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Chapter 4
Sex Hormones

Kaori Oshima and Masahiko Oka

Abstract Males and females are biologically distinct, and certain pathological 
conditions affect both sexes differently. Obvious sex difference exists in pulmonary 
arterial hypertension (PAH). The major sex difference is female sex hormones, 
especially estrogens, and therefore, the roles of estrogens have been intensively 
studied in PAH. The incidence of PAH in females is higher than in males, suggest-
ing a female-specific risk factor. However, a general notion that estrogens are car-
diovascular protective, and their protective effects demonstrated in animal models, 
resulted in the emerging concept of “estrogen paradox” in PAH. Later, it was found 
that female PAH patients live longer, suggesting the survival benefit of estrogens. 
Questions that need to be answered are (1) Why is PAH more prevalent in females 
despite the protective effects of estrogens? and (2) Why do female PAH patients 
show better survival despite the higher incidence of the syndrome? Even with the 
rigorous research efforts to answer these paradoxical questions, the field has not 
come to a consensus. This chapter summarizes the current leading theories for the 
estrogen paradox in PAH.
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4.1  Estrogen Paradox in PAH

It has long been recognized that the prevalence of PAH is higher in females than in 
males. Although the ratio of female to male varies depending on subgroups of PAH, 
epidemiological studies from various countries consistently demonstrate this female 
predominance in PAH [1–3]. A recent study showed that among male PAH patients, 
a higher level of estrogens was associated with PAH [4]. Higher female incidence in 
PAH is not found in pediatric, prepuberty patients [5]. These data collectively sug-
gest that female sex hormones, such as estrogens, have disadvantageous effects and 
play a role in PAH pathogenesis.

However, it is a general consensus that estrogens are cardiovascular protective. 
The incidence of atherosclerotic diseases is low in premenopausal females, while it 
increases after menopause, and postmenopausal use of estrogens is associated with 
reduced risk of cardiovascular disease [6]. Postmenopausal women also have 
increased risk of developing PAH [7], which suggests a protective effect of estro-
gens. Studies with two classical animal models, chronic hypoxia- and monocrotaline- 
induced pulmonary hypertension, have consistently shown protective effects of 
estrogens [8–10]. The protective effect of estrogens in hypoxic humans is indirectly 
supported by the male predominance in the incidence of high altitude-induced pul-
monary hypertension [11].

These studies in humans and animals suggest a protective effect of estrogens, 
which is contrary to the epidemiological data in PAH, which points to an opposite 
effect of estrogens. These conflicting results led to the concept, “estrogen paradox” 
[12–14].

Although classical experimental models consistently showed protective effect of 
estrogens, they presented with limited pathological phenotypes and did not fully 
recapitulate the human PAH. Therefore, various animal models were developed in 
recent years in an attempt to obtain a better understanding of the pathogenesis of 
PAH. The studies with transgenic animal models are unfortunately inconclusive and 
more confusing, showing protective or detrimental effects of estrogens in PAH. In 
the Sugen/hypoxia-exposed rat model of PAH, which closely mimics the human 
hemodynamic profile as well as the pulmonary vascular histopathology [15, 16], the 
difference between sexes in hemodynamic severity and PAH characteristics is also 
inconclusive [17, 18]. The data from studies of recent animal models are generally 
contradictory, and perhaps this reflects the differential effects of estrogens that can 
be exerted depending on the initiating stimuli for PAH. It also highlights the need 
for a better animal model that consistently demonstrates higher incidence and better 
outcome in females, similarly to the human PAH.

The estrogen paradox became more complicated when it was reported that 
female PAH patients have better survival [19] while male sex is associated with 
increased risk of death [2, 20]. These findings suggest estrogens have a beneficial 
effect in PAH, which appears contradictory to the epidemiological finding which 
indicates that estrogens are a risk factor.
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This estrogen paradox in PAH, i.e., females have higher prevalence but longer 
survival, has been a focus of numerous studies. They have investigated how estro-
gens exert harmful effects in the pulmonary circulation and how they provide sur-
vival benefit in female PAH patients. The exact mechanisms of these sex differences 
are unclear, and the field has not come to a consensus on whether estrogens are 
protective or harmful in PAH. This chapter summarizes current understanding of 
effects of the major female sex steroids, estrogens, on the PAH pathophysiology and 
the sex difference.

