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Preface

Plug in Electric Vehicles (PEVs) use energy storages usually in the form of battery
banks that are designed to be recharged using utility grid power. One category of
PEVs are Electric Vehicles (EVs) without an internal-combustion (IC) engine
where the energy stored in the battery bank is the only source of power to drive the
vehicle. These are also referred as Battery Electric Vehicles (BEVs). The second
category of PEVs, which is more commercialized than the EVs, is the Plug in
Hybrid Electric Vehicles (PHEVs) where the role of energy storage is to supple-
ment the power produced by the IC engine. These two types of PEVs are predicted
to dominate the automobile market by 2030. Widespread adoption of PEVs allows
the world to reduce carbon emissions in transportation needs significantly. There-
fore, it is vital to the success of a collective global effort in meeting the climate
energy targets and to reduce the dependence on increasingly scarce fossil fuels.
However, there are a host of challenges thrust upon utility grid operators on how
best to meet, control and coordinate the power demand arising due to charging of
PEVs. This book covers the recent research advancements in the area of charging
strategies that can be employed to accommodate the anticipated high deployment of
PEVs in smart grids. Recent literature has focused on various potential issues of
uncoordinated charging of PEVs and methods of overcoming such challenges.
These innovative approaches include hierarchical coordinated control, model pre-
dictive control, optimal control strategies to minimize load variance, smart PEV
load management based on load forecasting, integrating renewable energy sources
such as photovoltaic arrays to supplement grid power, using wireless communi-
cation networks to coordinate the charging load of a smart grid and using market
price of electricity and customers payment to coordinate the charging load. Hence,
this book includes many new strategies proposed recently by researchers around the
world to address the issues related to coordination of charging load of PEVs in a
future smart grid. The book is aimed at engineers, system planners, researchers and
graduate students who are searching for the latest developments in research related
to charging strategies of PEVs in smart grids.
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Chapter 1
Charging Coordination Paradigms
of Electric Vehicles

Alexander Schuller

Abstract The Smart Grid enables bidirectional communication between distributed
actors and resources in the power system. In particular Plug-In Electric Vehicles
(PEVs) are a new type of load that has a considerable (time) flexibility in its demand.
In order to integrate and harvest this flexibility within a DSM (Demand Side
Management) program, the charging of PEVs needs to be coordinated. The coor-
dination must occur with respect to a given objective. In addition, the coordination of
demand requirements can be performed within different communication and control
architectures. The main architectural concepts that can be distinguished are decen-
tralised and centralised control architectures. These categories refer to the level on
which the charging decision is made, given an objective and constraints that need to
be met given a certain user scenario. This work reviews in detail the recent work with
respect to different charging coordination paradigms and distinguishes between the
following main objectives: grid integration and technical implications, explicit
integration and direct utilization and balancing of renewable energy sources and
finally, economic driven decisions. The discussion performed in this chapter shows
that in the category with a predominantly technical focus, V2G (Vehicle-to-Grid)
and grid load (regional and system-wide) impacts are the main research areas. Work
looking into the integration ability of renewable energy sources enabled by PEV
demand flexibility is in particular focused on the reduction of imbalances stemming
from fluctuating generators, e.g. wind power, on a system and also on regional scales
under consideration of grid constraints. Short term storage applications are also
discussed, but the coordination of PEV demand flexibility by dynamic price
incentives is not covered very extensively. Work from the economic domain focuses
on the assessment of regulation market participation and day-ahead wholesale
market oriented charging. These approaches in turn do not intensively investigate the
effect of cost minimizing charging strategies with respect to the utilization of fluc-
tuating renewable energy sources. By consistently discussing recent work from
various areas looking into the versatile facets of charging coordination paradigms of
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electric vehicles, this work provides an anchor for further investigations that help to
harvest the demand side flexibility of Electric Vehicles.

Keywords Electric vehicles � Charging coordination � Grid integration �
Renewable energy � Economic incentives

1.1 Background and Motivation: Demand Response

Demand Response (DR) is a concept first introduced to power systems in the 1970s
following the 1973 energy crisis. At the time the significant oil price shocks lead to
an increased awareness about energy consumption and energy efficiency. The U.S.
pioneered in the advancement of this concept by imposing strict programs for
energy conservation and demand-side-management measures on its integrated
utilities at the time [1]. The programs had their focus on increasing overall energy
efficiency, hereby reducing overall demand for energy, and on reducing peak load
by enabling large industrial customers to reduce or shift a significant part of their
load in order to stabilize the power system. The general load reduction would also
contribute to a decrease of needed installed capacity to secure supply at all times.
But as demand still varies over the course of every day in a system, and also varies
in dependence of weather and season, a considerable number of reserve and
peaking generators, often with comparably higher variable costs are needed to allow
for the system to function properly. Demand Response is a crucial concept to
increase the efficiency of the power system and can be defined as:

all intentional electricity consumption pattern modifications by end-use customers, that
are intended to alter the timing, level of instantaneous demand, or total electricity
consumption, [2]

Demand-Side-Management (DSM) is part of the more general concept of Demand
Response and is mostly referred to with respect to the explicit measures of utilities
that were implemented for larger customers to contribute to technical system sta-
bility in a centrally controlled power infrastructure. The term is still employed for
these measures, but is also used synonymously for artifacts that in the following
will be described as parts of Demand Response. The Smart Grid concept has the
potential to enable Demand Response at low general implementation and transac-
tions costs. This in turn will help to integrate a higher share of intermittent gen-
erators, increase the system stability and finally tackle one of the most important
flaws of power markets: the low or non-existing elasticity of the demand side. EVs
can be seen as a large resource for Demand Response as they bring with them a
high flexibility for a considerable part of their overall demand.

2 A. Schuller



1.2 Categorising PEV Charging Coordination

In order to harvest the demand flexibility of PEVs within a DR program, their
charging process needs to be coordinated. The coordination must occur with respect
to a given objective. In addition the coordination of demand requirements can be
performed within different communication and control architectures. The main
architectural concepts are decentralised and centralised control architectures. These
categories refer to the level on which the charging decision is made, given an
objective and constraints that need to be met given a certain scenario. Figure 1.1
provides a basic classification of the two charging coordination architectures under
inclusion of the mixed hierarchical architecture. Following the predominant cen-
tralised control paradigms of the traditional power system, centralised charging
control architectures build on scheduling procedures that also consider the
requirements of the individual charging jobs. These paradigms often rely on
planned schedules that are communicated to a central scheduling instance, or
assume that a direct load control (DLC) scheme is in place which can be employed
to organize the overall charging process such that in particular technical constraints
are met. The Distribution System Operator (DSO) and Transmission System
Operator (TSO) are often assumed to be responsible for this form of coordination as
technical objectives need to be met for safe and reliable power grid operations [3].

A centralised approach has advantages with respect to reliability of charging
control and can be integrated easily into existing power system control paradigms.
But centralised control architectures require a high degree of information in order to
allow for accurate planning by the central instance. Furthermore central control

Charging Coordination

DecentralisedCentralised Hierarchical

Problem Size

Problem Size

Problem Size

Coordination Instance Coordination Resources (PEVs) 

Fig. 1.1 PEV charging coordination paradigms, adapted from [4]
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architectures rely on increasingly complex optimisation procedures that do not scale
very well in the number of participating units [5], as with every new vehicle
additional constraints are added to the optimisation problem. There are many
possibilities to reduce the complexity for central coordination procedures or use
faster computing algorithms, including heuristics (e.g. genetic algorithms or sim-
ulated annealing [6]) or the division of problems into subsets which can be solved
easier. Nevertheless this control paradigm might not be very well received by PEV-
owners as they do not retain control about the charging process of their vehicle. In
order to address the technical complexity and the increasingly more decentralised
structure of the power system, hierarchical charging coordination approaches must
also be considered.

Hierarchical coordination procedures can be a hybrid form that incorporate
aspects of both, centralised and decentralised control paradigms. They can incor-
porate centralised control and scheduling mechanisms, but in contrast to their
system wide counterpart, only address solutions for defined areas or parts of the
overall system. This divides the general optimisation problem into a set of inter-
connected but local, and in the best case optimal, solutions. In a more compact
setting this traditional approach is thus still applicable from a technological per-
spective. The drawbacks with respect to the charging decision being delegated
away from the PEV-owner are still prevalent. In this context the role of a so called
aggregator, an institution that aggregates the load and thus also the load flexibility
of numerous PEVs in order to participate in the power market, ameliorate distri-
bution congestion [7], enhance grid stability through the provision of ancillary
services or support the integration of fluctuating renewable energy sources [8], has
been extensively proposed as a hierarchical coordination instance.

Charging control in the hierarchical scenario can either follow a schedule based
or a price based coordination approach. In the price based scenario, a price is
determined either by the aggregator and communicated to his customer PEVs, or it
can be determined in a special auction in which the particular PEVs participate [9].
Price based mechanisms can incorporate the system state, and in particular the
regional technological constraints if they are designed accordingly. Following the
concept of spot pricing (cf. [10]), prices that reflect local capacity constraints and
resource availability enable an efficient resource allocation. Prices can vary by
location, a concept following the nodal pricing paradigm, or by time, and finally in
both dimensions.

Decentralised charging coordination builds predominantly on price based mech-
anisms. Decentralised charging decisions enable vehicle owners or users to decide
when and according to which objective to organize the charging process. The coor-
dination mechanism must therefore incorporate the decisions made by the individual
PEVs in order to allow for an effective and reliable operation of the system while
guaranteeing supply for the vehicles. In this category prices can either be determined
uniformly for all market participants, or discrimination with respect to location and
demand time takes place. Decentralised coordination requires more exchange of
information, but the number of necessary parameters that need to be communicated is
lower, as the decision problem size is confined to one unit, e.g., one PEV.

4 A. Schuller



The different charging coordination architectures cannot always be distinguished
sharply. Decentral charging decisions based on centrally communicated uniform
prices are one example for a mixed form of charging coordination. Hierarchical and
decentralised architectures are inherently combined if price signals are calculated on
a regional level by an aggregator, while vehicles still make the decision on how to
determine their individual charging schedule. The presented classification is thus
giving an overview of the general possibilities on how to organize charging
coordination. Considering a more abstracted perspective, this classification can be
employed for any resource allocation, including other flexible loads. The next
sections provide an overview of the most relevant literature with respect to charging
coordination of PEVs looking into primarily technical and economic objectives and
the integration ability of fluctuating renewable energy sources.

1.3 Technical Objectives of Charging Coordination

One of the main areas covered in literature of PEV related research is looking into
technical questions in particular with a focus on the power grid integration of PEVs.
Most of the work mentioned in this section also considers economic constraints, but
primarily pursues technical objectives under economic restrictions. Scholars
investigating the respective questions in the context of the Smart Grid stem from
different professions, and provide insights on similar questions from various per-
spectives. Traditional power systems engineering, as well as electrical engineering
and increasingly researchers from computer science and economics investigated
some of the following aspects with a technical focus.

One main branch of research is looking into the assessment of PEV charging
load on the power grid on different voltage levels, with a particular focus on
distribution grids. Topics in this domain include the investigation of transformer
loads following different charging strategies in given standardized distribution grid
structures, mainly with households as an inflexible base load. In this context
Optimal Power Flow (OPF) methods play an important role. Other main objectives
in this context are peak reduction and load shifting in order to minimize distribution
system losses and distribution equipment stress. In addition voltage problems and
reactive power provision or compensation in distribution grid settings are
investigated.

Analyses with respect to the impact of PEVs on distribution system load per-
formed by Lopes et al. [11] and Mets et al. [12] show that controlled charging
schemes can help to integrate a higher number of PEVs in the same distribution
system (52 % penetration rate in the coordinated as compared to 10 % in the
uncontrolled case). In addition peak loads can be significantly reduced by 40 % by
coordinated charging. As system peaks are reduced so are losses in the distribution
system by around 25 % in the analyzed scenarios [13]. Analyses with respect to
optimal charging rates in a residential context show that charging coordination can
improve voltage levels and balance phase load in order to reduce transformer

1 Charging Coordination Paradigms of Electric Vehicles 5



equipment wear and integrate higher numbers of PEVs, thus deferring costly line
and distribution system upgrades, [14, 15]. Most coordinated charging approaches
follow the centralised or hierarchical control architecture with rather high infor-
mation requirements regarding the individual PEV-user [16]. Further investigations
are looking into the interaction between distribution and transmission systems and
thus show that local load situations can be quite different from overall system status
and require different integration strategies [17, 18].

Besides the regional impact assessment there is also work looking into the
system wide impacts of PEVs. In particular the impact of considerable PEV pen-
etration rates on existing power systems and the corresponding unit commitment
models in the U.S. are at the center of attention, [19, 20]. These analyses are either
looking into operational aspects like additional C02-emissions and costs in the
European [21], or U.S. systems caused by the integration of PEVs. Other analyses
are estimating the reductions in primary energy consumption enabled by PEVs and
the effects on overall system load [22].

Another technical branch of research is focused on the storage and energy feed-
back aspect of PEVs, known as vehicle-to-grid, (V2G). This notion introduced by
Kempton and Letendre [23] has received a high level of attention. In particular the
question if a profitable participation of PEV fleets, coordinated by an aggregator, in
a direct control scheme has been addressed in different settings. The necessary
communication architecture has been assessed in Quinn et al. [24], the main
application domain for V2G is the provision of ancillary services, since regulation
and spinning reserve products appear as the economically most stable options under
consideration of high battery investment and degradation costs, [25–27]. In addition
energy arbitrage under nodal and wholesale prices in the U.S. and Germany have
been investigated [28].

These analyses show in particular that it can be profitable for PEVs to provide
certain regulation and spinning reserve products, as both the U.S. and the European
markets include capacity and energy payments for regulation market participants.
Sortomme and EI-Sharkawi [29], Dallinger et al. [30] also show that the most
profitable option to participate in regulation markets is the provision of negative
regulation, which means that charging occurs at times when the grid has surplus
energy that needs to be withdrawn.

This operation strategy incurs no additional battery costs and can be profitable in
particular because of the capacity payments that are paid for being available to the
power grid at the contracted times. Positive regulation can also be slightly profit-
able, but needs to consider additional investments in grid and communication
infrastructure. In this context is has also been shown that frequency regulation
support can be performed by the vehicles [11].

