint F* of
F gives us information as to how the singularities in the data are propagated back to
the reconstructed object. The microlocal analysis of singularities of the object is
then done by analyzing the composition Cx+ o Cx. Such an analysis for monostatic
SAR has been done by several authors [9, 10, 25, 27] and is fairly well understood.
In their work [25], Nolan and Cheney showed that the composition of the linearized
scattering operator with its L? adjoint is a singular pseudodifferential operator
(¥ DO) belonging to the class of Fourier integral operators associated with two
cleanly intersecting Lagrangians [12—16, 18, 24]. Felea in her works [9, 10] further
analyzed the properties of the composition of these operators. We would also like to
mention the works of Yazici, Cheney, and their collaborators who have analyzed
SAR imaging in a statistical framework [30-32].

In this article, we study the microlocal analysis for the bistatic SAR imaging
problem for two different acquisition geometries; common offset SAR; and com-
mon midpoint SAR. We show that in each of these cases, artifacts are introduced in
image reconstruction and describe the nature of these artifacts. The results presented
in this article are based on the works [22] of the author done in collaboration with
E.T. Quinto and [1] done in collaboration with G. Amabartsoumian, R. Felea,
C. Nolan, and E.T. Quinto.

4.2 The Linearized Scattering Model

The linearized scattering model [4] has been the basis for several works on
monostatic SAR imaging. Here, we derive the linearized scattering model for
bistatic SAR imaging, based on slight modifications to the model derived for the
monostatic case [4].

We assume that a bistatic SAR system is involved in imaging a scene. Let y;(s)
and yz(s) for s € (so,51) be the trajectories of the transmitter and receiver,
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respectively. The transmitter transmits electromagnetic waves that scatter off the
target, which are then measured at the receiver. We are interested in obtaining a
linearized model for this scattered signal.

The propagation of electromagnetic waves can be described by the scalar wave
equation

(A - cizag)m, 1) = —P(1)3(x — 71(s)). (4.1)

where ¢ is the speed of electromagnetic waves in the medium, E(x, f) is each
component of the electric field, and P(f) is the transmit waveform sent to the
transmitter antenna located at position y;(s). The wave speed c is spatially varying
due to inhomogeneities present in the medium. We assume that the background in
which the electromagnetic waves propagate is free space. Therefore, ¢ can be
expressed as

where the constant ¢ is the speed of light in free space and V(x) is the perturbation
due to deviation from the background, which we would like to recover from
backscattered waves.

Since the incident electromagnetic waves in typical radar frequencies attenuate
rapidly as they penetrate the ground, we assume that V(x) varies only on a
two-dimensional surface. Therefore, we represent V as a function of the form

V(x) = V(x)do(x3),

where we assume for simplicity that the earth’s surface is flat, represented by the
x = (x1, x») plane.

The background Green’s function g is then given by the solution to the following
equation:

<A — C12812>g(x, t) = —50(X)5()(l).
0

We can explicitly write g as

6t — Jal/feo)
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Now, the incident field E™ due to the source s(x,7) = —P(£)d(x — y,(s)) is

EM(x,1) = — / glx—y,t —1)s(y, 7)dyde

P~ Jx— y7(5)l/c0)
drlx = 97(s)]

Let E denote the total field of the medium, E = E™ + E*. Then the scattered field
can be written using the Lippman—Schwinger equation

E*(z,1) = —/g(z —x,t — 1)07E(x, 1)V (x)dxdr. (4.2)

We linearize (4.2) by the first born approximation and write the linearized
scattered wave field at receiver location yg(s)

Eﬁm@%ﬂ=—/§WM9—%t—ﬂ¢F%nﬂW@MM

— /(S(t — 1= |x - VR(S)|/CO) (e—iw(r—x—y»,-(s)|/c0) wZP(w) )
4nlx — yg(s)| 4nlx —yr(s)|
V(x)dwdxdr,

(4.3)

where p is the Fourier transform of P.
Now, integrating (4.3) with respect to 7, a linearized model for the scattered
signal is as follows:

d(s,1) == E

lin

(yr(s),1) = /eiw(t"l“R@’x))A(s,x, )V (x)dxdw, (4.4)

where
R(s,x) = [yr(s) — x[+ [x — p&(s)] (4.5)
and
A(s, x, ) = &”p(w)((47)°[y7(s) — xl[7g(s) —x[) "

This function includes terms that take into account the transmitted waveform and
geometric spreading factors.
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4.3 Common Offset SAR

In this section, we study the microlocal analysis of a SAR system in which the
transmitter and receiver traverse a straight line above the ground offset by a constant
distance at all times. All the results presented in this section are taken from the
author’s joint work with Quinto [22].

4.3.1 Transmitter and Receiver in a Linear Trajectory

In this section, let us assume that the trajectory of the transmitter is
3
T (So,Sl)_’R ) '))T(S):(S+OC70,}Z)

and that of the receiver is

7r(s) : (s0,51) — R3v 7&(s) = (s — 0,0, h).

Here, o > 0 and & > 0 are fixed. From Eq. (4.4), the linearized model for the
data at the receiver, for s € (so,s1) and ¢ € (fo,#;) is

d(s,1) = / e (st ‘)""’*“‘”))A(s,x, o)V(x)ddo.  (46)

We multiply d(s, f) by a smooth (infinitely differentiable) function f{s, ) sup-
ported in a compact subset of (sg, s1) X (¢, #1). This compensates for the discon-
tinuities in the measurements at the end points of the rectangle (sq, 1) % (¢, #,). For
simplicity, let us denote the function f - d as d again. We then have

—id —LR(sx
d(s,1) = / e (- ))A(s,t,x,w)V(x)dxdw, 4.7)

where now A(s, 1, x, @) = f(s,t)A(s, x, ®).

Our method cannot image the point on the object that is “directly underneath”
the transmitter and the receiver. That is, if the transmitter and receiver are at
locations (s + o, 0,4) and (s — «,0, k), then we cannot image the point (s, 0, 0); see
Remark 3.2. Therefore, we modify d in Eq. (4.7) by multiplying by another smooth
function g(s, #) such that

N )
g =0 in a small neighborhood of{ (s, 2L> 15 < s < sl}. (4.8)

€o
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For simplicity, again denote g - d as d and g - A as A. Consider,
FeoV(s,t) = d(s,1) = / e o@D o5 1 x, w)V(x)dxdew. (4.9)

The subscript in F, stands for common offset. For simplicity, let us denote the
(s, ) space as Y.

We assume that the amplitude function A satisfies the following estimate: For
every compact K C Y x X and for every nonnegative integer o and for every
two-indexes 5 = (8, ;) and 7y, there is a constant C such that

0200 0P 01A(s, 1,3, 0)] < C(1+|o])* .

w=s

This assumption is satisfied if the transmitted waveform P in (4.1) which is
approximately a Dirac delta distribution.
The phase function of the operator F,,

Vs, 1,x,0) = —w(r ) b ms))) (4.10)

is positively homogeneous of degree 1 in w.
We now analyze some properties of the canonical relation of the operator F,.

Proposition 3.1 F, is a Fourier integral operator of order 3/2 with canonical
relation

Cco = {(sata_g()q L + ad _s+a>7_w>;
co \x=7r(s)|  [x = 7g(s)]
( w(xl—s—oc+x1—s+fx) co( n L ® ))
X1y X2y —— [
co \Pr=yr()l - x=(s)l/" co\lx=97(s)]  |x—7&(s)]

et = \/(xl —s—oc)2+x%+h2+\/(x1 —s+a) + 2+ R w#O}

(4.11)

Furthermore, (x1, x>, s, w) is a global parameterization for C,.

Remark 3.2 Recall that we modified the amplitude function A to be 0 in a neigh-
borhood of points “directly underneath the transmitter and receiver”; see (4.8). The
exclusion of such points is required, as can be seen in the definition of the canonical
relation (4.11) above. If the transmitter and receiver positions are (s + o, 0, ) and
(s — o, 0, h), respectively, then for (x;, x,) = (s, 0), the cotangent vector in the
canonical relation corresponding to the point (s, 0) is 0. Therefore, by making A to
be 0 in a neighborhood of such points, we exclude a neighborhood of such points
from the canonical relation in our analysis.

Proof This is a straightforward application of the theory of FIO. Since ¢ in (4.10)
is a nondegenerate phase function with J.y and O,y nowhere zero and the
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amplitude A in (4.9) is of order 2, F is an FIO [19]. Since the amplitude is of order
2, the order of the FIO is 3/2 by [19, Definition 3.2.2]. By definition [19,
Eq. (3.1.2)]

Ceo = {(s5,8, 05,0 (x, 5,8, )), (x, =0 (x,5,1)) : Op(x,s,t,w) = 0}.

A calculation using this definition establishes (4.11). Finally, it is easy to see that
(x1,x2, 5, @) is a global parameterization of C. O

In order to understand the microlocal mapping properties of F, and F F,, we
consider the projections 7y : T*Y X T*X — T*Y and ng:T'Y x T*X — T*X.
A good reference for mappings with singularities is the book [11].

Proposition 3.3 The projection ny restricted to C., has a fold singularity on the set
Y :={(x1,0,s,m): @ # 0}.

Proof The projection 77, is given by

nL(x17x27 S, (l))

- (st e =3 (S ) )

(4.12)
We have

0 0 1 0

1 [ x1—=s—a X1 —s+o 1 X2 X2
i | @ (\x—w(x)\ T \x—ms)\) co (\x—w)'\ + —\x—a»k<s>|)
T, = o ( X% +h? x% +hn? ) w <(x1—s—z7,)xz (x1—s+ ot)xz) % %

3 3 3 3
€0 \x=yr(s)| le=7r(s)l o\ x=yr(s)] le=7r(s)l

*
el

Then,

022 2.2
det(dnL):%x2 1 S+ 1 1+ (x1 =) +x3+h" —« ‘
o \P=rr)" x =)l e =7 ($)lbe = 7&(s)]

Now, Proposition 3.3 follows as a consequence of the following lemma. O

Lemma 3.4 The term

(1 — )2 +3+h? — o

1+
e = pr(9)llx = g(s)]
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is positive for all x € R?, s € R and h and o positive.

Proof The second term on the right above is the angle between the vectors (x; —
s —a,xy,—h) and (x; — s+ o, x5, —h). Since these vectors are never parallel (due

t0<x>03ndh>0),wehavethat1+% 0 O

Now returning to the proof of the Proposition 3.3, we have that det(dn;) = 0 if
and only if x, = 0. Hence, det(dn;) vanishes on the set £ and Lemma 3.4 again
shows that d(det(dn;)) on X is nonvanishing. This implies that 7; drops rank by
one simply on X. Alternately, one can also see that (dn )|y has rank 3 by letting
X = 0 in (4.13). Furthermore, dr; has full rank except on X, because det(dn; ) is
nonvanishing except on X.

Now, it remains to show that 7% N Kernel (dn;) = {0}. This follows from the
fact that kernel (dn;) = span (%) , but TX = span (% 2, %) This concludes the

proof of Proposition 3.3. |

Proposition 3.5 Consider the projection ng : T*Y x T*X — T*X. The restriction
of the projection to C., has a blowdown singularity on X.

Proof We have

7'L'R(X17X2,S, (D)

< w(xl—s—oc_i_xl—s—a) a)( B n X ))
= | X1, X2, —— y T T .
co \Pr—=vr()[ =)/ co \x—vr(s)] ~ |x—7&(s)|

(4.14)
Now,
1 0 0 0
0 L0 0
_ o 5t X+ 1 [ x=s—a X —s+o
dmg = [ * P (|x—“/»,r(s)\3 T \X—Z}'R(s)P) @ (\x%(s)l + \xlﬂ'x(s)\)

o (o) —s—0)x2 (x1—s+a)x 1 X X
£ co(\HT(s)w + \xwmp) 2 (\x—yi<s>|+—\x—vi<s>\)

From this we see that kernel(dng) C TX. Since det(dng) = det(dn), ng drops
rank by one simply along X. Therefore, the projection mg has a blowdown singu-
larity along X. O

We summarize what we have proved in this section by the following theorem:

Theorem 3.6 The operator F, defined in (4.9) is a Fourier integral operator of
order 3/2. The canonical relation C, associated to F., defined in (4.11) satisfies
the following: The projections nty, and ng defined in (4.12) and (4.14) are a fold and
blowdown, respectively.
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4.3.2 Image Reconstruction

Next, we study the composition of F,, with F7 . This composition is given as
follows:

: <|y—yr<s>\+|y—yR<s>m>

l__
<o

FoFoV() = / <w<z —C—‘0<|x — 2rl)]+ x = 7r(5))) —

x A(x,s,t,0)A(y, s, t,®)V(y)dsdtdwdady.

After an application of the method of stationary phase [17], we can write the
kernel of the operator F7 F, as

Kuo(x,y) = / b=+ b= =11+ O E (. o)dsdeo.

The phase function of the kernel K., (x,y) is
»
$y,80) =y = v () + Iy = 1=(6)[ = (ke = ()] + e = 7e(s)])). (4:15)

Let us denote the wavefront set [20] of a distribution f by WF(f) and the twisted
wavefront set by WF'(f) [20].

Theorem 3.7
WF(K.,) C AUA,
where A= {(xlv-xZaéh52;x17x27§la£2)} and A= {(X1,X2,51,é2;)q,—xz,

&1,—&)}. Here, for a point x = (x1,x2), (£1,&) are nonzero multiples of the
vector (—Oy, R(s,x), —Oy,R(s,x)), where R is defined in (4.5).

Proof Using the Hormander—Sato Lemma [19], we have

WF(K.,)' C

{< w(xl—s—oc+x1—s+oc> w< X2 L ® ))
X1, X2, —— ,—— ;
co \Jx = 77r(s)| ~ [x = &(s)] co \Jx = 77r(s)]  |x = 7&(s)]

(y1y2 g(yl—s—oz+y1—s+oc> g< 2o » ))
T o \ly=re@ =G o \ly =) [y = v&(9)]

e = yr()[+ |x = e = [y = 22 ()[ + [y — v&(s)],
X]—8—o xl—s—l—ac_yl—s—oc y1r—s+o
lx = y7(s)| = ()] [y = v7(s)] ly = 7&(s)]

- wzof.

We now obtain a relation between (x;, x;) and (y;, ). This is given by the
following lemma. O
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Lemma 3.8 For all s, the set of all (x1, x,), (1, y2) that satisfy

e = pr($)| + x = r() = [y = v () [+ [y = v&(s)], (4.16)
Xp—Ss—o Xx—s+o yp—s—o y—s+o

R O I O [ T ] I O [

necessarily satisfy the following relations: x, =y, and x, = *y;.

Proof In order to show this, we will consider (4.16) and (4.17) as functions of R
by replacing / in these expressions with x3 — h. We then transform these expres-
sions using the coordinates (4.18) and then set x3 = y3 = 0 to prove the lemma.

Consider the following change of coordinates, the so called prolate spheroidal
coordinates:

x; = s—+acoshpcos@ y1 = s+ acosh p’ cos O
X, = ocsinh p sin 0 cos ¢ v, = asinh p’ sin @’ cos ¢’ (4.18)
x3 = h+asinh psin0sing y; = h+ asinh p’sin 0’ sin ¢’

where s, a > 0, and i > 0 are fixed and p € [0,00), 6 € [0, 7], and ¢ € [0,27). This
a well-defined coordinate system except for p = 0 and 6 = 0, 7.

This coordinate system has also been used in the context of radar imaging by T.
Dowling in his thesis [7].

In the coordinate system (4.18), we have

|x — y7r(s)| = a(coshp — cos 0), |x — yg(s)| = a(cosh p + cos 0),
x;—s—a __ coshpcosO—1 xj—s+o __ coshpcosl+1 (419)
lx—y7(s)] — coshp—cos@ ? [x—yr(s)] — coshp+ cosO *

The terms involving y are obtained similarly. Now (4.16) and (4.17) transform as
follows:

2 cosh p = 2 cosh p/
coshpcos@ —1  coshpcosO+1 coshp'cos® —1  coshp’cos® +1

coshp —cos0  coshp+ cosO  coshp’ — cos coshp' + cos @
Using the first equality in the second equation, we have

cos 0 cos ¢

cosh? p — cos2 0 ~ cosh? p—costl’

This gives cosf = cos @'. Therefore, 0 =2nm+ 6, which then gives
sin 0 = £sin 0. Therefore, in terms of (x;, x,) and (y;, ¥,), we have (x; = y;) and
(o2 = *y2). O



4 Microlocal Analysis of Some Synthetic Aperture Radar ... 65

Now, to finish the proof of Theorem 3.7, when x; = y; and x, = y,, there is
contribution to WF(K,,) contained in the diagonal set given by A :=
{(x1,x2, &, &5 x1, %2, &1, &) } and when x; = y; and x| = —y,, we have a contribution
to WF(K,,)' contained in A, where A := {(x1,x2, &1, & X1, —x2, &1, =) b O

From an imaging point of view, the result of Theorem 3.7 shows that artifacts are
introduced in image reconstruction. The true singularities are given by the
Lagrangian A and the artifact singularities are given by the Lagrangian A. A more
detailed analysis, as done in [22], shows that the strengths of the true singularities
are the same as that of the artifacts. We do not provide the details of this analysis
here, but instead refer to our work [22].

4.4 Common Midpoint SAR

In this section, we assume that both the transmitter and receiver are at the same
height i > 0 above the ground, x3 = 0, at all times and move in opposite directions at
equal speeds along the line parallel to the x; axis and containing the common
midpoint (0, 0, 7). Such a model arises when considering signals which have been
scattered from a wall within the vicinity of a scatterer and can be understood in the
context of the method of images; see [26] for more details. The material in this
section is taken from the author’s joint work with Ambartsoumian et al. [1].

Let p7(s) = (s,0,h) and yg(s) = (—s,0,h) for s € (0,00) be the trajectories of
the transmitter and receiver, respectively.

The linearized model for the scattered signal we will use in this article is from [26]

d(5,1) = FomV(s,1) = / e OURED) 4 ¢ )V () drdeo

for (s,t) € Y = (0,00) x (0,00). As in the common offset case, the subscript in
Fem refers to common midpoint. Here, V(x) = V(x,x;) is the function modeling
the object on the ground, R(s, x) is the bistatic distance

R(s,x) = [pr(s) — x|+ [x = 7 (s)],

co is the speed of electromagnetic wave in free space and the amplitude term a is
given by

w’p(w)

a(s: % ©) = 1607 15) = 2llyel) =3l

where p is the Fourier transform of the transmitted waveform.
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4.4.1 Preliminary Modifications on the Scattered Data

For simplicity, from now on we will assume that ¢y = 1. To make the composition
of F., with its L? adjoint F7, to be well-defined, we multiply d(s, 7) by an
infinitely differentiable function f{s, ) identically equal to 1 in a compact subset of
(0,00) x (0,00) and supported in a slightly bigger compact subset of
(0,00) x (0,00). We rename f - d as d again.

As we will see below, our method cannot image a neighborhood of the common
midpoint. That is, if the transmitter and receiver are at (s, 0, k) and (—s, 0, h),
respectively, we cannot image a neighborhood of the origin on the horizontal plane
of the earth, x3 = 0. Therefore, we modify d further by considering a smooth
function g(s, #) such that

g(s, 1) = 0 for (s,1) : |t — 2+/s2 4 k2| < 20 /h, (4.20)

where ¢ > 0 is given. Again we let g-d to be d and g - a to be a. Our forward
operator is

FemV (s, t) = /e_i(”(”’x’w)a(s, t,x,)V(x) dxdw (4.21)

where

Q(s,1,x,0) = a)(t— \/(xl — ) 2+ h? - \/(xl —|—s)2+x%+h2). (4.22)

From now on, we will denote the ground (the plane x3 = 0) by X, thus the points
on X will be denoted as x = (x1, x»).

We assume that the amplitude function a € S’”*i i.e., it satisfies the following
estimate: For every compact set K C Y x X, nonnegative integer o, and
two-indexes f = (8, f») and y, there is a constant C such that

10200102 0la(s, 1, x, 0)| < C(1+ [w])" /D7, (4.23)

This assumption is satisfied if the transmitted waveform from the antenna is
approximately a Dirac delta distribution.

With these modifications, we show that F, is a Fourier integral operator of

order m and study the properties of the natural projection maps from the canonical
relation of F,,.
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4.4.2 Analysis of the Operator F .,

In this section, we prove the following Theorem 4.1, the proof of which is in
Lemma 4.4 and Proposition 4.6.

