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Preface

The Indian Society of Industrial and Applied Mathematics (ISIAM) was established
during a national symposium on differential equations in September 1990 at Aligarh
Muslim University. Since then it has been organizing national and international
conferences, seminars, workshops and symposiums in different parts of India.
Proceedings of these academic activities have been published by reputed publishers
including Longman (Pitman Research Notes in Mathematics), Kluwer Academic
Publications (Now part of Springer Group), Taylor and Francis Publications, etc.

The present volume contains invited talks and some contributory talks of
11th International Biennial Conference on “Emerging Mathematical Methods,
Models and Algorithms for Science and Technology” organized under the auspices
of the society. This international conference was organized at Gautam Buddha
University, National Capital Region, India, from December 15–16, 2012. This
conference commemorates 125th birth year of the Mathematics Wizard Srinivasa
Ramanujan. The conference was attended by more than 200 persons belonging to
different specializations of mathematics, engineering, physics, computer science,
information technology, and management studies coming from various states of
India and countries like USA, Germany, France, Italy, Turkey, Saudi Arabia, and
Oman. The conference was really interdisciplinary in nature, where applications of
mathematical concepts to emerging technologies were focused.

The conference was inaugurated by Prof. Krishan Lal, President of the
Indian National Science Academy (INSA) and eminent academicians such as
Prof. H.P. Dikshit (Chairman EPCO. Institute of Environmental Studies, Govt. of
Madhya Pradesh and former Vice-Chancellor of IGNOU), Prof. U.B. Desai,
Director IIT Hyderabad (a renowned expert of information Technology and Tele
Communication), Prof. N.K. Gupta, IIT Delhi (a renowned expert of Impact
Problems and former Vice-President of INSA and Current President ISIAM),
Prof. Moinuddin, Pro. Vice-Chancellor Delhi Technical University (Former
Director NIT, Jalandhar), Prof. Aparajita Ojha, Director IIIT Jabalpur, Prof. Rajat
Gupta, Director NIT, Srinagar, Prof. M. Brokate, former Dean School of
Mathematical Sciences, Technical University Munich, Germany, Prof. R. Lozi,
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CNRS & Nice University France et al. participated and delivered lectures. A special
session on 125th birthday celebration of Ramanujan was also organized during the
conference, and Prof. Dinesh Singh, Vice-Chancellor, Delhi University was the
chief guest of this function.

On this occasion, Prof. U.B. Desai was conferred Dr. Zakir Husain Award
2011/2012 for his valuable contribution in the emerging areas like cyber physical
systems, cognitive radio, wireless communication, wireless sensor networks,
additive signal, and image processing. He has extensively used mathematical
concepts such as wavelets and multiresolution analysis, artificial neural network,
and fractals in his research works.

In the inaugural address, Prof. Krishan Lal highlighted the importance of
mathematics for industrial and technological development of any nation.
He expressed the serious concern of the scientists, engineers, and all well-wishers of
our nation on dwindling standard of mathematics and especially applications of
mathematics. He emphasized that the need of the hour is to attract talented young
researchers towards applications of mathematics in emerging areas of science and
technology. All invited speakers on this occasion echoed the same sentiment.

During the inaugural function, Prof. Pammy Manchanda, Convener Scientific
Committee read the messages of the Hon’ble President of India, Hon’ble Union
Minister of Communication and Information Technology, Minister of External
Affairs, Minister of Water resources, Governors of Bengal, Jammu and Kashmir,
Uttrakhand, Minister of State for Human Resource Development, and 10 other
dignitaries including Prof. Barbara Lee Keyfitz, President International Council of
Industrial and Applied Mathematics (www.iciam.org).

The invited and contributory talks published in the proceedings provide valuable
information on certain current trends in mathematical models, methods, and algo-
rithms. Rene Lozi discusses the cryptography-based chaos which provides a new
mechanism for undersampling chaotic numbers obtained by the ring coupling of
one-dimensional maps in Chap. 1. In Chap. 2, D.K. Chaturvedi provides the vital
information about applications of soft computing techniques. Image decomposition–
reconstruction is very important in image analysis and it has a wide range of
applications in radar imaging which is discussed by Gaik Ambartsoumian and
Venkateswaran P. Krishnan in Chaps. 3 and 4 respectively. Two-dimensional
nonlinear elliptic boundary value problems by cubic spline approximation method is
explored by R.K. Mohanty in Chap. 5. Application of Monte Carlo simula-
tion to pricing of path-dependent European-type options is discussed by Siddhartha
P. Chakrabarty in Chap. 6. Messaoud Boulbrachene’s paper deals with the finite
element approximation of the impluse control quasivariational inequality in Chap. 7.
In Chap. 8, Chefi Triki and Nasr Al-Hinai give an overview of the Periodic Petrol
Station Replenishment Problem. Mushahid Husain and Ayub Khan present their
recent work in nanotechnology in Chap. 9. Chapter 10 contains results on gener-
alized monotone mappings by R. Rais et al.

Rashmi Bhardwaj highlights the application of wavelet and fractal methods to
environmental problems, especially problem of air and water pollution in Chap. 11.
Mohd Ahmad Ansari provides an algorithm by context modeling of medical image
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compression using discrete wavelet transform in Chap. 12. In Chap. 13,
K. Srinivasa Rao (first DST-Ramanujan Professor) gives an elegant account of the
life and work of Ramanujan, a creative genius. Sushil Kumar et al. study the
dispersion in steady and oscillatory flows through curved channels with absorbing
boundaries in Chap. 14. Noor-e-Zahra explains the basic ingredients of a new
technology, compression—sensing in Chap. 15. Ruchira Aneja’s paper is devoted
to the emergence of shearlets and its applications in Chap. 16. Nagma Irfan et al.
discuss the application of CAS wavelets in numerical evaluation of Hankel trans-
forms arising in seismology in Chap. 17.

The main message conveyed through the conference is that mathematics has
great potential to analyze and understand the challenging problems of nanotech-
nology, biotechnology, medical science, oil industry, environmental sciences,
engineering, and financial technology. It has been emphasized throughout the
conference that young researchers of the country should embark on those areas of
mathematics which have significant applications in these fields.

I take this opportunity to thank Profs. Pammy Manchanda and Rashmi Bhardwaj
coeditors of the proceedings for their valuable help.

Prof. Abul Hasan Siddiqi
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Summary

Dr. Zakir Husain Memorial Lecture; Smarter Societies:
Cyber Physical System

We live in a highly connected world and connectivity is exploding. By 2015 we
will have 15 billion devices connected to the Internet and by 2020 the number of
connected devices is expected to reach 50 billion; in 2011 amount of data trans-
mitted around the world exceeded 2 zettabytes, i.e., 2 × 10^21 bytes; by 2020 the
world will generate 100 zettabytes. By 2017 a trillion wireless devices will be there
serving 7 billion people. These numbers are mind-boggling, and they are creating
not just technological challenges but also profound mathematical challenges. Many
believe, to tackle the mathematical challenges of 50 billion Internet-connected
devices or a trillion wireless devices it may require some new mathematics.
Coupled with these mathematical challenges, the networked world is throwing new
challenges in innovations and enhanced business opportunities. The challenges get
compounded due to the deluge of information. Our psyche is governed by the
networked world and with time we are moving to a smarter society.

The attributes of smarter society are (but not limited to): highly connected
society, ubiquitous communication, strong connectivity between physical world
and cyber world, everything will be connected to the Internet; data analytics will be
backbone, and this will involve complex multivariable predictive algorithms and
data interpretation involving high-level machine learning algorithms. In short, we
will move towards a society where there will be seamless intelligent interaction
between computers and humans.

This talk focused on a major subset of the smarter society, namely, cyber
physical systems (CPS) or Internet of things (IoT). CPS and IoT are going to
change the world in the coming days.
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Cyber physical system is a system which integrates the cyber world with the
physical world using sensors and actuators; CPS closes the loop in the Internet.
Applications of CPS will be there in all walks of life: agriculture, power systems,
medical systems and health care, transportation, finance, smart structures, and many
more. Many believe that the impact of CPS would be as big as or even bigger than
the Internet (Fig. 1).

The key building blocks of CPS are: Communication, computing, control,
sensing, and cognition. Communication, computing, and control are fairly mature;
a lot of work needs to be done in sensors and cognition. Sensor technology has
always worked in a niche domain and thus sensors are quite expensive—one needs
major research to make sensors affordable and pervasive.

Internet of things (IoT) is very closely related to CPS. In IoT everything and
anything is Internet enabled. IoT can be viewed as convergence of Internet, signal
processing, VLSI, communication, and sensing. IoT has the same application
domain as CPS.

CPS and IoT offer many technological and mathematical challenges. Below,
very briefly, a description is provided for a few of the mathematical challenges.

One of key challenge is to have a mathematical model for CPS—this is chal-
lenging as CPS involves discrete components, continuous components, concurrent
interactions between discrete and continuous components, and infinite execution.
At present most of the work revolves around the use of hybrid automata for
modeling CPS. A hybrid automata will model a CPS system with initial states H
and a set of safe states M; this entails two key mathematical problems:

1. Stability: Does every execution of the CPS starting in any of the initial states
from H always stay in the safe states M

2. Reachability: Does starting in any initial state from set H, the CPS system will
always reach in finite steps (or asymptotically) the set of desirable states

It is likely that instead of hybrid automata, one may need a new kind of math to
faithfully model a CPS system.

Fig. 1 Cyber physical system
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Smart green buildings are the thing of the future. A lot work involves
technological challenges in building and making the system work. Nevertheless, to
get a better understanding of smart green buildings and to take the idea forward,
mathematical analysis is essential. We consider a smart building as:

1. A graph G = (V, E) with |V| = n and |E| = m.
2. Let some special vertices be designated as “entry” vertices and some as “exit”

vertices (representing movement in the building). These vertices are not nec-
essarily disjoint; the same vertex, at times can serve an entry vertex and at some
other time as an exit vertex.

3. Each vertex represents a room and each edge represents a connection between
two rooms.

4. People enter and leave the graph at the entry and exit vertices, say in a Poisson
fashion.

5. The edges are weighted by the distance between the rooms and the probabilities
of a person moving in either direction along the edge.

6. Each person that enters the building executes a random walk on the vertices and
exits the system.

7. Define occupancy of a vertex as the number of people in the corresponding
room at any given point in time.

Problem

Find the cumulative occupancy of any given room over a period of time or at any
given time based on which the energy consumption is optimized.

In the above formulation, one can bring in other constraints like available energy
(solar, battery, wind, etc.), available information on ambient conditions (tempera-
ture, humidity, wind velocity, solar lighting, etc.) and set up a realistic optimization
problem. Given a smart room system description, one has the following mathe-
matical challenge:

1. Model the system with sensor inputs (temperature, state of windows, PIR, etc.)
and actuation strategies (for ACs, lights, fans, etc.) as possibly a hybrid system

2. Formally prove that the system maintains the desired ambient conditions
3. Prove the kind of energy saving that would be achieved with the system
4. Mathematically design optimal strategies to achieve the specified ambient

conditions
5. Extend it to a system of interconnected rooms

Another problem in today’s time is green communication. We have all tasted the
benefits of cellular phones, but behind it there is tremendous energy consumption to
keep the base stations alive. Tower diesel genset runs 3–5 h in urban areas and
8–10 h in rural areas. The estimated diesel consumption for all such cell towers is
approximately, 3 billion liters per year. Cloud-based radio access network (CRAN)
which can support mobility at very high speeds is likely to be a much more
energy-efficient technology for mobile communication than the present technology.
CRAN involves:

Summary xvii



1. Opportunistic placement of cells (where fiber permits)
2. Large number of low-power antenna ports (ATP)
3. As low as 50-m interpoint spacing
4. Connected via fiber to a central controller known as remote base station (RBS)
5. Centralized (Cloud) baseband processing at RBSs
6. Fast hand-off at baseband level (implicit hand-off)

Some of the mathematical challenges that emerge are:

1. Self-optimization and self-organization of the network and mathematically
modeling self-organizing networks

2. Modeling and analysis of large distributed multi-input-multi-output dynamically
changing network

3. Centralized coordinated scheduling for antenna ports
4. Joint resource allocation among ATPs and users
5. Cross-layer optimization: Typically non-convex optimization

Cognitive radio (CR) is a technology which can very highly optimize the use of
a scarce resource—spectrum. CR is defined as a transceiver that can combine its
awareness of the environment with knowledge of its user’s needs, and adapt its
parameters intelligently to achieve reliable and spectrally efficient communication.
CR involves sensing the spectrum continuously, and whenever a spectrum whole
(white space) is available you transmit some bits of data. The CR user is typically
the secondary user who either underlays its communication or interweaves its
communication with respect to the primary user—thereby increasing spectral uti-
lization and efficiency (Fig. 2).

At IIT Hyderabad, we have made measurements and showed that there are
significant spectral holes even in GSM communication. Moreover, a complete CR
networking technology and prototype has been developed at IIT Hyderabad for a

Fig. 2 Typical cognitive
radio environment
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CR base station that can exploit these spectral holes in GSM band. Any GSM
handset will work as the CR receiver (Fig. 3).

There are many mathematical challenges in CR from the information theoretic
perspective—the key challenge being to investigate information theoretic limits of
CR networks with practical constrains. In particular one could focus on: User
capacity (primary as well as secondary), data rates for primary as well secondary,
and of course a measure of spectral efficiency.

In conclusion it should be mentioned that cyber physical systems and Internet of
things are creating new technological challenges, and mathematical challenges. It is
not enough that we build things, in order to go beyond we will need mathematical
models and possibly new analysis methods. Perhaps, a new math to tackle the
exploding connectivity and sensing

I would like to thank the Indian Society of Industrial and Applied Mathematics
for conferring the Dr. Zakir Hussain award. I would like to acknowledge my team
of faculty at IITH Hyderabad, who are working on cutting-edge CPS and IoT
challenges and who helped with my presentation. Some of the team members are
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Chapter 1
Cryptography-Based Chaos via Geometric
Undersampling of Ring-Coupled
Attractors

René Lozi

Abstract We propose a new mechanism for undersampling chaotic numbers
obtained by the ring coupling of one-dimensional maps. In the case of two coupled
maps, this mechanism allows the building of a PRNG which passes all NIST tests.
This new geometric undersampling is very effective for generating two parallel
streams of pseudo-random numbers, as we show, computing carefully their prop-
erties, up to sequences of 1012 consecutives iterates of the ring-coupled mapping
which provides more than 3.35 × 1010 random numbers in very short time. Both
three- and four-dimensional cases can be managed in the same way. In addition, we
recall a novel method of noise-resisting ciphering. The originality lies in the use of a
chaotic pseudo-random number generator: several cogenerated sequences can be
used at different steps of the ciphering process, as they present the strong property
of being uncorrelated. Each letter of the initial alphabet of the plain text is encoded
as a subinterval of [−1, 1]. The bounds of each interval are defined in function of
the known bound of the additive noise. A pseudo-random sequence is used to
enhance the complexity of the ciphering. The transmission consists of a substitution
technique inside a chaotic carrier, depending on another cogenerated sequence. This
novel noise-resisting ciphering method can be used with geometric undersampling
when four mappings are coupled.
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1.1 Introduction

During the last decade, it has been emphasized that the undersampling of sequence
of chaotic numbers is an efficient tool to build pseudo-random number generators
(PRNG) [15]. Randomness appears to be an emergent property of complex systems
of coupled chaotic maps [16]. Several kinds of coupling can be considered as
ultra-weak coupling, ring coupling, etc. [17]. An ultra-weak coupling recovers
chaotic properties of one-dimensional maps [12, 13] when computed with floating
numbers or double-precision numbers. Chaotic undersampling with thresholds
based on one component of the coupled system adds random properties to the
chaotic sequences. Double threshold sampled sequence (i.e., using both thresholds
of different nature) improves such random properties [14]. Ring coupling deals
when p one-dimensional maps are constrained on a torus [5, 26], this coupling can
directly provide random numbers without sampling or mixing, provided the number
p of maps is large enough, although it is possible to combine these processes with it.
However, in lower dimension two and three, the chaotic numbers are not
equidistributed on the torus. Therefore we introduce a particular “geometric”
undersampling based on the property of piecewise linearity of the invariant measure
of the system of p one-dimensional ring-coupled maps. This new geometric
undersampling is very effective for generating parallel streams of pseudo-random
numbers with a very compact mapping.

Several applications in various fields (chaotic optimization, evolutionary algo-
rithms, secure information transmission, chaotic cryptography, etc.) of such
undersampling process can be found. In this article we focus on the latter ones.

• As the first example, we propose a novel noise-resisting ciphering based on a
large number of uncorrelated chaotic sequences. These cogenerated sequences
are actually used in several steps of the ciphering process. Noisy transmission
conditions are considered with realistic assumptions. The efficiency of the
proposed method for ciphering and deciphering is illustrated through numerical
simulations based on ten coupled chaotic sequences [4].

• Another example is the use of such sequences in a chaotic encryption algorithm
[27].

In Sect. 1.2, we briefly recall properties of chaotic mappings, when used alone or
ultra-weakly coupled. Section 1.3 describes the route from chaos to randomness via
chaotic undersampling, discovered during the last decade. In Sect. 1.4, we introduce
geometric undersampling in the scope of ring-coupled mapping. In Sect. 1.5, we
propose in addition, a novel method of noise-resisting ciphering. The originality lies
in the use of a chaotic pseudo-random number generator: several cogenerated
sequences can be used at different steps of the ciphering process, as they present the
strong property of being uncorrelated. This novel noise-resisting ciphering method
can be used with geometric undersampling when four mappings are coupled.
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1.2 Recovering Chaotic Properties of Numerically
Computed Chaotic Numbers

1.2.1 Numerical Approximation of Chaotic Numbers

Chaos theory studies the behavior of dynamical systems that are highly sensitive to
initial conditions, an effect which is popularly referred to as the butterfly effect.
Small differences in initial conditions (such as those due to rounding errors in
numerical computation) yield widely diverging outcomes for chaotic systems,
rendering long-term prediction impossible in general. This happens even though
these systems are deterministic, meaning that their future behavior is fully deter-
mined by their initial conditions with no random elements involved. In other words,
the deterministic nature of these systems does not make them predictable. The first
example of such chaotic continuous system in the dissipative case was pointed out
by the meteorologist E. Lorenz in 1963 [11].

In order to study numerically the properties of the Lorenz attractor, M. Hénon an
astronomer of the Observatory of Nice, France, introduced in 1976 a simplified
model of the Poincaré map of this attractor [9]. The Lorenz attractor being
imbedded in dimension three, the corresponding Poincaré map is a mapping from
the plane ℝ2 into ℝ2. Hence the Hénon mapping is also defined in dimension two
and is associated to the dynamical system

xnþ 1 ¼ yn þ 1� ax2n
ynþ 1 ¼ bxn

;

�
ð1:1Þ

which has been extensively studied for 36 years.
More simple dynamical systems in dimension one, on the interval J ¼ �1; 1½ � �

R into itself

xnþ 1 ¼ fa xnð Þ; ð1:2Þ

corresponding to the logistic map

fa � La xð Þ ¼ 1� ax2, ð1:3Þ

or the symmetric tent map

fa � Ta xð Þ ¼ 1� a xj j; ð1:4Þ

have also been fully explored in the hope of generating random numbers easily
[24]. However, when a dynamical system is realized on a computer using floating
point or double-precision numbers, the computation is of a discretization, where
finite machine arithmetic replaces continuum state space. For chaotic dynamical
systems in small dimension, the discretization often has collapsing effects to a fixed
point or to short cycles [6].
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It seems that the computation of numerical approximations of the periodic orbits
leads to unpredictable and somewhat enigmatic results. As O.E. Lanford III [10]
says “The reason is that because of the expansivity of the mapping the growth of
roundoff error normally means that the computed orbit will remain near the true
orbit with the chosen initial condition only for a relatively small number of steps
typically of the order of the number of bits of precision with which the calculation is
done. It is true that the above mapping like many ‘chaotic’ mappings satisfies a
shadowing theorem [20, 21] which ensures that the computed orbit stays near to
some true orbit over arbitrarily large numbers of steps. The flaw in this idea as an
explanation of the behavior of computed orbits is that the shadowing theorem says
that the computed orbit approximates some true orbit but not necessarily that it
approximates a typical one.”

The collapsing of iterates of dynamical systems or at least the existence of very
short periodic orbits, their nonconstant invariant measure, and the easily recognized
shape of the function in the phase space avoid the use of one-dimensional map
(logistic, baker, or tent, etc.) as a pseudo-random number generator (see [18] for a
survey).

Remark 1.1 However, the very simple implementation in computer program of
chaotic dynamical systems led some authors to use it as a base of cryptosystem [2, 3].
In addition it seems that for some applications, chaotic numbers are more efficient
than random numbers. That is the case for evolutionary algorithms [22, 25] or chaotic
optimization [1].

In this paper, we show how to overcome the poor quality of chaotic generators
using geometric undersampling. This special undersampling we introduce in this
article is one of the other undersampling processes we have studied before. In order
to explain the difference between these processes we give in Sect. 1.3 a brief survey
of them. Before doing this survey, we have to show how to stabilize the chaotic
properties of chaotic number when realized on a computer.

1.2.2 Very Long Periodic Orbits for Ultra-weakly
Coupled Tent Map

The first step in order to preserve the genuine chaotic properties of the continuous
models in numerical experiments is reached considering ultra-weak multidimen-
sional coupling of p one-dimensional dynamical systems instead of solely a
one-dimensional map.

1.2.2.1 Two-Coupled Symmetric Tent Map

In order to simplify the presentation below, we use as an example the symmetric
tent map (1.4) with the parameter value a = 2, later denoted simply as f, even
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though others as chaotic map of the interval, the logistic map, the baker transform,
etc., can be used for the same purpose (as a matter of course, the invariant measure
of the chaotic map considered is preserved).

When p = 2, the system is simply described by Eq. (1.5)

xnþ 1 ¼ 1� e1ð Þf xnð Þþ e 1f ynð Þ
ynþ 1 ¼ e2 f xnð Þþ 1� e2ð Þf ynð Þ

�
; ð1:5Þ

We use generally e1 ¼ 10�7; e2 ¼ 2e1 when computations are done using
floating points or e1 ¼ 10�14 for double-precision numbers. In both cases, with
these numerical values, the collapsing effect disappears and the invariant measure of
any component is the Lebesgue measure [12] as we show below. In the case of
computation using floating points, starting from most initial condition, it is possible
to find a Megaperiodic orbit (i.e., with period equal to 1,320,752). When compu-
tations are done with double-precision number, it is not possible to find any periodic
orbit up to n ¼ 5� 1011 iterations. In [12], the computations have been performed
on a Dell computer with a Pentium IV microprocessor using a Borland C compiler
computing with ordinary (IEEE-754) double-precision numbers.

When e1 converges towards 0, the iterates of each component xn and yn of
Eq. (1.5) converge to the Lebesgue measure (Fig. 1.1).
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Fig. 1.1 Density of iterates
of two-coupled symmetric
tent maps, double precision,
Ndisc = 105, ɛ2 = 2ɛ1,
ɛ1 = 10−1–10−3, Niter = 108,
initial values x0 ¼ 0:330,
y0 ¼ 0:3387564
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1.2.2.2 P-Coupled Symmetric Tent Map

More generally, the coupling of p maps takes the form

Xnþ 1 ¼ F Xnð Þ ¼ A � f ðXnÞ
� �

; ð1:6Þ

where

f ðXnÞ ¼

f ðx1nÞ
..
.

..

.

f ðxpnÞ

0
BBBB@

1
CCCCA;Xn ¼

x1n
..
.

..

.

xpn

0
BBBB@

1
CCCCA; ð1:7Þ

and

A ¼

e1;1 ¼ 1�Pj¼p

j¼2
e1;j e1;2 � � � e1;p�1 e1;p

e2;1 e2;2 ¼ 1� Pj¼p

j¼1;j 6¼2
e2;j � � � e2;p�1 e2;p

..

. . .
. ..

. ..
.

..

. . .
. ..

. ..
.

ep;1 � � � � � � ep;p�1 ep;p ¼ 1� Pj¼p�1

j¼1
ep;j

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

ð1:8Þ

with ei;i ¼ 1�Pj¼p
j¼1;j 6¼i ei;j on the diagonal (the matrix A is always a stochastic

matrix iff the coupling constants verify ei;j [ 0 for every i and j).
It is noteworthy that these families of very weakly coupled maps are more

powerful than the usual formulas used to generate chaotic sequences, mainly
because only additions and multiplications are used in the computation process and
no division is required. Moreover, the computations are done using floating point or
double-precision numbers, allowing the use of the powerful floating point unit
(FPU) of the modern microprocessors. In addition, a large part of the computations
can be parallelized taking advantage of the multicore microprocessors which appear
on the market of laptop computers.

Moreover, a determining property of such coupled map is the high number of
parameters used (p� ðp� 1Þ for p-coupled equations) which allows to choose it as
cipher keys, when used in chaos-based cryptographic algorithms, due to the high
sensitivity to the parameters values [16]. It can also be shown that using control
theory techniques, synchronization of two systems (1.6), with p = 2 or 3, can be
reached via exact (dead-beat) or asymptotic observers [8].
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1.2.2.3 Computation of Approximated Invariant Measure

In order to assess numerical computations more accurately, we define an approx-
imation PM;NðxÞ of the invariant measure also called the probability distribution
function linked to the one-dimensional map f, when computed with floating num-
bers (or numbers in double precision). For this aim we consider a regular partition
of M small intervals (boxes) ri of J defined by

si ¼ �1þ 2i
M

; i ¼ 0;M ð1:9Þ

ri ¼ si ; siþ 1½ ½ ; i ¼ 0; M � 2 and rM�1 ¼ sM�1; 1½ � ð1:10Þ

The length of each box is equal to 2
M and the ri intervals form a partition of the

interval J

J ¼
[M�1

0

ri ð1:11Þ

All iterates f(n)(x) belonging to these boxes are collected, after a transient regime
of Q iterations decided a priori, (i.e., the first Q iterates are neglected). Once the
computation of N + Q iterates is completed, the relative number of iterates with
respect to N/M in each box ri represents the value PNðsiÞ. The approximated PNðxÞ
defined in this article is then a step function with M steps. As M may vary, we
define

PM;NðsiÞ ¼ M
N

#rið Þ ð1:12Þ

where #ri is the number of iterates belonging to the interval ri. The approximate
function PM;NðxÞ is normalized to 2 on the interval J.

PM;NðxÞ ¼ PM;NðsiÞ; 8x 2 ri ð1:13Þ

In the case of p-coupled maps, we are interested by the distribution of each
component x1; x2; x3; . . .; xpð Þ of X rather than the distribution of the variable X itself
in Jp. We then consider the approximated probability distribution function PM;Nðx jÞ
associated with one of the several components of F(X) defined by (1.6), which are
one-dimensional maps. In this paper, we equally use Ndisc for M and Niter for N,
when they are more explicit.

The discrepancies E1 (in norm L1), E2 (in norm L2), and E1 (in norm L1)
between PNdisc; Niterðx jÞ and the Lebesgue measure, which is the invariant measure
associated with the symmetric tent map, are defined by
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E1;Ndisc;Niterðx jÞ ¼ PNdisc; Niterðx jÞ � 1
�� ��

L1
ð1:14Þ

E2;Ndisc;Niterðx jÞ ¼ PNdisc; Niterðx jÞ � 1
�� ��

L2
ð1:15Þ

E1;Ndisc;Niterðx jÞ ¼ PNdisc; Niterðx jÞ � 1
�� ��

L1
ð1:16Þ

As mentioned in earlier section, Fig. 1.1 shows the convergence of the density of
iterates of the components of two-coupled symmetric tent maps to the Lebesgue
measure when e1 converges towards 0. Moreover, for a fixed value of Ndisc when
the number Niter increases, the discrepancy between PNdisc; Niter x

jð Þ and the Lebesgue
measure is expected to converge towards 0, except if there exist periodic orbits of
finite length lower than Niter which captures the iterates. In this case whatsoever the
value of Niter is, the approximated distribution function converges to the distribution
function of the periodic orbit, if it is unique, or to the average of the distribution
functions of the periodic orbits observed, if not.

Figure 1.2 shows the errors E1;Ndisc;Niterðx1Þ versus the number of iterates of the
approximated distribution functions, with respect to the first variable x1, for two-
and three-coupled symmetric tent maps. Same results are obtained for the other
variables x2 or x3.

The three-coupled symmetric tent maps model considered here with very small
value of ε1, seems a sterling model of generator of chaotic numbers with a uniform
distribution of these numbers over the interval J. It produces very long periodic
orbits: Gigaperiodic orbits (i.e., with length of period between 109 and 1012) when
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Fig. 1.2 Error E1;Ndisc ;Niter ðx1Þ for two- and three-coupled symmetric tent map, double precision,
Ndisc = 105, ɛ1 = 10−14, ɛ2 = 2ɛ1, Niter = 105–1012. Initial values x10 ¼ 0:330, x20 ¼ 0:3387564,
x30 ¼ 0:331353429
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computed with simple precision numbers, and orbits of unknown length when
computed with double-precision numbers. However, these chaotic sequences are
not at all random sequences.

1.3 The Route from Chaos to Pseudo-Randomness
via Chaotic Undersampling

Chaotic numbers are not pseudo-random numbers, because the plot of the couples
of any component xln; x

l
nþ 1

� �
of iterated points Xn;Xnþ 1ð Þ in the corresponding

phase plane reveals the map f used as one-dimensional dynamical systems to
generate them via Eq. (1.6). Nevertheless, we have recently introduced a family of
enhanced chaotic pseudo-random number generators (CPRNG) in order to compute
faster a long series of pseudo-random numbers with a desktop computer [14, 15].
This family is based on the previous ultra-weak coupling which is improved in
order to conceal the chaotic genuine function.

In this section, we describe briefly how this first process of undersampling, the
chaotic one, works.

1.3.1 Chaotic Undersampling

In order to hide f in the phase space xln; x
l
nþ 1

� �
, two mechanisms are used. The

pivotal idea of the first mechanism is to sample chaotically the sequence
xl0; x

l
1; x

l
2; . . .; x

l
n; x

l
nþ 1; . . .

� �
generated by the lth component xl, selecting xln every

time the value xmn of the mth component xm, is strictly greater (or smaller) than a
threshold T 2 J, with l ≠ m, for 1 ≤ l, m ≤ p.

That is to say to extract the subsequence xlnð0Þ ; x
l
nð1Þ ; x

l
nð2Þ ; . . .; x

l
nðqÞ ; x

l
nðqþ 1Þ ; . . .

� �
denoted here abab x0; x1; x2; . . .; xq; xqþ 1; . . .

� �
of the original one, in the following

way:Given that 1� l; m� p; l 6¼ m

nð�1Þ ¼ �1
xq ¼ xlnðqÞ ;with nðqÞ ¼ min

r2N
r[ nðq�1Þ xmr [ T

��	 
(
ð1:17Þ

The sequence x0; x1; x2; . . .; xq; xqþ 1; . . .
� �

is then the sequence of chaotic
pseudo-random numbers.

The above mathematical formula can be best understood in algorithmic way. The
pseudo-code, for computing iterates of (1.17) corresponding to N iterates of (1.6) is:
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This chaotic sampling is possible due to the independence of each component of
the iterated points Xn versus the others [13].

Remark 2.1 Albeit the number NSampliter of pseudo-random numbers xq corre-
sponding to the computation of N iterates is not known a priori, considering that the
selecting process is again linked to the uniform distribution of the iterates of the tent
map on J, this number is equivalent to 2N

1� T.

1.3.2 Chaotic Mixing

A second mechanism can improve the unpredictability of the pseudo-random
sequence generated as above, using synergistically all the components of the vector
Xn, instead of two. Given p − 1 thresholds

T1\T2\ � � �\Tp�1 2 J ð1:18Þ

and the corresponding partition J0 ¼ �1; T1½ �, J1 ¼ T1; T2� ½,
Jk ¼ Tk; Tkþ 1½ ½ for 1\k\p� 1, and Jp�1 ¼ Tp�1; 1

� �
, with

J ¼
[p�1

k¼0

Jk ð1:19Þ

(note that this partition of J is different from the regular previous one (1.11) used for
the approximated distribution function).

The simple second mechanism is based on the chaotic undersampling combined
with a chaotic mixing of the p − 1 sequences x10; x

1
1; x

1
2; . . .; x

1
n; x

1
nþ 1; . . .

� �
,

x20; x
2
1; x

2
2; . . .; x

2
n; x

2
nþ 1; . . .

� �
,…, xp�1

0 ; xp�1
1 ; xp�1

2 ; . . .; xp�1
n ; xp�1

nþ 1; . . .
� �

,… using the

last one xp0; x
p
1; x

p
2; . . .; x

p
n; x

p
nþ 1; . . .

� �
in order to distribute the iterated points with

respect to this given partition, defining the subsequence
x0; x1; x2; . . .; xq; xqþ 1; . . .
� �

(in pseudo-code) by
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Remark 2.2 In this case also, NSampliter is not known a priori, however, consid-
ering that the selecting process is linked to the uniform distribution of the iterates of
the tent map on J, one has NSampliter 	 2N

1� T1
.

Remark 2.3 This second mechanism is more or less linked to the whitening process
[28, 29].

Remark 2.4 Actually, one can choose any of the components in order to sample and
mix the sequence, not only the last one.

1.3.3 Enhanced Chaotic Undersampling

On can eventually improve the CPRG previously introduced with respect to the
infinity norm instead of the L1 or L2 norms because the L1 norm is more sensitive
than the others to reveal the concealed f [14]. For this purpose we introduce a
second kind of threshold T 0 2 N, together with T1; . . .; Tp�1 2 J such that the
subsequence x0; x1; x2; . . .; xq; xqþ 1; . . .

� �
is defined (in pseudo-code) by

Remark 2.5 In this case also, NSampliter is not known a priori, it is very compli-
cated to give an equivalent to it. However, considering that the selecting process is
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linked to the uniform distribution of the iterates of the tent map on J, and to the

second threshold T′, it comes to NSampliter �min 2N
1� T1

; NT 0

n o
.

Remark 2.6 The second kind of threshold T 0 can also be used with only the chaotic
sampling, without the chaotic mixing.

1.3.4 A Window of Emergence of Randomness

In [15, 16], we show that if one consider the errors E1;Ndisc;NiterðxÞ ¼
PNdisc; NiterðxÞ � 1

�� ��
L1
, E2;Ndisc;NiterðxÞ ¼ PNdisc; NiterðxÞ � 1

�� ��
L2
, and E1;Ndisc;NiterðxÞ ¼

PNdisc; NiterðxÞ � 1
�� ��

L1
together with the correlated distribution functions which

assess the independence of each component of the iterated points Xn versus the
others, a window of emergence comes clearly into sight for the values
e12 10�15; 10�7

� �
, in the case p = 4 and ei;j ¼ ei ¼ i e1. We have also performed

NIST test developed by the National Institute of Standards and Technology [23], in
order to check carefully the random nature of such numbers [7].

Then there is a route from chaos to randomness using the process of chaotic
undersampling.

1.4 Geometric Undersampling

The previous route from chaos to randomness uses chaotic undersampling. It is
possible to couple in another way p tent maps on the torus Jp ¼ �1; 1½ �p� R

p,
which can directly provide random numbers without sampling or mixing, provided
p is large enough, although it is possible to combine these processes with it. After
reviewing this ring coupling in high dimension, we introduce the new geometric
undersampling in order to obtain randomness with small values of p (for example
p = 2).

1.4.1 Pseudo-Random Numbers Generated
by Ring-Coupled Mapping

Consider the mapping defined on the p-dimensional torus Mp : Jp ! Jp
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Mp

x1n
x2n
..
.

xpn

0
BBB@

1
CCCA ¼

x1nþ 1
x2nþ 1

..

.

xpnþ 1

0
BBB@

1
CCCA ¼

1� 2 x1n
�� ��þ k1 � x2n

1� 2 x2n
�� ��þ k2 � x3n

..

.

1� 2 xpn
�� ��þ kp � x1n

0
BBB@

1
CCCA ð1:20Þ

with the parameters ki 2 �1; 1f g. In order to confine every variable x jn on Jp, we do,
for every iteration, the transform

if ðx jnþ 1\�1Þ add 2
if ðx jnþ 1 [ 1Þ substract 2

(
ð1:21Þ

The particularity of this coupling is that each variable xj is coupled only with itself
and xj+1, as displayed on Fig. 1.3a. At first glance, in order to enrich the random
properties of the map, it could seem interesting to add supplementary cross couplings
between these variables, as shown on Fig. 1.3b. However, in this case a cross
coupling is inappropriate because it would increase the determinism against ran-
domness, and therefore deteriorate the statistical properties which we are looking for.

To evaluate the random properties of these generators, the set of NIST tests have
been used again.

The random properties validations of both a four-dimensional system and a
ten-dimensional one have been carried out [5]. For this purpose, the chaotic carrier
output needs to be quantized and binarized (0 and 1) in order to be validated as
being random using NIST tests. Therefore, different methods of binarization
(converting real signals into binary ones) have been implemented and compared.

A first 1-bit binarization has been applied to the system (1.21) output, defined as
yn ¼ x jn with j2 1; p½ �½ �

if ðyn 
 0Þ b ¼ 1
else b ¼ 0

�
ð1:22Þ

Fig. 1.3 a Left Ring coupling between the variables xj. b Right Cross coupling between the
variables xj

1 Cryptography-Based Chaos via Geometric Undersampling … 13



The results showed to be highly sensitive to the type of binarization. Eventually,
after testing several different methods, a 32-bit binarization has been chosen as
being the most suitable solution. Because the system is confined to the p-dimen-
sional torus Jp, 31 bits are assigned to represent the decimal part and 1 bit to the
sign. To illustrate the results, the NIST tests for the four-dimensional system with
parameters ki 2 ð�1Þiþ 1 are shown in Fig. 1.4. The chosen conditions are: length
of the original sequence = 108 bits, length of bit string = 106 bits, quantity of bit
strings = 100. The output of the system has been arbitrary chosen as y = xn

4.
Furthermore, as the results show their independence from the initial conditions,

every bit string in this test is the resulting sequence of a different randomly chosen
initial condition. The criterion for a successful test is that the p-value has to be
superior to the significance level (0.01 for this case). For the present model, all tests
were successful; thus the sequences can be accepted as being random.

1.4.2 Ring Coupling of Two-Dimensional Symmetric
Tent Map

Although the system (1.20) is a good PRNG when p ≥ 4, in lower dimension two
and three, the chaotic numbers are not equidistributed on the torus (see Fig. 1.5).

In order to improve the ring-coupling mechanism in low dimension, we intro-
duce now a new type of undersampling based on geometric nature of the invariant
measure. We present this new mechanism which allows the emergence of ran-
domness from chaos, in the simplest case, the two-dimensional ring mapping M2 on
the square J2, with k1 = k2 = 1.

Fig. 1.4 Example of NIST test for ki = (−1)i+1, i = 1, 4, each sequence of components satisfies the
NIST test for randomness
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Let M2 be defined by

x1nþ 1 ¼ 1� 2 x1n
�� ��þ x2n

x2nþ 1 ¼ 1� 2 x2n
�� ��þ x1n

�
ð1:23Þ

with
if ðx jnþ 1\�1Þ add 2
if ðx jnþ 1 [ 1Þ substract 2

(
ð1:24Þ

1.4.2.1 Critical Lines

Figure 1.5 shows the distribution of the iterates of system (1.23) (the transient of the
first 106 iterations has been cut off). It can be observed that the attractor contains
regions where the point density is lower, and two lozenge-like holes. It is possible
to define critical lines which form a partition of the square J2. The critical lines CL
[19] are singularities of dimension one and represent an important tool for the
analysis of noninvertible maps. The holes on Fig. 1.5 are completely delimited by
segments of the critical lines CL1

A1, CL1
B4, CL1

C2, CL1
D4, and CL1

A2, CL1
B3, CL1

C1,
CL1

D3, defined below.
The critical lines separate regions of the phase space with different number of

preimages (backward iterates). In the case of piecewise linear maps, they are the
first iterates of the lines of discontinuity CL−1 of the system.

Fig. 1.5 Critical lines of the map M2 on the torus J2 (a square) [26]
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For the two-dimensional system (1.23), there are four groups of critical lines CL
with preimages CL−1 given by

Critical lines A: CL−1
A : x1 = 0

and CLA1
1 : x

2 ¼ �2 x1 �1 if x2 [ 0
CLA2

1 : x2 ¼ 2 x1 �1 if x2 \0

�
ð1:25Þ

Critical lines B: CL−1
B : x1 = −1

and

CLB1
1 : x2 ¼ 2 x1 if x2 \0; x1 2 0; 0:5½ �

CLB2
1 : x2 ¼ �2 x1 �2 if x2 [ 0; x1 2 �1;�0:5½ �

CLB3
1 : x2 ¼ 2 x1 �2 if x2 \0; x1 2 0:5; 1½ �

CLB4
1 : x2 ¼ �2 x1 if x2 [ 0; x1 2 �0:5; 0½ �

8>><
>>: ð1:26Þ

Critical lines C: CL−1
C : x2 = 0

and
CLC1

1 : x2 ¼ � 1
2 x1 þ 1
� �

if x1 [ 0
CLC2

1 : x2 ¼ 1
2 x1 þ 1
� �

if x1 \0

�
ð1:27Þ

Critical lines D: CL−1
B : x2 = −1

and

CLD1
1 : x2 ¼ x1

2 if x1 \ 0; x2 2 0; 0:5½ �
CLD2

1 : x2 ¼ � x1

2 � 1 if x1 [ 0; x2 2 �1;�0:5½ �
CLD3

1 : x2 ¼ � x1

2 if x1 [ 0; x2 2 �0:5; 0½ �
CLD4

1 : x2 ¼ x1

2 þ 1 if x1 \0; x2 2 0:5; 1½ �

8>>>><
>>>>:

ð1:28Þ

1.4.2.2 Markov Partition of the Square

Our aim is first to use the partition defined by these critical lines in order to do a
cell-to-cell analysis and, by the means of a Markov process, to compute explicitly
the invariant measure of iterates associated to system (1.23). Figure 1.6 displays the
32 subregions of the square J2, labeled from a to p and a′ to p′. For clarity of the
presentation, we have labeled from (I) to (IV), the four quadrants of J2.

Straightforward computation shows that the images of each region, by the
mapping M2, is one, two, or three regions of the same partition of the square J2.
Figure 1.7a, b display the images of the regions imbedded in the first quadrant (I).
Figures 1.8a, b display the images of the regions imbedded in the second quadrant
(II). The color is the same for every region and its corresponding image, except
when two regions are mapped on the same region, in this case there is a mix of
colors on the common part of the image.
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The overall correspondence between regions of the partition and their image is
given by the Markov matrix Ma which is shown in Table 1.1. The computation of
the coefficients of this matrix, which are rational numbers, is based on the ratios of
surfaces of bounded regions.

In order to display the 32 × 32 matrix Ma on one page, we have labeled the
coefficients using letters which are not related to the names of the regions.

a

b
c

d

g
h

i

j

f

k

e

l

m

o

a’

b’

n

p

c’

d’

e’

f’

g’
h’

i’

j’

k’

l’ 

m’
n’

o’

p’

I

III IV

II

Fig. 1.6 The 32 subregions for a partition of the square J2

Fig. 1.7 a Left The nine regions a–i of quadrant (I). b Right The images M2(I) of the nine regions
of quadrant (I)
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o ¼ 1
12 ; p ¼ 1

20 ; q ¼ 3
20 ; r ¼ 4

20 ;

s ¼ 1
9 ; t ¼ 2

9 ; u ¼ 4
9 ; v ¼ 1

6 ;

w ¼ 1
3 ; x ¼ 1

5 ; y ¼ 3
5 ; z ¼ 2

3 :

8>><
>>: ð1:29Þ

1.4.2.3 Exact Computation of Invariant Measure Associated to M2

With the help of Markov matrix Ma, it is straightforward to compute explicitly the
invariant measure associated to M2. For every region on Fig. 1.6, we define a
quantity of initial points called Qi, i = 1, 32 uniformly scattered on it, and we
compute its surface Si. We normalize both quantities to

P
i Q

i ¼ Qj j ¼ 4, andP
i Si ¼ Sj j ¼ 4. Hence it is possible to define the density of iterates on each region.

di ¼ Qi

Si
ð1:30Þ

Let Q ¼
Q1

..

.

Q32

0
B@

1
CA and D ¼

d1

..

.

d32

0
B@

1
CA be the vectors of quantities and densities

obtained applying (1.30) to every region. Then starting from an arbitrary initial

repartition of points on J2, say Q0 ¼
Q1

0

..

.

Q32
0

0
B@

1
CA, and applying repeatedly the equation

Qmþ 1 ¼ Mt
aQm ð1:31Þ

Fig. 1.8 a Left The seven regions j–p of quadrant (II). b Right The images M2(II) of the seven
regions of quadrant (II)
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The sequence of vectors Qmf gm2N converges to a limit vector Q which satisfies

Q ¼ Mt
aQ ð1:32Þ

and gives the invariant measure, the density of which is the vector D, using (1.30).
Numerical results

Starting from Q0 ¼
Q1

0

..

.

Q32
0

0
B@

1
CA ¼

1=8

..

.

1=8

0
B@

1
CA; Q, it is obtained rapidly as

Q500 ¼

Q1
500

Q2
500

Q3
500

Q4
500

..

.

Q29
500

Q30
500

Q31
500

Q32
500

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

¼

1=14

3=28

1=14

3=28

..

.

4=7

3=28

3=28

1=7

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼ Q, which gives using (1.30),

Table 1.1 Markov matrix Ma
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D500 ¼

d1500
d2500
d3500
d4500
..
.

d29500
d30500
d31500
d32500

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

¼

10=7

5=7

10=7

5=7

..

.

12=7

9=7

9=7

6=7

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼ D.

Remark 3.1 Computing directly this density and iterating (1.23) up to 1011 iterates,
leads to the same result.

1.4.3 Geometric Undersampling

The exact computation of the density D of the invariant measure shows that this
density is constant on each region. The geometric undersampling process consists
of magnifying a square G included in one region (as for example the square G ¼
0:36; 0:64½ � � 0:36; 0:64½ � included in region m on Fig. 1.9), up to the size of the
square J2.

a

b
c

d

g
h

i

j

f

k
e

l

o

a’

b

n

p

c’

d

e’

f’

g
h

i’

j’

k

l’

m’
n’

o

p

I

III IV

G

Fig. 1.9 The square
G = [0.36, 0.64] × [0.36, 0.64]
in which iterates of (1.23) are
geometrically undersampled
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1.4.3.1 Algorithm of Geometric Undersampling

Let G ¼ x1l ; x
1
r

� �� x2l ; x
2
r

� �
be the square in which we will undersample the iterates

of (1.23) and, x1mean ¼ x1l þ x1r
2 ; x2mean ¼ x2l þ x2r

2 . In algorithmic form, the pseudo-code
to geometric undersample N iterates of (1.23) is:

Remark 3.2 In this case, the undersampling process provides two streams of
pseudo-random numbers.

Remark 3.3 In this case, NSampliter the number of geometrically undersampled
iterates is not known a priori, however, considering that the selecting process is
linked to the uniform distribution of the iterates of the tent map on J2, one has

NSampliter 	
x1r � x1lð Þ2

4 � dm, where dm is the density of the measure in region m.

1.4.3.2 Numerical Tests

We have applied this process in the case of the square G of Fig. 1.9 with N ¼ 1012,
which gives NSampliter 	 3:35� 1010. Figure 1.10a displays the densities of the
seven regions j, k, l, m, n, o, p of quadrant (II) which are equal to

d
j ¼ 6

7 ; d
k ¼ 9

7 ; d
l ¼ 9

7 ; d
m ¼ 12

7 ;

d
n ¼ 9

7 ; d
o ¼ 9

7 ; d
p ¼ 6

7 ;

(

Figure 1.10b shows the uniform density of iterates in the square G ¼
0:36; 0:64½ � � 0:36; 0:64½ � of quadrant (II). In Fig. 1.11, the square is magnified up
to the size of the square J2. The vertical scale is fitted near the invariant Lebesgue
measure.

We have also used NIST test to confirm the random property of the geometrical
undersampling process. They are all successful (Fig. 1.12).
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3200

3250

3300

3350

3400

3450

3500

3550

3600

3200-3250 3250-3300 3300-3350 3350-3400 3400-3450

3450-3500 3500-3550 3550-3600

Fig. 1.11 Uniform density of iterates of the square G = [0.36, 0.64] × [0.36, 0.64] magnified to
the square J2

Fig. 1.10 a Left densities of the seven regions j, k, l, m, n, o, and p of quadrant (II). b Right
Uniform density of iterates in the square G = [0.36, 0.64] × [0.36, 0.64] of quadrant (II)
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1.5 Noise-Resisting Ciphering

As a first example, we propose a novel noise-resisting ciphering based on a large
number of uncorrelated chaotic sequences. These cogenerated sequences are
actually used in several steps of the ciphering process. Noisy transmission condi-
tions are considered with realistic assumptions. The efficiency of the proposed
method for ciphering and deciphering is illustrated through numerical simulations
based on ten coupled chaotic sequences [5]. It can be also adapted to geometric
undersampling, provided this undersampling is done in dimension four.

In this section, we detail the noise-resisting ciphered transmission principle, con-
sisting of two steps: the ciphering process and the transmission process (see Figs. 1.13,
1.14). Both resort to the coupled chaotic pseudo-random generated sequences.

1.5.1 Ciphering Principle

We begin with some notations that will be used in the sequel. The plain text is
denoted by ðtkÞk¼1;...;N : the letters tk , for k ¼ 1; . . .;N belong to the alphabet
l1; . . .; lpf g composed of π letters.
The ciphered text is a sequence of real numbers denoted by yk, k ¼ 1; . . .;N and

each yk belongs to the interval J ¼ �1; 1½ � � R. The transmitted signal (at the
transmitter side) is denoted by sn, while the received signal is ŝn (at the receiver side).

Fig. 1.12 Geometrical undersampling: each sequence of components satisfies the NIST test for
randomness
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Fig. 1.14 General scheme of the ciphering and the ciphered transmission principle (receiving and
decoding)

Fig. 1.13 General scheme of the ciphering and the ciphered transmission principle (coding and
transmitting)
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In this paper, we consider noisy transmission conditions, which means that
ŝn ¼ sn þ an, where an [ 0 denotes an unknown additive noise at time n. We make
the following classical assumption: the additive noise is bounded by a known bound
K, which means that

sn � ŝnk k ¼ an �K; 8n
 0 ð1:33Þ

We first detail how to transform each letter of the plain text tk into a real number
yk 2 �1; 1½ � with an original noise-resisting method. In the second step, the
sequence ykf g will be transformed to obtain a uniform distribution on the interval
�1; 1½ �.
• Define a partition as follows:

�1; 1½ � ¼
[

m¼1;p

Im ð1:34Þ

with am, bm the bounds of each interval Im, i.e., Im ¼ am; bm½ �.
In fact, owing to the presence of additive noise, not all real numbers inside Im

can be selected, one must add an interval of length K at each side of the interval Im.
Therefore some smaller intervals need to be defined.

• Define a subinterval I 0m to be included in the corresponding interval Im such that

I 0m ¼ a0m; b
0
m

� � � Im ð1:35Þ

and

a0m � K; b0m þK
� � � Im ð1:36Þ

where we recall that K is the upper bound of the noise, see (1.33).

Then the coding consists of random (i.e., with another pseudo-random sequence
generated by (1.20): xp�1

n , or the geometric undersampling in dimension four)
choosing for each letter tk of the plain text a real number yk inside the interval I 0m
(and not Im) if tk ¼ lm. Each interval I 0m corresponds to a letter lm, for m ¼ 1; . . .; p.
Remark that each letter has a frequency of apparition in the plain text, depending on
the initial language. Therefore, one must carefully choose the length of each interval
I 0m in proportion to the corresponding frequency of the letter lm. An illustration is
given by Fig. 1.15 for an alphabet with three letters: the letter A has a frequency of
10 %, the letter B of 30 %, and the letter C of 60 %.

• Once this first step of the coding is achieved, one has to ensure that the ciphered
text has a random-like distribution inside �1; 1½ �. With the aforementioned
coding alone, this property cannot be ensured, as it can be seen in Fig. 1.16.
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Since one needs to leave some holes at the edges of the intervals Im to resist the
additive noise, the transmitted signal cannot have a random-like repartition. So we
propose to transform the ciphered data yk before transmitting it.

For all steps n 2 N such that an encrypted letter is transmitted, we propose to
transmit not directly yn but:

~yn ¼
yn þ xp�2

n if yn þ xp�2
n 2 �1; 1½ �

yn þ xp�2
n þ 2 if yn þ xp�2

n \� 1
yn þ xp�2

n � 2 if yn þ xp�2
n [ 1

8<
: ð1:37Þ

For simplicity of presentation, in the sequel, yn will denote ~yn, the ciphered
message to transmit.

Then the obtained signal to transmit has the desired uniform repartition, as
illustrated by Fig. 1.17.

Fig. 1.15 Repartition of an
alphabet of three letters

Fig. 1.16 Signal to be
transmitted without
transformation
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1.5.2 Transmission Principle

We now present how to transmit the ciphered text using substitution method in a
new pseudo-random sequence. The transmitted signal is denoted by sn.

The ciphered text yk , defined by (1.37), is not directly transmitted, it is chaoti-
cally hidden in a chaotic carrier signal as explained below.

The ciphering makes use of two coupled chaotic sequences: x1n is used as chaotic
carrier, while xpn is used to select the substitution times.

sn ¼ x1n if xpn\T
ynðkÞ if xpn 
 T

�
ð1:38Þ

where T is a predefined threshold. For example, as the xpn is equally distributed on
the interval �1; 1½ �, if one chooses T ¼ 0:8, one ciphered letter will be transmitted
in average of each ten elements of the sequence x1n. If one chooses T ¼ 0:98, one
element over 100 is replaced by a letter.

We do not detail here the sequence kðnÞ, as it is easily understandable that kðnÞ
increase by +1 each time sn ¼ ykðnÞ in order to transmit each element of the ciphered
sequence yk.

1.5.3 Decoding Principle

At the receiver end, suppose that the same PRNG defined by (1.20) is available.
The transmitter and the authorized receiver have fixed the same parameters and
same initial values; therefore the ciphering is a symmetrical one.

Fig. 1.17 Signal to be
transmitted after
transformation
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According to the substitution principle defined by (1.38) and the hypothesis
(1.33) on the additive noise, the received signal can be expressed as

ŝn ¼ x1n þ an or ykðnÞ þ an ð1:39Þ

Since the initial conditions of the chaotic pseudo-random number generator
(1.20) are assumed to be public, the receiver exactly knows when xpn is smaller or
larger than the threshold T, so the receiver is able to reconstruct the sequence
ykðnÞ þ an
� �

i.e., the sequence yq þ bq, where bq ¼ an for q ¼ kðnÞ.
As bq\K, there exists m 2 1; 2; . . .; pf g, such that ŝn 2 Im.
The receiver, also, exactly knows the value of xp�2

n and deduces from the rules
(1.37) the value of yq. Then the knowledge of the correspondence between the
interval Im and the letter lm enables the receiver to retrieve the initial message.

1.5.4 Numerical Illustration

Now we summarize the main steps of the proposed algorithm:

(1) Choose the secret parameters ki ¼ 1 or ki ¼ �1, for i 2 1; 2; . . .; pf g.
(2) Define the initial conditions shared by the transmitter and the receiver.
(3) Iterate the PRNG (1.20) with the previous initial conditions, at both the

transmitter and the receiver side.
(4) Apply the ciphering and transmission principle as detailed before.

The Fig. 1.18 shows the noisy signal at the receiver side (recall that the trans-
mitted signal is given by Fig. 1.17). Notice that the Figs. 1.16, 1.17 and 1.18
represent our simulations with 109 iterations.

Fig. 1.18 Received noisy
signal
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1.6 Conclusion

We have proposed a new mechanism of undersampling of chaotic number obtained
by the ring-coupling mechanism of one-dimensional maps. In the case of two
coupled maps, this mechanism allows the building of a PRNG which passes all
NIST tests.

This new geometric undersampling is very effective for generating two parallel
streams of pseudo-random numbers, as we have shown, computing carefully their
properties up to sequences of 1012 consecutives iterates of (1.23) which provides
more than 3.35 × 1010 random numbers in very short time. In a forthcoming paper
we will test both three- and four-dimensional cases.

In addition we have proposed a novel method of noise-resisting ciphering. The
originality lies in the use of a chaotic pseudo-random number generator: several
cogenerated sequences can be used at different steps of the ciphering process, as
they present the strong property of being uncorrelated. Each letter of the initial
alphabet of the plain text is encoded as a subinterval of [−1, 1]. The bounds of each
interval are defined in function of the known bound of the additive noise.
A pseudo-random sequence is used to enhance the complexity of the ciphering. The
transmission consists of a substitution technique inside a chaotic carrier, depending
on another cogenerated sequence. The efficiency of the proposed scheme is illus-
trated on some numerical simulations.

Cryptography is a wide field of research, in which the brilliant formulas of
Srinivasan Ramanujan have been largely used. May be, it will be possible, in a near
future, to link such formulas with chaos in the domain of emergent randomness.
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Chapter 2
Soft Computing Techniques and Their
Applications

D.K. Chaturvedi

Abstract The modern science is still striving to develop consciousness-based
machine. The forecasting is an intuition-based or consciousness-based problem. It is
an important problem for planning, decision-making and designing of an appro-
priate controller for the systems. The paper deals with the synergism of soft
computing techniques mainly artificial neural network, fuzzy logic systems, and
genetic algorithms and their applications in forecasting.

Keywords Artificial neural network � Fuzzy systems � Genetic algorithms �
Synergism of soft computing techniques � Forecasting

2.1 Introduction

In the last century, enormous industrial and technological developments had taken
place. Technology had developed laterally well up to the biggest giant-sized com-
plexes and also to the smallest molecular nano-mechanisms. Thus, having explored
to the maxima of the two extreme fields, technology is exploring now vertically to
reach the dizzy heights of soft computing, subtle soft computing, and the millennium
wonder of reaching the almost unchartered height of evolving consciousness in
computers (machines). This presentation makes its small and humble contribution to
this new astounding scenario and possibly the greatest of all mechanical wonders, to
transfer consciousness of man to machine [1]. Prior to World War II, numerical
calculations were done with mechanical calculators. Simulated by military require-
ments duringWorldWar II, the first version modern digital computers began to make
their appearance in late 1940s and early 1950s. During that pioneering period, a
number of different approaches to digital computer organization and digital com-
puting techniques were investigated. Primarily, as a result of the constraints imposed

D.K. Chaturvedi (&)
Department of Electrical Engineering, D.E.I. (Deemed University), Dayalbagh, Agra
e-mail: dkc.foe@gmail.com
URL: http://www.works.bepress.com/dk_chaturvedi

© Springer Science+Business Media Singapore 2015
A.H. Siddiqi et al. (eds.), Mathematical Models, Methods and Applications,
Industrial and Applied Mathematics, DOI 10.1007/978-981-287-973-8_2

31



by the available electronics technology, the designers of digital computers soon
focused their attention on the concept of computer system architecture, which was
championed by Dr. John Von Neumann, who first implemented it in the computer
constructed for the Institute of Advanced Studies at Princeton. Because of the per-
vasiveness of the Von Neumann architecture in digital computers, during the 1950s
and 1960s, most numerical analysts and other computer users concentrated their
efforts on developing algorithms and software packages suitable to these types of
computers. In 1960s and 1970s, there were numerous modifications and improve-
ments to computers of the earlier generation. The “bottle neck” of Neumann com-
puters was the memory buffer sizes and speeds on it. In the 1990s, there was a
quantum leap in the size of computer memory and speeds. As a result of this,
supercomputers have been developed, which could do lakhs of calculations within a
fraction of a second. Supercomputers can also do all routine tasks, and it could handle
it better with multi-coordination than a human being, and thus reducing a series of
simple logical operations. It could store vast information and process the same in a
flash. It does not also suffer from the human moods and many vagaries of mind.

But, the supercomputers cannot infer or acquire any knowledge from its information
contents. It cannot think sensibly and talk intelligently. It could not recognize a personor
could not relate his family background. On the other hand, as human beings, we con-
tinuously evolve our value judgment about the information we receive and instinctively
process them.Our judgment is based onour feelings, tastes, knowledge, and experience.
But computers are incapable of such judgments. A computer can be programmed
(instructed), i.e., to generate poetry or music, but it cannot appraise or judge its quality.

Hence, there is a genuine and compulsory need for some other logic, which can
handle such real-life scenario. In 1965, Prof. Lofti A. Zadeh at the University of
California introduced an identification tool by which this degree of truth can be
handled by fuzzy set theoretic approach. With the invention of fuzzy chips in 1980s
fuzzy logic received a great boost in the industry.

Now in this twenty-first century fuzzy logic, artificial neural network (ANN),
and evolutionary algorithms (EA) are receiving intensive attention in both aca-
demics and industry [1–15]. All these techniques are kept under one umbrella called
“soft computing.” Enormous research had already been done on soft computing
techniques to identify a model and control of its different systems.

This paper deals with the synergism of soft computing techniques which are
fuzzy logic, ANN, and EA for electrical load forecasting problem. The wavelet
transform is used to decompose the past load pattern and used for training and
testing of proposed method.