Table 1.1 provides an overview of different approaches in the technical domain.
As there are vast amounts of at least partly relevant literature this table provides a
general overview of the main areas covered in in PEV research with a primarily
technological perspective. The table provides an overview of the main research
objective addressed, the coordination approach and the scope covered by the model.
The categories covered in the scope are the consideration of technological grid

6 A. Schuller
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constraints (e.g. voltage, power ratings, power flows), consideration of ancillary
services, the ability to integrate or support RES utilization. In addition the cate-
gories trip modeling of PEVs and the application of dynamic prices are taken into
account. Finally a short synopsis of the findings is given.

1.4 Renewable Energy System Integration

Making PEVs more sustainable with respect to green-house-gas (GHG) emissions,
reducing fossil fuel dependency and assisting the power grid in the integration of
fluctuating renewable generation are some of the core advantages of charging
coordination with a focus on higher utilization shares of renewable energy [33]. The
literature in this field is often intertwined with economic and technical objectives.
Most analyses are focusing on the coupling of PEV demand flexibility with
intermittent renewable generation. Starting from an overall power system per-
spective, assessments of PEV charging load impacts in systems with a high share of
wind-power generation have been conducted, e.g. in [34, 35], where the impact of
renewable sources (predominantly wind-power) on the merit order of the conven-
tional power plants or the integration ability of additional wind power capacity is
assessed. An analysis in the impact for the German case in 2030 was performed by
Dallinger and Wietschel [36]. They show that coordinated PEV charging, based on
a variable pricing scheme and assuming responsive PEV-owners can contribute to
balance intermittent generation.

Besides a cost assessment in different scenarios, the capability of PEVs to reduce
system-imbalance e.g. in the UK and Danish system have been analyzed in Druitt
and Frueh [37] and Goeransson et al. [38]. Druitt and Frueh [37] show that with a
wind-power share covering 30 % of the UK electricity demand, one million PEVs
can supply about half of the balancing power required. With higher PEV adoption
rates of up to 10 million vehicles, about 70–85 % of the balancing requirements can
be met only by the vehicle fleet. Goeransson et al. [38] in turn show that emissions
in the Danish system can be reduced by PHEVs by a coordinated charging pattern
by 4.7 % when vehicles have an overall demand share of 20 %. Emission reductions
in this case are due to more efficient thermal generation, avoiding additional
startups and part load operation. Additional analyses by Ekman [39] show that
coordinated charging and V2G capabilities of 500,000 and 2.5 million vehicles in
Denmark are capable to reduce AS and system reserve requirements if wind-power
generation covers 50 % of the Danish demand. In this case the authors also find that
PEVs cannot provide the necessary demand side flexibility alone, but still need
additional controllable generation for back up or other demand side flexibility
options in order to reduce the excess wind energy provided.

Other work with a focus on the V2G domain from Kempton and Tomic [40]
shows that PEVs can help to provide short term storage in the case of the US. power
system for up to 2 h, but are not capable to serve as a medium term energy storage
which allow for a compensation of daily and weekly generation shortages in wind-

1 Charging Coordination Paradigms of Electric Vehicles 9



power production (assuming an installed capacity of 700 GW wind-power and
38 % of the U.S. vehicle fleet being PHEVs that serve as an operating reserve).

Another U.S. case analysis performed by Valentine et al. [41] for the NYISO
area shows that coordinated charging according to wind power availability
improves system balance, but might slightly improve costs. This study shows that
coupling of PEV load and wind-power infeed should not be performed in a man-
datory way but that they should be treated as independent resources in pool markets
with unit commitment models. Markel et al. [42] show that centralised charging
coordination with respect to a renewable energy availability signal from the utility
can reduce ramp rates for conventional generation by 5 % when a 5 % PEV
adoption rate and 15 % RES share of demand is assumed. In addition they show
that the communication requirements for centralised fleet control can securely be
covered by existing mobile communication infrastructure.

Relevant work with a focus on the operative decisions of single actors in a
regional setting has been performed e.g. by Finn et al. [43], Vandael et al. [44] and
Galus and Andersson [45]. Finn et al. [43] show that in the Irish case DSM
measures including PEVs can increase the absolute share of utilised wind-power for
charging. Vasirani et al. [46] propose a coalition formation approach to directly
map the demand of PEVs and the production of wind-generators in a VPP. Galus
and Andersson [45] show that in the region of Zurich PEVs coordinated by an
aggregator can help to balance the production forecast error of a 500 MW wind-
farm. Vandael et al. [44] present a hierarchical approach for the reduction of local
renewable energy balancing requirements in a distribution network setting. Their
analysis shows that while the charging intentions of the individual PEVs are still
met, imbalances can be reduced by up to 44 % as compared to the uncoordinated
case.

Table 1.2 provides a short comparative overview of some of the main related
analyses. Charging coordination for renewable energy integration has been inves-
tigated in different settings, most of the reviewed papers were either focused on
balancing fluctuating renewable production, while considering technological and
economic constraints. As balancing of renewable energy production must be per-
formed on a short term basis most approaches assume centralised or at least hier-
archical control architectures. Balancing occurs for time intervals of 15 min,
therefore the provision of ancillary services is only partly considered, in particular
primary regulation is thus not considered. Besides the assessment of PEV demand
flexibility employment for RES integration, most approaches also evaluate the
changes in demand patterns based on the prevalent market model, or on simple
tariffs with respect to the economic impact of the demand shift. Most papers assume
that PEVs are price responsive and have an automated charging control unit which
acts on behalf and according to the preferences of the PEV-user. Nevertheless most
studies only make basic assumptions about the trip behavior of the vehicles and
rather focus on active inclusion of PEVs into the power grid. In this respect future

10 A. Schuller



T
ab

le
1.
2

C
ha
ra
ct
er
is
tic

re
la
te
d
lit
er
at
ur
e
w
ith

a
fo
cu
s
on

in
te
gr
at
io
n
of

re
ne
w
ab
le

en
er
gy

so
ur
ce
s

T
ec
hn

ic
al

fo
cu
s

M
ai
n
ob

je
ct
iv
e

(R
Q
)

C
oo

rd
in
at
io
n

ap
pr
oa
ch

M
od

el
sc
op

e
M
ai
n
fi
nd

in
g

A
ut
ho

rs
G
ri
d

co
ns
tr
ai
nt
s

A
nc
ill
ar
y

se
rv
ic
es

R
E
S

ut
ili
za
tio

n
PE

V
tr
ip

m
od

el
in
g

D
yn

am
ic

pr
ic
es

D
ru
itt

an
d

Fr
ue
h

(2
01

2)
[3
7]

Sy
st
em

w
id
e

w
in
d-
im

ba
la
nc
e

re
du

ct
io
n
th
ro
ug

h
PE

V
s
in

U
K

C
en
tr
al

N
o

Y
es

Y
es

(Y
es
)

Y
es

PE
V
s
ca
n
re
du

ce
ba
la
nc
-

in
g
re
qu

ir
em

en
ts
fo
r

w
in
d-
ba
la
nc
in
g
by

50
%

w
hi
le

ch
ar
gi
ng

co
st
s
ar
e

lo
w
er
ed

Fi
nn

et
al
.

(2
01

2)
[4
3]

E
va
lu
at
io
n
of

D
SM

-s
ig
na
ls
fo
r

m
ax
im

um
w
in
d

po
w
er

us
ag
e
w
hi
le

ke
ep
in
g
co
st
s
lo
w

D
ec
en
tr
al
:

sc
he
du

lin
g

N
o

N
o

Y
es

(Y
es
)

Y
es

C
os
t
ba
se
d
m
in
im

is
at
io
n

st
ra
te
gy

pr
om

is
es

m
os
t

be
ne
fi
ts
in

th
e
an
al
ys
ed

ca
se
,
w
in
d
sh
ar
e
m
ax
i-

m
is
at
io
n
le
ad
s
to

sl
ig
ht
ly

hi
gh

er
co
st
s

G
al
us

an
d

A
nd

er
ss
on

(2
01

1)
[4
5]

B
al
an
ci
ng

of
w
in
d

ge
ne
ra
tio

n
w
ith

la
rg
e
PH

E
V

fle
et

un
de
r
co
ns
id
er
-

at
io
n
of

gr
id

to
po

lo
gi
es

H
ie
ra
rc
hi
ca
l

Y
es

(Y
es
)

(Y
es
)

Y
es

(Y
es
)

T
he

M
PC

m
od

el
en
ab
le
s

th
e
ag
gr
eg
at
or

to
ba
la
nc
e

th
e
w
in
d
in
-f
ee
d
er
ro
r
fo
r

a
50

0
M
W

w
in
d
fa
rm

G
ör
an
ss
on

et
al
.

(2
01

0)
[3
8]

C
om

pa
ri
so
n
of

di
ff
er
en
t
ch
ar
gi
ng

st
ra
te
gi
es

in
th
e

sy
st
em

of
D
en
-

m
ar
k
w
ith

re
sp
ec
t

to
to
ta
l
em

is
si
on

s

C
en
tr
al

(Y
es
)

N
o

Y
es

(Y
es
)

N
o

E
m
is
si
on

re
du

ct
io
ns

in
w
in
d-
th
er
m
al
sy
st
em

s
ar
e

on
ly

po
ss
ib
le
if
PE

V
s
ar
e

ac
tiv

el
y
m
an
ag
ed (c
on

tin
ue
d)

1 Charging Coordination Paradigms of Electric Vehicles 11



T
ab

le
1.
2

(c
on

tin
ue
d)

T
ec
hn

ic
al

fo
cu
s

M
ai
n
ob

je
ct
iv
e

(R
Q
)

C
oo

rd
in
at
io
n

ap
pr
oa
ch

M
od

el
sc
op

e
M
ai
n
fi
nd

in
g

A
ut
ho

rs
G
ri
d

co
ns
tr
ai
nt
s

A
nc
ill
ar
y

se
rv
ic
es

R
E
S

ut
ili
za
tio

n
PE

V
tr
ip

m
od

el
in
g

D
yn

am
ic

pr
ic
es

K
em

pt
on

an
d
T
om

ic
(2
00

5)
[4
7]

A
ss
es
sm

en
t
of

st
or
ag
e
op

tio
ns

an
d
gr
id

su
pp

or
t

by
PE

V
s

(C
en
tr
al
)

N
o

Y
es

Y
es

N
o

N
o

PE
V
s
ar
e
w
el
l
su
ite
d
fo
r

re
gu

la
tio

n,
ca
n
be

us
ed

fo
r
pe
ak

po
w
er
,
no

t
fo
r

m
ed
iu
m

te
rm

st
or
ag
e
to

co
m
pe
ns
at
e
fo
r
R
E
S

sh
or
ta
ge
s

M
ar
ke
l

et
al
.

(2
00

9)
[4
2]

A
ss
es
sm

en
t
of

ch
ar
gi
ng

st
ra
te
gi
es

fo
r
di
re
ct

R
E
S

ut
ili
za
tio

n

C
en
tr
al

N
o

N
o

Y
es

Y
es

Y
es

C
oo

rd
in
at
ed

ch
ar
gi
ng

ca
n
re
du

ce
pe
ak
s,

in
cr
ea
se

R
E
S
us
e,

co
m
m
un

ic
at
io
n
in
fr
a-

st
ru
ct
ur
e
is
su
ffi
ci
en
t

fo
r
ce
nt
ra
l
co
nt
ro
l

M
et
s
et

al
.

(2
01

2)
[4
8]

D
is
tr
ib
ut
ed

ch
ar
g-

in
g
fo
r
w
in
d

en
er
gy

ut
ili
za
tio

n

H
ie
ra
rc
hi
ca
l

N
o

N
o

Y
es

(Y
es
)

Y
es

W
in
d
en
er
gy

ut
ili
sa
tio

n
ca
n
be

do
ub

le
d
by

th
e

di
st
ri
bu

te
d
de
ci
si
on

m
ec
ha
ni
sm

w
ith

a
hi
er
-

ar
ch
ic
al

co
or
di
na
to
r

V
al
en
tin

e
et

al
.

(2
01

2)
[4
1]

W
in
d
en
er
gy

ba
l-

an
ci
ng

an
d
en
er
gy

pr
ic
e
im

pa
ct

of
PE

V
s
in

N
Y
-I
SO

C
en
tr
al

N
o

N
o

Y
es

(Y
es
)

Y
es

PE
V
s
ca
n
su
pp

or
t
w
in
d

in
te
gr
at
io
n
an
d
co
nt
ri
b-

ut
e
to

lo
w
er

pr
ic
es
.
M
us
t

ta
ke

w
in
d
po

lic
y
is
no

t
co
st
op

tim
al

V
an
da
el

et
al
.

(2
01

1)
[4
4]

Im
ba
la
nc
e
re
du

c-
tio

n
w
ith

PE
V
s,

PV
ca
se

st
ud

y

D
ec
en
tr
al
:

ec
on

om
ic

(Y
es
)

N
o

Y
es

N
o

Y
es

T
he

di
st
ri
bu

te
d
m
ec
ha
-

ni
sm

co
ul
d
re
du

ce
ba
l-

an
ci
ng

co
st
s
by

14
–
44

%

12 A. Schuller



work could enhance the existing analyses if real-life driving profiles are employed
for the assessment of PEV charging demand flexibility with respect to the renew-
able energy integration potential.

1.5 Economic Objectives

The last main group of relevant related work is concerned with the economic
evaluation of charging coordination in different market settings and the assessment
of allocation mechanisms from an economic perspective. The papers discussed in
the following are thus primarily focused on operative economic objectives with
some considering technical and renewable energy integration aspects.

Employing the demand flexibility of PEVs for the provision of AS was dis-
cussed above, one of the main economic assessments for the general viability of the
V2G concept was performed in [47]. Based on data from 2003 an economic
evaluation of the provision of regulation and spinning reserve products in the
CAISO market area shows that PEVs, in particular those with a high power con-
nection can generate quite high profits mainly due to capacity payments they
receive.

This analysis is quite static and does not consider the dynamics of driving
behavior. Work by Andersson et al. [26] and Dallinger et al. [30] (both assuming a
hierarchical aggregator approach) shows that when the daily variations of prices and
mobility patterns are considered, V2G activity is profitable only for certain regu-
lation products. In particular down or negative regulation (in the European context
negative secondary and tertiary reserve) can profitably be implemented by PEVs.