Theorem 4.1 Let F ., be as in (4.21). Then,

(1) Fem is an FIO of order m.
(2) The canonical relation C., associated to F ., is given by

x| — S xX1+s

\/(x1 — )+ 2+ \/(x1 +5) + 2+ 02

Ccm = S, t,—w y — ;]

x| — S X1 +s
X1,X2, —@W + ’

Ve —sP e+ \J s e

X2 X2
- +

\/(xl — )2+ h? \/(x|—|—s)2—|—x%—|—h2

s> 0,t= \/(xl —s)2—|—x%+h2—|-\/(X1+S)2+x%+h2a
x# 0 and o # 0},

(4.24)
and C.y, has global parameterization

(0,00) x (R*\0) x (R\0) 3 (s,x1,%, ) — C.

(3) Let np : Copy — T*Y and 7y : Copy — T*X be the left and right projections,
respectively. Then, n; and ng drop rank simply by one on a set ¥ =%, UZX,
where in the coordinates (s,x,®), 1 = {(s,x1,0,w)|s > 0, |x;| > ¢, w # 0},
and Ty = {(5,0,x2, 0)|s > 0, |x2| > &, w # 0} for 0<& small enough.

(4) my has a fold singularity along .

(5) mg has a blowdown singularity along X.

Remark 4.2 Note that due to the function g(s, ) of (4.20) in the amplitude, it is
enough to consider only points in C., that are strictly away from
{(5,0,w) : s > 0, # 0}. This is reflected in the definitions of X; and X,, where |
x1| and |x,], respectively, are strictly positive.

Remark 4.3 Note that C., is even with respect to both x; and x,. In other words,
Com 1s a four-to-one relation. This observation suggests that 7, (respectively, 7g)
has two fold (respectively, blowdown) sets. See Proposition 4.6.
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Lemma 4.4 F, is an FIO of order m with the canonical relation C.,, given by

X1 — S X1 +s
Ccm:

$,t,— —
o9 +8+m J+s g+

y —W;

X1 — S X1 +s
X1,X2, —@ +

\/(xl — )2+ h \/(xl +5) + 32+ h2

3

X2 X2
- +

\/(xl —5)’ + 2+ I \/(xl +5)? 3+ I

$>0,1= \/(xl =) xRt \/(x1 +5)2+ 3+ 02,
x € R\{0}, 0 # 0},
(4.25)

We note that (0,00) x (R*\0) x (R\0) > (s,x1,%,®) — Cen is a global
parametrization of C.y.

We will use the coordinates (s, x, @) in this lemma from now on to describe Cy,
and subsets of Cep.

Proof The phase function ¢ (Eq. 4.22) is nondegenerate with 0,¢, 0; ;¢ nowhere 0
whenever d,,¢p = 0. We should mention that VJ,,¢ # 0. (Note that in order for 0,¢
to be nowhere 0, we require exclusion of the common midpoint from our analysis).
This observation is needed to show that F is a FIO rather than just a Fourier
integral distribution. Recalling that a satisfies amplitude estimates (4.23), we
conclude that C,, is an FIO [29]. Also, since a is of order m + %, the order of the
FIO is m [8, Definition 3.2.2]. By definition, [19, Eq. (3.1.2)]

Com = {((5,1,050,0,0); (x, —=0x@)) : D = 0}.

A calculation using this definition establishes (4.25). Furthermore, it is easy to
see that (s,x;,x;, ®) is a global parametrization of C,. O

Remark 4.5 In the SAR application, a has order 2 which makes operator F,, of
order % But from now on, we will consider that 7, has order m.

Proposition 4.6 Denoting the restriction of the left and right projections to C.,, by
n; and TR, respectively, we have

(1) mp and wg drop rank by one on a set ¥ = X,UX,. Here, we use the global
coordinates from Lemma 4.4.

(2) my has a fold singularity along X.

(3) mg has a blowdown singularity along X.
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Proof Let A = \/(xl — )’ 4+x%+h? and B = \/(xl +5)* +x2 4+ h2. We have

ﬁL(Xl,XQ,S,CU) = (S7A+Bv_(XI - _)CI +s)w7_w)

A B
and
0 0 0
- +
- X X5 | — o)
_w(2A3 _sz) w(mAy_ <x1;s)2) . x
0 0 -1

where * denotes derivatives that are not needed for the calculation. The determinant
is

_ Axxnso (1 (] —s*+x3+ h2> (4.26)

AB

We have that s > 0 and the number in the parenthesis is a positive number by
Lemma 4.7.

Therefore, 7, drops rank by one on £ = X; UZX,. To show that d(det(dn;)) is
nowhere 0 on X, one uses the product rule in (4.26) and the fact that the differential

of 4;‘2’@“’ is never 0 on X and the inequality in Lemma 4.7.

On X, the kernel of d=x; is 3% which is transversal to X; and on X, the kernel of

dmy is 0% which is transversal to X,. This means that 7; has a fold singularity along
%

Similarly,
X1 —S8  X1+s X X,
ﬂR<xlax27Saw):(xl’x2’_( IA + 13 )w,—(f—&-ﬁ)w)
Then,
1 0 0 0
0 , 0 0
dmp = v % w(xzz-}h _%) _(xleerl;s)
o x —o(lagle_lugde) _(n oy m

has the same determinant so that g drops rank by one on X and the kernel of dny is
a linear combination of o% and % which are tangent to both £, and Z,. This means

that 7 has a blowdown singularity along X. O
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Lemma 4.7 For all s # 0,

x% — 52 er% + K2
lx = 7 (s)[]x — v ()]

1+ > 0.

Proof The proof is similar to that of Lemma 3.4 and is left to the reader. |

4.4.3 Analysis of the Normal Operator ', F .,

We have

F* FemV(x) = / eiw(tf(‘xf"/T(‘V)lﬂL|x77R(‘V)|))*;;(t7(|)’7"VT(‘V>|+|y77R<3)|)>

cm

a(s,t,x,m)a(s,t,y,®)V(y)dsdrdwddy.

After an application of the method of stationary phase [17] in ¢ and @, the
Schwartz kernel of this operator is

Kom(x,y) = / (=72 (5) |+ =70~ (=7 ()] + 7))

(4.27)
ax,y,s,w)dsdow.
Note that @ € §"*! since we assume a € §" /2.
Let the phase function of the kernel K., be denoted as
© = o(ly = yr()| + [y = ()] = (x = vr(s)| + [x = p&(s)]))- (4.28)

Theorem 4.8 The wavefront set of the kernel K., of F.,F o satisfies,
WF(K.,) € AUC;UC>UCs3,

where A is the diagonal in T'X x T'X and the Lagrangians C; fori =1, 2,3 are the
graphs of the following functions y; for i = 1,2, 3 on "X

Xl(xvé) :(xla —X2, 617_62)5)(2()‘:; é)
= (=x1,X2,—¢1, &) and x5 = x5 0 1o

Proof In order to find the wavefront set of the kernel K, we consider the canonical
relation C., 0Con of Fi Fem: Ch0Con={(x,&y,n)|(x,Es,,0,7) €CLs

ClI cm)?

(s,2,0,7;9,n) € Con}. We have that (s, 2,0, 7;,1) € Cpy implies
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=0 =+ + 5 R

=1 yi— S B y1+S§
Jor—sP 033412 ot 43+
— s +s
n=r 2 + 2
\/()’1 —s) 3+ \/(Y1+S)2+Y%+h2
=1 Y2 4 V2

\/(M —5) 33+ 12 \/(YI +5)° 33+ 12

and (x,¢;s,t,0,7) € C. implies

cm

t= \/(xl —s)2—|—x%—|—h2—|—\/(x1 +5)? + 2+ 12

o1 X1 — S B X1+s
\/(xl — )2+ \/(xl +5)7 22+ 2
& =1 Xy — 4 X|+s
L=
\/(xl —s) + 3+ \/(xl +5)? 43+ 12
x x
=1 - + -

\/(Xl —s) + 3+ \/(xl +5)? 43+ 12
From the first two relations in (4.29) and (4.30), we have

Vo1 =P 431124y 00+ 43341

= \/(xl —s)2+x%—|—h2+\/(x1 +5)2 23+ k2

and
yi—s _ yi+s
Vor—9 43+ \Jor+97 +3+1
X]— S X1 +s

\/(xl —5)? + 33+ 12 \/(xl +5)° +23 + 12

71

(4.29)

(4.30)

(4.31)

(4.32)
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We will use the prolate spheroidal coordinates to solve for x and y. We let
x1 = scosh p cos ¢ y1 = scosh p’ cos ¢’
X, = ssinh p sin ¢ cos 0 v, = ssinh p’ sin ¢’ cos ¢’ (4.33)
x3 = h+ssinh psin¢sin@ y; = h+ ssinh p’sin ¢’ sin ¢/

with p > 0,0< ¢ <7, and 0 < 0 < 27.
In this case, x3 = 0 and we use it to solve for /4. Hence,

(x; — 5)> + 22+ h* = §*(cosh p — cos p)’
and
(x1 +5)> + 22 +h* = s*(cosh p + cos ¢)°.

Noting that s > 0 and cosh p £ cos ¢ > 0, the first relation given by (4.31) in
these coordinates become

s(cosh p — cos ¢) + s(cosh p + cos ¢) = s(cosh p’ — cos ¢’) + s(cosh p’ + cos ¢’)

from which we get
coshp =coshp' = p=p'.
The second relation given by (4.32) becomes

coshpcos¢p —1 coshpcosgp+1  coshpcos ¢’ —1 coshpcose +1
coshp —cos¢p  coshp+cos¢p  coshp—cos¢d’  coshp+ cos¢’

After simplification, we get

sin” ¢ - sin” ¢’

cosh? p — cos? ¢ cosh? p — cos? ¢/

which implies
(cosh? p — 1)(sin? ¢ — sin* ¢') = 0.

Thus, sin¢ = +sing’ = ¢ = £¢', n £ ¢’
We remark that cosf = £,/1 — HLZ = +cos® and note that x; = 0
52 sinh” p sin” ¢
implies that sin(¢) # 0, so that division by sin(¢) is allowed here. We also remark
that it is enough to consider cos 0 = cos / as no additional relations are introduced

by considering cos 0 = —cos (/.
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Now, we go back to x and y coordinates.

If db’ = ¢ then x; =y, x, =y, =wn; for i = 1, 2. For these points, the
composition, C.,, 0 Cen C A = {(x,&x,&)}.

If ¢ = —¢ then, x; =y;, —x2 = y2,& = 1y, —& = 1. For these points, the
composition, C.,, o C,y is a subset of C; = {(x1,x2, &y, &5 x1, —x2, 1, —&») } which
is the graph of y,(x, &) = (x1, —x2, &1, —&;). This in the base space represents the
reflection about the x; axis.

If ¢ = n — ¢ then, —x; =y, x2 =y, =&, = 1y, & = n,. For these points, the
composition C.,, o Cy, is a subset of Cy = {(x1,x2, &1, &2 —x1, X2, — &1, &) } which
is the graph of y,(x, &) = (—x1,x2, =&, &). This in the base space represents the
reflection about the x, axis.

If ¢' = n+ ¢ then, —x; = y;, —x2 = y», —&; = 1y, —&, = n,. For these points,
Cl, 0 Con is a subset of C3 = {(x1,x2, &, &x; —x1, —x2, —&1, —&)} which is the
graph of y5(x, &) = (—x1, —x2, —&;, —&,). This in the base space represents the
reflection about the origin.

Notice that y, 0y, = Id, ooy, = Id, 101 = 13-

Hence, we have shown that C.,, o C.,, C AUC; UC, UCGs.

As in the common offset case, Theorem 4.8 shows that artifacts are introduced in
image reconstruction. However, in this case, each true singularity introduces three
additional artifact singularities (these added singularities are described by the
Lagrangians C;,C, and C3). One can show that the strengths of the added singu-
larities are the same as that of the true ones. We do not include the details of this
analysis in the current article. We refer the interested reader to our paper [1]. O
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Chapter 5

Cubic Spline Approximation

for Two-Dimensional Nonlinear Elliptic
Boundary Value Problems

R.K. Mohanty

Abstract We report a new 9-point compact discretization of order two in y- and
order four in x-directions, based on cubic spline approximation, for the solution of
two-dimensional nonlinear elliptic partial differential equations of the form

&u 0u Ou Ou
A(xay)@ +B(x7y)8_y2 :f<x’y’u’a’8_y)’(x’y) €Q

defined in the domain Q= {(x,y) : 0<x,y<1} with boundary 0Q, where
A(x,y) > 0 and B(x,y) > 0 in Q. The corresponding Dirichlet boundary conditions
are prescribed by

M(X’Y) = lp(xvy)v (xvy) € 0Q

The main spline relations are presented and incorporated into solution procedures
for elliptic partial differential equations. Available numerical methods based on
cubic spline approximations for the numerical solution of nonlinear elliptic equa-
tions are of second-order accurate. Although 9-point finite difference approxima-
tions of order four accurate for the solution of nonlinear elliptic differential
equations are discussed in the past, but these methods require five evaluations of the
function f. In this piece of work, using the same number of grid points and three
evaluations of the function f, we have derived a new stable cubic spline method of
order 2 in y- and order 4 in x-directions for the solution of nonlinear elliptic
equation. However, for a fixed parameter (Ay/Ax), the proposed method behaves
like a fourth order method. The accuracy of the proposed method is exhibited from
the computed results. The proposed method is applicable to Poisson’s equation and
two-dimensional Navier-Stokes’ equations of motion in polar coordinates, which is
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main highlight of the work. The convergence analysis of the proposed cubic spline
approximation for the nonlinear elliptic equation is discussed and we have shown
under appropriate conditions the proposed method converges. Some physical
examples and their numerical results are provided to justify the advantages of the
proposed method.

Keywords Nonlinear elliptic equation - Cubic spline approximation - Poisson’s
equation in polar coordinates - Diffusion-convection equation - Burgers’ equation -+
Reynolds number

5.1 Introduction

We consider the 2D nonlinear elliptic partial differential equation

&u 0u Ou Ou
A(xay)w+B(x7y)a_yz:f<x7yauaa7a_y)7(x7y)EQ (51)

defined in the bounded domain Q = {(x,y) : 0 <x,y <1} with boundary 0Q, where
A(x,y) > 0 and B(x,y) > 0 in Q.
The corresponding Dirichlet boundary conditions are prescribed by

M(xay) = lp(X,y), (x,y) € 0Q (52)

We assume that for 0 < x,y < 1,

. Ou Ou)\ . .
(i) f(x,y7 ma,a—y) is continuous, (5.3a)
.. of of of . .
(i) o’ o, exist and are continuous, (5.3b)
af of of
- > < < .
(iii) > 0, | = Gand nE H (5.3¢)

where G and H are positive constants (see [1]). Further, we may also assume that
the coefficients u(x,y),A(x,y) and B(x,y) are sufficiently smooth and their required
higher order partial derivatives exist in the solution domain Q.

The main aim of this work is to use cubic spline function and its certain
properties, which are then used to approximate the differential equation (5.1) to
obtain the numerical solution. We use only 9-point compact cell three evaluations
of the function f (Fig. 5.1).
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(*1-1, Ym+1) (1, Ym+1) (X141, Ym+1)
|
Ay
(x1-1,Ym) (1, Ym) (X141, Ym)
< Ax >
(*1-1,Ym-1) (1, Ym-1) (%141, Ym-1)

Fig. 5.1 9-Point computational network

We consider our region of interest, a rectangular domain Q = [0, 1] x [0, 1].
A grid with spacing Ax > 0 and Ay > 0 in the directions x- and y-respectively are
first chosen, so that the mesh points (x;,y,,) are defined as x; = [Ax and y,, = mAy,
[=0,1,..,N+1,m=0,1,...,M+1, where N and M are positive integers such
that (N+1)Ax =1 and (M+1)Ay = 1.

Let us denote the mesh ratio parameter by p = (Ay/Ax) > 0. For convergence
of the numerical scheme it is essential that our parameter remains in the range
0< \/gp < 1. Let Uy, and u,,, be the exact and approximation solution values of
u(x,y) at the grid point (x;,y,), respectively. Similarly, let A;,, = A(x;,y,,) and
By, = B(x,ym) be the exact values of A(x,y) and B(x,y) at the grid point (x;, y,,),
respectively.

Let S, (x) is a piecewise cubic polynomial defined in x,_; < x < x;, which
satisfies

(x —lel)

S(x) = (v — ) M m+ Arx

Ax

Ml,m7x € [xl—laxl] (54)

where M;,, = .SJ,’n(xl) and my,, = S;n(xl). Integrating (5.4) twice and using the
interpolating conditions S,,(x;—1) = u;—1,, and S, (x;) = u;,,, we obtain the cubic

spline interpolating polynomial

3 3 2
X]— X X — X Ax X] — X
Sm(x) = u]\4]—1,m + QM[W + (Ml—l,m - Ml—l,m) ( ! )

6Ax 6Ax 6 Ax
Ax? X — Xj_1
_ <x<ux:
+ (Mz,m G MI,m) ( 5 )7x171 <x<x;

1=1,2,..,N+1,m=0,1,...,M+1

which satisfies at mth-line parallel to x-axis the following properties.
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(i) Swm(x) coincides with a polynomial of degree three on each
[)C[_l,xl], I=1,2,...,N+1,m=0,1,... . M+1;

(i) S.(x) € C?[0,1],and

(i) Sm(x) =wupm, [=0,1,.. ,N+1,m=0,1,...,M+1.

Denote:
My = s (x1) = Uy . First derivative of (5.5) is given by

m

Ul,m - Ulfl,m Ax

S, (x) = U = + — [Ml—lﬁm +2Mz,m] X E [X1-1,X]

Ax 6
Uiim — U Ax
S:n(xl) = le’m = % — Z [Ml+l,1n +2M1¢m} X € [xlaxl—H]

The continuity of first derivative implies

6
lel‘m + 4Ml,m +Ml+ ILim — x5 (UlJr 1m — 2[]l,m + Ulfl,m)

sz
1
Ml,m = S::,(xl) = Uxxl.m = Al— [_BIA,mUyyl?m +f(xlyym7 Ul,ma My m, Uyl.m)}»
U m U m Ax
S;n(xlel) = le+1,m = Sl i + — [Ml‘m +2M1+1,m]

Ax 6

and S, (x_1) = Uy—1m = % — 85 My +2M) ).

Note that these are important properties of the cubic spline function S,,(x) which
are used in building up the numerical scheme.

At the grid point (x;,y,,), we use the notation

_ apJFqA(xla )’m)

Apg = By , etc.

We consider the following approximations:

Uyim = (Uims1 — Uim—1) /(2Ay) (5.6a)

Ui = (Uit — Ui ne1) /(24Y) (5.6b)
Uyt = (Uicimir — Uim1 1) / (2A) (5.6¢c)
Upin = (Uit = 2Uin + Uit ) /A (5.6d)
Ugpiston = (Urs1me1 = 2Upim + Urge tm-1) [ AY (5.6¢)

Uyicin = (Uictms1 = 22U+ Ui ne1) [ AY? (5.6f)
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ﬁ'll,m = _xl,m = (UlJrl,m - Ulfl,m)/(Qfo) (5721)
ml+l,m = _xl+1,m = (3Ul+l,m - 4Ulm + Ul—l,m)/(zAx) (57b)
ﬁ’llfl.,m = l_]xlfl,m = (*3U171‘m +4Ul,m - Ul+l,m)/(2Ax) (57C)
Uxxl,m = (Ul+1,m —2Upm + l]lfl,m)/Ax2 (57d)
Fl,m :f(xlaymv Ul,mv ml,mv le,m) (583—)
Fl+l,t71 :f(xl+l7ym> UlJrl,m»mlJrl,ma Ulerl,m) (Sgb)
Flfl.,m :f(xlfhymy Ulfl,m»mlfl,ma Uylfl,m) (580)
_ 1 _ _
Ml,m = IT [_BOOUyyl.m + Fl,m] (5921)
00
_ 1 AxA _ _
Ml+l,m = A_()O (1 - A0010> [_Bl+1,mUyyl+1,m +Fl+1.,m} (59b)
- 1 AxAjg - =
My, =— |1 “BiamTpitm+Frim :
-1, Aoo<+ Ao (=Bt mUyyi—tm + Fi- ] (5.9¢)
_ — Uiiim — Uim  Ax (o _
mlJrl.,m = le+l,m = % + F [Ml,m + 2Ml+l‘m] (510&)
— = U m U— m A)C = i
mi—1m = le—l,m = % - F |:Ml7m + 2Ml_17m] (510b)

~ _ _ _ Ax _ _
le‘m = le,m - [Fl+lm - Fl—l‘m] + 7300 [Uyyl+l,m - Uyylfl.,m]

TAOO 12A09

%2% i+ %%ﬁ Ty (5.10¢)
fH»l.,m :f(xl+laym7 Ul+1,m7ﬁl+l,ma Uyl+1,m) (5.11a)
Fioim = f (%=1, Ym> Ui—tms M=t Uyi—1.m) (5.11b)

f‘l,m :f(xlvyma Ul,m7 ﬁ)cl,ma Uyhm) (5110)
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The cubic spline approximations (5.9a)—(5.10c) are discussed in details in [2].
Then at each internal grid point (x;,y,,), the cubic spline method with accuracy of
O(Ay*+Ay*Ax*+Ax*) for the solution of nonlinear elliptic partial differential
Eq. (5.1) may be written as

Ax* A Ax?
L,=p {Aoo - ?AloAlo t 4 A20} S Upm
Ay? AxAjp AxA _ _
+ 12 {(1 - A—I) By, mva1+1 m+ (H' A 10) Bi_1mUyyi—1,m + 10B1n Uyyim
00 00
Ay AxA AxA
:E|:<1 A 10>F1+1m+(1+ 1O)FI 1m+10F1m:|+Tlma
00 Aoo

I=1,2,...NNm=12,...M
(5.12)

where, 0,U; = (U,% - UZ,%) and u U = % (U,%—i—UZ,%) are the central and
average difference operators with respect to x-direction and the local truncation
error T, = O(Ay* +Ay* A +Ay2 Ax*).