2.2 Wavelet Analysis

The underlying mathematical structure for wavelet bases of a function space is a
multiscale decomposition of a signal, known as multi resolution or multiscale
analysis. It is called the heart of wavelet analysis.
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The first step of discrete wavelet transform corresponds to the mapping f to its
wavelet coefficients and from these coefficients two components are received,
namely a smooth version, named approximation and a second component that
corresponds to the deviations or the so-called details of the signal. A decomposition
of f into a low-frequency part a, and a high-frequency part d, is represented by
f = a1 + d1. The same procedure is performed on a1 in order to obtain decompo-
sition in finer scales: a1 = a2 + d2. A recursive decomposition for the low-frequency
parts follows the directions that are illustrated in the following diagram.

f ..... a1 ..... a2 ..... a3 ..... an
\ \ \ \

d1 d2 d3 d4 .....dn

The resulting low-frequency parts a1, a2, … aN are approximations of f, and the
high-frequency parts d1, d2, … dN contain the details of f. Figure 2.1 illustrates a
wavelet decomposition into four levels and corresponds to a3, d1, d2, and d3.

f ¼ d1 þ d2 þ d3 þ � � � þ dN�1 þ dN þ aN :

2.3 Generalized Neural Network

In a simple neuron model the aggregation function is summation, which has been
modified to obtain a generalized neuron network (GNN) model using fuzzy com-
pensatory operators as aggregation operators to overcome the problems such as
large number of neurons and layers required for complex function approximation,
which affect not only the training time but also the fault tolerant capabilities of the
artificial neural network (ANN) [2].
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The common ANN is consisting of summation as aggregation function. As men-
tioned by Minsky and Parpet [16] in their book that linear perceptron could not be
trained for non-separable problems. The multilayer ANN introduced to overcome the
problems of perceptron and it was found that three-layer ANN could map any func-
tion. The three-layer ANN with simple back-propagation learning algorithm requires
large training time. Then large number of back-propagation variants came up with
time to improve its training performance. Basically, the training time ofANNdepends
on the number of unknown weights to be determined. This large number of unknown
weights in huge ANN is required to map with complex functions. To obtain large
number of weights, large number of training data is required. It is very difficult or
sometimes impossible to collect accurate and sufficient training data for real-life
problems. The noisy training data affect the testing performance of ANN.

The general structure of the common neuron is an aggregation function and its
transformation through a filter. It is shown in the literature [4] that the ANNs can be
universal function approximators for given input–output data. The common neuron
structure has summation or product as the aggregation function with linear or
nonlinear (sigmoid, radial basis, tangent hyperbolic, etc.) as the threshold function.

Different structures at neuron level have been tried to overcome
above-mentioned drawbacks of ANN [1]. In this regard ANN consisting of Σ
neurons (Σ-ANN), ANN consisting of Π neurons (Π-ANN), and combination of the
above two have been tried and the results obtained are quite encouraging [1].

The proposed generalized neuron model shown in Fig. 2.2 has summation and
product as aggregation and sigmoid and Gaussian as activation functions. The final

Output

Inputs

Weights

Aggregation Operator

Threshold function

Fig. 2.2 Generalized neural network (GNN)
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output of the neuron is a function of output of all activation functions. The learning
of GNN is explained in [1].

The are many advantages of GNN such as less number of unknown weights, less
training time, less number of training patterns, less complexity, and more flexibility.

The basic idea is to use the wavelet transforms and predict the data by synergism
of soft computing techniques GNN-W-GA-F for individual coefficients of wavelet
transform represented by a3, d1, d2, and d3. The input to the architecture to predict
the wavelet coefficients is explained in Fig. 2.3.

2.4 Adaptive GA with Fuzzy System (GA-F)

Genetic algorithm (GA) simulates the strategy of evolution and survival of fittest. It
is a powerful domain-free approach integrated with GNN as a learning tool. The
GNN–GA integrated approach is applied to different problems to test this approach.
It is well known that the GA optimization is slow and depends on the number of
variables. To improve the convergence of GA, adaptive GA is developed, in which,
the GA parameters are modified using fuzzy rules [5]. The initial parameters of
GAF are given below:

GAF Parameters

• Population size: 50
• Initial crossover probability: 0.9

Forecasted 
Data

Signal

GNN-
GA-F

GNN
- GA-

F

GNN-
GA- F

ANN/
NF/ 

GNN

W
A
V
E
L
E
T

T
R
A
N
S
F
O
R
M

R
E
C
O
N
S
T
R
U
C
T
I
O
N

Fig. 2.3 Mechanism for short-term load forecasting
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• Initial mutation probability: 0.1
• Selection operator: tournament selection
• Number of generations: 100

2.5 Short-Term Load Forecasting Using Generalized
Neural Network-Wavelet-Genetic Algorithm-Fuzzy
System (GNN-W-GA-F)

The neural network (NN) is widely used for short-term load forecasting applications
in the past few decades. To improve the performance of ANN, GNN is developed.
The GNN is then used to predict each wavelet component separately and combine
the (predicted components) to get forecasted load.

The following steps are used in forecasting using GNN-W-GA-F.

Step-I Data collection
The electrical load data was collected from 33/11 kV substation of
Dayalbagh Educational Institute (D.E.I.) Dayalbagh Agra. India has been
recorded at every 1 h interval for each day for 1 year. The week con-
taining no national holidays, Saturday, and Sunday, or religious holidays
are not considered as desired data in the forecasting model. Furthermore,
special holidays cannot be used as inputs since they have lower loads than
a regular Monday to Friday and mislead the training.

Step-II Preprocessing of Data
The data collected in earlier step is preprocessed.

(a) Filtering of data
In this preprocessing of data, the data is de-noised, i.e., remove bad
data. The data of Saturday and Sunday is removed, because the load
patterns of these days are quite different and also they are not used in
forecasting. Also the error data due to sensor problem or any other
fault is removed.

(b) Normalization of data
The filtered and de-noised data is then used for electrical load fore-
casting after normalizing them.
The normalization range used in normalization process is from 0.1 to
0.9 and not in the range 0–1. This is because in extrapolation there is
a tolerance of 0.1 on both sides.

Step-III Wavelet decomposition of Electrical load pattern
The wavelet transform is used to decompose the normalized electrical
load pattern into a number of wavelet components as shown in Fig. 2.1.
The original normalized signal of load demand is decomposed to high-
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and low-frequency component by using db8, mother wavelet (db8) for
calculating the coefficient of the details (d) and approximate
(a) components.

Step-IV Selection of training pattern
The first step for training is obtaining an accurate and sufficient historical
data after preprocessing. The data should be chosen that is relevant to the
model. How well the data is chosen is the defining factor in how well the
model output will match the event being modeled. There should be some
correlation between the training data and the testing data. In the load data,
for example, all the Monday’s data look alike and this holds good for all
the days of the week with some variations.
The wavelet-decomposed components are used for training.
The training patterns are consisting of decomposed wavelet components
of given load pattern at time t, t − 1, t − 2 (past three points) as input and
the forecasted wavelet component at t + 1 as output. Hence, training
patterns expressed as pair of set of input and output.
Training Pattern = [Input vector] →
[Output Vector]
Roughly 85 % of total load data is used for training and rest 15 % load
data is used for testing of models. The pseudo code of GNN-W-GA-F is
given below.

Step-V Forecasting using GNN-W
The forecasting models using GNN-W-GA-F for wavelet components
have been used after proper training.

Step-VI Reconstruction of forecasted load
The forecasted load pattern is reconstructed after combining the wavelet
components. In the comparisons of model performance, the load forecast
accuracy is determined by RMSE.
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2.6 Results and Discussions

The training of a3 component using GNN-W-GAF is shown in Fig. 2.4 as maxi-
mum fitness of GA-F. Actual load and forecasted load using GNN-W-DA-F
during testing is given graphically in Fig. 2.5.
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2.7 Conclusion

The paper deals with short-term electrical load forecasting problem using integrated
approach of soft computing techniques and wavelet transform. The techniques and
forecasting models were applied to datasets available from 33/11 kV substation of
Dayalbagh Educational Institute, Dayalbagh, Agra, U.P. India. The soft computing
technique, GNN-W-GA-F, has been applied to develop models for STLF. The
integrated model, i.e., GNN-W-GAF gives the least RMSE in comparison to all the
other ANN-based models.
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Chapter 3
Integral Geometry and Mathematical
Problems of Image Reconstruction

Gaik Ambartsoumian

Abstract Integral geometry is a branch of mathematics studying the representation
of functions by their integrals along various curves and surfaces. Such tasks arise
naturally in many problems of image reconstruction in medicine, remote sensing,
non-destructive testing, and some other areas. In this paper, we give a short survey
of mathematical models of several imaging modalities, which are based on gen-
eralized Radon transforms. We discuss the major mathematical problems arising in
the study of these transforms, describe the known results, and state some open
problems. The paper includes an extensive list of references providing further
sources for interested readers.

Keywords Integral geometry � Image reconstruction � Generalized Radon
transforms � Computer-assisted tomography (CAT) � Thermoacoustic tomography
(TCT)

3.1 Introduction

In many imaging applications, the data collected by imaging devices correspond to
the integrals of an unknown function along certain curves or surfaces. The math-
ematical task of image reconstruction in these cases becomes the stable recovery of
that unknown function from its integrals [1–4]. This requires the inversion of
so-called generalized Radon transforms (GRT) [3–6] (Fig. 3.1).

In this section, we describe several imaging modalities used in medicine and
other fields, consider their mathematical models, and define the corresponding
Radon transforms. We state the major problems arising in the study of these
transforms the detailed discussion of which is presented in further sections.
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One of the most famous medical imaging techniques is the computer-assisted
tomography (CAT) which uses X-rays to produce images of the interior organs of
the human body. In simple terms, the CAT process can be described as follows. An
X-ray beam is sent through the body, and its intensity is measured at both the
source and the detector (Fig. 3.1). It is known from physics that the change of
intensity ΔI of the beam on a small interval Δx satisfies the following simple law:

DI
I
¼ f ðxÞDx; ð3:1Þ

where f(x) is the X-ray attenuation coefficient of the human body at point x and I
(x) is the intensity of the beam at point x. If the measured intensity at the source is I0
and at the detector is I1 then considering infinitesimal increments of Δx in (3.1) and
solving the resulting differential equation one gets

I1
I0

¼ exp �
Z
L

f ðxÞdx
8<
:

9=
;; ð3:2Þ

where the integral is taken along the line L passing through the source and the
detector.

Hence, using the measurements of I0 and I1 at various locations of the source and
the detector one can obtain the integrals of the unknown X-ray attenuation function
f(x) along various straight lines passing through the body. The grayscale graph of
f(x) is exactly what the CAT scanners use to create images of the interior organs.
Thus, the mathematical task of image reconstruction in CAT is the recovery of
f(x) from its integrals along straight lines.

Definition 1 The Radon transform R maps a function f on R
2 into the set of its

integrals along lines in R2. In particular, if h 2 ½0; 2p�, x ¼ ðcos h; sin hÞ and s 2 R,
then

Source

Detector

Fig. 3.1 A sketch of an X-ray passing through the body in CAT
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Rf ðh; sÞ ¼
Z

x�x¼s

f ðxÞdx ¼
Z
x?

f ðsxþ yÞdy ð3:3Þ

is the integral of f along lines orthogonal to x at (signed) distance S away from the
origin.

Here f is assumed to be such that the integrals are well defined. For example, one
can take f 2 SðR2Þ, the Schwartz space. For simplicity, in this article, we will
consider mainly compactly supported functions f of certain smoothness. For details
about most general classes of f for which the theory of GRT has been developed see
[3–6].

In the discussion above, we assume that the source and the detector move within
a fixed plane so that we get the integrals of f along all possible lines in that plane.
Thus, the reconstructed 2D image will correspond to a cross-sectional view of the
human body along that plane. Then one can vertically stack such cross-sectional
images to create a 3D image of the body interior.

Remark 2 One can consider a setup where the source and the detector are not
limited to a plane, and are placed at various locations in the space. In this case the
CAT scanner measures the integrals of the X-ray attenuation coefficient f on R

3

along lines in R
3. The fully 3D recovery of f from such data is also an interesting

problem, which will not be addressed in this paper. For more details on this we refer
the interested reader to [1–4, 6]. Here we just mention that in dimensions n = 3 and
higher, the transform integrating a function along lines in R

n is called X-ray
transform, whereas the term Radon transform refers to the transform integrating
f over hyperplanes in R

n. Of course, for n = 2 these transforms coincide.
The problem of 2D-image reconstruction in CAT requires the inversion of the

Radon transform defined above. In further sections, we will discuss the existence
and uniqueness of such an inversion, the inversion formulas and algorithms, as well
as their numerical implementations and stability issues. We continue this section
with discussing a few other imaging modalities and corresponding GRT.

Thermoacoustic tomography (TCT) is one of the most promising novel medical
imaging techniques [7–12]. The TCT scanner sends a short pulse of radio-
frequency (RF) electromagnetic waves through the body heating up the tissue. The
resulting thermo-elastic expansion of the tissue generates ultrasound waves which
are measured by an array of transducers outside of the body. The measured data is
then used to recover the RF-absorption coefficient f(x), and the grayscale graph of
which is used to generate the image of the body interior.

In a simple mathematical model of TCT, it is assumed that the RF energy is
deposited instantaneously and uniformly through the body, and the speed of sound
c is constant inside the body (see Fig. 3.2). Under these assumptions, the signal
registered at a given transducer location p at some moment of time t corresponds to
the integral of f(x) along a sphere Sðp; rÞ centered at p and of radius r ¼ ct=2 (e.g.,
see [7–12]).
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Hence, by placing the transducer at various locations and registering the gen-
erated ultrasound signals as functions of time, the TCT scanner effectively measures
the integrals of the unknown image function f along a family of spheres. So the
image reconstruction problem in TCT is mathematically equivalent to the recovery
of f from its integrals along spheres.

One can place the transducers along a fixed planar curve and focus them so that
they register only the signals coming from that plane. In that case, we get a problem
of recovering a function f in R2 from its integrals along a two-dimensional family of
circles in R2 (one parameter specifying the center of the circle along the given curve
and the other one specifying its radius). As in the case of CAT, one can then
vertically stack these 2D images to get a 3D image of the body interior. Of course,
the fully 3D reconstruction of f from integrals over spheres in R

3 is also possible.

Definition 3 The spherical Radon transform (SRT) RS maps a function f on R
n

into the set of its integrals along spheres in R
n

Rsf ðp; rÞ ¼
Z

jx�pj¼r

f ðxÞdrðxÞ; ð3:4Þ

where drðxÞ is area measure on the sphere jx� pj ¼ r. (The transform is often
called circular Radon transform when n= 2, with dσ(x) denoting the arc length
measure on the circle.)

For SRT too, we assume in this article that f is a compactly supported function of
certain smoothness.

The image reconstruction in TCT requires the inversion of the SRT, which will
be discussed in the further sections. It is important to mention that SRT inversion is
also needed in some other imaging modalities, e.g., in photo-acoustic tomography
[11, 12], mono-static ultrasound reflection tomography [13, 14], radar and sonar
imaging [15, 16], etc.

In bi-static ultrasound tomography (URT), an emitter sends spherical sound
waves through the body and the backscattered echoes are registered by a receiver.
Assuming that the speed of sound is constant in the body, the signal registered at
any given moment by the receiver is generated by reflections from all those points
for which the sum of their distances r1 and r1 to the emitter and the receiver is

Transducer
r

p

S(p,r)
RF

body

Fig. 3.2 A sketch of a simple TCT model
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constant (depending on time and sound speed) [17, 18]. In other words, those points
are located on confocal ellipsoids of rotation in 3D (or ellipses in 2D) with foci at
the emitter and receiver locations, and the problem of image reconstruction boils
down to the inversion of a transform integrating functions along such ellipsoids in
3D (or ellipses in 2D) (see Fig. 3.3).

Definition 4 The elliptical Radon transform of f(x), x 2 R
n is defined as

REf ðpe; pr; rÞ ¼
Z

jx�pej þ jx�pr j¼r

f ðxÞdrðxÞ; ð3:5Þ

where dσ(x) is the area measure on the ellipsoid jx� pej þ jx� prj ¼ r (or arclength
in 2D).

The rest of the paper is organized as follows. In Sect. 3.2, we discuss the known
results and open problems related to the uniqueness of inversion of the generalized
Radon transforms presented here. Section 3.3 is dedicated to the inversion formulas
and algorithms of such transforms. Section 3.4 includes some additional remarks,
and we finish the paper with acknowledgements.

3.2 Uniqueness

The Radon transform Rf defined in Eq. (3.3) is a classical concept that has been
extensively studied in twentieth century. It is well known that if f 2 SðR2Þ then it is
uniquely determined by Rf ðh; sÞ, with h 2 ½0; 2p�, s 2 R (e.g., see [3, 5, 6]).
Various inversion formulas are known for this case, some of which will be pre-
sented in Sect. 3.3.

Notice, that the set of all lines in the plane is two-dimensional, so here we
recover a function f(x), x 2 R

2 of two variables from a two-dimensional dataset
Rf ðh; sÞ. The situation is drastically different for the spherical transform RSf , since
the set of the circles in the plane is three-dimensional, and for the elliptic transform
REf , since the set of ellipses in the plane is five-dimensional. (Similar mismatch
happens also if we consider f(x) with x 2 R

n, n ≥ 3.) Hence the inversion problems

Emitter

r1

E(pe, pr,r)

body

Receiver

r2

Fig. 3.3 A sketch of a simple
bi-static URT model
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for RSf and REf are overdetermined. To match the dimensions of the domain of
f and the GRT data, one needs to restrict both RSf and REf to two-parameter
families of circles and ellipses correspondingly. Consequently, the uniqueness
results corresponding to these transforms depend on the choice of these restrictions,
thus are more complicated, and less well understood.

While there are many different ways of restricting the degrees of freedom of RSf
to two, the imaging applications described above suggest a natural choice of
restricting the centers of integration circles to a one-dimensional set M (e.g., a
curve). From the imaging point, this curve can represent an arc of transducers
surrounding the patient’s body in TCT, or a flight trajectory of a plane in synthetic
aperture radar imaging. Similarly, one can reduce the dimension of REf by two
restricting the foci of the integration ellipses to a fixed simple curve (e.g., a circle).
There will still be one extra dimension left in this case, and we choose to reduce it
by forcing the distance between the foci (i.e., between the emitter and the receiver
in URT) to be constant.

With these restrictions matching the dimensions of the domain of f and GRT
data, we can now formulate several results about the unique inversion of these
restricted transforms. Let us start with a definition

Definition 5 The spherical Radon transform RS is said to be injective on a set M
(M is called a set of injectivity) if for any f 2 CcðRnÞ the condition RSf ðp; rÞ � 0
for all r 2 R

þ and all p 2 M implies f � 0.
In other words, if M is an injectivity set, then the restricted transform RSf ðp; rÞ,

p 2 M can be uniquely inverted. Similarly,

Definition 6 The elliptical Radon transform RE is said to be injective on a set M
(M is called a set of injectivity) if for any f 2 CcðRnÞ the conditionREf ðpe; pr; rÞ �
0 for all r 2 R

þ and all pe; pr 2 M implies f � 0.
In the case of n = 2, a complete description of injectivity sets for RS was given

by Agranovsky and Quinto in [19]. To state their result, we need to introduce one
more concept.

Definition 7 For any n 2 N denote by Rn the Coxeter system of n lines
L0; . . .; Ln�1 in the plane: Lk ¼ fteipk=nj �1\t\1g (here we identify the plane
with the complex plane C).

In other words, a Coxeter system of n lines is a “cross” of n lines intersecting at
the origin under equal angles. Then all injectivity sets of RS in R

2 can be described
as follows.

Theorem 8 ([19]) A set M 2 R
2 is a set of injectivity for the circular Radon

transform RS on CcðR2Þ if and only if M is not contained in any set of the form
xðRNÞ

S
F, where x is a rigid motion in the plane, RN is a Coxeter system of N

lines, and F is a finite set.
The authors of [19] also formulated the (still unproven) conjecture for higher

dimensions.
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Conjecture 9 ([19]) The following condition is necessary and sufficient for M to be
a set of injectivity for the spherical Radon transform RS on CcðRnÞ: M is not
contained in any set of the form xðRÞSF, where x is a rigid motion of Rn, R is the
zero set of a homogeneous harmonic polynomial, and F is an algebraic subset in
R

n of co-dimension at least 2.
While the complete result in higher dimensions is still not proven, various partial

results have been established in the last decade.
In [20], we used some PDE techniques developed in [21] to prove some very

general results concerning geometry of non-injectivity sets of SRT, as well as
reproved certain known results with much simpler means (namely, finite speed of
propagation and domain of dependence for the wave equation). We formulate one
of these results below.

Let S be an algebraic hypersurface that splits R
n into connected parts H j,

j ¼ 1; . . .;m. One can define the interior metric in H j as follows:

d jðp; qÞ ¼ inff length of cg;

where the infimum is taken over all C1-curves c in H j joining points p; q 2 H j.

Theorem 10 ([20]) Let S and H j be as above and f 2 CðRnÞ be such that
RSf ðp; rÞ ¼ 0 for all p 2 S, and all r[ 0. Let also x 2 �H j, where �H j is the closure
of H j. Then

distðx; supp f \H jÞ ¼ dist jðx; supp f \H jÞ� distðx; supp f \HkÞ; k 6¼ j;

where distances dist j are computed with respect to the metrics d j, while dist is
computed with respect to the Euclidean metric in R

n. In particular, for x 2 S and
any j

distðx; supp f \H jÞ ¼ dist jðx; supp f \H jÞ ¼ distðx; supp f Þ; j ¼ 1; . . .;m:
Notice, that the obtained necessary conditions for S to be a non-injectivity set not

only hold in arbitrary dimensions, but also they do not require f to have compact
support, and in fact do not impose any restriction on the behavior of f at infinity.
One of the corollaries of the previous theorem is the following.

Theorem 11 ([20]) Let S � R
n and f ð6¼0Þ 2 CcðRnÞ be such that RSf ðp; rÞ ¼ 0

for any p 2 S, and any r[ 0. If the external boundary of the support of f is
connected and its curvature is bounded from below, then S is a ruled hypersurface
(union of a family of lines).

If we could also show that all these lines pass through the same point (which can
be easily done in 2D [20], but not so in higher dimensions), then this would
immediately imply the validity of Conjecture 9 for this particular case (see [20]).

For further details about the injectivity sets of the spherical transform, we refer
the reader to [20] and the references there.
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Another interesting question related to the uniqueness of inversion of Rs is the
possibility of unique reconstruction of f from Rsðp; rÞ, where p 2 M for some
specific setM of dimension 1, and r is restricted to an interval 0\r\r0 (as opposed
to r > 0 used before).

In [22], we proved that in the case when M is a circle of radius R, one can get
such uniqueness results.

Theorem 12 ([22]) Let f ðr; hÞ be an unknown continuous function supported
inside the annulus Aðe;RÞ ¼ fðr; hÞ : r 2 ðe;RÞ; h 2 ½0; 2p�g, where 0\e\R. If
RSf ðq;/Þ is known for / 2 ½0; 2p� and q 2 ½0;R� e�, then f ðr; hÞ can be uniquely
recovered in Aðe;RÞ.
Theorem 13 ([22]) Let f ðr; hÞ be an unknown continuous function supported
inside the annulus AðR; 3RÞ ¼ fðr; hÞ : r 2 ðR; 3RÞ; h 2 ½0; 2p�g. If RSf ðq;/Þ is
known for / 2 ½0; 2p� and q 2 ½0;R1�, where 0\R1\2R then f ðr; hÞ can be
uniquely recovered in AðR; R1Þ.

The paper also presented an exact inversion formula for SRT from this type of
radially partial data for both interior and exterior problems. Some potential fields of
application of the results of this work are intravascular ultrasound (IVUS) and
Transrectal Ultrasound (TRUS) imaging, where the exterior problem appears nat-
urally [23, 24].

For the case of the elliptic Radon transform, theorems similar to the Theorems
12 and 13 have been established in [25]. No comprehensive result similar to
Theorem 8 is known for ERT at this time.

3.3 Inversion

Exact inversion formulas for Radon-type transforms can be roughly divided into two
categories: closed backprojection type inversion formulas and expansions into series.

For the regular Radon transform R, there are various explicit inversion formulae
in the case, when Rf ðw; tÞ is known for all w 2 ½0; 2p� and all t (see [3]). For
example, if f 2 SðR2Þ (the Schwartz space), one of the most commonly used
inversion formulae is the filtered backprojection:

f ðx; yÞ ¼ 1
4p

Z2p
0

H Rf
0
t

� �
w; x coswþ y sinwð Þdw; ð3:6Þ

where H is the Hilbert transform defined by

HhðtÞ ¼ � iffiffiffiffiffiffi
2p

p
Z
R

sgn rð Þ bhðrÞ eirt dr; ð3:7Þ
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and ĥðrÞ is the Fourier transform of h(t), i.e.,

ĥðrÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

hðtÞe�irtdt: ð3:8Þ

A typical example of an inversion formula using series expansion is the one
described by A. Cormack in his pioneering paper [26]. Let f ð/; rÞ be the image
function in polar coordinates, gðh; sÞ ¼ Rðh; sÞ as in formula (3.3), with
/; h 2 ½0; 2p�. Then one can expand both functions into Fourier series with respect
to the corresponding angular variables:

f ð/; rÞ ¼
X
l

flðrÞeil/; gðh; sÞ ¼
X
l

glðsÞeilh:

Cormack showed in [26] that the lth Fourier coefficient of g depends only on lth
Fourier coefficient of f, and that relation can be inverted, namely

glðsÞ ¼ 2
Z1
s

Tjlj
s
r

� �
1� s2

r2

� ��1=2

flðrÞdr

and

flðrÞ ¼ � 1
p

Z1
r

ðs2 � r2Þ�1=2Tjlj
s
r

� �
g0lðsÞds;

where Tjlj are the Chebyshev polynomials of the first kind.
For SRT, the first exact inversion formulas used Fourier expansion techniques in

2D [13] and 3D [14] spherical acquisition geometry. For example, the result of
Norton [13] can be stated as follows. LetRS be the 2D spherical Radon transform on
the plane that integrates functions compactly supported inside the unit diskD over all
circles jx� pj ¼ q with centers p ¼ ðcos h; sin hÞ located on the unit circle
S. Consider the Fourier decomposition of f ðr;/Þ and gðq; hÞ in angular variables

f ðr;/Þ ¼
X1
�1

fkðrÞeik/; gðq; hÞ ¼ RSf ðq; hÞ ¼
X1
�1

gnðqÞeinh: ð3:9Þ

Since SRT commutes with rotations about the origin, the Fourier series
expansion with respect to the polar angle partially diagonalizes the operator, and
thus the nth Fourier coefficient gnðqÞ of g ¼ RSf will depend only on the nth
coefficient fn of the original f. It was shown in [13] that:

gnðqÞ ¼ 2pqH0fJnHnffngg; ð3:10Þ
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where ðHnhÞðrÞ is the Hankel transform of an integer order n for a function h(r) on
R

þ

ðHnhÞðrÞ ¼
Z1
0

JnðrrÞhðrÞrdr:

Here the standard notation Jn is used for Bessel functions. Using the fact that the
Hankel transform is self-invertible one can now easily get an exact inversion of
SRT by

fkðrÞ ¼ Hk
1

JkðrÞH0
gkðqÞ
2pq

� �	 

:

In [14], the authors obtained a similar result in terms of spherical harmonics
expansion of g in 3D.

In [22], we used similar techniques to derive exact inversion formulas for SRT of
functions supported inside annuli, which are interior or exterior with respect to the
data acquisition circle. The approach was based again on the rotation invariance of
SRT, which allowed to diagonalize the operator and reduce the problem to the
solution of an Abel-type integral equation with a special function kernel (in this
case including Chebyshev polynomials). The authors are currently working on the
extension of that result to 3D functions supported in spherical shells.

For the case of the elliptic Radon transform, similar results have been established
in [25].

Another approach for obtaining exact inversion formulas for SRT in the form of
series expansion was demonstrated by Kunyansky in [27]. Here the author used the
expansion of the unknown function f in the basis of eigenvalues of Dirichlet
Laplacian –Δ, and the known relation between SRT and the solution of wave
equation. The result in [27] holds for arbitrary closed acquisition surfaces, for which
the eigenfunctions of the Dirichlet Laplacian are explicitly known (e.g., cube, finite
cylinder, half-sphere).

Another important class of exact inversions includes closed form integral
transform type formulas. For the case of SRT various backprojection type, formulas
have been established by different authors in the spherical acquisition geometry
[8, 21, 28–30].

For example, when n = 3 the authors of [21] proved the following Filtered Back
Projection (FBP) formula

f ðxÞ ¼ �1
8p2

Z
jpj¼1

1
jx� pj RSf

00ðp; jx� pjÞdp

0
B@

1
CA; ð3:11Þ
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and in the case of n ¼ 2 it was shown in [28] that if jpj ¼ 1 then

f ðxÞ ¼ 1

ð2pR0Þ2
Dx

Z2p
0

Z2R0

0

rRSf ðp; rÞ log r2 � jx� pj2�� ��drd/: ð3:12Þ

In planar geometry backprojection type, inversion formulas for functions that are
even with respect to the plane were established in [9, 31, 32]. In case of cylindrical
geometry, similar results were found in [10]. It should be noted, that these are the
only acquisition geometries, for which closed form inversion formulas for SRT
have been discovered. For more complicated geometries, one has to use either
approximate inversion techniques described above, or the series expansion type
approaches.

3.4 Additional Remarks

• Another interesting topic in integral geometry is the description of ranges of
GRT’s. Typically, the range of a Radon-type transform satisfies infinitely many
conditions, in other words it has an infinite co-dimension in the space of smooth
functions with corresponding variables. The knowledge of these conditions may
be useful in applications to suppress the noise in data measurements, fill in some
missing data with better approximation than mere zero-filling, determine mal-
functioning hardware in the scanners, etc. To learn more about range descrip-
tions of the Radon transform R, we refer the reader to [3–6]. For the spherical
Radon transform RS check out [33–35] and the references there. The range
description of the elliptical Radon transform RE is still an open problem.

• The existence and uniqueness of an inversion for a GRT does not guarantee the
possibility of an application of such an inversion on practise. In many setups,
any existing inversion formula or algorithm is unstable, and the numerical
implementations of these formulas lead to blurry images, and/or severe artifacts.
To learn more about the stability issues of the inversion of GRT, we refer the
reader to [3, 4, 11, 12, 16] and the references there.
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Chapter 4
Microlocal Analysis of Some Synthetic
Aperture Radar Imaging Problems

Venkateswaran P. Krishnan

Abstract In this article, we analyze the microlocal properties of the linearized
forward scattering operator F ; which arises in synthetic aperture radar imaging.
A frequently applied imaging technique is to study the normal operator F�F (F� is
the L2 adjoint of F ). However, such an imaging technique introduces artifacts in the
image. We study the structure of these artifacts.

Keywords Synthetic aperture radar imaging � Singular Fourier integral operators �
Elliptical radon transforms � Fold and blowdown singularities

MSC 2010 Classification 35S30 � 35S05 � 58J40 � 35A27

4.1 Introduction

In synthetic aperture radar (SAR) imaging, a region of interest on the surface of the
earth is illuminated by electromagnetic waves from a moving airborne platform. One
then tries to reconstruct an image of the region based on the measurement of
backscattered waves. For an in-depth treatment of SAR imaging, we refer the reader
to [3, 4]. SAR imaging is similar to other imaging problems such as sonar or seismic
imaging where acoustic or pressure waves, respectively, are used to reconstruct
objects on the ocean floor or underneath the surface of the earth [2, 5, 6, 23].

In monostatic SAR, the source and the receiver are located on the same moving
airborne platform. In bistatic SAR, the source and the receiver are on independently
moving airborne platforms. There are several advantages in considering such data
acquisition geometries (ways of acquiring data). The receivers, compared to
the transmitters, are passive and hence are more difficult to detect. Therefore, by
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separating their locations, the receivers alone can be in an unsafe environment,
while the transmitters are in a safe environment. Furthermore, bistatic SAR systems
are more resistant to electronic countermeasures such as target shaping to reduce
scattering in the direction of incident waves [21].

In this paper, we consider a bistatic SAR system where the antennas have poor
directivity and hence the beams do not focus on targets on the ground. We assume
that the transmitter and receiver traverse a one-dimensional curve and the
backscattered data is measured at each point on this curve for a certain period of
time. For the acquisition geometries we consider as in the monostatic SAR case, we
show that with a weak scattering assumption, the linear scattering operator that
relates the unknown function that models the object on the ground to the data at the
receiver is a Fourier integral operator (FIO) [8, 17, 19, 28, 29]. Now, when F is an
FIO, the canonical relation CF associated to F tells us how the singularities of the
object are propagated to the data. The canonical relation CF� of the L2 adjoint F� of
F gives us information as to how the singularities in the data are propagated back to
the reconstructed object. The microlocal analysis of singularities of the object is
then done by analyzing the composition CF� � CF . Such an analysis for monostatic
SAR has been done by several authors [9, 10, 25, 27] and is fairly well understood.
In their work [25], Nolan and Cheney showed that the composition of the linearized
scattering operator with its L2 adjoint is a singular pseudodifferential operator
(W DO) belonging to the class of Fourier integral operators associated with two
cleanly intersecting Lagrangians [12–16, 18, 24]. Felea in her works [9, 10] further
analyzed the properties of the composition of these operators. We would also like to
mention the works of Yazici, Cheney, and their collaborators who have analyzed
SAR imaging in a statistical framework [30–32].

In this article, we study the microlocal analysis for the bistatic SAR imaging
problem for two different acquisition geometries; common offset SAR; and com-
mon midpoint SAR. We show that in each of these cases, artifacts are introduced in
image reconstruction and describe the nature of these artifacts. The results presented
in this article are based on the works [22] of the author done in collaboration with
E.T. Quinto and [1] done in collaboration with G. Amabartsoumian, R. Felea,
C. Nolan, and E.T. Quinto.

4.2 The Linearized Scattering Model

The linearized scattering model [4] has been the basis for several works on
monostatic SAR imaging. Here, we derive the linearized scattering model for
bistatic SAR imaging, based on slight modifications to the model derived for the
monostatic case [4].

We assume that a bistatic SAR system is involved in imaging a scene. Let cTðsÞ
and cRðsÞ for s 2 ðs0; s1Þ be the trajectories of the transmitter and receiver,
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respectively. The transmitter transmits electromagnetic waves that scatter off the
target, which are then measured at the receiver. We are interested in obtaining a
linearized model for this scattered signal.

The propagation of electromagnetic waves can be described by the scalar wave
equation

D� 1
c2

@2
t

� �
Eðx; tÞ ¼ �PðtÞdðx� cTðsÞÞ; ð4:1Þ

where c is the speed of electromagnetic waves in the medium, E(x, t) is each
component of the electric field, and P(t) is the transmit waveform sent to the
transmitter antenna located at position cTðsÞ. The wave speed c is spatially varying
due to inhomogeneities present in the medium. We assume that the background in
which the electromagnetic waves propagate is free space. Therefore, c can be
expressed as

1
c2ðxÞ ¼

1
c20

þ ~VðxÞ;

where the constant c0 is the speed of light in free space and ~VðxÞ is the perturbation
due to deviation from the background, which we would like to recover from
backscattered waves.

Since the incident electromagnetic waves in typical radar frequencies attenuate
rapidly as they penetrate the ground, we assume that ~VðxÞ varies only on a
two-dimensional surface. Therefore, we represent ~V as a function of the form

~VðxÞ ¼ VðxÞd0ðx3Þ;

where we assume for simplicity that the earth’s surface is flat, represented by the
x = (x1, x2) plane.

The background Green’s function g is then given by the solution to the following
equation:

D� 1
c20

@2
t

� �
gðx; tÞ ¼ �d0ðxÞd0ðtÞ:

We can explicitly write g as

gðx; tÞ ¼ dðt � jxj=c0Þ
4pjxj :
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Now, the incident field Ein due to the source sðx; tÞ ¼ �PðtÞdðx� cTðsÞÞ is

Einðx; tÞ ¼ �
Z

gðx� y; t � sÞsðy; sÞdyds

¼ Pðt � jx� cTðsÞj=c0Þ
4pjx� cTðsÞj

:

Let E denote the total field of the medium, E = Ein + Esc. Then the scattered field
can be written using the Lippman–Schwinger equation

Escðz; tÞ ¼ �
Z

gðz� x; t � sÞ@2
t Eðx; sÞVðxÞdxds: ð4:2Þ

We linearize (4.2) by the first born approximation and write the linearized
scattered wave field at receiver location cRðsÞ

Esc
linðcRðsÞ; tÞ ¼ �

Z
gðcRðsÞ � x; t � sÞ@2

t E
inðx; sÞVðxÞdxds

¼
Z

dðt � s� jx� cRðsÞj=c0Þ
4pjx� cRðsÞj

e�ixðs�jx�cT ðsÞj=c0Þ x2pðxÞ
4pjx� cTðsÞj

� �
VðxÞdxdxds;

ð4:3Þ

where p is the Fourier transform of P.
Now, integrating (4.3) with respect to s, a linearized model for the scattered

signal is as follows:

dðs; tÞ :¼ Esc
linðcRðsÞ; tÞ ¼

Z
e
�ix t� 1

c0
Rðs;xÞ

� �
Aðs; x;xÞVðxÞdxdx; ð4:4Þ

where

Rðs; xÞ ¼ jcTðsÞ � xj þ jx� cRðsÞj ð4:5Þ

and

Aðs; x;xÞ ¼ x2pðxÞðð4pÞ2jcTðsÞ � xjjcRðsÞ � xjÞ�1:

This function includes terms that take into account the transmitted waveform and
geometric spreading factors.
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4.3 Common Offset SAR

In this section, we study the microlocal analysis of a SAR system in which the
transmitter and receiver traverse a straight line above the ground offset by a constant
distance at all times. All the results presented in this section are taken from the
author’s joint work with Quinto [22].

4.3.1 Transmitter and Receiver in a Linear Trajectory

In this section, let us assume that the trajectory of the transmitter is

cT : ðs0; s1Þ ! R
3; cTðsÞ ¼ ðsþ a; 0; hÞ

and that of the receiver is

cRðsÞ : ðs0; s1Þ ! R
3; cRðsÞ ¼ ðs� a; 0; hÞ:

Here, a[ 0 and h[ 0 are fixed. From Eq. (4.4), the linearized model for the
data at the receiver, for s 2 ðs0; s1Þ and t 2 ðt0; t1Þ is

dðs; tÞ ¼
Z

e
�ix t� 1

c0
jx�cT ðsÞj þ jx�cRðsÞjð Þ

� �
Aðs; x;xÞVðxÞdxdx: ð4:6Þ

We multiply d(s, t) by a smooth (infinitely differentiable) function f(s, t) sup-
ported in a compact subset of (s0, s1) × (t0, t1). This compensates for the discon-
tinuities in the measurements at the end points of the rectangle (s0, s1) × (t0, t1). For
simplicity, let us denote the function f � d as d again. We then have

dðs; tÞ ¼
Z

e
�ix t� 1

c0
Rðs;xÞ

� �
Aðs; t; x;xÞVðxÞdxdx; ð4:7Þ

where now Aðs; t; x;xÞ ¼ f ðs; tÞAðs; x;xÞ.
Our method cannot image the point on the object that is “directly underneath”

the transmitter and the receiver. That is, if the transmitter and receiver are at
locations ðsþ a; 0; hÞ and ðs� a; 0; hÞ, then we cannot image the point (s, 0, 0); see
Remark 3.2. Therefore, we modify d in Eq. (4.7) by multiplying by another smooth
function g(s, t) such that

g � 0 in a small neighborhood of s; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p

c0

 !
: s0 \ s\ s1

( )
: ð4:8Þ
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For simplicity, again denote g � d as d and g � A as A. Consider,

F coVðs; tÞ :¼ dðs; tÞ ¼
Z

e�ixðt� 1
c0

jx�cT ðsÞj þ jx�cRðsÞjð ÞÞAðs; t; x;xÞVðxÞdxdx: ð4:9Þ

The subscript in F co stands for common offset. For simplicity, let us denote the
(s, t) space as Y.

We assume that the amplitude function A satisfies the following estimate: For
every compact K � Y � X and for every nonnegative integer a and for every
two-indexes b ¼ ðb1; b2Þ and c, there is a constant C such that

j@a
x@

b1
s @

b2
t @c

xAðs; t; x;xÞj 	 Cð1þ jxjÞ2�a:

This assumption is satisfied if the transmitted waveform P in (4.1) which is
approximately a Dirac delta distribution.

The phase function of the operator F co,

wðs; t; x;xÞ ¼ �x t � 1
c0

ðjx� cTðsÞj þ jx� cRðsÞjÞ
� �

ð4:10Þ

is positively homogeneous of degree 1 in x.
We now analyze some properties of the canonical relation of the operator F co.

Proposition 3.1 F co is a Fourier integral operator of order 3/2 with canonical
relation

Cco ¼ s; t;� x
c0

x1 � s� a
jx� cTðsÞj

þ x1 � sþ a
jx� cRðsÞj

� �
;�x

� �
;

�
x1; x2;� x

c0

x1 � s� a
jx� cTðsÞj

þ x1 � sþ a
jx� cRðsÞj

� �
;� x

c0

x2
jx� cTðsÞj

þ x2
jx� cRðsÞj

� �� �
: c0t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � s� aÞ2 þ x22 þ h2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sþ aÞ2 þ x22 þ h2

q
; x 6¼ 0

�
:

ð4:11Þ

Furthermore, (x1, x2, s, ω) is a global parameterization for Cco.
Remark 3.2 Recall that we modified the amplitude function A to be 0 in a neigh-
borhood of points “directly underneath the transmitter and receiver”; see (4.8). The
exclusion of such points is required, as can be seen in the definition of the canonical
relation (4.11) above. If the transmitter and receiver positions are ðsþ a; 0; hÞ and
ðs� a; 0; hÞ, respectively, then for (x1, x2) = (s, 0), the cotangent vector in the
canonical relation corresponding to the point (s, 0) is 0. Therefore, by making A to
be 0 in a neighborhood of such points, we exclude a neighborhood of such points
from the canonical relation in our analysis.

Proof This is a straightforward application of the theory of FIO. Since w in (4.10)
is a nondegenerate phase function with @xw and @s;tw nowhere zero and the
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amplitude A in (4.9) is of order 2, F is an FIO [19]. Since the amplitude is of order
2, the order of the FIO is 3/2 by [19, Definition 3.2.2]. By definition [19,
Eq. (3.1.2)]

Cco ¼ fðs; t; @s;twðx; s; t;xÞÞ; ðx;�@xwðx; s; tÞÞ : @xwðx; s; t;xÞ ¼ 0g:

A calculation using this definition establishes (4.11). Finally, it is easy to see that
ðx1; x2; s;xÞ is a global parameterization of Cco. □

In order to understand the microlocal mapping properties of F co and F�
coF co, we

consider the projections pL : T�Y � T�X ! T�Y and pR : T�Y � T�X ! T�X.
A good reference for mappings with singularities is the book [11].

Proposition 3.3 The projection pL restricted to Cco has a fold singularity on the set
R :¼ fðx1; 0; s;xÞ : x 6¼ 0g.
Proof The projection pL is given by

pLðx1; x2; s;xÞ

¼ s;
1
c0

jx� cTðsÞj þ jx� cRðsÞjð Þ;� x
c0

x1 � s� a
jx� cTðsÞj

þ x1 � sþ a
jx� cRðsÞj

� �
;�x

� �
ð4:12Þ

We have

dpL ¼

0 0 1 0
1
c0

x1�s�a
jx�cT ðsÞj þ

x1�sþ a
jx�cRðsÞj

� �
1
c0

x2
jx�cT ðsÞj þ

x2
jx�cRðsÞj

� �
� 0

� x
c0

x22 þ h2

jx�cT ðsÞj3
þ x22 þ h2

jx�cRðsÞj3
� �

x
c0

ðx1�s�aÞx2
jx�cT ðsÞj3

þ ðx1�sþ aÞx2
jx�cRðsÞj3

� �
� �

0 0 0 �1

0BBB@
1CCCA:

ð4:13Þ

Then,

detðdpLÞ ¼ x
c20

x2
1

jx� cTðsÞj2
þ 1

jx� cRðsÞj2
 !

1þ ðx1 � sÞ2 þ x22 þ h2 � a2

jx� cTðsÞjjx� cRðsÞj

 !
:

Now, Proposition 3.3 follows as a consequence of the following lemma. □

Lemma 3.4 The term

1þ ðx1 � sÞ2 þ x22 þ h2 � a2

jx� cTðsÞjjx� cRðsÞj
:
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is positive for all x 2 R
2, s 2 R and h and a positive.

Proof The second term on the right above is the angle between the vectors ðx1 �
s� a; x2;�hÞ and ðx1 � sþ a; x2;�hÞ. Since these vectors are never parallel (due

to a[ 0 and h[ 0), we have that 1þ ðx1�sÞ2 þ x22 þ h2�a2

jx�cT ðsÞjjx�cRðsÞj [ 0. □
Now returning to the proof of the Proposition 3.3, we have that detðdpLÞ ¼ 0 if

and only if x2 ¼ 0. Hence, detðdpLÞ vanishes on the set Σ and Lemma 3.4 again
shows that dðdetðdpLÞÞ on Σ is nonvanishing. This implies that pL drops rank by
one simply on Σ. Alternately, one can also see that ðdpLÞjR has rank 3 by letting
x2 = 0 in (4.13). Furthermore, dpL has full rank except on Σ, because detðdpLÞ is
nonvanishing except on Σ.

Now, it remains to show that TR\ KernelðdpLÞ ¼ f0g. This follows from the

fact that kernelðdpLÞ ¼ span @
@x2

� �
, but TR ¼ span @

@x1
; @
@s ;

@
@x

� �
. This concludes the

proof of Proposition 3.3. □

Proposition 3.5 Consider the projection pR : T�Y � T�X ! T�X. The restriction
of the projection to Cco has a blowdown singularity on Σ.

Proof We have

pRðx1; x2; s;xÞ

¼ x1; x2;� x
c0

x1 � s� a
jx� cTðsÞj

þ x1 � s� a
jx� cRðsÞj

� �
;� x

c0

x2
jx� cTðsÞj

þ x2
jx� cRðsÞj

� �� �
:

ð4:14Þ

Now,

dpR ¼

1 0 0 0
0 1 0 0
� � � x

c0

x22 þ h2

jx�cT ðsÞj3
þ x22 þ h2

jx�cRðsÞj3
� �

� 1
c0

x1�s�a
jx�cT ðsÞj þ

x1�sþ a
jx�cRðsÞj

� �
� � x

c0
ðx1�s�aÞx2
jx�cT ðsÞj3

þ ðx1�sþ aÞx2
jx�cRðsÞj3

� �
� 1

c0
x2

jx�cT ðsÞj þ
x2

jx�cRðsÞj
� �

0BBB@
1CCCA:

From this we see that kernelðdpRÞ � TR. Since detðdpRÞ ¼ detðdpLÞ, pR drops
rank by one simply along Σ. Therefore, the projection pR has a blowdown singu-
larity along Σ. □

We summarize what we have proved in this section by the following theorem:

Theorem 3.6 The operator F co defined in (4.9) is a Fourier integral operator of
order 3/2. The canonical relation Cco associated to F co defined in (4.11) satisfies
the following: The projections pL and pR defined in (4.12) and (4.14) are a fold and
blowdown, respectively.
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4.3.2 Image Reconstruction

Next, we study the composition of F co with F�
co. This composition is given as

follows:

F�
coF coVðxÞ ¼

Z
ei xðt � 1

c0
ðjx� cRðsÞj þ jx� cRðsÞjÞÞ � ~xðt � 1

c0
ðjy� cTðsÞj þ jy� cRðsÞjÞÞ

� �
� Aðx; s; t;xÞAðy; s; t; ~xÞVðyÞdsdtdxd~xdy:

After an application of the method of stationary phase [17], we can write the
kernel of the operator F�

coF co as

Kcoðx; yÞ ¼
Z

ei
x
c0

jy�cT ðsÞj þ jy�cRðsÞj�ðjx�cT ðsÞj þ jx�cRðsÞjÞð Þ~Aðx; y; s;xÞdsdx:

The phase function of the kernel Kcoðx; yÞ is

/ðx; y; s;xÞ ¼ x
c0

jy� cTðsÞj þ jy� cRðsÞj � ðjx� cTðsÞj þ jx� cRðsÞjÞð Þ: ð4:15Þ

Let us denote the wavefront set [20] of a distribution f by WF(f) and the twisted
wavefront set by WFʹ(f) [20].

Theorem 3.7

WFðKcoÞ0 � D[K;

where D :¼ fðx1; x2; n1; n2; x1; x2; n1; n2Þg and K :¼ fðx1; x2; n1; n2; x1;�x2;
n1;�n2Þg. Here, for a point x ¼ ðx1; x2Þ, ðn1; n2Þ are nonzero multiples of the
vector ð�@x1Rðs; xÞ;�@x2Rðs; xÞÞ, where R is defined in (4.5).

Proof Using the Hörmander–Sato Lemma [19], we have

WFðKcoÞ0 �

x1; x2;� x
c0

x1 � s� a
jx� cTðsÞj

þ x1 � sþ a
jx� cRðsÞj

� �
;� x

c0

x2
jx� cTðsÞj

þ x2
jx� cRðsÞj

� �� ��
;

y1; y2;� x
c0

y1 � s� a
jy� cTðsÞj

þ y1 � sþ a
jy� cRðsÞj

� �
;� x

c0

y2
jy� cTðsÞj

þ y2
jy� cRðsÞj

� �� �
:

jx� cTðsÞj þ jx� cRðsÞj ¼ jy� cTðsÞj þ jy� cRðsÞj;
x1 � s� a
jx� cTðsÞj

þ x1 � sþ a
jx� cRðsÞj

¼ y1 � s� a
jy� cTðsÞj

þ y1 � sþ a
jy� cRðsÞj

; x 6¼ 0
�
:

We now obtain a relation between (x1, x2) and (y1, y2). This is given by the
following lemma. □
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Lemma 3.8 For all s, the set of all (x1, x2), (y1, y2) that satisfy

jx� cTðsÞjþ jx� cRðsÞj ¼ jy� cTðsÞj þ jy� cRðsÞj; ð4:16Þ
x1 � s� a
jx� cTðsÞj

þ x1 � sþ a
jx� cRðsÞj

¼ y1 � s� a
jy� cTðsÞj

þ y1 � sþ a
jy� cRðsÞj

: ð4:17Þ

necessarily satisfy the following relations: x1 = y1 and x2 = ±y2.

Proof In order to show this, we will consider (4.16) and (4.17) as functions of R3

by replacing h in these expressions with x3 − h. We then transform these expres-
sions using the coordinates (4.18) and then set x3 = y3 = 0 to prove the lemma.

Consider the following change of coordinates, the so called prolate spheroidal
coordinates:

x1 ¼ sþ a cosh q cos h y1 ¼ sþ a cosh q0 cos h0

x2 ¼ a sinh q sin h cosu y2 ¼ a sinh q0 sin h0 cosu0

x3 ¼ hþ a sinh q sin h sinu y3 ¼ hþ a sinh q0 sin h0 sinu0
ð4:18Þ

where s, α > 0, and h > 0 are fixed and q 2 ½0;1Þ, h 2 ½0; p
, and u 2 ½0; 2pÞ. This
a well-defined coordinate system except for q ¼ 0 and h ¼ 0; p.

This coordinate system has also been used in the context of radar imaging by T.
Dowling in his thesis [7].

In the coordinate system (4.18), we have

jx� cTðsÞj ¼ aðcosh q� cos hÞ; jx� cRðsÞj ¼ aðcosh qþ cos hÞ;
x1�s�a
jx�cT ðsÞj ¼

cosh q cos h�1
cosh q�cos h ; x1�sþ a

jx�cRðsÞj ¼
cosh q cos hþ 1
cosh qþ cos h :

ð4:19Þ

The terms involving y are obtained similarly. Now (4.16) and (4.17) transform as
follows:

2 cosh q ¼ 2 cosh q0
cosh q cos h� 1
cosh q� cos h

þ cosh q cos hþ 1
cosh qþ cos h

¼ cosh q0 cos h0 � 1
cosh q0 � cos h0

þ cosh q0 cos h0 þ 1
cosh q0 þ cos h0

:

Using the first equality in the second equation, we have

cos h

cosh2 q� cos2 h
¼ cos h0

cosh2 q� cos2 h0
:

This gives cos h ¼ cos h0. Therefore, h ¼ 2np� h0, which then gives
sin h ¼ � sin h0. Therefore, in terms of (x1, x2) and (y1, y2), we have (x1 = y1) and
(x2 = ±y2). □
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Now, to finish the proof of Theorem 3.7, when x1 = y1 and x2 = y2, there is
contribution to WFðKcoÞ0 contained in the diagonal set given by D :¼
fðx1; x2; n1; n2; x1; x2; n1; n2Þg and when x1 = y1 and x1 = −y2, we have a contribution
to WFðKcoÞ0 contained in Λ, where K :¼ fðx1; x2; n1; n2; x1;�x2; n1;�n2Þg. □

From an imaging point of view, the result of Theorem 3.7 shows that artifacts are
introduced in image reconstruction. The true singularities are given by the
Lagrangian Δ and the artifact singularities are given by the Lagrangian Λ. A more
detailed analysis, as done in [22], shows that the strengths of the true singularities
are the same as that of the artifacts. We do not provide the details of this analysis
here, but instead refer to our work [22].

4.4 Common Midpoint SAR

In this section, we assume that both the transmitter and receiver are at the same
height h > 0 above the ground, x3 = 0, at all times and move in opposite directions at
equal speeds along the line parallel to the x1 axis and containing the common
midpoint (0, 0, h). Such a model arises when considering signals which have been
scattered from a wall within the vicinity of a scatterer and can be understood in the
context of the method of images; see [26] for more details. The material in this
section is taken from the author’s joint work with Ambartsoumian et al. [1].

Let cTðsÞ ¼ ðs; 0; hÞ and cRðsÞ ¼ ð�s; 0; hÞ for s 2 ð0;1Þ be the trajectories of
the transmitter and receiver, respectively.

The linearized model for the scattered signal we will use in this article is from [26]

dðs; tÞ :¼ F cmVðs; tÞ ¼
Z

e�ixðt� 1
c0
Rðs;xÞÞaðs; x;xÞVðxÞdxdx

for ðs; tÞ 2 Y ¼ ð0;1Þ � ð0;1Þ. As in the common offset case, the subscript in
F cm refers to common midpoint. Here, VðxÞ ¼ Vðx1; x2Þ is the function modeling
the object on the ground, R(s, x) is the bistatic distance

Rðs; xÞ ¼ jcTðsÞ � xj þ jx� cRðsÞj;

c0 is the speed of electromagnetic wave in free space and the amplitude term a is
given by

aðs; x;xÞ ¼ x2pðxÞ
16p2jcTðsÞ � xjjcRðsÞ � xj ;

where p is the Fourier transform of the transmitted waveform.
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4.4.1 Preliminary Modifications on the Scattered Data

For simplicity, from now on we will assume that c0 = 1. To make the composition
of F cm with its L2 adjoint F�

cm to be well-defined, we multiply d(s, t) by an
infinitely differentiable function f(s, t) identically equal to 1 in a compact subset of
ð0;1Þ � ð0;1Þ and supported in a slightly bigger compact subset of
ð0;1Þ � ð0;1Þ. We rename f � d as d again.

As we will see below, our method cannot image a neighborhood of the common
midpoint. That is, if the transmitter and receiver are at (s, 0, h) and (−s, 0, h),
respectively, we cannot image a neighborhood of the origin on the horizontal plane
of the earth, x3 = 0. Therefore, we modify d further by considering a smooth
function g(s, t) such that

gðs; tÞ ¼ 0 for ðs; tÞ : jt � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ h2

p
j\ 20e2=h; ð4:20Þ

where e [ 0 is given. Again we let g � d to be d and g � a to be a. Our forward
operator is

F cmVðs; tÞ ¼
Z

e�iuðs;t;x;xÞaðs; t; x;xÞVðxÞ dxdx ð4:21Þ

where

uðs; t; x;xÞ ¼ x t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q� �
: ð4:22Þ

From now on, we will denote the ground (the plane x3 ¼ 0) by X, thus the points
on X will be denoted as x = (x1, x2).

We assume that the amplitude function a 2 Smþ 1
2, i.e., it satisfies the following

estimate: For every compact set K � Y � X, nonnegative integer α, and
two-indexes β = (β1, β2) and γ, there is a constant C such that

j@a
x@

b1
s @

b2
t @c

xaðs; t; x;xÞj 	 Cð1þ jxjÞmþð1=2Þ�a: ð4:23Þ

This assumption is satisfied if the transmitted waveform from the antenna is
approximately a Dirac delta distribution.

With these modifications, we show that F cm is a Fourier integral operator of
order m and study the properties of the natural projection maps from the canonical
relation of F cm.
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4.4.2 Analysis of the Operator F cm

In this section, we prove the following Theorem 4.1, the proof of which is in
Lemma 4.4 and Proposition 4.6.

Theorem 4.1 Let F cm be as in (4.21). Then,

(1) F cm is an FIO of order m.
(2) The canonical relation Ccm associated to F cm is given by

Ccm ¼ s; t;�x
x1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � sÞ2 þ x22 þ h2
q � x1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 þ sÞ2 þ x22 þ h2
q

0B@
1CA;�x

0B@
8><>: ;

x1; x2;�x
x1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � sÞ2 þ x22 þ h2
q þ x1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 þ sÞ2 þ x22 þ h2
q

0B@
1CA;

�x
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � sÞ2 þ x22 þ h2
q þ x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 þ sÞ2 þ x22 þ h2
q

0B@
1CA
1CA :

s [ 0; t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q
;

x 6¼ 0 and x 6¼ 0g;
ð4:24Þ

and Ccm has global parameterization

ð0;1Þ � R
2n0	 
� Rn0ð Þ 3 ðs; x1; x2;xÞ 7!C:

(3) Let pL : Ccm ! T�Y and pR : Ccm ! T�X be the left and right projections,
respectively. Then, pL and pR drop rank simply by one on a set R ¼ R1 [R2

where in the coordinates ðs; x;xÞ, R1 ¼ fðs; x1; 0;xÞjs[ 0; jx1j[ e0;x 6¼ 0g,
and R2 ¼ fðs; 0; x2;xÞjs[ 0; jx2j[ e0;x 6¼ 0g for 0\e0 small enough.

(4) pL has a fold singularity along Σ.
(5) pR has a blowdown singularity along Σ.

Remark 4.2 Note that due to the function gðs; tÞ of (4.20) in the amplitude, it is
enough to consider only points in Ccm that are strictly away from
fðs; 0;xÞ : s[ 0;x 6¼ 0g. This is reflected in the definitions of Σ1 and Σ2, where |
x1| and |x2|, respectively, are strictly positive.

Remark 4.3 Note that Ccm is even with respect to both x1 and x2. In other words,
Ccm is a four-to-one relation. This observation suggests that pL (respectively, pR)
has two fold (respectively, blowdown) sets. See Proposition 4.6.
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Lemma 4.4 F cm is an FIO of order m with the canonical relation Ccm given by

Ccm ¼ s; t;�x
x1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � sÞ2 þ x22 þ h2
q � x1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 þ sÞ2 þ x22 þ h2
q

0B@
1CA;�x

0B@
8><>: ;

x1; x2;�x
x1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � sÞ2 þ x22 þ h2
q þ x1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 þ sÞ2 þ x22 þ h2
q

0B@
1CA;

�x
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � sÞ2 þ x22 þ h2
q þ x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 þ sÞ2 þ x22 þ h2
q

0B@
1CA
1CA :

s[ 0; t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q
;

x 2 R
2nf0g;x 6¼ 0

�
:

ð4:25Þ

We note that ð0;1Þ � ðR2n0Þ � ðRn0Þ 3 ðs; x1; x2;xÞ 7!Ccm is a global
parametrization of Ccm.

We will use the coordinates (s, x, ω) in this lemma from now on to describe Ccm
and subsets of Ccm.
Proof The phase function φ (Eq. 4.22) is nondegenerate with @xu, @s;tu nowhere 0
whenever @xu ¼ 0. We should mention that r@xu 6¼ 0. (Note that in order for @xu
to be nowhere 0, we require exclusion of the common midpoint from our analysis).
This observation is needed to show that F is a FIO rather than just a Fourier
integral distribution. Recalling that a satisfies amplitude estimates (4.23), we
conclude that Ccm is an FIO [29]. Also, since a is of order mþ 1

2, the order of the
FIO is m [8, Definition 3.2.2]. By definition, [19, Eq. (3.1.2)]

Ccm ¼ fððs; t; @su; @tuÞ; ðx;�@xuÞÞ : @xu ¼ 0g:

A calculation using this definition establishes (4.25). Furthermore, it is easy to
see that ðs; x1; x2;xÞ is a global parametrization of Ccm. □

Remark 4.5 In the SAR application, a has order 2 which makes operator F cm of
order 3

2. But from now on, we will consider that F cm has order m.

Proposition 4.6 Denoting the restriction of the left and right projections to Ccm by
pL and pR, respectively, we have

(1) pL and pR drop rank by one on a set R ¼ R1[R2. Here, we use the global
coordinates from Lemma 4.4.

(2) pL has a fold singularity along Σ.
(3) pR has a blowdown singularity along Σ.
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Proof Let A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q
and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q
. We have

pLðx1; x2; s;xÞ ¼ s;AþB;� x1 � s
A

� x1 þ s
B

� �
x;�x

� �
and

dpL ¼
0 0 1 0

x1�s
A þ x1 þ s

B
x2
A þ x2

B � 0

�x
x22 þ h2

A3 � x22 þ h2

B3

� �
x ðx1�sÞx2

A3 � ðx1 þ sÞx2
B3

� �
� �

0 0 0 �1

0BBB@
1CCCA

where * denotes derivatives that are not needed for the calculation. The determinant
is

det dpL ¼ 4x1x2sx
A2B2 1þ ðx21 � s2 þ x22 þ h2

AB

� �
ð4:26Þ

We have that s > 0 and the number in the parenthesis is a positive number by
Lemma 4.7.

Therefore, pL drops rank by one on R ¼ R1 [R2. To show that dðdetðdpLÞÞ is
nowhere 0 on Σ, one uses the product rule in (4.26) and the fact that the differential
of 4x1x2sx

A2B2 is never 0 on Σ and the inequality in Lemma 4.7.
On Σ1, the kernel of dpL is @

@x2
which is transversal to Σ1 and on Σ2 the kernel of

dpL is @
@x1

, which is transversal to Σ2. This means that pL has a fold singularity along
Σ.