These analyses show that the capacity payment is a crucial part of the revenue
that can be generated by the individual EVs. As mentioned above these approaches
consider full availability and control of the participating vehicles. In addition PEVs
are modeled as price takers, not influencing the price determination of regulation
products. Following the analysis of Druitt and Frueh [37], Quinn et al. [24] and the
sources mentioned above, one can see that the complete capacity requirements for
regulation (and thus balancing) can be supplied by less than 10 % of the respective
vehicle fleets, assuming all of them would be electric, technically capable and
willing to participate. V2G can thus be a profitable option for the first movers and
can even be performed without too high battery degradation costs, (cf. [28, 49]), but
will eventually not be a viable option for all PEV-owners over time.

Following this observation, the interaction of PEVs adjusting their demand
(mostly without V2G operations) in accordance with economic signals emitted from
the power market is one of the main topics covered in literature. In particular the
optimal operation of charging in the U.S. setting within the frame of unit com-
mitment (UC) based pool market models was investigated by Sioshansi [50],
Caramanis and Foster [51], Foster and Caramanis [52]. Sioshansi [50] compares
two operation strategies, one that includes the demand requirements of 1 % of the
vehicle fleet of the ERCOT service area as PHEVs (75,000 vehicles) in the ISOs

1 Charging Coordination Paradigms of Electric Vehicles 13



unit commitment model and a tariff based charging strategy for TOU and RTP
schemes. The results show that the charging costs in the centralised overall cost
minimization UC scheme are lower than in the tariff based scenario. In addition the
analysis of the ERCOT case shows that RTP schemes are efficient in communi-
cating the marginal costs of power production to the demand side, but cannot
capture the non-convexities of generator startup costs in a system with high shares
of coal generation, leading to higher overall charging costs than in the other cases.
The work of Caramanis and Foster [51] shows that a load aggregator for vehicles
can develop efficient charging control strategies for his PEV fleet, which allows for
successful hedging in the day-ahead market but still permits to consider intra-day
charging flexibility in the real-time market. This analysis shows that charging costs
can be reduced by at least 20 % as compared to uncontrolled charging, and that
PEVs can successfully reschedule their demand on a short term basis, under con-
sideration of new information about prices, grid constraints and in particular their
own demand requirements. When aggregators consider shorter optimisation hori-
zons and grid capacity constraints in their optimisation calculus, results from Foster
and Caramanis [52] show that charging costs can be reduced, and the demand
flexibility of the vehicles can also be employed in hour-ahead energy and regulation
products. This shorter charging decision dispatch allows to choose the most
appropriate commitment of the available PEV demand resources, and shows that
accounting for uncertainty in the power system state and the resulting prices needs
further investigation in particular in the European (or German) market scenario.

Following the hierarchical and decentralised charging decisions based on day-
ahead and spot prices, the following approaches should be mentioned. Rotering and
Ilic [53] are considering PHEVs in the Californian day-ahead market and present
optimal smart charging strategies based on dynamic programming, that help to
reduce daily energy costs by more than 50 %. In addition they analyze a firm
commitment in the regulation market which allows the vehicles to generate addi-
tional profits that outweigh the driving energy costs. For another case in which PEV
owners perform arbitrage accommodation based on the respective LMPs, Peterson
et al. [28], find that when battery degradation costs are considered in V2G operation
strategies, the annual profit per PEV would range between 12 and 118 USD for
historical price data from NYISO, PJM and 1SO-New England areas from 2003 to
2008. This work performs a benchmark analysis and compares the values from a
perfect foresight scenario with a naive forecasting technique building on a moving
average of 2 weeks for the respective hours. When uncertainty is accounted for in
this manner, the annual profits decrease to values of 6–72 USD. Energy arbitrage is
thus only slightly profitable, but could be an option if additional infrastructure for
grid interaction would be available to the vehicles, since the analysis builds on the
assumption that EVs are not available in the time between 8:00 a.m. and 4:59 p.m.,
a time that is most likely to incorporate the daily peak prices.

Further Work from Verzijlbergh et al. [54] compares different charging strategies
that are likely to be implemented by different actors and have been described in the
related work mentioned before. In particular charging strategies from the per-
spective of an aggregator, the DSO and a wind-farm operator are considered in the
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setting of the Dutch power system. The aggregator performs a wholesale cost
minimization to satisfy the demand of his customers at a minimum cost level, the
DSO in turn distributes load in order to minimise the distribution system losses, and
the wind-farm operator employs the charging flexibility to reduce the imbalance
between planned and actual production of the wind-generators. In all cases a
hierarchical or centralised control paradigm is implemented. The results based on
the Dutch case show, that in particular the imbalance reduction strategy highly
deviates from the load patterns of the traditional cost minimal and loss minimisation
approaches. The imbalance strategy leads to highly accentuated peaks in the system
that could in turn, if interaction of fleets with differing objectives takes place,
increase the overall system balancing costs or create additional stress on distribution
system components. Besides the technical comparison a basic cost assessment with
respect to wholesale prices shows, that the loss oriented strategy incurs the highest
costs. Considering interactions in the respective settings is thus an important aspect
for the assessment of charging strategies.

Flath et al. [55] investigate how decentralised, cost minimising charging strat-
egies can be improved by the concept of area prices. The study analyses how
different charging strategies perform with respect to average costs and local dis-
tribution grid load. Besides the cost minimizing optimal strategy, heuristics that
require less price and trip information based on specified price thresholds and a
charging strategy incorporating an “as late as possible” charging scheme are also
assessed. Results show that uniform pricing based on wholesale prices leads to new
peaks in the total load of the vehicle fleet, which could lead to overload of distri-
bution assets if the vehicles are regionally clustered.

When an additional local price component reflecting the current load of the local
transformer is added, the load peaks can be reduced by more than 80 % while
average costs for charging only increase by 15 %. This approach thus demonstrates
that PEVs can be potentially coordinated very well by a dynamic pricing scheme if
they are price responsive, rational actors.

Work from Vandael et al. [44], Fan [56] and Gerding et al. [9] emphasises the
decentralised charging decision approach and also evaluates the mechanisms
incorporated with respect to their economic or game theoretical properties.
Important properties of a mechanism are its incentive compatibility, economic and
in particular pareto efficiency, budget-balance, individual rationality and strategic
robustness, [57].

These concepts from the algorithmic-mechanism design domain are important in
order to apply distributed decision processes in the critical infrastructure of the
Smart Grid. If charging decisions are made in a decentralised manner, mechanisms
need to be designed to set incentives for the PEVs to participate (rather than not),
thus making it individually rational to participate. Incentive compatibility reflects
the fact that the information e.g. w.r.t. the demand of the individual vehicle is
communicated truthful to the mechanism, making this property one of the most
important ones if strategic decision behavior of PEVs is considered. Most
approaches sketched in the previous section do not assume untruthful behavior of
PEVs in order to address other explicit questions from the technical domain.
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Fan [56] is investigating a distributed (PEV) demand response approach, based
on the idea of congestion pricing of communication networks. In particular a dis-
criminatory pricing approach is presented which enables every EV to act according
to its individual willingness to pay for the charging rate in a particular time slot.
This pricing mechanism is shown to be capable to reduce local load peaks while
maintaining computational tractability.

Table 1.3 presents a selective overview of relevant related work with a primary
focus on economic assessment or objectives of charging coordination. A consider-
able part of PEV charging coordination literature is concerned with the economic
possibilities for the provision of ancillary services by PEVs. Most of these V2G
approaches employ centralised or at least hierarchical control architectures in order
to allow for a reliable provision of the contracted AS-products. Some of them
consider uncertainty aspects, or short term dispatch but the main body of literature
is considering day-ahead or longer optimisation horizons. Further analyses focusing
only on the coordinated withdrawal of power from the grid is increasingly build
around decentralised, price based decision and optimisation mechanisms. These
approaches rely on the individual to decide whether or not charging in a particular
time frame is aligned with his budget constraints and economic preferences.
Technical attributes are mostly considered as constraints in most models, but an
explicit economic evaluation with respect to the real time utilisation of renewable
energy by PEVs has not been performed so far.

1.6 Conclusion

The literature reviewed in the previous sections showed that PEV charging coor-
dination can be categorised in particular with respect to its objectives and its control
architecture. In the category with a predominantly technical focus V2G and grid
load (regional and system-wide) impacts are the main research area. Work looking
into the integration ability of renewable energy sources enabled by PEV demand
flexibility is in particular focused on reducing imbalances stemming from fluctu-
ating generators, e.g. wind power, on a system and also on regional scales under
consideration of grid constraints. Short term storage applications are also discussed,
but the coordination of PEV demand flexibility by dynamic price incentives is not
covered very extensively. Work from the economic domain focuses on the
assessment of regulation market participation and day-ahead wholesale market
oriented charging. These approaches in turn do not intensively investigate the effect
of cost minimising charging strategies with respect to the utilization of fluctuating
renewable energy sources. Further work should thus focus on decentralised price
based coordination of PEV demand for real time integration of renewable energy
sources into the power system.
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Chapter 2
Control and Management of PV
Integrated Charging Facilities for PEVs

Preetham Goli and Wajiha Shireen

Abstract The ongoing research in the field of plug-in electric vehicles (PEVs) and
the growing global awareness for a pollution free environment, will lead to an
increase in the number of PEVs in the near future. The proliferation of these PEVs
will add stress to the already overloaded power grid creating new challenges for the
distribution network. To mitigate this issue several researchers have proposed the
idea of charging PEVs using renewables coupled with smart charging strategies.
This chapter reviews the current literature on the state of the art infrastructure
proposed for PEV charging facilities integrated with photovoltaic system. The
proposed control algorithms, various smart charging techniques and different power
electronic topologies for photovoltaic charging facilities (PCFs) are reviewed.
Studies assessing the ability of photovoltaic charging stations to minimize the
loading on distribution transformers are assessed. Finally, a simple and unique
energy management algorithm for a PV based workplace charging facility based on
dc link voltage sensing is presented. The power needed to charge the plug-in
electric vehicles comes from grid-connected photovoltaic (PV) generation or the
utility or both. The efficacy of the proposed algorithm is validated through simu-
lation and experimental results.
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2.1 Introduction

With the growing global awareness for a pollution free environment, rising energy
costs, PEVs are being introduced by many automotive makers. It is known that if
25 % of the 176 million fleets of light vehicles in U.S were converted to PEVs, it
will rival the entire U.S power generation capacity [1]. The proliferation in PEVs
requires charging stations to fulfil their battery requirements. Though PEVs are
being marketed with the goal of minimizing the pollution from automobiles, the
energy requirements for charging the batteries is still met by power generated by
fossil fuel sources. Hence many researchers have proposed the idea of charging
PEVs using renewable energy sources like wind and photovoltaic. Many pilot
projects are also underway to charge PEVs from solar photovoltaic system [2–5].
Charging stations based on wind power is still in the nascent stages though few
ventures have been announced [6]. Due to the social and economic benefits,
research on charging stations featuring photovoltaic system has attracted
researchers around the world.

Using solar power to charge batteries is not a new idea. It is a reliable source for
charging light duty electric vehicles such as golf carts, scooters and airport utility
vehicles [7]. Large-scale deployment of photovoltaic chargers in a parking lot is
analysed in [8]. A 2.1 kW photovoltaic charging station integrated with the utility at
Santa Monica is described in [9]. An experimental control strategy for electric
vehicle charging system composed of photovoltaic array, emulated power grid and
programmable dc electronic load representing lithium ion battery emulator is pre-
sented in [10]. PV parking lot charging and other business models to charge PEVs
with solar energy are discussed in [11]. Economics of PV powered workplace
charging station has been studied in [12, 13]. The analysis shows the feasibility of a
PV based workplace parking garage with benefits to the vehicle owner as compared
to home charging, such that the garage owner will get the payback of installations
and maintenance cost and profit within the lifetime of the PV panels. According to
[13] integrating a solar collector into a parking lot would result in a much more
rapid payback-period, encouraging widespread installation of solar capacity. Ref-
erence [14] describes how smart control strategies can help PEVs and PV to
integrate with the present electricity systems. Co-benefits of large scale deployment
of PEVs and PV systems has been studied in [15]. The study concludes that PV
provides a potential source of midday generation capacity for PEVs, while PEVs
provide a dispatchable load for low value or otherwise unusable PV generation
during periods of low demand (particularly in the spring).

As per the National household travel survey vehicles are parked for at least 5 h in
workplaces [16]. Hence these places are favorable for developing charging station
infrastructure but this would lead to serious overloading issues at the distribution
level. Since upgrading of transformers is an expensive option for the utilities, this
issue needs close attention as the PEV penetration increases. Several papers have
been published to address the overloading of distribution transformers while
charging the PEVs [17–19]. Nevertheless, not much study has been reported to be
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tightly related to the case of reducing the loading on distribution transformers using
a photovoltaic system. Though few papers exist in the literature, they are mostly
confined to residential distribution networks [20, 21]. There is plenty of parking
area in the U.S—a reasonable fraction of which is suitable for PV installation. This
chapter reviews the current literature on the state of the art infrastructure proposed
for PEV charging facilities integrated with photovoltaic system. The proposed
control algorithms, various smart charging techniques and the economic benefits of
photovoltaic charging facilities (PCFs) are reviewed. Various power electronic
topologies, control algorithms and charging strategies will be discussed. It will be
shown that a network of PCFs will accelerate the deployment of PEVs through
economic and environmental benefits to the utilities and vehicle owners. The impact
of grid connected photovoltaic system on the utility distribution networks is ana-
lyzed. The suitability of using PV power for charging PEVs is accessed in this
chapter.

Determining the size and type of PV panel is an important consideration for a
solar carport. Few papers [22, 23] have recommended the use of monocrystalline
silicon as the most cost-effective solar cell type for PV charging facilities. Table 2.1
shows the PV characteristics of various modules, the peak energy produced and the
total cost of the PV module. The PV panel can be sized by taking the best and worst
months into consideration. As described in [24], the initial cost of the PV panel
would be $20,000 when it is designed based on the worst month of the year and
$10,000 when it is designed based on the best month of the year. However, for the
first case, surplus energy can be injected into the grid, to balance the final cost.

