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    Chapter 14   
 Mathematical Skills and Learning 
by Invention in Small Groups 

             Michael     Wiedmann    ,     Ryan     C.     Leach    ,     Nikol     Rummel    , and     Jennifer     Wiley    

    Abstract     The purpose of the present research was to investigate how the effective-
ness of learning-by-invention activities may be infl uenced by the composition of 
the small groups that engage in them in terms of the mathematical skills of their 
members. Undergraduates engaged in an “inventing standard deviation” activity. 
Groups that included both high- and low-skill members generated a broader range 
of solution attempts and more high-quality solution attempts during the activity. 
Both the range and quality of solution attempts that were generated related to better 
uptake of the standard deviation formula from a later lesson. These results suggest 
that the composition of the small groups that work together may have an impact on 
the effectiveness of learning-by-invention activities.  

  Keywords     Collaborative learning   •   Collaborative problem solving   •   Learning by 
invention   •   Group composition   •   Mathematical skill  

        Mathematical Skills and Learning by Invention 
in Small Groups 

    One approach for teaching new mathematical procedures is to provide direct instruction 
with a lesson that introduces the new problem-solving method (c.f. Anderson et al. 
 1995 ; Rosenshine and Stevens  1986 ). After the lesson, students are encouraged to 
practice using the new formula. This approach makes sure that students have the 
prior knowledge necessary to solve problems with the new formula. But does pre-
senting the lesson fi rst lead to the best understanding of the formula? Or are students 
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able to come up with useful attempts for solving new problems on their own? In an 
alternative approach to mathematics instruction,  learning by invention , 1  students 
(generally working in small groups) attempt to invent their own solution methods 
before being taught the canonical formula. Learning by invention has now repeat-
edly been shown to be just as effective as instruction where the canonical solution 
is taught fi rst (e.g., Belenky and Nokes-Malach  2012 ; DeCaro and Rittle- Johnson 
 2012 ; Kapur  2009 ,  2012 ; Kapur and Bielacyzc  2011 ; Loibl and Rummel  2013 ; Roll 
et al.  2009 ; Schwartz and Martin  2004 ; Westermann and Rummel  2012 ). This chap-
ter takes a closer look at the question of whether diversity in math skills among the 
members of the small groups might play a role in learning by invention. 

 As an example of the effi cacy of learning by invention for teaching statistics, 
Schwartz and Martin ( 2004 ) compared two instructional conditions. In the experimental 
condition, students engaged in learning by invention. Their invention task was to 
compare data across different distributions in order to develop standardized scores. 
Following the invention activity, students then received a worked example teaching 
them about this concept. Thus, the learning-by-invention condition involved both an 
invention phase and an instruction phase. In a comparison condition, students were 
fi rst taught how to standardize scores before practicing the procedure. Students 
in the learning-by-invention condition outperformed the control condition on a 
transfer test that required applying standardized scores in a new context. Schwartz 
and Martin argued that the invention phase served as  preparation for future learning  
from the worked example. The invention process was suggested to activate prior 
knowledge that facilitated learning from the following direct instruction. The creation 
and careful consideration of solution attempts during the invention phase may be a 
mediator of this effect. 

 Kapur ( 2009 ,  2012 ) has also shown benefi ts from learning by invention on 
 conceptual and procedural learning. In his work, he proposes that invention may 
lead to productive failure; that is, students may fail at generating a formula, but, 
similarly to Schwartz and Martin ( 2004 ), that this will be productive for future 
learning. Kapur’s instructional approach combines the invention phase with a class 
lecture and discussion in which students’ solution attempts are compared and con-
trasted with each other and with the canonical solution. This may help students 
recognize the critical constraints and affordances of these solutions. Kapur ( 2012 ) 
showed that, non-surprisingly, students in an invention condition generated a more 
diverse set of solutions than the control condition that was taught canonical solutions. 
However, students in the invention condition also outperformed the control  condition 
on conceptual understanding items and performed just as well as the control 

1   In the literature, there are several similar approaches that explore the learning opportunities that 
can result from having students engage in problem solving before having received instruction. 
VanLehn referred to this as impasse-driven learning ( 1988 ). Schwartz and Martin ( 2004 ) have 
argued that an initial invention phase can provide “preparation for future learning.” Kapur frames 
generation and exploration (Kapur  2012 ), or elicitation phases (Kapur and Bielaczyc  2011 ), as 
ways to encourage  productive failure.  In the present paper, we adopt the terminology and instruc-
tional sequence of Schwartz and Martin ( 2004 ) where an invention phase is followed by instruc-
tional support in the form of a worked example. 
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 condition on procedural fl uency items. In addition, Kapur and Bielaczyc ( 2011 ) also 
found that the diversity of solutions generated during invention predicted posttest 
performance. This empirical link between the invention process and learning 
 suggests that the consideration of multiple solution approaches during invention 
activities may be one key to students’ preparation for future learning.  