Similarly,

pRðx1; x2; s;xÞ ¼ x1; x2;� x1 � s
A

þ x1 þ s
B

� �
x;� x2

A
þ x2

B

� �
x

� �
:

Then,

dpR ¼

1 0 0 0
0 1 0 0
� � x x22 þ h2

A3 � x22 þ h2

B3

� �
� x1�s

A þ x1 þ s
B

	 

� � �x ðx1�sÞx2

A3 � ðx1 þ sÞx2
B3

� �
� x2

A þ x2
B

	 

0BBB@

1CCCA
has the same determinant so that pR drops rank by one on Σ and the kernel of dpR is
a linear combination of @

@x and @
@s which are tangent to both Σ1 and Σ2. This means

that pR has a blowdown singularity along Σ. □
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Lemma 4.7 For all s 6¼ 0,

1þ x21 � s2 þ x22 þ h2

jx� cTðsÞjjx� cRðsÞj
[ 0:

Proof The proof is similar to that of Lemma 3.4 and is left to the reader. □

4.4.3 Analysis of the Normal Operator F�
cmF cm

We have

F�
cmF cmVðxÞ ¼

Z
eixðt�ðjx�cT ðsÞj þ jx�cRðsÞjÞÞ�exðt�ðjy�cT ðsÞj þ jy�cRðsÞjÞÞ

aðs; t; x;xÞaðs; t; y; ~xÞVðyÞdsdtdxd~xdy:

After an application of the method of stationary phase [17] in t and ~x, the
Schwartz kernel of this operator is

Kcmðx; yÞ ¼
Z

eix jy�cT ðsÞj þ jy�cRðsÞj�ðjx�cT ðsÞj þ jx�cRðsÞjÞð Þ

~aðx; y; s;xÞ dsdx:
ð4:27Þ

Note that ~a 2 S2mþ 1 since we assume a 2 Smþ 1=2.
Let the phase function of the kernel Kcm be denoted as

U ¼ x jy� cTðsÞj þ jy� cRðsÞj � ðjx� cTðsÞj þ jx� cRðsÞjÞð Þ: ð4:28Þ

Theorem 4.8 The wavefront set of the kernel Kcm of F�
cmF cm satisfies,

WFðKcmÞ0 � D[C1 [C2 [C3;

where Δ is the diagonal in T*X × T*X and the Lagrangians Ci for i = 1, 2, 3 are the
graphs of the following functions χi for i = 1, 2, 3 on T*X

v1ðx; nÞ ¼ðx1;�x2; n1;�n2Þ; v2ðx; nÞ
¼ ð�x1; x2;�n1; n2Þ and v3 ¼ v1 � v2:

Proof In order to find the wavefront set of the kernel K, we consider the canonical
relation Ctcm � Ccm of F�

cmF cm: Ctcm � Ccm ¼ fðx; n; y; gÞjðx; n; s; t; r; sÞ 2 Ctcm;
ðs; t; r; s; y; gÞ 2 Ccmg. We have that ðs; t;r; s; y; gÞ 2 Ccm implies
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t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 � sÞ2 þ y22 þ h2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 þ sÞ2 þ y22 þ h2

q
r ¼ s

y1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 � sÞ2 þ y22 þ h2

q � y1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 þ sÞ2 þ y22 þ h2

q
0B@

1CA
g1 ¼ s

y1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 � sÞ2 þ y22 þ h2

q þ y1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 þ sÞ2 þ y22 þ h2

q
0B@

1CA
g2 ¼ s

y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 � sÞ2 þ y22 þ h2

q þ y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 þ sÞ2 þ y22 þ h2

q
0B@

1CA

ð4:29Þ

and ðx; n; s; t; r; sÞ 2 Ctcm implies

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q
r ¼ s

x1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q � x1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q
0B@

1CA
n1 ¼ s

x1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q þ x1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q
0B@

1CA
n2 ¼ s

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q þ x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q
0B@

1CA:

ð4:30Þ

From the first two relations in (4.29) and (4.30), we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 � sÞ2 þ y22 þ h2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 þ sÞ2 þ y22 þ h2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � sÞ2 þ x22 þ h2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ sÞ2 þ x22 þ h2

q ð4:31Þ

and

y1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 � sÞ2 þ y22 þ h2

q � y1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 þ sÞ2 þ y22 þ h2

q
¼ x1 � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � sÞ2 þ x22 þ h2
q � x1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 þ sÞ2 þ x22 þ h2
q :

ð4:32Þ
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We will use the prolate spheroidal coordinates to solve for x and y. We let

x1 ¼ s cosh q cos/ y1 ¼ s cosh q0 cos/0

x2 ¼ s sinh q sin/ cos h y2 ¼ s sinh q0 sin/0 cos h0

x3 ¼ hþ s sinh q sin/ sin h y3 ¼ hþ s sinh q0 sin/0 sin h0
ð4:33Þ

with q [ 0, 0 	 / 	 p, and 0 	 h\ 2p.
In this case, x3 = 0 and we use it to solve for h. Hence,

ðx1 � sÞ2 þ x22 þ h2 ¼ s2ðcosh q� cos/Þ2

and

ðx1 þ sÞ2 þ x22 þ h2 ¼ s2ðcosh qþ cos/Þ2:

Noting that s[ 0 and cosh q� cos/[ 0, the first relation given by (4.31) in
these coordinates become

sðcosh q� cos/Þþ sðcosh qþ cos/Þ ¼ sðcosh q0 � cos/0Þ þ sðcosh q0 þ cos/0Þ

from which we get

cosh q ¼ cosh q0 ) q ¼ q0:

The second relation given by (4.32) becomes

cosh q cos/� 1
cosh q� cos/

� cosh q cos/þ 1
cosh qþ cos/

¼ cosh q cos/0 � 1
cosh q� cos/0 � cosh q cos/0 þ 1

cosh qþ cos/0 :

After simplification, we get

sin2 /

cosh2 q� cos2 /
¼ sin2 /0

cosh2 q� cos2 /0

which implies

ðcosh2 q� 1Þðsin2 /� sin2 /0Þ ¼ 0:

Thus, sin/ ¼ � sin/0 ) / ¼ �/0; p� /0.

We remark that cos h ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

s2 sinh2 q sin2 /

q
¼ � cos h0 and note that x3 = 0

implies that sinð/Þ 6¼ 0, so that division by sinð/Þ is allowed here. We also remark
that it is enough to consider cos h ¼ cos h0 as no additional relations are introduced
by considering cos h ¼ � cos h0.

72 V.P. Krishnan



Now, we go back to x and y coordinates.
If /0 ¼ / then x1 ¼ y1; x2 ¼ y2; ni ¼ gi for i = 1, 2. For these points, the

composition, Ctcm � Ccm � D ¼ fðx; n; x; nÞg.
If /0 ¼ �/ then, x1 ¼ y1; �x2 ¼ y2; n1 ¼ g1;�n2 ¼ g2. For these points, the

composition, Ctcm � Ccm is a subset of C1 ¼ fðx1; x2; n1; n2; x1;�x2; n1;�n2Þg which
is the graph of v1ðx; nÞ ¼ ðx1;�x2; n1;�n2Þ. This in the base space represents the
reflection about the x1 axis.

If /0 ¼ p� / then, �x1 ¼ y1; x2 ¼ y2;�n1 ¼ g1; n2 ¼ g2. For these points, the
composition Ctcm � Ccm is a subset of C2 ¼ fðx1; x2; n1; n2;�x1; x2;�n1; n2Þg which
is the graph of v2ðx; nÞ ¼ ð�x1; x2;�n1; n2Þ. This in the base space represents the
reflection about the x2 axis.

If /0 ¼ pþ/ then, �x1 ¼ y1; �x2 ¼ y2;�n1 ¼ g1;�n2 ¼ g2. For these points,
Ctcm � Ccm is a subset of C3 ¼ fðx1; x2; n1; n2;�x1;�x2;�n1;�n2Þg which is the
graph of v3ðx; nÞ ¼ ð�x1;�x2;�n1;�n2Þ. This in the base space represents the
reflection about the origin.

Notice that v1 � v1 ¼ Id ; v2 � v2 ¼ Id ; v1 � v2 ¼ v3.
Hence, we have shown that Ctcm � Ccm � D[C1 [C2 [C3.
As in the common offset case, Theorem 4.8 shows that artifacts are introduced in

image reconstruction. However, in this case, each true singularity introduces three
additional artifact singularities (these added singularities are described by the
Lagrangians C1;C2 and C3). One can show that the strengths of the added singu-
larities are the same as that of the true ones. We do not include the details of this
analysis in the current article. We refer the interested reader to our paper [1]. □
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Chapter 5
Cubic Spline Approximation
for Two-Dimensional Nonlinear Elliptic
Boundary Value Problems

R.K. Mohanty

Abstract We report a new 9-point compact discretization of order two in y- and
order four in x-directions, based on cubic spline approximation, for the solution of
two-dimensional nonlinear elliptic partial differential equations of the form

A x; yð Þ @
2u

@x2
þB x; yð Þ @

2u
@y2

¼ f x; y; u;
@u
@x

;
@u
@y

� �
; x; yð Þ 2 X

defined in the domain X ¼ x; yð Þ : 0\x; y\1f g with boundary @X, where
A x; yð Þ[ 0 and B x; yð Þ[ 0 in X. The corresponding Dirichlet boundary conditions
are prescribed by

u x; yð Þ ¼ w x; yð Þ; x; yð Þ 2 @X

The main spline relations are presented and incorporated into solution procedures
for elliptic partial differential equations. Available numerical methods based on
cubic spline approximations for the numerical solution of nonlinear elliptic equa-
tions are of second-order accurate. Although 9-point finite difference approxima-
tions of order four accurate for the solution of nonlinear elliptic differential
equations are discussed in the past, but these methods require five evaluations of the
function f. In this piece of work, using the same number of grid points and three
evaluations of the function f, we have derived a new stable cubic spline method of
order 2 in y- and order 4 in x-directions for the solution of nonlinear elliptic
equation. However, for a fixed parameter (Δy/Δx2), the proposed method behaves
like a fourth order method. The accuracy of the proposed method is exhibited from
the computed results. The proposed method is applicable to Poisson’s equation and
two-dimensional Navier-Stokes’ equations of motion in polar coordinates, which is
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main highlight of the work. The convergence analysis of the proposed cubic spline
approximation for the nonlinear elliptic equation is discussed and we have shown
under appropriate conditions the proposed method converges. Some physical
examples and their numerical results are provided to justify the advantages of the
proposed method.

Keywords Nonlinear elliptic equation � Cubic spline approximation � Poisson’s
equation in polar coordinates � Diffusion-convection equation � Burgers’ equation �
Reynolds number

5.1 Introduction

We consider the 2D nonlinear elliptic partial differential equation

A x; yð Þ @
2u

@x2
þB x; yð Þ @

2u
@y2

¼ f x; y; u;
@u
@x

;
@u
@y

� �
; x; yð Þ 2 X ð5:1Þ

defined in the bounded domain X ¼ x; yð Þ : 0\x; y\1f g with boundary @X, where
A x; yð Þ[ 0 and B x; yð Þ[ 0 in X.

The corresponding Dirichlet boundary conditions are prescribed by

u x; yð Þ ¼ w x; yð Þ; x; yð Þ 2 @X ð5:2Þ

We assume that for 0\ x; y\ 1;

ðiÞ f x; y; u;
@u
@x

;
@u
@y

� �
is continuous; ð5:3aÞ

ðiiÞ @f
@u

;
@f
@ux

;
@f
@uy

exist and are continuous; ð5:3bÞ

ðiiiÞ @f
@u

� 0;
@f
@ux

����
���� � G and

@f
@uy

����
���� � H ð5:3cÞ

where G and H are positive constants (see [1]). Further, we may also assume that
the coefficients u x; yð Þ;A x; yð Þ and B x; yð Þ are sufficiently smooth and their required
higher order partial derivatives exist in the solution domain X.

The main aim of this work is to use cubic spline function and its certain
properties, which are then used to approximate the differential equation (5.1) to
obtain the numerical solution. We use only 9-point compact cell three evaluations
of the function f (Fig. 5.1).
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We consider our region of interest, a rectangular domain X ¼ 0; 1½ � � 0; 1½ �.
A grid with spacing Dx[ 0 and Dy[ 0 in the directions x- and y-respectively are
first chosen, so that the mesh points xl; ymð Þ are defined as xl ¼ lDx and ym ¼ mDy,
l ¼ 0; 1; . . .;Nþ1; m ¼ 0; 1; . . .;Mþ1, where N and M are positive integers such
that Nþ1ð ÞDx ¼ 1 and Mþ1ð ÞDy ¼ 1.

Let us denote the mesh ratio parameter by p ¼ Dy=Dxð Þ[ 0. For convergence
of the numerical scheme it is essential that our parameter remains in the range
0\

ffiffiffi
6

p
p\ 1. Let Ul;m and ul;m be the exact and approximation solution values of

u x; yð Þ at the grid point xl; ymð Þ, respectively. Similarly, let Al;m ¼ A xl; ymð Þ and
Bl;m ¼ B xl; ymð Þ be the exact values of A x; yð Þ and B x; yð Þ at the grid point xl; ymð Þ,
respectively.

Let Sm xð Þ is a piecewise cubic polynomial defined in xl�1 � x � xl, which
satisfies

S00m xð Þ ¼ xl � xð Þ
Dx

Ml�1;mþ x� xl�1ð Þ
Dx

Ml;m; x 2 xl�1; xl½ � ð5:4Þ

where Ml;m ¼ S
00
m xlð Þ and ml;m ¼ S

0
m xlð Þ. Integrating (5.4) twice and using the

interpolating conditions Sm xl�1ð Þ ¼ ul�1;m and Sm xlð Þ ¼ ul;m, we obtain the cubic
spline interpolating polynomial

Sm xð Þ ¼ xl � xð Þ3
6Dx

Ml�1;m þ x� xl�1ð Þ3
6Dx

Ml;m þ ul�1;m � Dx2

6
Ml�1;m

� �
xl � x
Dx

� �

þ ul;m � Dx2

6
Ml;m

� �
x� xl�1

Dx

� �
; xl�1 � x� xl;

l ¼ 1; 2; . . .;Nþ1;m ¼ 0; 1; . . .;Mþ1

ð5:5Þ

which satisfies at mth-line parallel to x-axis the following properties.

Fig. 5.1 9-Point computational network
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(i) Sm xð Þ coincides with a polynomial of degree three on each
½xl�1; xl�; l ¼ 1; 2; . . .;Nþ 1; m ¼ 0; 1; . . .;Mþ 1;

(ii) Sm xð Þ 2 C2½0; 1�; and
(iii) Sm xlð Þ ¼ ul;m, l ¼ 0; 1; . . .;Nþ1; m ¼ 0; 1; . . .;Mþ1.

Denote:
ml;m ¼ S

0
m xlð Þ ¼ Uxl;m. First derivative of (5.5) is given by

S0m xlð Þ ¼ Uxl;m ¼ Ul;m � Ul�1;m

Dx
þ Dx

6
Ml�1;m þ 2Ml;m
� 	

; x 2 xl�1; xl½ �

S0m xlð Þ ¼ Uxl;m ¼ Ulþ1;m � Ul;m

Dx
� Dx

6
Mlþ 1;m þ 2Ml;m
� 	

; x 2 xl; xlþ1½ �

The continuity of first derivative implies

Ml�1;m þ 4Ml;m þMlþ 1;m ¼ 6
Dx2

Ulþ 1;m � 2Ul;m þUl�1;m

 �

Ml;m ¼ S00m xlð Þ ¼ Uxxl;m ¼ 1
Al;m

�Bl;mUyyl;m þ f xl; ym;Ul;m;ml;m;Uyl;m

 �� 	

;

S0m xlþ 1ð Þ ¼ Uxlþ 1;m ¼ Ulþ 1;m � Ul;m

Dx
þ Dx

6
Ml;m þ 2Mlþ 1;m
� 	

and S
0
m xl�1ð Þ ¼ Uxl�1;m ¼ Ul;m �Ul� 1;m

Dx � Dx
6 Ml;m þ 2Ml�1;m
� 	

.
Note that these are important properties of the cubic spline function Sm xð Þ which

are used in building up the numerical scheme.
At the grid point xl; ymð Þ, we use the notation

Apq ¼ @pþqA xl; ymð Þ
@xp@yq

; etc:

We consider the following approximations:

�Uyl;m ¼ Ul;mþ1 � Ul;m�1

 �

= 2Dyð Þ ð5:6aÞ

�Uylþ1;m ¼ Ulþ1;mþ1 � Ulþ1;m�1

 �

= 2Dyð Þ ð5:6bÞ

�Uyl�1;m ¼ Ul�1;mþ1 � Ul�1;m�1

 �

= 2Dyð Þ ð5:6cÞ

�Uyyl;m ¼ Ul;mþ1 � 2Ul;m þUl;m�1

 �

=Dy2 ð5:6dÞ

�Uyylþ1;m ¼ Ulþ 1;mþ1 � 2Ulþ1;m þUlþ 1;m�1

 �

=Dy2 ð5:6eÞ

�Uyyl�1;m ¼ Ul�1;mþ 1 � 2Ul�1;m þUl�1;m�1

 �

=Dy2 ð5:6fÞ
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�ml;m ¼ �Uxl;m ¼ Ulþ1;m � Ul�1;m

 �

= 2Dxð Þ ð5:7aÞ

�mlþ1;m ¼ �Uxlþ1;m ¼ 3Ulþ1;m � 4Ul;m þUl�1;m

 �

= 2Dxð Þ ð5:7bÞ

�ml�1;m ¼ �Uxl�1;m ¼ �3Ul�1;m þ 4Ul;m � Ulþ1;m

 �

= 2Dxð Þ ð5:7cÞ

�Uxxl;m ¼ Ulþ1;m � 2Ul;m þUl�1;m

 �

=Dx2 ð5:7dÞ

�Fl;m ¼ f xl; ym;Ul;m; �ml;m; �Uyl;m

 � ð5:8aÞ

�Flþ1;m ¼ f xlþ1; ym;Ulþ1;m; �mlþ1;m; �Uylþ1;m

 � ð5:8bÞ

�Fl�1;m ¼ f xl�1; ym;Ul�1;m; �ml�1;m; �Uyl�1;m

 � ð5:8cÞ

�Ml;m ¼ 1
A00

�B00 �Uyyl;m þ �Fl;m
� 	 ð5:9aÞ

�Mlþ1;m ¼ 1
A00

1� DxA10

A00

� �
�Blþ 1;m �Uyylþ 1;m þ �Flþ 1;m
� 	 ð5:9bÞ

�Ml�1;m ¼ 1
A00

1þ DxA10

A00

� �
�Bl�1;m �Uyyl�1;m þ �Fl�1;m
� 	 ð5:9cÞ

mlþ1;m ¼ Uxlþ1;m ¼ Ulþ1;m � Ul;m

Dx
þ Dx

6
�Ml;m þ 2 �Mlþ1;m

� 	 ð5:10aÞ

ml�1;m ¼ Uxl�1;m ¼ Ul;m � Ul�1;m

Dx
� Dx

6
�Ml;m þ 2 �Ml�1;m

� 	 ð5:10bÞ

bUxl;m ¼ �Uxl;m � Dx
12A00

�Flþ1;m � �Fl�1;m
� 	þ Dx

12A00
B00 �Uyylþ1;m � �Uyyl�1;m

� 	
þ Dx2

6
A10

A00

�Uxxl;m þ Dx2

6
B10

A00

�Uyyl;m ð5:10cÞ

Flþ1;m ¼ f xlþ1; ym;Ulþ1;m;mlþ1;m; �Uylþ1;m

 � ð5:11aÞ

Fl�1;m ¼ f xl�1; ym;Ul�1;m;ml�1;m; �Uyl�1;m

 � ð5:11bÞ

bbF l;m ¼ f xl; ym;Ul;m; bUxl;m; �Uyl;m

� �
ð5:11cÞ
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The cubic spline approximations (5.9a)–(5.10c) are discussed in details in [2].
Then at each internal grid point xl; ymð Þ, the cubic spline method with accuracy of
O Dy2þDy2Dx2þDx4ð Þ for the solution of nonlinear elliptic partial differential
Eq. (5.1) may be written as

Lu � p2 A00 � Dx2

6
A10

A00
A10 þ Dx2

12
A20

� 

d2xUl;m

þ Dy2

12
1� DxA10

A00

� �
Blþ1;m �Uyylþ1;m þ 1þDxA10

A00

� �
Bl�1;m �Uyyl�1;m þ 10Bl;m �Uyyl;m

� 


¼ Dy2

12
1� DxA10

A00

� �
Flþ1;m þ 1þDxA10

A00

� �
Fl�1;m þ 10bbF l;m

� 

þ bTl;m;

l ¼ 1; 2; . . .;N;m ¼ 1; 2; . . .;M

ð5:12Þ

where, dxUl ¼ Ulþ1
2
� Ul�1

2

� �
and lxUl ¼ 1

2 Ulþ1
2
þUl�1

2

� �
are the central and

average difference operators with respect to x-direction and the local truncation
error bTl;m ¼ O Dy4þDy4Dx2þDy2Dx4ð Þ.

We may re-write (5.12) as

k1 Ulþ1;m þUl�1;m

 �þ k2 Ul;mþ1 þUl;m�1


 �
þ k3 Ulþ1;mþ1 þUlþ1;m�1 þUl�1;mþ1 þUl�1;m�1 � 24p2 þ 20


 �
Ul;m


 �
¼ Dy2

12
Flþ1;mþFl�1;m þ 10bbF l;m

h i
þ bTl;m

ð5:13Þ

where k1 ¼ p2 � 2
12 ; k2 ¼ 10

12 ; k3 ¼ 1
12.

The condition which is usually imposed on Eq. (5.13) is that k1 [ 0, k2 [ 0 and
k3 [ 0, i.e., 0\

ffiffiffi
6

p
p\1.

5.2 Derivation of the Method

For the derivation of the numerical method (5.12) for the solution of partial dif-
ferential Eq. (5.1), we follow the ideas given by Jain and Aziz [2].

At the grid point xl; ymð Þ, we may write the differential Eq. (5.1) as

Al;mUxxl;m þBl;mUyyl;m ¼ f xl; ym;Ul;m;Uxl;m;Uyl;m

 � � Fl;m ð5:14Þ
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Using Taylor’s expansion, we may write the approximations as

�Uyl;m ¼ Ul;mþ1 � Ul;m�1

 �

2Dyð Þ ¼ Uyl;m þ Dy2

6
U03 þO Dy4


 �
�Uylþ1;m ¼ Ulþ1;mþ1 � Ulþ1;m�1


 �
2Dyð Þ ¼ Uylþ1;m þ Dy2

6
U03 þ Dx � Dy2

6
U13 þO Dy2Dx2


 �
�Uyl�1;m ¼ Ul�1;mþ1 � Ul�1;m�1


 �
2Dyð Þ ¼ Uyl�1;m þ Dy2

6
U03 � Dx � Dy2

6
U13 þO Dy2Dx2


 �
�Uyyl;m ¼ Ul;mþ1 � 2Ul;mþUl;m�1


 �
Dy2

¼ Uyyl;m þ Dy2

12
U04 þO Dy4


 �
�Uyylþ1;m ¼ Ulþ1;mþ1 � 2Ulþ1;mþUlþ1;m�1


 �
Dy2

¼ Uyylþ1;mþDy2

12
U04 þ Dx � Dy2

12
U14 þO Dy2Dx2


 �
�Uyyl�1;m ¼ Ul�1;mþ1 � 2Ul�1;m þUl�1;m�1


 �
Dy2

¼ Uyyl�1;mþDy2

12
U04 � Dx � Dy2

12
U14 þO Dy2Dx2


 �
�Uxxl;m ¼ Ulþ1;m � 2Ul;m þUl�1;m


 �
Dx2

¼ Uxxl;mþDx2

12
U40 þO Dx4


 �
�ml;m ¼ �Uxl;m ¼ Ulþ1;m � Ul�1;m


 �
2Dxð Þ ¼ Uxl;mþDx2

6
U30þO Dx4


 �
�mlþ1;m ¼ �Uxlþ1;m ¼ 3Ulþ1;m � 4Ul;m þUl�1;m


 �
2Dxð Þ ¼ Uxlþ1;m � Dx2

3
U30þO Dx3


 �
�ml�1;m ¼ �Uxl�1;m ¼ �3Ul�1;m þ 4Ul;m � Ulþ1;m


 �
2Dxð Þ ¼ Uxl�1;m � Dx2

3
U30 � O Dx3


 �

Using Taylor series expansion about the grid point xl; ymð Þ, from Eq. (5.1) we
obtain

Lu ¼ Dy2

12
1� DxA10

A00

� �
Flþ1;mþ 1þ DxA10

A00

� �
Fl�1;m þ 10Fl;m

� 

þO Dy4 þDy4Dx2 þDy2Dx4


 �
; l ¼ 1; 2; . . .;N;m ¼ 1; 2; . . .M

ð5:15Þ

Let us denote al;m ¼ @f
@Ux

� �
l;m
, then

�Fl;m ¼ f xl; ym;Ul;m; �ml;m; �Uyl;m

 �

¼ f xl; ym;Ul;m;Uxl;m þ Dx2

6
U30 þO Dx4


 �
;Uyl;m þO Dy2


 �� �

¼ Fl;m þ Dx2

6
U30al;m þO Dy2 þDx4


 �
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Similarly,

�Flþ1;m ¼ f xlþ1; ym;Ulþ1;m; �mlþ1;m; �Uylþ1;m

 �
¼ Flþ1;m � Dx2

3
U30al;m þO Dx3 þDy2


 �
�Fl�1;m ¼ f xl�1; ym;Ul�1;m; �ml�1;m; �Uyl�1;m


 �
¼ Fl�1;m � Dx2

3
U30al;m þO �Dx3 þDy2


 �
We have also Ml;m ¼ S00m xlð Þ ¼ Uxxl;m

) �Ml;m ¼ �Uxxl;m ¼ 1
A00

�B00 �Uyyl;m þ �Fl;m
� 	

�Mlþ1;m ¼ �Uxxlþ1;m ¼ 1
Alþ1;m

�Blþ1;m �Uyylþ1;m þ �Flþ1;m
� 	

¼ 1

Al;m þDxA10 þ Dx2
2 A20 þ � � �
 � �Blþ1;m �Uyylþ1;m þ �Flþ1;m

� 	
¼ 1

Al;m 1þDx A10
Al;m

þ � � �
� � �Blþ1;m �Uyylþ1;m þ �Flþ1;m

� 	

¼ 1
Al;m

1þDx
A10

Al;m
þ � � �

� ��1

�Blþ1;m �Uyylþ1;m þ �Flþ1;m
� 	

¼ 1
Al;m

1� Dx
A10

Al;m
þ � � �

� �
�Blþ1;m �Uyylþ1;m þ �Flþ1;m
� 	

¼ 1
A00

1� DxA10

A00

� �
�Blþ1;m �Uyylþ1;m þ �Flþ1;m
� 	

Similarly,

�Ml�1;m ¼ 1
A00

1þ DxA10

A00

� �
�Bl�1;m �Uyyl�1;m þ �Fl�1;m
� 	

Further, using spline relation we have

mlþ1;m ¼ Uxlþ1;m ¼ Ulþ1;m � Ul;m

Dx
þ Dx

6
�Ml;m þ 2 �Mlþ1;m

� 	
¼ mlþ1;m þO Dx3 þDy2


 �
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and

ml�1;m ¼ Uxl�1;m ¼ Ul;m � Ul�1;m

Dx
� Dx

6
�Ml;m þ 2 �Ml�1;m

� 	
¼ ml�1;m þO �Dx3þDy2


 �
:

Now we need O Dy2þDy2Dx2þDx4ð Þ-approximation for bUxl;m.
Let us consider

bUxl;m ¼ �Uxl;mþaDx �Flþ1;m � �Fl�1;m
� 	þ bDx �Uyylþ1;m � �Uyyl�1;m

� 	
þcDx2 �Uxxl;m þ dDx2 �Uyyl;m

where ‘a’, ‘b’, ‘c’ and ‘d’ are free parameters to be determined. By the help of the
approximations defined earlier, we obtain

bUxl;m ¼ Uxl;mþDx2

6
U30þaDx Flþ1;m � Fl�1;m

� 	þ bDx �Uyylþ1;m � �Uyyl�1;m
� 	

þcDx2Uxxl;m þ dDx2Uyyl;m þO Dy2þDy2Dx2 þDx4

 �

¼ ml;mþDx2

6
1þ12aA00ð ÞU30 þ 12 aB00 þ bð ÞU12 þ 6cþ12aA10ð ÞU20 þ 12aB10þ 6dð ÞU02½ �

þO Dy2þDy2Dx2þDx4

 �

bUxl;m ¼ ml;mþO Dy2þDy2Dx2þDx4ð Þ; the coefficient of Dx2 must be zero which
means

1þ 12aA00 ¼ 0

aB00 þ b ¼ 0

6cþ 12aA10 ¼ 0

and

12aB10 þ 6d ¼ 0:

From above, it is easily seen that, a ¼ � 1
12A00

; b ¼ B00
12A00

; c ¼ A10
6A00

and d ¼ B10
6A00

,
Hence

bUxl;m ¼ �Uxl;m � Dx
12A00

�Flþ1;m � �Fl�1;m
� 	þ Dx

12A00
B00 �Uyylþ1;m � �Uyyl�1;m

� 	
þDx2

6
A10

A00

�Uxxl;m þ Dx2

6
B10

A00

�Uyyl;m

¼ ml;mþO Dy2þDy2Dx2þDx4

 �
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Now,

Flþ1;m ¼ f xlþ1; ym;Ulþ1;m;mlþ1;m; �Uylþ1;m

 �

¼ f ðxlþ1; ym;Ulþ1;m;mlþ1;m þO Dx3þDy2

 �

;Uylþ1;m þO Dy2

 �Þ

¼ Flþ1;m þO Dx3þDy2

 �

Fl�1;m ¼ f xl�1; ym;Ul�1;m;ml�1;m; �Uyl�1;m

 �

¼ Fl�1;m þO �Dx3þDy2

 �

bbF l;m ¼ f xl; ym;Ul;m; bUxl;m; �Uyl;m

� �
¼ f xl; ym;Ul;m;ml;m;Uyl;m


 �þO Dy2þDy2Dx2þDx4

 �

¼ Fl;m þO Dx4þDy2þDy2Dx2

 �

Finally, using the preceding approximations, from (5.12) and (5.15), we obtain
the local truncation error as bTl;m ¼ O Dy4þDy4Dx2þDy2Dx4ð Þ.

Note that, the Dirichlet boundary conditions are given by (5.2). Incorporating the
boundary conditions, we can write the cubic spline method (5.12) in a tri-block
diagonal matrix form. If the differential equation (5.1) is linear, we can solve the
linear system using block Gauss-Seidel iterative method; in the nonlinear case, we
can use block Newton-Raphson iterative method to solve the nonlinear system. The
details of the convergence analysis has been discussed in [3].

5.3 Application to Singular Problems

Consider the two spatial dimensions elliptic partial differential equation

@2u
@x2

þB xð Þ @
2u

@y2
¼ D xð Þ @u

@x
þ g x; yð Þ; 0\x; y\1 ð5:16Þ

subject to appropriate Dirichlet boundary conditions prescribed.
The coefficients B xð Þ;D xð Þ and function g x; yð Þ 2 C2 Xð Þ; where Cm Xð Þ denotes

the set of all functions of x and ywith continuous partial derivatives up to orderm, inX.
On applying formula (5.12) to the elliptic equation (5.15), we obtain the fol-

lowing difference scheme

p2d2xUl;mþ Dy2

12
Blþ1 �Uyylþ1;m þBl�1 �Uyyl�1;m þ 10Bl �Uyyl;m
� 	

¼ Dy2

12
Dlþ1Uxlþ1;m þDl�1Uxl�1;m þ 10Dl bUxl;m

h i
þ Dy2

12
glþ1;m þ gl�1;m þ 10gl;m
� 	þ bTl;m ð5:17Þ
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Note that scheme (5.17) is of O Dy2þDy2Dx2þDx4ð Þ. However, this scheme fails
to compute at l ¼ 1, when the coefficients B xð Þ, D xð Þ and/or g x; yð Þ involve terms
like 1=x; 1=x2; 1=xy3 and so forth. For an example, if D xð Þ ¼ 1=x, then Dl�1 ¼
1=xl�1 which blows to infinity at l ¼ 1 (since x0 ¼ 0).

So, in order to handle the singularity at x ¼ 0, we modify scheme (5.17) such that
the order and accuracy of the solution is retained throughout the solution region.

For this purpose, we would need the following approximations:

Dl	1 ¼ D00 	 DxD10þDx2

2
D20 	 O Dx3


 �
Bl	1 ¼ B00 	 DxB10þDx2

2
B20 	 O Dx3


 �
gl	1;m ¼ g00 	 Dxg10þDx2

2
g20 	 O Dx3


 �
where gl;m ¼ g00 ¼ g xl; ymð Þ etc.

Now, substituting above approximations in the difference scheme (5.17) and merg-
ing the higher order terms in local truncation error, we obtain the modified scheme as

�12p2 þ 4Dy2

3
D10 � Dy2D2

00

� 

d2xUl;m

þ pDy 6D00 þ Dx2

2
D20

� �
� Dy2Dx

6
D00D10

� 

2lxdxð ÞUl;m

þ �12B00 � Dx2B20 � 2Dx2

3
B00D10 þDx2B10D00

� 

d2yUl;m � ½B00�d2xd2yUl;m

þ �DxB10 þ Dx
2
B00D00

� 

d2y 2lxdxð ÞUl;m

¼ �Dy2 12g00 þDx2ðg20 � D00g10 þ 2
3
D10g00Þ

� 

l ¼ 1 1ð ÞN;m ¼ 1 1ð ÞM ð5:18Þ

Note that, the modified scheme (5.18) is of O Dy2þDy2Dx2þDx4ð Þ accurate and
applicable to both singular and non-singular elliptic differential equations.

Now, consider the Poisson’s equation

@2u
@r2

þ 1
r2
@2u

@h2
þ 1

r
@u
@r

¼ 4� p2
� 	

cos phð Þ; 0\ r; h\ 1 ð5:19Þ

The above equation represents two-dimensional Poisson’s equation in cylin-
drical polar coordinates in r−h plane. This problem arises in the simulation of
certain semi-bounded plasmas where the electric potential u are to be computed.
Replacing the variables (x,y) by r; hð Þ and substituting B00 ¼ 1=r2l ;B10 ¼
�2=r3l ;B20 ¼ 6=r4l ;D00 ¼ �1=rl;D10 ¼ B00;D20 ¼ B10 in (5.18), we obtain
O Dy2þDy2Dx2þDx4ð Þ scheme for the solution of the elliptic equation (5.19).
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Similarly, for the 2D Poisson’s equation in cylindrical polar coordinates in
r–z plane

@2u
@r2

þ @2u
@z2

þ 1
r
@u
@r

¼ cosh z 2 cosh rþ 1
r
sinh r

� 

; 0\ r; z\ 1 ð5:20Þ

We replace the variables (x, y) by (r, z) and setting B00 ¼ 1;B10 ¼ 0 ¼ B20;D00 ¼
�1=rl;D10 ¼ 1=r2l ;D20 ¼ �2=r3l in (5.18), we can get O Dy2þDy2Dx2þDx4ð Þ
scheme for the solution of elliptic equation (5.20).

Next consider the Convection-Diffusion equation

@2u
@x2

þ @2u
@y2

¼ b
@u
@x

ð5:21Þ

where b[ 0 is a constant and magnitude of b determines the ratio of convection to
diffusion. SubstitutingB xð Þ ¼ 1:0;D xð Þ ¼ b and g x; yð Þ ¼ 0 in the difference scheme
(5.18) and simplifying, we obtain a difference scheme of O Dy2þDy2Dx2þDx4ð Þ
accuracy for the solution of the convection-diffusion equation (5.21).

c0ul;m þ c1ulþ1;m þ c2ul�1;m þ c3ul;mþ1

þc4ul;m�1 þ c5ulþ1;mþ1 þ c6ulþ1;m�1

þc7ul�1;mþ1 þ c8ul�1;m�1 ¼ 0;

½l ¼ 1ð1ÞN;m ¼ 1ð1ÞM� ð5:22Þ

where the coefficients cw;w ¼ 0; 1; 2; . . .8 are defined by

c0 ¼ 24p2 þ 20þ 8p2R2;

c1 ¼ � 12p2 � 2� 12p2Rþ 4p2R2 þ 2R
� 	

;

c2 ¼ � 12p2 � 2þ12p2Rþ 4p2R2 � 2R
� 	

;

c3 ¼ c4 ¼ �10;

c5 ¼ c6 ¼ � 1� Rð Þ;
c7 ¼ c8 ¼ � 1þRð Þ

where R ¼ bh=2 is called the Cell Reynolds number.
The discretizations result in NM number of linear equations in NM unknowns.

Incorporating the boundary conditions, the above system may be expressed in the
matrix form as

Au ¼ b ð5:23Þ

where A is a tri-block diagonal matrix of order NM � NMð Þ, u is the solution vector
and b is the right-hand side column vector arising from the boundary values of
problem (5.21).
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The coefficient matrix A has a block tri-diagonal structure,

A ¼ tri �L D� U½ �NM�NM

with the sub-matrices �L, D and �U each of order N �Mð Þ given by

�L ¼ tri c8 c4 c6½ � ¼ � U;D ¼ tri c2 c0 c1½ �

The iteration matrices of the block Jacobi and block Gauss-Seidel methods are
described by

GJ ¼ D�1 LþUð Þ and GGS ¼ D� Lð Þ�1U

It can be verified that c0 [ 0 and cw\0 for w ¼ 1; 2; ::; 8 assuming the diffusion
dominated case i.e. R� 1 and taking p� 1=

ffiffiffi
6

p
. One can also easily verify that

c0 ¼
X8
w¼1

cwj j

which implies that the coefficient matrix A generated from is weakly diagonally
dominant. Since A is irreducible (as its directed graph is strongly connected), we
conclude that it is an M-matrix and hence monotone [4].

Now, applying the Jacobi iteration method to the system of Eq. (5.22), we get
the iterative scheme for s ¼ 0; 1; 2. . .:

24p2 1þR2

3

� �
þ 20

� 

uðsþ1Þ
l;m ¼ 1� Rð ÞuðsÞlþ1;mþ1þ 12p2 1� Rþ R2

3

� �
� 2 1� Rð Þ

� 

uðsÞlþ1;m

þ 1� Rð ÞuðsÞlþ1;m�1 þ 1þRð ÞuðsÞl�1;mþ1þ 10uðsÞl;m�1

þ 12p2 1þRþR2

3

� �
� 2 1þRð Þ

� 

uðsÞl�1;m þ 1þRð ÞuðsÞl�1;m�1 þ 10uðsÞl;mþ1

ð5:24Þ

where uðsþ1Þ
l;m and uðsÞl;m are the successive approximations for ul;m at sþ1ð Þth and sth

iterations, respectively.
We examine the stability of the Jacobi iteration method by studying the beha-

viour of the error equation. Let us assume that an error eðsÞl;m exists at each mesh point
ðxl; ymÞ at the sth iteration and is of the form

eðsÞl;m ¼ nsAlBm sin
pal
Nþ1

� �
sin

pbm
Mþ1

� �
; 1 � a � N; 1 � b � M ð5:25Þ
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where A andB are arbitrary constants and n is the propagating factor which deter-
mines the rate of growth or decay of the errors. The necessary and sufficient
condition for the iterative method to be stable is

nj j\ 1; 1 � a � N; 1 � b � M ð5:26Þ

The corresponding error equation is

24p2 1þ R2

3

� �
þ 20

� 

eðsþ1Þ
l;m ¼ 1� Rð Þ eðsÞlþ1;mþ1 þ eðsÞlþ1;m�1

� �

þ 12p2 1� RþR2

3

� �
� 2 1� Rð Þ

� 

eðsÞlþ1;m

þ 1þRð Þ eðsÞl�1;mþ1 þ eðsÞl�1;m�1

� �
þ 10 eðsÞl;m�1 þ eðsÞl;mþ1

� �
þ 12p2 1þRþ R2

3

� �
� 2 1þRð Þ

� 

eðsÞl�1;m

ð5:27Þ

Substituting (5.25) in error equation (5.27), we obtain the characteristic equation

24p2þ20þ8p2R2
 �
n sin

pal
Nþ 1

� �
sin

pbm
Mþ 1

� �

¼ sin
pal

N þ 1

� �
sin

pbm
Mþ 1

� �
10 BþB�1


 �
cos

pb
Mþ 1

� ��

þ BþB�1

 �

cos
pa

N þ 1

� �
cos

pb
Mþ 1

� �
A 1� Rð ÞþA�1 1þRð Þ� 	

þ cos
pa

Nþ 1

� �
ð12p2 � 2þ4p2R2Þ AþA�1
 �þ 12p2R� 2R


 �
A�1 � A

 �� 	


þ sin
pal

Nþ 1

� �
cos

pbm
Mþ 1

� �
10 B� B�1


 �
sin

pb
Mþ 1

� ��

þ B� B�1

 �

cos
pa

N þ 1

� �
sin

pb
Mþ 1

� �
A 1� Rð ÞþA�1 1þRð Þ� 	


þ cos
pal

Nþ 1

� �
sin

pbm
Mþ 1

� �
BþB�1

 �

cos
pb

Mþ1

� �
sin

pal
Nþ1

� ��
A 1� Rð Þ � A�1 1þRð Þ� 	

þ sin
pa

Nþ 1

� �
ð12p2 � 2þ4p2R2Þ A� A�1


 �� 12p2R� 2R

 �

AþA�1

 �� 	


þ cos
pal

Nþ 1

� �
cos

pbm
Mþ 1

� �
B� B�1
 �

sin
pal

N þ 1

� �
sin

pb
Mþ1

� �
A 1� Rð Þ � A�1 1þRð Þ� 	� 


ð5:28Þ
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Comparing both sides, we get

10 B� B�1
 �þ B� B�1
 �
cos

pa
Nþ 1

� �
A 1� Rð ÞþA�1 1þRð Þ� 	 ¼ 0

BþB�1
 �
cos

pb
Mþ 1

� �
A 1� Rð Þ � A�1 1þRð Þ� 	þð12p2 � 2þ 4p2R2Þ A� A�1
 �

� 12p2R� 2R

 �

AþA�1
 � ¼ 0

and

B� B�1
 �
A 1� Rð Þ � A�1 1þRð Þ� 	 ¼ 0

On solving, we get B = 1 and

A ¼
1þRð Þ cos pb

Mþ1

� �
þ 6p2 � 1þ 2p2R2 þ 6p2R� R

1� Rð Þ cos pb
Mþ1

� �
þ 6p2 � 1þ 2p2R2 � 6p2RþR

8<
:

9=
;

1=2

The propagating factor becomes

24p2 þ 20þ 8p2R2
 �
n

¼ 2 cos
pb

Mþ 1

� �
10þ cos

pa
Nþ1

� �
A 1� Rð ÞþA�1 1þRð Þ
 �� 


þ cos
pa

Nþ 1

� �
½ð12p2 � 2þ 4p2R2 � 12p2Rþ 2RÞA

þ 12p2 � 2þ 4p2R2 þ 12p2R� 2R

 �

A�1�

Now the largest value of cos pal
Nþ1

� �
and cos pbm

Mþ1

� �
occur when a ¼ b ¼ 1.

24p2 þ 20þ 8p2R2

 �

n ¼ 20 cos
p

Mþ 1

� �

þ 2 cos
p

N þ 1

� �
1� Rð Þ cos p

Mþ 1

� �
þ 6p2 � 1þ 2p2R2 � 6p2RþR

� 

A

þ 2 cos
p

N þ 1

� �
A�1 1þRð Þ cos p

Mþ 1

� �
þ 6p2 � 1þ 2p2R2 þ 6p2R� R

� 


Substituting the value of A and simplifying, the propagating factor nJ for the
Jacobi iteration method is obtained as
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nJ ¼
1

5þ 6p2 1þ R2

3


 � 5 cos
p

Mþ 1

� ��

þ cos
p

Nþ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6p2 1� Rþ R2

3

� �
� 1� Rð Þ 1� cos

p
Mþ 1

� �� �s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6p2 1þRþ R2

3

� �
� 1þRð Þ 1� cos

p
Mþ 1

� �� �s )
:

ð5:29Þ

Thus, the Jacobi Iteration method is stable for those values of R such that
nJj j\ 1 and the rate of convergence of the Jacobi iteration method is given by

mJ ¼ �lognJ

Similarly, applying the Gauss-Siedel iteration method into the system of
Eq. (5.22) we can obtain propagating factor of for the Gauss-Seidel iteration
method.

Consequently, the spectral radii q of the block Jacobi and block Gauss-Seidel
matrices are related by

q GGSð Þ ¼ q GJð Þ2 ð5:30Þ

Hence, the associated iteration

u kþ1ð Þ ¼ Gu kð Þ þ c ð5:31Þ

converges for any initial guess where, G is Jacobi or Gauss-Seidel iteration matrix.

5.4 Numerical Illustrations

Substituting the central difference approximations in the differential equation (5.1),
we obtain a central difference scheme of O Dy2þDx2ð Þ of the form

Al;m �Uxxl;m þBl;m �Uyyl;m ¼ f xl; ym;Ul;m; �Uxl;m; �Uyl;m

 �þO Dy2 þDx2


 �
Numerical experiments are carried out to illustrate our method and to demon-

strate computationally its convergence. We solve the following two-dimensional
elliptic boundary value problems on unequal mesh both on rectangular and cylin-
drical polar coordinates whose exact solutions are known to us. The Dirichlet
boundary conditions can be obtained using the exact solutions as a test procedure.
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We also compare our method with the central difference scheme and the methods
discussed in [5] in terms of solution accuracy. In all cases, we have taken the initial
guess uðxl; ymÞ ¼ 0. The iterations were stopped when the absolute error tolerance
became � 10�10.

Example 1 @2u
@x2 þ @2u

@y2 ¼ b @u
@x, 0\ x; y\ 1 (Convection-diffusion equation)

The exact solution is given by

u x; yð Þ ¼ e
bx
2
sin py
sinh r

2e
b
2 sinh rxþ sinh r 1� xð Þ

h i
;

where r2 ¼ p2þ b2

4 . The maximum absolute errors for u are tabulated in Table 5.1.
Figure 5.2a, b demonstrate a comparison of the plots of the numerical and exact
solution of u(x, y) for the values b ¼ 30 and c ¼ ðDy=Dx2Þ ¼ 20.

Example 2 (Poisson’s equation in polar coordinates)

ðaÞ @2u
@r2

þ 1
r2
@2u

@h2
þ 1

r
@u
@r

¼ 4� p2
� 	

cos phð Þ; 0\r; h\1

The exact solutions are given by u r; hð Þ ¼ r2 cos ph.

ðbÞ @2u
@r2

þ @2u
@z2

þ 1
r
@u
@r

¼ cosh z 2 cosh rþ 1
r
sinh r

� 

; 0\r; z\1

The exact solutions are given by u r; zð Þ ¼ cosh r cosh z.
The maximum absolute errors for u are tabulated in Table 5.2. A comparison of

the plots of the numerical and exact solution of u for the value c ¼ ðDy=Dx2Þ ¼ 20
is shown in the Fig. 5.3a, b.

Example 3 (Steady-state Burgers’ Model Equation)

e
@2u
@x2

þ @2u
@y2

� �
¼ u

@u
@x

þ @u
@y

� �
þ ex sin

py
2

� �

e 1� p2

4

� �
� ex sin

py
2

� �
þ p

2
cos

py
2

� �� �� 

; 0\ x; y\ 1

Table 5.1 Example 1: the maximum absolute errors (c ¼ Dy
Dx2 ¼ 20)

Dx Proposed O Dy2 þDy2Dx2 þDx4ð Þ-method O Dy4 þDy2Dx2 þDx4ð Þ-method

β = 10 β = 20 β = 30 β = 10 β = 20 β = 30
1
10

0.1062E-01 0.1823E-01 0.4618E-01 0.7918E-01 0.8220E-01 0.8998E-01
1
20

0.6971E-03 0.1213E-02 0.3922E-02 0.4919E-02 0.5155E-02 0.5676E-02
1
40

0.4352E-04 0.7360E-04 0.2312E-03 0.3102E-03 0.3214E-03 0.3511E-03
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Fig. 5.2 Comparison of plots
of solution of Example 1.
a Convection-diffusion
equation γ = 20, β = 30
(numerical solution).
b Convection-diffusion
equation γ = 20, β = 30 (exact
solution)

Table 5.2 Example 2: the
maximum absolute errors
(c ¼ Dy

Dx2 ¼ 20)

Dx Proposed
O Dy2 þDy2Dx2 þDx4ð Þ-
method

O Dy2 þDy2Dx2 þDx4ð Þ-
method discussed

Ex. 2(a) Ex. 2(b) Ex. 2(a) Ex. 2(b)
1
10

0.2976E-02 0.3574E-03 0.5018E-02 0.6662E-03
1
20

0.1917E-03 0.2343E-04 0.3072E-03 0.4155E-04
1
40

0.1202E-04 0.1448E-05 0.1911E-04 0.2614E-05
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where Re ¼ e�1 [ 0 is called Reynolds number. The exact solution is given by
u x; yð Þ ¼ ex sin py

2


 �
. The maximum absolute errors for u are tabulated in Table 5.3

for various values of Re. Figure 5.4a, b demonstrate a comparison of the plots of the
numerical and exact solution of u(x,y) for the values Re = 100 and
c ¼ ðDy=Dx2Þ = 20.

Finally, Table 5.4 shows that our method works as a fourth order method with
fixed mesh parameter c ¼ Dy=Dx2. The order of convergence may be obtained by
using the formula

log
eDx1
eDx2

� �
= log

Dx1
Dx2

� �

Fig. 5.3 Comparison of plots
of solution of Example 2.
a Poisson’s equation
(r–z plane) γ = 20 (numerical
solution). b Poisson’s
equation (r–z plane) γ = 20
(exact solution)
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where eDx1 and eDx2 are maximum absolute errors for two uniform mesh widths Dx1
and Dx2, respectively. For computation of order of convergence of the proposed
method, we have considered errors for last two values of Dx, i.e., Dx1 ¼ 1

20 ;Dx2 ¼
1
40 for the above discussed elliptic partial differential equations.

Table 5.3 Example 3: the maximum absolute errors (c ¼ Dy
Dx2 ¼ 20)

Dx Proposed
O Dy2 þDy2Dx2 þDx4ð Þ-method

O Dy4 þDy2Dx2 þDx4ð Þ-method
discussed in

Re = 10 Re = 100 Re = 10 Re = 100
1
10

0.1022E-01 0.8190E-02 0.4242E-01 0.1244E-01
1
20

0.5887E-03 0.7330E-03 0.2510E-02 0.7711E-03
1
40

0.3683E-04 0.4347E-04 0.1516E-03 0.4748E-04

Fig. 5.4 comparison of plots
of solution of Example 3.
a Steady-state Burger’s
equation γ = 20, Re = 100
(numerical solution).
b Steady-state Burger’s
equation γ = 20, Re = 100
(exact solution)
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5.5 Conclusion and Observations

Available numerical methods based on cubic spline approximations for the
numerical solution of non-elliptic equations are of OðDy2þDx2Þ accurate. Although
9-point finite difference approximations of OðDy4þDy2Dx2þDx4Þ accurate for the
solution of nonlinear and quasi-linear elliptic differential equations are available in
the literature, but these methods require five evaluations of the function f. In this
article, using the same number of grid points and three evaluations of the function f,
we have derived a new stable cubic spline method of OðDy2þDy2Dx2þDx4Þ
accuracy for the solution of nonlinear elliptic equation (5.1). However, for a fixed
parameter c ¼ Dy

Dx2, the proposed method behaves like a fourth order method. The
accuracy of the proposed method is exhibited from the computed results. The
proposed method is applicable to Poisson’s equation in polar coordinates, and
two-dimensional Burgers’ equation, which is main highlight of the work.
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Table 5.4 Fourth order
convergence: Dx1 ¼ 1

20 ;

Dx2 ¼ 1
40 ; c ¼ Dy

Dx2 ¼ 20

Example Parameters Order of the method

1 β = 10 4.00

β = 20 4.04

β = 30 4.08

2 Ex. 2(a) 4.00

Ex. 2(b) 4.01

3 Re = 10 4.00

Re = 100 4.07

α = 20 3.99
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Chapter 6
Pricing of Path-Dependent European-Type
Options Using Monte Carlo Simulation

Siddhartha P. Chakrabarty

Abstract This expository article highlights the significance of Monte Carlo sim-
ulation in pricing of options. We discuss the various types of financial derivatives,
particularly options and their classifications. The discrete and continuous time
models for the underlying assets are dwelled upon. We consider a geometric
Brownian motion (GBM) based model for stock price process and discuss the
payoffs of plain vanilla as well as path-dependent European-type options, namely,
barrier, lookback, and Asian. We mention the option pricing formula for plain
vanilla European option and describe the Monte Carlo approach to option pricing
with illustrative algorithms and results for some of these options.

Keywords Option pricing � Monte Carlo simulation

Mathematics Subject Classification 91G60

6.1 Introduction

Financial derivatives have come to occupy a position of great importance in the
global financial markets, especially in terms of growth, diversity and volume. They
are used for a variety of purposes, the most common ones being hedging, speculation,
and arbitrage [1] and are usually traded over-the-counter (OTC) or are exchange
traded. Some of the typical derivative contracts are options, forwards and futures, and
swaps [1–3]. The term “financial derivative” is motivated by the fact that the values
of these derivatives are derived from more basic underlying assets or securities. The
ever increasing complexity of payoff structures of derivatives, especially the OTC
traded ones, have resulted in the use of sophisticated mathematical techniques in the
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pricing and valuation of such derivatives. In this expository article, we discuss one
such technique, namely, Monte Carlo simulation and its application to pricing of
path-dependent European-type options.

Options are one of the most common and popular financial derivatives [1–5].
These are derivative contacts which give the owner the right to buy or sell the
underlying asset, for a certain price, on or before a certain date. Options can broadly
be classified as a call option (where the holder or the buyer of the option has the
right to buy the underlying asset from the writer or the seller of the option) and a put
option (where the holder or the buyer of the option has the right to sell the
underlying asset to the writer or the seller of the option). Another classification of
options is European and American. In the case of the former, the holder of the
option can exercise it only at a fixed future time called the expiration date. In case
of the latter, however, this exercise by the holder can take place at any time up to
and including the expiration date. Both these types of options can either be plain
vanilla or the more sophisticated path-dependent ones.

Since options confer a right to the holder of the option and imposes an obligation
on the writer of the option, the former must pay a “premium” to the latter, in lieu of
this right. This “premium” is referred to as the “price” of the option. The deter-
mination of the correct and fair option price is an important problem in today’s
financial markets. While options have a wide variety of securities as underlying, we
shall solely focus on options which have stocks as the underlying. Modeling of
stocks has been done in both discrete and continuous time settings. While discrete
time models like the binomial model have been used extensively, the continuous
time geometric Brownian motion (GBM) model for asset pricing is more commonly
used in literature.

The seminal paper of Black and Scholes [6, 7], that appeared in 1973, was a
significant and important breakthrough in this area. In this paper, the authors for the
first time gave a closed form option pricing formula for European options, in
continuous time. Cox, Ross, and Rubinstein [8, 9], in 1979, presented a simple
discrete time model for pricing of options. They obtained a formula for pricing of
options and derived the Black–Scholes formula as a limiting case of their formula,
based on symmetric random walk.

6.2 Model for Asset Price and Options

For the purpose of this article, we will consider the GBM model [2–5, 7] for the
underlying stock of the option under consideration. The model is given by the
following stochastic differential equation for the stock price process st,

dst ¼ lstdtþ rstdwt ð6:1Þ

where μ is the drift and σ is the volatility of the stock prices. Here, wt is the Wiener
process, under the risk-neutral measure P. While μ and σ have been taken to be
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constant here, they can be dependent both on time as well the stock price. Note that,
the Wiener process, wt is a random variable with: (i) w0 = 0, (ii) for 0 ≤ s < t,
wt − ws follows the normal distribution Nð0; t � sÞ and (iii) increments of wt over
nonoverlapping time intervals are independent of each other.

The pricing of European-type options on a stock (following the GBM), primarily
depends on the expected payoff from the option at expiration date. This is due to the
fact that exercising of a European-type of option can take place only at expiration
date, which will be denoted by T. In case of a plain vanilla European call option, the
holder of the option has the right to buy the underlying stock from the writer, for a
fixed price called the strike price, which will be represented by k. It is obvious that
the holder will exercise only if the asset price sT at expiration is at least the strike
price k, in which case the profit for the holder will be sT − k. Else the option will
expire. Thus, the payoff will be max {sT − k, 0}. Similarly, the payoff for a plain
vanilla European put option is given by max {k − sT, 0}. We will now discuss the
payoff functions for three different path-dependent or exotic European options,
whose pricing using the Monte Carlo simulation will be done later [4, 10].

A barrier option is an option whose payoff is switching in nature and depends on
whether the underlying asset prices cross a predefined threshold level during the
lifetime of the option. There are basically four such types of barrier call options.
A down-and-out barrier call option has the payoff for a European call option pro-
vided the asset price does not go below a prespecified barrier b < s0 and zero if it
does. A down-and-in barrier call option has the payoff for a European call option
provided the asset price goes below a prespecified barrier b < s0 and zero if it does
not. An up-and-out barrier call option has the payoff for a European call option
provided the asset price does not go above a prespecified barrier b > s0 and zero if it
does. An up-and-in barrier call option has the payoff for a European call option
provided the asset price goes above a prespecified barrier b > s0 and zero if it does
not. The payoffs for barrier put options are similar.

A lookback option is one whose payoff depends on either the maximum or the
minimum price of the underlying asset during the lifetime of the option. The fixed
strike lookback call and put option have payoffs max {smax − k, 0} and max
{k − smin, 0}, respectively. On the other hand, floating strike lookback call and put
option have payoffs max {sT − smin, 0} and max {smax − sT, 0}, respectively. Here,
smax and smin denote the maximum and the minimum stock prices, respectively,
during the lifetime of the option.

While barrier and lookback options focus on some fixed barrier and extreme
values for the stock, Asian options take into account the average pattern of the price
of the stock. The payoffs for Asian options are functions of the average price of the
stock during the lifetime of the option. We mention four different types of Asian
options in continuous time. The average price Asian call and put options have

payoffs max 1
T

R T
0 ssds� k; 0

� �
and max k � 1

T

R T
0 ssds; 0

� �
, respectively. Similarly,

the average strike Asian call option and put options have payoffs

max sT � 1
T

R T
0 ssds; 0

� �
and max 1

T

R T
0 ssds� sT ; 0

� �
, respectively.
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6.3 Pricing of Options Using Monte Carlo Simulation

Black and Scholes [6], provided the following closed form formula [2, 4, 7] for the
price of a European call and put option,

cðs; tÞ ¼ Nðdþ Þs� Nðd�ÞKe�rðT�tÞ

pðs; tÞ ¼ Nð�d�ÞKe�rðT�tÞ � Nð�dþ Þs:

where

dþ ¼
ln s

k

� �þ lþ r2
2

� �
T � tð Þ

r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p and d� ¼
ln s

k

� �þ l� r2
2

� �
T � tð Þ

r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p

This solution was obtained by analytically solving the famous Black–Scholes
equation, with appropriate final and boundary conditions for European call and put
options. In case of most options, however, such closed form pricing formula cannot
be obtained. One can then resort to numerical techniques for PDEs [11] and solve
variations of the Black–Scholes equation that arise in cases of such options. This
approach, however, has limitations, in terms of an appropriate numerical scheme,
especially when there are several underlying assets instead of only one (as is the
case with plain vanilla options) and also for path-dependent options. The most
practical approach to the determination of option price, then, is to resort to Monte
Carlo simulation.

Monte Carlo simulation is used to determine the expected value of a random
variable, by generating a large number of independent sample random variables
[10–14]. In the case of option pricing with a stock as the underlying asset, a large
number of sample stock paths are generated and their corresponding payoffs at the
expiration is determined. The price of the option is then given by the risk-neutral
discounting of the average or expectation of these variables. For the purpose of
generation of sample paths, we use the following solution of Eq. (6.1) that can be
obtained using Ito’s lemma,

st ¼ s0e
l�r2

2

� �
tþrwt ¼ s0e

l�r2
2

� �
tþr

ffi
t

p
z ð6:2Þ

where z�Nð0; 1Þ. Note that wt ¼
ffiffi
t

p
z�Nð0; tÞ. Once the payoff for a large

number (say M) of sample paths is generated, the option price based on these paths
is given by the risk-neutral valuation formula

mv ¼ e�rTE½Payoff i� ¼ e�rT 1
M

XM
i¼1

Payoff i

" #
;

where Payoff i is the payoff from the ith path, r is the risk-free rate, and μ = r under
risk-neutral valuation. In case of path-dependent options, we need to keep track of
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the stock price at all time points (say N + 1 with the length of each of the N time
intervals taken to be Δt = T/N, though one could take nonuniform time intervals as a
more general case) for each sample path i = 1 : M.

Also, the sample variance is given as

r2v ¼
1

M � 1

XM
i¼1

Payoff i � mvð Þ2:

Note that the confidence interval (say 95 %) for the option price is

mv � 1:96
rvffiffiffiffiffi
M

p ;mv þ 1:96
rvffiffiffiffiffi
M

p
� �

:

We outline the simulation algorithm for one case each of plain vanilla European,
barrier, lookback, and Asian options. The other cases can be dealt with on similar
lines.

