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Foreword

This book is an enthusiastic contribution containing one of the best research works 
in the field of EMG Signal Processing.

Still another element is provided by many interesting data on signal feature 
extraction with fuzzy network and an abundance of colourful illustrations. On top 
of that, there are innumerable historical vignettes that interweave fuzzy network 
and EMG signal processing in a very appealing way.

Although the emphasis of this work is on Signal Processing, it contains much—
indeed to anyone with a fascination with the world of molecules and neural  
networks. The authors have selected a good number of prominent molecules as 
the key subjects of their essays. Although these represent only a small sample of 
the world of biologically related molecules and their impact on our health, they 
amply illustrate the importance of this field of science to humankind and the way 
in which the field has evolved.

I think that the contributors can be confident that there will be many grateful 
readers who will have gained a broader perspective of the disciplines of signal  
processing disorders and their remedies as a result of their efforts.

Hyderabad, India 	 Bita Mokhlesabadifarahani
Vinit Kumar Gunjan
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Preface

This book presents research-based practices which are outcomes of my experi-
ments on EMG Technique and Feature Extraction. This piece of work can be 
utilized for reading, teaching, and research purposes.

Chapter 1—talks about EMG Technique and Feature Extraction. The EMG 
signal which is electrical indication of the neuromuscular actuation connected 
with a contracting muscle.

Chapter 2—focuses on methodology used for working with EMG Dataset.
Chapter 3—is about results of the EMG signal processing executed in experiments 

where after data acquisition phase all recorded signals underwent noise filtering as 
preprocessing phase.

The last chap. 4 records conclusions and inferences of the research work.
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Overview of the Book

Neuromuscular, musculoskeletal disorders and injuries highly affect the lifestyle 
and the motion abilities of an individual. The primary purpose of this work is 
to develop a systematic method to detect the level of muscle power declining in 
musculoskeletal and neuromuscular disorders. To this aim, EMG signals of five 
skeletal muscles as biceps, deltoid, triceps, tibialis anterior, and quadriceps mus-
cles are recorded in three states of isometric contraction (ISO), maximum volun-
tary contraction (MVC), and dynamic contraction from 22 normal subjects aged 
between 20 and 30; half of them are male. Totally, 14 combinatory extracted 
features are analyzed to find which of them or a combinatory set of them are 
discriminative and selective for muscle force quantification and classification. The 
neuro-fuzzy system is trained with 70 % of the recorded EMG cut off windows 
and then employed for classification and modeling purposes. For each muscle the 
most effective extracted features are found for males and females separately by 
a reference classifier. In the experiments, after the optimum set of combinatory 
features is found by a reference classifier, the neuro-fuzzy classifier is validated 
in comparison to other well-known classifiers in classification of the recorded 
EMG signals with the three states of contractions corresponding to the extracted 
features. Then, different structures of the neuro-fuzzy classifier are also compara-
tively analyzed to find the optimum structure of the classifier used.

Keywords  Biceps  ·  Deltoid  ·  Triceps  ·  Tibialis anterior  ·  Quadriceps  ·  Isometric  
contraction  ·  Maximum voluntary contraction  ·  Dynamic contraction  ·  EMG 
signal characterization  ·  Neuro-Fuzzy classifier
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The electromyography (EMG) signal is electrical indication of the neuromuscular 
actuation connected with a contracting muscle. It is an exceedingly complicated 
sign which is influenced by the anatomical and physiological properties of mus-
cles, the control plan of the fringe sensory system, and also the attributes of the 
instrumentation that is utilized to identify and watch it. Most of the connections 
between the EMG signal and the properties of a contracting muscle which will 
be quickly utilized have developed serendipitously. The absence of a fitting por-
trayal of the EMG signal is likely the most noteworthy single variable which has 
hampered the improvement of EMG into an exact discipline.

This section will show two fundamental ideas. The first is a discourse of an 
organized approach for deciphering the data content of the EMG signal. The 
scientific model which is created is built with respect to current learning of the 
properties of contracting human muscles. The degree to which the model helps to 
the understanding of the sign is confined to the constrained sum of physiologi-
cal learning right now accessible. On the other hand, even in its available struc-
ture, the demonstrating methodology supplies an edifying knowledge into the 
arrangement of the EMG signal.

EMG is the investigation of muscle capacity through examination of the elec-
trical signs radiated amid brawny constrictions. EMG is frequently misused and 
abused by numerous clinicians and scientists. Ordinarily even accomplished elec-
tromyographers neglect to give enough data and detail on the conventions, record-
ing supplies and techniques used to permit different analysts to reliably recreate 
their studies. Assuredly, this part will elucidate some of these issues and give the 
peruser a premise for having the capacity to direct EMG examines as a feature of 
their on-going exploration.

EMG is measuring the electrical sign connected with the enactment of the 
muscle. This may be willful or automatic muscle compression. The EMG action 
of willful muscle withdrawals is identified with pressure. The practical unit of 
the muscle compression is an engine unit, which is embodied a solitary alpha 

Chapter 1
Introduction to EMG Technique 
and Feature Extraction
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engine neuron and all the strands it exhausts. This muscle fiber contracts when 
the activity possibilities (drive) of the engine nerve which supplies it achieves a 
depolarization limit. The depolarization creates an electromagnetic field and the 
potential is measured as a voltage. The depolarization, which spreads along the 
film of the muscle, is a muscle activity potential. The engine unit activity potential 
is the spatio and transient summation of the individual muscle activity possibili-
ties for all the filaments of a solitary engine unit. In this way, the EMG sign is the 
arithmetical summation of the engine unit activity possibilities inside the pick-up 
territory of the terminal being utilized. The pick-up zone of a cathode will quite 
often incorporate more than one engine unit on the grounds that muscle filaments 
of distinctive engine units are mixed all through the whole muscle. Any bit of the 
muscle may contain filaments having a place with upwards of 20–50 engine units.

A solitary engine unit can have 3–2,000 muscle filaments. Muscles control-
ling fine developments have more modest quantities of muscle filaments for every 
engine units (typically short of what 10 strands for every engine unit) than muscles 
controlling extensive terrible developments (100–1,000 strands for every engine 
unit). There is a chain of importance game plan amid a muscle compression as 
engine units with less muscle strands are normally enlisted initially, taken after 
by the engine units with bigger muscle filaments. The quantity of engine units for 
every muscle is variable all through the body.