We may re-write (5.12) as

A (Uit + Uimin) + 22 (Uit + Uit

+ 23 (Uit + Unitnt + Uict it + Uit me1 — (24p +20) Uy ) (5.13)
2

A
= 1); |:Fl+1m+Fl lm+10Flm:|+Tlm

where 1y =p* =3, b =19, 13 =4
The condition which is usually imposed on Eq. (5.13) is that 4; > 0, 4, > 0 and

J3>0,ie,0<vV6p<l.

5.2 Derivation of the Method

For the derivation of the numerical method (5.12) for the solution of partial dif-
ferential Eq. (5.1), we follow the ideas given by Jain and Aziz [2].
At the grid point (x;,y,,), we may write the differential Eq. (5.1) as

Al,mUxxl,m +Bl,ml]yyl,m :f(xlayrm Ul,ma ljxl.ma Uyl,m) = Fl,m (514)
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Using Taylor’s expansion, we may write the approximations as

_ Uit — Uppn— AY?
M: Uy[‘,m—i——yUo_z-i-O(Ay“)

U, m =
o (2Ay) 6
_ Uriimir — Uit m—1 Ay? Ax - Ay?
Uyiim = (Ui 'H(sz) i) = Uyr1m+ ?yUm + G Y Uis + O(AY*Ax)
- Ui imi1 — Ui Ay? Ax - Ay?
Uy—im = (Ui, +(2Ay) n-1) =Uy—1m+ %Uo,% — Y Uiz +0(A)’ZAX2)
= Ul,m 1 — 2Ul,m+Ul,Wl*1 Ay2
Upim = ( - e ) = Uym+ 1 Un + O(Ay4)
3 (Ul+lJn+1 - 2Ul+1,m+Ul+1,mfl)
Upisim = AY
Ay? - AY? 2x 2
= Uyyl+1,m+EU04+ —12 U14—|—0(Ay Ax )
_ (Ui—tms1 = 2Uiin + Uimi 1)
Uyylfl,m = Ay2
Ay? Ax - AY?
= Uyylfl,er% Uops — Ty Uis+ O(Ayzsz)
_ Upim — 2Up + Uy, Ax?
UUIJ" = ( — szm m) = Unl,m"‘HUM) +0(Ax4)
_ — (Ul+l m Ul—l.m) sz 4
m:U\fm:Y—:ULm —U O(Ax
my, , 2A) smt 6 30+ ( )
B _ 3Uppign — 4Upm + Uy, Ax?
Mi41m = le+1,m = ( autll (ZA)C;I m) = le+1<,m - TU3O+O(A)C3)
_ = 73Ul*l,m +4Ul.m - Ul 1,m A)Cz
mi—1m = le—l,m - ( (2A)C) L ) = le—l,m - TU3O - 0(A)C3)

Using Taylor series expansion about the grid point (x;,y,,), from Eq. (5.1) we
obtain

Ay? K AxA10> < AxAlo) ]
L,=—|(1——Fnmt+|1+ F,_y,,+ 10F;,,
141, 1 -1, 1, (5.15)

12 Ao 00
+O(Ay4+Ay4Ax2+Ay2Ax4);l: ,2,..., Nm=12...M

Let us denote oy, = (da—{;) , then
Y/ lm

Fl.m :f(xz,)% Ul,m7 My m, l_]yl.m)

Ax2
:f (xlvynh Ul,mv le,n1 + ? Uz + O(Ax4), Uyl‘m + O(Ayz))

Ax?
=Fip+ r Usottim + O(AY* + Ax*)
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Similarly,

Fl+l,m :f(levyma Ul+1,m7ml+l,m7 [_]yl+1,m)
sz 3 2
ER Usooum + O(Ax + AY?)

Fioin = F (=1, Yms Uty M=t Uyi—1,m)

= Fl+1,m -

Ax?
= Fl—l,m - T U3Oal,m + 0(—A)C3 + Ayz)

We have also M;,, = S (x1) = Uram

_ _ 1 _ _
= Ml,m = Uxxl,m = Af [*BOOval,m + Fl,i?z]

00
_ _ 1 _ _
Ml+17m = Uxxl+lym = 77— [_BlJrl,mUVlerl,m +Fl+l,m]
I+1,m
= 1 Ax2 [_Bl-‘rl‘m Dyyl-&-l,m + Fl+1,t11]
(Al,m+AxA10+ S-Ax + ) ’

1
Aun (14 Axg -

) [_Bl+1,mUyyl+1,m +Fl+1,m]

= i (1 —i—Ax::l—]; + - ) h [_BlJrl,mUylerl,m +Fl+1,m]
= i (1 - Axi_l:, + - ) [=Bis1mUyyic1m + Fritm]
= Aioo <1 - AZ:OIO> [—Btﬂ,m(_]yytﬂm +Ft+1,m]
Similarly,
My = Aioo (1 + A:;t)lo) [=Bi_tmUyyi—tm + Fio1m]

Further, using spline relation we have

— =1 U m o U,m A)C 3 3
M1 = Unpim = % + o [Ml.m + 2Ml+1,m]

=M1 m+ 0(Ax3 + Ayz)
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and

— = Um—Uim Ax - _
mi—1m = Uxi-1m = % - F [Ml,m + 2lel,m}

= mi_1m+ O(—AX +AY?).

Now we need O(Ay*+Ay>Ax*+Ax*)-approximation for U,,,.
Let us consider

Z\])cl,m = 7xl,m+an [FIJrl,m - Flfl,m] +be[f]yyl+l,m - Uyylfl.,m}
+CAX2 Uxxlﬁm + dsz Uyyl,m

where ‘a’, ‘b’, ‘c’ and ‘d’ are free parameters to be determined. By the help of the
approximations defined earlier, we obtain

~ Ax? _ _
Uim = U»cl‘m"l‘T Uso+alAx[Friim — Fioim] + bAX[Upyisim — Upyi—1m)

AP Uy n + A Uy + O(AY* + Ay A + Ax?)
Ax?
= Mym+ 3 [(14+12aAn0) Uz + 12(aBoo + b) U1z + (6¢+12aA 0) Uz + (12aByg + 6d) U]

+O(Ay2+Ay2Ax2+Ax4)

Uin = mym+O(Ay*+Ay? Ax>+Ax*), the coefficient of Ax> must be zero which
means

14+12aAg) =0
aBy+b=0
6¢c+12aA1p=0

and
12aBy¢ + 6d = 0.
From above, it is easily seen that, a = — m, = 1129%00 ,C= g}ﬁ and d = %,
Hence
Z\]xl,m = le,m YR Fl+l,m - Fl—l,m + iBOO Uyyl-H,m - 7yyl—l,m
12A()0 12AOO
+Ax2Alo O 4 Ax? By O
6 AOO xxl,m 6 AOO yyl,m

= my,+0 (Ay2+Ay2Ax2+Ax4)
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Now,

FlJrl,m :f(lerlvyma Ul+1,m;ﬁl+1,m7 Uyl+1.m>
= (X1, Y, Ut Mgt n + O (AP +AY? ), Uy + O(AY))
=Friim+ 0(Ax3+Ay2)

fl—l,m = f (%1=12 Yi> U=t M1y Uit m)
= Fl—l,m + 0(_Ax3+Ay2)

f‘l‘m :f(xlaymv Ul,m; ﬁxl,ma Uyl‘m)
:f(xhyma Ul,ma mim, le,m) + 0<Ay2+Ay2Ax2+Ax4)
= Fl,m + 0(AX4+Ay2+Ay2A)C2)

Finally, using the preceding approximations, from (5.12) and (5.15), we obtain
the local truncation error as f’;,m = O(AYV*+AY* AP+ AV Ax*).

Note that, the Dirichlet boundary conditions are given by (5.2). Incorporating the
boundary conditions, we can write the cubic spline method (5.12) in a tri-block
diagonal matrix form. If the differential equation (5.1) is linear, we can solve the
linear system using block Gauss-Seidel iterative method; in the nonlinear case, we
can use block Newton-Raphson iterative method to solve the nonlinear system. The
details of the convergence analysis has been discussed in [3].

5.3 Application to Singular Problems

Consider the two spatial dimensions elliptic partial differential equation

&u O%u ou
@+B(x)a—y2—D(x)a +g(x,y),0<x,y<1 (5.16)

subject to appropriate Dirichlet boundary conditions prescribed.
The coefficients B(x), D(x) and function g(x,y) € C?(Q), where C"(Q) denotes
the set of all functions of x and y with continuous partial derivatives up to order m, in Q.
On applying formula (5.12) to the elliptic equation (5.15), we obtain the fol-
lowing difference scheme
Ay?
12
Ay?

= H |:Dl+1le+l,m + lellefl,m + 1ODl [/jxl7n11|

pzéi Ul,m"" [BlJrl Uyyl+1,m + B[,1 [_Jyylfl,m + 1OBI Uyyl.,m}

2

+ % [gl+l,m + 8l1-1,m + 1Oglm] + i:l,m (517)
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Note that scheme (5.17) is of O(Ay*+Ay*Ax*+Ax*). However, this scheme fails
to compute at [ = 1, when the coefficients B(x), D(x) and/or g(x,y) involve terms
like 1/x,1/x*,1/xy* and so forth. For an example, if D(x) = 1/x, then D; | =
1/x;—; which blows to infinity at / = 1 (since xy = 0).

So, in order to handle the singularity at x = 0, we modify scheme (5.17) such that
the order and accuracy of the solution is retained throughout the solution region.

For this purpose, we would need the following approximations:

sz
Dyi1 = Doy £ AXD10+TD20 + 0(Ax)

sz
Bis1 = By £ AXBIO+7B20 + 0(AX)

Ax?
8i+1m = &oo = Axglo—&-ngo + O(Ax3)

where 8im = 800 — g(xlaym) etc.
Now, substituting above approximations in the difference scheme (5.17) and merg-
ing the higher order terms in local truncation error, we obtain the modified scheme as

4Ay?
{—121?2 + Tme - Ay2D§o] 5 Uum

Ay*Ax
6

i A2 ~
+|pAy <6D00 + TDzo) - D00D10:| (21,65) Uy

r 2A%2
+|—12Boy — Ax*Byy — TBooDlo + szBloDoo] 5§ Ui — [Boo]5f5§ Uim

[ Ax
+ | —AxByo + TB(mDoo} 5§(21Jx5x)Ul,m

2
= —AY {12800 + Ax*(g20 — Doogio + gDmgoo)]

I=1(1)N,m=1(1)M (5.18)

Note that, the modified scheme (5.18) is of O(Ay*+Ay* Ax*>+Ax*) accurate and
applicable to both singular and non-singular elliptic differential equations.
Now, consider the Poisson’s equation

2 2
%—i—%%—ﬁ—%%: [4 — n*] cos(nb),0 < r,0 < 1 (5.19)
The above equation represents two-dimensional Poisson’s equation in cylin-
drical polar coordinates in r—6 plane. This problem arises in the simulation of
certain semi-bounded plasmas where the electric potential u are to be computed.
Replacing the variables (x,y) by (r,0) and substituting By = 1/r?, B =
—2/1‘13,320 = 6/1‘?,D00 = —l/r[,Dl() = B()(),Dz() = Bl() iIl (518), we obtain
O(Ay* +Ay* Ax*+Ax*) scheme for the solution of the elliptic equation (5.19).
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Similarly, for the 2D Poisson’s equation in cylindrical polar coordinates in
r—z plane

? 0? 10 1
6—:+8—;+;a—l:zcoshz 2coshr+ ;sinhr ,0<rz<1 (5.20)
We replace the variables (x, y) by (7, z) and setting Bog = 1, Bjg = 0 = By, Doy =
—1/r,Dio = 1/r}, Dy = =2/r} in (5.18), we can get O(Ay*+Ay*Ax’*+Ax*)
scheme for the solution of elliptic equation (5.20).
Next consider the Convection-Diffusion equation

O*u @ Ou

@ + ayz == ﬁa (5.21)

where § > 0 is a constant and magnitude of 5 determines the ratio of convection to
diffusion. Substituting B(x) = 1.0, D(x) = ffand g(x,y) = Ointhe difference scheme
(5.18) and simplifying, we obtain a difference scheme of O(Ay>+Ay?Ax*+Ax*)
accuracy for the solution of the convection-diffusion equation (5.21).

Yolim + V1Ui+1,m + Volhi—1,m + V3Uim+1
FYaUim—1 + PsUir1m+1 + YeUir1m—1
+y7ui—1 mi1 + YgUi-1m-1 = 0,
= 1N, m = 1(1)M] (5.22)

where the coefficients y,,,w =0, 1,2,...8 are defined by

0 = 24p> +20 + 8p°R?,
7 = —[12p" —2 — 12p’R+4p°R* + 2R],
7, = —[12p* — 2+12p’R + 4p’R* — 2R],

where R = f$h/2 is called the Cell Reynolds number.

The discretizations result in NM number of linear equations in NM unknowns.
Incorporating the boundary conditions, the above system may be expressed in the
matrix form as

Au=b>» (5.23)
where A is a tri-block diagonal matrix of order (NM x NM), u is the solution vector

and b is the right-hand side column vector arising from the boundary values of
problem (5.21).



5 Cubic Spline Approximation for Two-Dimensional ... 89
The coefficient matrix A has a block tri-diagonal structure,
A =ti[-L D — Ulyy.y
with the sub-matrices —L, D and —U each of order (N x M) given by
—L=utilyy 74 %]=—-UD=utily, 7 7]

The iteration matrices of the block Jacobi and block Gauss-Seidel methods are
described by

G, =D Y(L+U)and Ggs = (D —L)"'U

It can be verified that y, > 0 and y,, <0 for w = 1,2, .., 8 assuming the diffusion
dominated case i.e. R<1 and taking p > 1/ V6. One can also easily verify that

8
Yo =2 vl
w=1

which implies that the coefficient matrix A generated from is weakly diagonally
dominant. Since A is irreducible (as its directed graph is strongly connected), we
conclude that it is an M-matrix and hence monotone [4].

Now, applying the Jacobi iteration method to the system of Eq. (5.22), we get
the iterative scheme for s =0, 1,2. ...

R s . R s
|:24p2 <1+ 3 ) +20:| ;r;l - (1 - R)ugf#)l,erl + |:12p2 (1 —R+ ?) - 2(1 - R):| ul(+)l,m
+ (1 R)ME-A%—)I m—1 + (1 +R)Ml(i)1,m+1 + loul(:;r)x—l
R? ) (s)
+ {12{72 (1 +R+?> -2(1 +R)} w0+ (R, + 1025,
(5.24)

(s+1)

1m

(s)

where u and u; ), are the successive approximations for u;,, at (s+1)th and sth

iterations, respectively.
We examine the stability of the Jacobi iteration method by studying the beha-
(s)

viour of the error equation. Let us assume that an error ¢,

exists at each mesh point
(%7, ym) at the sth iteration and is of the form

s . l
81(}21 = &A'B" sin (]\7;(1

b
+1>sin<7”">,1§a§1v, 1<b<M  (525)

M+-1



90 R.K. Mohanty
where A and B are arbitrary constants and ¢ is the propagating factor which deter-

mines the rate of growth or decay of the errors. The necessary and sufficient
condition for the iterative method to be stable is

El<1,1<a<N, 1<b<M (5.26)

The corresponding error equation is
o, B (++1) _ o) o)
24p7| 1+ 3 +20|¢,,  =(1-R) <Sl+1,m+1 + Sl+1,m71)

- R2
+ 12]72 (1 _R+?> - 2(1 _R):| 8l(j—)l,m

+(1+R) (8I<i>l7m+l +8§i>l,m—l) + 10(81(;7)1—1 +8l(,sn)1+1)

: o )
+ 12p2(1—|-R+ ?> —2(1 —l—R)]s,(_)l,m

(5.27)

Substituting (5.25) in error equation (5.27), we obtain the characteristic equation
2 20N & nal . nbm
(24p +20+8p“R )g sin sin

N+1 M+1
o

)[10 (B+B" )cos(Mnjl)
+(B+B"! cog< )co%(M_H)[A(l—R)+A"(1+R)]

)[( 2p° = 2+4p°R*) (A+ A7)+ (12p2R—2R)(A*1—A)]}

ol ()
(BB cos (Nnj 1> i <Mn—+bl) A0 =R+ +R)]}

+cos (N”j‘_ll> sin (M”’j:"l) [(B—l—B’l) cos (MTJ sin (;j’_ﬂ) [A(1 = R) — A (1+R)]

+sin (N’:C_’ 1) [(12p* — 2+4p°R*) (A — A™") — (12p°R — 2R) (A+A*‘)]}

+ cos (N”—ill) cos(ﬂjlfll) {(B — B')sin (anJ sin (1\;41:1) [A(1—R) —A~'(1 -I—R)}}

(5.28)
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Comparing both sides, we get

10B—B")+(B-B" cos( A" (1+R)] =0

1 nb
(B+B )COS(M+1

— (12p’R-2R)(A+A7") =0

)[A(l—) AN1+R)| + (120> —2+4p°R*)(A—A"Y)

and
(B—B")[A1-R) —A ' (1+R)] =0
On solving, we get B =1 and

1/2

(14 R) cos (572;) +6p% — 1 +2p°R> +6p°R — R
A:

(1-R) cos(MH) +6p* — 1+2p*R* — 6p*’R+R
The propagating factor becomes

(24p* +20 + 8p*R?) &

= 2cos (M”f 1) [ 0+ cos (le) (A1 =R)+A"'(1+R))

+cos <N7:‘_’ 1) (129 — 2+ 4p*R? — 12p°R + 2R)A

+(12p* — 2+ 4p*R* + 12p’R — 2R)A™ "]

Now the largest value of cos (A’,Tj_’l) and cos(“”"‘l) occur when a =b = 1.

24p% +20 + 8p°R?) & = 20 r
(24p* +20 + 8pR?) ¢ cos( 77—

T T
2 cos 1—-R 6p° — 1+ 2p*R> — 6p’R+R|A
+ COS(N—i—l)[( )COS<M+1)+p +2p P R+

T T
2 A" (1+R 6p°> — 1 +2p*R*+6p’R — R
+ COS<N+1> {( + )cos<M+1>+ p +2p°R"+6p

Substituting the value of A and simplifying, the propagating factor &; for the
Jacobi iteration method is obtained as
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¢ _;{SCOS(L>
st ep(1+ B M+1

+cos<Nj_1> \/6])2(1 — R+ R;) -1 —R)(l —cos<M11)> (5.29)
x \/6p2(1 +R+ R;) - (1+R)(1 —cos(Mj_l))}.

Thus, the Jacobi Iteration method is stable for those values of R such that
|€;] < 1 and the rate of convergence of the Jacobi iteration method is given by

vy = —logé,

Similarly, applying the Gauss-Siedel iteration method into the system of
Eq. (5.22) we can obtain propagating factor of for the Gauss-Seidel iteration
method.

Consequently, the spectral radii p of the block Jacobi and block Gauss-Seidel
matrices are related by

p(Gas) = p(Gy)’ (5.30)
Hence, the associated iteration
u ) = Gu® 4 ¢ (5.31)

converges for any initial guess where, G is Jacobi or Gauss-Seidel iteration matrix.