1. European put option
for i = 1 : M
generate sample zi �Nð0; 1Þ
set si ¼ s0e

l�1
2r

2ð ÞTþr
ffiffiffi
T

p
zi

set Payoff i ¼ maxðk � si; 0Þ
end
Price of option, mv ¼ e�rT 1

M

PM
i¼1 Payoff i

	 

Sample variance, r2v ¼ 1

M� 1

PM
i¼1 Payoff i � mvð Þ2

95 % confidence interval for the price of the option

mv � 1:96
rvffiffiffiffiffi
M

p ;mv þ 1:96
rvffiffiffiffiffi
M

p
� �

:

2. Up-and-out barrier call option
for i = 1 : M
for j = 0 : N − 1
generate sample zj �Nð0; 1Þ
set si;jþ1 ¼ si;je

l�1
2r

2ð ÞDtþr
ffiffiffiffi
Dt

p
zj

end
set si,max = max0≤j≤Nsi,j
if si,max < b set Payoff i ¼ maxðsi;T � k; 0Þ
else set Payoff i ¼ 0
end
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Price of option, mv ¼ e�rT 1
M

PM
i¼1 Payoff i

	 

Sample variance, r2v ¼ 1

M�1

PM
i¼1 Payoff i � mvð Þ2

95 % confidence interval for the price of the option

mv � 1:96
rvffiffiffiffiffi
M

p ;mv þ 1:96
rvffiffiffiffiffi
M

p
� �

:

3. Floating strike lookback call option
for i = 1 : M
for j = 0 : N − 1
generate sample zj �Nð0; 1Þ
set si;jþ 1 ¼ si;je

l�1
2r

2ð ÞDtþr
ffiffiffiffi
Dt

p
zj

end
set si,min = min0 ≤ j ≤ Nsi,j
set Payoff i ¼ maxðsi;T � si;min; 0Þ
end
Price of option, mv ¼ e�rT 1

M

PM
i¼1 Payoff i

	 

Sample variance, r2v ¼ 1

M�1

PM
i¼1 Payoff i � mvð Þ2

95 % confidence interval for the price of the option

mv � 1:96
rvffiffiffiffiffi
M

p ;mv þ 1:96
rvffiffiffiffiffi
M

p
� �

:

4. Average price Asian put option
for i = 1 : M
for j = 0 : N − 1
generate sample zj �Nð0; 1Þ
set si;jþ1 ¼ si;je

l�1
2r

2ð ÞDtþr
ffiffiffiffi
Dt

p
zj

end
set si;avg ¼

PN
j¼0 si;j

Dt
T

set Payoff i ¼ maxðk � si;avg; 0Þ
end
Price of option, mv ¼ e�rT 1

M

PM
i¼1 Payoff i

	 

Sample variance, r2v ¼ 1

M� 1

PM
i¼1 Payoff i � mvð Þ2

95 % confidence interval for the price of the option

mv � 1:96
rvffiffiffiffiffi
M

p ;mv þ 1:96
rvffiffiffiffiffi
M

p
� �

:
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6.4 Results and Discussion

We ran the simulations for the four different path-dependent options outlined in
Sect. 6.3 using MatLabTM. For this purpose, we took the number of sample paths to
be M = 5000 and the number of time intervals to be N = 1000. The parameters used
in the simulation were s(0) = 100, r = 6 %, σ = 30 %, k = 120, and b = 250. The
expiration time was T = 1, thereby resulting in the length of time intervals (taken to
be uniform) Δt = T/N = 10−3. The results from the simulation are given in Table 6.1

The simulation results are for option prices in a certain confidence interval. This
is a disadvantage of this method, since the price is not unique but lies in a certain
range. The numerical PDE approach to the same pricing problems, which poten-
tially leads to a unique option value, poses challenges in terms of implementation,
thereby limiting the usage of this approach in practical situation. Consequently,
from the point of view of implementation, the Monte Carlo simulation technique is
preferred among the commonly used techniques.
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Chapter 7
On the Finite Element Approximation
of the Impulse Control Quasivariational
Inequality

Messaoud Boulbrachene

Abstract In this paper, we develop a new approach for the standard finite element
approximation in the maximum norm for the impulse control quasivariational
inequality. We establish the optimal convergence order combining the Bensoussan–
Lions algorithm and the concepts of subsolution and discrete.

Keywords Quasivariational inequalities � Bensoussan–Lions algorithm �
Subsolution � Finite element � Discrete regularity � L∞ error estimate
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7.1 Introduction

In this paper, we are interested in the standard finite element approximation in the
maximum norm of the following quasivariational inequality (QVI)

aðu; v� uÞ = ðf ; v� uÞ 8v 2 H1
0ðXÞ

u�Mu ; v � Mu

�
ð7:1:1Þ

Here, Ω is a bounded convex domain of RN ; N � 1, with boundary @X; ð:; :Þ
denotes the scalar product in L2ðXÞ, f is a nonnegative right-hand side in
L1ðXÞ; að:; :Þ denotes the bilinear form associated with an elliptic second order
differential operator A, and M is a nonlinear operator from L1ðXÞ into itself
defined as

Mu ¼ kþ inf uðxþ nÞ; n � 0; xþ n 2 �Xg; k[ 0 ð7:1:2Þ
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Problem (7.1.1) is analogous to the obstacle problem where the obstacle function
is replaced with an implicit one, depending upon the solution sought. The termi-
nology quasivariational inequality being chosen is a result of this remark.

This QVI arises in impulse control problems: an introduction to impulse control
with numerous examples and applications can be found in Bensoussan and Lions [1].

Its numerical approximation in the L1 norm has recently gained a high interest
in computational finance (see [2, 3]).

Let sh denote a regular and quasiuniform triangulation of X; h [ 0 is the mesh
size. Let Vh denote the finite element space consisting of continuous piecewise
linear functions vanishing on @X, fuig; i ¼ 1; 2; . . .mðhÞ, the basis functions of Vh,
and ph, the usual restriction operator.

The discrete counterpart of (7.1.1) consists of seeking uh 2 Vh such that

aðuh; v� uhÞ = ðf ; v� uhÞ8v 2 Vh

uh � phMuh; v � phMuh

�
ð7:1:3Þ

Under W2;p � regularity of the continuous solution, the following error estimate

u� uhk k1 � Ch log hj j

was obtained by Loinger [4] in the one-dimensional case ðN ¼ 1Þ, and by Cortey
Dumont [5] for N � 1.

In this paper, we improve on the above results and obtain a sharp error estimate
(for N � 1), i.e.,

u� uhk k1 � Ch2 log hj j2 ð7:1:4Þ

For this, we develop a new approach, which combines the concept of subso-
lution in variational inequalities (VI): w is a continuous subsolution if

aðw; vÞ � ðf ; vÞ8v 2 H1
0ðXÞ; v � 0

w � w

�
ð7:1:5Þ

(respect. wh is a discrete subsolution), if

aðwh;uiÞ � ðf ;uiÞ8ui; i ¼ 1; . . .;mðhÞ
wh � phw

�
ð7:1:6Þ

and the concept of “discrete regularity”: a discrete solution fh of a variational
inequality is regular in the discrete sense if it satisfies

aðfh;uiÞj j � C uik kL1ðXÞ

This new concept of “discrete regularity,” introduced in [6], can be regarded as
the discrete counterpart of the Lewy–Stampacchia regularity estimate Auk k1 � C;
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extended to the variational form through the L1 � L1 duality. It plays a major role
in deriving the optimal error estimate as this will be shown in the sequel of the
paper.

The finite element error analysis stands on the construction of a continuous
sequence of subsolutions ðbðhÞn Þ such that

bðhÞn � un and bðhÞn � unh
��� ���

1
� Ch2 log hj j2

and a discrete sequence of subsolutions ðanhÞ such that

anh � unh and un � anhk k1 � Ch2 log hj j2;

where ðunÞ is the Bensoussan–Lions algorithm and ðunhÞ is its finite element
counterpart.

7.2 Background

7.2.1 Assumptions and Definitions

We begin with introducing some notations and assumptions. We are given suffi-
ciently smooth functions

ajkðxÞ; bkðxÞ; a0ðxÞx 2 �X ð7:2:1Þ

such that X
1� j;k�N

ajkðxÞnjnk = a nj j2; ðx 2 �X; n 2 RN ; a[ 0Þ ð7:2:2Þ

a0ðxÞ = c0 � 0 ðx 2 �X; c0 [ 0Þ ð7:2:3Þ

We define the second order elliptic operator

A ¼
X

1� j;k�N

� @

@xj
ajkðxÞ @

@xk

� �
þ
XN
k¼1

bkðxÞ @

@xk
þ a0ðxÞ ð7:2:4Þ

and the associated bilinear form 8u; v 2 H1ðXÞ

aðu ; vÞ ¼
Z
X

X
1� j;k�N

ajkðxÞ @u
@xj

@v
@xk

þ
XN
k¼1

bkðxÞ @u
@xk

vþ a0ðxÞuv
 !

dx ð7:2:5Þ
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which we assume to be coercive

aðv ; vÞ � d vk k2H1ðXÞ; d [ 0; 8v 2 H1ðXÞ ð7:2:6Þ

We assume that

If w 2 Cð�XÞ then @ðwÞ 2 Cð�XÞ ð7:2:7Þ

If u and v 2 Cð�XÞ then Mu�Mvk kCð�XÞ � u� vk kCð�XÞ ð7:2:8Þ

If u 2 W1;1ðXÞ then Muk kW1;1ðXÞ � C uk kW1;1ðXÞ ð7:2:9Þ

Throughout the paper, we will introduce several variational inequalities of
obstacle type. The following are some useful, related definitions and properties.

7.2.2 Continuous Variational Inequality

Let g in L1ðXÞ and ψ inW1;1ðXÞ such that w� 0 on @X. The following problem is
called variational inequality:

aðx; v� xÞ = ðg; v� xÞ8v 2 H1
0ðXÞ

v � w;w � w

�
ð7:2:10Þ

Thanks to [1], problem (7.2.10) has a unique solution.

Definition 1 w is said to be a subsolution for the VI (7.2.10) if

aðw; vÞ � ðg; vÞ8v 2 H1
0ðXÞ; v � 0

w � w

�
ð7:2:11Þ

Theorem 1 [1] The solution ω of the VI (7.2.10) is the least upper bound of the set
of subsolutions.

Theorem 2 [1] Let ψ and ~w in W1;1ðXÞ; and ω and ~x be the corresponding
solutions to (7.2.10). Then,

x� ~xk k1 � C w� ~w
�� ��

1

Lemma 1 (The continuous Levy–Stampacchia Inequality) Let ψ in H1ðXÞ such
that w � 0 on @X. Let also ω be the solution of (7.2.10) such that Ax � h (in the
sense of H�1ðXÞ), where h 2 L2ðXÞ. Then,

g � Aw � g ^ h
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Theorem 3 [1] Under conditions of lemma 1, the solution ω of (7.2.10) is in
W2;pðXÞ for all p � 2; p\1;Ax 2 L1ðXÞ.

7.2.3 Discrete Variational Inequality

The following is the corresponding discrete variational inequality

aðxh; v� xhÞ = ðg; v� xhÞ8v 2 Vh

v � phw ;w � phw

�
ð7:2:12Þ

wh is said to be a discrete subsolution if

aðwh;uiÞ � ðg;uiÞ8ui; i ¼ 1; . . .;mðhÞ
wh � phw

�
ð7:2:13Þ

Under the discrete maximum assumption (d.m.p), the stiffness matrix
aðui;ujÞ is an M-Matrix (this will be thoroughly explained in Sect. 7.3), we have

Theorem 4 The solution xh of the VI (7.2.13) is the least upper bound of the set of
discrete subsolutions.

Theorem 5 Let ψ and ~w in W1;1ðXÞ; and xh and ~xh the corresponding solutions
to (7.2.12). Then,

xh � ~xhk k1 � C w� ~w
�� ��

1

Theorem 6 (The discrete Levy–Stampacchia inequality) Let xh be the solution of
the discrete VI (7.2.12). Then,

ðg;uiÞ � aðxh;uiÞ � a w;uið Þ ^ ðg;uiÞ8ui; i ¼ 1; . . .;mðhÞ

7.3 The Impulse Control QVI

7.3.1 The Continuous QVI

The existence of a unique solution for QVI (7.1.1) can be achieved, making use of
the method of upper and lower solutions (see [7]).
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Indeed, one can define the fixed point mapping

T : L1ðXÞ ! L1ðXÞ
z ! Tz ¼ f;

where ζ solves the following VI

aðf; v� fÞ = ðf ; v� fÞ8v 2 H1
0ðXÞ

f � Mz ; v � Mz

�
ð7:3:1Þ

Let u0 be the solution of the equation

aðu0; vÞ ¼ ðf ; vÞ8v 2 H1
0ðXÞ ð7:3:2Þ

Thanks to [7], (7.3.2) has a unique solution which belongs to W2;pðXÞ. The
Bensoussan–Lions algorithm is constructed as follows: starting from u0, solution of
the above equation, we define the sequence

un ¼ Tun�1; n ¼ 1; 2; . . . ð7:3:3Þ

Theorem 7 [7] Assume that f � f0 [ 0. Then, the sequence unf gn� 0 converges
decreasingly to the unique solution of the QVI (7.1.3). Moreover, there exists
0\ l\ 1 such that

un � uk k1 � ln u0k k1 ð7:3:4Þ

Remark 1 One can also start from u^0 ¼ 0 and generate an increasing sequence
u^n ¼ Tu^n�1, n ¼ 1; 2; . . . which converges geometrically to the solution of the QVI
(7.1.1).

7.3.2 The Discrete QVI

For the sake of finite element discretization, we will assume that Ω is polyhedral.
Let then sh be a regular and quasiuniform triangulation of Ω into triangles; h > 0 be
the mesh size. For each K 2 sh, denote by P1ðKÞ the set of polynomials on K with
degree not more than 1. The P1, conforming finite element space, is given as

Vh ¼ v : v 2 H1
0ðXÞ \Cð�XÞ; v=K 2 P1ðKÞ; 8K 2 sh

� �
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Let Mi; 1 � i � mðhÞ denote the vertices of the triangulation sh, and let
ui; 1 � i � mðhÞ, denote the functions of Vh which satisfies

uiðMjÞ ¼ dij; 1 � i; j � mðhÞ

So that the function ui form a basis of Vh. 8v 2 H1ðXÞ \Cð�XÞ, the function

rhvðxÞ ¼
XmðhÞ
i¼1

vðMiÞuiðxÞ

represents the interpolate of v over sh.
The existence of a solution for QVI (7.1.3) can be obtained similarly to that of

the continuous case. Indeed, we construct a discrete fixed point mapping

Th : L
1ðXÞ ! Vh

z ! Thz ¼ fh;

where fh solves the following discrete VI

aðfh; v� fhÞ = ðf ; v� fhÞ8v 2 Vh

fh � phMz; v � phMz

�
ð7:3:5Þ

Now, starting from u0h, solution of the equation

aðu0h; vÞ ¼ ðf ; vÞ8v 2 Vh ð7:3:6Þ

we construct the discrete version of the Bensoussan–Lions algorithm

unh ¼ Tun�1h; n ¼ 1; 2; . . . ð7:3:7Þ

The convergence analysis of the discrete algorithm will require that the stiffness
matrix is an M-Matrix.

Definition 2 A real matrix d × d C ¼ ðcijÞ with cij � 0; 8i 6¼ j; 1� i; j� d, is called
an M-Matrix, if C is nonsingular and C�1 � 0 (i.e., all entries of its inverse are
nonnegative).

Denoted by A is the matrix with generic coefficient

Aij ¼ aðui;ujÞ; 1 � i; j�mðhÞ ð7:3:8Þ

Because the bilinear form að:; :Þ is coercive, we have

A is positive definite ð7:3:9Þ
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and

Aii [ 0 8i ¼ 1; . . .;mðhÞ ð7:3:10Þ

Furthermore, if the matrix ðajkÞ involved in the bilinear form (7.2.5) is sym-
metric ðajk ¼ akjÞ, then mesh conditions for which the off-diagonal entries of
B satisfy

Aij � 0; 8i 6¼ j; 1 � i; j � mðhÞ ð7:3:11Þ

can be found in [8]. By combining (7.3.9), (7.3.10), and (7.3.11), we have the
following lemma.

Lemma 2 The matrix A is an M-Matrix.

Proof See [8]. □

Theorem 8 Let conditions of Lemma 2 hold. Then, the sequence unhf gn� 0 con-
verges to the unique solution of the (7.1.3). Moreover, there exists 0\ l\ 1 such
that

unh � uhk k1 � ln u0hk k1 ð7:3:12Þ

7.4 The Finite Element Error Analysis

The establishment of the optimal error estimate (7.1.4), in which the concept of
“discrete regularity” will play a crucial role, rests on several lemmas and theorems.

7.4.1 The Discrete Regularity

Consider the VI

aðxh; v� xhÞ = ðg; v� xhÞ8v 2 Vh

v� phw ;xh � phw

�

Assumption We assume that there exists a constant C independent of h such that

aðxh;uiÞj j � C uik kL1ðXÞ 8i ¼ 1; 2; . . .;mðhÞ ð7:4:1Þ
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Lemma 3 [6] Under assumption (7.4.1), there exists a family of right-hands side
gðhÞ
� �

h[ 02 L1ðXÞ such that

gðhÞ
�� ��

1 � C; 8h

and

aðxh; vÞ ¼ ðgðhÞ; vÞ8v 2 Vh ð7:4:2Þ
Theorem 9 Let conditions of Lemma 3 hold. Then, there exist two continuous

sequences gðhÞn

� 	
n� 1

and xðhÞ
n

� 	
n� 1

, and a constant independent of h and n such

that

gðhÞn

�� ��
1 � C

and

aðxðhÞ
n ; vÞ ¼ ðgðhÞn ; vÞ8v 2 H1

0ðXÞ
Proof The proof will be carried out by induction. For n ¼ 1, let x1h be the solution
of the VI

aðx1h; v� x1hÞ = ðf ; v� x1hÞ8v 2 Vh

v � phMxðhÞ
0 ; x1h � phMxðhÞ

0

�
;

where xðhÞ
0 ¼ u0 is the solution of

aðu0; vÞ ¼ ðf ; vÞ8v 2 H1
0ðXÞ

So, by the discrete Levy–Stampachia inequality, we have

�ðf ;uiÞ ^ aðMu0;uiÞ � aðx1h;uiÞ � ðf ;uiÞ

or

�ðf ;uiÞ ^ AðMu0Þ;uih i � aðx1h;uiÞ � ðf ;uiÞ

and using ([7], pp. 366–376), there exists a constant c such that AðMu0Þ� � c.
Hence,

�ðf ;uiÞ ^ ð�c;uiÞ � aðx1h;uiÞ � ðf ;uiÞ;
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which implies

aðx1h;uiÞj j � C uik kL1ðXÞ

So, making use of Lemma 3, there exists a family of right-hands side gðhÞ1

n o
2

L1ðXÞ such that

ðiÞ gðhÞ1

��� ���
1

� C

ðiiÞ aðx1h; vÞ ¼ ðgðhÞ1 ; vÞ8v 2 Vh

8<: ;

which enables us to define xðhÞ
1 as the solution of the equation

aðxðhÞ
1 ; vÞ ¼ ðgðhÞ1 ; vÞ8v 2 H1

0ðXÞ

and

xðhÞ
1

��� ���
W2;pðXÞ

� C

Now, let us consider x2h to be the solution of the VI

aðx2h; v� x2hÞ= ðf ; v� x2hÞ 8v 2 Vh

v� phMxðhÞ
1 ; x1h � phMxðhÞ

1

�
ð7:4:3Þ

So, using the discrete Levy–Stampachia inequality, we have

�ðf ;uiÞ ^ aðMxðhÞ
1 ;uiÞ � aðx2h;uiÞ � ðf ;uiÞ

or

�ðf ;uiÞ ^ AðMxðhÞ
1 Þ;ui

D E
� aðx2h;uiÞ � ðf ;uiÞ

and using ([7], pp. 366–376), as above, there exists a constant c such that

AðMxðhÞ
1 Þ� � c, and therefore

�ðf ;uiÞ ^ ð�c;uiÞ � aðx2h;uiÞ � ðf ;uiÞ;

which implies

aðx2h;uiÞj j � C uik kL1ðXÞ
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So, making use of Lemma 3, there exists a family of right-hands side gðhÞ2

n o
2

L1ðXÞ such that

ðiÞ gðhÞ2

��� ���
1

� C

ðiiÞ aðx2h; vÞ ¼ ðgðhÞ2 ; vÞ8v 2 Vh

8<:
and we can therefore define xðhÞ

2 such that

aðxðhÞ
2 ; vÞ ¼ ðgðhÞ2 ; vÞ8v 2 H1

0ðXÞ

and

xðhÞ
2

��� ���
W2;pðXÞ

�C

Hence, by induction, there exists gðhÞn

n o
2 L1ðXÞ such that the solution xnh of

the VI

aðxnh; v� xnhÞ = ðf ; v� xnhÞ8v 2 Vh

v � phMxðhÞ
n�1; x1h � phMxðhÞ

n�1

�
ð7:4:4Þ

satisfies

aðxnh; vÞ ¼ ðgðhÞn ; vÞ8v 2 Vh

and therefore xðhÞ
n such that

aðxðhÞ
n ; vÞ ¼ ðgðhÞn ; vÞ8v 2 H1

0ðXÞ

and

xðhÞ
n

�� ��
W2;pðXÞ � C □

In the light of the above, let

xnh ¼ @hðMxðhÞ
n�1Þ; n ¼ 1; 2; . . . ð7:4:5Þ
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Lemma 4 We have

xðhÞ
n � xnh

�� ��
1 �Ch2 log hj j2 ð7:4:6Þ

Proof We know that

aðxðhÞ
n ; vÞ ¼ ðgðhÞn ; vÞ8v 2 H1

0ðXÞ

and

aðxnh; vÞ ¼ ðgðhÞn ; vÞ8v 2 Vh

So, since

xðhÞ
n

�� ��
W2;pðXÞ � C;

making use of standard maximum norm error estimate [9], we get (7.4.6) □
In the light of the above, one can define the following sequences of variational

inequalities

xnh ¼ @hðMxðhÞ
n�1Þ; n ¼ 1; 2; . . . ð7:4:7Þ

Lemma 5 We have

xðhÞ
n � xnh

�� ��
1 � Ch2 log hj j ð7:4:8Þ

Proof We know that

aðxðhÞ
n ; vÞ ¼ ðgðhÞn ; vÞ8v 2 H1

0ðXÞ

and

aðxnh; vÞ ¼ ðgðhÞn ; vÞ8v 2 Vh

So, since

xðhÞ
n

�� ��
W2;pðXÞ � C

making use of standard maximum norm error estimate [9], we get (7.4.8) □

Remark 2 Estimate (7.4.6) holds for at least the operator �Dþ cI; with c as a
positive constant.
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Lemma 6 Let conditions of Lemma 5 hold. Then, we have

xnh � unhk k1 � Ch2 log hj j2 ð7:4:9Þ
Proof We proceed by induction n ¼ 1:

x1h � u1hk k1 � MuðhÞ0 �Mu0h
��� ���

1
� uðhÞ0 � u0h
��� ���

1
� Ch2 log hj j2

Now, assume that

xn�1h � un�1hk k1 � Ch2 log hj j2

Then, applying Lemma 5 we get

xnh � unhk k1 � MxðhÞ
n�1 �Mun�1h

��� ���
1

� xðhÞ
n�1 � un�1h

��� ���
1

� xðhÞ
n�1 � xn�1h

��� ���
1
þ xn�1 � un�1hk k1

� Ch2 log hj j2 þCh2 log hj j2

� Ch2 log hj j2 □

Theorem 10 There exists a constant independent of h and n such that

un � unhk k1 �Ch2 log hj j2 ð7:4:10Þ
The proof rests on the construction of a sequence of continuous subsolutions and

a sequence of discrete subsolutions.

7.4.2 Construction of Subsolutions

Consider the sequence of continuous VIs �un ¼ @ðMxðhÞ
n�1Þ

að�un; v� �unÞ = ðg; v� �unÞ 8v 2 H1
0ðXÞ

v � MxðhÞ
n�1; x1h � MxðhÞ

n�1; n � 1

�
ð7:4:11Þ

and the sequence of discrete VIs �unh ¼ @hðMun�1Þ

að�unh; v � �unhÞ = ðg; v � �unhÞ 8 v 2 Vh

v � phMun�1; x1h � phMun�1; n � 1

�
ð7:4:12Þ
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Lemma 7 We have

�un � xnhk k1 � Ch2 log hj j2 ð7:4:13Þ

and

un � �unhk k1 � Ch2 log hj j2 ð7:4:14Þ

Proof Since �unh ¼ @hðMxðhÞ
n�1Þ and xnh ¼ @hðMxðhÞ

n�1Þ are the discrete counterparts
of �un and un, respectively, applying standard L1error estimate for elliptic VIs
(see [10])—we get (7.4.13) and (7.4.14). □

Theorem 11 There exist a sequence bnð Þn� 1 of continuous subsolutions such that

ðiÞ bn � un
ðiiÞ bn � unhk k1 � Ch2 log hj j2

�
and a discrete sequence of subsolutions ðanhÞn� 1 such that

ðiÞ anh � unh
ðiiÞ un � anhk k1 � Ch2 log hj j2

�
Proof We proceed by induction.

Construction of b1. Consider the VI

að�u1; v� �u1Þ = ðf ; v� �u1Þ8v 2 H1
0ðXÞ

v � MxðhÞ
0 ;x1h � MxðhÞ

0

�
So,

að�u1; vÞ � ðf ; vÞ8v 2 H1
0ðXÞ; v � 0

v � MxðhÞ
0 ; x1h � MxðhÞ

0

�
But,

�u1 � MxðhÞ
0

� MxðhÞ
0 �Mx0h þMx0h

� MxðhÞ
0 �Mx0h

��� ���
1
þMx0h

� xðhÞ
0 � x0h

��� ���
1
þMx0h

� Ch2 log hj j þMx0h
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then, �u1 is a subsolution for the VI with obstacle

w ¼ Ch2 log hj j þMx0h

Let �U1 ¼ @ðCh2 log hj j þMx0hÞ be the solution of such VI. Then, as
u1 ¼ @ðMu0Þ, applying Theorem 2, we get

u1 � �U1k k1 � Ch2 log hj j þ Mu0 �Mx0hk k1
� Ch2 log hj j þ u0 � x0hk k1
� Ch2 log hj j þCh2 log hj j
� Ch2 log hj j

Hence, Theorem 1 implies that

�u1 � �U1 � u1 þCh2 log hj j

So, putting

b1 ¼ �u1 � Ch2 log hj j2

we get

b1 � u1

and, using (7.4.9) and (7.4.13), we obtain

b1 � u1h
�� ��

1 � �u1 � Ch2 log hj j � u1h
�� ��

1
� �u1 � u1hk k1 þCh2 log hj j
� �u1 � x1hk k1 þ x1h � u1hk k1
� Ch2 log hj j2 þCh2 log hj j
� Ch2 log hj j2

Construction of a1h. Consider the VI

að�u1h; v� �u1hÞ = ðf ; v� �u1hÞ8v 2 Vh

v � phMu0;x1h � phMu0

�
So,

að�u1h;uiÞ = ðf ;uiÞ8v 2 ui
v � phMu0;x1h � phMu0

�
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But,

�u1h � phMu0 � phMu0h þ phMu0h
� phMu0 � phMu0hk k1 þ phMu0h
� u0 � u0hk k1 þ phMu0h

� Ch2 log hj j þ phMu0h

Hence, �u1h is a subsolution for the VI with obstacle

w ¼ Ch2 log hj j þ phMu0h

Let �U1h ¼ @hðCh2 log hj j þ phMu0hÞ be the solution of such VI. Then, as
u1h ¼ @hðphMu0hÞ, making use of Theorem 5, we have

�U1h � u1hk k1 � Ch2 log hj j þ phMu0h � phMu0h
�� ��

1
� Ch2 log hj j

So, using Theorem 4, we have

�u1h � �U1h � u1h þCh2 log hj j

Now, putting

a1h ¼ �u1h � Ch2 log hj j

we have

a1h � u1h

and, using (7.4.14), we get

a1h � u1k k1 � a1h � u1k k1
� �u1h � Ch2 log hj j � u1
�� ��

1
� �u1h � u1k k1 þCh2 log hj j
� Ch2 log hj j2 þCh2 log hj j
� Ch2 log hj j2

Now, combining the above, we get

u1 � a1h þCh2 log hj j2

� u1h þCh2 log hj j2

� b1 þCh2 log hj j2

� u1 þCh2 log hj j2
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Thus,

u1 � u1hk k1 � Ch2 log hj j2

Now, assume that

un�1 � un�1hk k1 � Ch2 log hj j2 ð7:4:15Þ

Construction of bn: Consider the VI

að�un; v� �unÞ = ðf ; v� �unÞ8v 2 H1
0ðXÞ

v � MxðhÞ
n�1;x1h � MxðhÞ

n�1

�
Then,

að�un; vÞ � ðf ; vÞ8v 2 H1
0ðXÞ; v � 0

v � MxðhÞ
n�1;x1h � MxðhÞ

n�1

�
So, using (7.4.6), we get

�un � MxðhÞ
n�1

� MxðhÞ
n�1 �Mxn�1h þMxn�1h

� MxðhÞ
n�1 �Mxn�1h

��� ���
1
þMxn�1h

� xðhÞ
n�1 � xn�1h

��� ���
1
þMxn�1h

� Ch2 log hj j þMxn�1h

Hence, �un is a subsolution for the VI with obstacle

w ¼ Ch2 log hj j2 þMxn�1

Let �Un ¼ @ðCh2 log hj j2 þMxn�1Þ be the solution of such a VI. Then, as
un ¼ @ðMun�1Þ, making use of Theorem 2, we have

�Un � unk k1 � Ch2 log hj j2 þ Mxn�1h �Mun�1k k1
� Ch2 log hj j2 þ xn�1h � un�1k k1
� Ch2 log hj j2 þ xn�1h � un�1hk k1 þ un�1h � un�1k k1
� Ch2 log hj j2 þCh2 log hj j þCh2 log hj j
� Ch2 log hj j2
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So, using Theorem 1 and (7.4.15) we have

�un � �Un � un þCh2 log hj j2

and, putting

bn ¼ �un � Ch2 log hj j2

we get

bn � un

Finally, using (7.4.9) and (7.4.13), we obtain

bn � unhk k1 � �un � Ch2 log hj j2 � unh
�� ��

1
� �un � unhk k1 þ Ch2 log hj j2

� �un � xnhk k1 þ xnh � unhk k1 þ Ch2 log hj j2

� Ch2 log hj j2 þ Ch2 log hj j2 þCh2 log hj j2

� Ch2 log hj j2

Construction of anh: Consider the VI

að�unh; v� �unhÞ = ðf ; v� �unhÞ8v 2 Vh

v � phMun�1;x1h � phMun�1

�
So,

að�unh;uiÞ � ðf ;uiÞ8v 2 ui
v � phMun�1; x1h � phMun�1

�
But,

�unh � phMun�1 � phMun�1h þ phMun�1h

� phMun�1 � phMun�1hk k1 þ phMun�1h

� un�1 � un�1hk k1 þ phMun�1h

� Ch2 log hj j2 þ phMun�1h

Hence, �unh is a subsolution for the VI with obstacle

w ¼ Ch2 log hj j2 þ phMun�1h
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Let �Unh be the solution of such VI. Then as unh ¼ @hðphMun�1hÞ, making use of
Theorem 5, we have

�Unh � unhk k1 � Ch2 log hj j2

So, using Theorem 4, we have

�unh � �Unh � unh þCh2 log hj j2

Now, putting

anh ¼ �unh � Ch2 log hj j2

we have

anh � unh

and, using (7.4.14), we get

anh � unk k1 � �unh � Ch2 log hj j2�un
�� ��

1
� �unh � unk k1 þ Ch2 log hj j2

� Ch2 log hj j þCh2 log hj j2

� Ch2 log hj j2

Now, combining the above, we obtain

un � anh þCh2 log hj j2

� unh þCh2 log hj j2

� bn þCh2 log hj j2

� un þCh2 log hj j2

Thus,

un � unhk k1 � Ch2 log hj j2 □

Now, making use of estimates (7.3.4), (7.3.12), and (7.4.10), we are in the
position to derive the main result of this paper.

7 On the Finite Element Approximation … 125



Theorem 12

u� uhk k1 �Ch2 log hj j2 ð7:4:16Þ
Proof Making use of (7.3.4), (7.3.12), and (7.4.10), we have

u� uhk k1 � u� unk k1 þ un � unhk k1 þ unh � uhk k1
� ln u0k k1 þ Ch2 log hj j2 þ ln u0hk k1

So, passing to the limit on both sides ðn ! 1Þ, we get

u� uhk k1 � Ch2 log hj j2 □
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Chapter 8
The Periodic Petrol Station Replenishment
Problem: An Overview

Chefi Triki and Nasr Al-Hinai

Abstract This paper focuses on the periodic aspects within the Petrol Station
Replenishment Problem when defined on an extended planning horizon of t work-
ing days. It has the aim of surveying the scientific literature on this topic and giving
an overview of the modeling issues, mathematical formulations, and solution
approaches related to the Periodic Petrol Station Replenishment Problem (PPSRP).

Keywords Petrol delivery � Integer optimization models � Periodicity constraints �
Vehicle routing problems

8.1 Introduction

Companies operating in the field of delivery of petrol to the stations often face
challenging problems. Usually, these problems cannot efficiently be solved by
simply using common sense or just relying on the experience of the logistics
operator. For the company to remain competitive in the market, more sophisticated
mathematical tools and software packages are necessary. One of the main problems
faced by these companies is related to the planning of the petrol distribution to the
interested stations. This theme, known in the scientific literature as the Petrol
Station Replenishment Problem (PSRP), has attracted the interest of several
researchers who proposed different methods for its solution. Interested readers are
referred for example to [1, 3–6, 9–12, 18, 20, 21]. Many decision aspects of the
PSRP have been modeled in these works such as sizing the transportation fleet,
defining the routing of each tank-truck, assigning the stations to be served to the
appropriate tank-trucks, etc.
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Nevertheless, a major drawback in all of the above research works is the fact that
they were only considering one single day as planning horizon. However, recog-
nizing that the problem is multi-period by nature and including this aspect into the
solution approach may achieve a superior efficiency in minimizing the delivery costs.

Only few scholars have considered, indeed, the multi-period nature of the
PSRP. These researchers have taken into account that most of the stations should
not be served at each day of the t-day planning horizon, but rather at a specified
number of times, which depends on their storage capacity as well as petrol demand.

Specifically, Taqa Allah et al. have considered a single depot and an unlimited
homogeneous tank-truck fleet [22]. Accordingly, they have proposed some con-
struction and improvement heuristics to solve the multi-period variant of the
PSRP. Motivated by a real-life application, Malepart et al. have solved a vendor
inventory management variant of the multi-period PSRP [17]. Their model incor-
porated the option of giving the distribution company the possibility of choosing
the quantity to be delivered to some stations at each replenishment. The third work
is due to Cornillier et al. who proposed a heuristic that contains a route construction
and truck loading procedures as well as a route packing procedure [9]. They limited
the number of stations to be visited at each tank-truck route to only two stations but
they suggested two procedures enabling the anticipation or the postponement of
deliveries. Finally, recently Triki has considered, while solving the PSRP, not just
the multi-period aspect but specifically the periodic nature of the problem [23].
Periodicity there means that each station i must be served fi times within the time
horizon by choosing the replenishment days among the feasible schedules for
station i with the objective of minimizing the total distance traveled by the
tank-trucks. Triki has defined the Periodic PSRP (PPSRP) and has proposed several
integer programming-based heuristics for assigning first the service schedules, then
the routing for each tank-truck and each day and finally an improvement technique
to further reduce the delivery cost.

This paper mainly focuses on the periodic aspects within the PSRP and has the
aim of giving an overview of the modeling features, mathematical formulations,
and solution methods related to the periodic PSRP. It is organized as follows.
Section 8.2 is devoted to surveying the modeling issues related to the PPSRP and
on how to define the feasible schedules describing the periodicity constraints.
Section 8.3 formally defines the PPSRP, presents an integer optimization model for
its formulation, and discusses the different available solution approaches. Finally,
some directions for future research developments will be drawn in Sect. 8.4.

8.2 Modeling Aspects Related to the PPSRP

While modeling a real-life PPSRP, different aspects of the problem could be
considered. These aspects lead to different optimization models and consequently
diverse solution approaches. Hence, this section defines these aspects and con-
straints and highlights how they are incorporated into the problem formulation.
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8.2.1 Classification of the PPSRP

PPSRP models come in a variety of forms, which can be classified with respect to
the following criteria:

• Number of commodities: the delivery activity can involve one single commodity
(such as just petrol) or simultaneously multiple commodities (such as normal
petrol, unleaded petrol, diesel, etc.).

• Number of tank-trucks: can be fixed a priori, but in some cases can also con-
stitute a decision variable of the problem.

• Type of tank-trucks: trucks can be identical (homogeneous fleet), for example,
all having the same capacity, or can have different characteristics (heterogeneous
fleet) allowing to decide on the truck route assignment. Moreover, tank-trucks
can have single or multiple compartments.

• Number of depots: petrol replenishment problems become more challenging
when more than one depot has to be considered and more specifically, if truck
could be assigned dynamically to any of the depots.

• Level of dynamism: service requests from the stations can be all known at the
beginning of the planning horizon (static problems) or can be revealed only
during the service time (dynamic problems) necessitating, thus, a continuous
adjustments of the routes.

• Structure of the routes: there may be precedence/priority constraints of the
stations, constraints on the maximum number of stations to be served per
day/route, or constraints related to the maximum driving distance per truck.

• Time windows: stations can impose time limits within which the service should
take place. These additional constraints may lead to further decisions related to
repositioning strategies or waiting policies of the trucks.

8.2.2 Periodicity Schedules Definition

Different alternative representations can be used in order to describe the periodicity
and, thus, to incorporate the resulting schedules into the optimization models. All
the representations lead to the definition, for each station, say i, of a set of possible
schedules of fi service days that are feasible for that station. Three different rep-
resentations have been proposed in the literature and will be detailed below. While
the set of possible schedules is enumerated explicitly by each station in the first
technique, a preprocessing phase is needed in the successive two techniques in
order to form an explicit set of the feasible schedules (called also combinations,
sequences, etc.).

8 The Periodic Petrol Station Replenishment Problem: An Overview 129



8.2.2.1 Predetermined Schedules

This representation, adopted by [8], is the simplest and most used technique for
representing periodicity. It consists of explicitly specifying all the allowable
alternatives that define the set of schedules and hence the decision maker should
select only one of them.

8.2.2.2 Periodic Schedules

Each station specifies, in this technique, the number of service visits fi during the
t-day planning horizon, and then that station must be visited every t/fi days. If, for
example, fi = 3 and t = 6, then station i must be periodically visited every t/fi =
2 days up to the end of the planning horizon. This means that, during the 6-day
planning horizon, the feasible service schedules for station i are {(1, 3, 5), (2, 4, 6)}.
The ratio t/fi defines the cardinality of the set of feasible schedules for station i. This
representation technique has been used by authors like [7, 13, 19].

8.2.2.3 Multi-stage Network-Based Schedules

In this representation, station i must be visited once during each time interval of ri
days, so fi = t/ri. Furthermore, additional constraints impose that at least li days and at
most ui days must elapse between two successive visits. This technique, proposed by
[16], can be represented as an acyclic multi-stage network corresponding to each
station i. The nodes of stage k represent the allowable alternative days to execute the
kth visit to station i, whereas each edge represents two possible successive visit days.
The set of feasible schedules is thus defined by all the paths between the nodes of
the first and the last stages of the directed network. An example of a network
structure with t = 9, ri = 3, li = 2, and ui = 4 is represented in Fig. 8.1, which defines
for station i the following set of feasible schedules: {(1, 4, 7), (1, 4, 8), (1, 5, 7),
(1, 5, 8), (1, 5, 9), (2, 4, 7), (2, 4, 8), (2, 5, 7), (2, 5, 8), (2, 5, 9), (2, 6, 8), (2, 6, 9),
(3, 5, 7), (3, 5, 8), (3, 5, 9), (3, 6, 8), (3, 6, 9)}.

stage I stage II stage III

1

2

3

7

8

9

4

5

6

Fig. 8.1 Multi-stage
network-based schedules
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8.3 Mathematical Formulations

As discussed in Sect. 8.1, despite its importance in industrial applications, the
PPSRP is still in its infancy and only a limited number of works have tried to take
advantage from extending the planning horizon while solving the petrol replen-
ishment activities. However, the PPSRP is tightly related to the well-known peri-
odic vehicle routing problem (PVRP) that has been intensively studied over the past
three decades (see for example the excellent survey by [15] and the references
therein). The enormous advances achieved in investigating the PVRP may be very
useful for tackling the PPSRP since the two problems have many similarities.
The PPSRP is, indeed, basically a PVRP that includes side constraints that take into
account the specifications of the products to be delivered and additional operational
restrictions related to the drivers’ shifts, trucks assignment to the routes, etc.

8.3.1 PVRP Versus PPSRP

The problems related to the distribution of material goods from a set of deposits to a
set of customers are generally known as the Vehicle Routing Problem (VRP). It
consists of serving a set of customers by using the available fleet of vehicles that are
located in one or more depots. The solution of a VRP is then represented as a set of
routes, that begin and end in the depots, and to which is assigned a single vehicle.
The resulting routes are optimal only if all customers’ demands are met, all oper-
ational constraints are satisfied and the objective of minimizing the total cost of
transportation is achieved. There are many variants of VRPs but the simplest and
most studied one is the Capacitated Vehicle Routing Problem (CVRP). In this
problem, all customers are characterized by demand quantities that are deterministic
and known a priori. Solving the CVRP means finding a set of minimum cost routes
(the cost of a route is its length or its service time) that ensures that the sum of
the demands of the customers visited in a route must not exceed the capacity of the
vehicle performing the service. Figure 8.2 reports an example of a feasible CVRP
solution showing four routes (C1, …, C4), the capacity of the assigned vehicles
(Q1, …, Q4) and the demand at each node of the network.

The VRP becomes even more challenging when the planning horizon is
extended to several days, instead of limiting it to a single day which defines the
Periodic Vehicle Routing Problem (PVRP). During the extended planning horizon,
each customer must be served exactly a certain number of times, identified by its
frequency of service.

The PPSRP has usually the same objective function as the PVRP and they also
share the following operational constraints related to the periodicity aspects:

• Each vehicle must start its route, on each day of the planning horizon, from the
depots and returns to them at the end of the working day; multiple visits to the
same depot in the same day may be also acceptable.
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• Each customer has to be visited by at most one vehicle every day;
• A vehicle can visit more than one customer in the same route, but the total

demand cannot exceed its maximum capacity;
• Each customer must be visited exactly a prespecified number of times during the

planning horizon, as defined by its frequency of service.

However, the PPSRP involves additional operational constraints that are usually
strongly dependent on the application under consideration, such as

• Some tank-trucks cannot be partially filled because of the dynamic stability
requirements, especially when performing difficult routes.

• Some trucks may have different compartments in the same tank in order to allow
delivering different petroleum products at the same trip.

• Safety considerations that are usually particularly restrictive while transporting
flammable products such as petrol.

• Access limitations that prohibit the movement of the tank-trucks on certain
roads and forbid some drivers to enter certain zones (such as inexperienced
drivers to the airports or to military zones).

As a consequence, it is difficult to characterize all the PPSRPs by a typical
optimization formulation since every instance has its ad-hoc features that should be
specifically studied in details in order to define the more appropriate mathematical
model. In the sequel, we will focus on the basic variant of the PPSRP in order to
present an optimization model that could be considered as general as possible. This
model is nothing but a PVRP formulation since it does not take into account the
particular requirements deriving from the product to be delivered (petrol) that are,
as mentioned above, application dependent.

Fig. 8.2 Example of four
feasible routes of a CVRP (the
numbers next to the nodes are
the demands and Q1, …, Q4
are the capacities of the
vehicles)
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8.3.2 Optimization Model

In order to mathematically represent a general variant of the PPSRP, consider a
connected undirected graph G ¼ ðV ;AÞ, where V ¼ 1; 2; . . .; nf g is the set of
nodes (stations) and the set A ¼ ði; jÞ : i; j ¼ 1; ::; n; i 6¼ jf g represents the edges
connecting the nodes. Considering a connected graph means that we assume that
each node is spatially connected to all other nodes through at least one route. Vertex
1 represents the depot, i.e., the node where is located the heterogeneous fleet of
tank-trucks and from where all the routes are started and finished. To each
tank-truck NV = 1, …, m is associated a capacity denoted by QNV. To each edge
ði; jÞ of A, is associated a traveling cost cij (we assume here, for simplicity, that it is
independent from the truck to be used) to move from node i to node j. On the other
hand, to each node i = 1, …, n of V correspond a nonnegative demand di and a
frequency of service fi that indicates the exact number of service days along the
planning horizon. Consequently, to each node i is associated a set of schedules Ci of
feasible service days determined by using one of the techniques analyzed above.
For this purpose, let us define a binary constant arl that takes value 1 if day l be-
longs to a certain service schedule r, and 0 otherwise.

Concerning the decision variables of the model, we define two sets of variables.
The first set describes the tank-truck routes as follows:

xijvl ¼ 1 if edge i� j is part of the route performed by truck v in day l
xijvl ¼ 0 otherwise;

�
whereas the second set of variables identifies the schedule assigned to each station

yir ¼ 1 if service schedule r is assigned to station i
yir ¼ 0 otherwise:

�
From the above variables definition it is clear that the model should perform two

tasks. First, it identifies the best schedules to be assigned to each station and then, it
builds the routes of each truck and for each day of the planning horizon. The
mathematical model of the basic variant of the PPSRP could be represented thus, as
follows:

MIN z ¼Pn
i¼1

Pn
j¼1

PNV
v¼1

Pt
l¼1

cijxijvl ð8:1Þ

Subject to

Pn
r2Ci

yir ¼ 1 i ¼ 2; . . .; n ð8:2Þ
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Pn
j¼1

PNV
v¼1

xijvl �
P
r2Ci

arlyir ¼ 0 i ¼ 2; . . .; n; l ¼ 1; . . .; t ð8:3Þ

Pn
i¼1

xipvl �
Pn
j¼1

xpjvl ¼ 0 v ¼ 1; . . .;NV ; p ¼ 1; . . .; n; l ¼ 1; . . .; t ð8:4Þ

Pn
i¼1

di
Pn
j¼1

xijvl

 !
�Qv v ¼ 1; . . .;NV ; l ¼ 1; . . .; t ð8:5Þ

P
vi2S

P
vj2S

xijvl � Sj j � 1 v ¼ 1; . . .;NV ; l ¼ 1; . . .; t; S�N � 1f g; Sj j � 2 ð8:6Þ

xijvl 2 0; 1f g i; j ¼ 1; . . .; n; v ¼ 1; . . .;NV ; l ¼ 1; . . .; t ð8:7Þ

yir 2 0; 1f g i ¼ 1; . . .; n;r 2 Ci ð8:8Þ

The objective function (8.1) minimizes the sum of the traveling costs for all the
routes performed by all the trucks during all the days of the time horizon. The set of
constraints (8.2) ensures that only one schedule among the feasible ones is assigned
to each station (excluding, of course, the depot, i.e., i = 1). Constraints (8.3) ensure
that each station is visited only on the days corresponding to the assigned schedule.
Constraints (8.4) force each truck arriving to a node to leave it on the same day.
Constraints (8.5) are the capacity limitations on each tank-truck. Constraints (8.6)
prevent against the creation of undesirable subtours in the routing solution and
finally, constraints (8.7) and (8.8) force all the decision variables to be binary.

8.3.3 Solution Approaches

Often, the one-day PSRP instances are already characterized by large-scale opti-
mization models that make their solution with exact methods quite difficult [9].
When we add to this complexity, even the periodicity aspect related to the extended
planning horizon, the problem becomes extremely hard to be faced by exact
solution methods. Indeed, Triki has reported in [23] how it was not possible to get
an exact solution of his test problem consisting of 14 heterogeneous tank-trucks, 38
petrol stations, and a planning horizon of six days by using general purpose
state-of-the-art optimization software. After more than 30 h CPU time and a huge
number of iterations, the solver has given a fault memory error and has succeeded
to generate only a feasible upper bound solution. Consequently, to the best of our
knowledge, no exact algorithms are available in the literatures that are specifically
designed to solve the PPSRP. However, again some insights can derive from the
PVRP literature where only recently Baldacci et al. have proposed an exact algo-
rithm and several lower bounds for the problem [2]. They succeeded to solve
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randomly generated test problems having up to 199 customers and covering a time
horizon of five days.

Since it is very difficult to solve the PPSRP exactly, the attention of all the works
available in the literature has been devoted to developing heuristic approaches. The
solution strategy that seems to be more appropriate in this context belongs to the
class “Group-Before, Route-After” (or Cluster-First, Route-Second). This class of
algorithms splits the PPSRP into two distinct phases: in the first, each station is
assigned a feasible schedule that takes into account its required frequency of ser-
vice; In the second phase, the algorithm builds the optimal route for each truck by
considering, for each day of the planning horizon, only the subgraph involving the
stations assigned to that day [10, 17, 22, 23].

Metaheuristics can be also considered as a promising approach to solve routing
problems with periodicity restrictions. However, we are not aware of any meta-
heuristic method that has been specifically developed to solve the PPSRP. Again,
we should rely on the advances achieved in the context of the PVRP for which
metaheuristics, such as, Tabu search [13] and genetic algorithms [14, 24] have been
used for its solution.

8.4 Conclusions

Nowadays, most of the petrol distribution companies schedule the delivery of petrol
to the stations by considering a single-day planning horizon. This paper has the aim
of showing how extending the horizon to t working days may ensure important
savings but to be paid usually by further complexity in the underlying optimization
problems to be solved. This defines the PPSRP that has been shown to present
many affinities with the well-known PVRP. The two problems share many common
characteristics, but the nature of the products to be transported (petroleum) and the
related restrictions usually generate additional challenges while solving the
PPSRP. This explains the reason why the PPSRP did not reach yet the maturity
level achieved by its general purpose counterpart and opens new research directions
from different points of view.
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Chapter 9
Nanotechnology and Mathematics “Study
of Non-linear Dynamic Vibration in Single
Walled Carbon Nanotubes (SWNTs)”

Mushahid Husain and Ayub Khan

Abstract This paper discusses some aspects of the applied nonlinear mathematics
that are used to solve the problems in nanotechnology. The equation of motion of
nanoscopic systems, which is a nonlinear dynamical process, is discussed in the
current study. It is observed that in the nonresonant response, the amplitude remains
constant up to the second order of approximation.

Keywords Nanotechnology � Nonlinear dynamics � Carbon nanotube � SWNT �
MWNT

9.1 Introduction

Nanotechnology is a rich source of intensity problems in applied mathematics.
There are a number of problems in nanotechnology that may be solved using
different mathematical homogenization methods. Microscopic boundary conditions
for flow over this surface can be investigated mathematically. Expressions can be
obtained in several limiting cases relating roughness and local slip to macroscopic
slip boundary condition and show that this can significantly affect micro and
nanoscale flows in some circumstances. The equation of motion of nanoscopic
systems is generically nonlinear and frequently operates in a regime, where a linear
approximation is not justified. The comprehension of the nonlinear dynamical
process in nanosystems is a new field of research that is certainly of considerable
technological importance. Nonlinear dynamics can be applied to solve the concept
of aging effect in carbon nanotubes [1, 2] based devices.
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Single-walled carbon nanotubes (SWNTs) are nanometer-diameter cylinders
consisting of a single graphene sheet wrapped up to form a tube. The history of
single-walled carbon nanotubes (SWNTs) began with the discovery of multiwalled
carbon nanotubes (MWNTs). First SWNT made of just one layer of carbon atoms
were created independently in 1993 by Iijima and Donald Bethune of IBM [3]. These
are basically tubes of graphite and are normally capped at the ends. The caps are
formed due tomixing in some pentagonswith the hexagons. The theoreticalminimum
diameter of a SWNT is around 0.4 nm,which is about as long as two silicon atoms side
by side. The average diameter tends to be around 1.2 nm on the basis of available
literature. SWNT are more pliable than their multiwalled counterparts. They can be
twisted,flattened, and bent into small circles or a round shape bendswithout breaking.
The unique electronic properties of carbon nanotubes offer great intellectual chal-
lenges and potentials for new applications. Experiments and theoretical calculations
have shown that depending only on diameter and helicity, single-walled carbon
nanotubes (SWNTs) can be either metallic or semiconducting [4, 5].

Radial breathing modes (RBMs) is unique to CNTs without any counterpart in
graphene sheets. The phonon modes in general and the RBM modes in particular
have already received some attention in theoretical work [6]. To investigate the
physical and mechanical performances of nanostructures, different approaches have
been adopted [7–9]. When radius-to-thickness ratio of SWNTs is large, it may be
treated as an elastic model. The nonlinear dynamic response of zig-zag (Fig. 9.1)
(where m = 0) SWNTs under the effect of radial impulse has been studied [10]. In
the course of studies, the response has been seen into the two cases namely,
nonresonant and resonant. In the nonresonant case, it has been observed that the
amplitude of the vibration remains constant up to the second order of approxima-
tion, while in the resonant case, there have been obtained, the resonant solution for
the parametric and main frequencies. In the numerical part, plots exhibit the chaotic
behavior of the nonlinear vibrations.

As in the close neighborhood of resonant solutions, there is a possibility of
chaotic behavior. Therefore the analytic estimation of resonance solutions prevents
us to employ the hit and trial technique of selecting the parameter to probe the
chaotic behavior computationally.

The equation of motion of nonlinear planar oscillation of zig-zag (n, 0) (Fig. 9.2)
CNTs under the influence of radial impulse is written as [10]

€Cn þx2
nCn ¼ � g2n2

ðn2 þ 1Þ ko 2� n2
� �

sinðlosÞCn; ð9:1Þ

Fig. 9.1 Structure of a zig-zag SWCNTs
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€Cn þx2
nCn ¼ �gjn sinðlosÞCn; ð9:2Þ

where jn ¼ n2koð2� n2Þ
ðn2 þ 1Þ : ð9:3Þ

Cn is generalized in extensional amplitude

x2
n ¼

g2ðn2 � 1Þa2
n2 þ 1

ð9:4Þ

a2 ¼ R2

12a2
; lo ¼ 1; g ¼ vo

c
; s ¼ ct

a
; ko ¼ 1 ð9:5Þ

For elastic motion, g � 0 then Eq. (9.2) will become

€Cn þx2
nCn � 0: ð9:6Þ

To study the non-resonant vibrations, the generating solution of (9.6) is given as

Cn ¼ a cos/ and / ¼ xnsþ/�; ð9:7Þ

where amplitude a and phase /� are to be determined by the initial conditions. The
solution of (9.1) is obtained in the form of

Cn ¼ a cos/þ gu1 a;/; sð Þþ g2u2 a;/; sð Þþ � � � ; ð9:8Þ

where a and / are determined by the differential equations:

da
ds

¼ gA1 að Þþ g2A2ðaÞþ � � � : ð9:9Þ

d/
ds

¼ xn þ gB1 að Þþ g2B2ðaÞþ � � � : ð9:10Þ

L

h

a

F (a, θ, t) Radial impulsive 

Fig. 9.2 The continuum shell model of CNT where h is the effective thickness and a is the radius
of midsurface of CNTs, L/a is much larger than unit
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After the first order of approximation, the solutions are

Cn ¼ a cos/;
da
ds

¼ 0;
d/
ds

¼ xn; ð9:11Þ

and in the second order of approximation, the solutions are

Cn ¼ a cos/þ g
ajn cos/ sinðl0sÞ
l0ð2xn þ l0Þ

;
da
ds

¼ 0 and
d/
ds

¼ xn: ð9:12Þ

The solution in the second approximation indicates the phenomenon of
non-resonance. Also, it is observed that the amplitude is constant up to second order
of approximation.

In case of resonant vibrations, the behavior of the dynamical system is studied in
the neighborhood of the resonance. For g ¼ 0, the generating solution of Eq. (9.6)
is given as,

Cn ¼ a cos/; / ¼ s
k
þ h; ð9:13Þ

where amplitude a and phase angle h are determined by the following equations,

da
ds

¼ gA1 a; hð Þ; ð9:14Þ

dh
ds

¼ xn � 1
k
þ gB1 a; hð Þ; ð9:15Þ

d/
ds

¼ xn þ gB1 a; hð Þ; ð9:16Þ

where A1ða; hÞ; B1ða; hÞ are particular solutions with respect to θ.
During such investigations, it is observed that in the nonresonant response, the

amplitude remains constant up to the second order of approximation. The com-
putational studies based on the phase plots, time series, Poincare surface of sections,
Poincare maps, and the graphs of resonant solutions reveal that the nonlinear
response of SWNTs is chaotic when parameters η and ωn are increased. On the
other hand, the increasing values of the parameter kn changes the behavior of
the system from chaotic to regular. Thus, this conjecture enables to conclude that
the above cited parameters η and ωn are significantly responsible for chaotic
(or aging) phenomena in SWNTs [10].
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Chapter 10
Generalized Monotone Mappings
with Applications

R. Ahmad, A.H. Siddiqi, M. Dilshad and M. Rahaman

Abstract In this work, we introduce a generalized monotone mapping and we call
it H(∙,∙)-cocoercive mapping. Then, we have extended this concept of H(∙,∙)-co-
coercive mapping to H(∙,∙)-η-cocoercive mapping. Further, we have proved some of
the properties of H(∙,∙)-cocoercive and H(∙,∙)-η-cocoercive mappings and finally
apply these concepts to solve some generalized variational inclusions and system of
variational inclusions.

Keywords Generalized monotonicity � Lipschitz continuity � Variational inclu-
sions � System � Algorithm � Resolvent operator

10.1 Introduction

Fang and Huang [1] introduced H-monotone mappings for solving a system of
variational inclusions involving a combination of H-monotone and strongly
monotone mappings based on the resolvent mapping technique. The notion of H-
monotonicity has revitalized the theory of maximal monotone mappings in many
directions. Verma [2] introduced A-monotone mappings with applications to solve a
system of nonlinear variational inclusions. Zou and Huang [3] introduced and
studied H(∙,∙)-accretive mappings and applied them to solve variational inclusions
and system of variational inclusions. For more details, we refer to [4–12].

Various concepts of generalized monotone mappings have been introduced in
the literature. Cocoercive mappings which are generalized form of monotone
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mappings are defined by Tseng [13], Magnanti and Perakis [14] and Zhu and
Marcotte [15].

We introduce a generalized monotone mapping and call it H(∙,∙)-cocoercive
mapping. We also define its resolvent operator with some of its properties. We
apply these new concepts to find the solutions of a generalized variational inclu-
sions and system of variational inclusions.

By taking into account the fact that η-cocoercivity is an intermediate concept that
lies between η-monotonicity and strong η-monotonicity, we extend the notion of H
(∙,∙)-cocoercive mapping, we call it as H(∙,∙)-η-cocoercive mapping.

We define the resolvent operator of H(∙,∙)-η-cocoercive mapping with its
properties and one numerical example through Matlab programming is also con-
structed. We apply the concept of H(∙,∙)-η-cocoercive mapping to solve a
variational-like inclusion problem in real Banach spaces and a generalized
variational-like inclusion problem in q-uniformly smooth Banach spaces.

10.2 H(∙,∙)-Cocoercive Mapping

In this section, we define a new generalized monotone mapping and we call it H(∙,
∙)-cocoercive mapping. We discuss some of its properties.

Definition 2.1 Let A, B: X → X, H: X × X → X be three single-valued mappings.
Then M:X → 2X is said to be H(∙,∙)-cocoercive mapping with respect to mappings
A and B (or simply H(∙,∙)-cocoercive in the sequel), if M is cocoercive and (H(A,
B) + λM)(X) = X, for every λ > 0.

Remark 2.1 Since cocoercive mappings includes monotone operators our definition
is more general than definition of H(∙,∙)-accretive mapping [3]. It is easy to check
that H(∙,∙)-cocoercive mappings provide a unified framework for the existing H(∙,∙)-
monotone, H-monotone operators in Hilbert spaces and H(∙,∙)-accretive, H-accre-
tive operators in Banach spaces.

Example 2.1 Let X ¼ R
2 with usual inner product. Let A;B : R2 ! R

2 be defined
by

Ax ¼ ð2x1 � 2x2;�2x1 þ 4x2Þ;
By ¼ ð�y1 þ y2;�y2Þ; for all x ¼ ðx1; x2Þ; y ¼ ðy1; y2Þ 2 R

2:

Suppose that HðA;BÞ : R2 � R
2 ! R

2 is defined by

HðAx;ByÞ ¼ AxþBy; for all x; y 2 R
2:

Then H(A, B) is cocoercive with respect to A with constant 1
6 and relaxed

cocoercive with respect to B with constant 1
2, since
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hHðAx; uÞ � HðAy; uÞ; x� yi
¼ hAx� Ay; x� yi
¼ hð2x1 � 2x2;�2x1 þ 4x2Þ � ð2y1 � 2y2;�2y1 þ 4y2Þ; ðx1 � y1; x2 � y2Þi
¼ hð2ðx1 � y1Þ � 2ðx2 � y2Þ;�2ðx1 � y1Þþ 4ðx2 � y2ÞÞ; ðx1 � y1; x2 � y2Þi
¼ 2ðx1 � y1Þ2 þ 4ðx2 � y2Þ2 � 4ðx1 � y1Þðx2 � y2Þ

and

k Ax� Ay k2 ¼ hðð2x1 � 2x2;�2x1 þ 4x2Þ � ð2y1 � 2y2;�2y1 þ 4y2ÞÞ;
ðð2x1 � 2x2;�2x1 þ 4x2Þ � ð2y1 � 2y2;�2y1 þ 4y2ÞÞi

¼ 8ðx1 � y1Þ2 þ 20ðx2 � y2Þ2 � 24ðx1 � y1Þðx2 � y2Þ
� 12ðx1 � y1Þ2 þ 24ðx2 � y2Þ2 � 24ðx1 � y1Þðx2 � y2Þ
¼ 6f2ðx1 � y1Þ2 þ 4ðx2 � y2Þ2 � 4ðx1 � y1Þðx2 � y2Þg
¼ 6fhHðu;AxÞ � Hðu;AyÞ; x� yig;

which implies that

hHðAx; uÞ � HðAy; uÞ; x� yi� 1
6
k Ax� Ay k2;

i.e., H(A, B) is cocoercive with respect to A with constant 1
6.