With the end goal of this part there are two fundamental sorts of EMG: clinical 
(frequently called indicative EMG) and kinesiological. Symptomatic EMG, normally 
done by physiatrists and neurologists, are investigations of the characteristics of the 
engine unit activity potential for span and abundancy. These are commonly done 
to help analytic neuromuscular pathology. They likewise assess the spontaneous  
releases of loose muscles and have the capacity confine single engine unit action. 
Kinesiological EMG is the sort most found in the writing in regards to development 
dissection. This kind of EMG studies the relationship of bulky capacity to develop-
ment of the body fragments and assesses timing of muscle action with respect to 
the developments. Moreover, numerous studies endeavor to look at the quality and 
energy generation of the muscles themselves.

There is a relationship of EMG to numerous biomechanical variables. Regarding 
isometric withdrawals, there is a positive relationship in the increment of  
pressure inside the muscle as to the plentifulness of the EMG sign recorded. There 
is a slack time, on the other hand, as the EMG adequacy does not specifically  
match the manufacture up of isometric pressure. One must be watchful when 
attempting to gauge energy creation from the EMG signal, as there is sketchy  
legitimacy of the relationship of power to plentifulness when numerous  
muscles are intersection the same joint, or when muscles cross different joints. At 
the point when taking a gander at muscle movement, as to concentric and uncon-
ventional compressions, one finds that flighty withdrawals create less muscle 
action than concentric withdrawal when conflicting with equivalent energy. As the  
muscle exhausts, one sees a diminished strain regardless of steady or considerably  
bigger adequacy of the muscle action. There is a loss of the high-recurrence 
segment of the sign as one uniform, which can be seen by a diminishing in the 
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average recurrence of the muscle signal. Amid movement, there has a tendency to 
be an association with EMG and speed of the development. There is an opposite 
relationship of quality creation with concentric withdrawals and the velocity of 
development, while there is a positive relationship of quality generation with uncon-
ventional constrictions and the pace of development. One can deal with even more 
a heap with unconventional contractions at higher rate. For instance: If a weight 
was huge and you brought it down to the ground in a quick, yet controlled way, you 
took care of a vast weight at a rapid through flighty compressions. You would not 
have the capacity to raise the weight (concentric withdrawal) at the pace you had 
the capacity lower it. The constrained generation by the strands are not so much 
any more noteworthy, yet you had the capacity handle a bigger measure of weight 
and the EMG action of the muscles taking care of that weight would be littler.  
In this manner, we have a reverse relationship for concentric withdrawals and posi-
tive relationship for offbeat constrictions regarding pace of development.

As to recording the EMG signal, the adequacy of the engine unit activity potential  
relies on upon numerous elements which include: breadth of the muscle fiber, sep-
arate between dynamic muscle fiber and the location site (fat tissue thickness), and 
sifting properties of the terminals themselves. The target is to get a sign free of 
noise (ie., development relic, 60 Hz ancient rarity, and so on). Along these lines, 
the anode sort and enhancer qualities assume a vital part in getting a commotion 
free flag.

Development and position of appendages are controlled by electrical signs 
going here and there and then here again between the muscles and the fringe 
and focal sensory system. At the point when pathologic conditions emerge in the 
engine framework, whether in the spinal rope, the engine neurons, the muscle, 
or the neuromuscular intersections, the attributes of the electrical flag in the 
muscle change. Watchful enlistment and investigation of electrical flag in muscle 
(electromyograms) can along these lines be an important support in finding and 
diagnosing abnormalities in the muscles as well as in the engine framework over-
all. EMG is the enlistment and elucidation of these muscle activity possibilities. 
As of not long ago, electromyograms were recorded fundamentally for exploratory 
or analytic purposes; be that as it may, with the headway of bioelectric innova-
tion, electromyograms likewise have turned into an essential device in accomplish-
ing manufactured control of appendage development, i.e., practical electrical 
incitement (FES) and restoration. This part will concentrate on the symptomatic 
application of electromyograms. Since the ascent of advanced clinical EMG, the 
specialized strategies utilized as a part of recording and dissecting electromyo-
grams have been managed by the accessible innovation. The concentric needle 
cathode introduced by Adrian and Bronk in 1929 gave a simple-to-utilize anode 
with high mechanical qualities and steady, reproducible estimations. Supplanting 
of galvanometers with high-pickup speakers permitted more modest terminals 
with higher impedances to be utilized and possibilities of littler amplitudes to be 
recorded. With these specialized accomplishments, clinical EMG soon advanced 
into a very particular field where electromyographists with numerous years of 
experience read and deciphered long paper EMG records focused around the visual 
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appearance of the electromyograms. Gradually, a more quantitative methodology 
developed, where peculiarities, for example, potential term, crest-to-top adequacy, 
and number of stages, were measured on the paper records and contrasted, and a 
set of ordinary information accumulated from solid subjects of all ages. In the most 
recent decade, the universally useful rack-mounted supplies of the past have been 
supplanted by thus nomically planned EMG units with incorporated machines. 
Electromyograms are digitized, transformed, put away on removable media, and 
shown on machine screens with screen designs that change in agreement with the 
sort of recording and dissection picked by the examiner.

In light of this, this section gives an acquaintance with the essential ideas of clinical  
EMG, a survey of fundamental life structures, the source of the electromyogram,  
and a percentage of the primary recording strategies and sign investigation  
methods being used.

1.1 � Structure

Muscles represent around 40  % of the human mass, running from the little 
extraocular muscles that turn the eyeball in its attachment to the expansive append-
age muscles that create motion and control carriage. The configuration of muscles 
differs relying upon the scope of movement and the energy pushed. In the most 
straightforward game plan (fusiform), parallel filaments expand the full length of 
the muscle and connect to tendons at both closures. Muscles creating an extensive 
power have a more entangled structure in which a lot of people short muscle fila-
ments join to a level tendon that stretches out over an expansive part of the muscle. 
This mastermind ment (unipennate) expands the cross-sectional territory and along 
these lines the contractile energy of the muscle. At the point when muscle filaments 
fan out from both sides of the tendon, the muscle structure is alluded to as bipennate.