2.2 Impact of PEV Charging on the Distribution System

Large-scale penetration of PEVs can have a detrimental and destabilizing effect on
the electric power grid. With the variation in demand, the production of power can
vary significantly. Variation in charging time of PEVs can result in distinct dif-
ferences in fuels and generating technologies [25]. Figure 2.1 illustrates the impact
of charging one million PEVs on the Virginia—Carolinas electric grid in 2018 on
the various generation technologies. As shown in Fig. 2.1, at low specific power
and late in the evening, coal was the major fuel used, while charging more heavily

Table 2.1 PV characteristics [23]

PV type Module price
($/WP)

Efficiency (%) Peak energy (WP) Total cost
of PV ($)

Crystalline silicon 2.14 22 264 565

Polycrystalline silicon 1.74 15.5 186 324

Thin film 0.93 12 144 134
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during peak times led to more use of combustion turbines and combined cycle
plants. Since the initial deployment of PEVs is assumed to be clustered to a par-
ticular neighborhood, many authors have focused their research on the study of
distribution transformer impacts. Depending upon the time, place of vehicle
charging, various charging methods and the charging power levels there could be
several ramifications on the distribution network. Various analytical techniques and
different simulation tools were employed by several authors to estimate the trans-
formers loss-of-life, average lifetime and harmonic losses. The percentage of
transformers loss-of-life and average lifetime are important factors to be considered
while studying the charging behavior of PEVs on future distribution system. High
penetration of PEVs in the future will increase the loss-of-life factor of distribution
transformers [26–29].

The impact of controlled and uncontrolled charging of PEVs on the average
lifetime of a transformer is described in [24, 26]. As per [24], the average lifetime of
a transformer is reduced by 4–20 % under uncontrolled charging for a PEV pen-
etration of 10 %. At 50 % penetration of PEVs, the average lifetime is reduced by
200–300 % with uncontrolled charging. On the other hand controlled charging
increases the lifetime by 100–200 % with respect to uncontrolled charging for 50 %
penetration of PEVs. Plug-in electric vehicle charging rates can have a significant
impact on the lifetime of a transformer [24, 25]. Table 2.2 summarizes the sensi-
tivity of transformer lifetime to different charging rates (3.6 and 7.7 kW) under
controlled and uncontrolled charging for various levels of PEV penetration. As
expected, transformer life degradation is exacerbated when the charging rate is
increased from 3.6 to 7.7 kW.

The percentage of transformers loss-of-life can be minimized through distributed
charging and controlled off-peak charging which requires coordination among
utilities, customers and charging stations. Simulation results in [17] show that
distributing the load profile of the battery charging helps to minimize the distri-
bution transformer loss-of-life. Power management of the PEV battery charge
profile can help manage the loss-of-life of the distribution transformer. Controlled

Fig. 2.1 Generation shares by plant type for PEV charging level and timing [25]
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off-peak charging can shift PEVs charging load to an off-peak time. Usually
charging PEVs at night time is proposed as the best way to mitigate the loss-of-life
issues of distribution transformers. However, PEVs can also introduce a new peak
or near peak in early off-peak time. Generally, the impact of extra load on trans-
formers in summer is much greater than that in winter. However, some winter
mornings with peak load may be an exception. Charging from midnight through
early morning in those days may exert strong impact on transformers. Figure 2.2
describes this effect by taking the average residential load for East Texas into
consideration. As shown in the figure for a particular day in winter, February 11th,
the load consumed in the early morning is higher than that in summer days.
Therefore, it is not always appropriate to charge electric vehicles at 1 am in those
days. The required control strategy should depend on the actual load profile in a
particular area for a particular time period.

2.3 Mitigating the Impact of PEV Charging
on the Distribution System

To mitigate the issue of transformer loss-of-life due to PEV charging, integration of
renewables like rooftop PV systems into the existing power grid has been proposed.
In [30], a case study for the year 2030 was built based on demand increase,
forecasted PEV and DG units. The results showed that PEV battery charging would
prove onerous for the constraints studied. DG penetration would be able to provide
support for PEV battery charging but PEV battery charging management would be
necessary to minimize the impact in order to reach high levels of PEV penetration.
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Fig. 2.2 15 min interval data of average residential individual customer in East Texas [26]
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The possibility of smoothing out the load variance in a household microgrid by
regulating the charging patterns of family PEVs is investigated in [31]. A case study
is presented, which demonstrates that, by regulating the charging profiles of the
PEVs, the variance of load power can be dramatically reduced. Integration of
residential PV system with PEVs is studied in [32]. A residential PV system was
simulated for various charging schemes of PEVs and the results are shown in
Fig. 2.3. Several cases with different combinations of PV, PEV, V2H (Vehicle to
Home i.e. discharge of PEV) and various charging schemes were analyzed. Case 1
describes a residential facility without PV and PEV. Case 2 describes a residential
facility integrated with rooftop PV system without PEV. Therefore, these 2 cases
analyze the effects of using PV while using gasoline vehicles instead of PEVs. Case
3 represents a residential facility with PV and PEV without V2H capabilities. Cases
4–6 have all the facilities (i.e. PV, PEV and V2H capabilities) but their charge-
discharge schemes are different. As shown in Fig. 2.3 the local consumption rate of
PV output increased by 1.7 % when gasoline vehicles are replaced with PEVs. On
the other hand the rate of PV utilization increased by 8.6 % when the charging
scheme changed from fixed (fixed target of SOC) to variable (variable target value
of SOC).

The integration of PV rooftop in PCFs can relieve the burden on the distribution
networks, by reducing the effective load seen by the distribution grid peak charging,
as well as supplying power to the grid when excess power is generated by PV
rooftops. A PV parking lot for PEVs is proposed in [33], in which the PEVs can be
charged from the PV source as well as the distribution grid. Mathematical models
are developed to estimate the electric power capacity for PV parking lot. An
evaluation of impacts resulting from expected scenarios are performed through
stochastic sequential simulations of the distribution system with load and PV
generation in [34]. Figure 2.4 shows the LOL (loss-of-life) experienced at a par-
ticular distribution transformer, for change in stochastic load and PV generation

Fig. 2.3 The rate of PV utilization [32]
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units. It is evident from the figure that rooftop PV coupled with PEVs can reduce
LOL of the distribution transformer. These studies have shown that PV generation
coupled with PEV charging can delay and reduce the temperature rise of distri-
bution transformers.

2.4 Proposed Architectures for PV Based PEV Charging
Facilities

The charging units for PEVs can be either on-board or off-board. In case of an off-
board charger, the charger is an external unit while in the case of an on-board
charger it is a component of the vehicle. On-board chargers are supplied with ac
power and they consist of an AC/DC rectifier, DC/DC boost converter for power
factor correction and a DC/DC converter to charge the battery as shown in Fig. 2.5.
Currently AC charging is being employed to charge PEVs by means of on-board
chargers. The major drawback of this technology is that it does not support fast
charging as it is required to increase the power capability of the on-board charger
thereby increasing the cost and weight of the PEV. Hence to support fast charging
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Fig. 2.5 Conventional PEV charger
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of PEVs off-board chargers are proposed which directly supply dc power to the
PEV charging inlet. It is to be noted that in case of an off-board charger the entire
power conversion (AC/DC) takes place in an external unit and therefore it is
feasible to increase the ratings of the power converters in order to support fast
charging.

AC system is being used since years for power distribution and there are well
developed infrastructure-standards and technologies. DC system on the other hand
has many advantages, starting with the fact that overall efficiency of the system
could be higher and it facilitates the integration of renewable energy sources with
fewer power converters. Since PV arrays generate dc power, a charging facility
featuring PV power facilitates the charging of PEVs from a dc bus which is more
effective, economical and efficient since it does not involve more power conversion
stages unlike AC charging. Various methods have been proposed for integrating
PEV chargers within a photovoltaic system. Several power electronic topologies for
a PCF have been proposed in the literature based on the type and the number of
converters which are classified as:

A. Centralized architecture
B. Distributed architecture
C. Single stage conversion with Z-converter

A. Centralized architecture
Detailed block diagram representing the centralized architecture is shown in
Fig. 2.6. It consists of a central DC/DC boost converter which performs the function
of maximum power point tracking. The DC/DC chargers are integrated with the PV
charging facility at the dc link. Multiple PEVs can be charged by increasing the
corresponding ratings of PV panels and the associated power converters. Each
parking spot must have a dedicated DC/DC buck converter which is connected to
the dc link. This configuration is suitable for charging stations in the range of
several kilowatts. It is applicable for charging vehicles like golf carts, campus utility
vehicles etc. which commute for very short distances with low battery capacities.
Battery switch station powered by PV is a good candidate for adopting centralized
architecture. But this kind of configuration does not support fast charging since

Fig. 2.6 Centralized architecture

2 Control and Management of PV Integrated … 31



installation of a very high power DC/DC converter is very expensive and it is
vulnerable to single fault shutdown.

B. Distributed Architecture
Presence of DC/DC converters with high power ratings is an important criterion for
fast charging of PEVs. This can be achieved economically through distributed
architecture as shown in Fig. 2.7. In this case several strings of PV panels are
connected in series. Each parking spot has a dedicated PV panel to support the
charging of PEV and each string of PV panels is interfaced with their own DC/DC
converter and shares a common dc bus, which connects to an AC utility grid
through a bi-directional DC/AC converter. The DC/DC battery chargers are con-
nected to the dc bus. Each parking spot requires an individual DC/DC converter to
charge the PEVs. The proposed architecture is suitable for installation at places
such as workplace, universities, shopping malls etc. where the demand of PEVs and
their duration of stay in the parking lots are highly probabilistic in nature. It is more
reliable since the PEVs can be charged from the grid during the periods of low
insolation or cloudy weather. Also, it is important to note that the extra energy
generated by PV can be injected into grid, which can be used to balance the PV
costs.

A PCF requires constant power from the PV or the grid to meet the high demand
of PEVs. The reliability of a PCF can be improved by including an energy storage
unit such as a battery bank, ultra capacitor, fuel cell etc. For instance in [35] the
power generated by roof top photovoltaic system is stored in VRLA (valve-regu-
lated lead-acid) batteries and fuel cells in a PEV docking station. The PEVs arriving

Fig. 2.7 Distributed architecture
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at the docking station can be charged from two separate tracks i.e. using the energy
from the VRLA batteries or the fuel cells. The use of storage capacity in PCFs has
the following advantages [36]:

• Efficient use of renewable energy sources
• Maximization of renewable energy sources contribution
• Better demand and production match, better auxiliary service supply and

improved overall reliability

The core idea of including an ESU (energy storage unit) is that the power demand
by PEVs can be either supplied by the PV or the utility or through a local energy
storage unit. Energy derived from the ESU can charge the PEVs during certain
contingencies such as islanding condition without the availability of PV power. It
facilitates the charging of PEVs using minimum energy from the grid. The charging
station appears as a dc microgrid with local generation from the PV system, PEVs’
as loads and battery bank representing the storage system.

C. Single stage conversion with Z-converter
The double stage conversion described in the above architectures is replaced by a
single stage using a Z-converter [22] as shown in Fig. 2.8. It does not require an
additional DC/DC converter for each charging spot and a single DC/DC converter
is employed to provide galvanic isolation. The Z-converter has double modulation
capability, and can shape the grid current while simultaneously regulating PEV
battery charging. The unit can be employed for both power absorption and injec-
tion, with simultaneously controlled battery charging. This ensures close to unity
power factor for all operating modes and power flow paths; achieving this with a
single conversion stage can be considered a unique advantage of the Z-converter.
Furthermore, this topology possesses inherent buck-boost capability, allowing
increased voltage range on the PV or grid. Despite the single conversion stage,
reliability, rather than efficiency or cost, is the strong point of the Z-topology. Also
the single phase power processed by the Z-converter consists of 120 Hz double line
frequency ripple. This ripple can be mitigated by placing an additional decoupling
capacitor across the PV source which introduces possible deviation from perfectly
constant power extraction at the PV panels.

Fig. 2.8 Single stage conversion with Z-converter
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2.5 Control Strategies

Workplace based photovoltaic charging facilities and residential PV charging are
the two available options for charging PEVs using solar power. Depending on the
solar irradiation, PEVs can be charged either from the photovoltaic or the distri-
bution grid or both. The solar charging station should distribute the power available
at the PV panels to the PEVs effectively and safely. Typically PEVs arrive at the
charging facility with different State-of-Charge (SOC). More than often, the amount
of PV power available to charge multiple PEVs is limited. Furthermore, the PV
source is stochastic in nature, its power characteristic is nonlinear and the PEV
batteries to be charged should be within certain voltage and current limits. There-
fore, this process necessitates intelligent control of the power conditioning unit to
manage the direction of power flow in PV integrated charging stations. Several
algorithms have been proposed in the literature which differ significantly based on
the type and location of the PCF. The algorithms also differ based on the various
control parameters such as PV power, load demand, state-of-charge etc. Accord-
ingly they can be classified as follows:

A. Residential Photovoltaic Charging
B. Battery Switch Stations
C. Workplace Photovoltaic Charging

A. Residential Photovoltaic Charging
Few authors [37–40] have proposed an architecture for a grid-connected residential
photovoltaic system that can be used to charge PEVs as well as to supply the
existing household loads. The control algorithms depend on the power generated by
the PV and the SOC of the PEV battery. Raul et al. [39] proposed a residential load
coordination mechanism to charge PEVs. Depending on the load demand of the
distribution transformers, the PEVs can be charged using renewable energy (PV/
Wind) or the power from the grid. Each household is installed with a rooftop PV
system and a small scale wind turbine. A residential microgrid composed of rooftop
panels and a biodiesel generator to charge PEVs and supply AC/DC household
loads is described in [41]. In order to share the load among the sources, master-
slave control method is employed. The operation of the residential microgrid
depends on the PV power, load demand, SOC of the battery storage and tariff set by
the utility. Most of the PEVs are not available for charging during daytime at
residential facilities. Hence, this process demands for an additional component in
the form of an energy storage unit which might not be economically attractive for
an individual home owner. Residential charging is advantageous for households
with more than one PEV.

