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Abstract This paper introduces SCALE, a Smart Competence Analytics engine on
LEarning, as a framework to implement content analysis in several learning
domains and provide mechanisms to define proficiency and confidence metrics.
SCALE’s ontological design plays a crucial role in centralizing and homogenizing
disparate data from domain-specific parsers and ultimately from several learning
domains. This paper shows how SCALE has been applied in the programming
domain and reveals systematically how the work content of a student can be ana-
lyzed and converted to evidences to assess his/her proficiency in domain-specific
competences and how SCALE can also analyze the student’s interaction with a
learning activity and provide a confidence metric to assess his/her behavior as
he/she culminates toward goal achievements.

Keywords SCALE � Competence � Proficiency � Confidence � Learning analyt-
ics � Ontological design

3.1 Introduction

This paper proposes an evidence-based competence analytics framework called
Smart Competence Analytics engine on LEarning (SCALE). The goal of this
research is to feature an approach to competence-based learning applicable to any
learning domain. SCALE is mainly concerned with content analysis, one of the key
outcomes of learning analytics. However, content analysis is highly domain-specific.
SCALE, therefore, through its ontological design attempts to reduce the cus-
tomization effort and time to a minimum. Although SCALE does not intend to define
proficiency and confidence metrics, it aims at providing teachers with the mecha-
nisms to implement their own definitions of proficiency and confidence.
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Thus, SCALE allows real-time customization and calibration of proficiency and
confidence models. This paper strives to show the applicability of the framework in
any learning domain by applying it in Java programming.

Learning analytics is a study of context-aggregate and context-precise insights
based on observed learning experiences that are continually validating in nature
where a learning trace comprises of an instantiated network of models that lead to a
measurable chunk of learning. In this setting, SCALE provides an important subset
of observation data to instantiate those models in order to find causal relationships
between those models’ variables through a propensity score matching observational
study design that will be implemented in a future version.

In the next section, a brief literature review highlights the progress made by
other researchers in the employ of ontologies to track by means of e-learning
technologies students’ competences in programming (i.e., Java). The third section
gives a high-level view of SCALE’s architecture, while the fourth section shows
how SCALE works in the programming domain. The paper concludes by outlining
the next steps for a future full-fledged experiment with SCALE.

3.2 Literature Review

Hosseini et al. [1] conducted a study to look at how Java programs are developed. By
means of the JavaParser tool, they succeeded to collect unique datasets highlighting
the intermediate programming steps through series of snapshots showing how stu-
dents developed their programs over time. Hosseini et al. performed a fine-grained
concept-based analysis on each step to identify themost common programming paths.
The results of their experiments showed that students tend to develop and debug their
programs incrementally and that tracking intermediate programming steps provide
invaluable opportunities to give better feedback to students. Their experiment was
conducted in the Java programming domain and used the JavaParser tool “to extract a
list of ontological concepts from source code using a Java ontology1 developed by
PAWS laboratory.” Those concepts were extracted for each code capture.

Sosnovsky et al. [2] uphold that precise student modeling is key in the effec-
tiveness of adaptive educational systems. Student modeling requires assessing
adequately the background knowledge of students before they start using such
adaptive systems. Even though this information may be available from other sys-
tems, discrepancies most often occur due to different knowledge representation,
system architecture, and modeling constraints. Sosnovsky et al. argue “that the
implementation of underlying knowledge models in a sharable format, as domain
ontologies—along with application of automatic ontology mapping techniques for
model alignment—can help to overcome the ‘new-user’ problem and will greatly
widen opportunities for student model translation.”

1http://www.sis.pitt.edu/*paws/ont/java.owl.
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Finally, Ganapathi et al. [3] propose an approach to the practical ontology
development and present their approach by designing an ontology to teach Java
programming. Researchers in [4–7] rather focus on the identification of common
misconceptions and pitfalls in learning programming, while Sampson [8] highlights
the role that competence-based learning can play to implement the lifelong learning
paradigm.