5.4 Numerical Illustrations

Substituting the central difference approximations in the differential equation (5.1),
we obtain a central difference scheme of O(Ay?+Ax?) of the form

AIAm Uxxlm +Bl,m Uyyl.,m :f(xlvymv Ul,m7 le,ma UylA,m) + O(Ayz =+ sz)

Numerical experiments are carried out to illustrate our method and to demon-
strate computationally its convergence. We solve the following two-dimensional
elliptic boundary value problems on unequal mesh both on rectangular and cylin-
drical polar coordinates whose exact solutions are known to us. The Dirichlet
boundary conditions can be obtained using the exact solutions as a test procedure.
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We also compare our method with the central difference scheme and the methods
discussed in [5] in terms of solution accuracy. In all cases, we have taken the initial
guess u(x;, y,) = 0. The iterations were stopped when the absolute error tolerance
became < 10710,

a2
Example 1 gx’z‘ + ‘57? =

dx’ 0 < x,y < 1 (Convection-diffusion equation)

The exact solution is given by

/fr sin 7y
, 262 sinh sinhg(1 — }
u(x,y) = “iho ox+ a(l—x)
where 62 = 7%+ g. The maximum absolute errors for u are tabulated in Table 5.1.

Figure 5.2a, b demonstrate a comparison of the plots of the numerical and exact
solution of u(x, y) for the values B = 30 and y = (Ay/Ax?) = 20.

Example 2 (Poisson’s equation in polar coordinates)

Pu  10°u  10u 2
(a) W+r—2w+;az [4—75]C0S(TC9)7 0<r,9<1
The exact solutions are given by u(r, 0) = r* cos nf).
0* 0? 10 1
() 8_£+3_;;+;6_Z:COShZ ZCoshr—f—;sinhr , O0<r,z<l1

The exact solutions are given by u(r,z) = cosh rcosh z.

The maximum absolute errors for u are tabulated in Table 5.2. A comparison of
the plots of the numerical and exact solution of u for the value y = (Ay/Ax?) = 20
is shown in the Fig. 5.3a, b.

Example 3 (Steady-state Burgers’ Model Equation)
e @4—@ = 8u+8u +e* sm(ny)
ox2  9y2)  \ox Oy 2

(1-5) - (sn(Z) + Zeos(2))] o < v <

Table 5.1 Example 1: the maximum absolute errors (y = sz =20)

Ax | Proposed O(Ay? + Ay? Ax* + Ax*)-method O(AY* + Ay? Ax? 4+ Ax*)-method

B =10 B =120 B =30 £ =10 B =120 B =30
1—10 0.1062E-01 0.1823E-01 0.4618E-01 0.7918E-01 0.8220E-01 0.8998E-01
2710 0.6971E-03 0.1213E-02 0.3922E-02 0.4919E-02 0.5155E-02 0.5676E-02
ﬁ 0.4352E-04 0.7360E-04 0.2312E-03 0.3102E-03 0.3214E-03 0.3511E-03
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Fig. 5.2 Comparison of plots
of solution of Example 1.

a Convection-diffusion
equation y = 20, f = 30
(numerical solution).

b Convection-diffusion
equation y = 20, £ = 30 (exact
solution)

Table 5.2 Example 2: the
maximum absolute errors

(0 =2 =20

u values

y values

R.K. Mohanty

Mumerical solution

X values

2
15 4
@
E E
s '
=
> :
05 -
0
1 i
1
0 % values
Ax | Proposed O(AY* + Ay> A% + AxY)-
O(AY* + Ay*Ax* + Ax*)- | method discussed
method
Ex. 2(a) Ex. 2(b) Ex. 2(a) Ex. 2(b)
% 0.2976E-02 | 0.3574E-03 | 0.5018E-02 |0.6662E-03
21—0 0.1917E-03 | 0.2343E-04 |0.3072E-03 | 0.4155E-04
% 0.1202E-04 | 0.1448E-05 |0.1911E-04 |0.2614E-05
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Fig. 5.3 Comparison of plots Numerical solution
of solution of Example 2.

a Poisson’s equation

(r—z plane) y = 20 (numerical
solution). b Poisson’s
equation (r—z plane) y = 20
(exact solution)

25 i

u values

z values ) oz o
0 o rvalues

Exact solution

95 g

u values

T02
0 o r values

where R, = ¢! > 0 is called Reynolds number. The exact solution is given by
u(x,y) = e*sin (%) The maximum absolute errors for u are tabulated in Table 5.3
for various values of R.. Figure 5.4a, b demonstrate a comparison of the plots of the
numerical and exact solution of u(x,y) for the values R, = 100 and
y = (Ay/Ax?) = 20.

Finally, Table 5.4 shows that our method works as a fourth order method with
fixed mesh parameter y = Ay/Ax?. The order of convergence may be obtained by

using the formula
€Ax Ax;
lo L) /log| —
s (esz> /1o <sz>
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Table 5.3 Example 3: the maximum absolute errors (y = 55 = 20)

Ay _

R.K. Mohanty

Ax Proposed O(AY* + Ay> Ax? + Ax*)-method
O(AY* + Ay* Ax* + Ax*)-method discussed in
R.=10 R. = 100 R.=10 R. = 100
11—0 0.1022E-01 0.8190E-02 0.4242E-01 0.1244E-01
2170 0.5887E-03 0.7330E-03 0.2510E-02 0.7711E-03
ﬁ 0.3683E-04 0.4347E-04 0.1516E-03 0.4748E-04

Fig. 5.4 comparison of plots
of solution of Example 3.

a Steady-state Burger’s
equation y = 20, R, = 100
(numerical solution).

b Steady-state Burger’s
equation y = 20, R, = 100
(exact solution)

uvalues
b

u values
by

y values

Mumerical solution

0 o

Exact solution

y values :
0o

02

Re =100
Gama=20

% values

Re =100
Gama =20

% values

where e, and ey, are maximum absolute errors for two uniform mesh widths Ax;
and Ax,, respectively. For computation of order of convergence of the proposed
method, we have considered errors for last two values of Ax, i.e., Ax; = & . Ax, =

200

% for the above discussed elliptic partial differential equations.
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Table 5.4 Fourth order

. 1 Example Parameters Order of the method

convergence: Ax| = 5g,

szzﬁ,y:%:m 1 p=10 4.00

£ =20 4.04

p =30 4.08

2 Ex. 2(a) 4.00

Ex. 2(b) 4.01

3 R. =10 4.00

R. = 100 4.07

a =20 3.99

5.5 Conclusion and Observations

Available numerical methods based on cubic spline approximations for the
numerical solution of non-elliptic equations are of O(Ay?4-Ax?) accurate. Although
9-point finite difference approximations of O(Ay*+Ay*Ax>+Ax*) accurate for the
solution of nonlinear and quasi-linear elliptic differential equations are available in
the literature, but these methods require five evaluations of the function f. In this
article, using the same number of grid points and three evaluations of the function f,
we have derived a new stable cubic spline method of O(Ay*+Ay*Ax*+Ax*)
accuracy for the solution of nonlinear elliptic equation (5.1). However, for a fixed
parameter y = %, the proposed method behaves like a fourth order method. The
accuracy of the proposed method is exhibited from the computed results. The
proposed method is applicable to Poisson’s equation in polar coordinates, and
two-dimensional Burgers’ equation, which is main highlight of the work.
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Chapter 6
Pricing of Path-Dependent European-Type
Options Using Monte Carlo Simulation

Siddhartha P. Chakrabarty

Abstract This expository article highlights the significance of Monte Carlo sim-
ulation in pricing of options. We discuss the various types of financial derivatives,
particularly options and their classifications. The discrete and continuous time
models for the underlying assets are dwelled upon. We consider a geometric
Brownian motion (GBM) based model for stock price process and discuss the
payoffs of plain vanilla as well as path-dependent European-type options, namely,
barrier, lookback, and Asian. We mention the option pricing formula for plain
vanilla European option and describe the Monte Carlo approach to option pricing
with illustrative algorithms and results for some of these options.

Keywords Option pricing - Monte Carlo simulation

Mathematics Subject Classification 91G60

6.1 Introduction

Financial derivatives have come to occupy a position of great importance in the
global financial markets, especially in terms of growth, diversity and volume. They
are used for a variety of purposes, the most common ones being hedging, speculation,
and arbitrage [1] and are usually traded over-the-counter (OTC) or are exchange
traded. Some of the typical derivative contracts are options, forwards and futures, and
swaps [1-3]. The term “financial derivative” is motivated by the fact that the values
of these derivatives are derived from more basic underlying assets or securities. The
ever increasing complexity of payoff structures of derivatives, especially the OTC
traded ones, have resulted in the use of sophisticated mathematical techniques in the
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pricing and valuation of such derivatives. In this expository article, we discuss one
such technique, namely, Monte Carlo simulation and its application to pricing of
path-dependent European-type options.

Options are one of the most common and popular financial derivatives [1-5].
These are derivative contacts which give the owner the right to buy or sell the
underlying asset, for a certain price, on or before a certain date. Options can broadly
be classified as a call option (where the holder or the buyer of the option has the
right to buy the underlying asset from the writer or the seller of the option) and a put
option (where the holder or the buyer of the option has the right to sell the
underlying asset to the writer or the seller of the option). Another classification of
options is European and American. In the case of the former, the holder of the
option can exercise it only at a fixed future time called the expiration date. In case
of the latter, however, this exercise by the holder can take place at any time up to
and including the expiration date. Both these types of options can either be plain
vanilla or the more sophisticated path-dependent ones.

Since options confer a right to the holder of the option and imposes an obligation
on the writer of the option, the former must pay a “premium” to the latter, in lieu of
this right. This “premium” is referred to as the “price” of the option. The deter-
mination of the correct and fair option price is an important problem in today’s
financial markets. While options have a wide variety of securities as underlying, we
shall solely focus on options which have stocks as the underlying. Modeling of
stocks has been done in both discrete and continuous time settings. While discrete
time models like the binomial model have been used extensively, the continuous
time geometric Brownian motion (GBM) model for asset pricing is more commonly
used in literature.

The seminal paper of Black and Scholes [6, 7], that appeared in 1973, was a
significant and important breakthrough in this area. In this paper, the authors for the
first time gave a closed form option pricing formula for European options, in
continuous time. Cox, Ross, and Rubinstein [8, 9], in 1979, presented a simple
discrete time model for pricing of options. They obtained a formula for pricing of
options and derived the Black—Scholes formula as a limiting case of their formula,
based on symmetric random walk.

6.2 Model for Asset Price and Options

For the purpose of this article, we will consider the GBM model [2-5, 7] for the
underlying stock of the option under consideration. The model is given by the
following stochastic differential equation for the stock price process s,

ds, = us,dt + as,dw;, (6.1)

where p is the drift and o is the volatility of the stock prices. Here, w, is the Wiener
process, under the risk-neutral measure P. While x4 and ¢ have been taken to be
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constant here, they can be dependent both on time as well the stock price. Note that,
the Wiener process, w, is a random variable with: (i) wy = 0, (ii) for 0 < s < ¢,
w, — w, follows the normal distribution A/ (0,¢ — s) and (iii) increments of w, over
nonoverlapping time intervals are independent of each other.

The pricing of European-type options on a stock (following the GBM), primarily
depends on the expected payoff from the option at expiration date. This is due to the
fact that exercising of a European-type of option can take place only at expiration
date, which will be denoted by T. In case of a plain vanilla European call option, the
holder of the option has the right to buy the underlying stock from the writer, for a
fixed price called the strike price, which will be represented by k. It is obvious that
the holder will exercise only if the asset price sy at expiration is at least the strike
price k, in which case the profit for the holder will be sy — k. Else the option will
expire. Thus, the payoff will be max {s; — &, 0}. Similarly, the payoff for a plain
vanilla European put option is given by max {k — sy, 0}. We will now discuss the
payoff functions for three different path-dependent or exotic European options,
whose pricing using the Monte Carlo simulation will be done later [4, 10].

A barrier option is an option whose payoff is switching in nature and depends on
whether the underlying asset prices cross a predefined threshold level during the
lifetime of the option. There are basically four such types of barrier call options.
A down-and-out barrier call option has the payoff for a European call option pro-
vided the asset price does not go below a prespecified barrier b < sg and zero if it
does. A down-and-in barrier call option has the payoff for a European call option
provided the asset price goes below a prespecified barrier b < sy and zero if it does
not. An up-and-out barrier call option has the payoff for a European call option
provided the asset price does not go above a prespecified barrier b > sy and zero if it
does. An up-and-in barrier call option has the payoff for a European call option
provided the asset price goes above a prespecified barrier b > s, and zero if it does
not. The payoffs for barrier put options are similar.

A lookback option is one whose payoff depends on either the maximum or the
minimum price of the underlying asset during the lifetime of the option. The fixed
strike lookback call and put option have payoffs max {sn.x — &k, 0} and max
{k — smin, 0}, respectively. On the other hand, floating strike lookback call and put
option have payoffs max {s7 — Syin, 0} and max {s,.x — s, 0}, respectively. Here,
Smax and Sy, denote the maximum and the minimum stock prices, respectively,
during the lifetime of the option.

While barrier and lookback options focus on some fixed barrier and extreme
values for the stock, Asian options take into account the average pattern of the price
of the stock. The payoffs for Asian options are functions of the average price of the
stock during the lifetime of the option. We mention four different types of Asian
options in continuous time. The average price Asian call and put options have

payoffs max (% fOT s.dt — k, O) and max (k — % fOT s.dt, 0) , respectively. Similarly,
the average strike Asian call option and put options have payoffs
max (sT — %fOT sTdr,O) and max (% fOT s:dt — s, 0), respectively.
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6.3 Pricing of Options Using Monte Carlo Simulation

Black and Scholes [6], provided the following closed form formula [2, 4, 7] for the
price of a European call and put option,

c(s,t) =N(dy)s — N(d_)Ke T
p(s,t) = N(—d_)Ke "7 — N(—d ,)s.
where
)+ (1+5)(T - 1) @)+ (n-5)T -1
d, = andd_ =
oVT —t oVT —t

This solution was obtained by analytically solving the famous Black—Scholes
equation, with appropriate final and boundary conditions for European call and put
options. In case of most options, however, such closed form pricing formula cannot
be obtained. One can then resort to numerical techniques for PDEs [11] and solve
variations of the Black—Scholes equation that arise in cases of such options. This
approach, however, has limitations, in terms of an appropriate numerical scheme,
especially when there are several underlying assets instead of only one (as is the
case with plain vanilla options) and also for path-dependent options. The most
practical approach to the determination of option price, then, is to resort to Monte
Carlo simulation.

Monte Carlo simulation is used to determine the expected value of a random
variable, by generating a large number of independent sample random variables
[10—-14]. In the case of option pricing with a stock as the underlying asset, a large
number of sample stock paths are generated and their corresponding payoffs at the
expiration is determined. The price of the option is then given by the risk-neutral
discounting of the average or expectation of these variables. For the purpose of
generation of sample paths, we use the following solution of Eq. (6.1) that can be
obtained using Ito’s lemma,

5 = Soe(yfé)tﬁLaw, — SOe(yfé)hLo\/fz (62)
where z~N(0,1). Note that w, = \/1z~N(0,7). Once the payoff for a large
number (say M) of sample paths is generated, the option price based on these paths

is given by the risk-neutral valuation formula

| M
_ . —IT _ =T
m, = e~ "' E[Payoff;,] = e [M ;:1 Payoff,»] ,

where Payoff; is the payoff from the ith path, r is the risk-free rate, and x4 = r under
risk-neutral valuation. In case of path-dependent options, we need to keep track of
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the stock price at all time points (say N + 1 with the length of each of the N time
intervals taken to be At = T/N, though one could take nonuniform time intervals as a
more general case) for each sample path i =1 : M.

Also, the sample variance is given as

1

M
2
I~ m;(Payoffi —my,)”".

Note that the confidence interval (say 95 %) for the option price is

gy, agy,
m, — 1.96—= . m, + 1.96 .
{ ' VM VM]

We outline the simulation algorithm for one case each of plain vanilla European,
barrier, lookback, and Asian options. The other cases can be dealt with on similar
lines.

1. European put option
fori=1:M
generate sample z; ~ N (0, 1)
set s; = sOe(,uf%ul)TJra\/fzi
set Payoff, = max(k — s;,0)
end
Price of option, m, =e~'T [L ¥ Payoff;]

Sample variance, o> = -+ >V (Payoff, — m,)’

95 % confidence interval for the price of the option

ay

oy
m, — 1.96—= . m, +1.96 :
VM

VM
2. Up-and-out barrier call option
fori=1:M
forj=0:N—-1
generate sample z; ~ N (0, 1)

1.2
set s;ji1 = si,je(’kf(T JAr+avAs

end

set Simax = MaXo<j<nS;;

if 5;max < b set Payoff, = max(s;7 — &, 0)
else set Payoff;, = 0

end
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Price of option, m, = e*’T [V, Payoff,]

Sample variance, 67 = ;< SV (Payoff, — my)?

95 % confidence interval for the price of the option
oy

my, —1.96-2— m, +1.96

VM

. Floating strike lookback call option

fori=1:M
forj=0:N—-1
generate sample z; ~ N (0, 1)

set Sij+1 = s,;je( 30 )Al+r\/_zf

end

set §; min = MiNg < ; < N8;;

set Payoff; = max(s;7 — Simin,0)

end

Price of option, m, = e*’T [L3°Y, Payoff,]

Sample variance, 67 = /¢ SV (Payoff, — my)?

95 % confidence interval for the price of the option

Oy
m, — 1.96—,m,
vM
Average price Asian put option
fori=1:M
forj=0:N—-1
generate sample z; ~ N (0, 1)

12
set Siji1 = sije(’k?“ )At+0’\/§2;

end

set Siavg = D 1 8ij 3

set Payoff, = max(k — s; g, 0)

end

Price of option, m, = ¢~"7 [L 3"V Payoff,]

Sample variance, o2 = /- >°¥ | (Payoff, — m,)’

95 % confidence interval for the price of the option

m, —1.96-2

il

oy
VM|

\/—A'_/I, : \/1:_/1

S.P. Chakrabarty
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Table 6.1 Results for Monte Carlo simulation

Option type Option price | Sample variance | 95 % confidence interval
European put 20.3997 364.4944 [19.8705, 20.9289]
Up-and-out barrier call 6.8101 239.8059 [6.3808, 7.2393]
Floating strike lookback call | 23.7967 532.7144 [23.1570, 24.4365]
Average price Asian put 17.8306 187.0266 [17.4515, 18.2097]

6.4 Results and Discussion

We ran the simulations for the four different path-dependent options outlined in
Sect. 6.3 using MatLab™. For this purpose, we took the number of sample paths to
be M = 5000 and the number of time intervals to be N = 1000. The parameters used
in the simulation were s(0) = 100, r = 6 %, ¢ = 30 %, k = 120, and b = 250. The
expiration time was T = 1, thereby resulting in the length of time intervals (taken to
be uniform) Az = T/N = 107>, The results from the simulation are given in Table 6.1

The simulation results are for option prices in a certain confidence interval. This
is a disadvantage of this method, since the price is not unique but lies in a certain
range. The numerical PDE approach to the same pricing problems, which poten-
tially leads to a unique option value, poses challenges in terms of implementation,
thereby limiting the usage of this approach in practical situation. Consequently,
from the point of view of implementation, the Monte Carlo simulation technique is
preferred among the commonly used techniques.
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Chapter 7

On the Finite Element Approximation
of the Impulse Control Quasivariational
Inequality

Messaoud Boulbrachene

Abstract In this paper, we develop a new approach for the standard finite element
approximation in the maximum norm for the impulse control quasivariational
inequality. We establish the optimal convergence order combining the Bensoussan—
Lions algorithm and the concepts of subsolution and discrete.

Keywords Quasivariational inequalities - Bensoussan—Lions algorithm
Subsolution - Finite element - Discrete regularity - L™ error estimate
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7.1 Introduction

In this paper, we are interested in the standard finite element approximation in the
maximum norm of the following quasivariational inequality (QVI)

{a(u,v—u) > (f,v—u) Vv € Hy(Q) (7.1.1)

u<Mu,v < Mu

Here, Q is a bounded convex domain of RV, N > I, with boundary 0Q, ()
denotes the scalar product in L*(Q), f is a nonnegative right-hand side in
L>*(Q), a(.,.) denotes the bilinear form associated with an elliptic second order
differential operator A, and M is a nonlinear operator from L>*(Q) into itself
defined as

Mu = k+ infu(x+¢&),& > 0,x+E€Q}k>0 (7.1.2)
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Problem (7.1.1) is analogous to the obstacle problem where the obstacle function
is replaced with an implicit one, depending upon the solution sought. The termi-
nology quasivariational inequality being chosen is a result of this remark.

This QVI arises in impulse control problems: an introduction to impulse control
with numerous examples and applications can be found in Bensoussan and Lions [1].