    The Present Study 

 The previously reported results suggest that learning by invention may be an 
 effective instructional approach for promoting conceptual understanding of  formulas 
as well as procedural knowledge of how to use them (following Mayer and Greeno 
 1972 ). The main question of the present study is  under which conditions  this 
approach may be most effective. In particular, we are investigating how the small 
groups engaging in invention activities may be best composed in order to optimally 
support individual student learning. Since the problem-solving task is mathematical, 
it seems likely that the mathematical skill of individual group members may have 
an effect on group interaction. Roll ( 2009 ) was only able to show benefi ts from 
invention activities in high school students that took college-level (Advanced 
Placement) courses, but not for more typical students. Kapur and Bielaczyc ( 2011 ) 
investigated benefi ts of productive failure in three schools of varying student profi les 
in mathematical skill. The effect of productive failure activities was stronger in schools 
of higher mathematical skill profi les. Therefore, one prediction might be that learning 
by invention is only effective for students with higher mathematical skill. 

 However, it may also be suffi cient that  each group  has at least one member with 
higher mathematical skill (Wiley et al.  2009 ). Many researchers (Paulus  2000 ; 
Strobe and Diehl  1994 ; Wiley and Jensen  2006 ; Wiley and Jolly  2003 ) have 
 suggested that diversity in the background of group members may be benefi cial for 
problem solving. Dunbar ( 1995 ) showed that in laboratories where scientists came 
from different disciplines, unexpected fi ndings led to many more alternate hypotheses 
and analogies, which in turn led to more scientifi c breakthroughs. Gijlers and de 
Jong ( 2005 ) found that dyads engaging in discovery learning generated more 
hypotheses when they were heterogeneous in prior knowledge than when they were 
homogeneous. And Canham et al. ( 2012 ) found that dyads were better at solving 
transfer items when their members were trained in different ways of solving 
 probability problems than when both members had received the same training. 

 Heterogeneous group composition in terms of the math skills of the members 
may also infl uence the interaction of the group. Webb ( 1980 ), for instance, found 
that when high- and low-skill students work together, they often form teacher- 
student relationships. This peer tutoring can not only be benefi cial for the tutee but 
also for the high-skill tutor. Webb also found that working in mixed groups seemed 
to promote the most explanation-giving during group discussion. Given these 
advantages of heterogeneous group composition, it may also be that in invention 
activities, mixed groups will have the most productive discussions. However, it is 
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also possible that the high-skill members will show poorer learning outcomes when 
having to work with low-skill students than when working in homogeneous, high- 
skill groups (Fuchs et al.  1998 ). It is therefore an interesting question whether 
 mathematical skill of each group member, and group composition in terms of math-
ematical skill of the members, may have an effect on learning by invention. 

 To test whether the composition of groups in terms of their math skills might 
matter, the present study explored differences in the effects of learning by inven-
tion in performance among three group types: all-low-skill groups, all-high-skill 
groups, and mixed groups. The target content was the standard deviation formula, 
and mathematical skill was measured using scores on a standardized college 
 admission test (the Math ACT). Data was collected in two contexts. Some groups 
participated as part of an undergraduate course in Research Methods in Psychology. 
For these students, dependent measures included written artifacts of the invention 
process and an online quiz to assess learning. A second sample was collected from 
a subject pool of undergraduates enrolled in Introduction to Psychology. These 
 students participated in a laboratory study using parallel procedures, but addition-
ally recordings were collected that allowed for a more complete accounting of the 
group discussion. 

