
Chapter 5
Improving Learning Style Identification
by Considering Different Weights
of Behavior Patterns Using Particle Swarm
Optimization

Jason Bernard, Ting-Wen Chang, Elvira Popescu and Sabine Graf

Abstract Matching the course content to students’ learning style has been shown
to benefit students by improving their learning outcome, increasing satisfaction, and
reducing the time needed to learn. Consequently, an accurate method for identifying
these learning styles is of a high importance. Up to the present, there have been
proposed several such methods that use students’ behavior in online courses to
automatically identify their learning style. However, the precision of existing
approaches peaks at approximately 80 %, thus leaving room for improvement. This
paper introduces a novel approach, which combines the advantages of
artificial/computational intelligence and rule-based techniques. More specifically, a
rule-based method is extended to consider the different weights of behavior patterns
using a particle swarm optimization algorithm. The approach has been evaluated
with 75 students, and results show improved performance over similar
state-of-the-art methods. By identifying learning styles with higher precision, stu-
dents can benefit from adaptive courses that are tailored more precisely to their
actual learning styles and teacher can benefit by being able to provide students with
more helpful interventions.
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5.1 Introduction

Adapting the educational experience to students’ preferences and needs is an
important objective of current technology-enhanced learning systems. Learning
style is one of the individual characteristics which need to be taken into account, as
it encompasses the strategies and preferences used by a student to approach the
learning process [1]. While there have been some controversy and open questions
around this concept [2], numerous studies have shown that matching the course
content to students’ learning styles leads to benefits such as better performance,
higher learning satisfaction and a reduction in the time needed to learn [3–5].

For example, Popescu [3] found that students’ perceived learning satisfaction
was higher in case they followed a course which matched their learning styles (as
compared to a course that did not match their learning styles). In another study,
Ford and Chen [4] obtained an absolute gain in quiz scores by matching learning
materials to students’ learning styles. Furthermore, Graf et al. [5] reported a
decrease in the study time for active and sequential learners, when provided with a
course that matched their learning styles.

In this context, in the current paper we focus on the identification of learning
styles, as the first step toward providing the required adaptation. Among the many
learning style models proposed in the literature, we selected the Felder-Silverman
model (FSLSM) [1], due to several reasons. FSLSM uses four learning style
dimensions: active/reflective (A/R), sensing/intuitive (S/I), visual/verbal (V/V), and
sequential/global (S/G), with the assumption that each learner has a preference on
each of the four dimensions. By using dimensions rather than types (as done in
many other learning style models), students’ preferences can be described more
accurately and in more detail. Additionally, FSLSM treats learning styles as ten-
dencies, rather than immovable characteristics. Another advantage of this model is
the existence of a reliable measuring instrument, called Index of Learning Styles
Questionnaire (ILS) [6]. As a result of the questionnaire, the learning style of the
student is described on a scale between −11 and +11 (with steps of ±2) for each
FSLSM dimension; hence, the strength of the preference is determined as well. For
all these reasons, FSLSM seems to be one of the most often used learning style
models in technology-enhanced learning and some researchers have argued that this
model is one of the best or even the best model to use in adaptive systems [7, 8].

While the ILS questionnaire has been found to be a reliable and valid instrument
to identify learning styles [9], there are some significant drawbacks of using
questionnaires in general. For example, filling in the questionnaire requires a
supplementary amount of work from the part of the students and it may be difficult
to motivate them to answer it carefully, without skipping questions or giving wrong
answers on purpose. Besides being intrusive, the student’s mood or perceived
importance of the questionnaire may influence the outcome. Finally, since the same
questionnaire cannot be repeatedly applied, the student model is created only once
at the beginning of the course, without the possibility to be updated later on [10].
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In order to avoid these drawbacks, research has been conducted on automatically
identifying students’ learning styles by analyzing their behavior in online or
blended courses [11–17]. However, there is still room for improvement with respect
to the precision of the modeling methods. Therefore, in this paper we propose a
novel approach called Learning Style Identifier based on Particle Swarm
Optimization (LSID-PSO), which aims to outperform existing methods. LSID-PSO
is designed to be used in any learning system since it is based on generic student
behavior data as input.

The remainder of the paper is structured as follows: Sect. 5.2 presents other
automatic approaches used to identify learning styles. Section 5.3 provides a brief
introduction into particle swarm optimization. Section 5.4 explains the performance
metrics used to assess LSID-PSO. Section 5.5 provides details on how LSID-PSO is
used to identify learning styles and the methodology employed to evaluate it.
Section 5.6 reports and discusses the results of the evaluation and compares them to
other studies. Lastly, Sect. 5.7 concludes the paper.

