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2.1 � EMG Dataset

In our experiments, data acquisition system include PowerLab, 16sp, and Dual 
BioAmp manufactured by ADInstruments Ltd. and software Chart V5.0 with 
sampling rate adjusted at 2  kHz, recording signal amplitude 2  mV, primary 
low-pass filter 1 with cutoff frequency 500 Hz, and primary high-pass filter 2 
with cutoff frequency 0.3 Hz. Data are outputted in txt or excel format which 
are readable in MATLAB for data processing. MATLAB 7.0 software installed 
on a Laptop with 2.2  GHz Core2Dual CPU is used for signal processing  
(Fig. 2.1).

Our samples are 20 normal and healthy subjects aged between 20 and 30 with 
almost similar physical power randomly selected from students of Biomedical 
Engineering Department, Amirkabir University of Technology, satisfying condi-
tions of having enough sleep and appropriate nutrition, having no considerable 
physical activity before test, no sedative drug use for at least 24 h before test, with 
no bone fracture and musculoskeletal disorder close to test, and no pain sensed 
during tests by subjects. Each individual fills out a form requesting following 
items:

•	 Personal information as name, gender, age, height, and weight
•	 Types of recording signals
•	 Recording degrees of freedom
•	 Stimulations and motions
•	 Processing items requested
•	 Notes

Chapter 2
Methodology for Working with EMG 
Dataset
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EMG signals of biceps, deltoid, triceps, tibialis anterior, and quadriceps muscles 
are recorded in three states of isometric contraction (ISO), maximum voluntary 
contraction (MVC), and dynamic contractions (Figs. 2.2, 2.3, 2.4, 2.5, and 2.6).

A preprocessing filtering process is then applied to recorded signals. A window 
consisting of 20,000 samples (10 s) is made cutoff for each signal to be processed 
and analyzed (Fig. 2.7).

Fig. 2.1   Signal conversion devices PowerLab

Fig. 2.2   Biceps anatomy and electrode placement

Fig. 2.3   Deltoid anatomy and electrode placement
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Fig. 2.4   Triceps anatomy and electrode placement

Fig. 2.5   Quadriceps anatomy and electrode placement

Fig. 2.6   Tibialis anterior anatomy and electrode placement
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2.2 � Feature Extraction

Feature extraction, which is step to measure features or properties from input data, 
is essential in pattern recognition system design. Goal of feature extraction is to 
characterize an object to be recognized by measurements whose values are very 
similar for objects in same category, and very different for objects in different 
categories. Computational complexity and class discrimination are two main 
factors for determining best feature set.

A set of features are listed in Table 2.1 along with their descriptions. The pri-
mary purpose of this work is to use these features to find an optimum set best 
describing and characterizing EMG signals. The nonlinear classifier used in this 
work is a five-layer neuro-fuzzy network; its inputs are selected features among 
feature list given in Table  2.2. In our experiments, it has been found that there 

Fig. 2.7   Illustrated samples 
in 10 s

Table 2.1   Muscle test assessments by professional experts

*Because of laboratory condition, quadriceps just had been evaluated in female

Case number Biceps Triceps Middle deltoid Quadriceps Tibialis anterior

1 5 +5 5 − 5

2 +5 +5 +5 − +5

3 5 −5 +4 − −5

4 −5 5 +4 − −5

5 +4 4 4 −5 −5

6 4 4 +3 +3 −4

7 5 +4 +4 5 −5

8 5 5 5 − 5

9 +4 5 4 +4 5

10 +4 +4 +4 +4 5

11 5 5 +4 5 5

12 +5 +5 +5 − −
13 +4 +4 +4 5 +4

14 4 +4 +4 5 +4

15 +4 4 4 5 +5

16 − − − − +4

17 +5 +5 +5 − +5

18 +4 4 4 +4 +4

19 +5 +5 +5 − +5

20 +4 +4 4 +4 5

21 +4 5 +4 − +5
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is a trade-off between classification accuracy and computational complexity. 
Therefore, for off-line signal processing high classification accuracy is followed 
through assigning more effective features and for online processing in which 
computation time is concerned minimum possible number of features should be 
chosen.

2.3 � Neuro-Fuzzy Classifier

These days, neuro-fuzzy systems have been used in broad span of commercial and 
industrial applications that require analysis of indefinite and indecisive informa-
tion [45, 47–49]. Hybrid integrated neuro-fuzzy is the major interest of research as 
it makes use of complementarities’ strength of artificial neural network and fuzzy 
inference systems [45]. ANFIS, a neuro-fuzzy model, is used in this study, which 
is hybrid technology of integrated neuro-fuzzy model and a part of MATLAB’s 
Fuzzy Logic Toolbox [46]. ANFIS is called a hybrid learning method since it 
combines gradient descent and least squares method. Gradient descent method 
is used for premising and tuning parameters that define membership functions. 
Least squares method is used for identifying parameters that define coefficients of 
each output equation [46]. The normal structure of ANFIS-like structure used in 
MATLAB’s Fuzzy Logic Toolbox is employed in this research for its efficiency 
and applicability in clustering and classification problems. The ANFIS has a five-
layer structure as described later in this section. Input layer accepts features so that 
the number of input nodes is same as the number of features. As it was mentioned 
earlier, ANFIS is composed of gradient descent and least squares methods for 
learning purpose (Fig. 2.8).