4.2  Published Theories for the Estrogen Paradox in PAH

The current knowledge on estrogens and the leading hypotheses on the estrogen 
paradox based on numerous studies are described below.

4.2.1  How Estrogens Exert Harmful Effects to the Pulmonary 
Circulation

4.2.1.1  Altered Estrogen Receptor (ER) Signaling

Altered estrogen receptor (ER) signaling is thought to contribute to PAH pathology. 
Estrogens exert their effects mainly via two types of ERs, ERα and ERβ, which 
mediate various genomic pathways [21]. In the pulmonary circulation, both ERα 
and ERβ are present and active in humans and rats [22, 23]. Multiple studies dem-
onstrate favorable effects of estrogens, including upregulation of endothelial nitric 
oxide synthase and prostacyclin synthase in the lungs via those receptors [24, 25]. 
Estrogen signaling can also be mediated via a G-protein-coupled membrane recep-
tor, GPR30, whose primary function is to activate non-genomic pathways to elicit 
acute effects of estrogens [12]. The relative proportion of each receptor and addi-
tionally their alternative splicing variants affect the overall effect of complex estro-
gen signaling [14].

In systemic vasculature, single-nucleotide polymorphisms (SNPs) in genes 
encoding ERα or ERβ are associated with development of myocardial infarction, 
hypertension, left ventricular hypertrophy, and stroke [12]. Genome-wide RNA 
expression profiling in the lungs indicated the upregulation of estrogen receptor 1 
(ESR1), which encodes ERα, in an idiopathic PAH cohort compared to idiopathic 
fibrosis and normal cohorts, both in males and females [26]. The ESR1 abnormality 
is also associated with increased risk of developing pulmonary hypertension in 
patients with advanced liver disease [27]. The significance of the ERs increases 
because non-estrogen ligands can also trigger ER activation in the absence of estro-
gens [14]. This genetic factor may predispose certain populations to increased risk 
of developing PAH.
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Studies in animal models have yielded conflicting results as to which receptor 
contributes to the PAH pathogenesis. 17β-Estradiol (E2), which is the most impor-
tant estrogen in premenopausal females, demonstrated a protective effect in the 
chronic hypoxia model, and this was dependent on both ERs [12, 28]. The protec-
tive effect of E2  in the monocrotaline model was mediated by ERβ [10]. On the 
other hand, in female rats of the same model, downregulation of lung ERα was 
observed, while no change was found in ERβ [29]. These results indicate that the 
roles of each receptor may depend on sex and pulmonary hypertensive stimulus. In 
addition, ER function may be altered as a consequence of mutations in other genes 
or environment of the vasculature. For example, pulmonary microvascular endothe-
lial cells with BMPR2 mutation showed dysregulation of ERα trafficking [30], 
which would affect the relative abundance and location of ERα. Hypoxia increased 
the expression of ERβ, but not ERα, in male rats [31].

Given the genetic alterations observed in human PAH patients, one possibility is 
that the altered ER signaling contributes to PAH pathogenesis, potentially as an 
additional “hit” for the onset of PAH, although the cause-and-effect relationship for 
this clinical observation is still unclear.

4.2.1.2  Altered Estrogen Metabolites

It has been suggested that an imbalance of estrogen metabolites may explain the 
estrogen paradox in PAH. Estrogens and their metabolites can elicit various effects 
that may oppose each other. A distinct feature that separates PAH from other forms 
of pulmonary hypertension is the extensive pulmonary vascular remodeling. The 
pathogenesis of this remodeling process is unclear, but antiapoptotic, proprolifera-
tive, and angiogenic cells and inflammation are implicated in the disease process. 
Estrogens and estrogen metabolites are known to play a role in the modulation of 
these cellular phenotypes and the environment, and, therefore, protective or harmful 
effects of estrogens and their metabolites are primarily evaluated based on these 
cellular behaviors.