 The main hypotheses to be tested were (1) whether groups needed at least one 
high math member to take advantage of learning by invention and (2) whether 
 heterogeneous group composition (i.e., participating in mixed groups) would 
positively affect the variety and quality of solution approaches generated during the 
invention activity, which would in turn affect learning. Thus, the main analyses of 
interest were ANOVAs testing for the main effect of group composition on both 
solution variety and quiz performance, with planned comparisons among the 
three different group types. Subsequent analyses tested whether solution variety 
and quality would predict quiz scores, acting to mediate the effect of group composition 
on performance.  

    Method 

    Participants 

    Research Methods Sample 

 Students who enrolled in an undergraduate Research Methods course in Psychology 
at the University of Illinois at Chicago participated in the experiment as a class 
activity. This course is usually taken in the second year of university. Students who 
take this course generally intend to declare psychology as their major. 

 The original sample consisted of 149 students, taught in six sections and assigned 
to groups of three based on their Math ACT scores so that there would be groups in 
each category of group type. Students were unaware that ACT scores were used to 
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assign them to groups. Assigning students to groups also prevented established 
groups from working together, to make this study more similar to the randomly 
assigned groups obtained in the subject pool sample. Students had to be excluded 
for several reasons: Because Math ACT scores were not available for all students, 
66 students from groups where some members’ Math ACT scores were unknown 
were excluded from both group-level and individual-level data analyses. Another 15 
students did not complete the fi nal quiz. Those students, but not the other members 
of their groups, were excluded from learning outcome analyses resulting in a fi nal 
sample size of 68 individuals for individual-level analyses. There was data from 
members of 25 groups available for group-level analyses. 

 Participants received credit for participating in the activity and completing the 
homework assignment, as they did for all recitation and homework activities in 
their class. They were unaware that the quiz would not count toward their grade. 
The homework assignment, which included the quiz, was announced after the 
invention activity.  

   Introduction to Psychology Sample 

 Sixty undergraduate students from the Introduction to Psychology course at the 
University of Illinois at Chicago were recruited to participate in the experiment as 
part of a subject pool. Introduction to Psychology is typically taken during the fi rst 
or second semester of university. Groups were comprised of students who signed up 
individually for the same time slot. Skill profi les of the groups were ascertained 
after the data was collected. Groups of friends who signed up together were excluded 
from further analysis. There were 59 students with complete data that could be 
included in the individual analyses, and data from members of 20 groups were 
available for group-level analyses.  

    Math Skill Level 

 For both samples, math skill level was based on a median split derived from 
 historical data from this student population. Students with Math ACT scores of 24 
or below were considered to have lower skill, and those with scores of 25 or above 
were considered to have higher skill. A score of 25 puts students in the 80th 
percentile in national norms. Of the 127 individuals available for individual analyses, 
64 were classifi ed as low math skill and 60 as high math skill. Students categorized 
as having high versus low math skill differed signifi cantly on the Math ACT, 
 t (122) = 14.46,  p  < .001. Of the 45 groups, all students were considered to have low 
math skill in 11 groups, all students were considered to have high skill in 9 groups, 
and 25 groups had a mix of high- and low-skill members.   
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    Materials 

    Invention Activity 

 The invention activity used in this study is included in Appendix A of Wiedmann 
et al. ( 2012 ). This activity was based on prior invention activities developed by 
Kapur ( 2012 ) and Schwartz and Martin ( 2004 ) in which students are tasked with 
comparing three data sets. In this study, the invention activity used a cover story 
about the amount of antioxidants found in tea coming from three tea growers. 
Students were told that “a company wished to buy tea from the grower with the most 
consistent levels of antioxidants from year to year and the company has asked for 
the students’ help.” They are asked to propose a formula for calculating the consistency 
of antioxidant levels for each tea grower.  

    Quiz 

 The quiz contained three items: two in which the formula for standard deviation 
needed to be applied to a new problem about the weather and one in which 
students needed to invent standardized scores in order to compare two students’ test 
performances across different courses. Students were asked to explain the mathe-
matical reasoning behind their answers. This quiz served as the assessment of 
learning outcomes for the activity and is based on items used in Kapur ( 2012 ).   

    Procedure 

    Research Methods Sample 

 The study took place as part of a course in Research Methods, during the weekly 
recitation section meeting. At the start of the meeting, the teaching assistant gave a 
short (10 min) introduction that began with an example research question and 
two data sets. For each data set, the teaching assistant demonstrated how to draw a 
histogram and defi ned and calculated the mean and median. While the means were 
the same in both data sets, the medians were not. To help the student notice the variance 
among scores, students were then asked to describe the other big difference they 
could see between the two data sets. 