To represent fuzzy inference system, fixed number of layers is presented struc-
turally. ANFIS in comparison with other neuro-fuzzy networks has high training 
speed, most effective learning algorithm, and simplicity of software [50]. ANFIS 
is the best function approximator and classifier among neuro-fuzzy models, 
and its fast convergence is comparable to other neuro-fuzzy models, although it 
was one of the first integrated hybrid neuro-fuzzy models [51]. Besides, ANFIS 
affords superior results when applied without any pre-training [52]. Most of the 
neuro-fuzzy inference systems are based on Takagi–Sugeno or Mamdani type. 
For model-based applications, Takagi–Sugeno fuzzy inference system is usually 
used [53, 54]. However, Mamdani fuzzy inference system is used for faster heu-
ristics but with a low performance [55]. High accuracy and easy interpretation 
of Takagi–Sugeno system makes it a general tool for approximation. The gener-
ality of Takagi–Sugeno type is used for identification of complex systems [56]. 
These systems usually have expensive computations and require complicated 
learning approaches, but their performance is notable. Typical fuzzy rule for 
Takagi–Sugeno system is

If x1 is MF1
i

and x2 is MF2
i
, Then O is Ŵi,

2.2  Feature Extraction
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where MF1
i
 and MF2

i
 are fuzzy sets in antecedent and Ŵi is a crisp function in con-

sequent. Usually, function O is a first order or a zero order for Takagi–Sugeno 
fuzzy inference [57]. In this study, first-order Takagi–Sugeno system is used for 
fuzzy inference part, and its structure is presented in Fig. 1.

Each one of the five layers of ANFIS performs a specific role for fuzzy 
inference system as follows:

Layer 1: First layer nodes are adaptive and generate membership grades for 
input set. Because of their smoothness and concise notation, Gaussian mem-
bership function, well known in fields of probability and statistics, is becoming 
increasingly popular function in fuzzy sets theory. In this study, Gaussian mem-
bership functions are used which can be automatically generated by ANFIS of 
MATLAB. The number of input nodes is the same as the number of features 
used for classification. Therefore, the number of features specifies the structure 
of neuro-fuzzy system and also complexity of learning procedure as it directly 
corresponds to the number of premise parameters as Gaussian membership 
functions.

Assume input is an N-D vector (same of extracted features) and we have 3 
membership functions for each input array as

Fig. 2.8   The structure of neuro-fuzzy model

http://dx.doi.org/10.1007/978-981-287-320-0_1


19

The Gaussian membership functions are given by

where xi is an input array, and Ci

j
 and δi

j
 are antecedent parameters expressing  

centers and standard deviations of Gaussian membership functions of input vector,  
respectively. Output of this layer is a M × N matrix with M membership value for 
each of the N input variables.

With assumption mentioned above, for N input variables and 3 membership 
functions for each variable, output of first layer is

where MFi
j
 is the membership value of the ith input to its jth membership function.

Layer 2: All nodes are fixed in this layer. All potential rules between the inputs 
are formulated applying fuzzy intersection (AND). The operation of product 
is used to estimate the firing strength of each rule. The output of this layer is a 
M

N × 1 matrix (N input variables and M membership functions for each input 
variable), that is,

Layer 3: In the third layer, the nodes are also fixed nodes. The nodes are sym-
bolized by a notation of N, and the ratio of the ith rule’s activation level to the 
total of all activation levels is computed. The output of this layer denominates as 
normalized firing strength

Layer 4: The nodes are adaptive nodes in this layer. Each adaptive node i calcu-
lates the contribution of the ith rule toward the overall output as simply product 
of normalized firing strength and a first-order polynomial (for a first-order Sugeno 
model). Parameters in this layer are referred to as consequent parameters which 
shape output of this layer as

(2.1)X =








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





N×1

,

(2.2)GaussMF
i,j
D−mf = Exp






−

�

xi − C
i

j

�2

2δi2
j






,

(2.3)MF
Gaussian(X,C,�)

D=N , mf=3 =


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




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Layer 5: There is only one single fixed node in the fifth layer which calculates 
overall output as summation of contribution from each rule

where 

That Coeff3×3N is a matrix of consequent parameters of ANFIS used. It can be 
observed that there are two adaptive layers in this ANFIS structure, the first and 
fourth layers. There are two modifiable matrices of parameters C3×N and �3×N 
which shape input Gaussian membership functions. These parameters are so-
called premise parameters. In the fourth layer, there is also a modifiable matrix of 
parameters Coeff3×3N, pertaining to first-order polynomial. These parameters are 
so-called consequent parameters [58, 59].

Both premise and consequent matrices of parameters are adjusted during learning  
procedure aiming to make ANFIS output match training data. Least squares 
method can be used to identify optimal values of these parameters easily. When 
premise parameters are not fixed, search space becomes larger and convergence 
of training becomes slower. A hybrid algorithm combining least squares method 
and gradient descent method is adopted to solve this problem. Hybrid algorithm 
is composed of a forward pass and a backward pass. Least squares method (for-
ward pass) is used to optimize consequent parameters with premise parame-
ters fixed. Once optimal consequent parameters are found, backward pass starts 
immediately. Gradient descent method (backward pass) is used to adjust optimally 
premise parameters corresponding to fuzzy sets in input domain. Output of ANFIS 
is calculated by employing consequent parameters found in forward pass. Output 
error is used to adapt premise parameters by means of a standard back-propaga-
tion algorithm. It has been proven that this hybrid algorithm is highly efficient in 
training ANFIS [58, 59]. Once ANFIS is structured and learned, parameters are 
deterministic and classification can be executed.

(2.6)O
i = Ŵi · wi

(2.7)Omem.value = Γ1×3NW3N×1,

(2.8)Ŵ1×9 =
[

x1 x2 1
]

Coeff3×3N ,
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