Simplified estrogen metabolism is shown in Fig. 4.1. 17β-Estradiol (E2) is syn-
thesized from precursors by aromatase [14]. E2 is metabolized to 2- hydroxyestradiol 
(2-OHE2) and 4-hydroxyestradiol (4-OHE2) by the enzyme CYP1A1 and CYP1B1 
[12]. These hydroxyestradiols are quickly converted to 2-methoxyestradiol (2-ME2) 
and 4-methoxyestradiol (4-ME2) by the enzyme, catechol-O-methyltransferase 
(COMT) [14]. Estrone (E1) is the primary estrogen during menopause and has a 
weaker estrogenic activity than E2 [32]. E1 is also synthesized from precursors, as 
well as reversibly converted from E2 by 17β-hydroxysteroid dehydrogenase [12]. 
E1 subsequently is metabolized to 16α-hydroxyestrone (16α-OHE1) by CYP1B1 
[12].

An increased level of CYP1B1 is found in the lungs of idiopathic and heritable 
PAH patients as well as in various animal models of pulmonary hypertension, 
including chronic hypoxia- and Sugen/hypoxia-exposed rats [33]. This leads to 
increased levels of 16α-OHE1, which has innate effects of antiapoptosis, 
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 proproliferation, and pro-inflammation [12]. These properties suggest detrimental 
effects in pulmonary vascular remodeling by propagating undesirable cellular phe-
notypes. The unfavorable effects of 16α-OHE1 are demonstrated by studies in 
CYP1B1-null mice and in chronic hypoxia- and Sugen/hypoxia-exposed rats [33].

In heritable PAH, the higher activity of CYP1B1 results in a higher penetrance of 
PAH. Among the carriers of BMPR2 mutation, wild-type homozygous genotype of 
CYP1B1 was associated with lower urinary 2-OHE2/16α-OHE1, suggesting a shift 
toward proproliferative antiapoptotic metabolites [34]. In addition, high concentra-
tions of E2 and 16α-OHE1 reduce BMPR2 gene expression [30]. Therefore, 
increased activity of CYP1B1 and a subsequent increase of 16α-OHE1 levels appear 
to facilitate PAH pathogenesis.

An increased level of CYP1B1 also shifts the pathway toward more synthesis of 
2-ME2. 2-ME2 has antiproliferative and proapoptotic properties that suggest a pro-
tective role against vascular remodeling [13]. The beneficial effects of 2-ME2 are 
shown in the monocrotaline, bleomycin, and Sugen/hypoxia animal models [35–
37]. However, this theory of estrogen metabolites is challenged due to the weak 
affinity of 2-ME2 for the receptors [38] and to the study that showed that treatment 
with E2 attenuated pulmonary hypertension in the presence of a COMT inhibitor, 
which inhibits the synthesis of 2-ME2 [28].

Among patients with severe liver disease, SNPs in aromatase are associated with 
development of PAH [27], which suggests a protective role of E2. On the other 
hand, an increase in aromatase is reported in human PAH, as well as in the chronic 
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hypoxia- and Sugen/hypoxia-exposed models, and the inhibition of aromatase has 
been shown to have therapeutic effect in both rat models [17].

Taken together, altered estrogen metabolism in the pulmonary circulation can 
shift the cellular phenotypes from protective to harmful effects of estrogens in PAH 
pathology. The enzymes that modulate estrogen metabolism are present in vascular 
cells, which suggest that the local concentrations of the estrogen metabolites likely 
differ from circulating levels and contribute to cellular modulation [13]. Therefore, 
the effects of estrogen metabolites should be investigated in a more detailed and 
specific manner.

4.2.1.3  Microenvironment

The effect of E2 depends on the microenvironment of the target tissue/organ, 
affected by environmental and genetic background. This may contribute to the con-
flicting data among studies and the estrogen paradox.

One critical variable that contributes to the environment is the timing of E2 par-
ticipation in relation to progression status of the disorder. A study on atherosclerosis 
showed a protective effect of E2 in mild atherosclerotic patients and a harmful effect 
in advanced atherosclerotic patients [39]. As demonstrated in epidemiological stud-
ies in PAH, the patient age has significant effects on the hemodynamic profiles and 
survival [19, 40]. Environmental changes in the pulmonary circulation, such as oxy-
gen tension, are also important. In pulmonary arterial endothelial cells, E2 decreased 
VEGF expression upon exposure to hypoxia, while it had no effect on normoxic 
cells [28]. Genetic background is another key factor to the microenvironment. The 
genetic alterations that affect estrogen signaling and metabolism, such as SNPs in 
ESR1, aromatase, and CYP1B1, directly influence the estrogen signaling and 
metabolism. As seen in the higher penetrance of pulmonary hypertension in BMPR2 
mutation carriers, the effects of estrogens are also affected by other genetic altera-
tions. The effects of estrogens depend on the target vascular layers (media vs. 
intima) and the condition of endothelium (intact/quiescent vs. dysfunctional), as 
well as the concentrations of estrogens [13]. Therefore, the effects of estrogens are 
dictated by various factors that compose the microenvironment.