B. Battery Switch Stations:
A PV based battery control strategy for charging multiple batteries in a solar battery
charging station (SBCS) is proposed in [42]. The architecture of the SBCS is similar
to the one shown in Fig. 2.6 but the DC/DC chargers are replaced by bi-directional
switches. The proposed control strategy first charges each individual battery until
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they reach the same voltage level and then charges the multiple batteries in parallel
simultaneously according to the battery charging period and the available solar
energy. This control strategy eliminates the use of multiple DC/DC converters per
battery connection, making the SBCS less complicated and economical. Though
being economical, the proposed architecture does not consider the scenarios when
the PV panel is not generating any power or generating power in excess. Hence it
cannot be considered for charging PEVs. A PV-based battery switch station (BSS)
is proposed in [43]. The energy exchange strategy depends on the battery swapping
demand of the PEVs and power generated by the PV. An algorithm is proposed to
charge PEV batteries using the maximum energy from PV.

C. Workplace Photovoltaic Charging
In few cases, authors have proposed the idea of inserting a DC/DC battery charger
at the dc link of the grid-connected PV system. By measuring the power generated
by the PV and the power demand of the PEV, the control algorithm ensures the
charging of the PEV battery from the appropriate source as described in [44]. Based
on the imbalance between the PV power and the load demand, various possible
scenarios are described. In case of [45], the power flow in a PV parking lot is
managed through a set of computer controlled relays. PV panels of different ratings
are interfaced with PEV chargers and the power grid through computer controlled
relays. Depending on the irradiation levels, the relays direct the entire PV power to
the PEVs or the grid or both. Hamilton et al. [46, 47] proposed an extension to this
method for a modular dc PV charging station. Several PV panels are interfaced with
the dc bus through a set of DC/DC converters. The DC/DC converter intelligently
controls the power flow to the PEVs based on a certain preset limits of the dc bus
voltage. Based on the preset limits the energy conversion unit facilitates three way
energy flow among the power grid, PV modules and PEVs.

The concept of dc bus signalling has been proposed by several authors to
schedule power to dc loads in a microgrid [48–50]. Few of them have extended this
concept to charge PEVs in a microgrid environment [48, 49]. A smart charging
station architecture integrated with PV power is proposed in [51, 52]. The smart
charging station can operate in standalone mode and grid-connected mode. The
switching between various modes is facilitated by the variation in dc link voltage
levels induced due to the change in solar insolation. During the period of low solar
insolation and peak load on distribution transformer, the controller shifts the
charging of PEVs to non-peak period. The proposed control algorithm is simple as
it involves only a single parameter i.e. dc link voltage to manage the direction of
power flow in the charging station. It facilitates the charging of PEVs using min-
imum energy from the grid without any adverse impacts on the distribution
transformer. The following sections explain the concept of dc link voltage sensing
and its application for control and management of PV powered charging facilities.
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2.5.1 Concept of DC Link Voltage Sensing

The primary requirement for a microgrid operation is to maintain the common dc
bus voltage within an acceptable range. The terminals within a microgrid can be
generally categorized into four types: generation, load, energy storage unit (ESU),
and grid connection using voltage-source converters (VSCs). These four types of
terminals can be further divided into two groups in terms of their contribution to
system control and operation which are the power terminal and the slack terminal.

A power terminal is the one which outputs or absorbs power to/from the mi-
crogrid on its own and usually does not take the system’s need into account.
Typical examples would be variable dc loads (PEVs) and nondispatchable (vari-
able) generation, such as wind turbines and photovoltaic based generations, when
operating purely according to environmental conditions. Conversely, a slack ter-
minal is the one which is responsible for balancing the power surplus/deficit caused
by power terminals and maintaining stable system operation. Typical examples
include a grid-connected VSC terminal (G-VSC) and ESU when they are actively
supporting the dc microgrid system.

As previously described, different measures shall be taken by each terminal
according to system operating conditions, thus a fast and reliable scheme for
acknowledging system operation status is essential. Apart from using as commu-
nication means, dc link voltage is a good indicator of the system’s operational
status. The simplified equivalent circuit of the dc bus including the ESU and PEV is
shown in Fig. 2.9, where PDC and PAC refer to the total power on the dc side (PV
panel and DC/DC converter) and the ac side (inverter and the grid) of the dc bus
respectively.

From Fig. 2.9, the instantaneous power relationship in a grid-connected PV
system is given by

pdc tð Þ ¼ pESU tð Þ þ pc tð Þ þ pPEV tð Þ þ pacðtÞ ð2:1Þ

where pdc is the output power of the DC/DC converter on the dc side, pESU is the
power delivered to (or by) the ESU, pc is the power to the dc link capacitor, pPEV is

Fig. 2.9 DC power flow
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the power consumed by the plug-in electric vehicles, and pac is the power extracted
by the inverter on the ac side. The instantaneous ac power (output of the inverter)
can be written as

pgrid tð Þ ¼ ðVm sinxtÞðIm sinxtÞ ð2:2Þ

¼ VmIm
2

� VmIm
2

cosxt ð2:3Þ

where pgrid is the power injected into the grid, Vm is the amplitude of the phase
voltage and Im is the amplitude of the grid current. The ac power includes a dc term
and a second-order ripple in the dc voltage. The average input power to the ac side
can be written as

PAC ¼ VDCIAC ð2:4Þ

where IAC is the average input current to the ac side (i.e. on the dc side of the
inverter). Equating the average power on the input of ac side to the dc term on the
output of ac side

VmIm
2

¼ gVDCIAC ð2:5Þ

where g is the efficiency of the inverter. If Vdc and Vdcðref Þ are the actual and
reference values of dc link voltage, respectively, the change in energy DEdc stored
in the dc link capacitor Cdc can be written as

DEdc ¼ cdc
2

V2
dcðref Þ �V2

dc

� �
ð2:6Þ

To inject the PV power to the grid while maintaining a constant Vdc, the fol-
lowing energy balance should be satisfied:

DEdc ¼ Tðpdc � pesu � pPEV � VmIm
2g

Þ ð2:7Þ

where T is the time period of ac supply.
Combining (2.6) and (2.7)

V2
dc ¼ V2

dcðref Þ �
2T
Cdc

pdc � pPEVð Þ þ 2T
Cdc

pdc þ 2T
Cdcg

VmIm ð2:8Þ

Vdc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
dcðref Þ �

2T
Cdc

pdc � pPEVð Þ þ 2T
Cdc

pESU þ 2T
Cdcg

VmIm

s
ð2:9Þ
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Vdc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
dcðref Þ �

2T
Cdc

gboostpPV � pPEVð Þ þ 2T
Cdc

pESU þ 2T
Cdcg

VmIm

s
ð2:10Þ

where gboost is the efficiency of the DC/DC converter on the dc side.
From (2.10), it is clear that the fluctuations in PV power due to the change in

solar irradiance causes variations in the dc link voltage. For a workplace based
charging facility PEVs can be assumed to stay in the parking lot from morning till
evening. Hence the variation in PEV load is considered.

Also from (2.7), the charging power of the dc capacitor can be written as

pc ¼ pdc � pesu � pPEV � VmIm
2g

ð2:11Þ

1
2
cv2dc ¼ pdc � pesu � pPEV � VmIm

2g
ð2:12Þ

cvdc
dvdc
dt

¼ pdc � pesu � pPEV � VmIm
2g

ð2:13Þ

From 2.13, it can be inferred that a constant dc voltage indicates a balanced
power flow among all the terminals, and a rising or dropping dc voltage indicates
power surplus or deficit, respectively. Since the dc voltage can be used as an
effective indicator of power-flow status, the control scheme of the proposed
charging facility can be designed according to dc link voltage variation. Assuming
the PEV demand to be constant over a period of time, the variation in dc link
voltage occurs only due to the fluctuation in solar insolation. The operational
voltage range can be divided into several levels. Based on the voltage level the
charging facility has several modes of operation.

Figure 2.10 shows the variation in the dc link voltage and the power from the PV
array with step changes in irradiation. A PV panel of rating 5.5 kW was modeled in
Matlab taking the battery capacity of a single PEV into consideration. The reference
dc link voltages have been chosen taking into consideration the change in sun
conditions from early morning to late evening. As shown in Fig. 2.10 the PV array
starts delivering power when the dc link voltage is greater than 50 V. At 250 V the
PV system delivers 4,500 W which is the power requirement of standard PEV
battery. Between 300 and 350 V the power delivered by the PV array is greater than
5,000 W, exceeding the power requirement of the PEV. This excess power can be
sent to the grid. By taking the dc link voltage and the corresponding power
delivered by the PV array into consideration, three reference voltage levels have
been chosen as VDC-1 = 50 V, VDC-2 = 250 V and VDC-3 = 350 V. The modes of
operation of the charging station are classified depending on the change in the dc
link voltage. As the dc link voltage is the only criteria for switching between
various modes the overall complexity of the system is reduced.
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2.6 Power Management Algorithm for PV
Charging Facility

The detailed circuit configuration for the proposed workplace based charging
facility is shown in Fig. 2.11. The architecture consists of several strings of PV
panels interfaced to their own DC/DC converters which share a common dc bus.
The DC/DC boost converter performs the function of maximum power point
tracking (MPPT) to facilitate the operation of PV panel at the maximum power
point. The energy storage unit (ESU) is connected to the dc bus via a bi-directional
DC/DC buck-boost converter. The ESU will support the charging of PEVs when
there is no power available either from the grid or the PV. The battery pack in the
ESU can be charged either from the grid during off peak hours or from the PV after
all the PEVs have been charged in the charging facility. DC/DC buck converter
connected to the dc bus controls the charging of the PEV. The control description
shown for the charging facility in Fig. 2.11 is based on the requirements for two
PEVs. Multiple PEVs can be charged by having separate buck converters installed
for each charging point. The charging facility is connected to the power distribution
network through a DC/AC bi-directional grid tied converter.

The control unit monitors and controls the power flow between the source and
PEV. As shown in Fig. 2.11 the control unit generates the switching signals to
control the various power converters in the charging facility based on the voltage
and current values sensed by the voltage and current sensing units. VPV, voltage
across the PV array and IPV, the current flowing from the PV array are used to
implement MPPT by means of incremental conductance algorithm. VDC is the
magnitude of the voltage at the dc bus, VB1 and VB2 are the detected battery
voltages of the PEVs which give a measure of the state-of-charge (SOC) while

Fig. 2.10 Change in the dc link voltage and power generated by the PV with the change in sun
condition

2 Control and Management of PV Integrated … 39



VESU gives the measure of the SOC of the ESU. IDMD represents the loading
condition of the distribution transformer, Igrid is the current fed into the grid by the
DC/AC converter and VGrid is the grid side voltage.

2.6.1 Modes of Operation

The operation of the charging station can be categorized into four modes: Mode-1
(grid-connected rectification), Mode-2 (PV charging and grid-connected rectifica-
tion), Mode-3 (PV charging) and Mode-4 (grid-connected inversion). A set of
variables IDMD, IDMD-max, VDC-1, VDC-2, VDC-3, VB and VBH are used to describe the
modes of operation. IDMD represents the distribution transformer load and IDMD-max

represents the peak load condition of the transformer. VDC is the voltage at the dc bus.
VDC-1, VDC-2 and VDC-3 are the three chosen reference voltage levels of the dc bus.
VB and VESU are the detected battery voltages of the PEV and the ESU. VBH is the
battery voltage corresponding to the threshold value of the state-of-charge (TSOC).
The charging of PEV should be terminated once the battery voltage VB is equal to
VBH. Figure 2.12 shows the direction of power flow during various modes of
operation of the charging station.

The four modes of operation are described as follows:
Mode-1: VDC < VDC-1: Grid-connected rectification
Case-1: VDC < VDC-1 and IDMD < IDMD-max

Fig. 2.11 Detailed circuit configuration of the proposed architecture
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In this mode the photovoltaic system does not generate any power either due to
low radiation or bad weather conditions. The DC/DC boost converter is isolated and
the power required to charge the PEV is provided by the grid. Anytime during this
mode if the dc link voltage exceeds VDC-1, the control shifts to Mode-2. The DC/
DC buck converter regulates the output voltage to charge the PEV. As the grid is at
off peak, it continues to supply power till the vehicle is completely charged. The
controller terminates the charging of PEV by disabling the DC/DC buck converter
when VB exceeds VBH and the grid supplies power to charge the battery pack in the
ESU.
Case-2: VDC < VDC-1 and IDMD ≥ IDMD-max

This mode is similar to Case-1 but with an increase in local demand on the dis-
tribution transformer. In order to reduce the stress on the grid, the charging of PEV
is terminated temporarily by de-activating the grid-connected bi-directional DC/AC
converter. As the distribution transformer is relieved from the additional burden of
charging the PEV, it can continue supplying power to the local loads during the
peak time. During this period the PEV can be charged by the ESU if the stored
energy is sufficient to cater the needs of PEV charging. Once the grid is back to off
peak condition (i.e. IDMD < IDMD-max) the charging of the PEV is restored and the
controller monitors its charging.
Mode-2: VDC-1 ≤ VDC < VDC-2: PV charging and grid-connected rectification
In this mode the power generated by the photovoltaic system is less than the power
required to charge the PEV. Therefore all the power generated by the PV is
transferred to the PEV and the deficit is supplied by the grid. The dc link voltage
varies with the change in irradiation. This instantaneous change in the dc link
voltage is sensed by the controller to generate an equal voltage at the output of the
DC/AC bi-directional converter through the process of rectification. If at any point
IDMD exceeds IDMD-max the bi-directional DC/AC converter is isolated from the
grid. The PV system continues charging the PEV whereas the grid caters the peak
load demand.
Mode-3: VDC-2 ≤ VDC < VDC-3: PV charging mode
In this mode the PV system generates all the power required to charge the PEV. As
the grid does not supply any power it is isolated by the bi-directional DC/AC

Fig. 2.12 Direction of power flow during the operation modes

2 Control and Management of PV Integrated … 41



converter. The controller ensures that the PEV is not over charged by terminating its
charging once VB exceeds VBH (voltage corresponding to 95 % state of charge of
the PEV battery). This mode occurs as long as the dc link voltage is in between
VDC-2 and VDC-3.
Mode-4: VDC-link ≥ VDC-3: PV charging mode and Grid inversion mode
The PV array generates excess power once the dc link voltage exceeds VDC-3. This
additional power generated by the PV array is sent to the grid via the bi-directional
DC/AC converter. Once the PEVs are charged, all the power from the PV source is
sent to the grid. The mode then resembles normal operation of PV generation
systems.