A lipid bilayer (sarcolemma) encases the muscle fiber and differentiates the 
intracellular myoplasma from the interstitial liquid. Between neighboring fila-
ments runs a layer of connective tissue, the endomysium, made principally out of 
collagen and elastin. Packs of filaments, fascicles, are held together by a thicker 
layer of connective-tissue called the perimysium. The entire muscle is wrapped 
in a layer of connective tissue called the epimysium. The connective tissue is 
constant with the tendons appending the muscle to the skeleton.

In the myoplasma, meager and thick fibers interdigitate and structure short, seri-
ally associated indistinguishable units called sarcomeres. Various sarcomeres associ-
ate end to end, accordingly framing longitudinal strands of myofibrils that augment 
the whole length of the muscle fiber. The aggregate shortening of a muscle amid 
constriction is the net impact of all sarcomeres shortening in arrangement all the 
while. The individual sarcomeres abbreviate by structuring cross-connects between 
the thick and dainty fibers. The cross-scaffolds pull the fibers to one another, along 
these lines expanding the measure of longitudinal cover between the thick and slight 



5

fibers. The thick grid of myofibrils is held set up by a structural system of between 
intercede fibers made out of desmin, vimetin, and synemin (squire, 1986).

At the site of the neuromuscular intersection, each one engine neuron struc-
tures insurance grows and innervates a few muscle strands circulated practically 
equally inside a curved or roundabout district extending from 2 to 10  mm in 
width. The engine neuron and the muscle strands it innervates constitute a use-
ful unit,  the engine unit. The cross-area of muscle involved by an engine unit is 
known as the engine unit domain (MUT). A regular muscle fiber is just innervated 
at a solitary point, found inside a cross-sectional band alluded to as the end-plate 
zone. While the width of the end-plate zone is just a couple of millimeters, the 
zone itself may stretch out over a huge piece of the muscle. The quantity of muscle  
strands for every engine neuron (i.e., the innervation degree) ranges from 3:1 in 
extraneous eye muscles where fine-evaluated withdrawal is obliged to 120:1 in 
some appendage muscles with coarse development (kimura, 1981). The filaments 
of one engine unit are intermixed with strands of other engine units; hence, a few 
engine units dwell inside a given cross-area. The filaments of the same.

EMG is technique to evaluate and record the electrical activity of the muscle 
and is a valuable device to assess neuromuscular disorders. Computer-aided EMG 
has evolved as an indispensable tool in the everyday activity of neurophysiology 
laboratories in facilitating quantitative analysis and decision making in the clini-
cal neurophysiology, rehabilitation, sport medicine and human physiology. EMG 
findings are used to detect and describe special disease processes affecting the Motor 
Unit (MU), which is the smallest functional unit of the muscle [1] (Fig. 1.1).

In EMG-based model recognition, sEMG signal is pre-processed from the spec-
tral frequency component of the signal and is extracted with some features before 
performing classification [2] (Fig. 1.2).

Fig. 1.1   Electromyogram signal processing algorithms to estimate the level of muscle activity

Fig. 1.2   Signal processing

1.1  Structure
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Normally, in pre-processing and signal condition process, procedure to remove 
noise is a significant step to reduce noises and improve some spectral compo-
nent part [3]. Next important step, feature extraction, is used for highlighting the 
relevant structures in the sEMG signal and rejecting the noise and unimportant  
sEMG signal [4]. The success of EMG pattern recognition depends on the selection  
of features that represent raw sEMG signal for its classification. This study 
is enforced by the fact that the limitation of the solution to remove WGN  
in the pre-processing step and EMG-based gestures classification need to  
conduct the extraction step. The selection of the feature that tolerance of WGN and 
modification of existing EMG feature to improve the robust property are proposed. 
Resultantly, WGN removal algorithms in the preprocessing step are not needed.

Feature extraction is a method to extract the useful information that is hidden 
in surface EMG signal and to remove the unwanted EMG parts and interferences  
[4, 5] (Fig. 1.3).

Some features are strong across different kinds of noises; consequently, inten-
sive data pre-processing methods shall be avoided to be implemented [6]. In 
addition, appropriate features approaches high classification accuracy [7]. Three 
properties have been suggested for use in quantitative comparison of their capa-
bilities that include maximum class separability, robustness, and complexity  
[4, 5]. Although many research works have mainly tried to explore and examine an 
appropriate feature vector for numerous specific EMG signal classification appli-
cations (e.g. [4–8]), there are other works which made deeply quantitative com-
parisons of their qualities, particularly in redundancy point of view [9].

Furthermore, most recent EMG signal classification studies have still employed 
set of feature vectors that carried a number of redundant features (e.g. [10–17]).

In 1975, the Graupe and Cine showed that a fourth-order time-series model 
of EMG signals can be classified by a linear discrimination function [18], but 
this technique involves a high complexity in computation. The results of Kelly 
and Parker’s work illustrated that a Hopfield neural network could produce AR 
coefficients from EMG signals in a shorter time [19]. Furthermore, Saridis and 
Gootee presented integral absolute value and zero-crossing features that could 
produce appropriate feature space in turn to classify arm motions [20]. Zardoshti 
and folks [4] extracted few features such as integral of absolute value, variance, 