3.3 SCALE Architecture

SCALE consists basically of three processing layers: parsing, inferencing, and
profiling. Moreover, SCALE is built on three types of ontologies: interaction,
contents, and learning trace. All learning events collected from a single student
engaged in a single learning activity coming from a single learning domain will be
parsed and stored in an interaction ontology. The contents ontology models the
learning materials, defines learning objectives, and models and maps the skills
expected from learners to the learning objectives. The learning trace ontology
records measurable subsets of observations into a skill/proficiency with respect to a
mapping function. Hence, the mapping between the learning outcomes in the
contents ontology and their expected datasets in the learning trace ontology will
define a course’s expected learning outcomes in terms of proficiency levels in
targeted skills.

The first processing layer in SCALE involves the expansion of the student’s
dataset through domain-specific parsers. For example, analyzing a student’s work
would imply submitting its work to a series of domain-specific parsers to extract the
structure that gives meaning to the student’s work. The parsing results are then
ontologized and linked to the appropriate captures and constructs extracted from the
student’s work. Thus, the parsing layer in SCALE requires the integration of
domain-specific parsers, the definition of the entities and relationships defining the
domain in question, and the specification of the resulting interaction ontology in a
universal data format that is an RDF ontology. It is important to highlight the fact
that this process can be applied in any domain.

In the second layer of processing, SCALE identifies students’ learning artifacts
and builds sets of evidences to assess students’ proficiency levels in
domain-specific competences. SCALE performs competence assessment using
pattern matching techniques (domain-specific production rules). SCALE encloses a
core set of production rules corresponding to a core set of competences in the
learning domain at hand and enables teachers to enhance or customize that set to
address the requirements of their courses. The key technology employed by SCALE
is called BaseVISor. BaseVISor is an ontological rule-based reasoning engine
which extends the system’s capability from mere recognition of syntactic and
semantic elements in the student’s work to the tracking and recognition of creative,
design, and logic elements in it. BaseVISor’s compact and intuitive XML syntax
requires a lower level of expertise to code the production rules. Moreover, since the
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rules employ the vocabulary defined in SCALE’s ontologies, they can be easily
written in pseudo-code and implemented by a programmer who is not an expert in
the learning domain.

In the third processing layer, SCALE profiles students individually and collec-
tively and provides students with a formative feedback that shows the progression
of their proficiency and confidence at different levels of granularity (i.e., learning
activity, competence, learning domain).

3.4 SCALE in Programming

This section will give an example of how SCALE can be applied in a specific
learning domain. Although at the very moment of this writing SCALE is being
customized and applied in English writing and mathematics, this paper will
demonstrate the overall process in the programming domain where SCALE has
been developed, tested through pilots, and optimized for the first time. As the
analytics engine of an overall learning analytics platform, SCALE will receive data
from a student enrolled in a Java programming course who is solving an assignment
problem using the NetBeans IDE installed with the CODEX plug-in (a plug-in
designed along with SCALE to capture the data required for competence analytics)
to sense the student’s work and transmit it as a learning event to SCALE. CODEX
generates such learning events at a regular time interval or every time the student
compiles his/her program. Figure 3.1 shows a learning event sensed by CODEX.

In order to be processed by SCALE, data must follow the format of the learning
event above. This data packet will first go through the parsing layer. As previously
asserted, the content of this packet will be analyzed by a series of domain-specific

Fig. 3.1 A learning event generated from the NetBeans CODEX plug-in
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parsers. In the current programming domain, the content is parsed by the open
source Eclipse JDT compiler (which can be handled programmatically), the single
parser being tested as of this writing. The compiler breaks down the code contained
in the learning event into an abstract syntax tree and reports about compile-time
errors. The parsing results are then ontologized programmatically using the Apache
Jena library. The abstract syntax tree along with its inherent connections and
dependencies is preserved in the ontology. Figure 3.2 shows a part of the interaction
ontology generated from the above learning event. The figure shows how the
child/parent relationship preserves the tree data structure of the abstract syntax tree
and how each node within the tree is stored along with its properties. The ontology
records also the number of compile-time errors pertaining to the current piece of
code. Although the most relevant pieces of information are generated in the default
configuration of the Eclipse JDT compiler, the Eclipse JDT compiler’s configura-
tion could be customized to populate further the interaction ontology in order to
enhance SCALE’s inferencing capability. The ontologies are written in the
RDF/XML format as required by BaseVISor.