2.6.2 Control Description

2.6.2.1 DC/DC Boost Converter

The control method for DC/DC boost converter is summarized in Fig. 2.13.
A single phase boost stage is used to boost the PV voltage and track the MPP of the
panel. To track the MPP, input voltage (VPV) and input current (IPV) are sensed.
The two values are then used by the MPPT algorithm. The MPPT is realized using
an outer voltage loop that regulates the input voltage i.e. panel voltage by modu-
lating the current reference for the inner current loop of the boost stage.

Two 2-pole 2-zero controllers, GV(S) and GI(S) are used to close the inner DC-
DC boost current loop and the outer input voltage loop. MPPT algorithm provides
reference input voltage, VMPPT to the boost stage to enable panel operation at
maximum power point. The sensed input voltage is compared with the voltage
command (VMPPT), generated by MPPT controller, in the voltage control loop. The
voltage controller output, Iboostsw_Ref is then compared with the output current
(Iboostsw) feedback in the current controller. The current loop controller output
determines the PWM duty cycle so as to regulate the input voltage indirectly.

2.6.2.2 DC/AC Inverter

The control method for grid-connected DC/AC converter is shown in Fig. 2.14.
This stage uses two nested control loops—an outer voltage loop and an inner
current loop. Vdc_Ref is the reference voltage for the DC link, VDC is the detected

Fig. 2.13 Control diagram of DC/DC boost converter
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DC link voltage, Vgrid is the voltage at the secondary of the distribution transformer,
θ is the grid phase angle, IREF is the reference current for the DC/AC converter
generated by the voltage loop and Ifdbk is the current fed into the grid by the DC/AC
converter.

Two PID controllers, GV(S) and Gi(S) are used to close the outer voltage loop
and the inner current loop. The voltage loop generates the reference command (IRef)
for the current loop as increasing the current command will load the stage and hence
cause a drop in the DC link voltage the sign for reference and the feedback are
reversed. The current command is then multiplied by the AC angle to get the
instantaneous current reference. Since the inverter is grid connected the grid angle
is provided by the PLL. The instantaneous current reference is then used by the
current compensator along with the feedback current (Ifdbk) to provide duty cycle
for the full bridge inverter.

2.6.2.3 DC/DC Buck Converter

The control method for DC/DC buck converter for PEV charging is based on VB,
VBH, IDMD and IDMD-max as shown in Fig. 2.15. VB is the detected battery voltage,
VBH is the battery voltage corresponding to 95 % SOC. IDMD is the load on the
distribution transformer and IDMD-max represents the peak load condition. The
control mode is determined by the detected battery voltage of the PEV and the
loading condition of the distribution transformer. The charging of the PEV is turned

Fig. 2.14 Control diagram of DC/AC inverter

Fig. 2.15 Control diagram of DC/DC buck converter
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off once the battery voltage reaches VBH or the distribution transformer reaches the
peak load condition.

2.6.3 Simulation Studies

In order to validate the proposed control algorithm simulations were done in Matlab
Simulink using the simpowersystems toolbox. The reference dc bus voltages i.e.
VDC-1, VDC-2 and VDC-3 are set at 50, 250 and 350 V. The reference dc link voltage
levels are selected based on a training mode wherein the PEV load is kept constant
and the solar irradiation is allowed to vary in steps. The values of IDMD-max and Tsoc

are set at 80 A (peak to peak) and 95 %. Toyota Prius plug-in hybrid has been
chosen as the PEV which has a total battery capacity equal to 4.5 kWh and nominal
voltage equal to 48 V. The rms value of AC grid voltage is 240 V. A PV panel of
rating 5.5 kW has been modelled taking the battery capacity of the PEV into
consideration. The reference dc bus voltages have been chosen taking into con-
sideration the change in sun conditions from early morning to late evening
(Fig. 2.10). As the dc bus voltage varies, the source from which the PEV is charged
also varies accordingly. Simulation results describing the transitions between var-
ious modes are shown below.

Figure 2.16 shows the transition of the grid from off peak to on peak when the
charging station is operating in mode 1. The loading condition is accessed by
measuring the current (IDMD) on the secondary side of the distribution transformer.
Initially the grid is at off peak and hence the AC grid delivers the power required to
charge the PEV and other local loads. As shown in Fig. 2.16, from 1.5 to 2.0 s the

Fig. 2.16 Matlab simulink outputs for transition from mode-1 case-2. a DC bus voltage. b Current
flowing from the distribution transformer to the loads and the PEV. c Power delivered to the PEV
(charging power). d Output voltage of the DC/DC buck converter
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current flowing in the secondary side of the distribution transformer is less than
80 A. With the increase in utility load at 2.0 s, IDMD exceeds 80 A (IDMD-max). The
charging of the PEV is terminated when the current flowing from the distribution
transformer, IDMD exceeds IDMD-max. This is done to reduce the stress being
imposed on the AC grid during the peak time. Hence the power consumed by the
PEV reduces to zero during the peak time as shown in the figure.

The simulation results for the transition from mode 2 to mode 3 are shown in
Fig. 2.17. During the initial stages the dc bus voltage is less than 250 V and grid
continues to supply the deficit power to charge the PEV. Once the dc bus voltage
exceeds 250 V, the PV system alone caters the charging of PEV. The power flowing
from the PV and the Power Grid is shown in Fig. 2.17. As shown in the figure, the
deficit power of 1,000 W to charge the PEV is supplied by the grid in mode-2 and it
does not supply any power in mode-3 as the PV alone caters to the demand of the
PEV.

The transition from mode 3 to mode 4 is shown in Fig. 2.18. With the dc bus
voltage exceeding 350 V there is an increase in power flowing from the PV in mode
4. The PV system feeds this excess power to the grid in addition to charging the
PEV. The sinusoidal output of the DC/AC bi-directional converter shows that it acts
as an inverter in this case. In order to maintain the energy balance the dc link
voltage is kept constant at 360 V. Finally Fig. 2.19 shows the termination of the
vehicle charging when SOC = Tsoc.

The simulation results validate the modes of operation and the control algorithm
described in this section. As described in Sect. 1.5.1, the modes of operation change
due to the change in the dc bus voltage which in turn changes due to the change in
the irradiation levels according to the time of the day.

Fig. 2.17 Matlab simulink outputs for transition from mode 2 to mode 3. a DC bus voltage.
b Voltage of the grid. c Power delivered by the grid. d Power delivered by the PV array
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2.6.4 Experimental Verification

To verify the practical feasibility and effectiveness of the proposed control strate-
gies experimental tests have been carried out in the laboratory. C2000 microcon-
troller, TMS320F28035 by TI (Texas Instruments) is used to generate all the
required control signals.

Figure 2.20 shows the experimental setup of the system. The components
include the Solar Explorer Kit by TI (Texas Instruments), power pole board in buck
configuration by Hirel, an isolation transformer and a battery. The DC/DC boost

Fig. 2.18 Matlab simulink outputs for transition from mode 3 to mode 4. a DC bus voltage.
b Output voltage of the DC/AC bi-direction converted (inverter). c Power delivered by the grid.
d Power delivered by the array
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converter for the PV stage and the inverter is a part of the solar explorer kit; and the
DC/DC buck converter for PEV charging is the Power-Pole board from Hirel.
A synchronous buck boost stage which is integrated on the board (solar explorer
kit) is used to emulate the PV panel. In the place of a PEV a 9 V 1,200 mAh battery
is used. By changing the value of irradiation different modes of operation are
emulated. Since this is a scaled down version the dc link reference voltage levels are
chosen as VDC-1 = 15 V, VDC-2 = 20 V and VDC-3 = 25 V. The value of IDMD-max is
chosen as 1.5 A. Depending on the reference voltage levels the different modes of
operation are classified as follows:

Fig. 2.20 Experimental setup

Fig. 2.21 Experimental outputs describing the loading of distribution transformer in Mode-1
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Vdc�Link \ 15V� Mode-1

15V\Vdc�Link \ 20V � Mode-2

20V\Vdc�Link \ 25V� Mode-3

Vdc�Link [ 25V� Mode-4

Experimental tests have been carried out in terms of steady-state performance
and transient-performance between different modes and the results are provided
below. Figure 2.21 through 2.25 explain the experimental results for the various
modes of operation.

Experimental results for Mode-1 are shown in Fig. 2.21. With the increase in the
loading of distribution transformer, IDMD increases from 1 to 1.5 A as shown in
Fig. 2.21 and accordingly the PEV is turned off so that the grid can cater to other loads
without overloading the distribution transformer (assuming that IDMD-max = 1.5 A).
The turning-off of the PEV is illustrated by the fact that VB and IB go to zero with the
increase in distribution transformer loading. This is done by generating a duty cycle
of zero for the buck converter switch.

Experimental results for the transition between Mode-2 and Mode-3 are shown
in Fig. 2.22. In the initial state, the dc link voltage is around 15.7 V and current
flows from both the PV as well as the grid to charge the PEV. Once the dc link
voltage increases to 22.4 V (Mode-3) no power is drawn from the grid.

Transition from Mode-3 to Mode-4 is shown in Fig. 2.23. With the change in dc
link voltage from 22.4 to 29.9 V the bi-directional converter goes from off-state to

Fig. 2.22 Experimental outputs for transition from Mode-2 to Mode-3
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on-state. Mode-4 resembles the normal operation of a grid connected PV system. In
this case the battery has been completely charged and hence the entire power
generated by the PV is delivered to the grid. Figure 2.24 shows the steady state
experimental results of Mode-4. The dc link voltage is 29.9 V and the output

Fig. 2.23 Experimental outputs for transition from Mode-3 to Mode-4

Fig. 2.24 Experimental outputs Mode-4
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voltage of the inverter is a sine wave. A high switching frequency along with LCL
filter meets the total harmonic distortion (THD) requirements. Unipolar switching
strategy was followed for inverter switching and the switching takes place at
20 kHz. The inverter switching at 20 kHz together with the LCL filter generates a
filtered single phase AC output. The total harmonic distortion (THD) of the inverter
output voltage is calculated to be 5.4 %. Figure 2.25 shows the Fast Fourier
Transform (FFT) of the inverter output voltage.

2.7 Conclusion

To mitigate the loading on distribution transformers due to PEV charging, smart
charging strategies coupled with renewable energy resources are the need of the
hour. This chapter discussed the current state of the infrastructure for PV powered
charging facilities for PEVs. Several power electronic topologies are presented and
compared. Control strategies are reviewed for residential and workplace based
photovoltaic charging. The chapter proposed a charging station architecture based
on distributed topology. A unique control strategy based on dc link voltage sensing,
which decides the direction of power flow is presented and the various modes of

Fig. 2.25 FFT of inverter output voltage
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operation have been described. The practical feasibility and effectiveness of the
proposed control strategy has been validated by simulation and experimental
results. The proposed control method based on the change in dc link voltage level
due to the change in irradiation of the sun, is simple and unique. The energy
management algorithm facilitates charging of the PEVs using minimum energy
from the utility with a kind of demand management to improve the energy effi-
ciency. Smart charging techniques like the one proposed in this chapter will help
avoid major expense to upgrade distribution transformers and other substation
equipment with the increase in PEV loads on the distribution system.
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Chapter 3
Hierarchical Coordinated Control
Strategies for Plug-in Electric Vehicle
Charging

Zechun Hu, Yonghua Song and Zhiwei Xu

Abstract Currently in most of the works in the literature, a group of plug-in
electric vehicles (PEVs) is controlled by an “aggregator”. The aggregator is
responsible for making the charging schedule for each PEV and also participates in
power system regulation or electricity market bidding. However, practically, to
coordinate the charging of large scale PEVs in power system, the diversities in
charging infrastructure, PEV types and local operational constraints in the power
system should also be well considered. Therefore, hierarchical control of PEVs is
regarded as an effective way to achieve charging cost minimization and system
operational security. This book chapter introduces hierarchical control frameworks
for PEV charging, which includes coordinated charging strategy for charging sta-
tion (or virtual charging station), coordinated charging strategy for battery swap-
ping station, hierarchical coordinated charging strategy for multiple charging
stations and a three level coordinated charging framework for large scale of PEVs.
The detailed mathematical formulations for each level operator in the proposed
hierarchical control framework, which jointly optimize system load profile and
charging costs, are clearly presented. The inter-relationships between various levels
of operators in terms of energy transaction and information exchanged are also
specified. Finally, case studies are carried out on three cases. The simulations
results demonstrate the effectiveness of the hierarchical charging control framework
and optimization methods in reducing peak demand and charging costs.
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3.1 Introduction

When large scale of PEVs penetrates into the power system, their charging load can
be a substantial burden to the operations of existing power systems if their charging
is not properly managed. Voltage drops, excessive power losses and overloading of
distribution transformer and lines are likely to occur. In some severe situations,
additional investment might even be needed for electrical equipment upgrading.
There is a breadth of literature to investigate the impacts of PEV charging on power
grids under various charging strategies and operational scenarios. Authors of [1]
evaluated the impacts of the integration of PEVs on power grid operations and
electricity market. Su et al. [2] comprehensively summarized the electrification of
transportation. Roe et al. [3] studied various aspects of how PEVs could impact
power grid infrastructure. Authors of [4] evaluated the impact of different levels of
PEV penetration on incremental investment and energy losses of distribution
network.

However, the PEV charging load has flexibility. For example, the vehicles are
normally idle for an average of more than 10 h during the night, while the time
needed to get them fully charged is only several hours. Therefore, through coor-
dinating the charging of large scale of PEVs, the PEV charging stress on power
systems can be effectively mitigated. In addition, coordinated charging is also
viewed as a cost efficient approach to help smoothen the system load profile, reduce
renewable generation curtailment and reduce charging costs through energy arbi-
trage. As a result, the researches on coordinated PEV charging have attracted wide
interests and a large number of research papers have been published in recent years.
Clement et al. [5] proposed a coordinated charging strategy to minimize power
losses in distribution systems. Han et al. [6] proposed an optimal V2G aggregator
for frequency regulation services. Sundstrom and Binding [7] presented a central-
ized PEVs charging coordination framework considering interactions among
charging service provider (aggregator), retailer and distribution system operator.
Richardson et al. [8] proposed a linear optimization model based on network
sensitivities to maximize the total charging power while satisfying network voltage
and thermal limits. Authors of [9] proposed three coordinated PEV charging
methods to minimize the distribution system power losses, load factor or load
variance. Wu et al. [10] formulated a model to minimize energy costs of aggregator
in the day-ahead market based on electricity prices and charging needs predictions.
Vagropoulos and Bakirtzis [11] sought to centrally find the optimal bidding strategy
for PEV aggregators both in energy and ancillary service markets and maximize
aggregator’s profits by charging coordination. Luo et al. [12] proposed a two-stage
optimization model to jointly minimize the peak load and the load fluctuation. Yao
et al. [13] presented a hierarchical decomposition method to coordinate the
charging/discharging of PEVs. Qi et al. [14] applied Lagrangian relaxation method
to optimize the charging schedule of PEVs across multiple charging stations.