Further,

hHðu;BxÞ � Hðu;ByÞ; x� yi ¼ hBx� By; x� yi
¼ hð�x1 þ x2;�x2Þ � ð�y1 þ y2;�y2Þ; ðx1 � y1; x2 � y2Þi
¼ hð�ðx1 � y1Þþ ðx2 � y2Þ;�ðx2 � y2ÞÞ; ðx1 � y1; x2 � y2Þi
¼ �ðx1 � y1Þ2 � ðx2 � y2Þ2 þðx1 � y1Þðx2 � y2Þ
¼ �fðx1 � y1Þ2 þðx2 � y2Þ2 � ðx1 � y1Þðx2 � y2Þg;

and

k Bx� By k2 ¼ hð�ðx1 � y1Þþ ðx2 � y2Þ;�ðx2 � y2ÞÞ;
ð�ðx1 � y1Þþ ðx2 � y2Þ;�ðx2 � y2Þi

¼ ðx1 � y1Þ2 þ 2ðx2 � y2Þ2 � 2ðx1 � y1Þðx2 � y2Þ
� 2fðx1 � y1Þ2 þðx2 � y2Þ2 � ðx1 � y1Þðx2 � y2Þg
¼ 2ð�1ÞhHðBx; uÞ � HðBy; uÞ; x� yi
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which implies that

hHðu;BxÞ � Hðu;ByÞ; x� yi� � 1
2
k Bx� By k2;

i.e., H(A, B) is relaxed cocoercive with respect to B with constant 1
2.

Example 2.2 Let X, A, B and H are same as in Example 2.1 and letM : R2 ! R
2 be

define by M(x1, x2) = (0, x2), for all ðx1; x2Þ 2 R
2. Then it is easy to check that M is

cocoercive and ðHðA;BÞþ kMÞðR2Þ ¼ R
2; for all k[ 0, that is, M is H(∙,∙)-co-

coercive mapping with respect to A and B.

Example 2.3 Let X ¼ S
2, where S

2 denotes the space of all 2 × 2 real symmetric
matrices. Let H(Ax, By) = x2− y, for all x; y 2 S

2 andM = I. Then for λ = 1, we have

ðHðA;BÞþMÞðxÞ ¼ x2 � xþ x ¼ x2;

but

0 0
0 �1

2
4

3
5 62 ðHðA;BÞþMÞðS2Þ;

because
0 0
0 �1

2
4

3
5 is not the square of any 2 × 2 real symmetric matrix. Hence

M is not H(∙,∙)-cocoercive with respect to A and B.
Since H(∙,∙)-cocoercive mappings are more general than maximal monotone

operators, we give the following characterization of H(∙,∙)-cocoercive mappings.

Proposition 2.1 Let H(A, B) be cocoercive with respect to A with constant μ > 0,
relaxed cocoercive with respect to B with constant γ > 0, A is α-expansive, B is β-
Lipschitz continuous and μ > γ, α > β. Let M:X→ 2X be H(∙,∙)-cocoercive mapping.
If the following inequality

hx� y; u� vi� 0

holds for all (v, y) ∊ Graph(M), then x ∊ Mu, where

GraphðMÞ ¼ fðu; xÞ 2 X � X : x 2 MðuÞg:
Proof Suppose that there exists some (u0, x0) such that

hx0 � y; u0 � vi� 0; for all ðv; yÞ 2 GraphðMÞ: ð2:1Þ

Since M is H(∙,∙)-cocoercive, we know that (H(A, B) + λM)(X) = X holds for
every λ > 0 and so there exists ðu1; x1Þ 2 GraphðMÞ such that
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HðAu1;Bu1Þþ kx1 ¼ HðAu0;Bu0Þþ kx0 2 X: ð2:2Þ
It follows from (2.1) and (2.2) that

0�hkx0 þHðAu0;Bu0Þ � kx1 � HðAu1;Bu1Þ; u0 � u1i
0� khx0 � x1; u0 � u1i ¼ �hHðAu0;Bu0Þ � HðAu1;Bu1Þ; u0 � u1i

¼ �hHðAu0;Bu0Þ � HðAu1;Bu0Þ; u0 � u1i
� hHðAu1;Bu0Þ � HðAu1;Bu1Þ; u0 � u1i

� � l k Au0 � Au1 k2 þ c k Bu0 � Bu1 k2
� � la2 k u0 � u1 k2 þ cb2 k u0 � u1 k2
¼ �ðla2 � cb2Þ k u0 � u1 k2 � 0;

which gives u1 = u0, since μ > γ, α > β. By (2.2), we have x1 = x0. Hence,
ðu0; x0Þ ¼ ðu1; x1Þ 2 GraphðMÞ and so x0 ∊ Mu0. □

Theorem 2.1 Let X be a real Hilbert space and M:X→ 2X be a maximal monotone
operator. Suppose that H:X × X→ X be a bounded cocoercive and semi-continuous
with respect to A and B. Let H:X × X → X is also cocoercive with respect to A with
constant μ > 0 and relaxed cocoercive with respect to B with constant γ > 0. The
mapping A is α-expansive and B is β-Lipschitz continuous. If μ > γ and α > β, then M
is H(∙,∙)-cocoercive.

Proof For the proof we refer to [3]. □

Theorem 2.2 Let H(A, B) be a cocoercive with respect to A with constant μ > 0
and relaxed cocoercive with respect to B with constant γ > 0, A is α-expansive and
B is β-Lipschitz continuous, μ > γ and α > β. Let M be an H(∙,∙)-cocoercive
mapping. Then the operator (H(A, B) + λM)−1 is single-valued.

Proof For any given u ∊ X, let x, y ∊ (H(A, B) + λM)−1(u). It follows that

�HðAx;BxÞþ u 2 kMx

and

�HðAy;ByÞþ u 2 kMy:

As M is cocoercive (thus monotone), we have

0�h�HðAx;BxÞþ u� ð�HðAy;ByÞþ uÞ; x� yi
¼ �hHðAx;BxÞ � HðAy;ByÞ; x� yi
¼ �hHðAx;BxÞ � HðAy;BxÞþHðAy;BxÞ � HðAy;ByÞ; x� yi
¼ �hHðAx;BxÞ � HðAy;BxÞ; x� yi
� hHðAy;BxÞ � HðAy;ByÞ; x� yi:

ð2:3Þ
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Since H is cocoercive with respect to A with constant μ > 0 and relaxed coco-
ercive with respect to B with constant γ > 0, A is α-expansive and B is β-Lipschitz
continuous, thus (2.3) becomes

0� � la2 k x� y k2 þ cb2 k x� y k2¼ �ðla2 � cb2Þ k x� y k2 � 0; ð2:4Þ

since μ > γ, α > β. Thus, we have x = y and so (H(A, B) + λM)−1 is
single-valued. □

Definition 2.2 Let H(A, B) be cocoercive with respect to A with constant μ > 0 and
relaxed cocoercive with respect to B with constant γ > 0, A is α-expansive and B is
β-Lipschitz continuous and μ > γ, α > β. Let M be H(∙,∙)-cocoercive mapping. The
resolvent operator Rλ,M

H(·,·):X → X is defined by

RHð�;�Þ
k;M ðuÞ ¼ ðHðA;BÞþ kMÞ�1ðuÞ; for all u 2 X: ð2:5Þ

Now, we prove the Lipschitz continuity of resolvent operator defined by (2.5)
and estimate its Lipschitz constant.

Theorem 2.3 Let H(A, B) be cocoercive with respect to A with constant μ > 0,
relaxed cocoercive with respect to B with constant γ > 0, A is α-expansive and B is
β-Lipschitz continuous and μ > γ, α > β. Let M be H(∙,∙)-cocoercive mapping. Then,
the resolvent operator Rλ,M

H(·,·):X → X is 1
la2�cb2

-Lipschitz continuous, that is

k RHð�;�Þ
k;M ðuÞ � RHð�;�Þ

k;M ðvÞ k � 1

la2 � cb2
k u� v k; for all u; v 2 X:

Proof Let u and v be any given points in X. It follows from (2.5) that

RHð�;�Þ
k;M ðuÞ ¼ ðHðA;BÞþ kMÞ�1ðuÞ;

and

RHð�;�Þ
k;M ðvÞ ¼ ðHðA;BÞþ kMÞ�1ðvÞ:

This implies that

1
k
ðu� HðAðRHð�;�Þ

k;M ðuÞÞ;BðRHð�;�Þ
k;M ðuÞÞÞÞ 2 MðRHð�;�Þ

k;M ðuÞÞ;

and

1
k
ðv� HðAðRHð�;�Þ

k;M ðvÞÞ;BðRHð�;�Þ
k;M ðvÞÞÞÞ 2 MðRHð�;�Þ

k;M ðvÞÞ:
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For the sake of clarity, we take

Pu ¼ RHð�;�Þ
k;M ðuÞ;Pv ¼ RHð�;�Þ

k;M ðvÞ:

Since M is cocoercive (hence monotone), we have

1
k
hu� HðAðPuÞ;BðPuÞÞ � ðv� HðAðPvÞ;BðPvÞÞÞ;Pu� Pvi� 0;

1
k
hu� v� HðAðPuÞ;BðPuÞÞþHðAðPvÞ;BðPvÞÞ;Pu� Pvi� 0;

which implies that

hu� v;Pu� Pvi� hHðAðPuÞ;BðPuÞÞ � HðAðPvÞ;BðPvÞÞ;Pu� Pvi:

Further, we have

k u� v kk Pu� Pv k� hu� v;Pu� Pvi
� hHðAðPuÞ;BðPuÞÞ � HðAðPvÞ;BðPvÞÞ;Pu� Pvi
¼ hHðAðPuÞ;BðPuÞÞ � HðAðPvÞ;BðPuÞÞ
þHðAðPvÞ;BðPuÞÞ � HðAðPvÞ;BðPvÞÞ;Pu� Pvi

¼ hHðAðPuÞ;BðPuÞÞ � HðAðPvÞ;BðPuÞÞ;Pu� Pvi
þ hHðAðPvÞ;BðPuÞÞ � HðAðPvÞ;BðPvÞÞ;Pu� Pvi

� l k AðPuÞ � AðPvÞ k2 �c k BðPuÞ � BðPvÞ k2
� la2 k Pu� Pv k2 �cb2 k Pu� Pv k2;

and so

k u� v kk Pu� Pv k � ðla2 � cb2Þ k Pu� Pv k2;

thus,

k Pu� Pv k � 1

la2 � cb2
k u� v k;

that is,

k RHð�;�Þ
k;M ðuÞ � RHð�;�Þ

k;M ðvÞ k � 1

la2 � cb2
k u� v k; for all u; v 2 X:

This completes the proof. □
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10.3 Generalized Variational Inclusions

In this section, we apply H(∙,∙)-cocoercive mapping for solving a generalized
variational inclusion problem.

We consider the problem of finding u ∊ X and w ∊ T(u) such that

0 2 wþMðgðuÞÞ; ð3:1Þ

where g: X → X, M:X → 2X and T: X → CB(X) be the mappings. Problem (3.1) is
introduced and studied by Huang [16] in the setting of Banach spaces.

Lemma 3.1 (u, w), where u ∊ X, w ∊ T(u), is a solution of the problem (3.1), if and
only if (u, w) is a solution of the following equation:

gðuÞ ¼ RHð�;�Þ
k;M ½HðAðguÞ;BðguÞÞ � kw�; ð3:2Þ

where λ > 0 is a constant.

Proof By using the definition of resolvent operator Rλ,M
H(·,·), the conclusion follows

directly. □
Based on (3.2), we construct the following algorithm.

Algorithm 3.1 For any u0 ∊ X, w0 ∊ T(u0), compute the sequences {un} and {wn}
by iterative schemes:

gðunþ 1Þ ¼ RHð�;�Þ
k;M ½HðAðgunÞ;BðgunÞÞ � kwn�; ð3:3Þ

wn 2 TðunÞ; k wn � wnþ 1 k � ð1þ 1
nþ 1

ÞHðTðunÞ; Tðunþ 1ÞÞ; ð3:4Þ

for all n = 0, 1, 2, …, and λ > 0 is a constant.

Theorem 3.1 Let X be a real Hilbert space and A, B, g:X → X, H:X × X → X be
the single-valued mappings. Let T:X → CB(X) be a set-valued mapping. Suppose
that M:X → 2X be the set-valued, H(∙,∙)-cocoercive mapping. Assume that

1. T is δ-Lipschitz continuous in the Häusdorff metric H(∙,∙);
2. H(A, B) is cocoercive with respect to A with constant μ > 0 and relaxed coco-

ercive with respect to B with constant γ > 0;
3. A is α-expansive;
4. B is β-Lipschitz continuous;
5. g is λg-Lipschitz continuous and ξ-strongly monotone;
6. H(A, B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous

with respect to B;
7. ðr1 þ r2Þkg\½ðla2 � cb2Þn� kd�; l[ c; a[ b:
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Then, the generalized variational inclusion problem (3.1) has a solution (u,
w) with u ∊ X, w ∊ T(u) and the iterative sequences {un} and {wn} generated by
Algorithm 3.1 converge strongly to u and w, respectively.

Proof Since T is δ-Lipschitz continuous, it follows from Algorithm 3.1 that

k wn � wnþ 1 k� 1þ 1
nþ 1

� �
HðTðunÞ; Tðunþ 1ÞÞ

� 1þ 1
nþ 1

� �
d k un � unþ 1 k;

ð3:5Þ

for n = 0, 1, 2,…
Using the ξ-strong monotonicity of g, we have

k gðunþ 1Þ � gðunÞ kk unþ 1 � un k� hgðunþ 1Þ � gðunÞ; unþ 1 � uni
� n k unþ 1 � un k2;

which implies that

k unþ 1 � un k � 1
n
k gðunþ 1Þ � gðunÞ k : ð3:6Þ

Now, we estimate k gðunþ 1Þ � gðunÞ k by using the Lipschitz continuity ofRλ,M
H(·,·).

k gðunþ 1Þ � gðunÞ k ¼k RHð�;�Þ
k;M ½HðAðgunÞ;BðgunÞÞ � kwn�

� RHð�;�Þ
k;M ½HðAðgun�1Þ;Bðgun�1ÞÞ � kwn�1� k

� 1

la2 � cb2
k HðAðgunÞ;BðgunÞÞ � HðAðgun�1Þ;Bðgun�1ÞÞÞ k

þ k

la2 � cb2
k wn � wn�1 k

� 1

la2 � cb2
k HðAðgunÞ;BðgðunÞÞ � HðAðgun�1ÞÞ;BðgunÞÞ k

þ 1

la2 � cb2
k HðAðgun�1Þ;BðgunÞÞ � HðAðgun�1Þ;Bðgun�1ÞÞ k

þ k

la2 � cb2
k wn � wn�1 k :

ð3:7Þ

Since H(A, B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz
continuous with respect to B, g is λg-Lipschitz continuous and using (3.5), (3.7)
becomes
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k gðunþ 1Þ � gðunÞ k� r1kg
la2 � cb2

k un � un�1 k þ r2kg
la2 � cb2

k un � un�1 k

þ k

la2 � cb2
ð1þ 1

n
Þd k un � un�1 k;

or

k gðunþ 1 � gðunÞ k � r1kg
la2 � cb2

þ r2kg
la2 � cb2

þ k

la2 � cb2
ð1þ 1

n
Þd

� �
k un � un�1 k : ð3:8Þ

Using (3.8), (3.6) becomes

k unþ 1 � un k � hn k un � un�1 k; ð3:9Þ

where

hn ¼ ðr1 þ r2Þkg þ kdð1þ 1=nÞ
ðla2 � cb2Þn :

Letting

h ¼ ðr1 þ r2Þkg þ kd

ðla2 � cb2Þn :

We know that θn → θ and n → ∞. From assumption (vii), it is easy to see that
θ < 1. Therefore, it follows from (3.9) that {un} is a Cauchy sequence in X. Since
X is a Hilbert space, there exists u ∊ X such that un → u as n → ∞. From (3.5), we
know that {wn} is also a Cauchy sequence in X, thus there exists w ∊ X such that
wn → w as n → ∞. By the continuity of g, Rλ,M

H(·,·), H, A, B, and T and Algorithm
3.1, we have

gðuÞ ¼ RHð�;�Þ
k;M ½HðAðguÞ;BðguÞÞ � kw�:

Now, we prove that w ∊ T(u). In fact, since wn ∊ T(un), we have

dðw; TðuÞÞ� k w� wn k þ dðwn; TðuÞÞ
� k w� wn k þHðTðunÞ; TðuÞÞ
� k w� wn k þ d k un � u k! 0; as n ! 1;

which implies that d(w, T(u)) = 0. Since T(u) ∊ CB(X), it follows that w ∊ T(u). By
Lemma 3.1, it follows that (u, w) is a solution of problem (3.1). This completes the
proof. □
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10.4 System of Variational Inclusions

In this section, we study a system of variational inclusions involving H(∙,∙)-coco-
ercive mapping.

Let X1 and X2 be two real Hilbert spaces and let F: X1 × X2 → X1, G:
X1 × X2 → X2, H1: X1 × X1 → X1, H2: X2 × X2 → X2, A1, B1: X1 → X1, A2, B2:
X2 → X2 be the single-valued mappings. Let M: X1 ! 2X1 be a set-valued, H1(A1,
B1)-cocoercive mapping and N: X2 ! 2X2 be a set-valued, H2(A2, B2)-cocoercive
mapping. Find (a, b) ∊ X1 × X2 such that

0 2 Fða; bÞþMðaÞ;
0 2 Gða; bÞþNðbÞ:

�
ð4:1Þ

Problem (4.1) is called system of variational inclusions.
If M : X1 ! 2X1 is (H1, η)-monotone and N : X2 ! 2X2 is (H2, η)-monotone,

then problem (4.1) includes the problem considered and studied by Fang et al. [17].
It is clear that for suitable choices of operators involved in the formulation of

problem (4.1), one can obtain many systems of variational inequalities and varia-
tional inclusions exist in the literature.

Lemma 4.1 Let X1 and X2 be two real Hilbert spaces. Let F:X1 × X2 → X1, G:
X1 × X2 → X2, A1, B1:X1 → X1, A2, B2:X2 → X2 be the single-valued mappings. Let
H1:X1 × X1 → X1 be a single-valued mapping such that H1(A1, B1) is cocoercive
with respect to A1 with constant μ1 > 0 and relaxed cocoercive with respect to B1

with constant γ1 > 0, A1 is α1-expansive and B1 is β1-Lipschitz continuous, α1 > β1
and μ1 > γ1. Let H2:X2 × X2 → X2 be also a single-valued mapping such that H2(A2,
B2) is cocoercive with respect to A2 with constant μ2 > 0 and relaxed cocoercive
with respect to B2 with constant γ2 > 0, A2 is α2-expansive and B2 is β2-Lipschitz
continuous, α2 > β2 and μ2 > γ2. Let M:X1 ! 2X1 is set-valued, H1(∙,∙)-cocoercive
mapping and N:X2 ! 2X2 is set-valued, H2(∙,∙)-cocoercive mapping. Then (a,
b) ∊ X1 × X2 is a solution of problem (4.1) if and only if (a, b) satisfies the
following:

a ¼ RH1ð�;�Þ
k;M ½H1ðA1ðaÞ;B1ðaÞÞ � kFða; bÞ�;

b ¼ RH2ð�;�Þ
q;N ½H2ðA2ðbÞ;B2ðbÞÞ � qGða; bÞ�;

(

where λ > 0 and ρ > 0 are two constants.

Proof The conclusion can be obtained directly from the definitions of RH1ð�;�Þ
k;M and

RH2ð�;�Þ
q;N . □
Based on Lemma 4.1, we now define an iterative algorithm for approximating a

solution of problem (4.1).
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Algorithm 4.1 Let X1, X2, A1, A2, B1, B2, H1, H2, M, N, F, and G are same as
Lemma 4.1. For any given initial (a0, b0) ∊ X1 × X2, we define the following
iterative scheme:

anþ 1 ¼ RH1ð�;�Þ
k;M ½H1ðA1ðanÞ;B1ðanÞÞ � kFðan; bnÞ�;

bnþ 1 ¼ RH2ð�;�Þ
q;N ½H2ðA2ðbnÞ;B2ðbnÞÞ � qGðan; bnÞ�;

(

for n = 0, 1, 2,….., where λ > 0 and ρ > 0 are two constants.
Now, we show the existence of solution of problem (4.1) and analyze the

convergence of iterative Algorithm 4.1.

Theorem 4.1 Let X1 and X2 be two real Hilbert spaces. Let A1, B1:X1 → X1, A2,
B2:X2 → X2 be the single-valued mappings. Let H1:X1 × X1 → X1 be a
single-valued mapping such that H1(A1, B1) is cocoercive with respect to A1 with
constant μ1 > 0 and relaxed cocoercive with respect to B1 with constant γ1 > 0, A1

is α1-expansive and B1 is β1-Lipschitz continuous, α1 > β1 and μ1 > γ1. Let H2:
X2 × X2 → X2 be also a single-valued mapping such that H2(A2, B2) is cocoercive
with respect to A2 with constant μ2 > 0 and relaxed cocoercive with respect to B2

with constant γ2 > 0, A2 is α2-expansive and B2 is β2-Lipschitz continuous, α2 > β2
and μ2 > γ2. Let M : X1 ! 2X1 is set-valued, H1(∙,∙)-cocoercive mapping and N :

X2 ! 2X2 is set-valued, H2(∙,∙)-cocoercive mapping. Assume that H1(A1, B1) is r1-
Lipschitz continuous with respect to A1 and r2-Lipschitz continuous with respect to
B1, F:X1 × X2 → X1 is τ1-Lipschitz continuous with respect to the first argument
and τ2-Lipschitz continuous with respect to the second argument, H2(A2, B2) is r3-
Lipschitz continuous with respect to A2 and r4-Lipschitz continuous with respect to
B2, G:X1 × X2 → X2 is τ1’-Lipschitz continuous with respect to first argument and
τ2’-Lipschitz continuous with respect to second argument. F(x, ·) is m1-strongly
monotone with respect to H1(A1, B1) and G( ·, y) is m2-strongly monotone with
respect to H2(A2, B2). If the following conditions are satisfied:

0\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þ2�2km1 þ k2s21

p
l1a

2
1�c1b

2
1

þ qs01
l2a

2
2�c2b

2
2
\1;

0\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3 þ r4Þ2�2qm2 þq2s022

p
l2a

2
2�c2b

2
2

þ ks2
l1a

2
1�c1b

2
1
\1:

8>><
>>: ð4:2Þ

Then the problem (4.1) admits a solution (a, b) ∊ X1 × X2 and the sequence {(an,
bn)} generated by Algorithm 4.1 converges strongly to a solution (a, b) of problem
(4.1).

Proof From Algorithm 4.1 and Theorem 2.3, we have
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k anþ 1 � an k ¼k RH1ð�;�Þ
k;M ½H1ðA1ðanÞ;B1ðanÞÞ � kFðan; bnÞ�

� RH1ð�;�Þ
k;M ½H1ðA1ðan�1Þ;B1ðan�1ÞÞ � kFðan�1; bn�1Þ� k

� 1

l1a
2
1 � c1b

2
1

k H1ðA1ðanÞ;B1ðanÞÞ � kFðan; bnÞ

� ½H1ðA1ðan�1Þ;B1ðan�1ÞÞ � kFðan�1; bn�1Þ� k
¼ 1

l1a
2
1 � c1b

2
1

k ½H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ�

� k½Fðan; bnÞ � Fðan�1; bnÞþFðan�1; bnÞ � Fðan�1; bn�1� k
� 1

l1a
2
1 � c1b

2
1

k ½H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ�

� k½Fðan; bnÞ � Fðan�1; bnÞ� k
þ k

l1a
2
1 � c1b

2
1

k Fðan�1; bnÞ � Fðan�1; bn�1Þ k :

ð4:3Þ

Further,

k ½H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ� � k½Fðan; bnÞ � Fðan�1; bnÞ� k2
� k H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ k2

� 2khH1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ;Fðan; bnÞ � Fðan�1; bnÞi
þ k2 k Fðan; bnÞ � Fðan�1; bnÞ k2 :

Since H1(A1, B1) is r1-Lipschitz continuous with respect to A1 and r2-Lipschitz
continuous with respect to B1, we have

k H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ k
¼ k H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðanÞÞ
þH1ðA1ðan�1Þ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ k

� k H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðanÞÞ k
þ k H1ðA1ðan�1Þ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ k

� r1n� an�1 k þ r2 k an � an�1 k
¼ ðr1 þ r2Þ k an � an�1 k :

ð4:5Þ
As F(x, · ) is strongly monotone with respect to H1(A1, B1), we have

�hH1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ;Fðan; bnÞ � Fðan�1; bnÞi
� � m1 k an � an�1 k2 : ð4:6Þ

10 Generalized Monotone Mappings with Applications 155



Using the τ1-Lipschitz continuity of F(∙,∙) with respect to first argument, we
obtain

k Fðan; bnÞ � Fðan�1; bnÞ k � s1 k an � an�1 k : ð4:7Þ

Combining (4.5)–(4.7) with (4.5), we obtain

k ½H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ� � k½Fðan; bnÞ � Fðan�1; bnÞ� k2
� ½ðr1 þ r2Þ2 � 2km1 þ k2s21� k an � an�1 k2;

which implies that

k ½H1ðA1ðanÞ;B1ðanÞÞ � H1ðA1ðan�1Þ;B1ðan�1ÞÞ� � k½Fðan; bnÞ � Fðan�1; bnÞ� k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þ2 � 2km1 þ k2s21

q
k an � an�1 k :

ð4:8Þ

Also as F(∙,∙) is τ2-Lipschitz continuous with respect to second argument, we
have

k Fðan�1; bnÞ � Fðan�1; bn�1Þ k � s2 k bn � bn�1 k : ð4:9Þ

Using (4.8) and (4.9), (4.3) becomes

k anþ 1 � an k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þ2 � 2km1 þ k2s21

q
l1a

2
1 � c1b

2
1

k an � an�1 k

þ ks2
l1a

2
1 � c1b

2
1

k bn � bn�1 k : ð4:10Þ

In a similar way, we estimate

k bnþ 1 � bn k ¼k RH2ð�;�Þ
q;N ½H2ðA2ðbnÞ;B2ðbnÞÞ � qGðan; bnÞ�

� RH2ð�;�Þ
q;N ½H2ðA2ðbn�1Þ;B2ðbn�1ÞÞ � qGðan�1; bn�1Þ� k

� 1

l2a
2
2 � c2b

2
2

k H2ðA2ðbnÞ;B2ðbnÞÞ � H2ðA2ðbn�1Þ;B2ðbn�1ÞÞ�

� q½Gðan; bnÞ � Gðan; bn�1ÞþGðan; bn�1Þ � Gðan�1; bn�1Þ� k
� 1

l2a
2
2 � c2b

2
2

k ½H2ðA2ðbnÞ;B2ðbnÞÞ � H2ðA2ðbn�1Þ;B2ðbn�1ÞÞ�

� q½Gðan; bnÞ � Gðan; bn�1Þ� k
þ q

l2a
2
2 � c2b

2
2

k ½Gðan; bn�1Þ � Gðan�1; bn�1Þ� k : ð4:11Þ
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Using the same arguments as for (4.8), we have

k H2ðA2ðbnÞ;B2ðbnÞÞ � H2ðA2ðbn�1Þ;B2ðbn�1ÞÞ� � q½Gðan; bnÞ � Gðan; bn�1Þ� k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3 þ r4Þ2 � 2qm2 þ q2s022

q
k bn � bn�1 k :

ð4:12Þ

As G(∙,∙) is τ1’-Lipschitz continuous with respect to first argument, we have

k Gðan; bn�1Þ � Gðan�1; bn�1Þ k � s01 k an � an�1 k : ð4:13Þ

Combining (4.12), (4.13) with (4.11), we have

k bnþ 1 � bn k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3 þ r4Þ2 � 2qm2 þ q2s022

q
l2a

2
2 � c2b

2
2

k bn � bn�1 k

þ qs01
l2a

2
2 � c2b

2
2

k an � an�1 k : ð4:14Þ

Combining (4.10) and (4.14), we have

k anþ 1 � an kþ k bnþ 1 � bn k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þ2 � 2km1 þ k2s21

q
l1a

2
1 � c1b

2
1

þ qs01
l2a

2
2 � c2b

2
2

2
4

3
5 k an � an�1 k

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3 þ r4Þ2 � 2qm2 þ q2s022

q
l2a

2
2 � c2b

2
2

þ ks2
l1a

2
1 � c1b

2
1

2
4

3
5 k bn � bn�1 k

� h k an � an�1 k þ k bn � bn�1 k½ �;
ð4:15Þ

where

h ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þ2 � 2km1 þ k2s21

q
l1a

2
1 � c1b

2
1

þ qs01
l2a

2
2 � c2b

2
2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3 þ r4Þ2 � 2qm2 þ q2s022

q
l2a

2
2 � c2b

2
2

þ ks2
l1a

2
1 � c1b

2
1

g:

By (4.2), θ < 1 and (4.15) implies that {an} and {bn} both are Cauchy sequences.
Therefore, {(an, bn)} converges to a solution (a, b) of problem (4.1). This completes
the proof. □
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10.5 H(∙,∙)-η-Cocoercive Mapping

In this section, we define H(∙,∙)-η-cocoercive mapping and discuss some of its
properties.

Definition 5.1 Let A, B:E → E, H, η:E × E → E be the single-valued mappings.
Then M:E → 2E is said to be H(∙,∙)-η-cocoercive mapping with respect to the
mappings A and B (or simply H(∙,∙)-η-cocoercive in the sequel), if M is η-coco-
ercive and (H(A, B) + λM)(E) = E, for every λ > 0.

Following example shows that H(∙,∙) is η-cocoercive with respect to A with
constant 1

3 and relaxed η-cocoercive with respect to B with constant 1
2.

Example 5.1 Let us consider E ¼ R
2. Let A;B : R2 ! R

2 are defined by

Aðx1; x2Þ ¼ ðx1; 3x2Þ;Bðy1; y2Þ ¼ ð�y1;�y1 � y2Þ; for all ðx1; x2Þ; ðy1; y2Þ 2 R
2:

Suppose HðA;BÞ; g : R2 � R
2 ! R

2 are defined as

HðAx;ByÞ ¼ AxþBy; gðx; yÞ ¼ x� y; for all x; y 2 R
2:

Then

hHðAx; uÞ � HðAy; uÞ; gðx; yÞi ¼ hAxþ u� Ay� u; x� yi
¼ hAx� Ay; x� yi
¼ hððx1; 3x2Þ � ðy1; 3y2ÞÞ; ðx1 � y1; x2 � y2Þi
¼ hðx1 � y1; 3ðx2 � y2ÞÞ; ðx1 � y1; x2 � y2Þi
¼ ðx1 � y1Þ2 þ 3ðx2 � y2Þ2

and

k Ax� Ay k2 ¼k ðx1 � y1; 3ðx2 � y2ÞÞ k2 ¼ ðx1 � y1Þ2 þ 9ðx2 � y2Þ2

� 3ðx1 � y1Þ2 þ 9ðx2 � y2Þ2

¼ 3fðx1 � y1Þ2 þ 3ðx2 � y2Þ2g
¼ 3fhHðAx; uÞ � HðAy; uÞ; gðx; yÞig

that is, hHðAx; uÞ � HðAy; uÞ; gðx; yÞi� 1
3 k Ax� Ay k2; which implies that H is η-

cocoercive with respect to A with constant 1
3. Also

hHðu;BxÞ � Hðu;ByÞ; gðx; yÞi ¼ hBx� By; x� yi
¼ hðð�x1;�x1 � x2Þ � ð�y1;�y1 � y2ÞÞ; ðx1 � y1; x2 � y2Þi
¼ hð�ðx1 � y1Þ;�ðx1 � y1Þ � ðx2 � y2ÞÞ; ðx1 � y1; x2 � y2Þi
¼ �ðx1 � y1Þ2 � ðx1 � y1Þðx2 � y2Þ � ðx2 � y2Þ2

¼ �fðx1 � y1Þ2 þðx1 � y1Þðx2 � y2Þþ ðx2 � y2Þ2g
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and

k Bx� By k2 ¼k ð�ðx1 � y1Þ;�ðx1 � y1Þ � ðx2 � y2ÞÞ k2
¼ ðx1 � y1Þ2 þððx1 � y1Þþ ðx2 � y2ÞÞ2

¼ ðx1 � y1Þ2 þðx1 � y1Þ2 þðx2 � y2Þ2 þ 2ðx1 � y1Þðx2 � y2Þ
� 2ðx1 � y1Þ2 þ 2ðx2 � y2Þ2 þ 2ðx1 � y1Þðx2 � y2Þ
¼ 2fðx1 � y1Þ2 þðx2 � y2Þ2 þðx1 � y1Þðx2 � y2Þg
¼ 2f�hHðu;BxÞ � Hðu;ByÞ; gðx; yÞig;

that is, hHðu;BxÞ � Hðu;ByÞ; gðx; yÞi� � 1
2 k Bx� By k2; which implies that H is

relaxed η-cocoercive with respect to B with constant 1
2.

Example 5.2 Let E ¼ R
2 and A, B, H(A, B), and η are same as in Example 5.1.

Suppose that M:E → 2E is defined by

Mðx1; x2Þ ¼ ðx1; 0Þ; forall ðx1; x2Þ 2 R
2:

Then it is easy to check that M is η-cocoercive and

ðHðA;BÞþ kMÞðR2Þ ¼ R
2; for all k[ 0;

which shows that M is H(∙,∙)-η-cocoercive with respect to A and B.
We have the following Matlab programming for Example 5.1.

Numerical Example 5.3 Let E ¼ R
2 and A;B : R2 ! R

2 be defined by

Aðx1; x2Þ ¼ ðx1; 3x2Þ;Bðy1; y2Þ ¼ ð�y1;�y1 � y2Þ; for all x ¼ ðx1; x2Þ; y
¼ ðy1; y2Þ 2 R

2:

Let HðA;BÞ; g : R2 � R
2 ! R

2 be defined by

HðAx;ByÞ ¼ AxþBy; gðx; yÞ ¼ x� y; for all x; y 2 R
2:

x1 ¼ inputð0enter the vectorx1 :0Þ;
x2 ¼ inputð0enter the vectorx2 :0Þ;
y1 ¼ inputð0enter the vectory1 :0Þ;
y2 ¼ inputð0enter the vectory2 :0Þ;

Assign values:

T1 ¼ x1; T2 ¼ 3: � x2;
P1 ¼ y1;P2 ¼ 3: � y2;
u1 ¼ x1 � y1; u2 ¼ x2 � y2;
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compute 〈H(Ax, u) − H(Ay, u), η(x, y)〉 = W, where

W1 ¼ u1:
2;W2 ¼ 3: � u2:2;W ¼ W1 þW2

compute square of norm k Ax� Ay k2¼ M1, where

L1 ¼ u1:
2; L2 ¼ 9: � u2:2;

M1 ¼ L1 þ L2;M ¼ ð1=3Þ: �M1

then it is easy to check that H is η-cocoercive with respect to A with constant 13, that
is, W ≥ M. Next, compute 〈H(u, Bx) − H(u, By), η(x, y)〉 = V.

V ¼ �ðu1:2 þ u1: � 3: � u2 þ 3: � u2:2Þ

compute square of norm k Bx� By k2¼ B1, where

B1 ¼ ð2: � ðu1:2Þþ ð3: � u2Þ:2 þð2: � u1Þ: � ð3: � u2ÞÞ;
Z ¼ �ð1=2Þ: � B1

then it is easy to check that H is relaxed η-cocoercive with respect to B with
constant 1

2, that is, V ≥ Z.

Example 5.4 Let E = C[0, 1], space of all real-valued continuous function define
over closed interval [0, 1] with the norm

k f k¼ max
t2½0;1�

jf ðtÞj:

Let A, B:E → E are defined by

Aðf Þ ¼ e f and BðgÞ ¼ e�g; for all f ; g 2 E:

Let H(A, B):E × E → E is defined as

HðAðf Þ;BðgÞÞ ¼ Aðf ÞþBðgÞ; for all f ; g 2 E:

Suppose that M = I, where I is the identity mapping. Then for λ = 1, we have

k ðHðA;BÞþMÞðf Þ k¼ k Aðf ÞþBðf Þþ f k¼ max
t2½0;1�

jef ðtÞ þ e�f ðtÞ þ f ðtÞj[ 0;

which means that 0 62 (H(A, B) + M)(E) and thus M is not H(∙,∙)-η-cocoercive
mapping with respect to A and B.

Theorem 5.1 Let H(A, B) be η-cocoercive with respect to A with constant μ > 0
and relaxed η-cocoercive with respect to B with constant γ > 0, A is α-expansive
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and B is β-Lipschitz continuous and μ > γ, α > β. Let M:E → 2E be H(∙,∙)-η-
cocoercive mapping. If the following inequality

hx� y;J qðgðu; vÞÞi� 0;

holds for all ðv; yÞ 2 GraphðMÞ, then x ∊ Mu, where GraphðMÞ ¼ fðu; xÞ 2
E � E : x 2 Mug:
Proof Suppose that there exists some (u0, x0) such that

hx0 � y;J qðgðu0; vÞÞi� 0; for all ðv; yÞ 2 GraphðMÞ: ð5:1Þ

Since M is H(∙,∙)-η-cocoercive mapping, we know that (H(A, B) + λM)(E) = E,
holds for every λ > 0 and so there exists ðu1; x1Þ 2 GraphðMÞ such that

HðAu1;Bu1Þþ kx1 ¼ HðAu0;Bu0Þþ kx0 2 E: ð5:2Þ

It follows from (5.1) and (5.2) that

0� khx0 � x1;J qðgðu0; u1ÞÞi
¼ �hHðAu0;Bu0Þ � HðAu1;Bu1Þ;J qðgðu0; u1ÞÞi
¼ �hHðAu0;Bu0Þ � HðAu1;Bu0Þ;J qðgðu0; u1ÞÞi
� hHðAu1;Bu0Þ � HðAu1;Bu1Þ;J qðgðu0; u1ÞÞi

� � l k Au0 � Au1 kq þ c k Bu0 � Bu1 kq
� � laq k u0 � u1 kq þ cbq k u0 � u1 kq
¼ �ðlaq � cbqÞ k u0 � u1 kq � 0;

which gives u1 = u0, since μ > γ and α > β. By (5.2), we have x1 = x0. Hence
ðu0; x0Þ ¼ ðu1; x1Þ 2 GraphðMÞ and so x0 ∊ Mu0. □

Theorem 5.2 Let H(A, B) be η-cocoercive with respect to A with constant μ > 0
and relaxed η-cocoercive with respect to B with constant γ > 0, A is α-expansive
and B is β-Lipschitz continuous, μ > γ and α > β. Let M be H(∙,∙)-η-cocoercive
mapping. Then the operator (H(A, B) + λM)−1 is single-valued.

Definition 5.2 Let H(A, B) be η-cocoercive with respect to A with constant μ > 0
and relaxed η-cocoercive with respect to B with constant γ > 0, A is α-expansive and
B is β-Lipschitz continuous, μ > γ and α > β. Let M be H(∙,∙)-η-cocoercive mapping.
The resolvent operator Rλ,M

H(·,·)−η:E → E is defined by

RHð�;�Þ�g
k;M ðuÞ ¼ ðHðA;BÞþ kMÞ�1ðuÞ; for all u 2 E: ð5:3Þ

The following theorem shows that the resolvent operator defined by (5.3) is
Lipschitz continuous.
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Theorem 5.3 Let H(A, B) be η-cocoercive with respect to A with constant μ > 0
and relaxed η-cocoercive with respect to B with constant γ > 0, A is α-expansive, B
is β-Lipschitz continuous and η is τ-Lipschitz continuous and μ > γ, α > β. Let M be
an H(∙,∙)-η-cocoercive mapping. Then the resolvent operator Rλ,M

H(·,·)−η:E → E is
sq�1

laq�cbq-Lipschitz continuous, that is

k RHð�;�Þ�g
k;M ðuÞ � RHð�;�Þ�g

k;M ðvÞ k � sq�1

laq � cbq
k u� v k; for all u; v 2 E:

10.6 Variational-Like Inclusions

In this section, we study a variational-like inclusion problem.
Let H, N, η:E × E → E, A, B:E → E be the single-valued mappings and T, Q:

E → CB(E) be the set-valued mappings. Let M:E → 2E be set-valued, H(∙,∙)-η-
cocoercive mapping. Then, we consider the following problem:

Find u ∊ E, w ∊ T(u), v ∊ Q(u) such that

0 2 Nðw; vÞþMðuÞ: ð6:1Þ

We call problem (6.1), a variational-like inclusion problem.
If H(∙,∙) = H( · ) and M is H-accretive mapping, then problem (6.1) is introduced

and studied by Chang et al. [4]. It is clear that for suitable choices of operators
involved in the formulation of (6.1), one can obtain many variational inclusions
studied in recent past.

Lemma 6.1 The (u, w, v), where u ∊ E, w ∊ T(u), v ∊ Q(u) is a solution of problem
(6.1) if and only if (u, w, v) is a solution of the following equation:

u ¼ RHð�;�Þ�g
k;M ½HðAðuÞ;BðuÞÞ � kNðw; vÞ�; ð6:2Þ

where λ > 0 is a constant.

Proof Proof is straightforward by the use of definition of resolvent operator.
Based on Lemma 6.1, we define the following algorithm for approximating a

solution of variational-like inclusion problem (6.1).

Algorithm 6.1 For any u0 ∊ E, w0 ∊ T(u0), v0 ∊ Q(u0), compute the sequences {un},
{wn}, and {vn} by the following iterative scheme:

unþ 1 ¼ RHð�;�Þ�g
k;M ½HðAðunÞ;BðunÞÞ � kNðwn; vnÞ�; ð6:3Þ

wn 2 TðunÞ; k wn � wnþ 1 k �HðTðunÞ; Tðunþ 1ÞÞ; ð6:4Þ
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vn 2 QðunÞ; k vn � vnþ 1 k �HðQðunÞ;Qðunþ 1ÞÞ; ð6:5Þ

for all n = 0, 1, 2, …… and λ > 0 is a constant.

Lemma 6.2 [18] Let E be a real Banach space and J : E ! 2E
�
be a normalized

duality mapping. Then for any x, y ∊ E, j(x + y) ∊ J (x + y)

1. k xþ y k2 � k x k2 þ 2hy; jðxþ yÞi;
2. hx� y; jðxÞ � jðyÞi � 2D2

qEð4 k x� y k =DÞ, where D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik x k2 þ k y k2 =2p
Theorem 6.1 Let E be a real Banach space. Let H, N, η:E × E → E, A, B:E → E
be the single-valued mappings and T, Q:E → CB(E) be the set-valued mappings.
Let M:E → 2E be a set-valued, H(∙,∙)-η-cocoercive mapping. Let

1. T is H-Lipschitz continuous with constant λT and Q is H-Lipschitz continuous
with constant λQ;

2. H(A, B) is η-cocoercive with respect to A with constant μ > 0 and relaxed η-
cocoercive with respect to B with constant γ > 0;

3. A is α-expansive and B is β-Lipschitz continuous;
4. H(A, B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous

with respect to B;
5. N is t1-Lipschitz continuous with respect to T in the first argument and t2-

Lipschitz continuous with respect to Q in the second argument;
6. η is τ-Lipschitz continuous;
7. N is strongly η-accretive with respect to T in the first argument and strongly η-

accretive with respect to Q in the second argument with constants τ1 and τ2,
respectively.

Suppose that the following condition is satisfied:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ 2kðt1kT þ t2kQÞ½r1 þ kðt1kT þ t2kQÞþ s� � 2kðs1 þ s2Þ

q
\

la2 � cb2

s
� r2;

la2 � cb2 [ sr2; l[ c; a[ b:

ð6:6Þ

Then there exist u ∊ E, w ∊ T(u), and v ∊ Q(u) satisfying the variational-like
inclusion problem (6.1) and the iterative sequences {un}, {wn} and {vn} generated
by Algorithm 6.1 converge strongly to u, w and v, respectively.

Proof Since T is H-Lipschitz continuous with constant λT and Q is H-Lipschitz
continuous with constant λQ, it follows from Algorithm 6.1 that

k wn � wnþ 1 k �HðTðunÞ; Tðunþ 1ÞÞ� kT k un � unþ 1 k; ð6:7Þ
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and

k vn � vnþ 1 k �HðQðunÞ;Qðunþ 1ÞÞ� kQ k un � unþ 1 k : ð6:8Þ

By using Algorithm 6.1 and Lipschitz continuity of resolvent operator Rλ,M
H(·,·)−η,

we have

k unþ 1 � un k ¼k RHð�;�Þ�g
k;M ½HðAun;BunÞ � kNðwn; vnÞ�

� RHð�;�Þ�g
k;M ½HðAun�1;Bun�1Þ � kNðwn�1; vn�1Þ� k

� s

la2 � cb2
k HðAun;BunÞ � HðAun�1;Bun�1Þ

� k½Nðwn; vnÞ � Nðwn�1; vn�1Þ� k
� s

la2 � cb2
k HðAun;BunÞ � HðAun�1;BunÞ

� k½Nðwn; vnÞ � Nðwn�1; vn�1Þ� k
þ s

la2 � cb2
k HðAun�1;BunÞ � HðAun�1;Bun�1Þ k :

ð6:9Þ

Using Lemma 6.2, we have

k HðAun;BunÞ � HðAun�1;BunÞ � k½Nðwn; vnÞ � Nðwn�1; vn�1Þ� k2
� k HðAun;BunÞ � HðAun�1;BunÞ k2 �2khNðwn; vnÞ � Nðwn�1; vn�1Þ;

j½HðAun;BunÞ � HðAun�1;BunÞ � kðNðwn; vnÞ � Nðwn�1; vn�1ÞÞ�i
¼k HðAun;BunÞ � HðAun�1;BunÞ k2 �2khNðwn; vnÞ � Nðwn�1; vn�1Þ;

j½HðAun;BunÞ � HðAun�1;BunÞ � kðNðwn; vnÞ � Nðwn�1; vn�1ÞÞ�
�jðgðun; un�1ÞÞi � 2khNðwn; vnÞ � Nðwn�1; vn�1Þ; jðgðun; un�1ÞÞi
� k HðAun;BunÞ � HðAun�1;BunÞ k2 þ 2k k Nðwn; vnÞ � Nðwn�1; vn�1Þ k
� k HðAun;BunÞ � HðAun�1;BunÞ k þ k k Nðwn; vnÞ � Nðwn�1; vn�1Þ k

þ k gðun; un�1Þ k� � 2khNðwn; vnÞ � Nðwn�1; vn�1Þ; jðgðun; un�1ÞÞi:
ð6:10Þ

As H(∙,∙) is r1-Lipschitz continuous with respect to A, we have

k HðAun;BunÞ � HðAun�1;BunÞ k � r1 k un � un�1 k : ð6:11Þ

Since N is t1-Lipschitz continuous with respect to T with respect to first argument
and t2-Lipschitz continuous with respect to Q with respect to the second argument
and T is λT-Lipschitz continuous and Q is λQ-Lipschitz continuous, we have
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k Nðwn; vnÞ � Nðwn�1; vn�1Þ k
¼k Nðwn; vnÞ � Nðwn�1; vnÞþNðwn�1; vnÞ � Nðwn�1; vn�1Þ k
� k Nðwn; vnÞ � Nðwn�1; vnÞ k þ k Nðwn�1; vnÞ � Nðwn�1; vn�1Þ k
� t1 k wn � wn�1 k þ t2 k vn � vn�1 k
� t1HðTðunÞ; Tðun�1ÞÞþ t2HðQðunÞ;Qðun�1ÞÞ
� t1kT k un � un�1 k þ t2kQ k un � un�1 k
¼ ðt1kT þ t2kQÞ k un � un�1 k :

ð6:12Þ

As η is τ-Lipschitz continuous, we have

k gðun; un�1Þ k � s k un � un�1 k : ð6:13Þ

Since N is strongly η-accretive with respect to T and strongly η-accretive with
respect to Q in the first and second arguments with constants τ1 and τ2, respectively,
we have

hNðwn; vnÞ � Nðwn�1; vn�1Þ; jðgðun; un�1ÞÞi
¼ hNðwn; vnÞ � Nðwn�1; vnÞ; jðgðun; un�1ÞÞi
þ hNðwn�1; vnÞ � Nðwn�1; vn�1Þ; jðgðun; un�1ÞÞi

� s1 k un � un�1 k2 þ s2 k un � un�1 k2
�ðs1 þ s2Þ k un � un�1 k2 :

ð6:14Þ

Using (6.11)–(6.14), (6.10) becomes

k HðAun;BunÞ � HðAun�1;Bun�1Þ � k½Nðwn; vnÞ � Nðwn�1; vn�1Þ� k2
� r21 k un � un�1 k2 þ 2kðt1kT þ t2kQÞ k un � un�1 k ½r1 k un � un�1 k
þ kðt1kT þ t2kQÞ k un � un�1 k þ s k un � un�1 k� � 2kððs1 þ s2ÞÞ k un � un�1 k2

¼ r21 k un � un�1 k2 þ 2kðt1kT þ t2kQÞ k un � un�1 k �
½fr1 þ kðt1kT þ t2kQÞþ sg k un � un�1 k� � 2kðs1 þ s2Þ k un � un�1 k2
¼ r21 k un � un�1 k2 þ 2kðt1kT þ t2kQÞ½r1 þ kðt1kT þ t2kQÞ
þ s� k un � un�1 k2 � 2kðs1 þ s2Þ k un � un�1 k2

¼ ½r21 þ 2kðt1kT þ t2kQÞ½r1 þ kðt1kT þ t2kQÞþ s�
� 2kðs1 þ s2Þ� k un � un�1 k2 :

ð6:15Þ
Using r2-Lipschitz continuity ofH(∙,∙) with respect to B and (6.15), (6.9) becomes

k unþ 1 � un k � h k un � un�1 k; ð6:16Þ
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where

h ¼ s

la2 � cb2
ffiffiffiffiffi
h1

p
þ sr2

la2 � cb2
;

and

h1 ¼ ½r21 þ 2kðt1kT þ t2kQÞ½r1 þ kðt1kT þ t2kQÞþ s� � 2kðs1 þ s2Þ�: ð6:17Þ

From (6.6), it follows that θ < 1, so {un} is a Cauchy sequence in E, thus, there
exists a u ∊ E such that un → u as n → ∞. Also from (6.7) and (6.8), it follows that
{wn} and {vn} are also Cauchy sequences in E, thus there exist w and v in E such
that wn → w, vn → v as n → ∞. By the continuity of Rλ,M

H(·,·)−η, H, A, B, η, N, T, and
Q, it follows from Algorithm 6.1 that

u ¼ RHð�;�Þ�g
k;M ½HðAðguÞ;BðguÞÞ � kNðw; vÞ�:

Now, we prove that w ∊ T(u). In fact, since wn ∊ T(un), we have

dðw; TðuÞÞ� k w� wn k þ dðwn; TðuÞÞ
� k w� wn k þHðTðunÞ; TðuÞÞ
� k w� wn k þ kT k un � u k! 0; as n ! 1;

which means that d(w, T(u)) = 0. Since T(u) ∊ CB(E), it follows that w ∊ T(u).
Similarly, we can show that v ∊ Q(u). By Lemma 6.1, we conclude that (u, w, v) is a
solution of variational-like inclusion problem (6.1). This completes the proof. □

10.7 Generalized Variational-like Inclusions

In this section, we solve a generalized variational-like inclusion problem. We take
E to be q-uniformly smooth Banach space throughout this section.

Let H, N, W, η:E × E → E, A, B, g:E → E be the single-valued mappings and T,
Q, R, S:E → CB(E) be the set-valued mappings. Let M:E → 2E be set-valued, H(∙,
∙)-η-cocoercive mapping. Then, we consider the following problem:

Find u ∊ E, x ∊ T(u), y ∊ Q(u), z ∊ R(u), v ∊ S(u) such that

0 2 Nðx; yÞ �Wðz; vÞþMðgðuÞÞ: ð7:1Þ

Problem (7.1) is called generalized variational-like inclusion problem.

Lemma 7.1 (u, x, y, z, v), where u ∊ E, x ∊ T(u), y ∊ Q(u), z ∊ R(u), v ∊ S(u) is a
solution of problem (7.1) if and only if (u, x, y, z, v) is the solution of the following
equation:
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gðuÞ ¼ RHð�;�Þ�g
k;M ½HðAðguÞ;BðguÞÞ � kfNðx; yÞ �Wðz; vÞg�; ð7:2Þ

where λ > 0 is a constant.

Proof Proof is a direct consequence of definition of resolvent operator.□
Based on (7.2), we have the following iterative algorithm.

Algorithm 7.1 For any given u0 ∊ E, x0 ∊ T(u0), y0 ∊ Q(u0), z0 ∊ R(u0), v0 ∊ S(u0),
compute the sequences {un}, {xn}, {yn}, {zn}, and {vn} by the following iterative
procedure:

gðunþ 1Þ ¼ RHð�;�Þ�g
k;M ½HðAðgunÞ;BðgðunÞÞ � kfNðxn; ynÞ �Wðzn; unÞg�; ð7:3Þ

k xnþ 1 � xn k �HðTðunþ 1Þ; TðunÞÞ; ð7:4Þ

k ynþ 1 � yn k �HðQðunþ 1Þ;QðunÞÞ; ð7:5Þ

k znþ 1 � zn k �HðRðunþ 1Þ;RðunÞÞ; ð7:6Þ

k vnþ 1 � vn k �HðSðunþ 1Þ; SðunÞÞ; ð7:7Þ

where n = 0, 1, 2,……, and λ > 0 is a constant.

Lemma 7.2 [19] Let E be a real uniformly smooth Banach space. Then E is q-
uniformly smooth if and only if there exists a constant Cq > 0 such that, for all x,
y ∊ E,

k xþ y kq � k x kq þ qhy;J qðxÞiþ Cq k y kq :
Theorem 7.1 Let E be a q-uniformly smooth Banach space. Let A, B, g:E → E, H,
N, W, η:E × E → E be the single-valued mappings. Let T, Q, R, S:E → CB(E) be
the set-valued mappings and M:E → 2E be the set-valued, H(∙,∙)-η-cocoercive
mapping. Suppose that

1. g is δ-strongly accretive and λg-Lipschitz continuous;
2. N is Lipschitz continuous with respect to first argument with constant kN1 and

Lipschitz continuous with respect to second argument with constant kN2 ,
strongly η-accretive with respect to T and Q with constant t;

3. W is Lipschitz continuous with respect to the first argument with constant kW1

and Lipschitz continuous with respect to second argument with constant kW2 ;
4. η is τ-Lipschitz continuous, A is α-expansive and B is β-Lipschitz continuous;
5. H(A, B) is η-cocoercive with respect to A with constant μ > 0 and relaxed η-

cocoercive with respect to B with constant γ > 0, r1-Lipschitz continuous with
respect to A and r2-Lipschitz continuous with respect to B;

6. T, Q, R, S areH-Lipschitz continuous mappings with constants λT, λQ, λR and λS,
respectively.
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Suppose that the following conditions are satisfied:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þqkqg � qktþ qkðkN1kT þ kN2kQÞ½ðr1 þ r2Þq�1kq�1

g þ sq�1�q
q� �

þ kqCqðkN1kT þ kN2kQÞq\
d
sq

ðlaq � cbqÞ � kðkW1kR þ kW2kSÞ
� �

;

d
sq

ðlaq � cbqÞ[ kðkW1kR þ kW2kSÞ; l[ c; a[ b:

ð7:8Þ

Then there exist u ∊ E, x ∊ T(u), y ∊ Q(u), z ∊ R(u), and v ∊ S(u) satisfying the
generalized variational-like inclusion problem (7.1) and the iterative sequences
{un}, {xn}, {yn}, {zn} and {vn} generated by Algorithm 7.1 converge strongly to u,
x, y, z, and v, respectively.

Proof Since g is δ-strongly accretive, we have

k gðunþ 1Þ � gðunÞ kk unþ 1 � un kq�1 �hgðunþ 1Þ � gðunÞ;J qðunþ 1 � unÞi
� d k unþ 1 � un kq :

ð7:9Þ
From (7.9), we get

k unþ 1 � un k � 1
d
k gðunþ 1Þ � gðunÞ k : ð7:10Þ

By Algorithm 7.1 and Theorem 5.3, we have

k gðunþ 1Þ � gðunÞ k ¼ k RHð�;�Þ�g
k;M ½HðAðgunÞ;BðgunÞÞ � kfNðxn; ynÞ �Wðzn; vnÞg�

� RHð�;�Þ�g
k;M ½HðAðgun�1Þ;Bðgun�1ÞÞ � kfNðxn�1; yn�1Þ �Wðzn�1; vn�1Þg� k

� sq�1

laq � cbq
k HðAðgunÞ;BðgunÞÞ � HðAðgun�1Þ;Bðgun�1ÞÞ

� kfNðxn; ynÞ � Nðxn�1; yn�1Þg
� kfWðzn; vnÞ �Wðzn�1; vn�1Þg k

� sq�1

laq � cbq
k HðAðgunÞ;BðgunÞÞ � HðAðgun�1Þ;Bðgun�1ÞÞ

� kfNðxn; ynÞ � Nðxn�1; yn�1Þg k

þ sq�1k
laq � cbq

k Wðzn; vnÞ �Wðzn�1; vn�1Þ k :

ð7:11Þ

Using Lipschitz continuity of N with constant kN1 with respect to first argument
and kN2 with respect to second argument and H-Lipschitz continuity of T and
Q with constants λT and λQ, respectively, we have
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k Nðxn; ynÞ � Nðxn�1; yn�1Þ k ¼ k Nðxn; ynÞ � Nðxn�1; ynÞ
þNðxn�1; ynÞ � Nðxn�1; yn�1Þ k

� k Nðxn; ynÞ � Nðxn�1; ynÞ k
þ k Nðxn�1; ynÞ � Nðxn�1; yn�1Þ k

� kN1 k xn � xn�1 k þ kN2 k yn � yn�1 k
� kN1HðTðunÞ; Tðun�1ÞÞþ kN2HðQðunÞ;Qðun�1ÞÞ
� kN1kT k un � un�1 k þ kN2kQ k un � un�1 k
¼ ðkN1kT þ kN2kQÞ k un � un�1 k :

ð7:12Þ

Also, as H(A, B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz
continuous with respect to B and g is λg-Lipschitz continuous, we have

k HðAðgunÞ;BðgunÞÞ � HðAðgun�1Þ;Bðgun�1ÞÞ k � ðr1 þ r2Þkg k un � un�1 k :

ð7:13Þ

By using Lemma 7.2, (7.12), (7.13) and strong η-accretivity of N with respect to
T and Q with constant t and τ-Lipschitz continuity of η, we have

k HðAðgunÞ;BðgunÞÞ � HðAðgun�1Þ;Bðgun�1ÞÞ � kfNðxn; ynÞ � Nðxn�1; yn�1Þg kq
�ðAðgunÞ;BðgunÞÞ � HðAðgun�1Þ;Bðgðun�1ÞÞ kq

� qkhNðxn; ynÞ � Nðxn�1; yn�1Þ;J qðgðun; un�1ÞÞi
� qkhNðxn; ynÞ � Nðxn�1; yn�1Þ;J q½HðAðgunÞ;BðgunÞÞ
� HðAðgun�1Þ;Bðgun�1ÞÞ� � J qðgðun; un�1ÞÞi
þ kqCqðxn; ynÞ � Nðxn�1; yn�1Þ kq

�ðr1 þ r2Þqkqg k un � un�1 kq �qkt k un � un�1 kq þ qk k Nðxn; ynÞ � Nðxn�1; yn�1Þ k
� ½k HðAðgunÞ�;BðgunÞÞ � HðAðgun�1Þ;Bðgun�1ÞÞ kq�1 þ k gðun; un�1Þ kq�1�
þ kqCqðkN1kT þ kN2Þq k un � un�1 kq

�ðr1 þ r2Þqkqg k un � un�1 kq �qkt k un � un�1 kq þ qkðkN1kT þ kN2kQÞ k un � un�1 k
� ½ðr1þ r2Þq�1kq�1

g k un � un�1 kq�1 þ sq�1 k un � un�1 kq�1�
þ kqCqðkN1kT þ kN2kQÞqn � un�1 kq

¼ ½ðr1þ r2Þqkqg � qktþ qkðkN1kT þ kN2kQÞ½ðr1 þ r2Þq�1kq�1
g þ sq�1�

þ kqCqðkN1kT þ kN2kQÞq� k un � un�1 kq :
ð7:14Þ

Using Lipschitz continuity of W with respect to first argument with constant kW1

and with respect to second argument with constant kW2 and H-Lipschitz continuity
of R and S with constants λR and λS, respectively, we obtain

k Wðzn; vnÞ �Wðzn�1; vn�1Þ k � ðkW1kR þ kW2kSÞ k un � un�1 k : ð7:15Þ
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In view of (7.14) and (7.15), (7.11) becomes

k gðunÞ � gðun�1Þ k� ½ sq�1

laq � cbq
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þqkqg � qktþ qkðkN1kT þ kN2kQÞq

q
½ðr1 þ r2Þq�1kq�1

g þ sq�1� þ kqCqðkN1kT þ kN2kQÞqÞ

þ sq�1k
laq � cbq

ðkW1kR þ kW2kSÞ� k un � un�1 k :

ð7:16Þ

Using (7.16), (7.10) becomes

k unþ 1 � un k � h k un � un�1 k; ð7:17Þ

where

h ¼ 1
d
½ sq�1

laq � cbq
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þqkqg � qktþ qkðkN1kT þ kN2kQÞq

q
½ðr1 þ r2Þq�1kq�1

g þ sq�1� þ kqCqðkN1kT þ kN2kQÞqÞ

þ sq�1k
laq � cbq

ðkW1kR þ kW2kSÞ�:

By condition (7.8), θ < 1 and hence {un} is Cauchy sequence in E, so there exists
u ∊E such that un→ u as n→∞. Using (7.4)–(7.7) of Algorithm 7.1 andH-Lipschitz
continuity of T, Q, R and S with constants λT, λQ, λR and λS, respectively, we have

k xnþ 1 � xn k�HðTðunþ 1Þ; TðunÞÞ� kT k unþ 1 � un k;
k ynþ 1 � yn k�HðQðunþ 1Þ;QðunÞÞ� kQ k unþ 1 � un k;
k znþ 1 � zn k�HðRðunþ 1Þ;RðunÞÞ� kR k unþ 1 � un k;
k vnþ 1 � nn k�HðSðunþ 1Þ; SðunÞÞ� kS k unþ 1 � un k;

which shows that the sequences {xn}, {yn}, {zn} and {vn} are all Cauchy sequences
in E, so there exist x, y, z, and v ∊ E such that xn → x, yn → y, zn → z and vn → v, as
n → ∞. By continuity of mappings H, A, B, N, W, Rλ,M

H(·,·)−η and Algorithm 7.1, it
follows that

gðuÞ ¼ RHð�;�Þ�g
k;M ½HðAðguÞ;BðguÞÞ � kfNðx; yÞ �Wðz; vÞg�:
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It remain to show that x ∊ T(u). In fact, since xn ∊ T(un). we have

dðx; TðuÞÞ� k x� xn k þ dðxn; TðuÞÞ
� k x� xn k þHðTðunÞ; TðuÞÞ
� k x� xn k þ kT k un � u k! 0; as n ! 1;

which implies that d(x,T(u)) = 0, since T(u) ∊CB(E), it follows that x ∊T(u). Similarly,
we can show that y ∊ Q(u), z ∊ R(u) and v ∊ S(u). This completes the proof. □
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Chapter 11
Wavelet and Fractal Methods
with Environmental Applications

Bhardwaj Rashmi

Abstract In this paper, the Wavelet and Fractal Methods with environmental
applications were discussed. Fractal dimension is a ratio providing a statistical
index of complexity comparing how detail in a pattern (strictly speaking, a fractal
pattern) changes with the scale at which it is measured. It has also been charac-
terized as a measure of the space-filling capacity of a pattern that tells how a fractal
scales different from the space it is embedded in; a fractal dimension does not have
to be an integer. Hurst exponent is a numerical estimate for predictability of time
series. It is defined as relative tendency of time series to either regress for longer
term mean value or ‘cluster’ in direction. It is related to fractal dimension, which
gives measure for roughness of surface. Predictability increases when fractal
dimension becomes less than 1.5 or more than 1.5. In the former case, persistence
behavior is observed, while in the latter, an anti-persistence. If one of these indices
comes close to 0, then corresponding process approximates usual Brownian motion
and is therefore unpredictable. If it becomes close to 1, process is said to be
predictable. In environmental sciences, these methods are applied for studying the
behavior of air pollutants and water pollutants. It is observed that each of the air
pollution parameters CO, NO, NO2, O3, and SO2 at each monitoring station follows
an anti-persistent behavior. Also, each of the water-quality parameters COD, BOD,
DO, WT, AMM, TKN, TC, FC, and pH follows Brownian motion and thus
behavior is unpredictable. It is concluded that Brownian time series behavior exists
for air and water pollutants.
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11.1 Introduction

The problem of air and water pollution is increasing tremendously day by day in all
the metropolitan cities by exponential increase in vehicles, emission from indus-
tries, and unplanned urbanization. Therefore, evaluation of a suitable method for
predicting and monitoring the pollution is very important. Air and water pollutions
in Delhi city draw an attention of NGO’s Environmentalists, Researchers and
Government.