The resulting interaction ontology, the output of the parsing layer, will be input
in the inferencing layer for the identification of evidences that will prove the stu-
dent’s proficiency in a specific skill. As are the parsers in the parsing layer
domain-specific, production rules that define the patterns to recognize proficiency
facts will also be domain-specific. The production rules will comply with the set of
competences which are mapped to the learning objectives encapsulated in the
course’s contents ontology. In this first application of SCALE, production rules
have been written to match the control structure-related competences as found in the
Java OWL ontology (see footnote 1) designed by PAWS laboratory. Proficiency
facts recognized by the inferencing layer will be linked to one or more control
structure competences. SCALE will also provide a set of core production rules
which could be edited or customized by teachers and students at will. New pro-
duction rules could also be added to enhance the number of competences to be
tracked and to increase the ability of the system to track all the flavors or different

Fig. 3.2 A sample interaction ontology generated from parsing learning event in Fig. 3.1
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occurrences of a competence or skill. Figure 3.3 shows a production rule identifying
a simple application of recursion in the student’s code (although not related to
control structures).

The reader should note that a production rule is the equivalent of an if/then
statement. The “if” part is enclosed in the < body > tags (Lines 2–26) and the “then”
part within the < head > tags (Lines 27–38). The “if” part of this recursion rule
specifies the sequences and characteristics of programming constructs to identify a
case of basic recursion. For example, the rule is looking for a method declaration
(Lines 3–9) and stores all its properties into a set of user-defined variables.
Basically, this rule checks whether the method declaration is self-invocating (Lines
21–25). As the result of the occurrence of a simple case of recursion, an evidence or
fact will be asserted in the ontological model to prove the student’s proficiency in
that competence (Lines 28–32). Lines 33–37 call a user-defined Java function to
interface and store the inferencing results into the SQL and NoSQL world. The
parameters from Lines 34–36 pass data from the ontological model to the Java
function for further processing or data persistency. The first and last parameters
indicate the competence to which this fact corresponds and the weight of the fact

Fig. 3.3 The production rule identifying basic cases of recursion in BaseVISor XML syntax
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which will influence by how much the proficiency value will change according to
the mathematical equation defining the competence. As for any production rule, this
particular production rule will be fired for each instance of recursion found in a
student’s program.

The profiling layer will update the proficiency values for those skills the student
has showed proper usage and will also update the confidence value of the student in
the current learning activity and in the overall programming domain. Table 3.1 lists
all the evidences identified from the last learning event. This learning event rep-
resents the most recent state of the corresponding learning activity (Factorial.java)
recorded by SCALE.

As the next step, SCALE will retrieve all the evidences from the most recent
captures of all learning activities it has so far tracked and will sum them up by
competence as it can be found in Table 3.2. For example, it can be seen that for
student davidb, there have been 12 cases of recursion tracked by SCALE. Using the
proficiency function of the Recursion competence, it can be seen that the profi-
ciency level of the student at using recursion is calculated to be 32.61 %.
Proficiency and confidence values are always expressed as probabilities, that is, as
values between 0 and 1, exclusively (0, 1). It is also interesting to note that teachers
can then set a threshold for each competence to determine the learning objective in
regard to that competence within their course(s). Moreover, the reader may notice
that the StatementBlock and the IfElseStatement competences have proficiency
levels very close to each other, while the former competence has twice the number
of facts of the later competence. Given the nature of the math (proficiency) func-
tions in Table 3.2 whose ranges lie between 0 and 1 exclusively, capturing the
number of facts for each competence will also provide a measure of the persistency
of a skill. In other words, it may determine in some way the decay speed of the skill
if it was to be unused for a period of time or if misconception or misusage was to be
detected.

SCALE also tracks the confidence of students as they work in learning activities.
SCALE monitors the student’s behavior that is his/her interaction with a learning
tool and its learning contents. SCALE provides the mechanism to assess students’
confidence both in a learning domain and in a specific activity. Again, SCALE will
allow teachers and students to create or customize their own confidence model.
Although some factors in the confidence model may be domain-generic such as the
time taken to solve a problem, most factors will be domain-specific and will need to
be tailored and customized according to the learning domain at hand. Thus, in the
current learning domain, that is programming, SCALE provides a predefined
confidence model consisting basically of four factors: time spent on a learning
activity (writing a program), number of times the student compiles his/her code in a
specific learning activity, the average number of errors per compilation for a
specific learning activity, and the persistency of those errors throughout a learning
activity. SCALE applies the same factors to compute the overall confidence of a
student in a learning domain.