Fig. 1.3   For feature 
extraction template+
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number of zero crossings and auto-regressive model parameters from upper limb 
EMG signals and then evaluated them with K-nearest neighbor (a non-parametric 
classifier). They presented a new feature, EMG histogram, which is highly suit-
able for the classification of hand motions, and showed that this feature is appro-
priate to calculate both speed and noise tolerance. Chang and folks [21] used the 
variance of the rectified wave envelope and IAV features and Mahalonobius dis-
tance to classify four pre-shaping grasp movements. They also showed that these 
features could classify movements up to 90  % accuracy. Kang and folks (1995) 
compared AR and cepstrum coefficients and showed that the cepstrum coef-
ficients are quite useful to improve classification rate. The time frequency trans-
form has also been introduced as a new mathematical approach to time–frequency 
domain. Biomedical signals, especially EMG signals, have been processed by 
time–frequency transforms in order to extract more representative features to 
improve rate of classification of motions. In this way, Jung and folks [22] imposed 
Wigner–Ville transform on upper limb EMG signals to classify six different move-
ments. Wellig and Moschytz [23] too used packet wavelet transform to decom-
pose EMG signals and reduce misclassification rate. Liyu et al. [24] distinguished 
four forearm motions by decomposing two channels of EMG signals with wave-
let transform in six levels, and finally classified these coefficients by an artificial 
neural network (ANN) classifier. Abel and folks [25] by applying inter-scale local  
maximum method on wavelet coefficients of EMG signals presented new fea-
tures, which improved classification rate among neuropathic, myopathic and nor-
mal groups. Englehart et  al. [26] extracted upper limb EMG signals from four 
channels and then, by extracting wavelet coefficients, reduced their dimensions 
by PCA transform, and finally misclassification rate was decreased. Although lit-
erature includes many papers which explore extraction of features from EMG for 
controlling prosthetic limbs, there have been few works which make quantitative 
comparison of their quality. Christodoulos and Pattichis [27] used an ANN based 
on unsupervised learning and a statistical pattern recognition technique based on 
Euclidean distance to analyze a total of 1213 MUAP’s obtained from 12 normal 
subjects, 13 subjects suffering from myopathy, and 15 subjects suffering from 
motor neuron disease and they reported success rate for used ANN technique 
as 97.6  % and for statistical technique 95.3  %. In 2005, Huang et  al. [41] used 
Gaussian Mixture Model on a 12 subject database to classify subjects according 
to feature sets including time-domain (TD) features and autoregressive features 
with root mean square value (AR + RMS). They reported Gaussian mixture model 
(GMM) achieves 96.91 % classification accuracy using a AR + RMS + TD fea-
ture set and attains 96.3 % classification accuracy using a AR + RMS feature set 
for distinguishing six limb motions. Tsenov et  al. [28] in 2006 exploited signal 
recorded at surface of skin of forearm to provide recognition of movement of 
hand and finger movements of healthy subjects. They utilized radial basis function 
(RBF), multilayer perceptron (MLP) and LVQ networks to classify signals based 
on time domain extracted features as Mean Absolute Value, Variance, Waveform 
Length, Norm, Number of Zero Crossings, Absolute Maximum, Absolute 
Minimum, Maximum minus Minimum and Median Value. They reported average 

1.1  Structure
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classification rates of 92.64 % (10 neurons in hidden layer as best case), 83.82 % 
(spread value 0.7) and 88.23  % (28 competitive neurons as best case) for MLP, 
RBF and LVQ networks, respectively.

In 2007, Yoshikawa et al. [29] extracted features MAV, VAR, WL, ZC, Absolute 
Maximum, Absolute Minimum and Median Value for motion classification based 
on SVM. In same year, Momen et al. [30] presented a real-time EMG classifier of 
user-selected intentional movements for signals recorded from forearm extensor 
and flexor muscles of seven able bodies-subjects and one congenital amputee. 
Segmentation of feature space was performed using fuzzy C-means clustering. It 
was reported that with only 2 min of training data from each user classifier dis-
criminated four different movements with an average accuracy of 92.7 % ± 3.2 %. 
It was stated in their work that presented method may facilitate development 
of dynamic upper extremity prosthesis control strategies using arbitrary, user- 
preferred muscle contractions (Fig. 1.4).

Hudgins et  al. [31] were pioneers in developing a real-time pattern-recognition-
based MCS. Using TD features and a MLP neural network, they succeeded in classi-
fying four types of upper limb motion, with an accuracy of approximately 90 %. This 
work was continued over last 15 years, by employing various classifiers, such as linear 
discriminant analysis (LDA) [32, 33], MLP/RBF neural networks [34], time-delayed 
ANN [35], fuzzy [36, 37], Neuro-Fuzzy [38], fuzzy ARTMAP networks [39], fuzzy-
MINMAX networks [40], GMMs [41–43], and hidden Markov models (HMMs) [44]. 
Vuskovic and Du [39] introduced a modified version of a fuzzy ARTMAP network to 
classify prehensile MESs. Englehart et al. [32] showed that LDA, outperforms MLP 
on time-scale features that are dimensionally reduced by PCA. In addition, significant 
results were achieved using probabilistic approaches. Chan and Englehart [44] applied 
an HMM to discriminate six classes of limb movement based on a four-channel MES. 
It resulted in an average accuracy of 94.63 %, which exceeded an MLP-based clas-
sifier used in [33] (93.27 %). Furthermore, Huang et al. [41] and Fukuda et al. [42] 
developed a GMM as a classifier in their MCS; former showed an accuracy of approx-
imately 97  %. Englehart et  al. [33] introduced a continuous classification scheme 
that provided more robust results for a shortened segment length of signal, and high-
speed controllers. Oskoei and Hu [7] employed SVM for classification of upper limb 
motions suing myoelectric signals. They used another method to adjust SVM param-
eters before classification, and examined overlapped segmentation and majority  
voting to improve controller performance. They also used a TD multi-feature set (i.e., 
MAV + WL + ZC + SSC) as signal features for classification.

Fig. 1.4   EMG and IEMG 
signals with feature 
extraction frame
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In this book, we follow a high quality EMG feature space which has following 
properties:

Maximum class separability. A high quality feature space which results in clusters 
that have maximum separability or minimum overlap. This ensures lowest 
possible misclassification rate.

Robustness. Lowest possible sensitivity of feature space cluster separability to 
noise samples.

Complexity. Lowest possible computational complexity of features (and clusters) 
so that procedure can be implemented with reasonable hardware and in a real-
time manner.

1.1  Structure
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2.1 � EMG Dataset

In our experiments, data acquisition system include PowerLab, 16sp, and Dual 
BioAmp manufactured by ADInstruments Ltd. and software Chart V5.0 with 
sampling rate adjusted at 2  kHz, recording signal amplitude 2  mV, primary 
low-pass filter 1 with cutoff frequency 500 Hz, and primary high-pass filter 2 
with cutoff frequency 0.3 Hz. Data are outputted in txt or excel format which 
are readable in MATLAB for data processing. MATLAB 7.0 software installed 
on a Laptop with 2.2  GHz Core2Dual CPU is used for signal processing  
(Fig. 2.1).