Delhi, the Capital of India, is largest metropolis by area and the second-largest
metropolis by population in India. It is located at 28° 22′ 48′′ N and 77° 7′ 12′′ E. Its
area is 1,484 km2 (573 sq mi) of which 783 km2 (302 sq mi) is rural and 700 km2

(270 sq mi) is urban. Its maximum length is 51.9 km (32 mi) and maximum width is
48.48 km (30 mi). The population of Delhi is 1, 27, 09, 458 (as per Census 2001). It
is drained by river Yamuna. Yamuna river accounts for more than 70 % of Delhi’s
water supplies and about 57 million people depend on river water for their daily
usage [6]. Nizamuddin is approximately 14 km downstream from Wazirabad bar-
rage at Delhi and 410 km from Yamunotri. Pollution in river water is continuously
increasing due to urbanization, industrialization, population growth, etc. Many
rivers are dying due to pollution which is an alarming signal.

The rapid population growth along with the high rate of urbanization as also
industrialization and an increase in motorized transport has resulted in an increase
in the levels of various air pollutants, namely (1) oxides of sulfur, (2) oxides of
nitrogen, (3) suspended particulate matter, (4) respirable suspended particulate
matter, (5) carbon monoxide, (6) lead, (7) ozone, (8) benzene, and (9) hydrocar-
bons. Vehicles, thermal power plants, and large- and small-scale industrial units in
Delhi were the major sources of these pollutants.

Rangarajan et al. [12] discussed the wavelet-based analysis of meteorological
parameters using daily mean value of pressure, temperature, relative humidity, wind
speed data, and applications of wavelet and fractal methods to meteorological
problems. Siddiqi et al. [13] discussed the wavelet-based Hurst exponent and fractal
dimension analysis of Saudi climatic dynamics. Siddiqi [14] discussed in detail the
wavelet and fractal methods in Science and Engineering. Nunnari [10] modeled air
pollution time series using wavelet functions and genetic algorithms. Vela’squez
et al. [16] discussed the spatial variability of the Hurst exponent for the daily
rainfall series in the state of Zacatecas Mexio. Cannistraro and Ponterio [4] dis-
cussed the analysis of air quality in the outdoor environment of the city of Messina
by an application of the pollution index method. Continuous wavelet and wavelet
transform in time and frequency domain have been considered to analyze air pol-
lution parameters such as SO2 and smoke concentration as discussed by Can et al.
[3]. Carbone et al. [5] calculated Hurst exponent of several time series by dynamical
implementation of a recently proposed detrending moving average scaling
technique.

The water quality at Nizamuddin (Delhi) has the impact of industrial, sewerage,
and domestic discharge from Haryana and Delhi [7, 8]. Regression equations can be
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used to estimate constituent concentrations. Constituent concentrations can be used
by water-quality managers for comparison of current water-quality conditions to
water-quality standards. Examination of stream flow and physical properties of
water that act as surrogates for constituents of interest also helps for collection of
water-quality samples [9, 11, 15]. Fractal dimension and predictability analysis are
used to predict the behavior of water-quality parameters [1, 2]. It has been observed
that regional climatic models would not be able to predict local climate as it deals
with averaged quantities and that precipitation during the south-west monsoon is
affected by temperature and pressure variability during the preceding winter. Time
series can be modeled by a stochastic process possessing long-range correlation.

The analysis of major air pollutants such as carbon monoxide (CO), nitrogen
oxide (NO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) recorded
at each of the different locations at Delhi College of Engineering (Industrial area),
ITO-Crossing(Commercial area), Siri fort (Residential area) and by mobile van in
Delhi. Data, monitored by mobile van throughout the city, can be treated as average
pollution of a mix location. Today, we are living in a water-starved world. Water is
an essential element for life. Most of countries fulfill the requirement of water from
river water and ground water. Pollution in river water draws attention of govern-
ment, public, NGOs, and environmentalists in India and world over. Water-quality
parameters such as COD (Chemical Oxygen Demand), BOD (Biochemical Oxygen
Demand), DO (Dissolved Oxygen), WT (Water Temperature), AMM (Free
Ammonia), TKN (Total Kjeldahl Nitrogen), TC (Total Coliform), FC (Fecal
Coliform), and PH (Potential of Hydrogen) monitored at Nizamuddin bridge-mid
stream (Delhi) of Yamuna River in India for last 10 years have been used.

This paper deals with the estimation of Hurst exponent, fractal dimension, and
predictability index using wavelet method for air and water pollutants measured by
Central Pollution Control Board (CPCB). The daily averaged values of each air
pollutant at different locations of Delhi for a period of 4 years (August 2006–July
2010) have been considered for the study. Also, the monthly average values of each
water-quality parameter monitored at Nizamudin mid-bridge stream of Yamuna
river for a period of 10 years have been considered for the study.

11.2 Methodology

This paper deals with the analysis of air pollutants and water pollutants through
Hurst exponent, predictability index, and fractal dimension using wavelet method.

11.2.1 Hurst Exponent (H)

It refers to the index of dependence. It quantifies the relative tendency of a time
series either to regress strongly to the mean or to cluster in a direction. The values
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of the Hurst exponent range between 0 and 1. A value of 0.5 indicates a true
random walk (a Brownian time series). In a random walk, there is no correlation
between any element and a future element. A Hurst exponent value H, 0.5 < H < 1,
indicates “persistent behavior” (a positive autocorrelation). If there is an increase
from time step ti−1 to ti, there will probably be an increase from ti to ti+1. The same
is true for decrease, where a decrease will tend to follow a decrease. A Hurst
exponent value, H 0 < H < 0.5, will exist for a time series with “anti-persistent
behavior” (or negative autocorrelation). Here, an increase will tend to be followed
by a decrease or decrease will be followed by an increase. This behavior is
sometimes called “mean reversion.”

H ¼ byx � 1
2

����
����

Also, Hurst exponent can be calculated using power-law decay:

p kð Þ ¼ Ck�a

where C is a constant and p(k) is the autocorrelation function with lag k. The Hurst
exponent is related to the exponent alpha in the equation by the relation

H ¼ 1� a
2

11.2.2 Fractal Dimension (D)

It is a statistical quantity that gives an indication of how completely a fractal
appears to fill space, as one zooms down to finer and finer scales.

D ¼ 2� H

Also fractal dimension is calculated from the Haussdorf dimension. The
Haussdorf dimension DH, in a metric space, is defined as

DH ¼ � lim
e!0

ln N eð Þ½ �
ln e

where N(ɛ) is the number of open balls of a radius ɛ needed to cover the entire set.
An open ball with center P and radius ɛ, in a metric space with metric d, is defined
as set of all points x such that d P; xð Þ\e.
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11.2.3 Predictability Index (PI)

It describes the behavior of time series:

PI ¼ 2 D� 1:5j j

PI value increases when D value becomes less than or greater than 1.5. In the
former case, persistence behavior is observed, while in the latter, an
anti-persistence. If one of these indices comes close to 0, then the corresponding
process approximates the Brownian motion and is therefore unpredictable.

11.3 Results and Discussion

Hurst exponent, fractal dimension, and predictability indices have been used to
estimate the air and water pollution levels in Delhi.

11.3.1 Air Pollutants

This paper deals with the analysis of major air pollutants such as CO, NO, NO2, O3,
and SO2, recorded at Delhi College of Engineering (DCE), ITO-Crossing, Siri fort,
and by mobile van in Delhi. DCE is the Industrial area of the city, ITO-Crossing is
the Commercial area, and Siri fort is the residential area. Data are also monitored by
mobile van throughout the city which can be treated as average pollution of a mix
location. Daily averaged values for each air pollutant mentioned above are used for
a period of last 4 years from August 2006 to July 2010 which have been considered
for the study of Hurst exponent, predictability index, and fractal dimension.

11.3.2 Time Series of Air Pollution Parameters

The daily averaged values of CO, NO, NO2, O3, and SO2 are recorded at each of
DCE, ITO, Siri fort, and by mobile van in Delhi India. DCE is the Industrial area in
the city, ITO-Crossing is the Commercial area, and Siri fort is the residential area.
Data are also monitored by mobile van throughout the city which can be treated as
average pollution of a mix location (Figs. 11.1, 11.2, 11.3 and 11.4).

Table 11.1 gives the estimation of Hurst exponent of each air pollutant using
wavelet method calculated at different locations in Delhi. Table 11.2 predicts the
fractal dimension (D) for each of the air pollutants such as CO, NO, NO2, O3, and
SO2 monitored at DCE, ITO, Siri fort, and by mobile van in Delhi from the Hurst
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exponent using formula D = 2 − H. Table 11.3 shows the predictability index for
each of the air pollutants such as CO, NO, NO2, O3, and SO2 monitored at DCE,
ITO, Siri fort, and by mobile van in Delhi.

From Tables 11.1, 11.2, and 11.3, it is observed that for
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Fig. 11.1 a–e Represent the time series of CO, NO, NO2, O3, and SO2 monitored at DCE, Delhi
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Fig. 11.2 a–e Represent the time series of CO, NO, NO2, O3, and SO2 monitored at ITO, Delhi
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Fig. 11.3 a–e Represent the time series of CO, NO, NO2, O3, and SO2 monitored by mobile van,
Delhi
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Fig. 11.4 a–e Represent the time series of CO, NO, NO2, O3, and SO2 monitored at Siri fort,
Delhi
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CO Hurst exponent value at all locations lies between 0 and 0.5, and thus has an
anti-persistent behavior. Fractal dimension value at all locations lies between 1.5
and 2, which shows an anti-persistent behavior. Also the value of predictability
index at all locations lies between 0 and 0.5, and confirms the anti-persistent
behavior. It follows Brownian motion and thus the future is unpredictable.
NO Hurst exponent value at all locations is less than 0.5, and thus has an
anti-persistent behavior. The values of fractal dimension are greater than 1.5, which
show an anti-persistent behavior. Also the value of predictability index at all
locations lies between 0 and 0.5, and confirms the anti-persistent behavior. It fol-
lows Brownian motion and thus the future is unpredictable.
NO2 Hurst exponent value at all locations is less than 0.5, and thus has
anti-persistent behavior. The values of fractal dimension are greater than 1.5, which
show an anti-persistent behavior. Also the value of predictability index at all
locations lies between 0 and 0.5, and confirms the anti-persistent behavior. It fol-
lows Brownian motion and thus the future is unpredictable.
O3 Hurst exponent value at all locations lies between 0 and 0.5, and thus has an
anti-persistent behavior. Fractal dimension value at all locations lies between 1.5

Table 11.1 Hurst exponents
for each air pollutant
monitored at Delhi College of
engineering, ITO-Crossing,
Siri fort, and by mobile van in
Delhi, India

Values of Hurst exponent (H)

DCE ITO SF MV

CO 0.170 0.222 0.190 0.065

NO 0.216 0.272 0.284 0.230

NO2 0.269 0.314 0.033 0.046

O3 0.139 0.223 0.206 0.217

SO2 0.112 0.187 0.165 0.118

Table 11.2 Fractal
dimension for each air
pollutant monitored at Delhi
College of engineering,
ITO-Crossing, Siri fort, and
by mobile van in Delhi, India

Fractal dimension D = 2 − H

DCE ITO SF MV

CO 1.830 1.778 1.810 1.935

NO 1.784 1.728 1.716 1.770

NO2 1.731 1.686 1.967 1.954

O3 1.861 1.777 1.794 1.783

SO2 1.888 1.813 1.835 1.882

Table 11.3 Predictability
index for each air pollutant
monitored at Delhi College of
engineering, ITO-Crossing,
Siri fort, and by mobile van in
Delhi, India

Predictability indices

DCE ITO SF MV

CO 0.33 0.278 0.31 0.435

NO 0.284 0.228 0.216 0.27

NO2 0.231 0.186 0.467 0.454

O3 0.361 0.277 0.294 0.283

SO2 0.388 0.313 0.335 0.382
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and 2, which shows an anti-persistent behavior. Also the value of predictability
index at all locations lies between 0 and 0.5, and confirms the anti-persistent
behavior. It follows Brownian motion and thus the future is unpredictable.
SO2 Hurst exponent value at all locations lies between 0 and 0.5, and thus has an
anti-persistent behavior. Fractal dimension value at all locations lies between 1.5
and 2, which shows an anti-persistent behavior. Also the value of predictability
index at all locations lies between 0 and 0.5, and confirms the anti-persistent
behavior. It follows Brownian motion and thus the future is unpredictable.

It is observed that Hurst exponent value for each air pollutant recorded at each
monitoring station is less than 0.5, which shows an anti-persistent behavior, i.e., an
increase in time tends to a decrease in parameter value and vice versa. Fractal
dimension value for each air pollutant recorded at each monitoring station lies
between 1.5 and 2 which indicate that time series of air pollutant are more jagged
than random. Predictability indices for each air pollutant at each location are less
than 0.5 which indicate for the existence of usual Brownian motion. Therefore, it
can be concluded that each air pollutant has and anti-persistent behavior, and
therefore future trend is unpredictable.

11.3.3 Water Pollutants

The monthly average value of last 10 years of water-quality parameters pH
(Potential of Hydrogen), COD (Chemical Oxygen Demand), BOD (Biochemical
Oxygen Demand), AMM (Free Ammonia), TKN (Total Kjeldahl Nitrogen), DO
(Dissolved Oxygen), and WT (Water Temperature) monitored at Nizamuddin
bridge-mid stream of Yamuna river in Delhi (India) has been considered for the
study of Hurst exponent, predictability index, and fractal dimension. Daubechies
wavelet at level 5 (Db5) is used to get the finer approximation and decomposition.
One-dimensional discrete wavelet analysis of water-quality parameters such as pH,
BOD, COD, DO, AMM, TKN, WT, TC, and FC for Yamuna river at Nizamuddin
bridge-mid Stream, Delhi (India) has been discussed. Db5 wavelet decomposition of
each data was presented in seven parts namely s, a5, d1, d2, d3, d4, and d5 where “s”
represents signal or raw data; low-frequency part “a5” gives an approximate of
signal at level 5; and high-frequency parts d1, d2, d3, d4, and d5 contains the detail of
“s” at different levels, respectively.

Discrete Daubechies wavelets at level 5 (Db5) for each water-quality parameter
have been plotted in Figs. 11.5, 11.6, 11.7, 11.8, 11.9, 11.10, 11.11, 11.12 and
11.13.

Table 11.4 gives the details of s, a5, d1, d2, d3, d4, and d5 using one-dimensional
discrete wavelet analysis of water-quality parameters such as pH, BOD, COD, DO,
AMM, TKN, WT, TC, and FC for Yamuna river at Nizamuddin bridge-mid Stream,
Delhi (India).
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Table 11.5 gives the regression equation, Hurst exponent, fractal dimension, and
predictability index for each water-quality parameter monitored at Nizamudin
bridge-mid stream of Yamuna river.

Using Db5 analysis and fractal dimension at Nizamuddin, Delhi (India), it is
observed that:

AMM The first part of Fig. 11.5 shows that maximum value of AMM is 30 and
lower frequency approximation at level 5 (a5) varies from 10 to 18. Hurst exponent
value and predictability index lies between 0 and 0.5, and thus has an anti-persistent
behavior. Fractal dimension value lies between 1.5 and 2, and thus shows an
anti-persistent behavior. Thus the future is unpredictable.
BOD Figure 11.6 explains BOD parameter’s signal and gives maximum value as
50 and lower frequency approximation at level 5 (a5) of this signal varies from 10 to
30. Hurst exponent and predictability index value lies between 0 and 0.5, and thus
has an anti-persistent behavior. Fractal dimension value lies between 1.5 and 2, and
thus shows an anti-persistent behavior. Thus the future is unpredictable.

Fig. 11.5 1D discrete wavelet analysis of AMM
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COD Figure 11.7 explains COD parameter’s signal and gives maximum value as
120 and lower frequency approximation at level 5 (a5) varies from 54 to 76. Hurst
exponent value and predictability index lies between 0 and 0.5, and thus has an
anti-persistent behavior. Fractal dimension value lies between 1.5 and 2, and thus
shows an anti-persistent behavior. Thus the future is unpredictable.
FC Figure 11.9 explains FC parameter’s signal and gives maximum value as 20 and
lower frequency approximation at level 5 (a5) varies from 0 to 14.
DO Figure 11.8 describes DO parameter’s signal and gives maximum value as 7
and lower frequency approximation at level 5 (a5) varies from 0.2 to 1.4. Hurst
exponent and predictability index value lies close to 0.5, and thus has Brownian
motion. Fractal dimension value is close to 1.5 which shows Brownian motion.
Thus future is unpredictable and has Brownian motion.

Fig. 11.6 1D discrete wavelet analysis of BOD
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pH Figure 11.10 depicts pH parameter’s signal and gives maximum value as 8.5
and lower frequency approximation at level 5 (a5) varies from 7.3 to 7.7. Hurst
exponent and predictability index value lies close to 0.5, and thus has Brownian
motion. Fractal dimension value is close to 1.5 which shows Brownian motion. It
follows Brownian motion and future is unpredictable.
TC First part of Fig. 11.11 explains TC parameter’s signal and gives maximum
value as 8 and lower frequency approximation at level 5 (a5) varies from 0 to 10.
TKN Figure 11.12 explains TKN parameter’s signal and gives maximum value as
40 and lower frequency approximation at level 5 (a5) varies from 18 to 26. Hurst
exponent value and predictability index lies between 0 and 0.5, and thus has an
anti-persistent behavior. Fractal dimension value lies between 1.5 and 2, and thus
shows an anti-persistent behavior. Thus the future is unpredictable.
WT Figure 11.13 explains WT parameter’s signal and gives maximum value as 35
and lower frequency approximation at level 5 (a5) varies from 24 to 27. Hurst
exponent and predictability index value lie close to 0.5, and thus has Brownian
motion. Fractal dimension value is close to 1.5 which shows Brownian motion. It
follows Brownian motion and future is unpredictable.

Fig. 11.7 1D discrete wavelet analysis of COD
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It is observed that Hurst exponent value for water pollutants COD, BOD, AMM,
and TKN is less than 0.5 which shows an anti-persistent behavior, i.e., an increase
in time tends to a decrease in parameter value and vice versa. Also for pH, DO, and
WT, value is close to 0.5 which shows Brownian behavior. Fractal dimension
values for COD, BOD, AMM, and TKN lie between 1.5 and 2, which indicate that
time series of water pollutant are more jagged than random. Also for pH, DO, and
WT, value is close to 0.5 which shows Brownian behavior. Predictability index for
each water parameter is close to 0.5 which indicate for the existence of usual
Brownian motion. Thus it can be concluded that pH, DO, and WT follow the
Brownian time series behavior (true random walk) and parameters COD, BOD,
AMM, and TKN follow an anti-persistence behavior (or negative correlation) and
the future trend is unpredictable.

Fig. 11.8 1D discrete wavelet analysis of DO
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Fig. 11.9 1D discrete wavelet analysis of FC
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Fig. 11.10 1D discrete wavelet analysis of pH
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Fig. 11.11 1D discrete wavelet analysis of TC
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Fig. 11.12 1D discrete wavelet analysis of TKN
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Fig. 11.13 1D discrete wavelet analysis of WT
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11.4 Conclusion

In this paper, estimation of Hurst exponent, fractal dimension, and predictability
index using wavelet method have been studied for air and water pollutants. For
major air pollutants such as CO, NO, NO2, O3, and SO2, recorded at Delhi College
of Engineering (DCE), ITO-Crossing, Siri fort, and by mobile van in Delhi, the
values of Hurst exponent, fractal dimension, and predictability index have been
estimated. The monthly average values of water-quality parameters pH (Potential of
Hydrogen), COD (Chemical Oxygen Demand), BOD (Biochemical Oxygen
Demand), AMM (Free Ammonia), TKN (Total Kjeldahl Nitrogen), DO (Dissolved
Oxygen), and WT (Water Temperature) monitored at Nizamuddin bridge-mid
Stream of Yamuna river in Delhi (India) have been considered for the estimation of
Hurst exponent, predictability index, and fractal dimension.

For each air pollutant recorded at each monitoring station, it is observed that
Hurst exponent value is less than 0.5 which shows an anti-persistent behavior, i.e.,
an increase in time tends to a decrease in parameter value and vice versa. Fractal

Table 11.4 1D Daubechies wavelet level (5) parameters values

Water-quality
parameters

Range
of ‘s’

Range
of ‘a5’

Range
of ‘d5’

Range
of ‘d4’

Range
of ‘d3’

Range
of ‘d2’

Range
of ‘d1’

AMM 0 to 30 10 to 18 −5 to +5 −10 to +10 −20 to +20 −10 to +10 −20 to +20

BOD 0 to 60 10 to 30 −5 to +5 −10 to +10 −20 to +20 −20 to +20 −20 to +20

COD 0 to
120

54 to 76 −10 to +10 −50 to +50 −50 to +50 −50 to +50 −50 to +50

DO 0 to 7 0.2 to 1.4 −0.5 to 0.5 −1 to +1 −5 to +5 −5 to +5 −5 to +5

FC 0 to 20 0 to 14 −1 to +1 −5 to +5 −5 to +5 −1 to +1 −1 to +1

pH 0 to
8.5

7.3 to 7.7 −0.2 to 0.2 −0.2 to 0.2 −0.5 to 0.5 −0.5 to 0.5 −1 to +1

TC 0 to 8 0 to 10 −1 to +1 −5 to +10 −5 to +5 −5 to +5 −5 to +5

TKN 0 to 40 18 to 26 −10 to +10 −20 to +20 −20 to +20 −20 to +20 −20 to +20

WT 0 to 35 24 to 27 −2 to 1 −5 to +5 −10 to +10 −10 to +10 −10 to +10

Table 11.5 Regression equations, Hurst exponent, fractal dimension, and predictability index of
water parameter

Parameters Regression Eq. Monthly R square H (abs) D (Fractal) PI

pH y = 0.0011x + 7.4062 0.0137 0.49945 1.50055 0.0011

COD y = 0.1509x + 55.932 0.0368 0.42455 1.57545 0.1509

BOD y = 0.0761x + 16.957 0.0502 0.46195 1.53805 0.0761

AMM y = 0.0638x + 11.567 0.0651 0.4681 1.5319 0.0638

TKN y = 0.0388x + 18.15 0.0189 0.4806 1.5194 0.0388

DO y = −0.0092x + 1.199 0.052 0.5046 1.4954 0.0092

WT y = −0.0155x + 26.62 0.0087 0.50775 1.49225 0.0155
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dimension value lies between 1.5 and 2, which indicates that time series of air
pollutant are more jagged than random. Predictability index is less than 0.5 which
indicates for the existence of usual Brownian motion. Therefore, it can be con-
cluded that each air pollutant has an anti-persistent behavior, and therefore future
trend is unpredictable.

It is observed that Hurst exponent value for water pollutants COD, BOD, AMM,
and TKN is less than 0.5 which shows an anti-persistent behavior, i.e., an increase
in time tends to a decrease in parameter value and vice versa. Also for pH, DO, and
WT, the value is close to 0.5 which shows Brownian behavior. Fractal dimension
values for COD, BOD, AMM, and TKN lie between 1.5 and 2, which indicate that
time series of water pollutant are more jagged than random. Also for pH, DO, and
WT, the value is close to 0.5 which shows Brownian behavior. Predictability index
for each water parameter is close to 0.5, which indicates for the existence of usual
Brownian motion. Thus it can be concluded that pH, DO, and WT follow the
Brownian time series behavior (true random walk) and parameters COD, BOD,
AMM, and TKN follow and an anti-persistence behavior (or negative correlation)
and the future trend is unpredictable.

From analysis of Hurst exponent, fractal dimension, and predictability index, it
is concluded that the air quality parameters CO, NO, NO2, O3, and SO2 follow the
anti-persistent behavior; water-quality parameters pH, DO, and WT follow the
Brownian time series behavior; and COD, BOD, AMM, and TKN follow an
anti-persistence behavior. Thus the future trend for each water and air pollutant is
unpredictable.
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Chapter 12
A Novel Algorithm by Context Modeling
of Medical Image Compression
with Discrete Wavelet Transform

M.A. Ansari

Abstract To overcome the storage, transmission bandwidth, picture archiving and
communication constraints and the limitations of the conventional compression
methods, the medical imagery needs to be compressed selectively to reduce the
transmission time and storage costs while maintaining the high diagnostic image
quality. The selective medical image compression provides high spatial resolution
and contrast sensitivity requirements for the diagnostic purpose. To fulfill these
requirements, a novel approach of context modeling of medical image compression
based on discrete wavelet transform has been proposed in this work. In medical
images, contextual region is an area which contains the most useful and important
information and must be coded carefully without appreciable distortion. The pro-
posed method yields significantly better compression rates with better image quality
than the general methods of compression defined in terms of image quality metrics
performance. The experimental results have been tested on ultrasound medical
images and the results have been compared with the results of standard general
Scaling, Maxshift, Implicit, and EBCOT methods of selective image coding where
it has been found that the proposed algorithm gives better and improved results
based on subjective and objective image quality metrics analysis.
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12.1 Introduction

The conventional medical image compression techniques suffer from low com-
pression rates, high distortions, and poor reconstruction image quality. The biggest
challenge before the current medical image compression is to retain the high
diagnostic image quality and to meet the high compression efficiency requirements.
Therefore, the basic goal of medical image compression should be to reduce the bit
rate as much as possible to enhance the compression efficiency while maintaining
an acceptable diagnostic image quality. Perfect reconstruction, quality scalability,
and the region of interest (ROI) based coding are the basic features needed for the
teleradiology and telemedicine applications. However, medical images acquired
from various modalities, such as Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), Ultrasonography (US), X-Ray Imaging (XR), Nuclear Medicine
(NM), Computed Radiography (CR), and Digital Subtraction Angiography
(DSA) comprise huge amount of data rendering them impractical for storage and
transmission. For an example, a digital mammogram with pixel size of 50 µm is of
size 5000 × 5000 pixels with 12 bits per pixel, and needs about 37.5 MB for storage
without compression and similarly a single analog mammogram may be digitized at
4096 × 4096 pixels × 16 bpp of file size over 33 MB [1]. The storage cost dif-
ferences for various compression states are more intuitive to understand. It will be
paying 50 % less for storage media with 2:1 compression and a whopping 90 % less
with 10:1 compression: an administrator’s dream solution to reducing prices which
picture archiving and communication systems (PACS) costs [2].

The JPEG (Joint Photographic Expert Group) [3] is one of the oldest and mostly
used standard for still image compression which is based on discrete cosine
transform (DCT) proposed by Ahmed in 1974 [4] but it suffers from the blocking
artifacts and does not posses the multiresolution property like the wavelet trans-
form, therefore, in the literature, many wavelet transform (WT) [5] based image
coders have been proposed such as embedded zero-tree wavelets (EZW) [6], set
partitioning in hierarchical trees (SPIHT) [7], EBCOT [8], morphological repre-
sentation of wavelet data (MRWD) of Servetto et al. (99) and group testing for
wavelets (GTW) of Hong and Ladner (02) developed for the JPEG2000 com-
pression standard (ISO, 2000) [9, 10]. Whereas, WT analyzes images with recursive
decomposition procedure applied to the low frequency component only [5], wavelet
packet transform applies the decomposition to both the low- and high-frequency
components resulting in the entire family of subband decompositions [11]. Most of
the ROI coding methods are wavelet-based compression techniques. One range of
popular ROI coding schemes are based on SPIHT [12, 13]. Several ROI coding
methods based on bit-plane coding have also been proposed in [13–15].

Though the lossless compression can do the perfect reconstruction requirement,
however, it will have very low compression rate, i.e., 4:1 maximum and will not be
able to handle the bulk amount of medical data generated everyday which has to be
stored and transmitted through PACS. So, it will not solve the purpose. On the other
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hand, the lossy compression methods will give better compression rates (up to 50:1)
but may lose some diagnostic information which will never be tolerated by the
medical community. So few new trends like ROI coding, context modeling, and
content-based coding are developing in this context to meet out the high com-
pression rates and the perfect reconstruction of the medical imagery. The very first
method of the ROI coding incorporated in JPEG2K is the scaling method, which is
based on EBCOT where the bits representing the wavelet coefficients contributing
to the contextual region are shifted upward by a user-defined value [14]. This
allows for the coding of ROI with any desired quality compared to the background
(BG). The multiple ROIs are allowed each with its own corresponding scaling value
and the ROI shape is limited to the circles and rectangles. The ROI coordinates and
shift values are signaled in the bit stream [16–18]. The basic requirement in scaling
method is that the ROI mask needs to be generated both on the encoder and the
decoder side. The scaling method has two major drawbacks. First, it needs to
encode and transmit the shape information of the ROIs. Thereby increases the
algorithm complexity. Second, if arbitrary ROI shapes are desired, the shape coding
will consume a large number of bits, which significantly decreases the overall
coding efficiency [17, 18]. In the part I, JPEG2K proposes Maxshift method based
on EBCOT, which is a particular case of the general scaling based method when the
scaling value is so large that there is no overlapping between BG and ROI biplanes,
but it lacks the flexibility to allow an arbitrary scaling value to define the relative
importance of the ROI and the BG coefficients [19]. The other serious problem of
the Maxshift method is bit stream overflow which results in some loss in the BG
portion [20] and the third problem is the own scale value for multiple ROIs.
Therefore, it is very difficult to support the different degrees of interest during
multiple ROI coding and transmission [18].

The proposed context-based compression is an excellent method which gives
better performance with comparable computational efficiency and the high visual
quality of the reconstructed image. The contextual coding allows selected parts of
an image (contextual region) to be coded with higher quality as compared to the
background (patient information and image parameters). It is done using a con-
textual region of interest (CROI) mask with the priority adjustment. The CROI is
identified by the segmentation and interactive methods and the binary mask for the
CROI region is generated in the wavelet domain and describes which quantized
wavelet coefficients must be encoded with higher quality. It depends on CROI
specification in the image domain and the DWT filter. In the progressive trans-
mission, the CROI is transmitted and decoded before the background (BG).
Therefore, CROI coding is capable of delivering high reconstruction image quality
over user-specified spatial regions in a limited time, compared to compression of
the entire image [15]. In the proposed contextual coding, the basic objective is to
achieve better compression rates by applying different compression thresholds for
the wavelet coefficients of each DWT band (BG and CROI), while conventional
image compression methodologies utilizing the DWT apply it to the whole image.
That is, in contextual coding, different compression rates are applied to the wavelet

12 A Novel Algorithm by Context Modeling of Medical Image … 199



coefficients in the different CROIs, respectively, resulting in the high diagnostic
quality of the image with sufficient information retained in the BG. Further, CROI
coding provides an excellent trade-off between image quality and the compression
ratio. In order to find an optimal technique for medical image compression, an
experimental study is conducted to qualitatively judge the efficacy of contextual
approach in comparison with the EBCOT, Maxshift, Implicit, and SPIHT com-
pression techniques and it is found that CBDWT reconstructed images outperform
the above methods in terms of rate distortion and the visual quality. The perfor-
mance parameters have been discussed in detail by many authors and may be
referred in [15, 21–23]. These output performance parameters have been analyzed
quantitatively and plotted which clearly show the improved performance of the
proposed CBDWT method at low bit rates (high compression rates) in comparison
to the methods discussed in [13, 15, 19].

12.2 The Wavelet Transform-Based Coding

The main difference between the WT-based and DCT-based transform coding
system is the omission of transform coder’s sub-image processing stages. Because
wavelet transforms are both computationally efficient and inherently local (i.e., their
basis functions are limited in duration), subdivision of the original image is not
required. The removal of the subdivision step eliminates the blocking artifact.
Wavelet coding techniques are based on the idea that the coefficient of a transform
which decorrelates the pixels of an image can be coded more efficiently than the
original pixels themselves [24]. The computed transform converts a large portion of
the original image to horizontal, vertical, and diagonal decomposition coefficients
with zero mean and Laplacian-like distribution. The 9/7 tap biorthogonal filters
[16], which produce floating point wavelet coefficients, are widely used in image
compression techniques to generate a wavelet transform [25–27]. The wavelet
coefficients are uniformly quantized by dividing by a user-specified parameter and
rounding off to the nearest integer. Typically, the majority of coefficients with small
values are quantized to zero by this step. The zeroes in the resulting sequence are
run-length encoded, and Huffman and arithmetic coding are performed on the
resulting sequence. The various subbands blocks of coefficients are coded sepa-
rately, which improves the overall compression [24]. If the quantization parameter
is increased, more coefficients are quantized to zero, the remaining ones are
quantized more coarsely, the representation accuracy decreases, and the compres-
sion ratio increases consequently. Since the input image needs to be divided into
blocs in DCT-based compression, correlation across the block boundaries is not
eliminated. This results in ‘blocking artifacts’ particularly at low bit rates. Whereas
in wavelet coding, there is no need to block the input image and its basis functions
have variable length hence wavelet coding schemes at higher compression avoid
blocking artifacts. The basic structure of wavelet-based compression algorithm is
shown in Fig. 12.1.
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12.2.1 The Discrete Wavelet Transform

Wavelet transforms are based on ‘basis functions.’ Unlike the Fourier transform,
whose basis functions are sinusoids, wavelet transforms are based on small waves,
called ‘wavelets’ of varying frequency and limited duration. Wavelets are the
foundation of a powerful signal processing approach, called Multiresolution
Analysis (MRA). As its name implies, the multiresolution theory is concerned with
the representation and analysis of signals (or images) at more than one resolution.
Hence features that might go undetected at one resolution may be easy to spot at
another. The Wavelet analysis is based on two important functions, viz., the scaling
function and the wavelet function. Calculating wavelet coefficients at every possible
scale is a fair amount of work, and it generates lot of data. If we choose only a
subset of scales and positions at which to make our calculations, it turns out, rather
remarkably, that if we choose scales and positions based on powers of two—
so-called dyadic scales and positions—then our analysis will be much more effi-
cient and just as accurate. If the function being expanded is a sequence of numbers,
like samples of a continuous function f(x), the resulting coefficients are called the
discrete wavelet transform (DWT) of f(x) [28].

In MRA, a scaling function, φ(x), is used to create a series of approximations of
a function or image, each differing by a factor of 2 from its nearest neighboring
approximations. The wavelets are then used to encode the difference in information
between adjacent approximations. Consider a set of expansion functions composed
of integer translations and binary scalings of the real, square-integrable function
φ(x); that is, the set {φ j,k(x)} where [28];

uj;kðxÞ ¼ 2j=2uð2 jx� kÞ ð12:1Þ

for all j, k 2 Z and φ(x)2 L2 (R). Here, k determines the position of φj,k(x) along the
x-axis, j determines φ j,k(x)’s width—how broad or narrow it is along the x-axis.
Because the shape of φj,k(x) changes with j, φ(x) is called a ‘scaling function.’ Given
a scaling function that meets the MRA requirements, we can define a wavelet
function ψ(x) that, together with its integer translates and binary scalings spans the
difference between any two adjacent scaling subspaces Vj and Vj+1. The set {ψ j,k

(x)} of wavelets are defined as [28]:

wj;kðxÞ ¼ 2j=2wð2 jx� kÞ ð12:2Þ

Forward Wavelet 
Transform 

    Input  
Image f(x,y) Quantizer Symbol Encoder 

Compressed Image 
Data 

Fig. 12.1 Wavelet compression model
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There exist various extensions of the one-dimensional wavelet transform to
higher dimensions. In two dimensions, a two-dimensional scaling function, φ(x, y),
and three-dimensional wavelets, ψH(x, y), ψV(x, y) and ψD(x, y), are required. Each
is a product of a one-dimensional scaling function φ and corresponding wavelet ψ.
Excluding products that produce 1D results, like φ(x) ψ(x), the four remaining
products produce the separable scaling function φ(x, y) . In 2-D wavelet analysis, a
scaling function φ(x, y) is defined such that;

uðx; yÞ ¼ uðxÞuðyÞ ð12:3Þ

where, φ(x) is a one-dimensional scaling function. Let ψ(x) be the one-dimensional
wavelet associated with the scaling function. Then, the three-, two- D wavelets are
defined as:

wHðx; yÞ ¼ uðxÞwðyÞ ð12:4Þ

wV ðx; yÞ ¼ wðxÞuðyÞ ð12:5Þ

wDðx; yÞ ¼ wðxÞwðyÞ ð12:6Þ

where, H, V, and D stand for “horizontal”, “vertical” and “diagonal” respectively.
These wavelets measure functional variations intensity or gray-level variations for
images—along different directions : ψH measures variations along columns(e.g.,
horizontal edges), ψV responds to variations along rows(e.g., vertical edges), and ψD

corresponds to variations along diagonals. The 2D multiresolution analysis
(MRA) decomposition is completed in two steps. First, using φ(x) and ψ(x) in the
x direction, f(x, y) (an image) is decomposed into two parts, a smooth approxi-
mation and a detail. Next, the two parts are analyzed in the same way using φ(y) and
ψ(y) in the y direction. As a result, four channel outputs are produced, one channel
is A1 f(x, y), the level one smooth approximation of f(x, y), through
φ(x) φ(y) processing, the other three channels are D1

(H) f(x, y), D1
(V) f(x, y) and D1

(D) f
(x, y), the details of the image. Level two results are obtained after decomposing A1
f(x, y) progressively.

Given separable 2D scaling and wavelet functions, extension of the
one-dimensional DWT to 2D is straight forward. We first define the scaled and
translated basis functions [28]:

uj;m; nðx; yÞ ¼ 2j=2uð2 jx� m; 2 jy� nÞ; ð12:7Þ

wi
j;m; nðx; yÞ ¼ 2j=2wð2 jx� m; 2 jy� nÞ; i ¼ H;V ;Df g ð12:8Þ
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where index ‘i’ identifies the directional wavelets in above equations. The DWT of
function f(x, y) of size M × N is then given by:

Wuðj0;m; nÞ ¼ 1ffiffiffiffiffiffiffiffi
MN

p
XM�1

x¼0

XN�1

y¼0

f ðx; yÞuj0;m;nðx; yÞ; i ¼ fH;V ;Dg ð12:9Þ

Wi
wðj;m; nÞ ¼

1ffiffiffiffiffiffiffiffi
MN

p
XM�1

x¼0

XN�1

y¼0

f ðx; yÞwi
j;m;nðx; yÞ ð12:10Þ

where, ‘j0’ is an arbitrary starting scale and the Wφ(j0,m,n) coefficients define
an approximation of f(x, y) at scale ‘j0’. The Wψ

i (j0,m,n) coefficients add horizon-
tal, vertical and diagonal details for scales j ≤ j0 . Normally, j0 = 0 and select
N = M = 2J so that j = 0, 1, 2….J−1 and m, n = 1, 2,...2j−1. Given the Wφ and Wψ

i of
Eqs. (12.7–12.10), f(x,y) is obtained via the inverse DWT.

f ðx; yÞ ¼ 1ffiffiffiffiffiffiffiffi
MN

p
X
m

X
n

Wuðj0;m; nÞuj0;m;nðx; yÞ

þ 1ffiffiffiffiffiffiffiffi
MN

p
X

i¼H;V ;D

X1
j¼j0

X
m

X
n

Wi
wðj;m; nÞwi

j;n;mðx; yÞ
ð12:11Þ

The decomposition process using DWT is represented in Fig. 12.2 in the block
diagram form to illustrate the decomposition of image into the high- and
low-frequency components.

(a) (b) (c)

Fig. 12.2 Two-level decomposition in 2-D DWT. a Original image function level 0. b Level one
decomposition. c Two-level decomposition
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12.2.2 Algorithm for Wavelet-Based Coding

12.3 Selection Criterion of the Contextual Region

12.3.1 Interactive Approach

ROI coding is one of the features of the JPEG2000 standard. This feature allows users
to define regionswithin an image to be coded and transmitted in better quality andwith
less distortion than the rest of the image. ROIs are manually defined in JPEG2000,
thenwavelets are used to compress theROI at a higher bitrate than the rest of the image
and the ROI wavelet coefficients are upshifted before the actual transmission occurs.
ROI is especially useful when using progressive transmission of the image; in such a
scenario, the ROI is transmitted first and the background information is transmitted
later. The receiver progressively reconstructs the image and can interrupt the trans-
mission at any time; yet, the ROI will still have the highest quality of all the regions in
the image [29]. A number of ROI coding methods have been proposed, such as the
ROI coding in JPEG2000 andROI coding based on SPIHT [7, 12, 13]. Although, ROI
coding techniques are used extensively, most of the ROI identification itself is done
manually [29], i.e., with human intervention.

12.3.2 The Mathematical Approach

The selection of the contextual region (CROI) is one of the most important parts of
the coding for the implementation of any context-based algorithm. The ultrasound
scanners produce conical images containing a lot of background information which
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comprises patient information and the image parameters. The actual image acquired
by the probe sensor is of the form of a fan-shaped window, placed over a black
rectangle, and centered and aligned with its top border. This is the diagnostically
useful image area and it corresponds to only about 50–60 % [30] of the area of the
full image as shown in Fig. 12.3. Thus before applying any contextual compression
technique, it is necessary to model the useful contextual image area.

This can be achieved by automatically detecting three points P1 (uppermost), P2

(leftmost) and P3 (rightmost), as shown in Fig. 12.3, knowing that P1 can be found
toward the top center point of the image. The other two are pointed to by bright
markers (generated by the scanner) and are symmetrically located left and right of
P1. A raster scan of the original image will detect these points [30]. The fan-shaped
CROI can now be modeled as the sector of a circle centered at P1 and bounded by
two straight lines intersecting at P1 and crossing the circle at P2 and P3, respec-
tively. This can be expressed by the parametric equation of a straight line passing
through P1(x1, y1) and P2(x2, y2):

PðtÞ ¼ P1 þ tðP2�P1Þ ð12:12Þ

where, ‘t’ is a variable in the form of ‘x’ and P(t) is a variable in the form of ‘y’ in
the straight line equation. The parametric equation of a circle with center at P1(x1,
y1) and with radius ‘r’ is given by:

ðx� x1Þ2 þðy� y1Þ2 ¼ r2 ð12:13Þ

The above-stated method of locating the CROI is a mathematical approach and
can help in the implementation of the contextual algorithm. However, this tech-
nique of locating the CROI is limited to the US images only.

12.3.3 Segmentation Approach

Segmentation is another approach of separating out the contextual region, i.e.,
CROI and the non-contextual region (BG) from a medical image. For this purpose,

Contextual region (CROI) 

Non-Contextual Region (BG) 

Fig. 12.3 Original US image (heart) and the modeled CROI with three points P1, P2, and P3
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many segmentation techniques like edge detection or region growing segmentation
methods are useful. However, they cannot be directly applied to medical images
because they contain large amounts of noise induced during the acquisition process.
To overcome this problem, the image is preprocessed prior to segmentation which
involves adaptive smoothing [31]. The fundamental idea behind it is to iteratively
convolve the image we want to smooth with a very small (3 × 3) averaging mask
whose coefficients reflect, at each point, the degree of continuity of the image
intensity function. Two effects can be observed during adaptive smoothing: one is
the sharpening of the edges which will eventually become the boundaries of con-
stant intensity regions; the other is the smoothing within each region [30].

In the segmentation-based CROI coding, based on region growing technique, the
aim is to group spatially connected pixels lying within a small dynamic gray level
range. The region growing procedure starts with a single pixel, called the seed
pixel. Each of the seed’s four-connected (neighbor) pixels are checked with a region
growing (or inclusion) condition. If the condition is satisfied, the neighbor pixel is
included in the region. The four neighbors of the newly added neighbor pixel are
then checked for inclusion in the region. This recursive procedure is continued until
no spatially connected pixel meets the growing condition. A new region growing
procedure is then started with the next pixel of the image which is not already a
member of a region; the procedure ends when every pixel in the image has been
included in one of the regions grown [1]. After locating the CROI, a suitable
compression algorithm is applied in such a way that after reconstructing the image,
the quality of a CROI is superior as compared to the background area BG.

12.3.3.1 Region-Based Segmentation

The segmentation techniques are based on finding the regions directly [28]. Let
R represents the entire image region. Segmentation can be viewed as a process that
partitions R into n subregions, namely R1, R2…, Rn, such that;

1.
Sn
i¼1

Ri ¼ R

2. Ri is a connected region, i = 1, 2…, n.
3. Ri

T
Rj ¼ / for all i and j, where i ≠ j.

4. P(Ri) = TRUE for i = 1, 2…,n.
5. PðRi

S
RjÞ = FALSE for i ≠ j.

Here P(Ri) is a logical predicate defined over the points in set Ri and Ø is the null
set. Condition 1 indicates that segmentation must be complete; that is, every pixel
must be in a region. Condition 2 requires that points in a region must be connected
in some predefined sense. Condition 3 indicates that the regions must be disjoint.
Condition 4 deals with the properties that must be satisfied by the pixels in a
segmented region. Finally, Condition 5 indicates that regions Ri and Rj are different
in the sense of predicate P.
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12.4 The Region of Interest (ROI) Coding Schemes

12.4.1 Generation of ROI Mask

When an image is coded with an emphasis of ROI, it is necessary to identify the
wavelet coefficients needed for the reconstruction of the ROI. Thus, the ROI mask
is introduced to indicate which wavelet coefficients have to be transmitted exactly in
order for the receiver to reconstruct the ROI [32]. Once an arbitrarily shaped ROI is
defined by user, generation of the ROI mask is performed for rows and columns at
each decomposition level. The process is then repeated for the remaining levels
until the entire wavelet tree is processed. The wavelet coefficients that are required
to reconstruct a pixel are selected with dependency on the wavelet length [13].

For the generation of parent of ROI mask (PROI), the ROI coding algorithm
discussed in [12] examines whether each node is necessary for the decoder to
reconstruct the ROI, i.e., whether it is an ROI coefficient, before testing whether it is
significant (node test). Then, if the node is not an ROI coefficient, its node test is
skipped and performed later. After the node tests for all ROI coefficients, the
encoder examines whether descendants of each node are significant (descendant
test) without testing whether descendants of the node are the ROI coefficients, i.e.,
whether the node is a PROI coefficient [13].

12.4.2 EBCOT Coding

The ROI coding is one of the functionalities in the JPEG2K image compression
standard. Its coding paradigm is based on the embedded block coding with opti-
mized truncation (EBCOT) algorithm [8, 15]. The scalability for progressive
transmission in JPEG2K is based on the discrete wavelet transform (DWT) and
EBCOT. DWT is used to exploit spatial redundancy and to impart resolution
scalability. The DWTs used in JPEG2K are the nonreversible wavelet transform for
lossy compression and the reversible integer wavelet transform (IWT) for lossy and
lossless compression [9, 10]. When a quality progressive bit stream is transmitted to
a client, the image quality of ROI is expected to improve more rapidly than the BG.
This is achieved with emphasis on ROI by identifying the wavelet coefficients
needed for reconstruction of the spatial region of interest, and encoding them with
higher priority. To identify ROI coefficients, an ROI mask is generated by tracing
the inverse wavelet transform backwards. The Fig. 12.4 depicts an ROI mask for
two-level wavelet decomposition [15]. Detailed calculation of the ROI mask can be
found in [8]. It is observed in Fig. 12.4 that each ROI code block may contain ROI
coefficients and BG coefficients. JPEG2K Part 1 provides two mechanisms for
assigning higher priority to the ROI. One is the Maxshift method, in which wavelet
coefficients involved with the reconstruction of ROI are scaled up prior to
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quantization. The second mechanism is to adjust the cost function of the rate
distortion optimization algorithm so that code blocks whose wavelet coefficients
contribute to the ROI are assigned a higher priority [9, 10, 15].

12.4.3 The General Scaling-Based Method

The very first method of the ROI coding in JPEG2K is the general scaling method
of contextual coding based on EBCOT where the bits representing the wavelet
coefficients contributing to the contextual region are shifted upward by a
user-defined value [14] as shown in Fig. 12.5. The general scaling-based method
places ROI associated bits in the higher bit planes by scaling the bit planes of ROI
coefficients up, so that ROI coefficients can be coded first in the embedded bit plane
coding. This method allows the use of arbitrary scaling value, so allows fine control
on the relative importance between ROI and BG [18]. The scaling method has two
major drawbacks. First, it needs to encode and transmit the shape information of the
ROIs. This rapidly increases the algorithm complexity. Second, if arbitrary ROI
shapes are desired, the shape coding will consume a large number of bits, which
significantly decreases the overall coding efficiency [17, 33]. Further, the general
scaling-based method requires the generation of an ROI mask and the distinction of
ROI/BG coefficients at both encoder and decoder sides. This increases decoder
complexity and processing overhead.

12.4.4 The Maxshift Method

The Maxshift method is efficient for ROI reconstruction supported by JPEG2K
Part I which is a particular case of the general scaling-based method where the
scaling value is so large that there is no overlapping between BG and ROI bitplanes.

Fig. 12.4 ROI region and ROI mask
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All the significant bits associated with the ROI after scaling will be in higher
bitplanes than all the significant bits associated with the background. Therefore,
ROI shape is implicit for the decoder in this method, and arbitrarily shaped ROI
coding can be supported [18] but it has the drawback that the BG becomes rec-
ognizable only after ROI is completely reconstructed [15]. In the Maxshift method,
prior to bitplane coding, the bitplanes of the ROI coefficients are scaled up by the
desired amount so that coefficients associated with the ROI are placed in higher bit
planes. If the scaling value is ‘s’, the wavelet coefficient a′(u, v) supplied to the
bit-plane entropy coder is given by:

a0ðu; vÞ ¼ aðu; vÞ; Mðu; vÞ ¼ 0
2saðu; vÞ; Mðu; vÞ ¼ 1

�
ð12:14Þ

The scaling factor is selected to ensure there is no overlap between BG and ROI
bit planes, as depicted in Fig. 12.6. When the entropy coder encodes the code block
containing ROI coefficients, the encoded ROI bits appear before the BG bits. Then
rate control builds a layer progressive bit stream in which information pertaining to
ROI precedes that of the BG.

The main strength of Maxshift is its fast ROI reconstruction. It also lifts the
restriction on ROI shape. Drawbacks of the Maxshift method include the increase in
coding time, and BG information is received only after full ROI reconstruction. The
flow chart of Maxshift algorithm is given in Fig. 12.7 [34]. Some problems asso-
ciated with this method are as follows [18].

(i) It lacks the flexibility to allow an arbitrary scaling value to define the relative
importance of the ROI and the BG coefficients. This means in all the sub-
bands, no information about the BG coefficients can be received until the ROI
coefficients has been fully decoded, even if detail is imperceptible random
noise or unnecessary information [19].

(ii) In Maxshift method, bit stream overflow problem is serious. For some medical
image, the scaling value can exceed 16. This means if the implementation
precision is only 32 bits, we will lose some of the least significant BG bit-
planes. This results in some loss in the BG portion [20].

(iii) When there are multiple ROIs in an image, any ROI cannot have its own
scaling value. Therefore, it is very difficult to support the different degrees of
interest during Multiple ROI coding and transmission [18].

Fig. 12.5 ROI scaling operation where ‘s’ is the scaling value
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(iv) The main problem of the Maxshift method is that the bitplanes of all ROI
coefficients must be encoded before accessing bitplanes of the background. So
the Maxshift does not have the flexibility for an arbitrary scaling value to
define the relative importance of the ROI and the BG wavelet coefficients as in
the general scaling-based method. Additionally, the EBCOT algorithm applied
by JPEG2000 also increases complexity of the ROI coding [33].

12.4.5 Implicit ROI Coding

In contrast to the Maxshift method, the implicit ROI encoding method is designed
to take full advantage of EBCOT and achieves ROI emphasis in the bit stream
ordering process [35]. In EBCOT, each quality layer comprises an arbitrary con-
tribution from the embedded bit stream of each code block of each subband.
Thus ROI emphasis is possible by including relatively larger contributions from
code blocks involved in the ROI reconstruction to quality layers. The main
advantage of the implicit ROI encoding is its low complexity. The method itself is

Fig. 12.6 Maxshift method of ROI coding where ‘s’ is scaling of the ROI coefficients

Fig. 12.7 Flowchart of the MAXSHIFT ROI coding procedure. (1) The set of wavelet coefficients
that belong to ROI is determined. (2) The scaling value (s) and the magnitude of the largest
wavelet coefficient not in the ROI, i.e., contained in the background, are calculated. (3) The
background coefficients are scaled down by ‘s’. (4) The ‘s’ value is added to the bit stream. (5) The
bit-plane entropy coding is applied as usual [33]
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straightforward and easy to implement. More than that, no bitplane scaling is
involved at either the encoding or the decoding side. However, the implicit ROI
encoding has the disadvantage of slow ROI reconstruction. This is because the
priority arrangement is made on a block-by-block basis and some ROI code blocks
may contain a large amount of background information. To calculate the distortion,
these background coefficients in ROI code blocks are assigned the same priority as
ROI coefficients, and are coded in tandem [15].

12.5 The Proposed Context Based DWT (CBDWT)
Compression Method

The present work is based on the context modeling of DWT coefficients for medical
image compression. In the proposed method, the segmentation and interactive
methods of selecting the diagnostically important contextual region of interest
(CROI) mask is used to separate out BG and CROI from the given test image and
they are encoded separately on the priority basis by DWT-based algorithm as given
in Fig. 12.8. The CROI transformed coefficients are first quantized followed by
progressively encoding and then the BG coefficients are quantized and encoded.
Thus, the CROI coefficients are first transmitted for decoding followed by the BG
coefficients. The Image processing toolbox of Matlab7.2 has been used for the
implementation of the algorithm after performing several iterations and steps of
preprocessing. The wavelet-based context modeled structure, representing the
intersubband dependency, provides excellent rate distortion and the encoding
process can be terminated as soon as the desired bit rate and the compression rate is
achieved. The other advantage of the DWT-based coding schemes is that these
allow for modification of transmission order to place more emphasis on CROI.

Figure 12.9 shows the proposed contextual coding model where (a) Represents
the entire image (A+B) in which both the contextual region (CROI) and the
background (BG) are present (b) Separated contextual region (CROI) denoted by
‘A’, and (c) Extracted Background (BG), i.e., the rest of the image is present
denoted by ‘B’. Figure 12.10a represents the actual image and the separated CROI
and BG from this image are shown through (b) and (c), respectively. The recon-
structed image is shown in (d). For the lesser complexity purpose and the safe

Input Image 
f(x,y) 

Activate 
CROI Mask  

Identify the 
CROI Region 

Extract CROI & 
BG from f(x,y) 

Apply Forward DWT for 
Encoding of CROI & BG 

Separately

Calculate the wavelet 
coefficients of CROI & 

BG for priority encoding  

Quantize the 
wavelet coefficients 

for each subband    

Store/Transmit 
the compressed 

Image data 

Reconstructed 
Image 

Get compressed 
bit stream after 

entropy 
encoding

Pre-Processing 

Decode the 
Compressed Image 

data  for 
Reconstruction

Fig. 12.8 Proposed CBDWTT compression algorithm
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diagnosis, the entire diagnostic image area has been selected as CROI as shown in
Fig. 12.10b. Depending upon the type of image and need of the diagnosis, the shape
and the size of CROI may vary. As it has been suggested in [14] more than one
CROI can also be selected and the most important region can be compressed with
the best quality.

After separating out the image area CROI and the BG, the context-based DWT
(CBDWT) compression algorithm is applied as shown in Fig. 12.8 in block dia-
gram. The CROI is compressed with high bit rate, i.e., low compression ratio
(CR) to have a high diagnostic quality whereas the BG is compressed with high
compression ratio, i.e., low bit rate. Thereby, as a result, the over all compression
ratios are good along with the improved quality of the reconstructed image. After
encoding of the CROI and the BG separately, they are merged to get an overall
compression ratio and the performance of the reconstructed image. The CBDWT

Medical Image (A+B)    Contextual Region (CROI) (A)   Extracted Background (BG) (B) 
(a) (b) (c)

BG                     B   

A 

CROI 
A 

CROI 

BG                     B   

Fig. 12.9 a Represents the entire image (A+B) in which both the contextual region (CROI) and
the background (BG) is present. b Separated contextual region (CROI) denoted by ‘A’. c Extracted
background (BG), i.e., the rest of the image is present denoted by ‘B’

Original Image Extracted CROI Separated BG Reconstructed (CROI+BG)
(a) (b) (c) (d)

CROI 

BG 

BG

CROI

CROI+BG

Fig. 12.10 Separation of CROI and BG from an CT image and its reconstructed image.
a Represents the entire original image in which both the contextual region (CROI) and the
background (BG), i.e., the rest of the image is present. b Separated contextual region (CROI)
which contains the diagnostic information. c Extracted background (BG) contains rest of the
image. d Reconstructed image at compression ratio CR and bit rate bpp
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algorithm’s results have been compared with other region of interest coding
methods given in [15] and Table 12.5. The performance of these compression
algorithms is checked with the known parameters like, CR, bpp, MSE, PSNR, CoC,
and the visual quality of the reconstructed image by using the human visual system
(HVS). The different stages of the proposed algorithm are shown in Fig. 12.8 and
the steps of the proposed algorithm are given in the following Sect. 12.5.1 proposed
CBDWT algorithm.

12.5.1 The Basic Steps of the Proposed CBDWT Algorithm
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12.5.2 Image Quality Metrics (IQM) Indices

The IQM performance parameters are of paramount importance for any image
compression method on the basis of which the efficiency of the compression
algorithm is measured. The main IQM parameters are—bit rate (bpp), compression
ratio (CR), mean square error (MSE), peak signal to noise ratio (PSNR), and
correlation coefficient (CoC). The detailed study of IQM parameters may be
referred in [21, 22].

(i) The CR of a compressed image is defined as the ratio of the size of the original
image data in bits to the size of compressed image data in bits and mathe-
matically it is expressed as:

CR ¼ size of original image in bits
size of compressed image in bits

ð12:15Þ

(ii) The frequent quality measure used for evaluation of the distortion in a com-
pressed image is the MSE. The MSE of a reconstructed image is given by the
mean of the squares of difference between the original image and the recon-
structed image pixels given as:

MSE ¼ 1
MN

XM
x¼1

XN
y¼1

f ðx; yÞ � f̂ ðx; yÞ�� ��2n o
ð12:16Þ

where; f(x, y) is the original image pixel value and f(x,y) is the reconstructed
image pixel value and the size of image is M × N.