Its numerical approximation in the L> norm has recently gained a high interest
in computational finance (see [2, 3]).

Let 7, denote a regular and quasiuniform triangulation of Q;/2 > 0 is the mesh
size. Let V;, denote the finite element space consisting of continuous piecewise
linear functions vanishing on 9Q, {¢;},i = 1,2,...m(h), the basis functions of Vj,,
and 7, the usual restriction operator.

The discrete counterpart of (7.1.1) consists of seeking u;, € V;, such that

folmr—) 2 G v e, (.13

up < mpMuy,v < m,Muy,
Under W?? — regularity of the continuous solution, the following error estimate
[l = unll oo < Chlloghl
was obtained by Loinger [4] in the one-dimensional case (N = 1), and by Cortey
Dumont [5] for N > 1.
In this paper, we improve on the above results and obtain a sharp error estimate
(for N > 1), i.e.,
lu — up|,, < Ch?|logh|? (7.1.4)

For this, we develop a new approach, which combines the concept of subso-
lution in variational inequalities (VI): w is a continuous subsolution if

a(w,v) < (f,v)Vv € H}(Q),v > 0
1.
{ W<y (7.1.5)
(respect. wy, is a discrete subsolution), if
a(Wh, q)z) S (f’ @i)vcpiv i= 17 . 7m(h)
{Wh < mpy (7.1.6)

and the concept of “discrete regularity”: a discrete solution {;, of a variational
inequality is regular in the discrete sense if it satisfies

|a(Chs )| < Clloilli o)

This new concept of “discrete regularity,” introduced in [6], can be regarded as
the discrete counterpart of the Lewy—Stampacchia regularity estimate ||Au||., < C,
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extended to the variational form through the L> — L! duality. It plays a major role
in deriving the optimal error estimate as this will be shown in the sequel of the

paper.
The finite element error analysis stands on the construction of a continuous

sequence of subsolutions (B,(qh)) such that

ﬁill) < uy, and ‘ ﬁ,(qh) — Unh

< Ch*|logh|*
and a discrete sequence of subsolutions () such that

Olnh S Unh and ||un - anh”oo S C]’l2|10gh‘2,

where (u,) is the Bensoussan—Lions algorithm and (u,;) is its finite element
counterpart.

7.2 Background

7.2.1 Assumptions and Definitions

We begin with introducing some notations and assumptions. We are given suffi-
ciently smooth functions

ap(x), br(x), ap(x)x € Q (7.2.1)
such that
Z ap(x) & 2 A (xeQ, e R, a>0) (7.2.2)
1<jk<N
ap(x) = co > 0(x € Qycp > 0) (7.2.3)

We define the second order elliptic operator

A= 3 g (wegy) - g w129

1<jk<N

and the associated bilinear form Vu,v € H'(Q)

a(u,v):/< > a,k(x)g;g;+Zbk(x)§;v+ao(x)uv)dx (7.2.5)
Q

1<jk<N k=1
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which we assume to be coercive

a(v,v) > d|vl[7iq),d > 0.Yv € H'(Q) (7.2.6)
We assume that
If Y € C(Q) then O(}) € C(Q) (7.2.7)
If u and v € C(Q) then | Mu — My < llu—vlca) (7.2.8)
If u € WH(Q) then || Mul|y1.(q) < Cllullyi~q) (7.2.9)

Throughout the paper, we will introduce several variational inequalities of
obstacle type. The following are some useful, related definitions and properties.

7.2.2 Continuous Variational Inequality

Let g in L>°(Q) and y in W!*°(Q) such that i/ > 0 on 9Q. The following problem is
called variational inequality:

alw,v— ) = (g,v— w)¥v € H (Q)
{vswwsw (7:2.10)
Thanks to [1], problem (7.2.10) has a unique solution.
Definition 1 w is said to be a subsolution for the VI (7.2.10) if
a(w,v) < (g,v)¥v € H}(Q),v >0
{ W<y (7.2.11)

Theorem 1 [1] The solution w of the VI (7.2.10) is the least upper bound of the set
of subsolutions.

Theorem 2 [1] Let y and y in W(Q), and w and & be the corresponding
solutions to (7.2.10). Then,

oo = @l < Clly =l

Lemma 1 (The continuous Levy—Stampacchia Inequality) Let v in H'(Q) such
that Y > 0 on 0Q. Let also w be the solution of (7.2.10) such that Aw > h (in the
sense of H™1(Q)), where h € L*(Q). Then,

g> Ay >gNh
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Theorem 3 [1] Under conditions of lemma 1, the solution w of (7.2.10) is in
W2P(Q) for all p > 2,p < 00, Aw € L®(Q).

7.2.3 Discrete Variational Inequality

The following is the corresponding discrete variational inequality

alop,v—y) 2 (g,v— o)V eV,
{VSﬂhlﬁ,Wénhlﬁ (7.2.12)
wy, 18 said to be a discrete subsolution if
a(Wh, @,) < (gv @i)v¢i; i=1,.. 7m(h)
{Wh < m (7.2.13)

Under the discrete maximum assumption (d.m.p), the stiffness matrix
a(¢;, @;) is an M-Matrix (this will be thoroughly explained in Sect. 7.3), we have

Theorem 4 The solution wy, of the VI (7.2.13) is the least upper bound of the set of
discrete subsolutions.

Theorem S Let v and 170 in WH°(Q), and oy, and @y, the corresponding solutions
to (7.2.12). Then,

llon — @l < CllW = ||

Theorem 6 (The discrete Levy—Stampacchia inequality) Let w;, be the solution of
the discrete VI (7.2.12). Then,

(& i) = alon, @;) > a(y, ¢;) N (8, p)Vp;i=1,...,m(h)

7.3 The Impulse Control QVI
7.3.1 The Continuous QVI

The existence of a unique solution for QVI (7.1.1) can be achieved, making use of
the method of upper and lower solutions (see [7]).
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Indeed, one can define the fixed point mapping

T:L>*(Q) — L*(Q)
z—=Tz={

where { solves the following VI

a(lC,v—=10) = (f,v— Vv e H}(Q)
{C < Mz,v < Mz 0 (7.3.1)

Let uy be the solution of the equation
a(ug,v) = (f,v)Vv € Hy(Q) (7.3.2)

Thanks to [7], (7.3.2) has a unique solution which belongs to W??(Q). The
Bensoussan—Lions algorithm is constructed as follows: starting from g, solution of
the above equation, we define the sequence

u, = Tup_1,n=1,2,... (7.3.3)

Theorem 7 [7] Assume that f > fy > 0. Then, the sequence {“n}nzo converges

decreasingly to the unique solution of the QVI (7.1.3). Moreover, there exists
0 < u < 1 such that

[t = ull o < 1|0l (7.3.4)

Remark 1 One can also start from uy = 0 and generate an increasing sequence

u, = Tu,_1,n = 1,2,... which converges geometrically to the solution of the QVI
(7.1.1).

7.3.2 The Discrete QVI

For the sake of finite element discretization, we will assume that Q is polyhedral.
Let then 7, be a regular and quasiuniform triangulation of Q into triangles; 4 > 0 be
the mesh size. For each K € 15, denote by P;(K) the set of polynomials on K with
degree not more than 1. The P;, conforming finite element space, is given as

Vi = {V tve Hé(Q) mC(Q)»V/K € Pi(K),VK € ‘ch}
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Let M;,1 <

i < m(h) denote the vertices of the triangulation 7;, and let
(Pivl S [ S m(h)’

<
denote the functions of V;, which satisfies

@i(Mj) = 6,1 < i, j < m(h)

So that the function ¢; form a basis of V. Vv € H'(Q) N C(Q), the function

3

(h)
mv(x) = v(M;)p;(x)

i=1

represents the interpolate of v over 7.
The existence of a solution for QVI (7.1.3) can be obtained similarly to that of
the continuous case. Indeed, we construct a discrete fixed point mapping

Th :L> (Q) — Vh
z— Thz =,

where (;, solves the following discrete VI

{a(CmV =0 2 (fy=C)Ww eV, (7.3.5)
& < mpMz,v < Mz
Now, starting from ugy,, solution of the equation
a(uon,v) = (f,v)¥v € Vj, (7.3.6)
we construct the discrete version of the Bensoussan—Lions algorithm
o, = Ty _yp,n=1,2,... (7.3.7)

The convergence analysis of the discrete algorithm will require that the stiffness
matrix is an M-Matrix.

Definition 2 A real matrix d X d C = (¢;;) with ¢;; <0, Vi # j, 1 <i,j<d, is called
an M-Matrix, if C is nonsingular and C~! > 0 (i.e., all entries of its inverse are
nonnegative).

Denoted by A is the matrix with generic coefficient

Al:l' = a(@h on), 1 S la] S m(h) (738)
Because the bilinear form «af(.,.) is coercive, we have

A is positive definite (7.3.9)
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and
A; >0Vi=1,...,m(h) (7.3.10)

Furthermore, if the matrix (aj) involved in the bilinear form (7.2.5) is sym-
metric (aj = ay;), then mesh conditions for which the off-diagonal entries of
B satisfy

Aj <0,Yi#j,1 <i,j < m(h) (7.3.11)

can be found in [8]. By combining (7.3.9), (7.3.10), and (7.3.11), we have the
following lemma.

Lemma 2 The matrix A is an M-Matrix.
Proof See [8]. O

Theorem 8 Let conditions of Lemma 2 hold. Then, the sequence {uy}, - con-
verges to the unique solution of the (7.1.3). Moreover, there exists 0 < u < 1 such
that

llwn — unll o < 1" [|uon]| (7.3.12)

7.4 The Finite Element Error Analysis

The establishment of the optimal error estimate (7.1.4), in which the concept of
“discrete regularity” will play a crucial role, rests on several lemmas and theorems.

7.4.1 The Discrete Regularity

Consider the VI

alwp,v—oy) 2 (g,v— o)V eV,
V<1, wp < Ty

Assumption We assume that there exists a constant C independent of % such that

la(@n; )] < CllgillLi) Vi=1,2,....m(h) (7.4.1)
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Lemma 3 [6] Under assumption (7.4.1), there exists a family of right-hands side
{g }h € L>®(Q) such that

18]l < €. vh
and

a(wp,v) = (g™ v)w eV, (7.4.2)

Theorem 9 Let conditions of Lemma 3 hold. Then, there exist two continuous

sequences (gflh)) | and (wf,h)) B and a constant independent of h and n such
n> n>

that

el < €

and

a(off),v) = (g,",v)¥v € Hy(Q)

n

Proof The proof will be carried out by induction. For n = 1, let @; be the solution
of the VI

(h) (h) J

a(wip, v — o) 2 (f,v— o)W eV,
v < mMaoy’, oy < mpMaoy

where a)(()h) = ug is the solution of

a(ug,v) = (f,v)Vv € Hy(Q)
So, by the discrete Levy—Stampachia inequality, we have
= (f,9:) Na(Muo, ¢;) < a(ww, @;) < (f, ¢;)
or

= (fs 0:) N (AMuo), ¢;) < a(ou, @;) < (f, @)

and using ([7], pp. 366-376), there exists a constant ¢ such that A(Mug) > — c.
Hence,

- (fa q)z) A (_Cv q)z) < a(a)lha (pz) < (fv (pi)v
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which implies
la(ow, ¢;)| < Clloillg)

So, making use of Lemma 3, there exists a family of right-hands side {g(lh>} €
L>®(Q) such that

W]jel”] <
(it) (o, v) = (81" v)¥v € V)

)

which enables us to define w(lh) as the solution of the equation

a(a)(lh)7 v) = (g(lh), VIVv € Hé Q)
and

<C

w2r(Q)

o]

Now, let us consider wy;, to be the solution of the VI

) (7.4.3)

a(wop, v — ) 2 (f,v — wy) W €V,
v < nthEm, oy <TpMo,

So, using the discrete Levy—Stampachia inequality, we have
h
~(f.0) Na(Moy", 9) < alon, 9) < (f.)
or
h
(1, 0) A (AMO), ;) < alon,0) < (f,9))

and using ([7], pp. 366-376), as above, there exists a constant ¢ such that
A(Mwsh)) > — ¢, and therefore

= (0 N (¢, 0:) < alom, ¢;) < (f; 01),
which implies

|a(wan, )] < Clloillp o)
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So, making use of Lemma 3, there exists a family of right-hands side {ggl)} €
L>*(Q) such that

) ’géh)Hoo <cC
(if) a(@an, v) = (83, v)¥v €V,

and we can therefore define wgm such that

a(od)v) = (g2, v)vv € H(Q)

and

<C

o]
w2r (Q) -

2

Hence, by induction, there exists { g( )} € L*>(Q) such that the solution w,, of
the VI

a(@pp, v — Opp) 2 (f,v— 0pp)Vv €V
{v < Mo, oy < mMo™, (74.4)
satisfies
a(®up,v) = (gn), vIVv €V,
and therefore wfz ) such that
a(w,v) = (g, )% € Hy(Q)
and
ol 0y < € O

In the light of the above, let

omn = Mo ) n=1,2,... (7.4.5)
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Lemma 4 We have

o) — o] < CH g P (1.46)
Proof We know that

a(@’,v) = (g, v)vv € Hy(Q)

and
a(wnlﬁ ) (gn I )VV € Vh
So, since
h
wal >’ wag) = €
making use of standard maximum norm error estimate [9], we get (7.4.6) |

In the light of the above, one can define the following sequences of variational
inequalities

om = Mo ) n=1,2,... (7.4.7)
Lemma 5 We have

|0 — wu]| . < CH*|logh| (7.4.8)

Proof We know that

and
a(o, v) = (gn V)V €V,
So, since
i lyery < €
making use of standard maximum norm error estimate [9], we get (7.4.8) O

Remark 2 Estimate (7.4.6) holds for at least the operator —A +cl, with ¢ as a
positive constant.
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Lemma 6 Let conditions of Lemma 5 hold. Then, we have
2
| — tnn| o, < Ch?|log | (7.4.9)

Proof We proceed by induction n = 1:

o — uinll o < HM”8}1> — Mugy,

IN

Hug” “ug|| < cr2|log hP?

o0

Now, assume that

@On-th — t-1nlc < CH*[loghl’
Then, applying Lemma 5 we get
lonn — tnn]] oo < HMCO )1 —MunqhH < le = M'HhHoo
< wa,h_)l ~ On-a||_F lon—1 — un—1nl
< Ch*|logh|* + Ch*[log h?
< Ch*|logh|* O

Theorem 10 There exists a constant independent of h and n such that

ity — st || o, < CH?|log h|* (7.4.10)
The proof rests on the construction of a sequence of continuous subsolutions and
a sequence of discrete subsolutions.

7.4.2 Construction of Subsolutions
Consider the sequence of continuous VIs %, = 8(Mw£l]1) D

{a(un,v —i1y) Z (g,v — ) Vv € H}(Q) (7.4.11)

v < Ma)ﬁlhjl, om < Mo™ n>1

n—1’

and the sequence of discrete VIs u,, = 0),(Mu,_)

a(lnn, v — tnn) = (8,V — Upn) Vv € Vy (7.4.12)
v < mpMuy_y, o1 < mpMu,_1,n > 1 o
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Lemma 7 We have

ity — ]l o, < Ch*|loghl? (7.4.13)
and

s — Tn|| . < CH?[log h|* (7.4.14)

Proof Since i, = Oy(M a)yi)l) and w,, = O (wafi)l) are the discrete counterparts

of u, and u,, respectively, applying standard L*°error estimate for elliptic VIs
(see [10])—we get (7.4.13) and (7.4.14). O

Theorem 11 There exist a sequence (fi"),~ | of continuous subsolutions such that

(D) p" < uy,
(if) || B* — thunl o < CH2[log h?

and a discrete sequence of subsolutions (o), - such that

(l) Olnh S Unh
(i0) ljwn = etun| o < Ch2[log hf?
Proof We proceed by induction.
Construction of !. Consider the VI

a(uy,v—i) = (f,v — i)Vv € H{(Q)
v < Mw(()h), oy < Ma)(()h)

So,
a(ity,v) < (f,v)Vv € H)(Q),v > 0
v < Ma)(()h)7 oy < Ma)(()h)

But,

< Mw(()h) — Mo, + Mooy,
< HMCOéh) —MC!)QhH +M(D0h
o0

AN

h
Hwé ) thH + Mwop
o0

< Ch?|log h| + My,
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then, u; is a subsolution for the VI with obstacle
Y = Ch?[log h| + Mgy,

Let U; = O(Ch?[logh|+Mawyg,) be the solution of such VI Then, as
u; = 0(Muy), applying Theorem 2, we get

luy = U ||, < Ch*[log h| + [|Mug — Moo,
< Ch|log h| + [[ug — won|,
< Ch*|log h| + Ch?|log h|
< Ch*|log h|

Hence, Theorem 1 implies that

u <U; <u +Ch2|]0gh‘

So, putting

B! = it; — Ch?|logh|*

we get

B <u

and, using (7.4.9) and (7.4.13), we obtain

18" = winll, < [l — Ch*flogh| — |
< |l — upl| o, + Ch*|logh|
[ — ol + |0 — uinllo
Ch*[log h|* + Ch?|log h|
< Ch*|logh|*

IN A

Construction of o«;;,. Consider the VI
a(typ,v — ) 2 (f,v—u)Vv €'V,
v < mpMug, 01, < mpMug

So,

a(ty, ;) = (f, ;)W € @
v < mpMug, 01, < mpMug
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But,
i < mpMuo — mpMuo, + TtMuo,
S ||7'EhMu0 — nhMu()hHoo + TChMu()h
< ||uo — uon|| , + THMuon

< Ch?|log h| + mt,Mug,

Hence, u;;, is a subsolution for the VI with obstacle

W = Ch*[log h| + muMugy,

Let Uy, = 0,(Ch*|log h| + m,Mug,) be the solution of such VI Then, as
uy, = Op(mpMugy,), making use of Theorem 5, we have
||f]1h — uthm < ||Ch2|10gh‘ + m,Mug, — ﬁhMl/tohHOC
< Ch*[logh|

So, using Theorem 4, we have

ity < Uiy < uyp + Ch?|log bl

Now, putting
ol = Uty — Ch2|10gl’l|

we have

o < upy

and, using (7.4.14), we get
llorn — url| oo < lotwn — 1]
< ||itn — Ch*log h| — uy |
< Jaay — wi ||, + Ch*[log h|
< Ch*[log h|* 4 Ch?[log h|

< Ch?|logh|?

Now, combining the above, we get
uy < oy, + Ch?|log b
< iy + Ch?|log h|*
< B'+ Chfloghl?
< uy 4 Ch?|log h|*
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Thus,
[y — unnllo, < Ch*|logh?
Now, assume that
ittt — il o, < CH*|log h|* (7.4.15)
Construction of . Consider the VI

a(tty, v — i) = (f,v — i,)Vv € H}(Q)
v < Mol oy < Mo,

Then,

a(ity,v) < (f,v)¥v € H}(Q),v > 0
v < Mw(h) wyy < walhjl

n—1°

So, using (7.4.6), we get
i, < Mo\”,
< Mo, = Mw, 1+ Mo,y
< [Mo, — Mo |+
oo

n—1

Ch?|log h| + M,y

() _
W, 4 Wp—1h

IN

+’A460n71h
00

IA

Hence, u, is a subsolution for the VI with obstacle
¥ = Ch?|log h|* +Maw,_,

Let U, = 8(Chz|logh\2 +Mwm,_;) be the solution of such a VI. Then, as
u, = O(Mu,_1), making use of Theorem 2, we have

1T = ttall < CHP[log hf* + M1 — Muty1]|
< CR[log M + | on- 15 — 1|,
< Ch2|10gh|2 + lwn—1n — ”n—lh”oo + l|ttn—1n — ”n—1||oo
< Ch?|log h* 4+ Ch?|log h| + Ch*[log h|
< Ch*|logh|*
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So, using Theorem 1 and (7.4.15) we have

ity < U, < uy + Ch?[log h|*

and, putting

p" = i, — Ch?|log h)?

we get

B < u,
Finally, using (7.4.9) and (7.4.13), we obtain

18" = tnnllo, < ||itn — CHP[log h* — |
< Nty — o, + CH?[log h|?
< [|itn — wnhHoo + [ — ”nh”oo + Chz\logh|2
< Ch*[logh|* + Ch?|logh|* + Ch?|log h|*
< Ch?|logh|?