Our samples are 20 normal and healthy subjects aged between 20 and 30 with 
almost similar physical power randomly selected from students of Biomedical 
Engineering Department, Amirkabir University of Technology, satisfying condi-
tions of having enough sleep and appropriate nutrition, having no considerable 
physical activity before test, no sedative drug use for at least 24 h before test, with 
no bone fracture and musculoskeletal disorder close to test, and no pain sensed 
during tests by subjects. Each individual fills out a form requesting following 
items:

•	 Personal information as name, gender, age, height, and weight
•	 Types of recording signals
•	 Recording degrees of freedom
•	 Stimulations and motions
•	 Processing items requested
•	 Notes

Chapter 2
Methodology for Working with EMG 
Dataset

© The Author(s) 2015 
B. Mokhlesabadifarahani and V.K. Gunjan, EMG Signals Characterization  
in Three States of Contraction by Fuzzy Network and Feature Extraction,  
Forensic and Medical Bioinformatics, DOI 10.1007/978-981-287-320-0_2
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EMG signals of biceps, deltoid, triceps, tibialis anterior, and quadriceps muscles 
are recorded in three states of isometric contraction (ISO), maximum voluntary 
contraction (MVC), and dynamic contractions (Figs. 2.2, 2.3, 2.4, 2.5, and 2.6).

A preprocessing filtering process is then applied to recorded signals. A window 
consisting of 20,000 samples (10 s) is made cutoff for each signal to be processed 
and analyzed (Fig. 2.7).

Fig. 2.1   Signal conversion devices PowerLab

Fig. 2.2   Biceps anatomy and electrode placement

Fig. 2.3   Deltoid anatomy and electrode placement
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Fig. 2.4   Triceps anatomy and electrode placement

Fig. 2.5   Quadriceps anatomy and electrode placement

Fig. 2.6   Tibialis anterior anatomy and electrode placement
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2.2 � Feature Extraction

Feature extraction, which is step to measure features or properties from input data, 
is essential in pattern recognition system design. Goal of feature extraction is to 
characterize an object to be recognized by measurements whose values are very 
similar for objects in same category, and very different for objects in different 
categories. Computational complexity and class discrimination are two main 
factors for determining best feature set.

A set of features are listed in Table 2.1 along with their descriptions. The pri-
mary purpose of this work is to use these features to find an optimum set best 
describing and characterizing EMG signals. The nonlinear classifier used in this 
work is a five-layer neuro-fuzzy network; its inputs are selected features among 
feature list given in Table  2.2. In our experiments, it has been found that there 

Fig. 2.7   Illustrated samples 
in 10 s

Table 2.1   Muscle test assessments by professional experts

*Because of laboratory condition, quadriceps just had been evaluated in female

Case number Biceps Triceps Middle deltoid Quadriceps Tibialis anterior

1 5 +5 5 − 5

2 +5 +5 +5 − +5

3 5 −5 +4 − −5

4 −5 5 +4 − −5

5 +4 4 4 −5 −5

6 4 4 +3 +3 −4

7 5 +4 +4 5 −5

8 5 5 5 − 5

9 +4 5 4 +4 5

10 +4 +4 +4 +4 5

11 5 5 +4 5 5

12 +5 +5 +5 − −
13 +4 +4 +4 5 +4

14 4 +4 +4 5 +4

15 +4 4 4 5 +5

16 − − − − +4

17 +5 +5 +5 − +5

18 +4 4 4 +4 +4

19 +5 +5 +5 − +5

20 +4 +4 4 +4 5

21 +4 5 +4 − +5
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is a trade-off between classification accuracy and computational complexity. 
Therefore, for off-line signal processing high classification accuracy is followed 
through assigning more effective features and for online processing in which 
computation time is concerned minimum possible number of features should be 
chosen.

2.3 � Neuro-Fuzzy Classifier

These days, neuro-fuzzy systems have been used in broad span of commercial and 
industrial applications that require analysis of indefinite and indecisive informa-
tion [45, 47–49]. Hybrid integrated neuro-fuzzy is the major interest of research as 
it makes use of complementarities’ strength of artificial neural network and fuzzy 
inference systems [45]. ANFIS, a neuro-fuzzy model, is used in this study, which 
is hybrid technology of integrated neuro-fuzzy model and a part of MATLAB’s 
Fuzzy Logic Toolbox [46]. ANFIS is called a hybrid learning method since it 
combines gradient descent and least squares method. Gradient descent method 
is used for premising and tuning parameters that define membership functions. 
Least squares method is used for identifying parameters that define coefficients of 
each output equation [46]. The normal structure of ANFIS-like structure used in 
MATLAB’s Fuzzy Logic Toolbox is employed in this research for its efficiency 
and applicability in clustering and classification problems. The ANFIS has a five-
layer structure as described later in this section. Input layer accepts features so that 
the number of input nodes is same as the number of features. As it was mentioned 
earlier, ANFIS is composed of gradient descent and least squares methods for 
learning purpose (Fig. 2.8).

To represent fuzzy inference system, fixed number of layers is presented struc-
turally. ANFIS in comparison with other neuro-fuzzy networks has high training 
speed, most effective learning algorithm, and simplicity of software [50]. ANFIS 
is the best function approximator and classifier among neuro-fuzzy models, 
and its fast convergence is comparable to other neuro-fuzzy models, although it 
was one of the first integrated hybrid neuro-fuzzy models [51]. Besides, ANFIS 
affords superior results when applied without any pre-training [52]. Most of the 
neuro-fuzzy inference systems are based on Takagi–Sugeno or Mamdani type. 
For model-based applications, Takagi–Sugeno fuzzy inference system is usually 
used [53, 54]. However, Mamdani fuzzy inference system is used for faster heu-
ristics but with a low performance [55]. High accuracy and easy interpretation 
of Takagi–Sugeno system makes it a general tool for approximation. The gener-
ality of Takagi–Sugeno type is used for identification of complex systems [56]. 
These systems usually have expensive computations and require complicated 
learning approaches, but their performance is notable. Typical fuzzy rule for 
Takagi–Sugeno system is

If x1 is MF1
i

and x2 is MF2
i
, Then O is Ŵi,

2.2  Feature Extraction
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where MF1
i
 and MF2

i
 are fuzzy sets in antecedent and Ŵi is a crisp function in con-

sequent. Usually, function O is a first order or a zero order for Takagi–Sugeno 
fuzzy inference [57]. In this study, first-order Takagi–Sugeno system is used for 
fuzzy inference part, and its structure is presented in Fig. 1.