(iii) The PSNR has been accepted as a widely used measure of quality in the field
of medical image compression. For each filtering operation, the measurement
of ability to reduce the noise is defined by PSNR and it is the most appropriate
parameter to judge the quality of compression. Higher the values of PSNR
better the compression quality and vice versa. The PSNR is defined as:

PSNR ¼ 10 log10
ð255Þ2
MSE

( )
in dB ð12:17Þ

(iv) The CoC suggests how closely the reconstructed image is correlated with an
original image on a scale of 0–1. The closure the value of CoC to 1, higher the
correlation of a compressed image to the original image is there, and vice
versa. The CoC is defined as:

CoC ¼
Pm

x¼1

Pn
y¼1 f ðx; yÞf̂ ðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

x¼1

Pn
y¼1 f ðx; yÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
x¼1

Pn
y¼1 f̂ ðx; yÞ2

qr ð12:18Þ
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(v) The % improvement in any of the above performance parameter may be
calculated as:

% Improvement ¼ Standard method value� Proposed Method value
Standard method value

� 100

ð12:19Þ
For example,

% Improvement in PSNR ¼ Standard method PSNR� Proposed Method PSNR
Standard method PSNR

� 100

ð12:20Þ

12.6 Results and Discussion

In this work, two aspects of wavelet-based compression, i.e., context-based
CBDWT (contextual) and non-context-based DWT (general) have been considered.
We have taken five different types of US images for the test purpose as shown in
Fig. 12.11 and their dimensions are given in Table 12.1. We have varied com-
pressions at various ratios from 8.0018:1 to 128.4705:1 and bpp from 1.0 to 0.0625

Fig. 12.11 Test US images considered. a US image—abdomen. b US image—fetal abdomen.
c US image—Kidney. d US image—renal mass. e US image—liver (source (a) Jolly Grant
Medical College, Dehradun—India—Radiology Department and (b)–(e) http://www.gehealthcare.
com/usen/ultrasound/images)

Table 12.1 Radiology ultrasound (US) test images dimensions and their sizes in MBs

S. no. Modality Image
dimension

Gray level
(bits)

Size in
bytes

Avg. size before
compression (KB)

1 US 1 667 × 505 8 336,835 330

2 US 2 500 × 500 8 250,000 245

3 US 3 500 × 500 8 250,000 245

4 US 4 500 × 500 24 750,054 732

5 US 5 500 × 500 24 750,054 732
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for the proposed CBDWT algorithm and the conventional DWT method. The
compression performance parameters (IQM), namely bpp, CR, RMSE, MSE, PSNR,
CoC, % transform coefficients zeroed and the % energy retained has been calculated
for the conventional DWT algorithm and the proposed CBDWT algorithm and are
listed in tabular form in Tables 12.2 and 12.3 respectively. A comparative analysis of
the IQM parameters for the proposed CBDWT algorithm and the conventional DWT
method has been depicted in Table 12.4. As a comparison of our results with the
standard methods, the PSNR versus bpp variations have been compared with the
results given in [15], EBCOT, Implicit and Maxshift methods as shown in
Table 12.5 and are plotted in Fig. 12.20 and the proposed CBDWT’s PSNR per-
formance (both subjective and objective) in the bpp range of 1.0–0.0625 is improved
as compared to other standard methods given in [13, 15, 23].

Table 12.2 Discrete wavelet transform (DWT) compression results (non-contextual)

S.no bpp Thr. % of
Transform
Coeffs.
Zeroed

% Energy
retained in
Comp. image

CR RMSE MSE PSNR
(dB)

COC

Image 12.1 (US)

1 1.00 05 77.337428 99.953629 8.0018 4.4089 19.4382 35.2442 0.998693

2 0.50 10 86.609407 99.899008 16.0073 5.1673 26.7005 33.8656 0.998205

3 0.25 15 89.116633 99.852033 32.0293 5.9707 35.6491 32.6103 0.997602

4 0.125 20 90.381921 99.803962 64.1174 6.4790 41.9774 31.9007 0.997176

5 0.0625 25 91.105154 99.758311 128.4705 11.1248 123.7605 27.2050 0.991786

Image 12.2 (US)

1 1.00 05 72.794800 99.965587 8.0316 4.7146 22.2279 34.6618 0.996799

2 0.50 10 80.438000 99.847422 16.0640 5.8724 34.4847 32.7545 0.995030

3 0.25 15 84.347600 99.675294 32.1318 7.2138 52.0395 30.9675 0.992490

4 0.125 20 86.710000 99.469579 64.2772 7.9565 63.3058 30.1164 0.990857

5 0.0625 25 88.189200 99.257358 128.6090 14.6258 213.9137 24.8284 0.968958

Image 12.3 (US)

1 1.00 05 62.808000 99.983941 8.0316 4.8556 23.5772 34.4059 0.998784

2 0.50 10 73.424400 99.923911 16.0641 6.0814 36.9834 32.4507 0.998092

3 0.25 15 79.206000 99.832220 32.1313 7.5707 57.3149 30.5481 0.997042

4 0.125 20 83.035200 99.712728 64.2792 8.4030 70.6096 29.6422 0.996355

5 0.0625 25 85.587600 99.580198 128.6090 15.3593 235.9088 24.4034 0.987744

Image 12.4 (US)

1 1.00 10 83.695200 99.856947 8.0005 4.3930 19.2988 35.2755 0.996570

2 0.50 20 88.569600 99.497280 16.0018 5.8153 33.8181 32.8393 0.993977

3 0.25 30 90.393600 99.107591 32.0072 7.1766 51.5041 31.0124 0.990814

4 0.125 40 91.278800 98.731780 64.0287 8.0043 64.0686 30.0644 0.988557

5 0.0625 50 91.768800 98.381878 128.1148 13.3977 179.4979 25.5902 0.967792

Image 12.5 (US)

1 1.00 10 84.415600 99.798974 8.0004 4.6357 21.4893 34.8086 0.996052

2 0.50 20 89.371600 99.436238 16.0017 5.9700 35.6412 32.6113 0.993439

3 0.25 30 90.777600 99.131637 32.0068 7.1168 50.6487 31.0851 0.990662

4 0.125 40 91.398400 98.861179 64.0274 7.8675 61.8969 30.2141 0.988570

5 0.0625 50 91.762800 98.593629 128.1173 13.1881 173.9250 25.7272 0.967720
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The compression output results of the conventional DWT algorithm and the
proposed CBDWT algorithm are shown through Figs. 12.12a–h and 12.17 a–l
respectively for different bpp and CRs for US2. In Fig. 12.13a–d, the histograms and
the envelope plots of the original image (US2) and the reconstructed image by DWT
method at compression ratio 8.0018:1 are plotted which correlate the pixel densities
and the gray levels (maximum gray level value is 255 and the minimum is 0 for an
8 bit image) of the original and the reconstructed images. The Fig. 12.18a–d and
12.19a–d represents the histogram and envelope plots of the original image (US2),
contextual region (CROI), background (BG), and the reconstructed image at com-
pression ratio (CR3) 32.1318:1. These histogram plots correlate the pixel densities
and the gray levels of the original and the reconstructed images and give the
information of the truncation of the low gray level coefficients. The graphical DWT
and CBDWT results of different IQM parameters (PSNR, CoC, MSE, CR) versus bit

Fig. 12.12 US images compressed with DWT at different bit rates and CRs. a Original filtered
image. b Level one decomposition. c Level two decomposition. d Compressed Image with
bpp = 1.00. e Compressed image with bpp = 0.5. f Compressed image with bpp = 0.25.
g Compressed image with bpp = 0.125. h Compressed image with bpp = 0.0625

Table 12.5 Comparison of CROI’s PSNR in (dB) for different methods

S. no. Bit rate EBCOT Implicit Maxshift Yang et al. [15] DWT CBDWT

1 0.0625 23.399 24.191 27.684 24.486 24.8284 38.7865

2 0.125 24.959 27.259 30.089 28.178 30.1164 39.9523

3 0.25 27.698 30.869 33.486 32.583 30.9675 41.5842

4 0.5 31.524 35.882 38.911 38.097 32.7545 43.7768

5 1.0 37.775 43.168 47.711 37.775 34.6618 52.1306
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rate variations for different US images considered are shown through Figs. 12.14a–f
and 12.15a–d respectively. The comparative IQM performance parameters varia-
tions of DWT and CBDWT algorithms for different US image sequences are shown
through Fig. 12.16a–d where the proposed CBDWT algorithm’s results outperform
the DWT compression performance.

In proposed contextual region of interest (CROI) coding method by CBDWT
algorithm, both the desired aspects of medical image compression have been taken
care of, i.e., high quality of compressed image and the high compression rates. As
shown in Fig. 12.17k, the original US2 image has been reconstructed after
decompression with a very high CoC (0.998744) with a PSNR value of 39.9523 at
bpp = 0.125 and CR = 64.0293 which is the best available in all the methods like
DWT, EBCOT, Implicit and Maxshift methods [13, 15, 23]. This compression will
reduce almost 64 times the storage and the transmission cost! [2]. Now Imagine, at
the CR = 128.1173 and bpp = 0.0625, the storage and transmission cost will reduce
to almost 128 times with an acceptable image quality. So, in future the contextual
coding will be a feasible solution of huge medical image data to store and transmit
without losing the image quality. The proposed CBDWT method performs excel-
lently at low bit rates as compared to other similar methods which are shown in
Table 12.5 and Fig. 12.20. As shown in Fig. 12.15a–d the IQM performance (CR,
MSE, PSNR CoC) with bpp in the CROI region is better as compared to the entire
image area. The BG area is compressed heavily as compared to the CROI from
CR = 5.7225 to 12.3567 to maintain the over all moderate CR = 8.0018:1 to
128.4705:1, so as a consequence the over all good CR is achieved which is a very
high CR as compared to existing standard methods [13, 15, 23] along with the

Fig. 12.13 Histograms of US image. a Histogram of original image. b Histogram of reconstructed
image (CR = 8.0005). c Envelope original image. d Envelope of reconstructed image
@ CR = 8.0005
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Fig. 12.16 IQM performance parameters variations for DWT and CBDWT taken as all test US
images. a MSE. b PSNR. c CoC. d % Energy retained

Fig. 12.17 US images compressed with CBDWT at different bpp and CRs. a Original US image.
b Level one filtering. c Level two. d Filtered image. e ROI mask generated. f CROI separated.
g Difference CROI. h Separated background. i Compressed (ROI+BG): CR2. j Compressed: CR3.
k Compressed: CR4. l Compressed: CR5

12 A Novel Algorithm by Context Modeling of Medical Image … 223



appreciable image quality. A comparison of DWT and CBDWT compressed image
is shown in Fig. 12.21 which shows that the CBDWT compressed image is far
better in visual quality as compared to the DWT compressed image for the same CR
value.

Fig. 12.18 Histogram analysis of US image. a Original image histogram. b Contextual region.
c Background region. d Reconstructed image @ CR = 32.1318

Fig. 12.19 Graphical analysis. a Envelope of original image. b Envelope of contextual region.
c Envelope of background region. d Envelope of reconstructed image @ 32.1318:1
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12.7 Conclusions

The practical limitations of the conventional medical image compression methods
and new trends in the technology have given a new way of context-based medical
image compression. In this paper, the proposed wavelet transform-based CBDWT
(context-based discrete wavelet transform) coding method has given excellent
results by maintaining the desired image quality at low bit rates as well as the high
compression ratios by selective context based compression. The proposed method
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Fig. 12.20 Comparison of ROI’s PSNR (dB) for different methods for ultrasound Image

Fig. 12.21 (i) The comparison of the visual quality of the DWT and CBDWT compressed images
at a common bpp = 0.0625. a The CBDWT compressed image. b The DWT compressed image.
(ii) The CBDWT compressed image has a CR value of 128.1173 and PSNR 38.7865 dB while the
DWT compressed image has a CR value of 128.6090 and PSNR 24.8284 dB for the same
bpp = 0.0625
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will prove very useful in high diagnostic medical image compression without losing
any useful information. The results obtained in the proposed context based
(CBDWT) compression method given in Tables 12.3 and 12.4 clearly show the
improved performance in terms of CR, MSE, PSNR, CoC, and the visual quality of
image at almost all compression ratios and bpp as compared to other methods given
in [13, 15, 23]. The PSNR and bpp comparative results of different standard
methods (EBCOT, Implicit and Maxshift) compared in [15] given in Table 12.5 and
Fig. 12.20 show improved performance of the proposed method at all bit rates. It is
found that the proposed method gives a significant improvement in the PSNR value
in the bpp range of 0.0625–1.00 and the CR value of as high as from 8.0018:1 to
128.4705:1 with a better quality of the reconstructed medical image judged on the
basis of the IQM and HVS. Thereby, the proposed method can maintain excellent
rate distortion performance as well as high image fidelity. So, finally we can
conclude that the proposed CBDWT method is very suitable for low bpp and high
CR compression as well as can perform lossy and lossless CROI coding along with
high PSNR, CoC, low MSE, and good visual quality of the reconstructed medical
image. It can also maintain the high diagnostic quality of the compressed image
data and hence can reduce heavily the transmission and the storage costs of the
huge medical data generated everyday and will be well suited for telemedicine and
teleradiology application over limited BW networks.

References

1. Strom J, Cosman PC (1997) Medical image compression with lossless regions of interest.
Elsevier. Signal Processing 59(2):155–171

2. Ramin K (2004) Image compression in your PACS: should you do it? what are the issues?
J Am Coll Radiol 1(10):780–781

3. Pennebaker WB, Mitchell JL (1993) JPEG: still image data compression standard. Van
Nostrand Reinhold, New York

4. AhmedN,Natarajan T,RaoKR (1974)Discrete cosine transform. IEEETransComput 23:90–93
5. Mallat S (1989) A theory for multiresolution signal decomposition: The wavelet

representation. IEEE Trans Pattern Anal Mach Int 11(7):674–693
6. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE

Trans Signal Processing 41(12):3445–3462
7. Said A, Pearlman WA (1996) A new, fast and efficient image codec based on set partitioning

in hierarchical trees. IEEE Trans Circ Syst Video Technol 6(3):243–250
8. Taubman D (2000) High performance scalable image compression with EBCOT. IEEE Trans

Image Processing 9(7):1151–1170
9. ISO/IEC (2001) Final Draft International Standard 15444-2, ITU Recommendation T.801.

JPEG 2000 Image Coding System: Part II Extensions, Aug 2001
10. ISO/IEC (2000) International Standard 15444-1, ITU Recommendation T.800. JPEG 2000

Image Coding System
11. Hsin HC, Li CC (2003) Image coding with modulated wavelets. Elsevier Sci: Pattern Recogn

Lett 24:2391–2396
12. Atsumi E, Farvardin N ( 1998) Lossy/lossless region-of-interest image coding based on set

partitioning in hierarchical trees. In: Proceedings of IEEE international conference of image
processing, pp 87–91, Chicago, USA

226 M.A. Ansari



13. Park K, Park HW (2002) Region-of-interest coding based on set partitioning in hierarchical
trees. IEEE Trans Circ Syst Video Technol 12(2):106–113

14. Askelof J, Carlander M, Christopoulos C (2002) Region of interest coding in JPEG2000. Sig
Process Image Commun 17:105–111

15. Yang H, Long M, Tai H-M (2005) Region-of-interest image coding based on EBCOT. In:
IEEE Proceedings on visual image signal processing, vol 152, No. 5, Oct 2005

16. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet
transform. IEEE Trans Image Process 1:205–220

17. Christopoulos C, Askelof J, Larsson M (2000) Efficient methods for encoding regions of
interest in the upcoming JPEG 2000 still image coding standard. IEEE Signal Process Lett
7(9):247–249

18. Zhang L, Yu X (2006) Multiple regions of interest image coding using compensation scheme
and alternating shift. In: The 18th IEEE computer society international conference on pattern
recognition (ICPR’06), vol 3, pp 758–761

19. Liu L, Fan G (2003) A new JPEG 2000 region of interest image coding method: Partial
Significant Bitpanes Shift. IEEE Signal Process Lett 10(2):35–38

20. Signoroni A, Lazzaroni F, Leonardi R (2003) Exploitation and extension of the
Region-of-Interest coding functionalities in JPEG2000. IEEE Trans Consum Electron 49
(4):818–823

21. Ansari MA, Anand RS (2008) A novel ROI based algorithm with DCT, wavelet transform and
set partioning in hierarchial trees for medical image compression. Int J Sci Comput (IJSC)
2(1):7–22

22. Ansari MA, Anand RS (2008) Implementation of efficient medical image compression
algorithms with JPEG. wavelet transform and SPIHT. Int J Comput Intell Res Appl (IJCIRA)
2(1):43–55

23. Yan X et al (2004) The coding technique of image with multiple ROIs using standard maxshift
method. In: The 30th annual conference of the IEEE industrial electronics society, Busan,
Korea, pp 2077–2080

24. Wang Y, Li H, Xuan J, Lo SCB, Mun SK (1997) Modeling of wavelet coefficients in medical
image compression. In: Proceedings of international confonerence image processing, vol 1,
pp 644–647

25. Tian DZ, Ha MH (2004) Applications of wavelet transform in medical image processing. In:
IEEE Proceedings of international conference on machine learning and cybernetics, vol 3,
pp 1816–1821

26. Chen Y-T, Tseng D-C, Chang P-C (2005) Wavelet-based medical image compression with
adaptive prediction. In: IEEE Proceedings of international symposium on intelligent signal
processing and communication systems (ISPACS’05), pp 825–828

27. Yelland MR, Aghdasi F (1999) Wavelet transform for medical image compression.
IEEE AFRICON 1:303–308

28. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Pearson Education, New
Delhi

29. Sedig A, Balasubramanian Vittal, Morales Aldo (2007) Semi-automatic region of interest
identification algorithm using wavelets. J Opt Eng 46(3):035003–035006

30. Vlahakis V, Kitney RI (1997) Wavelet-based, inhomogeneous, near-lossless compression of
ultrasound images of the heart. In: Proceedings of the IEEE international conference on
computers in cardiology, pp 549–552

31. Saint-Marc P, Chen J-S, Medioni G (1991) Adaptive smoothing: a general tool for early
vision. IEEE Trans Pattern Anal Mach Intell 13(6):514–529

32. Crus DS, Ebrahimi T, Larsson M, Askelöf J, Christopoulos C (1999) Region of interest coding
in JPEG2000 for interactive client/sever applications. In: Proceedings of IEEE 3rd workshop
on multimedia signal process, pp 389–394

12 A Novel Algorithm by Context Modeling of Medical Image … 227



33. Zhang L, Yu X, Wang S (2006) New region of interest image coding based on multiple
bitplanes up-down shift using improved SPECK algorithm. In: Proceedings of the 1st IEEE
international conference on innovative computing, information and control (ICICIC ‘06), vol
3, pp 629–632

34. Doukas C, Ilias Maglogiannis (2007) Region of interest coding techniques for medical image
compression. IEEE Eng Med Biol Mag 26(5):29–35

35. Taubman D, Marcellin M (2002) JPEG2000: image compression fundamentals, standards and
practice. Kluwer, Norwell, MA

228 M.A. Ansari



Chapter 13
Srinivasa Ramanujan: A Creative Genius

K. Srinivasa Rao

Abstract This is a brief review article about the life and work of the peerless
mathematician Srinivasa Ramanujan and CD ROMs on his life and work.

Keywords Trigonometry � Hypergeometric series � Theta function

13.1 Introduction

Srinivasa Ramanujan, who left behind more than 4000 theorems as his indelible
mathematical discoveries, is a creative genius, who has no peer in the world of
mathematicians. His life and work is a great story, which had inspired generations
of mathematicians the world over and his mathematical theorems are treasures to
cherish.

Srinivasa Ramanujan was born at 6 p.m. on Thursday, December 22, 1887, at
Erode, the parental home of his mother, Komalathammal. His father, K. Srinivasa
Iyengar, was a ‘gumasta,’ or a clerk, to a cloth merchant in Kumabakonam. His
mother believed that her first son was a gift of Goddess Namagiri of Namakkal, her
family’s deity, in the Lakshmi Narasimhar Temple. The name of the town
Namakkal (360 km southwest of Chennai) derives from Namagiri, which is the
name of a single rock formation at the center of the historic town. The day on which
this first son of Komalathammal and Srinivasa Iyengar was born was a Thursday,
coinciding with the day on which the Vaishnavite saint and founder of the
Visishtadvaita philosophy, Ramanujachariar (1017–1137 A.D.) was also born. So,
the name Ramanujan was an automatic choice for the newborn.
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Ramanujan’s mother could recite a thousand verses from the ‘Nalaayira Divya
Prabandham.’ These were compositions by 12 saints, known as ‘Azhwaars,’ in
praise of Lord Maha Vishnu and she took part in the group signing of these at the
Sarangapani Temple, in Kumbakonam. This extraordinary memory of the mother
was an inherited talent of Ramanujan. For, according to his mentor G.H. Hardy,
Ramanujan could recall anyone of the more than 4000 theorems he discovered, at
will, and he could provide not one but several proofs to them, if anyone asked him
for a proof of an entry in his notebooks.

Precocious at School, Ramanujan won several prizes in his II, IV, and VI forms
at Town High School, Kumbakonam, for ‘Proficiency in Mathematics’ and as a
reward of merit and an incentive for further improvement. S.L. Loney’s
‘Trigonometry’, was a book he mastered in form VI. Two boarders in his parental
home, who were college students borrowed for him George Shoobridge Carr’s: ‘A
Synopsis of Elementary Results’, a book on Pure Mathematics, a compilation of
propositions, formulae, and methods of analysis with abridged demonstrations,
published in 1886—a useful book for all those writing the Mathematical Tripos
examinations of the Cambridge University, at that time. These two books perhaps
made an indelible impression on the mind of Ramanujan. He noted his discoveries
in his notebooks without proofs. By one reckoning, 3254 entries are in his
Notebooks, and generations of mathematicians had studied and continue to wonder
in awe at how Ramanujan, without formal education, could discover such an
incredibly vast number of profound theorems.

In a short life span of 32 years, 4 months and 4 days, Ramanujan published 37
research papers, of which 7 were in collaboration with his friend Professor G.H.
Hardy of Trinity College, Cambridge. Ramanujan also proposed 59 Questions or
Answers to Questions in the Journal of the Indian Mathematical Society (JIMS), in
which he published his first 5 papers and in all 11 out of his 37 papers. This journal
was started by V. Ramaswamy Iyer, the founder of the Indian Mathematical
Society, in 1907, possibly with the intention of helping Ramanujan with a journal,
suitable for the dissemination of his prolific research work.

Ramanujan’s work in the area of ‘Partitions’ and on what he called as ‘mock’
theta functions opened up two new avenues for research. Chapter XII of the first
notebook and Chapter X of the second notebook of Ramanujan are devoted to
generalized hypergeometric series. What is amazing is that in this area he starts with
an entry which gives the most general summation theorem in mathematics known till
date, the 7F6(1) summation theorem and from it deduced all other known summation
theorems including the Gauss summation theorem, discovered in 1812. This theorem
is known today as the Dougall–Ramanujan summation theorem. Such a prodigious
feat, of discovering all that was known at that time in the world on hypergeometric
series, with just a hint in Carr’s synopsis of the Gauss summation theorem is an
unprecedented prodigious feat, unparalleled in the annals of mathematics.

After his successful schooling though he entered the Government Arts College
in Kumbakonam, his lack of interest in the collegiate education, ended with his
failure at the 1905 and 1907 examinations of the University of Madras. Thus,
formally he is a failure in the First degree in Arts (F.A.) examinations.
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During 1906–1912, Ramanujan was constantly in search of a benefactor and a
job to eke out a livelihood. He tutored a few students in mathematics, in
Kumbakonam, and later even sought employment as a Tutor in mathematics.
Disappointed at the lack of recognition, during this trying period in his life,
Ramanujan lamented to a friend of his that he was probably destined to die in
poverty like Galileo! Only in the centenary year, the world came to know, through
the revelation of Dr. S. Chandrasekhar, the Nobel Laureate, at his Ramanujan
centenary address, that Ramanujan even attempted suicide by lying down on the
train tracks in London; and he was rescued by the driver by bringing the train to a
halt and handing Ramanujan over to the police. When Ramanujan revealed his
connection with Professor Hardy, who was summoned to the Station, the policeman
was generous to ignore the incident, since he did not want to harm the future of a
young Indian mathematician.

Ramanujan received constant support and encouragement from his mother,
though his father was not impressed with his preoccupation with mathematics
always. By his own untiring efforts, Ramanujan garnered the support of the then
Collector of Nellore, Diwan Bahadur B. Ramachandra Rao, when Ramanujan
called on him with a classmate of his, and got an audience with him on his fifth
attempt. The condescension and offer of Rs. 20 per month as a dole was quietly
rejected by Ramanujan, who due to the efforts of his mentor, S. Narayana Iyer got a
job at the Accountant General’s office for a month, and later, a class-III, grade-IV
clerical post in the Madras Post Trust, in 1913.

Ramanujan saw the book ‘Orders of Infinity’ of Godfrey Harold Hardy, at the
Presidency College, Madras, when he called on Professor P.V. Seshu Iyer, his
mathematics professor at Kumbakonam. Browsing through it, he read that “no
definite expression has yet been found for the number of primes less than any given
number.” An excited Ramanujan told Seshu Iyer that he had that exact formula in
his notebooks. Ramanujan was then asked to write to Professor Hardy and that
historic (January 16, 1913) first letter of his started with “Dear Sir, I beg to
introduce myself to you as a clerk in the Accounts Department of the Port Trust
Office…”. The attached 11 pages containing about a hundred theorems selected
from his notebooks was sufficient to convince Hardy and his friend J.E. Littlewood,
to put in a stupendous effort to make Ramanujan agree to go to Cambridge.

The formulae in the eleven pages attached with Ramanujan’s first letter to G.H.
Hardy, in January 1913, contained theorems on a different level and obviously both
deep and difficult which even an exceptional but conventional mathematician like
Hardy had never seen anything in the least like them before. Hardy stated1 that they
defeated me completely. Those gems are:

If u ¼ x
1 þ x5

1 þ x10
1 þ x15

1 þ � � � and u ¼ x1=5
1 þ x

1 þ x2
1 þ x3

1 þ � � �

1Rmanujan: Twelve lectures on subjects suggested by his life work, G.H. Hardy, Chelsea, N.Y.
(1940) p. 9.
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then

v5 ¼ u
1� 2uþ 4u2 � 3u3 þ u4

1þ 3uþ 4u2 � 2u3 þ u4
ð13:1Þ

1
1
þ e�2p

1
þ e�4p

1
þ � � � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffi

5
p

2

 !
� 1þ ffiffiffi

5
p

2

 !vuut8<:
9=;e2p=5: ð13:2Þ
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Hardy stated that a single look at them is enough to show that they could be
written down by a mathematician of the highest class. They must be true because, if
they are not true, no one would have had the imagination to invent them. Finally,
(you must remember that I knew nothing whatever about Ramanujan, and I had to
think of every possibility), the writer must be completely honest, because great
mathematicians are commoner than thieves or humbugs of such incredible skill.
Hardy considered it sufficiently marvelous that he had not even dreamed of prob-
lems such as these and Rogers and Watson found the proofs of the extremely
difficult theorems, in the later years.

The Madras University deserves kudos for rising time and again to provide all
the financial support required: for Ramanujan’s passage to England; for his stay for
5 years (1914–1919) in Cambridge; continuing support to him, after his return to
India for a year; and for providing a pension to Janaki, Ramanujan’s wife, till she
died 74 years after Ramanujan’s untimely death—due to undiagnosed, untreated,
hepatic amoebiasis—on April 26, 1920.

13.2 CD ROMs on the Life and Work of Srinivasa
Ramanujan

Ramanujan’s work has inspired generations of mathematicians. There are three
journals named after him—Journal of the Ramanujan Mathematical Society, The
Hardy-Ramanujan Journal, and the Ramanujan Journal—and hundreds of papers
have appeared and continue to appear based on Ramanujan’s work. These facts
reveal the enduring nature of his remarkably stupendous contributions to mathe-
matics. The “Collected Papers of Srinivasa Ramanujan”, edited by G.H. Hardy,
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P.V. Seshu Aiyar, and B.M. Wilson, was originally published in 1927, and
“Ramanujan: Twelve lectures on subjects suggested by his life and work”, by
Hardy was first published in 1940, which have both been reprinted in 1999 by AMS
Chelsea Publishing, American Mathematical Society, Providence, Rhode Island,
USA.

This clearly shows the relevance and importance of the original papers of
Ramanujan in this millennium. The 125th birth anniversary of Ramanujan was
inaugurated by the former Prime Minister, Dr. Manmohan Singh, who declared the
year 2012 as the National Mathematics Year, released a commemorative stamp and
the first day cover, and declared from December 22, 2012 onwards, the date of birth
of Ramanujan will be celebrated as National Mathematics Day. A new edition of
the renowned notebooks of Ramanujan was released. Mathematicians would hail
these as significant contributions for the development of Mathematics.

Two CD ROMs were developed by The Institute of Mathematical Sciences
(IMSc), Chennai and by the National Multimedia Resource Center (NMRC) of the
Center for Development of Advanced Computing (C-DAC), Pune. This Project was
sponsored by the Department of Science and Technology (DST), Government of
India, with the concept and design of contents by Dr. K. Srinivasa Rao, Senior
Professor (Retd.), IMSc., Chennai and at present the Director, Srinivasa Ramanujan
Academy of Maths Talent. This was a two and a half-year (Two Million Rupees )
project, at IMSc, between Dec. 2002 and April 2005. The first CD ROM, Part-1
contains all the available information about the life and work of Srinivasa
Ramanujan, the very first digital scanned version of the original notebooks of
Ramanujan, his 39 research publications and the Collected Papers of Srinivasa
Ramanujan, as well as the 59 Questions or Answers to Questions of Ramanujan
which appeared in the Journal of the Indian Mathematical Society. Dissemination of
the CD ROMs was entrusted to: Director, Vigyan Prasar, C-24, Qutab International
Area, New Delhi—110016. For further details, the following are the references to
the books, on Ramanujan, by the author:

• Srinivasa Ramanujan: a Mathematical Genius,
East West Books (1998 and revised 2004).

• Mathematical Genius Ramanujan,
Allied Publishers Pvt. Ltd. (2005).

• A mathematical genius: Srinivasa Ramanujan,
Srinivasa Ramanujan Academy of Maths Talent, Chennai (Dec. 2012).

Documentaries on Ramanujan have been made based on the life and work of
Ramanujan by Nandan Kudhyadi of Nandan Kudhyadi Productions. The first of
these was entitled, “The Enigma of Srinivasa Ramanujan,” was made in the birth
centenary year, 1987. The second, in which the author had a role to play as one of
the resource persons for the producer–director, was entitled, “The Genius of
Ramanujan” and released in March 2013 at the Indian Institute of Science Education
and Research, Pune. A third Documentary is in the making and scheduled for
Telecast on Rajya Sabha TV channel (on Dec. 22, 2014, at 1 P.M. and 5 P.M.,
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duration 55 mins.) and it is entitled: “Conjectures: Ramanujan's spiritual realization
in mathematics” and it will complete a trilogy of films by this reputed documentary
film maker, who has made more than 65 documentary films including excellent ones
on the Nobel Prizemen Dr. Sir C.V. Raman and Dr. S. Chandrasekhar. This quality
conscious director’s other documentaries have been screened at International Film
Festivals in Brussels, Hawaii, Paris, Tokyo, Vancouver, etc., and his ‘The Genius of
Srinivasa Ramanujan’ was screened at the International Conference on Number
Theory at New Delhi, Dec. 2012 and was also scheduled to be screened at the annual
joint meeting of the American Mathematical Society and the Mathematical
Association of America, at Baltimore, in January 2014.
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Chapter 14
Estimation of Longitudinal Diffusivity
in Laminar/Turbulent Flow Through
Curved Channels with Absorbing
Boundaries Using Method of Moments

Sushil Kumar and Girija Jayaraman

Abstract Two-dimensional model for the flow hydrodynamics and mass transport
is considered by Kalkwijk and de Vriend (J Hydraul Res 18(4):327–342, 1980) [20]
in curved channels with absorbing boundaries. Longitudinal velocity dominates
over the lateral flow for the case of laminar flow, while the transverse velocity is
also considered with longitudinal velocity for turbulent flow. However, the trans-
verse velocity is much less than the longitudinal velocity in the case of mildly
curved channel flow. Longitudinal diffusivity is estimated using method of
moments on the advection–diffusion equation governing the concentration of the
diffusing substance, which gives substantial information about the concentration
distribution of diffusing substance across the flow. It is observed that the effective
dispersion coefficient is a function of the curvature parameter and absorbing
parameter. It is found that the steady state of dispersion coefficient is achieved
earlier in the case of turbulent flow than in the case of laminar flow. Effective
dispersion coefficient incorporates the combined effects of wall curvature and
absorption on boundaries.
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14.1 Introduction

Dispersion in laminar/turbulent flow with boundary absorption as applied to
environmental, industrial, chemical, navigation processes and prediction of water
quality in rivers and channels has received considerable attention. Dispersion is the
combined mechanism of advection and diffusion (laminar/turbulent). However,
some other parameters also play a vital role for dispersion such as flow oscillation,
chemical reactions, boundary irregularities, etc. Taylor [1, 2] initiated the pioneer
study on dispersion of contaminants in laminar/turbulent flows and diffusivity U2a2

48D
is obtained by considering the transverse diffusion in the straight circular tube,
where ‘D’ is the molecular diffusion coefficient and ‘a’ is the pipe radius.
Subsequently, Aris [3] extended the work by considering the axial diffusion also
using the method of moments and diffusivity Dþ U2a2

48D is obtained as the total
longitudinal diffusivity. Barton [4] modified the Aris [2] method of moments and
the solution is obtained for all time. Smith [5] studied the boundary absorption on
the longitudinal diffusion in shear flows. Barton [6] modified the Aris [2] method of
moments to handle the case of reactive solutes and the solution was obtained for
moderate and large time. Purnama [7] studied boundary retention effects upon
contaminant dispersion in parallel flows. Various studies have been conducted on
dispersion [8–11]. The effect of the irreversible boundary reaction on the dispersion
of tracer in an annular region, in the presence of oscillatory flow, was studied by
Sarkar and Jayaraman [12]. Kumar and Jayaraman [13] studied dispersion of a
solute in a curved channel using method of moments for laminar dispersion in
curved channels. Mondal and Mazumder [14] and Ng [15] studied the
absorption/reaction/retention of the tracer at the boundary wall using the method of
moments or some kind of averaging.

In this paper, the dispersion of a solute in turbulent flow in a curved channel with
boundary absorption is studied. Dispersion process is described appropriately in
terms of the rate of growth of variance with the apparent diffusion coefficient as a
function of time. The mathematical formulation for flow in a curved channel viz.,
the coordinate system chosen and the velocity profile for a curved channel are given
in Sect. 14.2. The methodology for dispersion in curved channel is discussed in
Sect. 14.2. Section 14.3 discusses the numerical solution for the longitudinal dis-
persion for curved channel for the general moment equations for different curvature
ratios. The results are discussed in Sect. 14.4 and salient conclusions are listed in
Sect. 14.5.

14.2 Mathematical Formulation

Steady plane laminar/turbulent flow of a viscous incompressible fluid through a
smooth curvilinear channel of constant width 2a, is shown in (Fig. 14.1). The
complete three-dimensional hydrodynamic equations and equation of continuity for
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the velocity components (u′, v′, w) in (s′, η′, z′) directions are given in Kumar and
Jayaraman [16, 17]. The centre line is characterised by a constant curvature k′. If s′,
η′ and z′ are the directions along the flow, transverse to the flow and vertically
upward at a centre line of a channel, respectively, and if~r is the position vector of
any point inside the channel, then

ðd~rÞ2 ¼ ð1þ k0g0Þ2ðds0Þ2 þðdg0Þ2 þðdz0Þ2 ð14:1Þ

where (ð1þ k0g0Þ, 1, 1) are the scale factors.

14.2.1 Steady Laminar Flow in Curved Channel

The detailed analyses are given in Kumar [19],

u0ðgÞ ¼ uðgÞ
UM

¼ 2ð1� kÞ
ð1þ kÞ2

4k ln 1þ k
1�k

� �h i
1þ kg
1�k � 1�k

1þ kg

h i
� 1þ kg

1�k

� �
ln 1þ kg

1�k

� �n o
1� ð1þ kÞ2ð1�kÞ2

4k2 ln 1þ k
1�k

� �� �2n o
ð14:2Þ

This is the exact expression [16–18] for the steady velocity profile along the
channel in terms of the non-dimensional variables.

UM is the non-dimensional mean velocity in a curved channel. The same mean
pressure gradient in the straight channel is assumed along the centre line of the
curved channel as well. k is the curvature ratio. The centrifugal force is matched by
the pressure gradient in the g direction and the other velocity component corre-
sponding to this two-dimensional steady, laminar flow vanishes. Thus, with no
lateral flow, the effect of curvature is purely geometrical.

Fig. 14.1 Schematic diagram
for coordinate system in
curved channel

14 Estimation of Longitudinal Diffusivity in Laminar/Turbulent … 237



14.2.2 Turbulent Flow in Shallow Curved Channel

A depth-averaged computation procedure is considered including the convective
influence of the secondary flow to get more appropriate results in shallow curved
channels. Apart from the other assumptions, longitudinal component of the velocity
is considered more dominating than the other ones. Fully developed velocity profile
is taken for computing the longitudinal diffusivity as it is independent of the axial
coordinate to make applicable the method of moments. The detailed analyses are
given in [19, 20].

14.2.3 Longitudinal Diffusivity Using Method of Moments

The pth integral moment of the concentration distribution is given as

Cpðt0; g0Þ ¼
Z1
�1

s0pCðt0; s0; g0Þds0 ð14:3Þ

The functions Cpðp ¼ 0; 1; 2. . .Þ describe the distribution of contaminant in a
filament centred on g0 ¼ constant. In particular, C0 gives the total mass of the
contaminant for g0 ¼ constant, C1

C0
gives the position of the centre of gravity and it

can be shown that C2 is related to the variance r2 through r2 ¼ C2
C0
� C2

1
C2
0
.

The moments, further averaged over the cross-section of the channel, are defined
as

Mpðt0Þ ¼ 1
2a

Za
�a

Cpðt0; g0Þdg0 ð14:4Þ

which gives the corresponding information over the whole cloud.
Method of moments is applied for estimating the second order central moments

for longitudinal diffusivity when fully developed flow is attained in both longitu-
dinal and transverse velocity profiles. Moment equations for the concentration
equation and the corresponding boundary conditions using Eqs. (14.3) and (14.4)
are given as follows:

@hCp

@t0
� Eg0h

@2Cp

@g02
� Eg0h

Rð1þ g0
RÞ

@Cp

@g0
þ @ð~v0CpÞ

@g0

¼ p~u0ðg0Þ
ð1þ g0

RÞ
Cp�1 þEs0h

pðp� 1Þ
ð1þ g0

RÞ2
Cp�2

ð14:5Þ
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Cpð0; g0Þ ¼
Z1
�1

sp dðg0Þds0 ¼ dpðg0Þ; ð14:6Þ

@Cp

@g0
þ bCP ¼ 0; g0 ¼ �a ð14:7Þ

hdMp

dt0
� 1
2a

Za
�a

Eg0h

Rð1þ g0
RÞ

@Cp

@g0
dg0þ 1

2a

Za
�a

@ð~v0CpÞ
@g0

dg0 ¼ 1
2a

Za
�a

p
u0Cp�1

ð1þ g0
RÞ

 !
þ pðp� 1Þ Es0hCp�2

ð1þ g0
RÞ2

 !" #
dg0

� 1
2
b Cpð�1; tÞþCpð1; tÞ
� �

ð14:8Þ

Mpð0Þ ¼ d pðg0Þ ¼ 1; p ¼ 0;
0; p[ 0:

The moments about the mean are defined as

mp ¼ 1
2 aM0

Za
�a

Z1
�1

C s0 � s0g
� �p

ds0dg0

where the mean (first central moment) sg is given as

s0g ¼
1

2 aM0

Za
�a

Z1
�1

s0Cds0dg0 ¼ M1

M0

s0g can be regarded as the centroid of the contaminant distribution, which measures
the location of the centre of gravity of the cloud movement with the mean velocity
of the fluid.

The variance related to the dispersion of the contaminants about the mean
position is obtained as

m2 ¼ M2

M0
� s02g ð14:9Þ

Thus, the asymptotic longitudinal dispersion coefficient Da is defined as

DaðtÞ ¼ 1
2
dm2
dt

ð14:10Þ
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These equations along with their initial and boundary conditions can be solved
numerically for different absorption parameters of ðbÞ: For the case of laminar flow,
the detailed analysis of the governing equations are given in Kumar and Jayaraman
[16, 17], Kumar [19].

14.3 Numerical Scheme

Longitudinal diffusivity was computed by solving Eqs. (14.5–14.8) numerically.
The discretization scheme for Eq. (14.5) was based upon a finite difference
Crank-Nicholson implicit scheme with truncation error of OðDt02ÞþOðDg02Þ. The
derivatives and all other terms were written at the mesh point (i, j), where i = 0
corresponded to time t = 0 and j = 0, to the inner wall of the channel at g0 ¼ �3.
The mesh point (i, j) indicates a point where t0i ¼ i� Dt0 and g0j ¼ �3þ j� Dg0:
Dt0 andDg0 are the increments of t0 and g0 respectively. The finite difference scheme
leads to a system of linear algebraic equations with a tridiagonal coefficient matrix,
which is solved by the method of Thomas algorithm using the initial and boundary
conditions.

Initial and boundary conditions in finite difference form are given as

Cpð0; jÞ ¼ 1; for p ¼ 0
0 for p� 1:

� 	
Cpði;�3Þ ¼ Cpði; 3Þ, at the inner wall and Cpði;Mþ 3Þ ¼ Cpði;M � 3Þ, at the
outer wall of the channel for p� 0: M is the value of j at the outer wall. Moments
Mp were calculated by solving Eq. (14.8) and with initial condition after applying
Simpson’s one-third rule for averaging ~uCp�1 and Cp�2 with the known values of
Cp; u0ðg0Þ and v0ðg0Þ at the corresponding grid points. Longitudinal diffusivity, as
defined by Eq. (14.10), requires only calculations of M2 andM0 and hence
numerical calculations were carried out only for Mp, p = 0, 1, 2.

14.4 Results and Discussion

The objective of this paper is to study the combined effects of curvature and
absorption parameter on the longitudinal diffusivity in turbulent flow. Numerical
simulations were made for several cases of channel curvature parameter and
boundary absorption parameter at various cross-sections of the channel. For the
calculation of velocity distribution in both longitudinal and transverse, the detail
analysis of the governing equations are given in Kumar [19] and Kalkwijk and De
Vriend [20]’s hydraulic model. Radii of curvature ranged from 10 to 100 m, in
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particular 10, 50 and 100 m. The longitudinal diffusion coefficients (Es′ and Eη′)
were fixed to be O(10−3) and friction coefficient of Chezy about 60 m1/2/s.

Figure 14.2 shows the axial velocity profile in a curved channel at different
cross-sections and variations of the longitudinal velocity are also plotted at different
cross-sections. Main velocity is assumed to have the logarithmic distribution in the
vertical direction. Longitudinal velocity in the channel decreases with increasing
longitudinal distance of the channel. Velocity profiles shift towards the outer bend
of the channel due to the effect of curvature. The effect of the secondary flow
convection factor (ks0g0 ) on the axial velocity at different locations of the channel is
to increase the velocities in the outer bend and decrease in the inner bend and the
longitudinal velocity distribution tends to be skewed outwards.

Figure 14.3 shows the variations of the transverse component of the velocity at
different axial locations of the channel for radius of curvature R = 50. It is obvious
that only the secondary flow due to the curvature of the bend is considered in the
formulation of the transverse velocity profile. Magnitude of the transverse compo-
nent of the velocity decreases with increasing the distance towards the downstream
side. Transverse velocity contributes considerably for mildly curved channel flow
also and the distribution is strongly skewed towards the outer bend of the channel.

14.4.1 Longitudinal Dispersion Coefficient Da

in Laminar Flow

The effective longitudinal dispersion coefficient Deff as defined in Kumar and
Jayaraman [18] depends on b; k and Pe. The variations of Deff with time are

Fig. 14.2 The velocity profile u at different cross-section ratios through cross-section in curved
channel
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depicted for k = 0.0, 0.3 and for different values of b in Fig. 14.4a, b. It can be seen
in Fig. 14.4a that for a straight channel (k = 0), Deff initially increases and reaches
asymptotically to a steady state value at large dimensionless dispersion time t for all
b: For b ¼ 0; it reaches the asymptotic value DaðtÞ ¼ 1

Pe2 þ 2
105. The increase in

absorption at the boundaries, i.e increase in b will change the amount of slug
material across the channel and hence for a given time t, Deff decreases with
increase in absorption parameter β. Deff is found to increase with increase in cur-
vature ratios but it decreases with increase in boundary absorption parameter and
finally reaches an asymptotic value in each case depending on the value of k and β.

Fig. 14.4 Dispersion coefficient (Deff) versus time (t) for different dimensionless absorption
parameter (b) a k = 0.0, b k = 0.3

Fig. 14.3 Transverse component of velocity for different curvatures
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14.4.2 Longitudinal Dispersion Coefficient Da

in Turbulent Flow

Longitudinal diffusivity is for fully developed velocity profiles using method of
moments, however, lateral component occurring in the governing equation is
considered significant for matter dispersion at the initial stage and stationary stage.
The variations of Da with time for turbulent flow are depicted for radius of cur-
vature = 100, 50 and 10 with a constant absorption parameter 1.0 in Fig. 14.5a. Da

Fig. 14.5 a Dispersion coefficient (Da) versus time (t) for turbulent flow for radius of curvature.
b Dispersion coefficient (Da) versus time (t) for turbulent flow for different absorption parameter
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decreases with decreasing radius of curvature; it reaches a stationary state after a
certain critical time, which depends on the radius of curvature and boundary
absorption. It can be seen from Fig. 14.5b that as b increases, the diffusivity Da

decreases and the stationary state is delayed as curvature increases. But for a given
radius of curvature (R), the stationary state is achieved earlier as absorption
parameter b increases. It should be possible to link the transverse mixing rate either
to the degree of curvature or to some measure of the strength of the secondary
circulation, shear effects.

14.5 Conclusion

In this paper we have reported the combined approach of curvature and boundary
absorption for solving the moment equations, in order to estimate the effective
longitudinal dispersion coefficient in a curved channel in turbulent flow. It is seen
that transverse velocity contributes remarkably in turbulent flow. The flow curva-
ture was effective on change of lateral profile of flow and on generation of the
lateral component of flow. The effect of secondary flow convection is basically
through the transverse component of velocity. Dispersion of a solute with absorbing
boundaries has been carried out for mildly curved channel to understand the role of
absorbing boundaries in transporting the solute in turbulent flow. Dispersion
coefficient is found to increase with decrease in radius of curvature, but decreases
with increase in boundary absorption parameter. It is seen that the effective dis-
persion coefficient reaches asymptotically to a steady-state value at large dimen-
sionless dispersion time for all β and R. The study can be extended to include
sinusoidal curvature effects on the dispersion in turbulent flows.
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Chapter 15
Recent Advances in Compressive Sensing

Noore Zahra

Abstract Compressive sensing is an efficient way to represent signal with less
number of samples. Shannon’s theorem which states that the sampling rate must be
at least twice the maximum frequency present in the signal (the so-called Nyquist
rate) is a common practice and conventional approach to sampling signals or
images. Compressive sensing reveals that signals can be sensed or recovered from
lesser data than required by Shannon’s theorem. This paper presents a brief his-
torical background, mathematical foundation, and a theory behind compressive
sensing and its emerging applications with a special emphasis on communication,
network design, signal processing, and image processing.

Keywords Sampling theorem � Compressive sampling � Sparsity � Incoherence

15.1 Introduction

We can understand compressive as compressed and sensing as sampling. As the
technology advances, the concept of “doing more with less” becomes essential. To
achieve this objective, researchers have been involved for a decade to improve and
reinvent new techniques for digital signal processing, image and video processing,
speech processing, sensors, digital data acquisition system, digital communication
system etc. International Data Corporation reveals that the amount of data generated
worldwide is nearly 1.8 trillion gigabytes in 2011, 2.8 trillion in 2012, and by 2020
it will be approx 40 trillion GBs or 40 zettabytes. As we see data are growing very
fast per year. In contrast, the growth rate of memory storage is slower. So there is
big gap between data production and data storage. As a consequence, this gap is
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going to be exponentially widened for data production and computational power
and at the same time it will effect communication rates as well. With the intro-
duction of compressive sensing in 2004 by Emmanuel Candès, Terence Tao, and
David Donoho an exponentially growth of new techniques the sensor data has taken
place. Data deluge is a major problem today and compressive sensing gives a
promising solution to it.

CS mainly relies on two principles sparsity and incoherence. Sparsity pertains
to the signals of interest and incoherence to the sensing modality.

Sparsity enables the signals to store information in few samples. It is an inherent
property of CS by which reconstruction can be done accurately and by the virtue of
this property it can be applied in diverse field. When we apply compressive sensing
for digital images, it will overcome the problems associated with the huge memory
storage, processing time, and cost of computational process.

15.2 Historical Background

In 1795, Prony [1] developed a method known as Prony’s analysis to extract useful
information from a uniformly sampled signal which further builds a series of
sinusoids or damped complex exponentials. It is used for the parameter estimation
of the signal frequency components like estimation of frequency, amplitude, phase,
and damping components of a signal. It represents the sampled data as a linear
combination of exponentials and was initiated because it can estimate the frequency
[1]. This method also works well with nonlinear equation that utilizes the linear
equations. In order to solve for the different exponential components, the square
error of approximation must be calculated and it must attain minimal error. CS was
used in seismology in 1970 when Claerbout and Muir gave use of absolute value
error criteria in place of least square data modeling. An example can be seen of this
stability in averaging by median rather than arithmetic mean.

One of the famous theories of signal processing is the Nyquist/Shannon sam-
pling theory [2]. This principle states that a signal/image can be represented and
reconstructed if sampling frequency fs is greater than or equal to twice of the highest
frequency fm in the signal; fs ≥ 2fm

Candès and Donoho introduced an emerging theory which goes by the name of
“compressive sampling” or “compressed sensing,” which says that this conventional
theory is inaccurate. They discovered important results on the minimum amount of
data needed to reconstruct an image even though the amount of data would be
deemed insufficient by the Nyquist–Shannon criterion [3, 4]. They explain that
signal and images can be reconstructed from far fewer data than what we usually do
as a conventional and common practice which follows Shannon–Nyquist density
sampling theory. Compressive sensing builds upon the fundamental fact that we can
represent many signals using only a few nonzero coefficients in a suitable basis or
dictionary. Nonlinear optimization can then enable recovery of such signals from
very few measurements. The theoretical foundation of this revolution is the
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pioneering work of Kotelnikov, Nyquist, Shannon, and Whittaker on sampling
continuous-time band-limited signals [2, 5–7]. Their results demonstrate that signals,
images, videos, and other data can be exactly recovered from a set of uniformly
spaced samples taken at the so-called Nyquist rate of twice the highest frequency
present in the signal of interest. After this discovery, much of signal processing has
moved from the analog to the digital domain. Digitization has enabled the creation of
sensing and processing systems that are more robust, cheaper and, consequently,
more widely used than their analog counterparts.

Candès and Donoho stated that it is possible to reconstruct images or signals
accurately from a number of samples which is far smaller than the desired reso-
lution of the image/signal, e.g., the number of pixels in the image. The field of CS
grew out of the work of Candès, Romberg, Tao and of Donoho, who showed that a
finite-dimensional signal having a sparse or compressible representation can be
recovered from a smaller set of linear, non-adaptive measurements [3, 4, 8–10].

In 1990 George, Gorodnitsky, and Rao studied sparsity in biomagnetic imaging
and other contexts [11–13]. Simultaneously, Bresler, Feng, and Venkataramani
proposed a sampling scheme for acquiring certain classes of signals consisting of k
components with nonzero bandwidth (as opposed to pure sinusoids) under
restrictions on the possible spectral supports, although exact recovery was not
guaranteed in general [14–16]. In the early 2000s Blu, Marziliano, and Vetterli
developed sampling methods for certain classes of parametric signals that are
governed by uniform sampling [10].

15.3 Methodology

With the help of few sensors, only super-resolution signals can be obtained in
compressive sensing. So, a new data acquisition protocol can be possible which
converts analog signal to digital signal with less number of sensors. This sampling
theory gives the fundamental methods for sampling and compressing data
concurrently.

Figure 15.1a shows bulky data acquisition and Fig. 15.1b shows that the dis-
pensable data can be rejected. Compressing of the dispensable data can be rejected.
Compressing the signal which has some structure can be accomplished without
intuitive a loss. This work can be carried out in the following steps:

a. Obtaining the whole signal.
b. Computation of transform coefficients.
c. Encoding the highest coefficients and throwing away all other coefficients.

This process of massive data acquisition followed by compression is extremely
uneconomical (e.g. JPEG 2000) [3, 4, 8]. Instead of acquiring the data followed by
compression, one can acquire the data that is already compressed, so there is no
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need to dispose anything [9]. Compressive sampling suggests ways to economically
translate analog data into compressed digital form [17, 18].

Some of the key insights underlying this new theory are given below.
Sparsity From a general viewpoint, sparsity and compressibility have played

and continue to play a fundamental role in many fields of science. Sparsity leads to
efficient estimations; for example, the quality of estimation by thresholding or
shrinkage algorithms depends on the sparsity of the signal we wish to estimate.
Sparsity leads to efficient compression; for example, the precision of a transform
coder depends on the sparsity of the signal we wish to encode [19].

Mathematically, we have a vector f 2 Rn (such as the n-pixel image in Fig. 15.2)
which we expand in an orthonormal basis (such as a wavelet basis)

ψ = [ψ1, ψ2, …ψn] as follows:

f tð Þ ¼
Xn

i¼1

xfwf ðtÞ ð15:1Þ

where xi is the coefficient sequence of f, xf = <f, ψf>. It will be convenient to express
f as ψx (where w is the n × n matrix with w1; . . .;wn as columns). The implication of
sparsity is now clear: when a signal has a sparse expansion, one can discard the
small coefficients without much perceptual loss.

Signal can be expanded as a superposition of spikes, sinusoids, B-splines,
wavelets, curvelets, shearlets, alpha-molecule, and so on.

In the above figure, original megapixel image with pixel values in the range
[0, 255] is taken and its wavelet transform coefficients are arranged in random order
for enhanced visibility. Relatively few wavelet coefficients capture most of the
signal energy; many such images are highly compressible. (c) The reconstruction
obtained by zeroing out all the coefficients in the wavelet expansion but the 25,000
largest (pixel values are threshold to the range [0, 255]). The difference with the
original picture is hardly noticeable. As described in “Under sampling and Sparse

Fig. 15.1 a Raw: 15 MB b JPEG: 150 KB. Source First EU-US Frontiers of Engineering
Symposium, Cambridge, September 2010
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Signal Recovery,” by Candès [4], this image can be perfectly recovered from just
96,000 incoherent measurements.

Incoherence extends the duality between time and frequency and expresses the
idea that objects having a sparse representation in ψ must be spread out in the
domain in which they are acquired, just as a Dirac or a spike in the time domain is
spread out in the frequency domain. Put differently, incoherence says that unlike the
signal of interest, the sampling/sensing waveforms have an extremely dense
representation in ψ. The observation is that one can design efficient sensing or
sampling protocols that capture the useful information content embedded in a
sparse signal and condense it into a small amount of data. These protocols are
nonadaptive and simply require correlating the signal with a small number of fixed
waveforms that are incoherent with the sparse basis. The most remarkable thing
about these sampling protocols is that they allow a sensor to very efficiently capture
the information in a sparse signal without trying to comprehend that signal. Further,
there is a way to use numerical optimization to reconstruct the full-length signal
from the small amount of collected data. In other words, CS is a very simple and
efficient signal acquisition protocol which samples—in a signal independent fash-
ion—at a low rate and later uses computational power for reconstruction from what
appears to be an incomplete set of measurements [4, 13].

To address the logistical and computational challenges involved in dealing with
such high-dimensional data, we often depend on compression, which aims
attending the most concise representation of a signal that is able to achieve a target
level of acceptable distortion. One of the most popular techniques for signal
compression is known as transform coding, and typically relies on finding a basis
or frame that provides sparse or compressible representations for signals in a class
of interest [16, 20–26]. Compressed sensing (CS) has emerged as a new framework
for signal acquisition and sensor design. CS enables a potentially large reduction in

Fig. 15.2 a Original megapixel image with pixel values in the range [0, 255]. b Its wavelet
transform coefficients. c The reconstruction obtained by zeroing out all the coefficients. Source
Emmanuel et al., IEEE signal processing, page 23, March 2008
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the sampling and computation costs for sensing signals that have a sparse or
compressible representation. While the Nyquist–Shannon sampling theorem states
that a certain minimum number of samples is required in order to perfectly capture
an arbitrary band-limited signal, when the signal is sparse in a known basis, we can
vastly reduce the number of measurements that need to be stored. Consequently,
when sensing sparse signals we might be able to do better than suggested by
classical results.

Restricted Isometric Property (RIP) is a famous tool for analyzing the per-
formance of CS in acquisition and reconstruction. RIP in acquisition although
similar to conventional method but its sensing paradigm makes the difference.

If X� is the signal to be sensed then

Y ¼ UX� ð15:2Þ

where X� 2 Rn, Φ is m by n measurement matrix and Υ ϵ Rm is measurement vector.
In conventional sensing paradigm, m must be equal to n whereas in CS m can be far
less than n.

Some advances using CS in communication, signal, and video processing are
discussed below

1. Block compressed sensing

Gan [27] in block compressed sensing for natural images proposed image acqui-
sition through block by block manner. Here, original image is divided into small
blocks (basically B × B) and each block is sampled independently which leads to
faster speed. CS was recommended in order to overcome the conventional imaging
system which samples the original images into digital format at a higher rate which
was impossible. In case of devices with low power and image resolution, when
considering Ir × Ic where N = IrIc with n measurements, the image in the block CS
which is divided into small blocks is sampled the block CS shows that it can be
implemented as a random 2D filter bank [27] (Fig. 15.3).

The sensors are pseudoinverse, i.e., they are sensitive to noise. In filter bank
implementation of Block CS, the input image of each FIR filter goes through a
rectangular decimation matrix M which gives the CS samples as output.

Fig. 15.3 Filter bank implementation of block CS
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Nonlinear signal reconstruction method is used to improve the quality of
reconstructed images, it uses a process of hard thresholding to remove the Gaussian
noise which is based merely on three functions describing the whole procedure
transmitting the input signal to yield a certain coefficient, that largest coefficient is
kept and rest are set to zero, later the inverse transformed is applied to obtain the
reconstructed signal. Weiner filter exploits the statistical properties of the image and
can be used to restore images in the presence of blur as well as noise, the minimum
squared error (M.S.E.) is minimized by using the orthogonality condition. In
minimizing the M.S.E., the Weiner filter tends to smooth the image more than what
the human eye would prefer. The reason being that M.S.E. weighs all the errors
equally regardless of their location in the image and after that hard thresholding are
applied which cuts down the Gaussian noise. Frame Expansions are used in order to
recover natural images. For better reconstruction results, two-frame expansions are
used. UWT which stands for undecimated wavelet transform which provides full
description of the image, and OLT, i.e., oversampled lapped transform as the name
suggests it represents the structures by overlapped block by block processing [27].

2. Acquisition and reconstruction using FIR (Finite Impulse Response) filter

Tropp et al. [28] proposed a technique for acquiring and reconstruction of signals
using FIR filter. The main purpose of compressed sensing is to develop a linear
measurement operator, Φ: Rd → Rn, nonlinear reconstruction algorithm, A:
Rn → Rd (to recover sparse signals) [27].

Each of the signals in CSA represented are in 2 m real numbers where
m < d where m = no. of sparse signals and n = no. of measurement of signals and
d = length of the signals. The given equation shows that the reconstruction process
is stable

jjAðUS þ vÞjj2 ¼ Cjjvjj2 ð15:3Þ

The compressive sampling acquisition (CSA) functions are designed only for
finite length signals and the reconstruction process requires too much of space and
time. Reduction of the size of audio signals is done by sampling at Nyquist rate
(done to determine the stability of the feedback systems) before applying the lossy
compressed equations.

Random filtering process was proposed to think beyond the Shannon–Nyquist
sampling where the compressed version of digital signal is acquired which is
applicable to analog signals and had a huge impact on analog/digital converters.

Random filters helps in acquiring compressed version of digital data which
includes following processes like convolution of the signals and down sampling
and helps in implementation in analog hardware in analog/digital converters.
Random filtering contributes well in measurement process of analog signals and
captures all sparse and compressible signals as compared to CSA where analog
signals can perform limited functions which includes (1) filtering, (2) modulation,
(3) sampling, and where the measurement process is not casual.

15 Recent Advances in Compressive Sensing 253



In the random filtering process of compressed sensing, signal x is measured by:

(a) Convolution of the signal x with an FIR filter h has random taps which is then
down sampled to obtain a compressed data y (Fig. 15.4).

(b) Using FFT/IFFT.

Random filters also accelerates the reconstruction algorithm and measurement
algorithm, can trade longer filters for fewer measurements, easily implementable in
software and hardware, and focuses on continuous-time signals [28].
3. Temporal Compressive Sensing
Yuan et al. [29] has introduced adaptive temporal compressive sensing for video.
Here video compressive sensing has been developed to capture high-speed videos
at low frame rate by means of temporal compression. The proposed method is to
determine the temporal compression ratio NF based on the motion of the scene
which is to be sensed (Fig. 15.5).

They have estimated the motion of the objects within the scene by doing par-
titioning of frame A (e.g., previous frame) into P × P (pixels) blocks then took a
predefined window size M × M (pixels) searching all the P × P blocks in the
M × M windows in frame B (e.g., current frame) around the selected block in frame
A and finally find the best-matching block in the window according to some metric
(e.g., mean squared error), and use this to compute the block motion.