Construction of «,;,. Consider the VI

a(tnp, v — ) 2 (f,v — ttan)Vv € Vy,
v < mpMuy—y, 01 < mpMuy,

So,

a(ﬁnha q)i) S (fa q)i)vv € P;
v < mpMuy, 1, w1y < mpMuy,

But,

Uy, < mpMuy_1 — TpMuy, 14 + 7 Muy, 1y,
< |\ maMuy—1 — My 14| o + TRMUy_1,
S Hun—l - un—thoo + nhMun—lh

< Ch?|log h|* 4 myMuy, 1y
Hence, u,,, is a subsolution for the VI with obstacle

¥ = Ch*log h|* + m,Mu,, 1,
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Let U,;, be the solution of such VI. Then as u,;, = 0, (n,Mu,,_1,), making use of

Theorem 5, we have

||Unh - MnhHoQ S Ch2|]0gh|2

So, using Theorem 4, we have

Unjy S Unh S Upp + Ch2|10gh|2

Now, putting

Oy = Upp — Ch2\log h\z

we have

Onh S Unh

and, using (7.4.14), we get
ot = ttnll o < || — CH*[log A —u|
< it — “nHoo + Ch2|10gh|2
< Ch*|log h| + Ch*[log h|*
< Ch*[logh|*
Now, combining the above, we obtain
ty < oy, + Ch2|log |

<t + Ch2|log h|?

< "+ Ch*[log h)?
< up + Ch?|log h|*

A

Thus,
llstn — ”ﬂhlloc < Ch2|10gh|2 O

Now, making use of estimates (7.3.4), (7.3.12), and (7.4.10), we are in the
position to derive the main result of this paper.
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Theorem 12

u — up|| . < Ch?|log h|* 7.4.16
o0

Proof Making use of (7.3.4), (7.3.12), and (7.4.10), we have

flu— ”h”oo < lu— u"”oo + [Jun — uﬂhHoc + [t — uh“oo

< ' uollsg + CH*[loghl” + p"[luon|
So, passing to the limit on both sides (n — c0), we get

e — |, < Ch?[log hf? O
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Chapter 8
The Periodic Petrol Station Replenishment
Problem: An Overview

Chefi Triki and Nasr Al-Hinai

Abstract This paper focuses on the periodic aspects within the Petrol Station
Replenishment Problem when defined on an extended planning horizon of ¢ work-
ing days. It has the aim of surveying the scientific literature on this topic and giving
an overview of the modeling issues, mathematical formulations, and solution
approaches related to the Periodic Petrol Station Replenishment Problem (PPSRP).

Keywords Petrol delivery - Integer optimization models - Periodicity constraints -
Vehicle routing problems

8.1 Introduction

Companies operating in the field of delivery of petrol to the stations often face
challenging problems. Usually, these problems cannot efficiently be solved by
simply using common sense or just relying on the experience of the logistics
operator. For the company to remain competitive in the market, more sophisticated
mathematical tools and software packages are necessary. One of the main problems
faced by these companies is related to the planning of the petrol distribution to the
interested stations. This theme, known in the scientific literature as the Petrol
Station Replenishment Problem (PSRP), has attracted the interest of several
researchers who proposed different methods for its solution. Interested readers are
referred for example to [1, 3—6, 9-12, 18, 20, 21]. Many decision aspects of the
PSRP have been modeled in these works such as sizing the transportation fleet,
defining the routing of each tank-truck, assigning the stations to be served to the
appropriate tank-trucks, etc.
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Nevertheless, a major drawback in all of the above research works is the fact that
they were only considering one single day as planning horizon. However, recog-
nizing that the problem is multi-period by nature and including this aspect into the
solution approach may achieve a superior efficiency in minimizing the delivery costs.

Only few scholars have considered, indeed, the multi-period nature of the
PSRP. These researchers have taken into account that most of the stations should
not be served at each day of the 7-day planning horizon, but rather at a specified
number of times, which depends on their storage capacity as well as petrol demand.

Specifically, Taqa Allah et al. have considered a single depot and an unlimited
homogeneous tank-truck fleet [22]. Accordingly, they have proposed some con-
struction and improvement heuristics to solve the multi-period variant of the
PSRP. Motivated by a real-life application, Malepart et al. have solved a vendor
inventory management variant of the multi-period PSRP [17]. Their model incor-
porated the option of giving the distribution company the possibility of choosing
the quantity to be delivered to some stations at each replenishment. The third work
is due to Cornillier et al. who proposed a heuristic that contains a route construction
and truck loading procedures as well as a route packing procedure [9]. They limited
the number of stations to be visited at each tank-truck route to only two stations but
they suggested two procedures enabling the anticipation or the postponement of
deliveries. Finally, recently Triki has considered, while solving the PSRP, not just
the multi-period aspect but specifically the periodic nature of the problem [23].
Periodicity there means that each station i must be served f; times within the time
horizon by choosing the replenishment days among the feasible schedules for
station i with the objective of minimizing the total distance traveled by the
tank-trucks. Triki has defined the Periodic PSRP (PPSRP) and has proposed several
integer programming-based heuristics for assigning first the service schedules, then
the routing for each tank-truck and each day and finally an improvement technique
to further reduce the delivery cost.

This paper mainly focuses on the periodic aspects within the PSRP and has the
aim of giving an overview of the modeling features, mathematical formulations,
and solution methods related to the periodic PSRP. It is organized as follows.
Section 8.2 is devoted to surveying the modeling issues related to the PPSRP and
on how to define the feasible schedules describing the periodicity constraints.
Section 8.3 formally defines the PPSRP, presents an integer optimization model for
its formulation, and discusses the different available solution approaches. Finally,
some directions for future research developments will be drawn in Sect. 8.4.

8.2 Modeling Aspects Related to the PPSRP

While modeling a real-life PPSRP, different aspects of the problem could be
considered. These aspects lead to different optimization models and consequently
diverse solution approaches. Hence, this section defines these aspects and con-
straints and highlights how they are incorporated into the problem formulation.
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8.2.1 Classification of the PPSRP

PPSRP models come in a variety of forms, which can be classified with respect to
the following criteria:

e Number of commodities: the delivery activity can involve one single commodity
(such as just petrol) or simultaneously multiple commodities (such as normal
petrol, unleaded petrol, diesel, etc.).

e Number of tank-trucks: can be fixed a priori, but in some cases can also con-
stitute a decision variable of the problem.

e Type of tank-trucks: trucks can be identical (homogeneous fleet), for example,
all having the same capacity, or can have different characteristics (heterogeneous
fleet) allowing to decide on the truck route assignment. Moreover, tank-trucks
can have single or multiple compartments.

e Number of depots: petrol replenishment problems become more challenging
when more than one depot has to be considered and more specifically, if truck
could be assigned dynamically to any of the depots.

e Level of dynamism: service requests from the stations can be all known at the
beginning of the planning horizon (static problems) or can be revealed only
during the service time (dynamic problems) necessitating, thus, a continuous
adjustments of the routes.

e Structure of the routes: there may be precedence/priority constraints of the
stations, constraints on the maximum number of stations to be served per
day/route, or constraints related to the maximum driving distance per truck.

o Time windows: stations can impose time limits within which the service should
take place. These additional constraints may lead to further decisions related to
repositioning strategies or waiting policies of the trucks.

8.2.2 Periodicity Schedules Definition

Different alternative representations can be used in order to describe the periodicity
and, thus, to incorporate the resulting schedules into the optimization models. All
the representations lead to the definition, for each station, say i, of a set of possible
schedules of f; service days that are feasible for that station. Three different rep-
resentations have been proposed in the literature and will be detailed below. While
the set of possible schedules is enumerated explicitly by each station in the first
technique, a preprocessing phase is needed in the successive two techniques in
order to form an explicit set of the feasible schedules (called also combinations,
sequences, etc.).
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8.2.2.1 Predetermined Schedules

This representation, adopted by [8], is the simplest and most used technique for
representing periodicity. It consists of explicitly specifying all the allowable
alternatives that define the set of schedules and hence the decision maker should
select only one of them.

8.2.2.2 Periodic Schedules

Each station specifies, in this technique, the number of service visits f; during the
t-day planning horizon, and then that station must be visited every t/f; days. If, for
example, f; = 3 and ¢ = 6, then station i must be periodically visited every t/f; =
2 days up to the end of the planning horizon. This means that, during the 6-day
planning horizon, the feasible service schedules for station i are {(1, 3, 5), (2, 4, 6)}.
The ratio #/f; defines the cardinality of the set of feasible schedules for station i. This
representation technique has been used by authors like [7, 13, 19].

8.2.2.3 Multi-stage Network-Based Schedules

In this representation, station i must be visited once during each time interval of 7;
days, so f; = t/r;. Furthermore, additional constraints impose that at least /; days and at
most ©; days must elapse between two successive visits. This technique, proposed by
[16], can be represented as an acyclic multi-stage network corresponding to each
station i. The nodes of stage k represent the allowable alternative days to execute the
kth visit to station i, whereas each edge represents two possible successive visit days.
The set of feasible schedules is thus defined by all the paths between the nodes of
the first and the last stages of the directed network. An example of a network
structure with 1 =9, r; = 3, [; =2, and u; = 4 is represented in Fig. 8.1, which defines
for station i the following set of feasible schedules: {(1, 4, 7), (1, 4, 8), (1, 5, 7),
(1,5,8),(1,5,9),(2,4,7),(2,4,8),(2,5,7),(2,5,8),(2,5,9), (2,6, 8), (2,6,9),
(3,5,7),@3,5,8),3,5,9),(3,6,8), (3,6,9)}.

Fig. 8.1 Multi-stage stage I stage 1I stage 111
network-based schedules
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8.3 Mathematical Formulations

As discussed in Sect. 8.1, despite its importance in industrial applications, the
PPSREP is still in its infancy and only a limited number of works have tried to take
advantage from extending the planning horizon while solving the petrol replen-
ishment activities. However, the PPSRP is tightly related to the well-known peri-
odic vehicle routing problem (PVRP) that has been intensively studied over the past
three decades (see for example the excellent survey by [15] and the references
therein). The enormous advances achieved in investigating the PVRP may be very
useful for tackling the PPSRP since the two problems have many similarities.
The PPSRP is, indeed, basically a PVRP that includes side constraints that take into
account the specifications of the products to be delivered and additional operational
restrictions related to the drivers’ shifts, trucks assignment to the routes, etc.

8.3.1 PVRP Versus PPSRP

The problems related to the distribution of material goods from a set of deposits to a
set of customers are generally known as the Vehicle Routing Problem (VRP). It
consists of serving a set of customers by using the available fleet of vehicles that are
located in one or more depots. The solution of a VRP is then represented as a set of
routes, that begin and end in the depots, and to which is assigned a single vehicle.
The resulting routes are optimal only if all customers’ demands are met, all oper-
ational constraints are satisfied and the objective of minimizing the total cost of
transportation is achieved. There are many variants of VRPs but the simplest and
most studied one is the Capacitated Vehicle Routing Problem (CVRP). In this
problem, all customers are characterized by demand quantities that are deterministic
and known a priori. Solving the CVRP means finding a set of minimum cost routes
(the cost of a route is its length or its service time) that ensures that the sum of
the demands of the customers visited in a route must not exceed the capacity of the
vehicle performing the service. Figure 8.2 reports an example of a feasible CVRP
solution showing four routes (C1, ..., C4), the capacity of the assigned vehicles
(01, ..., 04) and the demand at each node of the network.

The VRP becomes even more challenging when the planning horizon is
extended to several days, instead of limiting it to a single day which defines the
Periodic Vehicle Routing Problem (PVRP). During the extended planning horizon,
each customer must be served exactly a certain number of times, identified by its
frequency of service.

The PPSRP has usually the same objective function as the PVRP and they also
share the following operational constraints related to the periodicity aspects:

e FEach vehicle must start its route, on each day of the planning horizon, from the
depots and returns to them at the end of the working day; multiple visits to the
same depot in the same day may be also acceptable.
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Fig. 8.2 Example of four
feasible routes of a CVRP (the
numbers next to the nodes are
the demands and Q1, ..., 04
are the capacities of the
vehicles)

e FEach customer has to be visited by at most one vehicle every day;

e A vehicle can visit more than one customer in the same route, but the total
demand cannot exceed its maximum capacity;

e Each customer must be visited exactly a prespecified number of times during the
planning horizon, as defined by its frequency of service.

However, the PPSRP involves additional operational constraints that are usually
strongly dependent on the application under consideration, such as

e Some tank-trucks cannot be partially filled because of the dynamic stability
requirements, especially when performing difficult routes.

e Some trucks may have different compartments in the same tank in order to allow
delivering different petroleum products at the same trip.

e Safety considerations that are usually particularly restrictive while transporting
flammable products such as petrol.

e Access limitations that prohibit the movement of the tank-trucks on certain
roads and forbid some drivers to enter certain zones (such as inexperienced
drivers to the airports or to military zones).

As a consequence, it is difficult to characterize all the PPSRPs by a typical
optimization formulation since every instance has its ad-hoc features that should be
specifically studied in details in order to define the more appropriate mathematical
model. In the sequel, we will focus on the basic variant of the PPSRP in order to
present an optimization model that could be considered as general as possible. This
model is nothing but a PVRP formulation since it does not take into account the
particular requirements deriving from the product to be delivered (petrol) that are,
as mentioned above, application dependent.
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8.3.2 Optimization Model

In order to mathematically represent a general variant of the PPSRP, consider a
connected undirected graph G = (V,A), where V ={1, 2,...,n} is the set of
nodes (stations) and the set A = {(i,j) : i,j = 1,..,n,i # j} represents the edges
connecting the nodes. Considering a connected graph means that we assume that
each node is spatially connected to all other nodes through at least one route. Vertex
1 represents the depot, i.e., the node where is located the heterogeneous fleet of
tank-trucks and from where all the routes are started and finished. To each
tank-truck NV = 1, ..., m is associated a capacity denoted by Quyy. To each edge
(i,) of A, is associated a traveling cost ¢;; (we assume here, for simplicity, that it is
independent from the truck to be used) to move from node i to node j. On the other
hand, to each node i = 1, ..., n of V correspond a nonnegative demand d; and a
frequency of service f; that indicates the exact number of service days along the
planning horizon. Consequently, to each node i is associated a set of schedules C; of
feasible service days determined by using one of the techniques analyzed above.
For this purpose, let us define a binary constant a,, that takes value 1 if day [ be-
longs to a certain service schedule r, and 0 otherwise.

Concerning the decision variables of the model, we define two sets of variables.
The first set describes the tank-truck routes as follows:

x;u =1 if edgei — jis part of the route performed by truck vin day !
X = 0 otherwise,

whereas the second set of variables identifies the schedule assigned to each station

vir = 1 if service schedule r is assigned to station i
vir = 0 otherwise.

From the above variables definition it is clear that the model should perform two
tasks. First, it identifies the best schedules to be assigned to each station and then, it
builds the routes of each truck and for each day of the planning horizon. The
mathematical model of the basic variant of the PPSRP could be represented thus, as
follows:

n n NV t
MIN z=3"5" > > cixiju (8.1)
i=1j=1v=11=1
Subject to
Syve=1 i=2,...,n (8.2)

reC;
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n NV
¥ xju— > ayy=0 i=2,...,ml=1,.. ¢ (8.3)
Jj=lv=1 reC;
n n
DX — 2 X =0 v=1,.. ,NV;p=1,...ml=1,..,t (8.4)
i=1 j=1

i=1

Zdi<;xijl’l)§Qv V:17"'7NV;Z:17"'7I (85>
j=

S <|S|-1 v=1,..,NV;l=1,..,;SCN — {1};|§|>2 (8.6)

vieSv,eS
xm €{0,1} ij=1,...mv=1,.. ,NV;l=1,..,¢ (8.7)
yi,-E{O,l} i=1,...,mreC (88)

The objective function (8.1) minimizes the sum of the traveling costs for all the
routes performed by all the trucks during all the days of the time horizon. The set of
constraints (8.2) ensures that only one schedule among the feasible ones is assigned
to each station (excluding, of course, the depot, i.e., i = 1). Constraints (8.3) ensure
that each station is visited only on the days corresponding to the assigned schedule.
Constraints (8.4) force each truck arriving to a node to leave it on the same day.
Constraints (8.5) are the capacity limitations on each tank-truck. Constraints (8.6)
prevent against the creation of undesirable subtours in the routing solution and
finally, constraints (8.7) and (8.8) force all the decision variables to be binary.

8.3.3 Solution Approaches

Often, the one-day PSRP instances are already characterized by large-scale opti-
mization models that make their solution with exact methods quite difficult [9].
When we add to this complexity, even the periodicity aspect related to the extended
planning horizon, the problem becomes extremely hard to be faced by exact
solution methods. Indeed, Triki has reported in [23] how it was not possible to get
an exact solution of his test problem consisting of 14 heterogeneous tank-trucks, 38
petrol stations, and a planning horizon of six days by using general purpose
state-of-the-art optimization software. After more than 30 h CPU time and a huge
number of iterations, the solver has given a fault memory error and has succeeded
to generate only a feasible upper bound solution. Consequently, to the best of our
knowledge, no exact algorithms are available in the literatures that are specifically
designed to solve the PPSRP. However, again some insights can derive from the
PVRP literature where only recently Baldacci et al. have proposed an exact algo-
rithm and several lower bounds for the problem [2]. They succeeded to solve
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randomly generated test problems having up to 199 customers and covering a time
horizon of five days.

Since it is very difficult to solve the PPSRP exactly, the attention of all the works
available in the literature has been devoted to developing heuristic approaches. The
solution strategy that seems to be more appropriate in this context belongs to the
class “Group-Before, Route-After” (or Cluster-First, Route-Second). This class of
algorithms splits the PPSRP into two distinct phases: in the first, each station is
assigned a feasible schedule that takes into account its required frequency of ser-
vice; In the second phase, the algorithm builds the optimal route for each truck by
considering, for each day of the planning horizon, only the subgraph involving the
stations assigned to that day [10, 17, 22, 23].

Metaheuristics can be also considered as a promising approach to solve routing
problems with periodicity restrictions. However, we are not aware of any meta-
heuristic method that has been specifically developed to solve the PPSRP. Again,
we should rely on the advances achieved in the context of the PVRP for which
metaheuristics, such as, Tabu search [13] and genetic algorithms [14, 24] have been
used for its solution.

8.4 Conclusions

Nowadays, most of the petrol distribution companies schedule the delivery of petrol
to the stations by considering a single-day planning horizon. This paper has the aim
of showing how extending the horizon to ¢ working days may ensure important
savings but to be paid usually by further complexity in the underlying optimization
problems to be solved. This defines the PPSRP that has been shown to present
many affinities with the well-known PVRP. The two problems share many common
characteristics, but the nature of the products to be transported (petroleum) and the
related restrictions usually generate additional challenges while solving the
PPSRP. This explains the reason why the PPSRP did not reach yet the maturity
level achieved by its general purpose counterpart and opens new research directions
from different points of view.
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Chapter 9

Nanotechnology and Mathematics “Study
of Non-linear Dynamic Vibration in Single
Walled Carbon Nanotubes (SWNTSs)”

Mushahid Husain and Ayub Khan

Abstract This paper discusses some aspects of the applied nonlinear mathematics
that are used to solve the problems in nanotechnology. The equation of motion of
nanoscopic systems, which is a nonlinear dynamical process, is discussed in the
current study. It is observed that in the nonresonant response, the amplitude remains
constant up to the second order of approximation.

Keywords Nanotechnology - Nonlinear dynamics « Carbon nanotube - SWNT -
MWNT

9.1 Introduction

Nanotechnology is a rich source of intensity problems in applied mathematics.
There are a number of problems in nanotechnology that may be solved using
different mathematical homogenization methods. Microscopic boundary conditions
for flow over this surface can be investigated mathematically. Expressions can be
obtained in several limiting cases relating roughness and local slip to macroscopic
slip boundary condition and show that this can significantly affect micro and
nanoscale flows in some circumstances. The equation of motion of nanoscopic
systems is generically nonlinear and frequently operates in a regime, where a linear
approximation is not justified. The comprehension of the nonlinear dynamical
process in nanosystems is a new field of research that is certainly of considerable
technological importance. Nonlinear dynamics can be applied to solve the concept
of aging effect in carbon nanotubes [1, 2] based devices.
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Single-walled carbon nanotubes (SWNTs) are nanometer-diameter cylinders
consisting of a single graphene sheet wrapped up to form a tube. The history of
single-walled carbon nanotubes (SWNTs) began with the discovery of multiwalled
carbon nanotubes (MWNTs). First SWNT made of just one layer of carbon atoms
were created independently in 1993 by Iijima and Donald Bethune of IBM [3]. These
are basically tubes of graphite and are normally capped at the ends. The caps are
formed due to mixing in some pentagons with the hexagons. The theoretical minimum
diameter of a SWNT is around 0.4 nm, which is about as long as two silicon atoms side
by side. The average diameter tends to be around 1.2 nm on the basis of available
literature. SWNT are more pliable than their multiwalled counterparts. They can be
twisted, flattened, and bent into small circles or a round shape bends without breaking.
The unique electronic properties of carbon nanotubes offer great intellectual chal-
lenges and potentials for new applications. Experiments and theoretical calculations
have shown that depending only on diameter and helicity, single-walled carbon
nanotubes (SWNTs) can be either metallic or semiconducting [4, 5].