5.2 Related Work

Recently much research has been done on automatic approaches to identify students’
learning styles from their behavior in a course. The approaches can be broadly
classified into two categories: artificial/computational intelligence (AI/CI) and
rule-based. With respect to the AI/CI category, Dorça et al. [11] proposed the use of a
reinforcement learning algorithm to dynamically identify learning styles but only
evaluated their approach with simulated data. Garcia et al. [12] introduced a Bayesian
approach which considered three of the four FSLSM dimensions and resulted in
precision values between 58 and 77 %. Cha et al. [13] evaluated a decision tree and
hiddenMarkov model and found error rates between 0 and 33%. However, they only
used data indicating a strong preference on a specific learning style dimension rather
than including all data, and therefore, their approach can only classify a subset of
learners.Özpolat and Akar [14] used data mining to extract training data from student
behavior logs and construct decision trees. Their evaluation showed accuracy rates
between 53 and 73 %. Furthermore, in our previous work [15], we used artificial
neural networks considering a set of behavior patterns which are general to any
learning system. This approach showed a range of precision from 79 to 84 %.

The rule-based approaches work by using predefined rules extracted from the
literature to compute learning styles based on behavior patterns. The advantage of
these approaches over AI/CI ones is that the rules are encoded prior to data col-
lection, so no training of the approach is necessary. An example of such rule-based
system is DeLeS, developed by Graf et al. [16], which is able to identify FSLSM
dimensions with precision from 73 to 79 %. Another rule-based approach, WELSA,
for the unified learning styles model (ULSM) obtained precision between 64 and
84 % [10]. The Oscar conversational intelligent tutoring system [17] also uses a
rule-based approach. However, it employs data from a natural language dialog
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between the student and the system instead of behavior data, making the approach
quite uniquely applicable to the respective system. Based on an evaluation, accu-
racy values of 72–86 % were achieved.

While rule-based approaches are very successful, a major drawback is that they
assume that all behavior patterns are equally important. Relative importance may be
implemented by weighting the patterns [10]; however, such weights are not easily
extracted from the literature. LSID-PSO aims at addressing this issue by extending
a rule-based approach with artificial/computational intelligence features to search
for optimal weights of behavior patterns, using particle swarm optimization.

5.3 Particle Swarm Optimization

Particle swarm optimization (PSO) [18] is an algorithm, inspired by the movement
of flocks of birds, designed to efficiently search an n-dimensional hyperspace, or
hypershape when the space is bounded, for optimal solutions. PSO uses search by
social intelligence as the population of particles share information as they fly through
the space and adjust their trajectories to focus on promising areas. The n-dimensional
location of a particle represents a solution to a problem and the particles’ movement
through the space represents their search for optimal solutions. Each coordinate of a
particle’s location represents a component of the solution although the decoding of
the coordinate to the solution component is problem specific.

PSO is highly parameter driven as with many AI/CI algorithms. Without proper
parameter selection, particle swarm optimization can suffer from inefficient tra-
jectories that may prevent convergence to the optimal solution [19]. The parameters
in particle swarm optimization are: population size, individual and global acceler-
ation rates (c1 and c2), inertia (w), and maximum velocity (Vmax). The parameters
and their effects, as described below, come from the original [18] and follow-up
works [19, 20]. The population size is the number of particles in the swarm. The
global acceleration rate encourages the particles to turn toward the global best
solution, while the individual best acceleration rate causes the particles to turn
toward their individual best. Inertia causes the particle to continue in the same
direction so a higher inertia encourages global exploration. The maximum velocity
prevents the particles from flying too far from promising areas; however, if it is set
too low the particles will not be able to search very globally for promising areas to
begin with. In each generation, each particle’s velocity is updated using
Formula 5.1, where V0 is the previous generations velocity, rand is a random real
value from 0 to 1, Xcurr is the particle’s current position, Xpbest is the individual’s
best position so far, and Xgbest is the global best position so far.