Fig. 15.4 a Signal acquisition using convolution. b Signal acquisition using FFT

Fig. 15.5 Block matching of P × P block in frame B with best-matched block in frame A. Source
Xin Yuang et al., ICIP 2013, IEEE [29]
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15.4 Applications

1. Data acquisition: Compressive sensing reduces the number of measurements.
Single pixel camera which is invented at Rice University makes a drastic change
in imaging system.

2. Medical imaging: CS is widely used in medical imaging, particularly in mag-
netic resonance imaging. MR images have sparsity properties in Fourier,
wavelet, curvelet, and shearlet domain. With the introduction of CS-based
techniques, it is easy to take advantage of their implicit sparsity and reduction in
the number of measurements without hampering the image quality.

3. Channel estimation: Compressed channel-based estimation uses nonlinear
reconstruction algorithm and gives better result.

4. Wireless sensor network: Large number of sensors perform the task of data
gathering for wireless sensor network.

5. Video scrambling: Block-based CS sampling is used on quantized coefficient. It
provides security improvement and coding efficiency.

Other applications of compressed sensing include coding and information the-
ory, machine learning, hyperspectral imaging, seismic imaging, cognitive radio
networks, geophysical data analysis, computational biology, network traffic, remote
sensing, radar analysis, robotics and control, A/D conversion, and many more.

Acknowledgments I take this opportunity to thank Prof. A.H. Siddiqi who introduced to me the
exciting and the most useful theme of wavelet methods in signal and image processing and now
the compressive sensing.
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Chapter 16
Emergence of Shearlets and Its
Applications

Ruchira Aneja

Abstract In recent years, serious effort has been made to design directional
representation system for images such as curvelets, ridgelets and shearlets and
corresponding transforms. Amongst these transforms the shearlet transforms seems
quite interesting since it stems from a square integrable group representations and
has the corresponding useful mathematical properties. As we know wavelets are
associated with Besov spaces via atomic decompositions, shearlets correspond to
certain function spaces known as shearlet co-orbit spaces. Shearlets provide an
optimally sparse approximation in the class of piecewise smooth functions with C2

singularity curves namely,

f � fNk k2L2 �C�2
N ðlogNÞ3 asN ! 1

where fN is the non-linear shearlet approximation of a function The main objective
of this review paper is to introduce basic elements of shearlet along with our own
result regarding denoising of MRI images using shearlet.

Keywords Bandlimited shearlets � Compactly supported shearlets � Continuous
shearlet transform � Discrete shearlet transform � Fast finite shearlet transform

16.1 Introduction

The need to understand geometric structures arises since it is essential to efficiently
analyze and process the data. Data are highly correlated and it is essential to extract
the relevant information. This relevant information can be extracted and can be
grouped into certain class if we have an understanding of its dominant features,
which are associated with their geometric properties. For instance, edges in natural
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images. One major goal of applied harmonic analysis is constructing classes of
analyzing elements which capture the most relevant information in a certain data
class.

16.1.1 Wavelets and Beyond

Shearlets emerged as a part of an extensive research activity during the last
10 years, which allows encoding of several classes of multivariate data through its
ability to represent anisotropic features such as singularities for example: edges in
natural images. For higher dimensional data analysis, it is of fundamental impor-
tance to understand these geometric structures which go beyond the limitations of
Fourier, wavelet and curvelet systems. Shearlets provide a unified treatment of
continuum models as well as digital models; it allows a precise resolution of wave
front sets, optimally sparse representations of cartoon like images and fast
decomposition algorithm.

The emergence of wavelets [1] was a great success as it has the ability to provide
optimally sparse approximations of a large class of frequently occurring signals, fast
algorithmic implementations compared to traditional Fourier methods, rich math-
ematical structure which allows one to design families of wavelets. As a conse-
quence of all these properties, wavelets have revolutionized image and signal
processing area with wide range of applications ranging from denoising,
enhancement, feature extraction, classification etc.

Despite their success, wavelets are not very effective when dealing with multi-
variate data as wavelet representation is not sparse, that is many wavelet coefficients
are needed to accurately represent the edges. Wavelet representations are optimal
for approximating data with pointwise singularities only but cannot handle singu-
larities along curves. This limitation of wavelets prompted the mathematicians,
engineers and scientists to introduce some form of directional sensitivity, and
“directional” wavelets were introduced such as steerable pyramids by Simoncelli,
directional filter banks by Bamberger and Smith and 2D directional wavelets by
Antoine.

The breakthrough occurred with the introduction of curvelets by Candés and
Donoho in 2004 with a pyramid of analyzing functions defined not only at various
scales and locations as wavelets, but also at various orientations. Their supports are
highly anisotropic and increasingly elongated at finer scales. Curvelets have
excellent adaptive representation system to sparsely approximate image with edges.
However curvelets need to be band limited and can only have limited spatial
localization. Construction of curvelets involves rotations and these operators don’t
preserve the digital lattice.

In 2005, Do and Vitterli introduced a discrete filter bank version of curvelet
framework-contourlet. Contourlet [2, 3] has a tree structured filter bank imple-
mentation similar to standard wavelet systems. It can achieve great efficiency in
terms of redundancy and good spatial localization. But the limitation of contourlet
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is that there is a limit in the number of directions used for shearing. This limitation
was overcome by a new class of affine systems dealing efficiently with multivariate
data viz shearlets.

Shearlets was introduced by Guo, Kutyniok, Labate, Lim and Weiss in 2005,
derived from composite Wavelets. In contrast to rotation used by curvelets,
shearlets [4] makes use of shearing to control directional selectivity.

The important features of shearlets include:

• Spatial localization
• High directional sensitivity
• Fast algorithmic implementations
• Optimally sparse approximations of anisotropic features in multivariate data
• Parabolic scaling
• Compactly supported analyzing elements.

16.2 Geometric Transformations

Geometric Transformations [5] are broadly classified into:

1. Euclidean Transformation
2. Affine Transformation

16.2.1 Euclidean Transformation

It is either a translation, rotation or reflection. Translation: Suppose a point (x, y) in
the xy plane gets translated to a new point x0y0 where

x0 ¼ xþ h and y0 ¼ yþ k
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Rotation: If a point (x, y) is rotated by an angle h about the origin to become a new
point

x

y

1

2
64

3
75 ¼

cos h sin h 0
� sin h cos h 0

0 0 1

2
4

3
5 x0

y0

1

2
64

3
75 ð3Þ

Reflection: To reflect a vector about a line that goes through the origin, let
~l ¼ ðlx; lyÞ be a vector in the direction of the line:

A ¼ 1

~l
��� ���2

l2x � l2y 2lxly
2lxly l2y � l2x

� �
ð4Þ

16.2.2 Affine Transformation

Affine [6] is the combined effect of translation, rotation, scaling and shear.

T ¼
t11 t12 t13
t21 t22 t23
0 0 1

2
4

3
5 ð5Þ

Scaling: Scaling transformation shrink/stretch an object which implies change in
length and angle. Scaling simply means x co-ordinate is enlarged c1 times and y
co-ordinate is enlarged c2 times.

x0 ¼ x c1 and y0 ¼ yc2
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Shear: Shear transformation has the effect of pulling/stretching an object in a
direction parallel to the co-ordinate axis. Shear factor gives an indication of the
amount of pulling (stretching). This factor can be positive or negative and can be
applied to x-axis and y-axis independently.
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Shear transformation in x-direction
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(Figs. 16.1 and 16.2).

Fig. 16.1 Original axes and sheared axis with shearing in x-direction

Fig. 16.2 a MRI brain
image. b MRI brain sheared
image at a slope = 0.5
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16.3 Continuous Shearlet Transform

16.3.1 Introduction to Continuous Shearlet Transform

The traditional wavelet theory was a one-dimensional theory and can be extended
for multivariate data but has some limitations. Due to its isotropic nature,
Continuous wavelet transform is unable to provide information about the geometry
of the set of singularities of a function. Though it has the advantage of simplicity,
but it lacks directional sensitivity and the ability to detect the geometry of function.

Shearlet system is a special case of composite wavelet systems [7] which provide
optimally sparse representation for a large class of bivariate functions and the
continuous Shearlet transform is derived from it.

The continuous shearlets [8] depend on three parameters, the scaling parameter
a > 0, the shear parameter s 2 R and the translation parameter t 2 R2, and they are
defined by

Wa;s;tðxÞ ¼ a�3=4wððD�1
a;s ðx� tÞÞÞ where Da;s ¼ ½a;�a1=2s; 0; a1=2� ð10Þ

The mother shearlet function ψ is defined almost like a tensor product by

Wðn1; n2Þ ¼ W1ðn1ÞW2ðn2=n1Þ ð11Þ

where ψ1 is a wavelet and ψ2 is a bump function.
The associated continuous shearlet transform again depends on the scaling

parameter a, the shear parameter s and the translation parameter t, and is defined by:

SHf ða; s; tÞ ¼ \f ;Wa;s;t [ ð12Þ

The scaling matrix Aa makes use of parabolic scaling, and is represented by
diag(a; aaÞ where the parameter a controls the degree of anisotropy. The shearing
matrices Ss gives an idea of the orientations using the variable s associated with
slopes rather than angles.

By sampling the continuous shearlet transform on an appropriate discrete set of
the scaling, shear, and translation parameters, it is possible to obtain a frame or even
a Parseval frame for L2(R). To obtain the discrete shearlets, we sample the three

parameters as aj ¼ 2 jðje ZÞ; sj;k ¼ k a1=2j ¼ k 2j=2ðke ZÞtj;k;m ¼ Daj;sj;kðme Z2Þ. We
choose the mother shearlet function ψ in a similar fashion as in the continuous case,
i.e., we now choose ψ1 to be a discrete wavelet and ψ2 to be bump function with
certain weak additional properties. The tiling of the frequency plane is illustrated in
Fig. 16.3a. This system forms a Parseval frame for L2(R), and they are optimally
sparse. Furthermore, they are associated with a generalized MRA-structure, where
the scaling space is not only translation invariant but also invariant under the shear
operator.
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The discrete shearlets on the cone, whose tiling of the frequency plane is shown
in this Fig. 16.3b have the advantage that all directions are treated equally. Also
each scale is associated with a finite number of shear parameters. This fact has
certain advantages for numerical implementation.

16.3.2 Properties of Continuous Shearlet Transform

Continuous shearlet transform is able to identify not only the singular support of a
distribution f but also the orientation of distributed singularities along curves. Decay
properties of continuous shearlet transform as a ! 0 characterize the wavefront set
of f with the translation parameter detecting the location and shear parameter
detecting the orientation of a singularity. It is related to a compact group-shearlet
group, which has a rich mathematical structure, uncertainty principle gives the
accuracy of the transform and co-orbit theory is used to study smoothness spaces
called the co-orbit spaces.

(1) Localization of shearlets: Analyzing elements of Continuous shearlets [9]
decay rapidly as

xj j ! 1 that is Wa;s;tðxÞ ¼ Oð xj j�kÞ as xj j ! 1 for every k� 0: ð13Þ

Rate of decay of Continuous shearlet transform exactly describes the location
and orientation of singularities.

(2) Point singularities: If we substitute t = 0 in Eq. (10) we have

SHWdða; s; tÞ � a�3=4 ð14Þ

In all other cases, SHWdða; s; tÞ decays rapidly as a ! 0

Fig. 16.3 a Frequency domain support of several elements of the shearlet system. b Tiling of
frequency plane in cone adapted continuous shearlet system
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(3) Linear singularities: We consider the linear delta distribution vpðx1; x2Þ ¼
dðx1þ px2Þ; p eR defined by:

vp; f
� � ¼ Z

R

f ð�px2; x2Þdx2 ð15Þ

Continuous Shearlet transform [10] determines both the position and orien-
tation of linear singularity, in the sense that transform SHw vpða; s; tÞ always
decays rapidly as a ! 0 except when t is on the singularity and s = p i.e.
direction perpendicular to the singularity or in other words, in which the
singularity occurs.
If t1 ¼ �pt2 and s ¼ p, SHWvpða; s; tÞ � a�3=4as a ! 0. In all other cases,
SHWvpða; s; tÞ decays rapidly as a ! 0 (Fig. 16.4).
For piecewise smooth boundary @S, let B ¼ vS; where S � R2 and its
boundary @S is a piecewise smooth curve.

1. If t 62 @S; then SHwBða; s; tÞ has rapid asymptotic decay as a ! 0, for
each s eR.

2. If t e @S and @S is smooth near t, then SHwBða; s; tÞ has rapid asymptotic
decay as a ! 0, for each s eR unless s ¼ s0 is the normal orientation to @S
at p. In this case SHwBða; s0; tÞ � a3=4 as a ! 0.

3. If t is a corner point of @S and s ¼ s0; s ¼ s1 are the normal orientation to
@S at t, then SHwBða; s0; tÞ, SHwBða; s1; tÞ � a3=4 as a ! 0. For all other
orientations the asymptotic decay of SHwBða; s; tÞ is faster (Fig. 16.5).

(4) Polygonal singularities: We consider the characteristic function vv of the cone
V ¼ fðx1; x2 : x1� 0; qx1� x2� px1g; where 0\q� p\1
For t ¼ 0; if s ¼ � 1

p or s ¼ � 1
q, SHwvvða; s; tÞ � a3=4 as a ! 0 and

if s 6¼ � 1
p
; s 6¼ � 1

q
; SHwvvða; s; tÞ � a5=4 as a ! 0 ð16Þ

(a) (b)

Fig. 16.4 a Continuous shearlet transform of linear delta distribution. b Continuous shearlet
transform of heavyside function
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For t 6¼ 0; if s ¼ � 1
p or s ¼ � 1

q we have SHwvvða; s; tÞ � a3=4 as a ! 0. In

all other cases, SHw vvða; s; tÞ decays rapidly as a ! 0.
The decay of Continuous shearlet transform SHwvvða; s; tÞ exactly identifies
the location and orientation of the singularities. The orientation of linear
singularities can be detected considering only the point singularity at the
origin.

16.3.3 3D Continuous Shearlet Transform

We use separate Shearlet systems defined in different subregions of the frequency
space. This leads to three pyramid based systems, associated with the pyramidal
regions.

P1 ¼ ðn1; n2; n3ÞeR3 : n1j j � 2;
n2
n1

����
����� 1 and

n3
n1

����
����� 1

� 	
;

P2 ¼ ðn1; n2; n3ÞeR3 : n1j j � 2;
n2
n1

����
����[ 1 and

n3
n1

����
����� 1

� 	

P2 ¼ ðn1; n2; n3ÞeR3 : n1j j � 2;
n2
n1

����
����� 1 and

n3
n1

����
����[ 1

� 	 ð17Þ

Fig. 16.5 Region S with piecewise smooth boundary ∂S
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For n ¼ ðn1; n2; n3Þe R3; n1 6¼ 0; let wðdÞ; d ¼ 1; 2; 3 be defined

Ŵ
ð1ÞðnÞ ¼ Ŵ

ð1Þðn1; n2; n3ÞŴ1ðn1ÞŴ2ðn2n1
ÞŴ2ðn3n1

Þ; s

Ŵ
ð2ÞðnÞ ¼ Ŵ

ð2Þðn1; n2; n3ÞŴ1ðn1ÞŴ2ðn1n2
ÞŴ2ðn3n2

Þ;

Ŵ
ð3ÞðnÞ ¼ Ŵ

ð3Þðn1; n2; n3ÞŴ1ðn3ÞŴ2ðn2n3
ÞŴ2ðn1n3

Þ;

ð18Þ

where w1; w2 satisfy the same assumptions as in 2D case. Hence for d ¼ 1; 2; 3; the
3D pyramid based continuous shearlet systems for L2ðPdÞV are the systems

wðdÞ
a;s11;s2;t : 0� a� 1=4;� 3

2
� s1 � 3

2
;� 3

2
� s2 � 3

2
; t 2 R3

� 	

where

wðdÞ
a;s1;s2;tðxÞ ¼ detMðdÞ

as1s2

�� ��12wðdÞððMðdÞ
as1s2Þ

�1ðx� tÞÞ; and

Mð1Þ
as1s2 ¼

a �a1=2s1 �a1=2s2
0 a1=2 0

0 0 a1=2

0
B@

1
CA; Mð2Þ

as1s2 ¼
a1=2 0 0

�a1=2 a �a1=2s2
0 0 a1=2

0
B@

1
CA;

Mð3Þ
as1s2 ¼

a1=2 0 0

0 a1=2 0

�a1=2s1 �a1=2s2 a

0
B@

1
CA

ð19Þ

The elements of shearlet systems wðdÞ
a;s1;s2;t are well localized waveforms associ-

ated with various scales, controlled by a, various orientations controlled by two
shear variables s1, s2 and variables, controlled by t.

For f e L2ðR3Þ we define the 3D pyramid based continuous shearlet transform
[11] f ! SHw f ða; s1; s2; tÞ; for a[ 0; s1; s2 eR; t eR3 by

SHw f ða; s1; s2; tÞ ¼\f ;wð1Þ
a;s1;s2;t

[ if s1j j; s2j j � 1;

\f ;wð2Þ
a;1=s1; s2=s1; t

[ if s1j j[ 1; s2j j � s1j j
\f ;wð3Þ

a;s1s2
; 1
s2
;t
[ if s2j j[ 1; s2j j[ s1j j

ð20Þ

Thus 3D continuous shearlet transform corresponds to a specific pyramid based
shearlet system.
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16.4 Discrete Shearlet Transform

Shearlets are broadly classified into Bandlimited and Compactly supported
shearlets.

16.4.1 Bandlimited Shearlets (Cartesian Grid)

Bandlimited shearlets have the advantage that it allows a high localization in
frequency domain which is important for handling seismic data. They admit a
digitization of the continuum theory. But they have the drawback that they have
a higher computational complexity due to the fact that the windowing takes place in
the frequency domain.

Shearlet transform can be computed by using Cartesian grid. The steps in
computing Shearlet transform are:

(1) Generate shearing filters for each scale j and shear parameter k. Windowing is
done using Meyer based window function given by:

y ¼ 35 x4 � 84 x5 þ 70 x6 � 20 x7 ð21Þ

(2) Compute the norm of shearlets for each scale and direction with inputs as
Laplacian pyramid filter, cell array of directional shearing filters and size of
the input image.

(3) Compute translation invariant shearlet transform with inputs as input image,
Filter for non-subsampled laplacian pyramid and cell array of directional
shearing filters. A-trous decomposition decomposes the input image into
sub-bands of scales j = 1, 2, 3, … level. Then apply directional shearing filters
to decompose images for each scale j.

Shearlet transform can also be computed on pseudopolar grid. The steps in
computing fast shearlet transform are:

(1) PPFT: Pseudopolar Fourier transform with oversampling factor in the radial
direction.

(2) Weighting: Multiplication by density compensation style weights.
(3) Windowing: Decomposing the pseudo-polar grid into rectangular subband

windows followed by 2D inverse FFT.

These have been implemented in Shearlab [9].
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16.4.2 Bandlimited Shearlets (Pseudopolar Grid)

16.4.2.1 Pseudopolar Fourier Transform

Pseudopolar Fourier transform makes use of pseudopolar grid [12] in contrast to
polar grid in case of Polar fourier transform. The polar grid points sit at the
intersection between linearly growing concentric circles and angularly equispaced
rays. The pseudopolar points sit at the intersection between linearly growing con-
centric squares and a specific choice of angularly non-equispaced rays. Pseudopolar
grid gives a denser sampling near origin, enabling better interpolation performance
(Fig. 16.6).

The problem with pseudopolar Fourier transform [13] is highly non-uniform
arrangement of points on the pseudopolar grid. Therefore, it is required to down
weight points in regions of very high density by using weights that corresponds to
density compensation weights underlying the continuous change of variables.
Oversampling of pseudopolar grid is done by introducing an oversampling rate R in
the radial direction.

Fast modified PPFT is obtained by substituting ðw1;w2Þ ¼ �2n
R : 2ln ;

2n
R


 �
in

Îðw1; w2Þ ¼
XN=2�1

u;v¼�N=2

Iðu; vÞ e2piðuw1þ vw2Þ
m0

(a) (b)

Fig. 16.6 a Polar grid with intersection of 8 concentric circles and 16 equispaced rays.
b Pseudopolar grid with 8 concentric squares and equispaced rays in angle
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where n = pseudo angle and l = pseudo radius

Îðw1; w2Þ ¼
XN=2�1

u¼�N=2

XN=2�1

v¼�N=2

Iðu; vÞ e
�2piu �4nl

RNð Þþ v 2N
Rð Þ

m0

¼
XN=2�1

u¼�N=2

XN=2�1

v¼�N=2

Iðu; vÞ e�2pivn
Rnþ 1

0
@

1
A e

�2piul �2n
ðRN þ 1ÞN


 � ð22Þ

The pseudopolar Fourier transform Î on I on X1
R can be obtained by performing

the 1D FFT on I along direction v and then applying a fractional Fourier transform
along direction u.

16.4.2.2 Weighting

Weights are chosen such that the modified PPFT becomes an isometry i.e.

XN=2�1

u;v¼�N=2

Iðu; vÞj j2 ¼
X

ðw1;w2ÞeXR
wðw1;w2Þ � Îðw1;w2Þ�� ��2 ð23Þ

We first choose a set of basis functions w1, …, wn0: XR ! Rþ such that

Xn0
j¼1

wjðw1;w2Þ 6¼ 0 for all ðw1; w2ÞeXR ð24Þ

We then represent the weight functions w: XR ! Rþ by

w :¼
Xn0
j¼1

cjwj with c1; c2; . . . cn0 being non-negative constants ð25Þ

Let J :¼ Î : XR ! C be the pseudopolar Fourier transform of N × N image I and
w: XR ! Rþ be any suitable weight function on XR the values

Jwðw1;w2Þ ¼ Jðw1;w2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðw1;w2Þ

p
for all ðw1;w2Þ e XR is to be computed:

ð26Þ

Square root of weight is taken so that the image can be reconstructed from its
weighted pseudopolar Fourier transform by applying the adjoint of the weighted
pseudopolar Fourier transform.
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16.4.2.3 Windowing

The final step of FDST is decomposing the data on the points of the pseudopolar
grid into rectangular subband windows followed by 2D-ifft.

Given Jw, the set of digital shearlet coefficients

cl0n0 :¼ JW ;U
l0
n0

D E
XR for all l0; n0 and

clj;k;m :¼ Jw ; r
l
j;k;m

D E
for all j; k;m; l

ð27Þ

is computed followed by application of 2D-invFFT to each windowed image
Jw Ul0

0 and Jwrlj;k;m respectively (Fig. 16.7).

16.4.3 Introduction to Compactly Supported Shearlets

Shearlets can be regarded as wavelets associated with an anisotropic scale matrix
A2 j , when the shear parameter k is fixed. This observation allows us to apply the
wavelet transform to compute the shearlet coefficients, once the shear operation is
computed for each shear parameter k. This approach is used in the digital formu-
lation of compactly supported shearlet transform.

All constructions of shearlets are bandlimited functions which have unbounded
support in space domain. In order to capture the local features of a given image effi-
ciently, representation elements need to be compactly supported in the space domain.

But there are 2 problems associated with compactly supported shearlets.

1. Compactly supported shearlets don’t form a tight frame which prevents uti-
lization of adjoint as inverse transform.

2. There doesn’t exist a natural hierarchical structure, mainly due to the application
of a shear matrix.
A shearlet frame is defined as:
Let sj ¼ ajðq�1Þ=2
 �

and c 2 Rþ be the sampling constant. For wi
0;w

1
1; . . .;w

L
1 2

L2ðR2Þ and / 2 L2ðR2Þ we define

W0 ¼ wi
jkm : j; k 2 Z;m 2 Z2; i ¼ 1; 2; . . .L

n o

and W ¼ Tcm/ : m 2 Z2
� � [ wi

jkm : j� 0; �sj � k� sj;m 2 Z2; i ¼ 1; 2; . . .L
n o

[
~wi
jkm : j� 0;�sj � k� sj;m 2 Z2; i ¼ 1; 2; . . .L

n o
where wi

jkm ¼ DA�j
0 B�k

0
Tcm wi

0 and

~wi
jkm ¼ DA�j

1 B�k
1
Tcm wi

1 ð28Þ
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Image I

Pseudopolar
image J

Weighted image 
Jw

Shearlet
Coefficients

Cj,k,m

                      PPFT

Weighting

          Windowing and 2D 
IFFT

Image I

Pseudopolar
image J

Weighted image 
Jw

Shearlet
Coefficients

Cj,k,m

Adjoint PPFT or inverse 
using CG

Weighting

          2D FFT and adjoint  
Windowing

(a)

(b)

Fig. 16.7 a Fast discrete
shearlet transform. b Inverse
fast discrete shearlet
transform
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If W or (W0) is a frame for L2ðR2Þ, then we call the function wi
jkm and ~wi

jkm in the

system W or (W0) shearlets.
Properties of Shearlets:

1. Frame property: It leads to a stable reconstruction of a given image [14].
2. Localization: Each of the shearlet frame element needs to be well localized in

both space and frequency domain.
3. Efficient implementation: The discrete implementation needs to be derived

from the construction of shearlets so that it inherits the nice properties from
the corresponding shearlet systems.

4. Sparse approximation: It provides sparse approximation comparable with
bandlimited shearlets.

16.4.3.1 Digital Separable Shearlet Transform (DSST)

Let shearlet coefficients \f ;wj;k;m [ be associated with shearlets wj;k;m belonging

to Wðw; cÞ. Similarly shearlet coefficients associated with shearlets ~wj;k;m 2
~Wð~w; cÞ are computed.

To construct a separable shearlet generator [15] w 2 L2ðR2Þ and an associated
scaling function / 2L2ðR2Þ. Let / 2L2ðR2Þ be a compactly supported 1D scaling
function satisfying

/1ðx1Þ ¼
X
n12Z

hðn1Þ
ffiffiffi
2

p
/1ð2x1 � n1Þ ð29Þ

An associated compactly supported 1D wavelet w1 2 L2ðR2Þ can be defined by:

w1ðx1Þ ¼
X
n12 Z

gðn1Þ
ffiffiffi
2

p
/1ð2x1 � n1Þ ð30Þ

where h and g are filter coefficients which are chosen so that w satisfies certain
decay condition to guarantee a stable reconstruction from the shearlet coefficients.
The selected shearlet generator is then defined to be

wðx1; x2Þ ¼ w1ðx1Þ/1ðx2Þ ð31Þ

and scaling function by

/ðx1; x2Þ ¼ /1ðx1Þ/1ðx2Þ ð32Þ

For the signal f 2 L2ðR2Þ to be analyzed we assume that for J[ 0, f is of the
form
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f ðxÞ ¼
X
n2 Z2

fJðnÞ 2J/ð2Jx1 � n1; 2Jx2 � n2Þ ð33Þ

An assumption for digital implementation is that the scaling coefficients can be
viewed as sample values of f -in fact fJðnÞ ¼ f ð2�JnÞ with appropriately chosen /.
Then for faithful digitization of shearlet coefficients\f ; wj;k;m [ ¼ \f ðS2�j=2kð:ÞÞ;
wj;0;mð:Þ[ and we assume that j=2 is an integer. We can digitize the shearlet coef-
ficients \f ; wj;k;m [ by applying discrete separable wavelet transform associated
with the anisotropic sampling matrix A2 j to the sheared version of the data
f ðS2�j=2kð:ÞÞ. Comparing we see that f ðS2�j=2kð:ÞÞ is contained in the scaling space

Vj ¼ 2J/ ð 2J :� n1; 2J :� n2: ðn1; n2Þ 2 Z2
� �

. If shear parameter 2�j=2k is
non-integer, then shear matrix S2�j=2k doesn’t preserve the regular grid 2�JZ2 in VJ .
So the new scaling space is obtained by refining the regular grid along x1 axis by a
factor of 2j=2.

The steps involved in DSST are:

1. For given input data fJ , apply the 1D up sampling operator by a factor of 2j=2 at
the finest scale j ¼ J.

2. Apply 1D convolution to the upsampled input data fJ with 1D low pass filter hj=2
at the finest scale j ¼ J. This gives ~fJ .

3. Resample ~fJ to obtain ~fJðSkðnÞ according to the shear sampling matrix Sk at the
finest scale j ¼ J.

4. Apply 1D convolution to ~fJðSkðnÞ with ~hj=2 followed by 1D down sampling by a

factor of 2j=2 at the finest scale j ¼ J.
5. Apply the separable wavelet transform WJ�1; J�j=2 across scales

j ¼ 0; 1; . . .; s� 1.

Features of DSST:

1. Digital Realization of Directionality: Rotation and shearing provides direc-
tionality. Rotation is a convenient tool to provide directionality that it preserves
important geometric information such as lengths, angles and parallelism. But it
doesn’t preserve the integer lattice which causes severe problems of digitization.
In contrast shear matrix Sk does not only provide directionality but also pre-
serves the integer lattice when shear parameter k is an integer. Thus direction-
ality can be discretized by using a shear matrix Sk.

2. Redundancy: To quantify redundancy of DST, we assume that the input data f is
a linear combination of translates of a 2D scaling function / at scale J as follows:

f ðxÞ ¼
X2 j�1

n1¼0

X2J�1

n2¼0

dn/ð2Jx� nÞ ð34Þ

Redundancy is the number of shearlet elements necessary to represent f .
Redundancy of DSST is ð4=3Þð1=c1c2Þ
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3. Computational Complexity: Computational Complexity of DSST is
Oð2log2ð1=2ðL=2�1ÞÞL � NÞ

16.4.3.2 Digital Non-separable Shearlet Transform (DNST)

The following drawbacks of DSST led to the introduction of Digital non-Separable
shearlet transform:

(1) DSST is not time variant so another approach is needed to incorporate time
variance.

(2) Since DSST is not based on tight frame, so it is difficult to approximate the
inverse of shearlet transform.

(3) Computation of interpolated sampling values is also a problem.

We define shearlets generated by non-separable generator functions Wnon
j for

each scale index j� 0 by setting:

wnon
j;k;mðxÞ ¼ 23=4jwnonðScA2 j x�McjmÞ where Mcj is a sampling matrix ð35Þ

Mcj ¼ diagðc j1; c j2Þ where c j1 and c j2 are sampling constants for translation.
The non-separable shearlet generator wnon

j;k;m have high directional selectivity in
frequency domain has compared to separable shearlet wj;k;m. The details of DNST
and its inverse can be found in [16].

16.5 Fast Finite Shearlet Transform

Discrete shearlet transform can be computed efficiently using Fast fourier transform
(FFT) which gives rise to FFST. To compute FFST, we discretize the involved
parameters a, s and t, but also consider only a finite number of discrete translations
t.

16.5.1 Finite Discrete Shearlets

Let j0 ¼ 1=2 log2 Nb c be the number of considered scales. To obtain a discrete
shearlet transform, we discretize the scaling, shear and translation parameters as
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aj ¼ 2�2j ¼ 1
4 j

; j ¼ 0; . . .; j0 � 1;

sj;k ¼ k2�j;�2 j � k� 2 j;

tm ¼ m1

M
;
m2

N


 �
;m 2 I

ð36Þ

With these parameters, shearlets can be written as:

wj;k;mðxÞ ¼ waj; sj; k ; tmðxÞ ¼ wðA�1
aj S

�1
sj;k ðx� tmÞÞ ð37Þ

To obtain complete shearlets at the seam lines, we combine the three parts
together, thus we define for kj j ¼ 2 j, a sum of shearlets

ŵh	v
j;k;m :¼ ŵh

j;k;m þ ŵv
j;k;m þ ŵX

j;k;m ð38Þ

The discrete shearlet transform can be defined as:

SHðf Þðj; j; k;mÞ :¼
f ;/mh i for j ¼ 0;

f ; ŵj
j;k;m

D E
for j ¼ fh; vg;

f ; ŵh	v
j;k;m

D E
for j ¼ 	; kj j ¼ 2 j

where

j ¼ 0; . . .; j0 � 1; �2 j þ 1� k� 2 j � 1 andm 2 I ð39Þ

The shearlet transform can be efficiently realized by applying fft2 and inverse
fft2 which compute the discrete Fourier transforms.

The complete shearlet transform is derived in [17] and is given by:

SHðf Þðj; j; k;mÞ ¼
ifft 2ðûðx1;x2Þf̂ ðx1;x2ÞÞ for j ¼ 0
ifft 2ðŵð4�jx1; 4�jkx1þ 2�jx2Þf̂ ðx1;x2ÞÞ for j ¼ h; kj j � 2 j � 1
ifft 2ðŵð4�jx2; 4�jkx2þ 2�jx1Þf̂ ðx1;x2ÞÞ for j ¼ v; kj j � 2 j � 1
ifft 2ðŵh	vð4�jx1; 4�jkx1þ 2�jx2Þf̂ ðx1;x2ÞÞ for j 6¼ 0; kj j � 2 j

ð40Þ

The software implementation of FFST is available at:
http://www.mathematik.uni-kl.de/*haeuser/FFST/
The MRI image of lungs is taken and the obtained shearlet coefficients along

with shearlet representation and reconstructed image using FFST software in
MATLAB is shown below (Fig. 16.8).

16 Emergence of Shearlets and Its Applications 275

http://www.mathematik.uni-kl.de/%7ehaeuser/FFST/


16.6 Applications of Shearlets

16.6.1 Shearlets for Biomedical Images

Shearlets are widely used in biomedical applications because of its geometric
properties. The Shearlet transform of biomedical images of MRI (Brain) and X-ray
(Breast) obtained in MATLAB are shown (Figs. 16.9 and 16.10).

16.6.2 Shearlets for Image Processing

Image Denoising is a process of recovering the original image from the image
corrupted with various types of noise such as Gaussian, Speckle, Salt and Pepper,
impulse etc. Shearlets can be used effectively for image denoising by using various
shrinkage rules. The main steps of image denoising are:

1. Compute shearlet transform of the noisy image.
2. Apply hard/soft threshold to the obtained shearlet coefficients.
3. The thresholded shearlet coefficients are subjected to reconstruction to recover

the original image.

original image shearlet coefficients

shearlet reconstructed image

(a) (b)

(c) (d)

Fig. 16.8 a MRI lungs original image. b Shearlet coefficients of the image. c Shearlet
representation of the image. d Reconstructed image after applying FFST
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Various quantitative measures such as PSNR, MSE, SSIM index, ISNR, BSNR
are used to determine the quality of the image.

Image Enhancement It is particularly used in medical imaging, where it is of
prime interest to explore certain regions which include the essential features for
medical diagnostic. Example enhancement of mammography images to improve the
visibility of tumours for early detection. Shearlet transform is effectively used for
enhancement because of its geometric features, the magnitude of the obtained
shearlet coefficients enhance the necessary features for medical diagnosis. This is
done by amplifying the weak edges while keeping the strong edges intact.

Image Separation is the process of decomposing a signal into its morphologically
different components. Morphological Component Analysis (MCA) [18] has been
recently proposed and the basic idea of this approach is to choose two frames Φ1
and Φ2 adapted to the two components to be separated in such a way that the two
frames provide a sparse representation for each of the components. Searching for
the sparsest representation of the signal in the combined dictionary [Φ1|Φ2] would
provide desired separation. For example: in neurobiological imaging, it would be
desirable to separate ‘spines’ (point like objects) from ‘dendrites’ (curve like
objects) in order to analyze them independently aiming to detect characteristics of

Fig. 16.9 a MRI brain
image. b Shearlet transform of
the image

Fig. 16.10 a X-ray breast
image. b Shearlet transform of
the image
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Alzheimer disease. Also, in astronomical imaging, astronomers would often like to
separate stars from filaments for further analysis, hence again separating point-from
curve like structures.
Wavelets along with curvelets separate point and curve like objects from the single
image. But some part of the curve is missed and appears in the pointlike part. In
contrast to this, compactly supported shearlets offer much better spatial localization
than band-limited curvelets, which positively affects the capturing of localized
features of the curve so Wavelets along with shearlets can be used efficiently for
image separation as explained in [19].

Image Inpainting refers to the filling-in of missing data in digital images based on
the information available in the observed region. Mathematically speaking,
inpainting is essentially an interpolation problem, and thus directly overlaps with
many other important tasks in computer vision and image processing, including
image replacement, disocclusion, zooming etc. Inpainting in wavelet domain or
using a sparse representation is a completely different problem since there are no
well defined inpainting regions in the pixel domain.

Edge Detection shearlets play an important role in finding edges. The difficulty of
Edge detection is particularly prominent in the presence of noise and when several
edges are close together or cross each other. Wavelet suffers from the drawback of
the inability to distinguish close edges and has poor angular accuracy. Wavelets
have a limited capability in dealing with directional information. In order to
overcome these difficulties, one has to account for the anisotropic nature of edge
lines and curves. Shearlets is particularly designed to deal with directional and
anisotropic features typically present in natural images, and has the ability to
accurately and efficiently capture the geometric information of edges. As a result,
the shearlets framework provides highly competitive algorithms, for detecting both
the location and orientation of edges [20] and for extracting and classifying basic
edge features such as corners and junctions. Shearlet transform provides improved
accuracy in the detection of edge orientation by using anisotropic dilations and
multiple orientations. Various edge detection methods like Prewitt’s, Canny’s,
Sobel are used, amongst all these Shearlet give an accurate estimate of the edges.
Various quantitative measures are Prewitt’s figure of merit etc. can be used to judge
how effectively an edge is detected. Higher the value of Figure of merit, greater is
the probability of detection of edge.

16.6.3 Shearlets for Biometric Applications

Face recognition [21] is popular nowadays because of its applications in areas like
biometric security, image search engines. Each face image is described by a subset
of band filtered images containing shearlet coefficients and form compact and
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meaningful feature vectors using statistical measures. A face recognition system
consists of two main stages-training stage and Classification stage. In training stage
each facial image is decomposed along horizontal and vertical directions to extract
facial features by using shearlet transform. Since process is repeated for all images
in the training database and a feature matrix is constructed from these shearlet
coefficients. In testing phase some steps are repeated to obtain shearlet coefficients.
This feature matrix is then used in classification stage to classify the unknown test
face image. A no. of feature evaluation measures can be used such as probabilistic
distance measures-Euclidean distance, Bhattacharya distance etc.

Various facial databases such as Yale, ORL, Pie can be used for training. The
directional information of the Shearlets makes it useful for design of face recog-
nition systems. The features of shearlets make it successful for face recognition.

16.6.4 Shearlets for Inverse Problems

Inverse problem is one in which given the effect, one wants to recover the cause.
Let X and Y be spaces having app structure, say a Banach space or a Hilbert space.

Direct problem: Given x 2 X and A : X ! Y . Find AX such that Y ¼ AX
Inverse problem: Given an observed output Y, find an input X that produces it.

x 2 X ) Y ¼ AX 2 Y .
For example: In medical X-ray tomography, direct problem would be to find out

what kind of X-ray projection images would we get from a patient whose internal
organs we know precisely. The corresponding inverse problem will be to recon-
struct the 3D structure of the patient’s insides given a collection of X-ray images
taken from different directions. Here the patient is the cause and the collection of
X-ray images is the effect.

Shearlet transform is used for Radon transform inversion as described in [22].
The Radon transform is the mathematical framework for Computerized tomography
used in medical diagnosis.

Another example of inverse problem is image deblurring in which direct prob-
lem is finding out how a given sharp photograph would look if blurring is intro-
duced by camera motion or by noise introduced by the electronics of the system.
The inverse problem will be deblurring i.e. finding the sharp photograph which is
done by deconvolution and is known to be an ill posed inverse problem. To reg-
ularize the ill posed problem, the sparse representation properties of Shearlets can
be utilized. ISNR and BSNR are used to measure the effectiveness of the deblurred
image using Shearlets.

16.7 Proposed Work

1. Acquire medical images of MRI scan and CT scan in DICOM (Digital Imaging
in Communication and Medicine) format i.e. .dcm files in MATLAB.
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2. Add Gaussian noise to the acquired images with different values of standard
deviation with an interval of 5 viz r ¼ 5, 10, 15, 20, 25 and 30

3. Compute the value of shear parameter using shearing filters with Meyer based
window function

y ¼ 35 x4 � 84 x5 þ 70 x6 � 20 x7

4. Compute the norm of Shearlets for each scale and direction with inputs as
laplacian pyramid filter [23], cell array of directional shearing filters and size of
the input image.

5. Compute translation invariant shearlet transform [24] with inputs as input
image, Filter for non-subsampled LP and cell array of directional shearing fil-
ters. A-trous decomposition decomposes the input image into sub-bands of
scales j = 1, 2, 3, … level. Then apply directional Shearing filters to decompose
images y jf g for each y jf g scale j.

6. The obtained shearlet coefficients are thresholded using hard thresholding rule.
For each shearlet coefficient d{j}(n1, n2, k),

(1) set d{j}(n1, n2, k) = 0 if |d{j}(n1, n2, k)|/E(j, k) < sc(j)*lambda
(2) keep d{j}(n1,n2,k) if |d{j}(n1, n2, k)|/E(j, k)> = sc(j)*lambda
Here, E(j, k) is l^2 norm of shearlet for each scale j and shear parameter k. Then
inverse shearlet transform is applied on the thresholded shearlet coefficients with
shear parameter and Laplacian pyramid filter for non-subsampled LP. Apply
directional Shearlet filters to decomposed images for each scale j followed by
atrous recomposition using the same filter used for decomposition to reconstruct
the denoised image.

7. The denoised/reconstructed image is compared with the original image and
various quantitative measures such as PSNR, MSE are used to find the effec-
tiveness of the denoised image.

16.8 Implementation Steps

1. Acquire MRI (Brain) image and add Gaussian noise with r ¼ 10 (Fig. 16.11).
2. Compute shearing filter using Meyer based window function and compute the

norm of Shearlets for each scale j and shear parameter k.
3. Compute translation invariant shearlet transform of the dicom image where d is

the cell array of the shearlet coefficients.
With N by N input image and shearing filters ‘shear’ obtained as above, we have
d{0}: low frequency part N by N
d{1}: 2^(n(1)) + 2 arrays (N by N) of the shearlet coefficients for shear
parameters
k = −2^(n(1) − 1)…2^(n(1) – 1) and scale j = 1 (coarse scale).
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d{L} : 2^(n(L)) + 2 arrays (N by N) of the shearlet coefficients for shear
parameters
k = −2^(n(L) − 1)…2^(n(L) − 1) and scale j = L (fine scale).
Here, each entry of d is given by d{j}(n1, n2, k) → j: scale, k: shear parameter,
and n1&n2: translation (Fig. 16.12).

Fig. 16.11 a MRI (brain) image. b MRI (brain) noisy image

Fig. 16.12 a Approximation image. b One of the detailed images

Input image Noisy image Reconstructed image

Fig. 16.13 Original MRI brain image followed by noisy image and reconstructed image using
shearlets obtained in MATLAB
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4. Hard thresholding is done on the obtained shearlet coefficients. Most of the
shearlet coefficients are set to zero.

5. Then inverse shearlet transform is applied on the thresholded shearlet coeffi-
cients with shear parameter and laplacian pyramid filter for non-subsampled LP
(Fig. 16.13).

16.9 Results

Different images of MRI Brain and CT brain are taken with added Gaussian noise
for different values of standard deviation. Peak Signal to noise ratio and Mean
Square error are used to measure the effectiveness of the denoised image
(Table 16.1, Fig. 16.14).

Fig. 16.14 a Comparative graph for MRI brain image for different values of standard deviation.
b Comparative graph for CT brain image for different values of standard deviation

Table 16.1 Noisy PSNR,
PSNR and MSE for MRI
brain and CT brain images for
different values of standard
deviation

MRI brain image Gaussian noise

SIGMA NOISY PSNR PSNR MSE

10 28.11 34.82 21.45

15 24.61 32.98 32.71

20 22.10 31.72 43.75

25 20.21 30.69 55.51

30 18.61 29.82 91.11

CT brain image Gaussian noise

SIGMA NOISY PSNR PSNR MSE

10 28.15 34.56 22.77

15 24.64 32.23 38.93

20 22.13 30.53 57.50

25 20.16 29.37 75.24

30 18.55 28.35 95.15
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16.10 Conclusion

The aim of this review paper is to introduce shearlets, which go beyond the limi-
tations of wavelets, curvelets etc. The applications of shearlets in image processing,
biometric applications and inverse problem are introduced. Image denoising is done
using discrete shearlet transform as explained in the proposed algorithm. From the
obtained results it is found that with high value of sigma, improvement in PSNR
from the noisy PSNR is considerably large. For sigma = 30, improvement in PSNR
of original and reconstructed image with the PSNR of original and noisy image is of
the order of 10 db. As the value of sigma decreases, improvement in PSNR is of the
order of 5–8 db. MRI brain image and CT brain images are tested for denoising
with added gaussian noise. Both images are effectively denoised, but MRI image
performs slightly superior to the CT scan image. Wavelets denoising results in
improvement of near about 2 db, Curvelets and contourlets give an improvement
better than wavelets, but less than shearlets. Shearlets outperforms all the existing
techniques in literature.

Acknowledgments I would like to thank the authors of ShearLab, and Wavelet Toolbox for
making their codes available.
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Chapter 17
Application of Wavelets in Numerical
Evaluation of Hankel Transform Arising
in Seismology

Nagma Irfan and A.H. Siddiqi

Abstract The computation of electromagnetic (EM) fields for 1-D layered earth
model requires evaluation of Hankel transform. In this paper we propose a stable
algorithm for the first time that is quite accurate and fast for numerical evaluation of
the Hankel transform using wavelets arising in seismology. We have projected an
approach depending on separating the integrand tf(t)Jν(pt) into two components; the
slowly varying components tf(t) and the rapidly oscillating component Jν (pt). Then
either tf(t) is expanded into wavelet series using wavelets orthonormal basis and
truncating the series at an optimal level or approximating tf(t) by a quadratic over
the subinterval using the Filon quadrature philosophy. The solutions obtained by
proposed wavelet method applied on three test functions indicate that the approach
is easy to implement and computationally very attractive. We have supported a new
efficient and stable technique based on compactly supported orthonormal wavelet
bases.

Keywords Hankel transform wavelets � Bessel functions � Fourier Bessel series �
Seismology

Mathematics Subject Classifications 44A15 65R10 65T60

17.1 Introduction

Electromagnetic (EM) depth sounding is, under favorable conditions, extremely
useful in petroleum exploration, groundwater exploration, permafrost thickness
determination exploration of geothermal resources, and foundation engineering
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problems. However, for data interpretation one needs fast and efficient computa-
tions of geoelectromagnetic anomaly equations. These equations appear as Hankel
Transform (HT) (also known as Bessel Transform).

17.1.1 Hankel Transform

The efficient and accurate evaluation of the Hankel transform is required in a
number of applications. This paper reviews a number of algorithms that have only
recently been exposed in the literature. It is found that the performance of all
algorithms depends on the type of function to be transformed. The wavelet based
methods provide acceptable accuracy with better efficiency than numerical
quadrature.

17.1.2 Mathematical Background

The general Hankel transform pair with the kernel being Jν is defined as [1]

FmðpÞ ¼
Z1
0

tf ðtÞJmðptÞdt; ð17:1Þ

and Hankel transform being self reciprocal, its inverse is given by

f ðtÞ ¼
Z1
0

pFmðpÞJmðptÞdp; ð17:2Þ

where Jm is the νth-order Bessel function of first kind. Due to oscillatory behaviour
of Jν(pt), standard quadrature methods applied to these integrals can be slow to
convergence or may fail if the integral is divergent. It is only recently, mainly in the
last 20 years, that attention has been turned to discovering algorithms useful for
numerical evaluation of the Hankel transform. In this time a variety of algorithms of
various strengths, weakness, and applicability’s have been reported. As sometimes
happens, the relevant literature is distributed through a number of journals, some of
it in apparent ignorance of other research.

We believe it is now timely to bring this literature together, giving a review of
the main methods available and providing pointers to some of the less efficient, but
nevertheless elegant, methods.
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17.1.3 Historical Background of Numerical Transforms
Techniques

The literature concerning numerical Hankel transform techniques is very sparse
from Longman until the late seventies when a flurry of papers were published on
the topic. The various algorithms that have been published during and since the
seventies can be filled into a few general categories. They are:

(1) Numerical quadrature
(2) Logarithmic change of variables
(3) Asymptotic expansion of the Bessel function
(4) Projection-slice/back projection method

Numerical evaluation of Hankel transforms is ubiquitous in the mathematical
treatment of physical problems involving cylindrical symmetry, optics, electro-
magnetism and seismology. Many different types of algorithms and software have
been developed to evaluate numerically hankel transform integrals in Geophysics
[2, 3]. The ubiquity of these integrals in EM geophysics motivates the need for
accurate and efficient numerical integral techniques.

17.1.4 Motivation of Present Work

(A) The Hankel transform arises naturally in the discussion of problems posed in
cylindrical coordinates (with axial symmetry) and hence, as a result of sepa-
ration of variables involving Bessel functions.

(B) Analytical evaluations are rare and hence numerical methods become
important. The usual classical methods like Trapezoidal rule, cotes rule etc.
connected with replacing the integrand by sequence of polynomials have high
accuracy if integrand is smooth. But tf(t) Jν(pt) and pFν(p) Jν(pt) are rapidly
oscillating functions for large t and p, respectively.

To overcome these difficulties, various different techniques are available in the
literature.

(1) Fast Hankel Transform Here, by substitution and scaling, the problem is
transformed in the space of the logarithmic co-ordinates and the fast Fourier
transform in that space.

(2) Filon quadrature philosophy In Filon quadrature philosophy, the integrand is
separated into the product of an (assumed) slowly varying component and a
rapidly oscillating component. In the context of the Hankel transform, the
former is tf(t) and the latter is Jν(pt). This method works quite well for
computing F0(p), for p ≥ 1, but the calculation of inverse Hankel transform is
more difficult, as F0(p) is no longer a smooth function but a rapidly oscillating
one. Moreover the error is appreciable between 0 < p < 1.
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Several papers have been written to the numerical evaluation of the HT in
general and the zeroth-order in particular [4–12]. There are two general methods of
the effective calculation in this area. The first is the fast Hankel transform [13, 14].
The specification of that method is transforming the function to the logarithmical
space and fast Fourier transform in that space. This method needs a smoothing of
the function in log space. The second method is based on the separation of the
integrand into product of slowly varying component and a rapidly oscillating Bessel
function [15]. But it needs the smoothness of the slow component for its approx-
imation by lower-order polynomials.

17.2 Preliminaries

17.2.1 Wavelets

Wavelets are a class of function constructed from dilation and translation of a single
function called the mother wavelet. When the dilation and translation parameters
a and b vary continuously, the following family of continuous wavelets are
obtained

wa;bðtÞ ¼ aj j�1
2

t � b
a

� �
; a; b 2 R; a 6¼ 0:

When the parameters a and b are restricted to discreet values as a ¼ 2�k;

b ¼ n2�k ,
Then, we have the following family of discrete wavelets

wknðtÞ ¼ 2
k
2w 2kt � n
� �

; k; n 2 Z;

where the function w, the mother wavelet, satisfies
R

RwðtÞdt ¼ 0:
We are interested in the case where wkn constitutes and orthonormal basis of

L2(R). A systematic way to do this is by means of multiresolution analysis (MRA).
In 1910, Haar [16] constructed the first orthonormal basis of compactly sup-

ported wavelets for L2(R). It has the form f2 j
2wð2 jt � kÞ : j; k 2 Zg where the

fundamental wavelet w is constructed as follows:
Construct a compactly supported scaling function ϕ by the two-scale scaling

relation /ðtÞ ¼ /ð2tÞþ/ð2t � 1Þ together with the normalization constraintR
uðtÞdt ¼ 1. A solution of this recursion that represents φ in L2(R) is v½0; 1Þ.
Then wðtÞ ¼ uð2tÞ � uð2t � 1Þ. The Haar wavelets are piecewise continuous

and have discontinuities at certain dyadic rational numbers.
In seminal papers; Daubechies [17, 18], constructed the first orthonormal basis

of continuous compactly supported wavelets for L2(R). They have led to a sig-
nificant literature and development, both in theoretical and applied arenas.
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Later in 1989, Mallat [19] studied the properties of multiresolution approxi-
mation and proved that it is characterized by a 2π-periodic function. From any
MRA, one can derive a function w(t) called a wavelet such that

2
j
2w 2 jt � kð Þ : j; k 2 Z

n o
is an orthonormal basis of L2(R). The MRA showed the

full computational power that this new basis for L2(R) possessed. In the same year,
Mallat [20] applied MRA for analysing the information content of the images.

Note that a system uk : k 2 Zf g is called a Riesz basis if it is obtained from an
orthonormal basis by means of a bounded invertible operator.

Definition The increasing sequence Vkf gk2Z of closed subspaces of L2(R) with
scaling function u 2 V0 is called MRA if

(i)
S

k Vk is dense in L2(R) and
T

k Vk ¼ 0f g,
(ii) f ðtÞ 2 Vk iff f ð2�ktÞ 2 V0,
(iii) u t � nð Þf gn2Z is a Riesz basis for V0.

Note that (iii) implies that the sequence {2k/2φ(2kt − n)}n∊Z is an orthonormal
basis for Vk. Let w(t) be the mother wavelet, then wðtÞ ¼ P

n2Z
anu 2t � nð Þ and

2k=2w 2kt � n
� �� �

k;n2Z forms an orthonormal basis for L2(R) under suitable con-

ditions [21–24].
CAS Wavelets wnmðtÞ ¼ wðk; n;m; tÞ involve four arguments n, k, m and t,

where n ¼ 0; 1; . . .; 2k � 1; k is assumed any nonnegative integer, m is any integer
and t is normalized time. CAS wavelets are defined as [25]

wnmðtÞ ¼ 2
1
2CASmð2kt � nÞ; for n

2 � t \ nþ 1
2k ;

0; otherwise;

�
ð17:3Þ

where

CASmðtÞ ¼ cosð2mptÞ þ sinð2mptÞ: ð17:4Þ

It is clear that the set of CAS wavelets also forms and orthonormal basis for
L2([0, 1]).

17.3 Function Approximation

The function f(t) representing physical fields are either zero or have an infinitely
long decaying tail outside a disk of finite radius R. Hence, in most practical
applications either the signal f(t) has a compact support or for a given ɛ > 0 there
exists a R > 0 such that

R1
R tf ðtÞJmðptÞ dt

		 		\e:
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Therefore, in either case,

F̂mðpÞ ¼
ZR
0

tf ðtÞ JmðptÞ dt

¼
Z1

0

tf ðtÞ JmðptÞ dt; ðby scalingÞ ð17:5Þ

known as the finite Hankel transform (FHT) is a good approximation of the HT as
given by (17.1). Writing tf(t) = g(t) in Eq. (17.5), we get

F̂mðpÞ ¼
Z1

0

gðtÞJmðptÞdt: ð17:6Þ

We may expand g(t) as follows

gðtÞ ¼
X1
m¼0

X2k�1

n¼0

cnmwnmðtÞ; ð17:7Þ

where cnm ¼ gðtÞ; wnm tð Þh i.
with (.,.) denoting the inner product.
By truncating the infinite series (17.7) at levels m = 2L and n ¼ 2k � 1, we

obtain an approximate representation for g(t) as

gðtÞ �
X2L
m¼0

X2k�1

n¼0

cnmwnmðtÞ ¼ CTwðtÞ; ð17:8Þ

where the matrices C and w(t) are 2kð2Lþ 1Þ � 1 matrices given by

C ¼ ½c0;0; c0;1; ; . . .; c0;2L�1; c10; . . .; c1;2L; . . .; c2k�1;0; . . .; c2k�1;2L�T ð17:9Þ

and

wðtÞ ¼ ½w0;0ðtÞ;w0;1ðtÞ; . . .;w0;2LðtÞ;w1;0ðtÞ; . . .;w1;2LðtÞ;w2k�1;0ðtÞ; . . .;w2k�1;2LðtÞ�T :
ð17:10Þ

Substituting (17.8) in (17.6), we get

F̂mðpÞ � CT
Z1

0

wðrÞJmðprÞdr: ð17:11Þ
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Now (17.11) reduces to

F
_

mðpÞ � CT

R1
0
w0;0ðrÞJmðprÞdr;

R1
0
w0;1ðrÞJmðprÞdr;

R1
0
w0;2ðrÞJmðprÞdr; . . .;

R1
0
w1:0ðrÞJmðprÞdr; . . .;

R1
0
w1;4ðrÞJmðprÞdr

2
6664

3
7775
T

ð17:12Þ

where w0;0;w0;1. . .. . .. . .w1;4 are defined through Eq. (17.3). We re-label and write
(17.12) as

F
_

mðpÞ � ½c0;0; c0;1; . . .; c1;4�½I0n ; I1n ; . . .; I10n �T; ð17:13Þ

where Iν
l ’s are the lth place integral in Eq. (17.12).

The integrals arising in Eq. (17.12) are evaluated by using the following for-
mulae [26].

Za

0

JmðtÞdt ¼ 2 lim
N!1

XN
z¼0

Jmþ 2zþ 1ðaÞ;Rem[�1 ð17:14Þ

and is calculated with the help of Simpson’s one third rule, Simpson’s three eight
rule.

17.4 Numerical Implementation

Since it is always desirable to test the behaviour of a numerical scheme using
simulated data, for which the exact results are known and thus making a comparison
between the chosen well known test functions which are widely used by researchers
in the area to validate the reliability of proposed method. Here we consider three
examples for the numerical solutions on the prescribed method, in order to check the
accuracy of our scheme. The simplicity and accuracy of sine-cosine wavelet method
is illustrated by computing the absolute error graphically.

EF̂mðpÞ ¼ FmðpÞ � F̂mðpÞ

In this section, we test the proposed algorithm (17.13) by evaluating the approx-
imate Hankel transforms of 2 well known test function with known analytical Hankel
transforms. Note that in all the examples the truncation is done at level m = 2L and
L = 2, we observed that the accuracy of the method is very high even at such a low
level of truncation. Note that the various graphs in the examples are plotted and
sample points are chosen as p = 0.01(0.01)N, where N = 60 in all the figures.
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Example 1 Let f ðrÞ ¼ rm sinðpr24 Þ; 0� r\1; then

FmðpÞ ¼ 1ffiffiffi
2

p p
2

� ��m�1
pm Umþ 1

p
2
; p

� �
� Umþ 2

p
2
; p

� �h i

(obtained from (p. 34, (16), [26] by putting a ¼ p
4 ; b ¼ 1),

where Umðw; pÞ is a Lommel’s function of two variables,

¼ 1ffiffiffi
2

p
p

XL
g¼0

ð�1Þg p
2p

� �2 g

Jmþ 2g þ 1ðpÞ � p
2p

Jmþ 2gþ 2ðpÞ
� �" #" #

as L ! 1

ð17:15Þ

The comparison of the approximation Hν(p) (dotted line) with the exact Hankel
transform Fν(p) (solid line) is shown in Figs. 17.1 and 17.3 and the error EðpÞ ¼
HmðpÞ � FmðpÞ in Figs. 17.2 and 17.4.

Simpson’s one third rule
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Fig. 17.2 Comparison of the errors
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Fig. 17.1 The exact transform, Fν(p) (solid line) and the approximate transform,
Hν(p) (dotted-line) where ν = 0
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Simpson’s three eight rule

Example 2 In this example, we choose as a test function the generalized version of
the top-hat function, given as

f ðrÞ ¼ rm ½HðrÞ � Hðr � aÞ�; a[ 0 and H(r) is the step function given by

HðrÞ ¼ 1; r� 0
0; r\0

�
:

Then,

FmðpÞ ¼ Jmþ 1ðpÞ
p

: ð17:16Þ

Guizar-Sicairos [27], took a = 1 and ν = 4 for numerical calculations. We take
a = 1, ν = 0, and observe that the error is quite small as shown in Fig. 17.5 and 17.7.
The comparison of the approximate with exact transform is shown in Figs. 17.6 and
17.8.
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Fig. 17.3 The exact transform, Fν(p) (solid line) and the approximate transform,
Hν(p) (dotted-line) where ν = 0
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Simpson’s one third rule

Simpson’s three eight rule
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Fig. 17.5 The exact transform, Fν(p) (solid line) and the approximate transform,
Hν(p) (dotted-line)
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Fig. 17.7 The exact transform, Fv(p) (solid line) and the approximate transform, Hv
(p) (dotted-line)
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Example 3 Let f ðrÞ ¼ ð1� r2Þ1=2, 0 ≤ r ≤ 1, then,

F1ðpÞ ¼ p
J21 ðp=2Þ

2p ; 0\p\1
0; p ¼ 0

�
: ð17:17Þ

Barakat et al., evaluated F1(p) numerically using Filon quadrature philosophy
but again the associated error is appreciable for p < 1; whereas our method give
almost zero error in that range. The comparison of the approximation F(p) (dotted
line) with the exact Hankel transform F1(p) (solid line) is shown in Figs. 17.9 and
17.11 and the error E(p) = F(p) − F1(p) in Figs. 17.10 and 17.12.

Simpson’s one third rule
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Fig. 17.9 The exact transform, F1(p) (solid line) and the approximate transform, F
(p) (dotted-line)
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Simpson’s three eight rule
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Fig. 17.11 The exact transform, F1(p) (solid line) and the approximate transform, F
(p) (dotted-line)
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17.5 Summary and Conclusion

Since the basis functions used to construct the wavelets are orthogonal and have
compact support, it makes them more useful and simple in actual computations.
Also, since the numbers of mother wavelet’s components are restricted to one, so
they do not lead to the growth of complexity of calculations.

Wavelet method is very simple and attractive [27]. The implementation of
current approach in analogy to existed methods is more convenient and the accu-
racy is high. The numerical example and the compared results support our claim.
The difference between the exact and approximate solutions for each example
plotted graphically to determine the accuracy of numerical solutions.

17.5.1 Future Work

Since computational work is fully supportive of compatibility of proposed algo-
rithm and hence the same may be extended to other physical problems also. A very
high level of accuracy explicitly reflects the reliability of this scheme for such
problems. We would like to stress that the approximate solution includes not only
time information but also frequency information due to the localization property of
wavelet basis; with some change we can apply this method with the help of other
wavelet basis.
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