Each one of the five layers of ANFIS performs a specific role for fuzzy 
inference system as follows:

Layer 1: First layer nodes are adaptive and generate membership grades for 
input set. Because of their smoothness and concise notation, Gaussian mem-
bership function, well known in fields of probability and statistics, is becoming 
increasingly popular function in fuzzy sets theory. In this study, Gaussian mem-
bership functions are used which can be automatically generated by ANFIS of 
MATLAB. The number of input nodes is the same as the number of features 
used for classification. Therefore, the number of features specifies the structure 
of neuro-fuzzy system and also complexity of learning procedure as it directly 
corresponds to the number of premise parameters as Gaussian membership 
functions.

Assume input is an N-D vector (same of extracted features) and we have 3 
membership functions for each input array as

Fig. 2.8   The structure of neuro-fuzzy model

http://dx.doi.org/10.1007/978-981-287-320-0_1
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The Gaussian membership functions are given by

where xi is an input array, and Ci

j
 and δi

j
 are antecedent parameters expressing  

centers and standard deviations of Gaussian membership functions of input vector,  
respectively. Output of this layer is a M × N matrix with M membership value for 
each of the N input variables.

With assumption mentioned above, for N input variables and 3 membership 
functions for each variable, output of first layer is

where MFi
j
 is the membership value of the ith input to its jth membership function.

Layer 2: All nodes are fixed in this layer. All potential rules between the inputs 
are formulated applying fuzzy intersection (AND). The operation of product 
is used to estimate the firing strength of each rule. The output of this layer is a 
M

N × 1 matrix (N input variables and M membership functions for each input 
variable), that is,

Layer 3: In the third layer, the nodes are also fixed nodes. The nodes are sym-
bolized by a notation of N, and the ratio of the ith rule’s activation level to the 
total of all activation levels is computed. The output of this layer denominates as 
normalized firing strength

Layer 4: The nodes are adaptive nodes in this layer. Each adaptive node i calcu-
lates the contribution of the ith rule toward the overall output as simply product 
of normalized firing strength and a first-order polynomial (for a first-order Sugeno 
model). Parameters in this layer are referred to as consequent parameters which 
shape output of this layer as

(2.1)X =











x1

x2

...

xN










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,
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


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




,

(2.3)MF
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
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

MF11 MF21 . . . MFN1

MF12 MF22 . . . MFN2

MF13 MF23 . . . MFN3






,

(2.4)W3N×1 =

[

w
i

(i=1,2,...,3N )

]

3N×1
,

(2.5)W3N×1 =
W3N×1
∑3N

i=1 w
i

,

2.3  Neuro-Fuzzy Classifier
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Layer 5: There is only one single fixed node in the fifth layer which calculates 
overall output as summation of contribution from each rule

where 

That Coeff3×3N is a matrix of consequent parameters of ANFIS used. It can be 
observed that there are two adaptive layers in this ANFIS structure, the first and 
fourth layers. There are two modifiable matrices of parameters C3×N and �3×N 
which shape input Gaussian membership functions. These parameters are so-
called premise parameters. In the fourth layer, there is also a modifiable matrix of 
parameters Coeff3×3N, pertaining to first-order polynomial. These parameters are 
so-called consequent parameters [58, 59].

Both premise and consequent matrices of parameters are adjusted during learning  
procedure aiming to make ANFIS output match training data. Least squares 
method can be used to identify optimal values of these parameters easily. When 
premise parameters are not fixed, search space becomes larger and convergence 
of training becomes slower. A hybrid algorithm combining least squares method 
and gradient descent method is adopted to solve this problem. Hybrid algorithm 
is composed of a forward pass and a backward pass. Least squares method (for-
ward pass) is used to optimize consequent parameters with premise parame-
ters fixed. Once optimal consequent parameters are found, backward pass starts 
immediately. Gradient descent method (backward pass) is used to adjust optimally 
premise parameters corresponding to fuzzy sets in input domain. Output of ANFIS 
is calculated by employing consequent parameters found in forward pass. Output 
error is used to adapt premise parameters by means of a standard back-propaga-
tion algorithm. It has been proven that this hybrid algorithm is highly efficient in 
training ANFIS [58, 59]. Once ANFIS is structured and learned, parameters are 
deterministic and classification can be executed.

(2.6)O
i = Ŵi · wi

(2.7)Omem.value = Γ1×3NW3N×1,

(2.8)Ŵ1×9 =
[

x1 x2 1
]

Coeff3×3N ,
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Flowchart of EMG signal processing executed in our experiments is shown 
in Fig.  3.1. According to flowchart, after data acquisition phase, all recorded  
signals underwent noise filtering as preprocessing phase. Long-time recording  
signals are cut off in a windowing procedure as long as 20,000 samples or 10 s 
records with 2 kHz sampling rate. Each window is split into sub-windows with 
length of 100–5,000 samples. For all windows, 70  % of samples are set for 
training procedure and rest of samples for testing purpose. After multiple runs 
of training and testing procedures for different lengths of windows, windows 
length of 2,000 samples (corresponding to 1  s signal recording) was chosen. 
Therefore, each window (with 20,000 samples) is split into 10 sub-windows  
each one with 2,000 samples. Seventy percent of sub-windows are still con-
sidered for training purpose (7 sub-windows) and rests for testing purpose  
(3 sub-windows).

For evaluating classifier, mean-squared error is used which is most common 
criterion defined as below:

where yi and ȳi are real and desired outputs of network, respectively, and N is total 
number of samples. MSE of training process shows trainability of system, and 
MSE of testing samples indicates system’s modeling capability.