Radial breathing modes (RBMs) is unique to CNTs without any counterpart in
graphene sheets. The phonon modes in general and the RBM modes in particular
have already received some attention in theoretical work [6]. To investigate the
physical and mechanical performances of nanostructures, different approaches have
been adopted [7-9]. When radius-to-thickness ratio of SWNTs is large, it may be
treated as an elastic model. The nonlinear dynamic response of zig-zag (Fig. 9.1)
(where m = 0) SWNTs under the effect of radial impulse has been studied [10]. In
the course of studies, the response has been seen into the two cases namely,
nonresonant and resonant. In the nonresonant case, it has been observed that the
amplitude of the vibration remains constant up to the second order of approxima-
tion, while in the resonant case, there have been obtained, the resonant solution for
the parametric and main frequencies. In the numerical part, plots exhibit the chaotic
behavior of the nonlinear vibrations.

As in the close neighborhood of resonant solutions, there is a possibility of
chaotic behavior. Therefore the analytic estimation of resonance solutions prevents
us to employ the hit and trial technique of selecting the parameter to probe the
chaotic behavior computationally.

The equation of motion of nonlinear planar oscillation of zig-zag (n, 0) (Fig. 9.2)
CNTs under the influence of radial impulse is written as [10]

(2 — %) sin(p,7) Gy, (9.1)

Fig. 9.1 Structure of a zig-zag SWCNTs
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F (a, 6, t) Radial impulsive
h§ v v v
X

1
. L N

Fig. 9.2 The continuum shell model of CNT where £ is the effective thickness and a is the radius
of midsurface of CNTs, L/a is much larger than unit

G+ @?Cy = —nji, sin(p,7)Cy,y (9.2)
n*2,(2 — n?
where K, = % (9.3)

C, is generalized in extensional amplitude

2 '72(”2 - 1)“2

wnzw (9'4)
R2 Vo ct
052:12(127#0:17’7:?71:?;/“0:1 (95)

For elastic motion, 7 = 0 then Eq. (9.2) will become
C,+wC, ~0. (9.6)
To study the non-resonant vibrations, the generating solution of (9.6) is given as
C,=acos¢ and ¢ = w,T+ ¢", (9.7)

where amplitude a and phase ¢™ are to be determined by the initial conditions. The
solution of (9.1) is obtained in the form of

C, :aCOS¢+’7M1(aa¢aT)+’12u2(aa ¢,T)+ Ty (98)
where @ and ¢ are determined by the differential equations:

% — s (@) + A (@) + - (9.9)

%:%+WMH#&@+W. (9.10)
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After the first order of approximation, the solutions are

do

= Wy, 9.11
=@ (9.11)

d
C, =acos ¢, d—:: 0,

and in the second order of approximation, the solutions are

a1, C0S ¢ sin (o) , da_ 0and d _ o (9.12)
to(2e0, + o)

C,=acos¢p+n = e

The solution in the second approximation indicates the phenomenon of
non-resonance. Also, it is observed that the amplitude is constant up to second order
of approximation.

In case of resonant vibrations, the behavior of the dynamical system is studied in
the neighborhood of the resonance. For n = 0, the generating solution of Eq. (9.6)
is given as,

C, = acos ¢, (f):%—i—f), (9.13)

where amplitude a and phase angle 6 are determined by the following equations,

da
— =pA 0 .14
dt n 1((17 )7 (9 )
do 1
a—a)nfg‘f’]’]Bl(a,H), (915)
% = Wy +”Bl(a7 0)) (916)

where A;(a,0), Bi(a,0) are particular solutions with respect to 6.

During such investigations, it is observed that in the nonresonant response, the
amplitude remains constant up to the second order of approximation. The com-
putational studies based on the phase plots, time series, Poincare surface of sections,
Poincare maps, and the graphs of resonant solutions reveal that the nonlinear
response of SWNTs is chaotic when parameters # and w,, are increased. On the
other hand, the increasing values of the parameter k, changes the behavior of
the system from chaotic to regular. Thus, this conjecture enables to conclude that
the above cited parameters # and ®, are significantly responsible for chaotic
(or aging) phenomena in SWNTs [10].
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Chapter 10
Generalized Monotone Mappings
with Applications

R. Ahmad, A.H. Siddiqi, M. Dilshad and M. Rahaman

Abstract In this work, we introduce a generalized monotone mapping and we call
it H(*,*)-cocoercive mapping. Then, we have extended this concept of H(,*)-co-
coercive mapping to H(+,*)-n-cocoercive mapping. Further, we have proved some of
the properties of H(+,*)-cocoercive and H(,*)-n-cocoercive mappings and finally
apply these concepts to solve some generalized variational inclusions and system of
variational inclusions.

Keywords Generalized monotonicity - Lipschitz continuity - Variational inclu-
sions - System - Algorithm - Resolvent operator

10.1 Introduction

Fang and Huang [1] introduced H-monotone mappings for solving a system of
variational inclusions involving a combination of H-monotone and strongly
monotone mappings based on the resolvent mapping technique. The notion of H-
monotonicity has revitalized the theory of maximal monotone mappings in many
directions. Verma [2] introduced A-monotone mappings with applications to solve a
system of nonlinear variational inclusions. Zou and Huang [3] introduced and
studied H(*,*)-accretive mappings and applied them to solve variational inclusions
and system of variational inclusions. For more details, we refer to [4—12].
Various concepts of generalized monotone mappings have been introduced in
the literature. Cocoercive mappings which are generalized form of monotone
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mappings are defined by Tseng [13], Magnanti and Perakis [14] and Zhu and
Marcotte [15].

We introduce a generalized monotone mapping and call it H(*,*)-cocoercive
mapping. We also define its resolvent operator with some of its properties. We
apply these new concepts to find the solutions of a generalized variational inclu-
sions and system of variational inclusions.

By taking into account the fact that #-cocoercivity is an intermediate concept that
lies between z-monotonicity and strong #-monotonicity, we extend the notion of H
(*,*)-cocoercive mapping, we call it as H(+,*)-n-cocoercive mapping.

We define the resolvent operator of H(¢,*)-n-cocoercive mapping with its
properties and one numerical example through Matlab programming is also con-
structed. We apply the concept of H(*,*)-y-cocoercive mapping to solve a
variational-like inclusion problem in real Banach spaces and a generalized
variational-like inclusion problem in g-uniformly smooth Banach spaces.

10.2 H(-,*)-Cocoercive Mapping

In this section, we define a new generalized monotone mapping and we call it H(-,
*)-cocoercive mapping. We discuss some of its properties.

Definition 2.1 Let A, B: X — X, H: X x X — X be three single-valued mappings.
Then M:X — 2% is said to be H(+,*)-cocoercive mapping with respect to mappings
A and B (or simply H(*,*)-cocoercive in the sequel), if M is cocoercive and (H(A,
B) + AM)(X) = X, for every 1 > 0.

Remark 2.1 Since cocoercive mappings includes monotone operators our definition
is more general than definition of H(¢,*)-accretive mapping [3]. It is easy to check
that H(,*)-cocoercive mappings provide a unified framework for the existing H(*,*)-
monotone, H-monotone operators in Hilbert spaces and H(¢,*)-accretive, H-accre-
tive operators in Banach spaces.

Example 2.1 Let X = R* with usual inner product. Let A, B : R> — R? be defined
by

Ax = (2x1 — 2x, —2x1 +4x3),
By = (—y1 +y2,—¥2), for all x = (x1,x2),y = (y1,y2) € R

Suppose that H(A, B) : R? x R* — R? is defined by

H(Ax,By) = Ax+ By, for all x,y € R%.
Then H(A, B) is cocoercive with respect to A with constant é and relaxed
cocoercive with respect to B with constant %, since
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(H(Ax,u) — H(Ay,u),x — y)

= (Ax —Ay,x —y)
((2x) — 2x2, —=2x1 +4x2) — (2y1 — 2y2, —2y1 + 4y2), (x1 — y1,%2 — y2))
(201 —y1) = 2(x2 = y2), =2(x1 — y1) +4(x2 = y2)), (x1 — y1,%2 — y2))
=2(x1 —y1)* +4(x — y2)* — 4(x — 1) (X2 — y2)

and

| Ax — Ay ||> = (((2x1 — 2x9, =2x1 +4x2) — (2y1 — 2y2, —2y1 +42)),
(221 = 2x2, =2x1 +4x2) — (2y1 — 2y2, —2y1 +4y2)))
(x1

=8 y1)2 42002 — y2)* = 24(x1 — y1)(x2 — y2)

<12(x; — yl)2 +24(x; — y2)% — 24(x1 — y1) (X2 — y2)
=6{2(x1 —y1)” +4(x2 — 2)* —4(x1 — y1) (12 — )}
= 6{(H(u,Ax) — H(u,Ay),x — y)},

which implies that

1
<H(Axau) _H(Ayvu)vx_y> > 6 || AX—Ay H27

i.e., H(A, B) is cocoercive with respect to A with constant %.
Further,

(H(u,Bx) — H(u, By),x —y) = (Bx — By,x — y)
= ((=x1 +x2, =x2) = (=y1 +y2, —y2), (X1 = y1,%2 — y2))
= ((=(x1 =y1) + (2 = y2), = (02 = ¥2)), (x1 = y1, %2 — )
—(x1 = 1)? = (2 = 32)* + (11 = 1) (2 — )
= {1 =y + =)’ — (1 =) — )},

and

| Bx— By || = ((—(x1 = y1) + (x2 = y2), —(x2 = 2)),
(=01 =y1) + (02 = y2), = (%2 = ¥2))
= (x1 = y1)" + 200 —y2)” = 2(x1 — y1) (02 — ¥2)
<2{(x = y1)’ + (2 = y2)* = (1 = y1) (2 = 32)}
= 2(—1)(H(Bx,u) — H(By,u),x —y)
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which implies that
1 2
(H(Man>_H(u7By)7x_y>Z _EH B)C—By H ’

i.e., H(A, B) is relaxed cocoercive with respect to B with constant %

Example 2.2 Let X, A, B and H are same as in Example 2.1 and let M : R*> — R? be
define by M(xy, x5) = (0, x,), for all (x,x;) € R?. Then it is easy to check that M is
cocoercive and (H(A, B) + AM)(R?) = R?, for all X > 0, that is, M is H(+,*)-co-
coercive mapping with respect to A and B.

Example 2.3 Let X = S?, where S? denotes the space of all 2 x 2 real symmetric
matrices. Let H(Ax, By) = x°— y, for all x,y € S* and M = I. Then for / = 1, we have

(H(A,B) +M)(x) = x> —x+x = x°,

but

0 0
because |0 —1 | is not the square of any 2 X 2 real symmetric matrix. Hence

M is not H(*,*)-cocoercive with respect to A and B.
Since H(*,*)-cocoercive mappings are more general than maximal monotone
operators, we give the following characterization of H(¢,*)-cocoercive mappings.

Proposition 2.1 Let H(A, B) be cocoercive with respect to A with constant y > 0,
relaxed cocoercive with respect to B with constant y > 0, A is a-expansive, B is -
Lipschitz continuous and x>y, a > f. Let M:X — 2% be H(s,*)-cocoercive mapping.
If the following inequality

(x—y,u—v)>0
holds for all (v, y) € Graph(M), then x € Mu, where
Graph(M) = {(u,x) e X x X : x € M(u)}.
Proof Suppose that there exists some (ug, xo) such that
(xo — y,up —v) >0, for all (v,y) € Graph(M). (2.1)

Since M is H(+,*)-cocoercive, we know that (H(A, B) + AM)(X) = X holds for
every 4 > 0 and so there exists (u;,x;) € Graph(M) such that
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H(Aul,Bbt])'f')JCl :H(Auo,Bu())+)m() € X. (22)
It follows from (2.1) and (2.2) that

0 < {Jxo + H(Aug, Bug) — Ax; — H(Auy, Buy ), ug — uy)

0 < A{xo — x1,up — uy) = —(H(Aug, Bup) — H(Auy, Buy), up — uy)
—(H(Aup, Bup) — H(Auy, Bug), up — uy)
— (H(Auy,Bug) — H(Auy,Buy),up — uy)
— 1) Aug — Ay 2 +7 || Buo — Buy |P

IAIA

— po Lo —uy [+ 98 [ uo — i |?

—(uo® = 98%) [ o —wr |> <0

which gives u; = ug, since 4 > y, a > f. By (2.2), we have x; = xy. Hence,
(uo,x0) = (u1,x1) € Graph(M) and so xo € Muy. O

Theorem 2.1 Let X be a real Hilbert space and M:X — 2* be a maximal monotone
operator. Suppose that H:X x X — X be a bounded cocoercive and semi-continuous
with respect to A and B. Let H:X x X — X is also cocoercive with respect to A with
constant ;1 > 0 and relaxed cocoercive with respect to B with constant y > 0. The
mapping A is a-expansive and B is p-Lipschitz continuous. If 1 > y and o. > f, then M
is H(*,*)-cocoercive.

Proof For the proof we refer to [3]. O

Theorem 2.2 Let H(A, B) be a cocoercive with respect to A with constant y > 0
and relaxed cocoercive with respect to B with constant y > 0, A is a-expansive and
B is p-Lipschitz continuous, u > y and o. > p. Let M be an H(,*)-cocoercive
mapping. Then the operator (H(A, B) + M)~ is single-valued.

Proof For any given u € X, let x, y € (H(A, B) + M) '(u). Tt follows that
—H(Ax,Bx) +u € AMx

and

—H(Ay,By) +u € AMy.
As M is cocoercive (thus monotone), we have

0<(—H(Ax,Bx)+u — (—H(Ay, By) +u),x — y)
—(H(Ax, Bx) — H(Ay, By),x —y)
= —(H(Ax,Bx) — H(Ay, Bx) + H(Ay, Bx) — H(Ay,By),x — y)
—(H(Ax, Bx) — H(Ay, Bx),x — y)
— (H(Ay, Bx) — H(Ay, By),x — y).
(2.3)
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Since H is cocoercive with respect to A with constant ¢ > 0 and relaxed coco-
ercive with respect to B with constant y > 0, A is a-expansive and B is f-Lipschitz
continuous, thus (2.3) becomes

0< —po® | x =y [P +98 | x—y [P=—(ue® —9f) [ x—y > <0, (2.4)

since £ >y, a > B. Thus, we have x = y and so (H(A, B) + M)"' is
single-valued. O

Definition 2.2 Let H(A, B) be cocoercive with respect to A with constant x> 0 and
relaxed cocoercive with respect to B with constant y > 0, A is a-expansive and B is
p-Lipschitz continuous and u >y, o > . Let M be H(*,*)-cocoercive mapping. The
resolvent operator RY§;):X — X is defined by

R () = (H(A,B) + M) (u), for allu € X. (2.5)

Now, we prove the Lipschitz continuity of resolvent operator defined by (2.5)
and estimate its Lipschitz constant.

Theorem 2.3 Let H(A, B) be cocoercive with respect to A with constant u > 0,
relaxed cocoercive with respect to B with constant y > 0, A is a-expansive and B is
P-Lipschitz continuous and p >y, o. > f. Let M be H(*,*)-cocoercive mapping. Then,

the resolvent operator Rﬂ},"):X — X is —1—-Lipschitz continuous, that is

2=y

1

—————— || u—v||,for allu,v € X.

H (-, Hi(-.-
IR ) = R W) || < —
Ho

Proof Let u and v be any given points in X. It follows from (2.5) that
H(‘v‘) _ n —1
Roy (W) = (H(A, B)+ M)~ (u),

and

and
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For the sake of clarity, we take

Since M is cocoercive (hence monotone), we have

(u— H(A(Pu),B(Pu)) — (v — H(A(Pv), B(Pv))), Pu— Pv) >0,

(u —v — H(A(Pu),B(Pu)) + H(A(Pv), B(Pv)),Pu — Pv) >0,

N N

which implies that
(u — v, Pu— Pv) > (H(A(Pu),B(Pu)) — H(A(Pv), B(Pv)), Pu — Pv).
Further, we have

lu—v|||| Pu—Pv|>(u—v,Pu—Pv)
> (H(A(Pu), ( u)) — H(A(Pv), B(Pv)), Pu — Pv)
)

= (H(A(Pu), B(Pu)) — H(A(Pv), B(Pu))
+H(A(Pv), B(Pu)) — H(A(Pv), B(Pv)), Pu — Pv)
= (H(A(Pu), B(Pu)) — H(A(Pv), B(Pu)), Pu — Pv)

+ (H(A(Pv), B(Pu)) — H(A(Pv), B(Pv)), Pu — Pv)
> || A(Pu) — A(Py) ||* =y || B(Pu) — B(Pv) ||?
> e || Pu— Py || —p* || Pu— Py |,

and so
| u—v ||| Pu—Pv| >(ue® =8 || Pu—Pv |
thus,
1
[ Pu—Py| < ———llu—v],
pot —yp
that is,

1
? —pp

sl u—vl, forallu,v € X.

IR () — R 00y || < -

This completes the proof.
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10.3 Generalized Variational Inclusions

In this section, we apply H(¢,*)-cocoercive mapping for solving a generalized
variational inclusion problem.
We consider the problem of finding # € X and w € T(u) such that

0ew+M(g(u)), (3.1)
where g: X — X, M:X — 2¥ and T: X — CB(X) be the mappings. Problem (3.1) is
introduced and studied by Huang [16] in the setting of Banach spaces.

Lemma 3.1 (u, w), where u € X, w € T(u), is a solution of the problem (3.1), if and
only if (u, w) is a solution of the following equation:

g(u) = R\ [H(A(gu), B(gu)) — ), (3.2)

where A > 0 is a constant.

Proof By using the definition of resolvent operator Rfl(\,'j'), the conclusion follows
directly. O
Based on (3.2), we construct the following algorithm.

Algorithm 3.1 For any uy € X, wy € T(up), compute the sequences {u,} and {w,}
by iterative schemes:

gl 1) = RN TH(A(gun), B(gun)) — Jwa], (3.3)
1
Wn € T(tn), || wo —wy 1 || <(1+ m)H(T(”n)a T(p1)), (3.4)
foralln =0, 1, 2, ..., and A > 0 is a constant.

Theorem 3.1 Let X be a real Hilbert space and A, B, g:X — X, H:X x X — X be
the single-valued mappings. Let T:X — CB(X) be a set-valued mapping. Suppose
that M:X — 2% be the set-valued, H(*,*)-cocoercive mapping. Assume that

1. T is d-Lipschitz continuous in the Hausdorff metric H(+,*);

2. H(A, B) is cocoercive with respect to A with constant x > 0 and relaxed coco-
ercive with respect to B with constant y > 0;

A is a-expansive;

B is f-Lipschitz continuous;

g is Ag-Lipschitz continuous and ¢-strongly monotone;

H(A, B) is r;-Lipschitz continuous with respect to A and r,-Lipschitz continuous
with respect to B;

7. (r+ra)de <[(uo? — yB*)E — A} u >y, 0 > .

AW
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Then, the generalized variational inclusion problem (3.1) has a solution (,
w) with u € X, w € T(u) and the iterative sequences {u,} and {w,} generated by
Algorithm 3.1 converge strongly to u and w, respectively.

Proof Since T is J-Lipschitz continuous, it follows from Algorithm 3.1 that

= 1= (1 o O ), Tln 1)

1
M (3.5)
1
< (H‘ m)é | tn — st ],
forn=0,1, 2,...
Using the &-strong monotonicity of g, we have
| g (1) — gutn) Il tn v — v | = (g1t 1) — 8 (utn), e 1 — )
>¢ H Up+1 — Uy ||27
which implies that
1
It = | < 21 glan 1) — glo0) ] (3.6)

Now, we estimate || g(u, ;1) — g(u,) || by using the Lipschitz continuity of RY§;".