 Students then worked in groups for 30 min with the goal of inventing a formula 
to describe “consistency” in three data sets. 

 They were given a group worksheet with three data sets. The worksheet asked 
them to generate as many invented formulas as they could to describe consistency 
in the three data sets, and provided additional space for their solution attempts. The 
group worksheets were collected at the end of the discussion. 
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 After class, students completed an online homework assignment through the 
 university’s e-learning (Blackboard) system. As usual, they completed the home-
work individually at a time of their choosing before the next class meeting. This 
assignment included a short lesson about the standard deviation formula and asked 
students to compute standard deviations from a worked example before the quiz 
(following Schwartz and Martin  2004 ).  

   Introduction to Psychology Sample 

 The procedure was largely the same, except that the small groups were run one 
group at a time in a laboratory room and recorded. The introduction given by the 
experimenter was similar except median was not mentioned. Because students 
sometimes are overwhelmed with the demand to create a formula (Roll et al.  2009 ), 
in this sample, it was clarifi ed that instead of a formula, they could also write step-
by- step instructions for how they would compute consistency. 

 The remainder of the procedure was similar. After working on the invention 
activity together for 30 min, the group members were separated to work individually 
for the remainder of the study. Each student was given the overview of the standard 
deviation formula and worked example to read before taking the quiz.   

    Coding Schemes 

   Coding of Solution Attempts 

 The group worksheets from the invention activity were coded for both variety and 
quality of solutions. A coding scheme was established post hoc based on the range 
of  solutions that were actually obtained such that each distinct solution type had its 
own subcategory. A list of the 22 fi nal codes appears in Appendix B of Wiedmann 
et al. ( 2012 ). Coders assigned each solution attempt to one of the 22 subcategories. 
The total number of different solution approaches was computed for each group by 
 adding the number of subcategories that had at least one instance present in the 
group worksheet (i.e., the total of the 0, 1 codings across the 22 codes). 

 To code for differences in quality of solution attempts, a task analysis of under-
standing the standard deviation formula identifi ed several critical insights that 
students might reach during their discussions. The fi rst insight is that methods such 
as making histograms or bar graphs, noticing an individual high or low score, or 
summing or averaging scores will not help to quantify consistency. Alternatively, 
noticing differences in the range of values across data sets is an important fi rst step 
toward understanding variance. A second key insight is that somehow variations in 
positive and negative directions need to be handled in some way so that they do not 
cancel each other out. A third key insight is that variance needs to be computed in 
relation to some reference point (such as the mean). Based on this analysis, solution 
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attempts that included recognition of range, deviations from the mean, and the need 
to consider absolute values were all categorized as being of higher quality, and a 
subtotal of higher-quality solution approaches was computed in addition to the 
overall variety of solution approaches. 

 Coding for the    Research Methods sample relied on the worksheets. Coding for 
the    Introduction to Psychology sample was also based on ideas mentioned in discus-
sion when transcripts of the discussions were available. Two individuals coded all 
groups for the presence or absence of solution attempts in each subcategory 
(Krippendorff  α  = .81). Differences were resolved by a third rater.  

   Coding for Quiz Responses 

 Each of the three problems was scored using the same basic concepts and point 
values, giving the student the point value assigned to the most advanced concept 
that was referenced in each explanation:

  Central tendency, sum, or maximum score (1 point) 
 Examples: The average of February is higher than January, so they should go with 

January. Alicia was only 1 point away from a perfect score. Alicia had a higher score. 
 Ranges and deviations: differences between scores, subtracting smallest from largest 

score, differences from the mean (2 points) 
 Examples: The difference from the temperature for February by month is 2, 2, 1, 3, 4 

and that is very consistent. January has a lower range. Chemistry has more of a spread. 
Alicia is further from the mean. 

 Vague or incorrect formula or reasoning about  SD  (3 points) 
 Examples: A higher deviation means the classes were harder, making Alicia more 

deserving. 
 Correct use of  SD  (4 points) 
 Examples: January has a lower standard deviation. Kelvin should receive the award 

because his score has a greater number of standard deviations above the average. 