As the number of PEV charging stations increases to beyond hundreds, it is
apparent that the single level centralized control as reported in most of the literature
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may not be applicable for large-scale PEV coordinated charging control. Thus,
distributed control strategies are proposed. In [15], Wen et al. developed a
decentralized charging coordination strategy based on distributed alternating
direction method of multipliers algorithm. In [16], Hamid et al. proposed a dis-
tributed recharging rate control algorithm, which combines the objectives of reg-
ulating frequency and improving the utilization of electric generators. Authors of
[17] formulated a decentralized control strategy to provide frequency regulation
service for power system operation. In [18], Ma et al. applied the game theory to
coordinate the charging of PEVs. Gan et al. [19] proposed a decentralized algorithm
to coordinate the PEV charging loads to fill the valleys in load profiles. Sheikhi
et al. [20] proposed game theory based optimal decentralized control strategies.

However, the single level centralized coordinated charging and distributed
coordinated control strategies proposed in most of the literature have not provided
an adequate and complete solution to realize the coordinated charging of large scale
PEVs. On one hand, when the number of PEVs grows very large in the future, it
will be extremely difficult for one single level centralized coordinated PEV
charging control algorithm to get an optimal solution in reasonable computation
time. On the other hand, though decentralized strategies mentioned before can
efficiently handle coordinated charging control problems of large-scale PEVs, their
control results may be not as good as those of the centralized control strategies
because of lack of global information.

Since a single PEV’s battery capacity is limited, it is not easy or economic for
PEVs to participate in the electricity market separately; hence large-scale PEVs tend
to be jointly aggregated by one or several aggregators in the electricity market. When
the number and the range of aggregated PEVs grow, the charging of PEVs aggre-
gated by a single aggregator may have significant impacts both on the transmission
systems and the distribution systems. Yet till now, the comprehensive coordinated
PEV charging schemes at all levels (e.g., transmission system, distribution system,
and charging stations) have not been well studied. Especially for vertically regulated
power market, such as China [21], where the state-of-the-art power grid and
the communication infrastructure are applicable to centralized operations, the
implementation of hierarchical coordinated control of large scale PEV charging may
be more practically possible. On the demand side, some utilities (e.g. Shenzhen,
China) specially design TOU tariff incentives for PEVs charging, which make
charging coordination more attractive to investors. There is a need to propose the
optimal solution that is important to various stakeholders in PEV charging ecosys-
tem, including grid operators, utility companies, aggregators, charging station
owners, and PEV owners, etc. The major contribution of this book chapter to the
literature is to propose a three-level hierarchical framework for coordinated PEV
charging. The energy transaction and information exchange between various levels
are clearly presented. Moreover, by applying charging demand aggregation tech-
niques at the station and the distribution level operators, we effectively reduce the
computation and communication requirements, which make our three-level hierar-
chical framework scalable to large scale PEV coordinated charging control.

3 Hierarchical Coordinated Control Strategies … 57



3.2 Concept and Structure for Hierarchical
Coordinated Charging

As mentioned in the introduction part, a single level centralized coordinated
charging and distributed coordinated control strategies proposed in most of the
literature have not provided an adequate and complete solution to realize the
coordinated charging of large scale PEVs. In this book chapter, we endeavor to
present a hierarchical control framework that is (1) scalable to consider various
kinds of charging infrastructure, PEV types and power system operational con-
straints and (2) capable of coordinated controlling large scale PEVs in real time.
Specifically, the hierarchical coordinated charging framework mainly includes three
levels, namely charging station level control, distribution level control and trans-
mission level control.

First, charging stations, battery swapping stations and parking decks with
multiple charging points are at the lowest level of our control framework. These
places naturally aggregate the PEVs and can serve as idea places to implement
coordinated charging. Moreover, in cities where special time of use (TOU) tariffs
are designed for PEV charging, charging service providers of these places have
incentives to make profit through shifting charging demands to off-peak periods by
means of charging coordination. In particular, in this book chapter, we first design
coordinated charging strategies for charging stations and battery swapping stations.
By dynamically responding to the TOU prices, the station level operator optimizes
the charging schedules of PEVs or batteries and effectively realizes better load
control and charging cost minimization.

Coordinated charging operations within only individual parking decks or
charging stations, which are merely subject to local operational constraints may not
be adequate in response to time varying distribution system operational states. In
some cases, without coordination across multiple aggregators or charging stations,
the occurrence of unexpected overlapped charging hours in multiple parking decks
or charging stations could even have more severe negative impacts on power grid
operation than uncoordinated charging. Therefore, we further develop hierarchical
coordinated charging strategies for multiple aggregators in the distribution systems
[22]. In particular, the strategy seeks to (1) coordinate the aggregate charging load
of different aggregators or stations to achieve system load controlling and total
electricity cost minimization, (2) coordinate the charging of PEVs within each
aggregator under the constraints of charging requirements and local transformer
capacity limits. In order to facilitate the coordination computation and control in
real time, only the information of charging load boundaries of each aggregator is
required to be revealed for centralized coordination at the distribution system
operator (DSO) in our control framework. This helps different aggregators protect
customer charging requirement privacies and reduce the computational burden at
the distribution system operator level. At the aggregator level, we design an
effective scheduling algorithm to optimally allocate the power to each PEV and thus
the efficiency of the overall charging control system is further improved.
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As more and more PEVs are integrating into the power systems, the system
operator can potentially further exploit the charging flexibilities of large scale PEVs
and optimize the overall system operational performances. For example, when grid
scale renewable generations are integrated into transmission systems, coordinating
the charging flexibility of large scale PEVs with the variability of renewable gen-
erations can effectively improve system level renewable energy penetration and
reduce energy costs. Therefore, we further present a three-level coordinated
charging control framework, where the energy transaction and information
exchange between various levels (i.e. transmission, distribution and station) are
clearly identified. Specifically, in the day ahead, the day-ahead forecast of the
aggregated charging demand of PEVs and the base load profiles are first predicted.
A day-ahead aggregate charging load trajectory is then determined for each dis-
tribution system operator. In real time, the distribution system operator and station
operators dynamically communicate and coordinate with each other with real-time
charging requirements and finally achieve three-level charging coordination. Sim-
ilarly, we apply charging demand aggregation techniques at the station and the
distribution level operator and thus the computation and communication require-
ments are effectively reduced.

In our hierarchical control framework, time is discretized with step size D. We
assume the power consumption of PEV is constant over D. We use subscript
i : i 2 If g to index DSO, subscript j : j 2 Jif g to index aggregator under DSO i

(charging station, battery swapping station or parking deck with multiple charging
points), subscript k : k 2 Kij

� �
to index charging port at aggregator j under DSO i

and t : t 2 Tf g to index time step. We further use Kt
ij to denote the set of charging

ports which are occupied by PEV (battery) at time t. The power consumption of the
PEV (battery), which is connected with the k-th charging port of aggregator j under
DSO i, at time step t is denoted as pijkðtÞ (8k 2 Kt

ij).
In the sequel, this book chapter is organized as follows. Sections 3.3 and 3.4

introduce the charging coordination strategies for charging stations and battery
swapping stations, respectively. Section 3.5 presents the hierarchical control
framework for multiple aggregators. We further show the three levels coordinated
charging framework for large scale of PEVs in Sect. 3.6 and finally conclude this
chapter in Sect. 3.7.

3.3 Coordinated Charging Strategy for Charging Station

To begin with, we focus on the coordinated charging strategy for each charging
station j, (j 2 Ji) which is installed with multiple charging points. In urban areas,
most of the PEVs are parked at the parking lots or charging stations instead of
private garages for recharging. Charging stations are ideal places for the imple-
mentations of PEVs’ coordinated charging by monitoring the real-time conditions
of the PEVs in stations.
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Figure 3.1 is a schematic illustration of charging stations or parking lots with
rechargeable piles for PEVs. We call these two kinds of places both “charging
station” in general. The charging load and base load are connected to the distri-
bution transformer. For a charging station with independent distribution trans-
former, the base load is viewed as zero.

Acting as charging service provider, the charging station purchases electricity
from the utility at TOU purchase prices. The charging service provider seeks to
coordinate the charging of PEVs to off-peak periods to reduce its charging costs.

3.3.1 Control Strategy Overview

Based on the historical load (base load) data of the distribution transformer, the base
load could be predicted for each day. nij tð Þ (nij tð Þ 2 0; 1½ �) is the ratio of the
available capacity for charging to the total capacity of distribution transformer at
time step t. For the charging station with its own supplying distribution transformer,
nij tð Þ ¼ 1; 8t 2 T .

Once an arrival PEV connects to the k-th charging port at time t (k 2 Kt
ij), the

battery capacity of the PEV Bijk and arrival state of charge (SOC) SOC
A
ijk are obtained

through battery management system (BMS) on board. In order to achieve the
coordinated charging of PEVs in the charging station, the customers need to inform
the coordinated charging system of the expected parking time duration for charging
dijk and expected SOC when they departs SOCD

ijk. At the beginning of each time
interval, the coordinated charging control system of the charging station calls the
charging optimization program to determine the charging power of the PEVs in
station in the following Hij tð Þ time intervals based on the parking state of the
charging station, customers charging needs, available capacity of the distribution
transformer for charging and electricity prices. Through this strategy, the operational

Base LoadPEV Charging 
Load

Distribution
Transformer

Fig. 3.1 Schematic
illustration of charging
stations for PEVs
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energy costs of the charging station are minimized; the needs of the customers are
satisfied as much as possible and the charging load of the distribution transformer is
flattened. Specifically, the charging optimization program involves two stage opti-
mization models.

3.3.2 First Stage Optimization Model

Specifically, the following first stage optimization model is to be minimized at time
step t.

min
XHij tð Þ�1

l¼0

X
k2Kt

ij

pijk t þ lð Þ � cij t þ lð Þ � Dþ c�
X
k2E

ak ð3:1Þ

s:t:
X
k2Kt

ij

pijk t þ lð Þ�Aij � nij t þ lð Þ; 8l 2 0; 1; . . . ;Hij tð Þ � 1
� � ð3:2Þ

q�
XHijk tð Þ�1

l¼0

pijk t þ lð Þ � Dþ SOCijk tð Þ � Bijk ¼ SOCD
ijk � Bijk; 8k 2 Kt

ijnE ð3:3Þ

ðSOCD
ijk � akÞ � Bijk � q�

XHijk tð Þ�1

l¼0

pijk t þ lð Þ � Dþ SOCA
ijk

� Bijk � SOCD
ijk � Bijk; 8k 2 E

ð3:4Þ

0� pijk t þ lð Þ�Pmax
ijk ; 8k 2 Kt

ij; 8l 2 0; 1; . . . ;Hij tð Þ � 1
� � ð3:5Þ

where Hij tð Þ is the length of the planning horizon at time t, which is normally
selected as the maximum value of the remaining parking durations of PEVs. Hijk tð Þ
is the length of planning horizon for PEV at charging port k. cij tð Þ is the electricity
purchase price of charging station at time step t. c is a penalty coefficient for
customer charging demand de-rating. Set E is the index set of the charging ports
which are connected with newly arrived PEVs at time t and ak is charging
requirement de-rating factor of PEV at charging port k (8k 2 E). Aij is the capacity
of the distribution transformer. q is charging efficiency and SOCijk tð Þ is the SOC of
PEV at charging port k at time t. Pmax

ijk is the rated power of charging port k.
The first part of the objective function is to minimize the overall energy purchase

costs of the charging station over the planning horizon. While the second part is
used to minimize the demand de-rating with a relatively large weight to guarantee
that the charging need of the arrived customer is satisfied as much as possible.
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The constraints (3.2) imply the constraints on capacity of distribution transformer.
At any time interval during the planning horizon, the summation of the base load
and charging load of PEVs should not exceed the rated capacity of the supplying
distribution transformer. The constraints (3.3) suggest the charging requirement
constraints of the customers that connected before the last time step, while con-
straints (3.4) set the charging requirement constraints for the newly connected
PEVs. For the newly arrived customer connected to the charging station at the very
last time period, the parameter ak is introduced to guarantee the problem feasibility.
Finally, the values of charging power for each PEV are limited in constraints (3.5).

3.3.3 Second Stage Optimization Model

In the first stage optimization model, by responding to the time varying electricity
prices dynamically under the constraints of distribution transformer capacity and
customers’ needs, the charging costs of charging station are minimized. We could
further build the second stage optimization model to flatten the charging load
without sacrificing the quality of charging service or increasing charging costs that
obtained from the first stage optimization.

min Lmax ð3:6Þ

s:t:
XHij tð Þ�1

l¼0

X
k2Kt

ij

pijk t þ lð Þ � cij t þ lð Þ � D�Cmin ð3:7Þ

X
k2Kt

ij

pijk t þ lð Þ þ 1� nij t þ lð Þ� �� Aij � Lmax; 8l 2 0; 1; 2; . . . ;Hij tð Þ � 1
� �

ð3:8Þ

q�
XHij tð Þ�1

l¼0

pijk t þ lð Þ � Dþ SOCijk tð Þ � Bijk ¼ SOCD
ijk � Bijk; 8k 2 Kt

ijnE ð3:9Þ

ðSOCD
ijk � rkÞ � Bijk �ðq�

XHijk tð Þ�1

l¼0

pijk t þ lð Þ � Dþ SOCA
ijk � BijkÞ

� SOCD
ijk � Bijk; 8k 2 E

ð3:10Þ
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where Lmax is the total peak demand over the planning horizon and Cmin and rk is
the optimal cost and charging requirement de-rating factor computed at the first
stage, respectively.