I 8ttn 1) — gluea) | =l RYS; [H(A(g100), B(gun)) — iows]
— RS H(A(10-1), B(gun-1)) — 2wai] |

1
< —— 1 H(A(gun), B(gun)) — H(A(gun—1), B(gun-1))) |
po —f
A
+ m | wn = waa ||
1

< T || H(A(gun), B(g(un)) — H(A(gun-1)), B(gun)) ||

+ — 5 || H(A(gun—1), B(gun)) — H(A(gun-1), B(gutn-1)) ||
uor —f
A

+m|\wn—wn,1 H

(3.7)

Since H(A, B) is ri-Lipschitz continuous with respect to A and r,-Lipschitz
continuous with respect to B, g is A,-Lipschitz continuous and using (3.5), (3.7)
becomes
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I‘]/{g l’2/Lg
H g(”n+1) _g(”n) H <—— || Up — Up—1 || + H Uy — Up—1 ||
po? — —B
A
+—" (14 )0 | up — ttur ||,
sl L DA
or
rllg r2/Lg )v 1
| gutn+1 —gun) || < (1+-)o
po? — —f  per =y n
|ty — w1 || - (3.8)
Using (3.8), (3.6) becomes
| 41—t || <O || 1 — a1 ], (3.9)
where
0 (r+r)Ag+26(1+1/n)
! (ue® — yB°)¢
Letting

_ (7‘1 + I’Q)lg + }vé
(uo? =B

We know that 8,, — 6 and n — ©o. From assumption (Vvii), it is easy to see that
6 < 1. Therefore, it follows from (3.9) that {u,} is a Cauchy sequence in X. Since
X is a Hilbert space, there exists u € X such that u,, — u as n — ©0. From (3.5), we
know that {w,} is also a Cauchy sequence in X, thus there exists w € X such that
w, — w as n — 00, By the continuity of g, Rﬂ;'), H, A, B, and T and Algorithm
3.1, we have

H--
g(u) = Ry [H(A(gu), B(gu)) — wl.
Now, we prove that w € T(x). In fact, since w,, € T(u,), we have

d(w,T(u)) < || w—wy || +d(wa, T(u))
< APw = wa | +H(T (), T(w))
< |

|w—wy || +0| tn —u||— 0, asn — oo,

which implies that d(w, T(u)) = 0. Since T(u) € CB(X), it follows that w € T(u). By
Lemma 3.1, it follows that (#, w) is a solution of problem (3.1). This completes the
proof. O
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10.4 System of Variational Inclusions

In this section, we study a system of variational inclusions involving H(*,*)-coco-
ercive mapping.

Let X; and X, be two real Hilbert spaces and let F: X; x X, — X, G:
Xl X X2 - Xz, Hll Xl X Xl - Xl’ Hz: Xz X X2 - XQ, Al, Bll Xl - X], Az, Bz:
X, — X, be the single-valued mappings. Let M: X; — 2% be a set-valued, H;(A,,
B))-cocoercive mapping and N: X, — 2% be a set-valued, H»(A,, B,)-cocoercive
mapping. Find (a, b) € X; x X, such that

{06F(a,b)+M(a), (4.1)
0 € G(a,b) + N(D). '

Problem (4.1) is called system of variational inclusions.

If M:X, — 2% is (H;, n)-monotone and N : X, — 2% is (H,, #)-monotone,
then problem (4.1) includes the problem considered and studied by Fang et al. [17].

It is clear that for suitable choices of operators involved in the formulation of
problem (4.1), one can obtain many systems of variational inequalities and varia-
tional inclusions exist in the literature.

Lemma 4.1 Ler X| and X, be two real Hilbert spaces. Let F:X; x X, — X, G:
X1 XX, = X5, Ay, Bi:X| — X1, Ay, Bo:X, — X, be the single-valued mappings. Let
H:X, x X; — X be a single-valued mapping such that H\(A,, B,) is cocoercive
with respect to A, with constant iy > 0 and relaxed cocoercive with respect to B,
with constant y; > 0, Ay is aj-expansive and By is 1-Lipschitz continuous, oy > [
and uy > v,. Let Hy: X, x X5 — X, be also a single-valued mapping such that H»(A,,
By) is cocoercive with respect to A, with constant i, > 0 and relaxed cocoercive
with respect to B, with constant y, > 0, A, is ar-expansive and B, is f5>-Lipschitz
continuous, oy > B, and s > y,. Let M:X| — 2% is set-valued, H\(*,*)-cocoercive
mapping and N:X, — 2% is set-valued, H,(*,")-cocoercive mapping. Then (a,
b) € X| x X, is a solution of problem (4.1) if and only if (a, b) satisfies the
following:

{ a =R\ [Hi(A(a), Bi(a)) — 2F(a, D)),
b =R [Hy(Ax(b), Ba (b)) — pGla, b)),

where A > 0 and p > 0 are two constants.

Proof The conclusion can be obtained directly from the definitions of Rfi}é) and

R, O
Based on Lemma 4.1, we now define an iterative algorithm for approximating a

solution of problem (4.1).
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Algorithm 4.1 Let X;, X5, A;, A5, B;, B>, H;, Hy, M, N, F, and G are same as
Lemma 4.1. For any given initial (ay, by) € X; x X, we define the following
iterative scheme:

any1 = RIZ}\/([,> [Hl (Al(an)731 (an)) - /lF(Cln, bn)]v
bn+1 = Rzli\s,) [HZ(AZ(b11)7BZ(bn)) - pG(ana bn)]7

forn =0, 1, 2,....., where A > 0 and p > 0 are two constants.
Now, we show the existence of solution of problem (4.1) and analyze the
convergence of iterative Algorithm 4.1.

Theorem 4.1 Ler X; and X, be two real Hilbert spaces. Let A;, B;:X; — X, A,
By: X, — X, be the single-valued mappings. Let H;:X; x X; — X; be a
single-valued mapping such that H;(A;, B;) is cocoercive with respect to A; with
constant u; > 0 and relaxed cocoercive with respect to B; with constant y; > 0, A;
is aj-expansive and B; is B;-Lipschitz continuous, a; > f§; and p; > y;. Let Hj:
X5 x X, — X5 be also a single-valued mapping such that Hx(A,, B;) is cocoercive
with respect to A, with constant u, > 0 and relaxed cocoercive with respect to B,
with constant y, > 0, A, is oy-expansive and B is f>-Lipschitz continuous, o, > 5>
and pi> > y,. Let M : X; — 2% is set-valued, H,(+,*)-cocoercive mapping and N :
X, — 2% is set-valued, H(+,*)-cocoercive mapping. Assume that H,(A;, B;) is r;-
Lipschitz continuous with respect to A; and r»-Lipschitz continuous with respect to
B;, F:X; x X, — X, is t;-Lipschitz continuous with respect to the first argument
and t>-Lipschitz continuous with respect to the second argument, Hx(A,, B>) is r3-
Lipschitz continuous with respect to A, and r4-Lipschitz continuous with respect to
By, G:X; x X, — X, is t; -Lipschitz continuous with respect to first argument and
7, -Lipschitz continuous with respect to second argument. F(x, ) is m;-strongly
monotone with respect to H;(A;, B;) and G( -, y) is my-strongly monotone with
respect to Hy(A,, B,). If the following conditions are satisfied:

(r1 + 1‘2)272/1}%1 + /lzrf
ﬂlo‘%_ylﬁ%

2 2

(r3 4 r4)"—2pmy + 275

l¢29‘§*72ﬁ§

0<

T}
+ L <1
ﬂﬂ% ”y'z/fg ’

(4.2)

+ .

0< 3
,“1“?*"/1/’)1

Then the problem (4.1) admits a solution (a, b) € X; * X, and the sequence {(a,,
b,)} generated by Algorithm 4.1 converges strongly to a solution (a, b) of problem
4.1).

Proof From Algorithm 4.1 and Theorem 2.3, we have
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a1 —an || =1 RY\[H (A1 (@), Bi(an) — AF (an, by)]
— RO H (Ar (an-1), Bi(an-1)) — 2F(a-1,b5-1)] ||
< Hi(Aa). Bi(@) - 2 (anb,)
oy = Y1Py
— [Hi(A1(an-1), Bi(an-1)) = AF(@n-1,bp-1)] ||
= | ). Bi(an)) = H(As (0r). B )
- )L[ (am n) - F(anflybn) +F(Cln,1,bn) - F(anflvbnfl] ||
< A (an). Bi(@) — Hy(Ar(ay1). Bi(a, 1))
#1“1 b

_)L[ (ana n) _F(anflabl‘l)} ||

”

A
W | F(an-1,bn) = F(an-1,bn1) || -
1% = V1P

Further,

H [Hl (Al(“n)aBl(an)) —H, (A (an l) By (an 1))] [F(anv n) _F(“nflvbn)] H2
< | Hi(Ai(@), Bi(an)) — Hi(A1(@n-1), Bi(an-1)) [
— 22(H\(A1(an), B1(an)) — Hi(A1(@n-1), Bi(an-1)), F (@, bn) — F(an-1,bn))
+ 22 || Flan, ba) = Flan-1,ba) |*-

Since H (A, B,) is ri-Lipschitz continuous with respect to A, and r,-Lipschitz
continuous with respect to B, we have

| Hi(Ai(an), Bi(an)) — Hi(A1(an-1), Bi(an-1)) ||
=|| Hi(Ai(an), Bi(an)) — Hi(A1(an-1), Bi(an))
+Hi(Ar(an-1), Bi(an)) — Hi(A1(an-1), Bi(an-1)) ||
< || Hi(Ai(an), Bi(an)) — Hi(Ai(an-1), Bi(an)) ||
+ || Hi(A1(an-1), Bi(an)) — Hi(A1(an-1), Bi(an-1)) ||
<rin—au_y || +72 || @ — an—1 ||
=(r+nrn)lla-—a-|.
(4.5)
As F(x, - ) is strongly monotone with respect to H,(A;, B;), we have

—(Hi(A1(ay), Bi(an)) — Hi(A1(an-1), Bi(an-1)), F(an, by) — F(an-1,b2))
< —mi |l ay— a1 |- (4.6)
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Using the 7;-Lipschitz continuity of F(+,*) with respect to first argument, we
obtain

| F(an,b) — F(an-1,b,) || <71l @aw—an | - (4.7)
Combining (4.5)-(4.7) with (4.5), we obtain

|| [H1(A1(an), By (an)) — Hi(A1(@n-1), Bi(an-1))] — A[F (an, by) — F(an_1,b,)] ||°
<[(r1 +12)* = 22my 4+ 222 || ap — an_y |%,

which implies that

| [Hi(A1(an), Bi(an)) — Hi(A1(an—1), Bi(an-1))] — A[F(an,by) — F(an-1,bn)] ||

< \/(rl + 1) = 20my + 722 || ay —an || -

(4.8)

Also as F(*,*) is 7,-Lipschitz continuous with respect to second argument, we
have

| F(@n-1,b0) = Flan-1,bn1) | <72 [ bu = bus || (4.9)

Using (4.8) and (4.9), (4.3) becomes

\/(}”1 + rz)z — 2 my + )vz‘l?%

| ans1—an | < | an — an— |
! ! .Ulfx% - Vlﬁ%
AT
2 || by — by H . (4.10)
#10‘1 718
In a similar way, we estimate
| Bur = bu || =1l RS (Ha(Ax(b0), Ba(B1)) = pGlan, b))
— RN [Hy(Ag(bu-1), Ba(bu-1)) — pGlan-1,bu1)] ||

IA

72 ” HZ(AZ(bn) BZ(bn)) - HZ(AZ(bnfl)vBZ(bnfl))}
103 = 12

- p[G(anybn) - G(anvbn—l) +G(an7bn—l) - G(an—lvbn—l)} H

< |l [HaAalb). Babr) — Ho(As (b1, Balby 1))
Hz“z - /2/5'
- p[G(anval) - G(d,,,b,,,l)} H
+— L || (Gl b1) = Gl b)) | (4.11)

05 2ﬁ2
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Using the same arguments as for (4.8), we have

| Ha(A2(bn), B2(bn)) — Ha(A2(bu1), Ba(bu-1))] = plG(an; bn) — Glan, bu-1)] ||

s ) — 2pma 4 0272 | By~ b ||

(4.12)
As G(+,*) is 7, ’-Lipschitz continuous with respect to first argument, we have
I Gan, bu1) = Glan-1,bu1) || <7y || @n — an1 || - (4.13)

Combining (4.12), (4.13) with (4.11), we have

\/(r3 +r4)* —2pmy + 2t}

|| bn+1_bn HS || bn_bnfl H
#2“% - ”/2/3%
T
———lan—an1 || (4.14)
#2“% - Vzﬁ%
Combining (4.10) and (4.14), we have
| @ns1—an ||+ [ bari—ball
\/(7‘1 —|—7'2)2 — 2Amy —|—)»2‘L'% pr’

- 2 2 2 : 2 || ap — ap—1 ||

oy — 1Py %5 — 72

Vs +n)? —2om+p? g,
2 7 > 5| 60— by ||
o — 725 o — 718y
<Ol aw—an-1 || + || bw = bu-y |l];
(4.15)
where
2 ) )
0= max{\/(rl +12)” = 20m + 277} pT)
#105% - Vlﬁ% #2“% - “/2[;%
\/("3 +14)? = 2pmy + p21? phss }
ﬂz“% - Vzﬁ% #1“% N %

By (4.2), < 1 and (4.15) implies that {a,} and {b,} both are Cauchy sequences.
Therefore, {(a,, b,)} converges to a solution (a, b) of problem (4.1). This completes
the proof. O
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10.5 H(,*)-y-Cocoercive Mapping

In this section, we define H(*,*)-y-cocoercive mapping and discuss some of its
properties.

Definition 5.1 Let A, B:E — E, H, n:E x E — E be the single-valued mappings.
Then M:E — 2% is said to be H(s,*)--cocoercive mapping with respect to the
mappings A and B (or simply H(*,*)-#-cocoercive in the sequel), if M is #-coco-
ercive and (H(A, B) + AM)(E) = E, for every 1 > 0.

Following example shows that H(-,*) is y-cocoercive with respect to A with
constant % and relaxed x-cocoercive with respect to B with constant %

Example 5.1 Let us consider E = R?. Let A, B : R?> — R? are defined by

A(x1,x2) = (x1,3%2), B(y1,32) = (=y1, =1 — y2), for all (x1,x5), (v1,72) € R.
Suppose H(A,B),n : R? x R? — R? are defined as

H(Ax,By) = Ax+ By, n(x,y) =x —y, for allx,y € R*.
Then

<H(Ax7u) (Ay7 )7 ( )> <Ax+u—Ay—u7x_y>
= <Ax—Ay7x_Y>

= (((x1,3x2) — (v1,3y2)), (X1 = y1,%2 — y2))
= ((x1 = y1,3(x2 = y2)), (x1 = y1, %2 — y2))
= (x1 —y1)* 430 — )

and
| Ax = Ay | =1| (x1 = y1,3(02 = ¥2)) [P = (31 = 31)* +9(x2 — 3)°
<30 —y1)’ +9(x — )
=3{(x1 —y1)* +3(x2 — »)*}
= 3{(H(Ax,u) — H(Ay,u),n(x,y))}

that is, (H(Ax,u) — H(Ay,u),n(x,y)) > % || Ax — Ay ||*, which implies that H is 5-
cocoercive with respect to A with constant % Also

(H(u, Bx) — H(u, By), n(x,y)) = (Bx — By,x —y)
= (((=x1, =21 —x2) = (=y1, =y1 = ¥2)), (x1 = y1,%2 — »2))
= (=01 =), —(x1 = y1) = (22 = ¥2)), (¥1 —y1,%2 — y2))
=—(x1—y)" = (1 = y1) (02— y2) — (2 = )

= —{(r1 — 1)+ (1 —y1)(x2 — y2) + (02 — 32)°}
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and
| Bx = By || =l (=(x1 = y1), —(x1 = 1) = (2 = y2)) |I?

= (1 =y)’+ (1 —y1) + (2 —y2))°
= (v —y1)"+ (1 = y1)* 4 (2 = 2)” +2(x1 — y1)(x2 — y2)
<2(x1 = y1)> +2(x0 — y2)” +2(x1 — y1) (32 — ¥2)
=2{(x1 —y1)* + (2 = y2)" + (1 —y1) (22 — )}
= 2{_<H(Mva) - H(”aB,V)v’?(XJ))}a

that is, (H(u, Bx) — H(u, By),n(x,y)) > — 1 || Bx — By ||, which implies that H is

relaxed n-cocoercive with respect to B W1th constant ;

Example 5.2 Let E = R? and A, B, H(A, B), and 5 are same as in Example 5.1.
Suppose that M:E — 2F is defined by

M(x1,x;) = (x1,0), forall (x;,x;) € R%.
Then it is easy to check that M is #-cocoercive and

(H(A,B) 4+ IM)(R?) = R?, for all A > 0,
which shows that M is H(*,*)-y-cocoercive with respect to A and B.
We have the following Matlab programming for Example 5.1.
Numerical Example 5.3 Let E =R? and A, B : R> — R? be defined by

A(xy,x2) = (x1,3x2), B(y1,y2) = (=y1, —y1 — y2), for allx = (x1,x2),y
= (})17)’2) € Rz'

Let H(A,B),n : R? x R? — R? be defined by

H(Ax, By) = Ax + By, n(x,y) = x —y, for allx,y € R?.
x; = input(‘enter the vectorx, :);

= input ‘enter the vectorx, :’

/ !/

( )
= input('enter the vectory; :');
= input(‘enter the vectory, :');

Assign values:

Ty =x1;T, = 3. xxp;
Pl :yl;PQ :3*)/27

Up = X1 — Y1, U2 = X2 — Y2,
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compute (H(Ax, u) — H(Ay, u), n(x, y)) = W, where

Wi =u1 2 Wo =3 xup.2; W= Wy + Ws
compute square of norm || Ax — Ay ||>= M, where

L= ul.z;Lz =0. *uz.z;
My =L+ LM = (1/3) * M

then it is easy to check that H is 7-cocoercive with respect to A with constant %, that
is, W = M. Next, compute (H(u, Bx) — H(u, By), n(x, y)) =V.

V= f(ul.Z dup.ox 3. xuy+3. % uz.z)
compute square of norm || Bx — By ||?>= B, where

By = (2.5 (u.2) + (3. % up) > + (2. % uy). * (3. % un));
Z=—(1/2).%xB

then it is easy to check that H is relaxed #-cocoercive with respect to B with
constant %, that is, V > Z.

Example 5.4 Let E = C[0, 1], space of all real-valued continuous function define
over closed interval [0, 1] with the norm

1/ 1| = max [f(z)].

1€[0,1]
Let A, B:E — E are defined by
A(f) = ¢/ and B(g) = ¢ ¢, for all f,g € E.
Let H(A, B):E x E — E is defined as
H(A(f),B(g)) = A(f) + B(g), for all f,g € E.

Suppose that M = I, where [ is the identity mapping. Then for A = 1, we have

I CH (A, B) +M)(f) || = [ AG) + BU) +£ | = max el eV 1 f(1)] > 0,

which means that 0 ¢ (H(A, B) + M)(E) and thus M is not H(s,*)-y-cocoercive
mapping with respect to A and B.

Theorem 5.1 Let H(A, B) be n-cocoercive with respect to A with constant u > 0
and relaxed n-cocoercive with respect to B with constant y > 0, A is a-expansive



10 Generalized Monotone Mappings with Applications 161

and B is p-Lipschitz continuous and i > vy, a > f. Let M:E — 2 be H(+,*)-n-
cocoercive mapping. If the following inequality

(x - Jq(”l(”v V))> 2 0’
holds for all (v,y) € Graph(M), then x € Mu, where Graph(M) = {(u,x) €
E X E :x € Mu}.

Proof Suppose that there exists some (1, Xo) such that
(x0 =y, T q(n(uo,v))) >0, for all(v,y) € Graph(M). (5.1)

Since M is H(+,*)-n-cocoercive mapping, we know that (H(A, B) + AM)(E) = E,
holds for every A > 0 and so there exists (u1,x;) € Graph(M) such that

H(AMI,BM1)+;LX1 :H(Auo,Buo)+M0 cE. (52)
It follows from (5.1) and (5.2) that

0 < Axo — x1, T ¢ (n(uo, u1)))

= —(H(Auo, Bug) — H(Auy, Buy), J 4 (n(uo, u1)))
—(H(Aug, Bug) — H(Auy, Buo), J 4(n(uo, u1)))
— (H(Aur, Bug) — H(Auy, Bu), J 4 (n(uo, u1)))
— || Aug — Auy || +7 || Bug — Buy ||
— po? || o — ur || + B | o — uy ||?
—(po® = yp*) [l up — uy || <0,

INIA

which gives u; = ug, since 4 > y and a > . By (5.2), we have x; = xo. Hence
(uo,x0) = (ug,x1) € Graph(M) and so xy € Muy. a

Theorem 5.2 Let H(A, B) be n-cocoercive with respect to A with constant u > 0
and relaxed n-cocoercive with respect to B with constant y > 0, A is a-exp