   Two individuals scored all posttest items. A maximum score of 12 points was 
possible across the 3 items. Final explanation quality composite score was com-
puted as a proportion of that total. Cronbach’s  α  among the three quiz items was .80. 
Krippendorff’s  α  indicated good interrater reliability on all three items (item 1 = .84, 
item 2 = .81, item 3 = .77).    

    Results 

    Learning Outcomes 

 Before proceeding to test the main questions, we explored the independency of the 
individual learning data since it was obtained in a group setting. Kenny    et al. ( 1998 ) 
suggest the calculation of intra-class correlations to test for consequential noninde-
pendence. Because the intra-class correlation for group members’ quiz scores was 
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not signifi cant in the Research Methods sample, ICC = .08,  p =  .55, CI = 95%, and 
the Introduction to Psychology sample, ICC = .12,  p =  .36, CI = 95%, it was appropri-
ate to analyze learning outcomes on an individual level. 

 In a next step, differences between the two samples were explored. Participants 
from the Research Methods sample, who were more advanced in their studies, were 
found to outperform the Introduction to Psychology sample on the quiz,  F (1, 
125) = 5.90,  p  < .02,  η  2  = .05. Importantly, this did not interact with the group composi-
tion factor,  F  < 1.07, which meant the two samples could be collapsed in order to 
increase power, while the sample variable was retained as a covariate in all aggregated 
analyses reported below (for more complete analyses of this data, including descrip-
tive  statistics and analyses for the separate samples, see Wiedmann et al.  2012 ). 

 The top panel of Fig.  14.1  presents average quiz performance as a function of 
group composition (entered as a nominal variable) and math skill. An ANCOVA 
with sample entered as a covariate showed a signifi cant effect of group composition 

  Fig. 14.1    Adjusted means for quiz scores ( top ) and solution variety ( bottom ) by group composition       
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on quiz performance,  F (2, 123) = 12.41,  p <  .01,  η  2  = .17. Planned comparisons indi-
cated that students in the all-low math groups had lower scores on the quizzes than 
students in either the mixed or all-high groups, who did not differ in quiz 
performance.  

 A follow-up analysis was performed to see if group heterogeneity affected low- 
skill and high-skill students differently. As shown in the top panel of Fig.  14.1 , both 
high- and low-skill members seemed to benefi t from participation in mixed groups. 
A 2 × 2 ANCOVA (math skill × group heterogeneity) with sample entered as a 
covariate revealed two signifi cant main effects. As might be expected, high-skill 
students did better than low-skill students,  F (1, 122) = 28.44,  p <  .01,  η  2  = .19. In 
addition, the main effect for group heterogeneity,  F (1, 122) = 6.29,  p =  .01,  η  2  = .05, 
and the lack of a signifi cant interaction,  F  < 1, indicated that both high-skill and low- 
skill students benefi ted from working in heterogeneous (mixed) groups.  

    Variety of Solution Approaches 

 Average totals of different solution approaches as a function of group composition 
are shown in the bottom panel of Fig.  14.1 . An ANCOVA on the total number of 
different solution approaches with sample entered as a covariate showed a 
significant effect of group composition,  F (2, 41) = 8.55,  p =  .001,  η  2  = .29. Planned 
comparisons indicated that the mixed groups documented signifi cantly more different 
solution approaches than the all-low-skill,  p  < .001, and all-high-skill groups,  p  = .02, 
who did not differ,  p  = .33. 

 When only higher-quality solution approaches were considered, a different 
 pattern emerged. An ANCOVA on the number of higher-quality representations 
included in the group worksheets showed a signifi cant effect of group composition, 
 F (2, 41) = 9.47,  p <  .001,  η  2  = .32. Planned comparisons indicated that the all-low 
groups documented fewer different high-quality solution approaches than the all- 
high,  p  = .02, and mixed groups,  p  < .001, who did not differ,  p  = .23. Although the 
mixed groups also tended to include higher numbers of low-quality solution 
approaches, this effect did not reach signifi cance,  F (2, 41) = 2.76,  p <  .08,  η  2  = .12.  

    Relation of Solution Variety to Learning Outcomes 

 The partial correlations among the total number of different solution approaches, 
high-quality solution approaches, low-quality approaches, and students’ quiz scores 
(controlling for sample) are presented in Table  14.1 .