4.2.2  How Estrogens Exert Survival Benefit in Female PAH 
Patients

4.2.2.1  Cardiac Protective Effect of Estrogens

The estrogen paradox may be partly explained by the organ-specific effect of estro-
gens. The hypothesis is that estrogens may be harmful to the pulmonary arteries, but 
protective in the heart. Since a major determinant of survival in PAH is right heart 
function [20], the better cardiac function provided by E2 effects benefits female 

K. Oshima and M. Oka



61

PAH patients. Right ventricular function, defined by right ventricular ejection frac-
tion, was better in female PAH patients and was improved with PAH-specific thera-
pies in female patients, while males did not benefit [41, 42]. Exogenous hormone 
therapy is associated with better right ventricular systolic function [43]. In the 
Sugen/hypoxia rat model, female rats developed significantly less cardiac fibrosis 
[44], and exogenous E2 treatment improved right heart function [18]. On the other 
hand, female PAH patients tend to have more severe vascular remodeling and 
inflammation in pulmonary arteries [45]. In the Sugen/hypoxia model, female rats 
developed more intimal, angio-proliferative lesions compared to males [44]. These 
results may indicate the potential roles of estrogens in exacerbating the vascular 
remodeling while protecting the heart function in PAH.

4.3  The Perspective

The overall effect of estrogens is determined by numerous factors such as age, 
genetic background, oxygen tension, cell types, cell condition, concentration of 
estrogens, expression levels of ERs, estrogen metabolites, co-regulators of estro-
gens, and organs [46]. Therefore, whether estrogens are protective or detrimental as 
an end result depends on the balance of all the components in the target tissue/
organ.

One of the key features of estrogens is that they apparently exhibit opposite 
effects depending on the timing/progression of the disorder (i.e., whether the dis-
ease was already established or not). Estrogens are protective if present at the time 
of a disease onset, but ineffective when administered in later stages of the pathol-
ogy. This is supported by studies of atherosclerosis and Alzheimer’s disease, as well 
as of balloon injury-induced carotid artery stenosis [46]. It is, therefore, important 
to fully elucidate exactly what factors determine how estrogens behave, protective 
or detrimental, in the hypertensive pulmonary circulation. Development of animal 
models of PAH that recapitulate human pathology and epidemiology may be 
required to settle this issue.

Additionally, a recent large clinical study has surprisingly revealed that young 
female PAH patients (<45 years) have better hemodynamic profiles as compared to 
men [40]. Although more detailed subcategorized analyses of these epidemiological 
data are needed, such as longitudinal follow-up studies focusing on sex and hor-
monal status, the implication of this observation could be that estrogens are benefi-
cial, even in the damaged pulmonary circulation in PAH. Then, the question is why 
PAH is more frequent but less severe in females, or if there is any specific stimuli/
stimulus that favors females to trigger less severe PAH. This could be a very critical 
issue in this field that needs to be carefully addressed in the future.
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4.4  Conclusion

The “estrogen paradox” is not limited to the PAH field. It is now clear that the 
effects of estrogens in the cardiovascular system are not only beneficial but also 
detrimental based on the conflicting results of hormone replacement therapy [39, 
47]. Estrogens modulate various aspects of the pulmonary circulation, such as vas-
cular tone, cellular proliferation, apoptosis, angiogenesis, as well as inflammatory 
status, and their effects can be either good or bad depending on various factors. 
Unfortunately, the current understanding of the roles of estrogens in PAH is incom-
plete, and many more studies are needed to define their exact roles. Altered estrogen 
metabolism, altered estrogen signaling, and the microenvironment are likely con-
tributing to the conflicting and paradoxical effects of estrogens. It is thus critical to 
perform thorough, rigorous studies of the diverse and complex estrogen 
pharmacology.
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