V ¼ w� V0 þ c1� rand� Xcurr � Xpbest
� �þ c2� rand� Xcurr � Xgbest

� � ð5:1Þ
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5.4 Performance Metrics

Four metrics are used to demonstrate the performance of LSID-PSO and compare
its results to results from the literature. The first metric is SIM, which is commonly
used for measuring the performance of learning style identification [12, 14–16].
A normalized range from 0 to 1 is used to describe each dimension of the students’
learning style. Thus, values higher than 0.5 represent a tendency toward an active,
sensing, visual, or sequential learning style and values lower than 0.5 represent the
opposite preference (i.e., reflective, intuitive, verbal, or global). The SIM function
divides the learning style range into a high region (>0.75), a low region (<0.25),
and a balanced region (0.25–0.75). SIM returns 1 when the actual and identified
learning style values are in the same region, 0.5 when they are in adjacent regions,
and 0 when they are in opposite regions. SIM values are calculated for each student
and then an average SIM value is built to measure the accuracy of the learning style
identification approach.

While SIM is commonly used in the literature, it has a drawback of reduced
accuracy due to classifying results into regions. While some identification approa-
ches return learning style regions as results (e.g., Bayesian networks), LSID-PSO is
capable of returning precise learning style values. Accordingly, we are able to
measure the exact difference between the results from LSID-PSO and the actual
learning style value, leading to a more accurate performance metric, which we call
ACC. As with SIM, ACC is calculated for each student and an average ACC is built.
ACC can measure the performance more accurately than SIM, especially when the
actual and/or identified learning style values are near the region edges.

While the above-mentioned performance metrics provide details on how accu-
rate the proposed approach is on average, in the current research we aim to also
investigate the accuracy of learning style identification for each single student. To
further investigate this “fairness problem,” two additional metrics are introduced:
(i) LACC is the lowest ACC value within a set of students; (ii) %Match measures
the percentage of students which are identified with ACC > 0.5, showing how many
students have been identified with reasonable accuracy. Both of these metrics
provide deeper insights into whether some of the students are identified with sig-
nificantly low accuracy.

5.5 Methodology

In order to evaluate LSID-PSO, data from 127 information system/computer sci-
ence undergraduate students were collected, including their behavior data in a
university course as well as their results on the ILS questionnaire. Only students
who submitted more than half of the assignments, and attended the final exam were
considered for this study. In addition, only data from students who spent more than
5 min on the ILS questionnaire were used. This led to a dataset of 75 students. It
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should be noted that this dataset is, in comparison with related studies, one of the
largest datasets (e.g., Garcia et al. used 27 students [12] and Özpolat and Akar used
30 students [14]).

This research treats each FSLSM dimension as a separate problem, and there-
fore, a separate LSID-PSO algorithm is developed and applied for each dimension.
The first step in developing LSID-PSO is to determine the behavior patterns related
to that learning style dimension. As LSID-PSO aims at being applicable in different
learning systems, it was important to use generic behavior patterns so that data can
be collected in various systems. Therefore, we decided to use the same behavior
patterns employed by DeLeS [16], as shown in Table 5.1. These patterns were
retrieved from the learning styles literature [1] and, while a short description of the
most relevant patterns is provided in the next paragraph, a more detailed discussion
is provided in the study by Graf et al. [16]. While in DeLeS, each behavior pattern
is considered equally important, LSID-PSO starts from the hypothesis that learning
style identification may be improved by weighting the behavior patterns.

The patterns are based on different types of learning objects including outlines,
content, examples, self-assessment quizzes, exercises, and forums; students’ navi-
gation sequence through the course is also taken into account. Patterns consider
how long a student stayed on a certain type of learning object (e.g., content_stay)
and how often a student visited a certain type of learning object (e.g., content_visit).
Furthermore, questions of self-assessment quizzes were classified based on whether
they are about facts or concepts, require details or overview knowledge, include
graphics or text only, and deal with developing or interpreting solutions. Patterns
then consider how well students performed on such types of questions (e.g.,
question_concepts).

LSID-PSO needs a solution space to search, so a hypercube is created with n-
dimensions, each bounded from 0.01 to 1.0, where n is the number of behavior

Table 5.1 Behavior patterns for learning style identification [16]

Active/reflective Sensing/intuitive Visual/verbal Sequential/global

content_stay content_stay content_visit outline_stay

content_visit content_visit forum_post outline_visit

example_stay example_stay forum_stay question_detail

exercise_stay example_visit forum_visit question_develop

exercise_visit exercise_visit question_graphics question_interpret

forum_post question_concepts question_text question_overview

forum_visit question_details navigation_overview_stay

outline_stay question_develop navigation_overview_visit

quiz_stay_results question_facts navigation_skip

self_assess_stay quiz_revisions

self_assess_twice_wrong quiz_results_stay

self_assess_visit self_assess_stay

self_assess_visit
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patterns in the learning styles dimension. Each hypercube dimension represents a
weight from 0.01 to 1.0, with zero excluded as the effectiveness of DeLeS suggests
that the behavior patterns identified for each learning style dimension have at least
some impact. From this, a particle’s location can be decoded as a set of weights for
patterns corresponding to a learning style dimension.