True classification rate is defined as rate of true assigned samples to their 
classes to whole number of samples as below:

MSE =
1

N

N
∑

i=1

(yi − ȳi)

Classification Rate =
True assigned samples

Total number of samples

Chapter 3
Results

© The Author(s) 2015 
B. Mokhlesabadifarahani and V.K. Gunjan, EMG Signals Characterization  
in Three States of Contraction by Fuzzy Network and Feature Extraction,  
Forensic and Medical Bioinformatics, DOI 10.1007/978-981-287-320-0_3



22 3  Results

The flowchart of procedure sequence of EMG signal characterization is shown in 
Fig. 3.1. As it is illustrated in flowchart, there are two main assessment sections on 
process, one for evaluating extracted features and another one for evaluating and 
structure optimization of classifier. Therefore, evaluation of potential features is 
taken into account. The reference classifier for this step is a multilayer perceptron 
(MLP) as an efficient artificial neural network with least square back propagation 
learning algorithm.

The MLP used in this part of simulation has 1 hidden layer and 20 neurons in 
the hidden layer. Transfer function was used as tangent sigmoid mathematics func-
tion. Inputs of MLP are extracted features, and network is trained based on training  
samples described earlier.

According to Table 3.1, combinations of RMS + WL and RMS + MAV + WL 
yield best result for quadriceps muscle. For biceps muscle, lowest MSE 
corresponds to combination of MAV and VAR according to Table 3.2.

Fig. 3.1   Flowchart of EMG signal characterization process used in this work
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From results of Tables  3.3, 3.4, and 3.5, it can be inferred that isometric 
contraction test, compared to two other contractions, has lower MSE values when 
it is modeled. It should be noted that these MSE errors correspond to distance to 
relative class and misclassification of force of a muscle with a higher or lower 
class of force do not affect course of treatment significantly. In Tables  3.3, 3.4, 
and 3.5, more appropriate features are colored red according to their MSE values 
which are selective features for isometric contraction (ISO), maximum voluntary 

Table 3.1   Training and 
testing errors of MLP 
network for one or a set of 
features corresponding to the 
EMG signals of quadriceps 
muscle contraction

Item Extracted feature(s) MSE of training MSE of 
testing

1 RMS 0.0642 0.1183

2 MAV 0.0562 0.0894

3 ZC 0.0754 0.0644

4 SSI 0.0650 0.0927

5 WL 0.0614 0.0854

6 RMS + MAV 0.0532 0.0721

7 RMS + WL 0.05 0.0609

8 RMS + VAR 0.0648 0.0847

9 RMS + SSI 0.0625 0.0858

10 RMS + ZC 0.0622 0.0751

11 MAV + VAR 0.0537 0.0741

12 RMS + MAV + WL 0.0498 0.0638

13 RMS + MAV + ZC 0.0593 0.0654

14 RMS + MAV + VAR 0.0571 0.0709

Table 3.2   Training and 
testing errors of the MLP 
network for one or a set of 
features corresponding to 
the EMG signals of biceps 
muscle in a dynamic test

Item Extracted feature(s) MSE of training MSE of testing

1 IEMG 0.4259 0.0510

2 MAV 0.4239 0.0982

3 SSI 0.5844 0.0360

4 RMS 0.6869 0.0357

5 WL 0.5487 0.0476

6 ZC 0.4884 0.0585

7 CV 0.6820 0.1095

8 VAR 0.7064 0.0138

9 RMS + MAV 0.6415 0.0159

10 RMS + SSI 0.6202 0.0345

11 RMS + VAR 0.6649 0.0104

12 RMS + ZC 0.5940 0.0351

13 RMS + WL 0.6609 0.0128

14 MAV + VAR 0.6407 0.0088
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Table 3.3   Best results for biceps, deltoid, triceps, quadriceps, and tibialis anterior muscles (ISO)

Muscle Gender Appropriate features MSE of training MSE of 
testing

Biceps Female RMS 0.0509 0.0566

Female MAV + SSI 0.0565 0.0452

Female MAV + WL 0.0585 0.0399

Male RMS 0.0394 0.0229

Male RMS + WL 0.0396 0.0222

Deltoid Male RMS + WL 0.1585 0.1060

Male RMS + SSI + VAR + WL + IEMG 0.1921 0.0672

Triceps Female RMS + WL 0.0403 0.0457

Female RMS + WL + MAV 0.0522 0.0442

Male RMS + ZC 0.0161 0.0095

Male RMS + MAV + WL 0.013 0.0076

Male RMS + MAV + ZC 0.0127 0.0062

Quadriceps Female RMS + WL 0.065 0.079

Female RMS + ZC 0.0668 0.0799

Female RMS + MAV + VAR 0.0906 0.0792

Tibialis 
anterior

Female RMS + WL 0.0368 0.0453

Female RMS + VAR 0.0387 0.0436

Male RMS + WL 0.0893 0.0769

Male RMS + ZC 0.0959 0.1849

Table  3.4   Best results for biceps, deltoid, triceps, quadriceps, and tibialis anterior muscles 
(MVC)

Muscle Gender Appropriate features MSE of training MSE of testing

Biceps Female RMS + SSI 0.0306 0.0138

Female RMS + ZC 0.029 0.0206

Male RMS + ZC + MAV 0.0208 0.0165

Deltoid Female ZC 0.0255 0.0217

Male RMS 0.1651 0.1619

Triceps Female RMS + MAV + ZC 0.0624 0.0596

Female RMS + MAV + WL 0.067 0.0583

Male MAV 0.0109 0.1132

Male WL 0.0754 0.1112

Quadriceps Female RMS + MAV 0.577 0.0661

Female RMS + WL 0.0617 0.0668

Tibialis anterior Female RMS + WL 0.0424 0.0334

Female RMS + MAV 0.0484 0.0341

Male RMS + WL 0.0451 0.0405

Male RMS + WL + MAV 0.0549 0.0605
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contraction (MVC), and dynamic contraction, respectively. One primary purpose 
of developing an expert system to perform feature extraction and sample classifi-
cation is to achieve a standard evaluation procedure and to reduce therapist affec-
tivity on evaluation quality.

After most suitable features are extracted by reference classifier, an evalua-
tion is performed to find a robust and efficient classifier. Neuro-fuzzy network is 
a potential for this task which is compared to some other well-known classifiers in 
this part of experiment.