   Two fi nal analyses were then performed to test whether the discussion of a broad 
variety of representations was responsible for the better performance that was 
observed as a function of group heterogeneity. To investigate this mediational 
hypothesis, the test of indirect effect procedure and corresponding macro (Preacher 
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and Hayes  2008 ) was employed using 5,000 resamples. For these analyses, 
 bootstrapping tests are generally preferred to the more traditional Sobel test because 
they do not assume a normal distribution of the product terms which are usually 
normally distributed only in large samples (Preacher and Hayes  2004 ,  2008 ; Shrout 
and Bolger  2002 ). Mixed groups were coded as “1” for heterogeneity, and the 
remaining groups were coded as “0” for this analysis. Results indicated that 
heterogeneity predicted the variety of representations,  B  = 1.83 ( SE  = .27), 
 t (126) = 6.61,  p  < .05, and that variety of representations predicted quiz performance, 
 B  = .02 ( SE  = .01),  t (126) = 2.47,  p  < .05. The total effect of heterogeneity on quiz 
performance was also signifi cant,  B  = .09 ( SE  = .03),  t (126) = 2.84,  p  < .05. However, 
this relationship decreased to non-signifi cance when the mediating infl uence of 
the variety of representations was included in the analysis,  B  = .04 ( SE  = .04), 
 t (126) = 1.23,  p  = .22 (see Fig.  14.2 ).  

 In addition, the indirect effect (the mediated effect) of heterogeneity on quiz 
performance through representation variety was 0.05 ( SE  = 0.02), and the 95% bias- 
corrected confi dence intervals for the size of the indirect effect did not include zero 
(.01, .08), which shows that the indirect effect was signifi cant at a  p  = .05 level 
(Preacher and Hayes  2004 ,  2008 ; Shrout and Bolger  2002 ). Taken together, these 
fi ndings provide evidence for full mediation. This analysis suggests that heterogeneity 
in groups led to better quiz performance because it affected the variety of solutions 
that were discussed during the learning-by-inventing activity. 

   Table 14.1    Correlations between number of solutions and quiz performance   

 Low quality  High quality  Total variety 

 Quiz score  .15  .34**  .31** 
 Low quality  .14  .81** 
 High quality  .70** 

  Note:  N  = 127,  df  = 124, ** p  < .01  

Overall Model: R2 = .15, F(3,123) = 7.00, p = .0002

Variety of 
Representations

Quiz 
Performance

Group 
Heterogeneity

.02*1.83***

.04 (.09**)

  Fig. 14.2    Mediational model. Note: the value in parentheses indicates the total effect before 
accounting for mediation. * p  < .05, **p < .01, ***p < .001       
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 Of course, another critical aspect of group composition as defi ned in this study 
was that it was based in math skill (all low, mixed, and all high). Clearly math skill 
can have a direct effect on learning about math for any individual, so it is interesting 
to ask if the discussion of a variety of representations during the learning-by- 
inventing activity might have a signifi cant effect on performance unique from the 
effect of group composition on performance through math skill. 

 To address this concern, we performed a second regression analysis using both 
representation variety and math ACT scores as mediators. This analysis showed that 
group composition signifi cantly predicted the variety of representations produced 
by the group,  B  = .56 ( SE  = .23),  t (123) = 2.45,  p  < .05, and math ACT scores, being 
the basis upon which group composition was defi ned, were signifi cantly related to 
composition,  B  = 3.72 ( SE  = .54),  t (123) = 6.89,  p  < .05. Both representation variety, 
 B  = .02 ( SE  = .01),  t (123) = 2.72,  p  < .05, and math ACT scores,  B  = .02 ( SE  = .00), 
 t (123) = 4.76,  p  < .05, signifi cantly predicted quiz performance. The total effect of 
group composition on quiz performance was also signifi cant,  B  = .10 ( SE  = .02), 
 t (123) = 4.33,  p  < .05, but was reduced to non-signifi cance when including the 
 mediating infl uences of representation variety and math skill,  B  = .03 ( SE  = .02), 
 t (123) = 1.04,  p  = .30. The indirect effect through variety of representations was 0.01 
( SE  = 0.01), and importantly, the 95% bias-corrected confi dence intervals for the 
size of the indirect effect did not include zero (.003, .03). Taken together, these 
results indicate full mediation by variety of representations even when the effects of 
math skill are included in the analysis. 