In order to operate effectively, PSO’s parameters must be properly set and
although some general principles [18–20] are known and used for the suggested
values below, optimal parameterization is problem specific. Accordingly, the fol-
lowing parameters were optimized in the given order by experimentation: popu-
lation size, acceleration rates, inertia, and maximum velocity. Although population
size is generally less than 100 [18–20], in order to maximize the chance of opti-
mization the range of values assessed was extended to (25, 50, 75, 100, 200, 400).
The individual acceleration parameter (c1) was tested with values from the set (0.0,
0.25, 0.5, 0.75, 1.0) and the global acceleration parameter (c2) from the set (0.25,
0.5, 0.75, 1.0). As the global best must always be considered, c2 is not assigned a
value of zero. Although the suggested inertia range is 0.9–1.2 [20], to allow for the
greatest chance of optimization the set was expanded to (0.75, 0.9, 1.0, 1.1, 1.2). It
is recommended that Vmax be made equal to the size of the hypershape bounds
(Xmax) [19]. In the current research, the bounds are the weight minimum (0.01) and
maximum (1.0) values, hence Xmax = 0.99. Values of Vmax > Xmax were not
assessed, as if a particle’s velocity (v) is greater than Xmax, it has the same effect as
v = Xmax, the particle will hit the hypershape boundary. In addition to assessing
Vmax = Xmax, values smaller than Xmax were assessed. Accordingly, possible Vmax

values were obtained by multiplying Xmax by a factor from the set (0.05, 0.10, 0.25,
0.50, 1.00) giving a final set of Vmax values of (0.0495, 0.099, 0.2475, 0.495,
0.990). Table 5.2 shows the optimal parameters obtained for each dimension.

With AI/CI algorithms there often exists the potential for overfitting, where
solutions are fit to noise of the training data and so the found solution is not a
general one. There exist numerous techniques for reducing overfitting; in case of
LSID-PSO, we used stratification [21] which ensures that the training set and
assessment set have a similar distribution of data, thus causing the solution to be
more general toward future samples. After parameter optimization, the use of
stratification was investigated. Stratification was found to improve the results for
each learning styles dimension and therefore was used to produce the final results.

Table 5.2 Optimal parameter settings

FSLSM dimension Population Acceleration Inertia Vmax

Global Individual

A/R 400 1.00 1.00 0.75 0.990

S/I 100 1.00 0.25 1.20 0.990

V/V 400 1.00 0.50 1.00 0.099

S/G 50 1.00 1.00 0.90 0.495
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A 10-fold cross-validation approach was used to ensure that the results are
generalizable to other datasets. This approach was employed for parameter opti-
mization, investigations on the overfitting reduction techniques and to calculate the
final results.

5.6 Results and Discussion

In this section, we discuss the results of LSID-PSO and compare them to similar
approaches (as identified in Sect. 5.2). While there are several other works that
introduced approaches to identify learning styles, it was difficult to compare some
of these approaches to ours. A comparison with the approach by Cha et al. [13] is
not possible as their approach is only tailored to students with a strong preference
on a learning style dimension rather than identifying learning styles from every
student. Comparing results to Oscar [17] is not applicable as this approach focuses
on identifying learning styles from natural language dialogs, whereas LSID-PSO
(and most other works) focuses on identifying learning styles from behavior pat-
terns in courses.

Table 5.3 shows a comparison of the SIM results between LSID-PSO and other
approaches in the literature which use SIM. We can notice that LSID-PSO performs
well compared to the other approaches: it achieved the second best results for the
A/R, V/V, and S/G dimensions and the third best result for the S/I dimension.

Since the SIM metric is not as accurate as ACC and we also aim at investigating
the mismatches of single learners, raw results from DeLeS and LSID-ANN were
obtained to calculate ACC, LACC, and %Match (as these two approaches achieved
the best results in two dimensions each and therefore seem to be the leading
approaches). By comparing results from LSID-PSO with results from DeLeS and
LSID-ANN based on the ACC, LACC, and %Match metrics, more accurate
information can be provided on how well LSID-PSO performs. Table 5.4 shows
these results.