For neuro-fuzzy classifier, a combination of least squares and back propagation 
method was used as learning algorithm. Trapezoidal and Gaussian membership 
functions are commonly used as shape of fuzzy sets of inputting nodes. Number of 
2–4 membership functions is suggested for each variable in EMG signal modeling 
problem.

Table 3.6 shows results of implementing five types of classifiers for classifica-
tion of EMG signals according to extracted features. Due to difference between 
muscles power of two groups of gender, male and female, we separated males and 
females in analysis of their EMG signals of mentioned muscles. Classes of muscle 
forces are separated and samples are assigned to their relative classed. True assign-
ments of samples to their classes define classification rate in percent as criteria for 
evaluation of classifier in addition to training and testing capability.

Table  3.5   Best results for biceps, deltoid, triceps, quadriceps, and tibialis anterior muscles 
(dynamics)

Muscle Gender Appropriate features MSE of training MSE of testing

Biceps Female IEMG 0.0510 0.0425

Female MAV 0.0982 0.0423

Male ZC 0.1556 0.1083

Deltoid Female RMS + WL 0.0229 0.0194

Male RMS + ZC 0.0881 0.1565

Triceps Female RMS + MAV 0.1054 0.0981

Female RMS + VAR 0.1042 0.0927

Male ZC 0.0425 0.0517

Male RMS + MAV 0.0852 0.0861

Quadriceps Female RMS + WL 0.05 0.609

Female RMS + WL + MAV 0.0498 0.639

Tibialis anterior Female RMS + WL 0.0851 0.085

Female RMS + ZC 0.0722 0.053

Male RMS 0.1017 0.1409

Male RMS + WL 0.0983 0.103
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Table  3.6   Classifier evaluation for classification of EMG signals (muscle force) according to 
extracted features

K-NN K-nearest neighbor, FFNN feed-forward neural network, ERBNN Elman recurrent neural 
network, F.C-means fuzzy C-means, NFS neuro-fuzzy system
Except deterministic algorithm of K-NN, rests involve an uncertainty which means respective 
variations of outputs in a sequence of executions
FFNN-1: ([10, 1], ‘Logsig’,‘Purelin’,‘Trainlm’, 500)
FFNN-2: ([20, 1], ‘Logsig’,‘Purelin’,‘Trainlm’, 500)
FFNN-3: ([20, 1], ‘Logsig’,‘Purelin’,‘Trainlm’, 1000)
ERNN: (Spread = 0.01)
NFS-1: (NumMFs = 2, MFtype:‘Gaussmf’, 300)
NFS-2: (NumMFs = 2, MFtype:‘Gaussmf’, 500)
NFS-3: (NumMFs = 3, MFtype:‘Gaussmf’, 300)
NFS-4: (NumMFs = 3, MFtype:‘Gaussmf’, 500)
NFS-5: (NumMFs = 4, MFtype:‘Gaussmf’, 300)
NFS-6: (NumMFs = 4, MFtype:‘Gaussmf’, 500)

Classifier Features MSE  
of train

MSE of test Run 
time (s)

Uncertainty (%) Classification 
rate (%)

K-NN RMS + WL – – ~2 0 ~76

FFNN-1 RMS + WL 0.024 0.021 ~12 ~4 ~79

FFNN-2 RMS + WL 0.022 0.020 ~18 ~7 ~83

FFNN-3 RMS + WL 0.017 0.018 ~22 ~9 ~85

ERNN RMS + WL ~5e−06 0.312 ~14 ~12 ~71

F.C-
means

RMS + WL – – ~5 ~5 ~80

NFS-1 RMS + WL 0.003 0.011 ~7 ~2 ~82

NFS-2 RMS + WL 0.001 0.002 ~11 ~2 ~85

NFS-3 RMS + WL 3.1e−04 4.7e−04 ~23 ~3 ~87

NFS-4 RMS + WL 2.3e−04 3.9e−04 ~31 ~3 ~88

NFS-5 RMS + WL 2.1e−04 3.3e−04 ~39 ~3 ~89

NFS-6 RMS + WL 2.1e−04 2.9e−04 ~43 ~4 ~91
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Feed-forward neural network with three structural parameters, Elman recurrent 
neural network, fuzzy C-means, and 6 structures of neuro-fuzzy system are 
employed to first model samples and then to assign them to their respective 
classes. It can be seen for offline processing of EMG signals where accuracy and 
adaptability are followed by classifier, neuro-fuzzy system outperforms other tools 
given in Table  3.8. For real-time applications, timing characteristics of neuro-
fuzzy systems should be taken into account since training this type of classifier 
requires a training procedure and training procedure takes longer times for larger 
number of fuzzy rules. Nevertheless, whenever working in offline mode and 
when accuracy is only concerned, neuro-fuzzy system yields satisfactory results 
comparatively. EMG signals of biceps, deltoid, triceps, tibialis anterior, and 
quadriceps muscles were recorded in three states of isometric contraction (ISO), 
maximum voluntary contraction (MVC), and dynamic contractions from 20 nor-
mal subjects aged between 20 and 30; half of them are male. Totally, 14 extracted 
features are analyzed to find which of them or which set of them is discrimina-
tive and selective for muscle force classification. Neuro-fuzzy system is trained 
with 70 % of recorded EMG cutoff windows, and then, it is employed for clas-
sification and modeling purposes. For each muscle, most effective extracted fea-
tures are found for males and females separately by a reference classifier. Finally, 
neuro-fuzzy classifier is validated in comparison with some other well-known 
classifiers for classification of recorded EMG signals with three states of con-
tractions corresponding to extracted features. It was found that combinations of 
RMS + WL and RMS +  MAV + WL yield best result for quadriceps muscle,  
and for biceps muscle, lowest MSE corresponds to combination of MAV and VAR 
features. It was also inferred that isometric contraction test, compared to two other 
contractions, has lower MSE values when it is modeled so it is more discriminative  
and effective in sample classifications.

Chapter 4
Conclusions and Inferences of Present 
Study
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See Figs. A.1, A.2, A.3 and A.4.
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Fig. A.1   Illustrate EMG of tibialis anterior
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Fig. A.2   Tibialis anterior EMG signal after high pass filter 10 Hz
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Fig. A.3   EMG signal after absolute value
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Fig. A.4   Muscle force extraction after filtering with low pass filter 2 Hz
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