 When these same two mediational analyses were performed using the number of 
high-quality solutions instead of total variety measures, identical patterns of results 
were found. The discussion of more high-quality solution approaches also mediated 
the group homogeneity and composition effects and contributed to performance 
independently of math ACT scores. 

 Taken together, these mediational analyses suggest that it is the discussion of a 
wide range of solution approaches during learning-by-invention activities (includ-
ing a number of higher-quality solution attempts) that mediates the effects of group 
composition. More diverse groups documented a broader variety of solution 
approaches, and when more solution approaches were documented, that improved 
performance on later quizzes. Further, the benefi ts of solution diversity during 
group discussion were demonstrated to contribute to a better quiz performance even 
when the math skill of the students was taken into account.   

    Discussion 

 The results of this study suggest that group composition in terms of math skill 
affects whether students are able to benefi t from mathematical learning-by- invention 
activities. Students who worked in mixed groups were better at explaining their 
understanding of standard deviation on a quiz following the activity than students 
who worked in homogeneous groups. Signifi cant effects of group composition were 
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seen in both variety and quality of solution approaches. Interestingly, it was the 
mixed groups who generated the widest variety of solution attempts, suggesting that 
they seem to be in a particularly good position to make the most of invention 
 exercises. This result converges with several other fi ndings in suggesting that diversity 
in expertise among group members can contribute to more adaptive, fl exible, and 
creative problem solving (Canham et al.  2012 ; Gijlers and De Jong  2005 ; Goldenberg 
and Wiley  2011 ). Additionally, the consideration of a wider variety of solution 
approaches during the invention phase, including a number of higher-quality 
approaches, predicted the uptake of a later lesson about the standard deviation 
 formula and mediated the effects of group composition and diversity on learning. 

 These results show a signifi cant benefi t of working in mixed groups for learning-
by- invention activities. Yet, more research is needed to fully understand the 
affordances of this instructional context. It is possible that even more robust effects 
could be found with a longer invention activity, a conjecture that could be explored 
in future research. The invention activity used here was of a fairly short duration, 
and a number of the groups seemed to be approaching some critical insights when 
time ran out (Wiedmann et al.  2012 ). In previous studies, students generally engaged 
in their invention discussions for more than one class period (Kapur  2012 ; Schwartz 
and Martin  2004 ). 

 Another limitation of the present study was the lack of a pretest-posttest design 
to demonstrate that better quiz scores refl ected improved learning from the activity. 
Also, because the present studies did not include a direct instruction comparison 
condition, these results cannot speak to whether low-skill students may benefi t more 
from learning by invention in mixed groups than they would have from direct 
instruction. 

 One recommendation for future studies would be to consider using an instruction 
that does not prompt for a formula at all. In a number of groups, arbitrary formulas 
were contributed during the discussion. These formulas were not attempts to 
 quantify a particular solution approach that was being discussed qualitatively. Instead, 
students just brought up simple formulas that students knew like distance = rate × 
time. We suspect this problematic behavior may have been a consequence of giving 
the instruction “to create a formula” in these studies. It may be better to instruct 
students to give step-by-step descriptions of how to compute consistency (Roll et al. 
 2009 ) or to prompt students to generate a method (Schwartz and Martin  2004 ). For 
the Introduction to Psychology sample, we included requests for both formulas and 
step-by-step descriptions as part of our task instruction; however, many students 
still seemed to focus on the formula goal. 

 Because the benefi ts of learning by invention over direct instruction may be less 
robust for low-skill students (Kapur and Bielaczyc  2011 ; Kroesbergen et al.  2004 ; 
Roll  2009 ), all of the above points represent important issues for future research. 
Further, while these results represent some of the fi rst demonstrations of learning by 
invention for low-skill students, an important observation is that previous attempts 
have used much younger samples. We suspect all college students will have the capac-
ity to engage in the demands of this learning-by-inventing task, even if the low-skill 
students are less profi cient at math tests. Given this, it is possible that the present 

14 Mathematical Skills and Learning by Invention in Small Groups



262

fi ndings will not generalize to younger samples where the demands of a learning-
by-invention activity may present too much of a challenge for low-skill learners. It 
is an interesting question for future research whether the benefi ts of working in 
mixed groups can be seen in younger samples, which would be consistent with other 
work (i.e., Webb  1980 ) showing learning benefi ts when students with different 
 ability levels work together. 