In the A/R dimension, LSID-PSO achieved the best results with respect to ACC
and %Match, while it obtained rank 2 for LACC. For S/I, LSID-PSO also achieved
the highest ACC and %Match values, and again rank 2 for LACC. For V/V,

Table 5.3 Comparison of SIM results (with ranks in parentheses and top result bolded)

Approach A/R S/I V/V S/G

LSID-PSO 0.801 (2) 0.755 (3) 0.756 (2) 0.810 (2)

LSID-ANN [15] 0.802 (1) 0.741 (4) 0.727 (3) 0.825 (1)
DeLeS [16] 0.793 (3) 0.773 (1) 0.767 (1) 0.733 (3)

Bayesian [12] 0.580 (5) 0.770 (2) – 0.630 (4)

NBTree [14] 0.700 (4) 0.733 (5) 0.533 (4) 0.733 (3)
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LSID-PSO produced overall lower values, with rank 2 for ACC and LACC and
rank 3 for %Match. In S/G, LSID-PSO was constantly on rank 2 for all metrics.
Overall, it can be seen that LSID-PSO performed better than other approaches for
A/R and for S/I: it reached the best ACC results and the best %Match results,
however, for LACC, it performed better than DeLeS but not as well as LSID-ANN.
For V/V and S/G dimensions, LSID-PSO performed better than DeLeS (apart from
the %Match metric in V/V) but not as well as LSID-ANN. As the hypothesis is that
weighting the behavior patterns would ameliorate results over no weighting, the
comparison to DeLeS confirms it: weighting did improve results in every dimension
for every metric, with the exception of %Match for V/V.

In order to understand the lower %Match value for V/V dimension, the indi-
vidual mismatches were examined. We discovered that all of the mismatched
students had a verbal learning style. It seems that LSID-PSO tend to correctly match
the more numerous visual students (85 % of the total), at the cost of less precision
with verbal students, in order to obtain a better average ACC.

Although LSID-PSO confirmed the hypothesis, it converged very quickly, often
in less than 100 generations, raising the concern that it may not be searching very
well. To address this concern, the particle trajectories were examined and two
observations were made. When the global and individual best were distant, a flat
oscillation was observed between the two points. When the individual and global
best were close, the particles orbited a center between the global and individual
best. Although the center did shift considerably, rarely would the particles pass
close to the global or individual best. So although LSID-PSO performed well, a
different optimizer could be considered for the problem to see whether it can search
the solution space better.

Table 5.4 Comparison of ACC, LACC, and %Match metrics between LSID-ANN [15], DeLeS
[16], and LSID-PSO

Dimension Approach ACC LACC %Match

A/R LSID-PSO 0.805 (1) 0.596 (2) 0.988 (1)
LSID-ANN 0.802 (2) 0.610 (1) 0.986 (3)

DeLeS 0.799 (3) 0.435 (3) 0.987 (2)

S/I LSID-PSO 0.794 (1) 0.551 (2) 0.971 (1)
LSID-ANN 0.790 (2) 0.575 (1) 0.961 (2)

DeLeS 0.790 (2) 0.389 (3) 0.960 (3)

V/V LSID-PSO 0.796 (2) 0.482 (2) 0.909 (3)

LSID-ANN 0.840 (1) 0.656 (1) 0.986 (2)

DeLeS 0.788 (3) 0.226 (3) 0.987 (1)
S/G LSID-PSO 0.768 (2) 0.524 (2) 0.943 (2)

LSID-ANN 0.797 (1) 0.613 (1) 0.986 (1)
DeLeS 0.702 (3) 0.134 (3) 0.880 (3)

5 Improving Learning Style Identification … 47



5.7 Conclusions

In this paper, an approach (LSID-PSO) for automatically identifying students’
learning styles based on Felder-Silverman Learning Style Model is introduced.
LSID-PSO was assessed using different performance metrics and evaluated with
real data from 75 students. The results were compared to other approaches in the
literature and based on the most accurate performance metric (ACC), LSID-PSO
produced the highest precision values for the A/R and S/I dimensions. In addition to
measuring the average precision of the approaches, this study investigated how
often single students are significantly misidentified via the two metrics LACC and
%Match. In this regard, for LSID-PSO, the results are mixed: although it mostly did
not provide an improvement compared to LSID-ANN (except for %Match for A/R
and S/I), it did outperform DeLeS, except for %Match for V/V. Overall, the results
from LSID-PSO confirm that extending the rule-based approach by considering
weights for behavior patterns provides an improvement in the learning style
identification.

In future work, other optimizers such as ant colony system will be investigated to
see whether they can search more effectively and find a more optimal set of weights.
Hybrid AI algorithms can also overcome weaknesses in mono-AI algorithms and
will be investigated to see whether they can find better solutions than PSO alone.
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