The rationale behind the calculation of a confidence value is that each factor is
assessed individually according to the ideal scenario or behavior expected from a
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very proficient student. For example, Student A and Student B have solved the
same problem, have both written an excellent piece of software, and have made the
same errors with the same level of persistency. However, Student A has taken twice
the time of Student B. Hence, naturally, it will be expected that Student B exhibits
more confidence than Student A in regard to time. It may, therefore, be inferred that
taking less time to solve a problem to meet the requirements of an activity is more
desirable than the contrary. The same may be true for the number of compilations a
student makes. Similar conclusions could be drawn for each factor in the confidence
model.

After having defined the factors making up a confidence model, one could define
a threshold for each factor beyond which the confidence of a student in regard to
that particular factor would start degrading more significantly. Obviously, the
threshold will depend also on the characteristics of the mathematical equation used
to model the confidence decay. For example, the mathematical functions defining
the confidence factors time and compilations are both quadratic equations. The
point here is that SCALE does not want to penalize too much students within an
acceptable range of time and number of compilations made when solving a prob-
lem. There exists some trade-off between these factors. For instance, a student may
decide to compile his/her code more often to reduce the time he/she takes to solve a
problem or to correct errors as soon as possible to reduce the number of errors
he/she will make in a problem.

Table 3.3 shows the confidence level for each factor and as a whole for the
student who has sent the learning event in Fig. 3.1. Figures 3.4, 3.5, 3.6, and 3.7
display the graphs of the mathematical equations determining the value for each
confidence factor. Figure 3.4 shows that the input of the equation is the amount of
time in terms of minutes. The input in Fig. 3.5 is the total number of compilations
made in the learning activity. The input in Fig. 3.6 is the average number of errors
per compilation, while the input in Fig. 3.7 is the standard deviation of the numbers
of error messages generated for all compilations for that learning activity.

Finally, the confidence measure assigned to that specific learning activity is
calculated as the product of the confidence factor values. The ranges of all confi-
dence measurements lie between 0 and 1, inclusively [0, 1]. Hence, SCALE

Table 3.2 Numbers of facts for each competence that will be input in the math function as
pictured in the bottom right corner along with corresponding output proficiency levels
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Table 3.3 Confidence factors along with associated raw data and derived confidence values

Confidence factors Raw data Confidence factor values

Duration 720,000 ms = 12 min 0.999856

Number of compilations 3 0.994

Average number of errors 0.6666666666666666 0.9916666666666667

Standard deviation of numbers of errors 0.4841229182759271 0.9096824583655185

Confidence N/A 0.8965600373460734

Fig. 3.4 Equation for time
confidence factor

Fig. 3.5 Equation for
compilation confidence factor

Fig. 3.6 Equation for error
confidence factor
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assesses that the confidence of student davidb in the learning activity Factorial.java
at the moment of the processing of the learning event is as follows:

confidence ¼ 0:9999� 0:994� 0:9917� 0:9097 ¼ 0:8966 ð3:1Þ

The lowest confidence factor will impose a top limit on the overall confidence
value.

3.5 Future Work and Conclusion

The scalability and robustness of SCALE are currently being tested at a partner
institution in India. SCALE includes mechanisms to monitor thoroughly all the
critical processing and input/output (I/O) operations in order to assess its scalability
and robustness. In the near future, SCALE will be extended to a full Java course
and will be applied in the English writing and mathematics learning domains.
Once SCALE will meet all the robustness and scalability requirements to support a
full-fledged experiment with a full Java course, a longitudinal propensity score
matching observational study will be conducted to evaluate the effectiveness of
SCALE over students’ learning experiences.

This paper thoroughly described SCALE, an architecture to analyze the profi-
ciency and confidence of students in any learning domain by providing teachers
with mechanisms to define their own proficiency and confidence metrics. The paper
explains in a step-by-step fashion how to apply SCALE in a learning domain by
showing an example in the programming domain.
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