 Another important direction for this line of research is the further exploration of 
what is happening during these collaborative discussions that is critical for effective 
learning from invention. The analyses so far have shown that a broader variety of 
representations are discussed and a larger number of higher-quality solution attempts 
are considered, but how are these brought into the conversation? The really interest-
ing questions of how the interactive discourse and dynamics of mixed groups may 
facilitate learning from invention have yet to be answered. 

 We have only just begun the task of analyzing the discussion protocols of groups, 
starting with the three most successful mixed groups of the Introduction to 
Psychology sample (Wiedmann et al.  2012 ). Some initial impressions suggest that 
there are multiple ways in which groups can engage in invention activities. In our 
preliminary analysis (reported in Wiedmann et al.  2012 ), we found that the fi rst 
group discussed fewer solution approaches than the other two groups, but they 
seemed to engage in discussion on a more conceptual level. They also engaged in 
more evaluation of the proposals and in more refl ection on their progress. On the 
other hand, the two other groups generated more solution approaches, but this activity 
seemed to be  accompanied by less discussion. A very preliminary speculation could 
be that  generating a wide variety of approaches to the problem may be one impor-
tant factor. In addition, a richer discussion around fewer alternatives can also lead to 
successful learning-by-invention activities as seen in the fi rst group, especially if the 
discussion leads to key insights. Alternatively, two of the three groups seemed to 
benefi t from the visual affordances of line graphs. It is possible that some specifi c 
kinds of solution attempts may be particularly helpful toward preparation for future 
learning (i.e., more visual ones or more abstract ones; Ainsworth  2006 ; Schwartz 
 1995 ). Although no universal pattern could be identifi ed for the most successful 
groups, future analyses exploring the interaction patterns among the least suc-
cessful groups could reveal more consistency in the behaviors that lead to ineffec-
tive  collaboration. Other questions for future analyses include: What role do 
behaviors such as question- asking, responsiveness, evaluating proposals, connect-
ing across representations, and generating or hearing explanations play in group 
success? How are high-quality approaches being discussed or discovered? What 
contributions do the high-skill versus the low-skill members make to the discus-
sions? Who is acting as the group leader and how do they lead the group? Other 
preliminary analyses of the discussion suggest that being in a group with a high-
skill leader is critical (Wiley et al.  2013 ). 

 Although we have motivated our study by focusing on the contribution of 
 mathematical knowledge by high-skill members, there are other mechanisms by 
which they may have infl uenced the groups. For example, invention may be a novel 
type of exercise for many students. High-skill students may be more familiar with 
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these tasks, or they may be more willing to engage in novel tasks, or they may 
 possess a greater sense of self-effi cacy in math which enables them to have a more 
positive approach to these tasks. Alternatively, the high-skill students may possess 
superior metacognitive abilities, and with those they may help the groups to monitor 
and refl ect on their progress or regulate their learning and studying activities. Either 
of these alternative explanations suggests that high-skill members may not be 
 necessarily contributing specifi c knowledge to the mixed groups, but may be  helping 
the groups via other attributes that are generally correlated with expertise in a 
domain. A complete analysis of the discussion protocols from the Introduction to 
Psychology sample is currently underway which will help to address these questions. 

 This analysis of the discussion protocols will also be a great source of insight on 
what particular behaviors one may wish to support while students engage in 
learning- by-invention tasks. In the present study, we did not script the interactions 
among group members, did not assign roles, and did not give students any specifi c 
direction on how to engage in the task together. Others have already begun to test 
(Kapur and Bielaczyc  2011 ; Roll et al.  2012 ,  2009 ; Westermann and Rummel  2012 ) 
if students can be supported in order to maximize the benefi ts of engaging in invention 
tasks, without nullifying the benefi ts of invention over direct instruction. Indeed, 
peer interaction was carefully scaffolded in most of Webb’s previous studies, which 
may have allowed for more stable benefi ts of mixed groups to emerge. Our goal for 
the closer analysis of our discussion protocols is to help to determine whether these 
candidate behaviors seem to facilitate learning by invention or if there are other 
characteristics of successful interactions that emerge. The present study has demon-
strated that students may benefi t most from learning-from-invention activities when 
working in mixed groups. Future research needs to further explore why and how 
these benefi ts are afforded and, importantly, whether providing supports for these 
affordances can ensure benefi ts in all groups.     
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