The objective of this model is to minimize the peak load in the planning horizon.
Constraints (3.7) indicate that the costs of the charging station should be maintained
while trying to flatten the load. Constraints (3.8) suggest the load of the distribution
transformer should not exceed the maximum load. Constraints (3.9) and (3.10)
guarantee the customer service level will not be degraded.

The two optimization models formulated above are both linear programming
(LP) problems, which can be solved by software package CPLEX efficiently [23].

3.3.4 Flow Chart of Coordinated Charging Control

Based on the models formulated above, the optimal charging power for each PEV
can be obtained at the beginning of each time step and the coordinated charging of
PEVs is therefore realized. The system updates the state of charging station every D
amount of time and control orders are generated based on the optimization results.
If no PEV enters the charging station during the previous time period, the system
will automatically change the state of the charging station based on the results
computed previously. Otherwise, the charging strategy will be calculated again at
the beginning of the next time interval. If a PEV enters in the middle of the current
time interval, the charging states of the other PEVs will not change during this time
interval. Based on the descriptions of the control decision process, the detailed
coordinated charging control flowchart is illustrated in Fig. 3.2.

3.4 Coordinated Charging Strategy for Battery Swapping
and Charging Station

Although PEV sales increase in many countries all over the world, the limited
recharging infrastructure is still one of the main obstacles limiting the mass
adoption of PEVs. Better Place was the pioneer to build battery swapping networks
to refuel PEVs, although it was bankrupt [24]. In China, the electric grid companies
put a lot of effort on promoting battery-swapping technologies. Although they are
not successful in the private PEV market, battery-swapping technologies win
acceptance for public transportation, e.g. public buses and taxies, to a certain extent.
Now, there are more than 20 electric bus routes that are refueled by battery
swapping stations.
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The most evident advantage of battery swapping technology is that the used
battery of a PEV can be exchanged with a fully charged one within a few minutes
even for an electric bus. Furthermore, after the used batteries swapped off the
vehicle, their recharging process can be controlled centrally. For the electric bus
fleet that is not operating during the night, the batteries within the charging station
can be used for coordinated charging or even V2G (vehicle-to-grid). In this section,
the coordinated charging strategy for the bus battery swapping and charging station
(BBSCS) is briefly introduced.

     =0?

Charging station initialization

Load and price information 
initialization

New PEVs entered? new control point?No

Change the system state based on 
the results obtained previously

Yes

New control point?

Yes

Remain the system state 
unchanged

No

Pre-update the state of the PEVs in station to the 
beginning of the next control interval

No

Obtain battery and charging needs information

Determine the length of planning horizon

Compute optimal charging schedule

k More PEVs entered?Yes

Cannot satisfy the need?

No

Cannot provide any service, lose this customer

Change the charging state 
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Customer accept the degraded service?

No
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Fig. 3.2 Flowchart of the coordinated charging control for a charging station
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3.4.1 Operation of Bus Battery Swapping
and Charging Station

3.4.1.1 Basic Assumptions

The key assumptions for the operation of a BBSCS are listed as follows:

(1) Electric buses run along a fixed round route, the BBSCS is located close to the
starting or ending stop. A BBSCS can be shared by several bus routes.

(2) If the remained energy in the battery of an electric bus is not enough for its
next round trip, the battery should be swapped in the BBSCS. The bus driver
is responsible for checking the battery SOC.

(3) The swapped batteries with low SOC will be recharged in the BBSCS. The
charging power can be controlled.

(4) The battery capacities of electric buses belonging to the same bus route are the
same.

3.4.1.2 Battery Swapping Demand Analysis

Considering that the electric bus fleet is operated similar to the conventional bus
fleet, the bus departing schedule is arranged based on passenger flow and traffic
status. When an electric bus departs, its remaining travel distance available with the
energy in the battery must be longer than the length of the bus route. Otherwise, the
battery must be replaced with a fully charged one. Thus, daily battery swapping
demand can be quantitatively analyzed.

Basic input information for battery demand analysis includes the bus timetable,
battery capacity, initial State of Charge (SOC), driving distance, average driving
speed, electricity consumption per kilometer and so on. The battery swapping
demands only occur during the daily operating hours.

The time of each electric bus k arriving at the BBSCS j after a round trip can be
approximately calculated as follows:

tAijk ¼ tDijk þ
Lijk
Vijk

� 1
D

ð3:11Þ

where tAijk and t
D
ijk are respectively the arrival time and departure time of electric bus k.

Lijk is the length of the operating route in km.Vijk is the average driving speed in km/h.
The minimum battery SOC to meet the requirement of a single round trip is about:

SOCr
ijk ¼

Lijk � Qijk

Bijk
� 100%þ SOCmin

ijk ð3:12Þ
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where Qijk and SOCmin
ijk are respectively the average energy consumption rate of

bus k, in kWh/km, and required minimum state of charge. When the battery SOC of
a bus is lower than SOCr

ijk, the battery should be replaced with a fully charged one
before it departs from the BBSCS for the next trip. So the battery swapping time of
each bus within a whole day can be predicted, the battery swapping demands of a
bus fleet over time can be calculated by accumulation.

3.4.2 Optimal Charging Strategy Within BBSCS

With the battery swapping demands available, the charging process within the
BBSCS can be optimized. Two-stage optimization models are built, which is very
similar to those given in Sect. 3.3. The objective of the first stage optimization
model is to minimize the total charging cost respecting the battery swapping
demands within a whole day.

min
XHij tð Þ�1

l¼0

X
k2Kt

ij

pijk t þ lð Þ � cij t þ lð Þ � Dþ c�
X
k2Kt

ij

ak ð3:13Þ

s:t:
X
k2Kt

ij

pijk t þ lð Þ�Aij � nij t þ lð Þ; 8l 2 0; 1; . . . ;Hij tð Þ � 1
� � ð3:14Þ

ðSOCD
ijk � akÞ � Bijk �ðq�

XHijk tð Þ�1

l¼0

pijk tð Þ � Dþ SOCijk tð Þ � BijkÞ

� SOCD
ijk � Bijk; 8k 2 Kt

ij

ð3:15Þ

0� pijk t þ lð Þ�Pmax
ijk ; 8k 2 Kt

ij; 8l 2 0; 1; . . . ;Hij tð Þ � 1
� � ð3:16Þ

The constraints (3.14) and (3.15) are similar to (3.2) and (3.3), respectively. The
constraints (3.15) indicate that the charging demand of battery k should be satisfied
as much as possible. The charging time horizon of each battery HijkðtÞ is decided
based on the detailed battery swapping demand analysis.

The second stage optimization model can be similarly built as follows.

min Lmax ð3:17Þ

s:t:
XHij tð Þ�1

l¼0

X
k2Kt

ij

pijk t þ lð Þ � cij t þ lð Þ � D�Cmin ð3:18Þ
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X
k2Kt

ij

pijk t þ lð Þ þ 1� nij t þ lð Þ� �� Aij � Lmax; 8l 2 0; 1; 2; . . . ;Hij tð Þ � 1
� �

ð3:19Þ

ðSOCD
ijk � rkÞ � Bijk �ðq�

XHijk kð Þ�1

l¼0

pijk t þ lð Þ � Dþ SOCijk tð Þ � BijkÞ

� SOCD
ijk � Bijk; 8k 2 Kt

ij

ð3:20Þ

3.4.3 Dealing with Uncertainties

The above two stage optimization models are built based on the assumption that
when and which batteries entering and leaving the BBSCS can be predicted pre-
cisely. However, there are many uncertain factors, such as bus driving speed,
different electricity consumption rate of each bus, and even unexpected equipment
failures. So the optimization models should take the uncertainties into account. One
of the solutions to this problem is to solve the two-stage optimization models using
the updated data when necessary. Another solution is to keep several fully charged
spare batteries, i.e., there will be a few more fully charged batteries than the
batteries required during the operating hours of the bus route. This solution can be
realized by setting appropriate constraints (3.15) and (3.20).

3.5 Hierarchical Coordinated Charging for Multiple
Aggregators

As our discussions earlier, by coordinating the charging load to off-peak periods,
cost minimization of individual aggregator can be achieved. From the perspective
of the DSO, whereas, a better load profile with low peak-to-average ratio through
charging coordination is expected. However, in lack of effective coordination across
different aggregators, system load profile might still be undesirable. For example,
authors of [25] propose to coordinate the charging of PEVs within one charging
station. Through simulations, it is found that if coordination between aggregators is
absent, charging rebound effect (another load peak) is likely to occur. Therefore, in
this section, we develop a centralized, hierarchical framework to coordinate the
charging of PEVs in multiple aggregators [22].
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The hierarchical control framework seeks to (1) coordinate the aggregate
charging load of different aggregators under a common DSO i with the objective of
system load controlling and total electricity cost minimization, (2) coordinate the
charging of PEVs within each aggregator considering various local constraints. We
also develop techniques to derive the aggregate charging load boundaries of each
aggregator to help different aggregators protect their customers charging require-
ment privacies and reduce the computational burden at the DSO level. Moreover, at
the aggregator level, we present an efficient heuristic scheduling algorithm to
intelligently allocate the aggregate reference power to each PEV, which further
improves the efficiency of the coordinated charging control system.

3.5.1 Hierarchical PEVs Charging System Architecture

Before we proceed to the detailed formulation of our hierarchical control frame-
work, we first present the schematic illustration of the decentralized charging
system in an urban area we are focusing here, as depicted in Fig. 3.3. The voltage is
stepped down twice by the primary distribution transformer at the substation and
local distribution transformers. Each community j (j 2 Ji) with multi-family

Distribution
system operator

Aggregator

 Base load
PEV charging load

Local distribution 
transformer

Primary transformer Aggregator

Fig. 3.3 Schematic illustration of decentralized charging system in an urban area
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dwellings also has an aggregator (charging station, parking deck, etc.) equipped
with multiple charging points. Both the base loads (e.g. loads excluding the
charging loads) and PEV charging loads are supplied by the local distribution
transformer, which is constrained by a loading upper bound.

This aggregator at community j (j 2 Ji) operates and controls the switch on and
off states as well as the charging power of each charging point within the parking
deck and is also required to follow the charging regulation requirements dictated by
the DSO under a pre-specified incentive. The aggregators under the same primary
distribution transformer are not necessarily operated by the same company; hence,
for privacy protection purposes, we assume the aggregator cannot reveal the
detailed information of their customer charging requirements. Similarly, we sup-
pose that each aggregator purchases electricity from the utility at time-of-use (TOU)
rates and sells it to the PEV charging customers at retail prices to make profits by
providing charging services.

Likewise, we assume once a PEV connects to the k-th charging point at ag-
gregator j, its battery capacity value Bijk (in kWh) and initial SOC (SOCA

ijk) can be
instantly obtained by the aggregator’s charging management system through
communicating with battery management system (BMS) on PEV’s board. The
customer is also assumed to inform its expected parking duration dijk and the
desired SOC upon departure SOCD

ijk.
Finally, each aggregator predicts local base loads in the day-ahead based on

historical data. Moreover, distribution system level base load predictions are also
implemented at the DSO level.

Based on the above information, the PEVs coordinated charging strategy
dynamically determines charging power of each charging port in multiple aggre-
gators by following three-step coordination procedure which we will elaborate on in
the next subsections.

3.5.2 Control Strategy Overview

This control framework for multiple aggregators under the DSO i is similarly
designed in a rolling horizon fashion where charging load requirements and base
loads along the horizon are considered. Specifically, the optimal control problem is
solved at discrete time step. The charging power pijk tð Þ at port k is kept constant
within each interval D and can vary from zero to rated power of the charging port
Pmax
ijk . After solving the problem, only the computed charging power for interval

ðt; t þ 1� is sent to the charging ports for implementation. At the end of interval
ðt; t þ 1�, the states of all the accommodated PEVs under the DSO i (e.g. PEVs
arrival/departure, SOC etc.) and base load forecasting results will be updated over
the planning horizon and the above procedure is repeated again to obtain the
optimal charging strategy for all charging ports in the next time interval
ðt þ 1; t þ 2�.
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The hierarchical coordinated charging strategy implemented at the beginning of
each time interval include three steps, namely, (1) charging load boundaries com-
putation at the aggregator level, (2) centralized aggregate charging load optimiza-
tion at the DSO level and (3) intelligent charging power allocation within the
aggregator. Detailed explanations of these three steps are elaborated in the fol-
lowing three subsections, respectively [22].

3.5.3 Charging Load Aggregation Method

We propose a method to represent the aggregate flexibility of PEV charging
demands within an aggregator at this step [22]. In fact, the charging load of each
PEV can be described by its energy and power boundaries. The energy upper and
lower boundaries, which respectively correspond to the fastest and the slowest paths
of consuming energy, describe the charging flexibility of this PEV during its
parking horizon. Power boundaries are used to limit the instantaneous charging
power of this PEV, which has to be strictly no greater than the rated power of
the charging port. The aggregations of these two types of boundaries of all PEVs
are used to present the collective charging load boundaries of the aggregator.

Before we present the way to compute the energy and power limits, we first
compute the maximum possible departure SOCD;a

ijk tð Þ of each PEV as follows.

SOCD;a
ijk tð Þ ¼ min SOCD

ijk; SOCijk tð Þ þ Hijk tð Þ � q� Pmax
ijk � D

Bijk

� �
; 8k 2 Kt

ij; 8j 2 Ji

ð3:21Þ

where Hijk tð Þ is the planning horizon of PEV k, 8k 2 Kt
ij, which is normally selected

as its remaining parking duration.
The energy upper limit and lower limit of a single PEV from time step t to time

step t þ Hij tð Þ � 1 are then computed by recursion. Mathematically,

emax
ijk ðt þ lÞ ¼ emin

ijk ðt þ lÞ ¼ SOCD;a
ijk tð Þ � Bijk;

l ¼ Hijk tð Þ; . . . ;Hij tð Þ � 1; 8k 2 Kt
ij; 8j 2 Ji

ð3:22Þ

emin
ijk ðt þ lÞ ¼ max emin

ijk ðt þ lþ 1Þ � q� Pmax
ijk � D; SOCijk tð Þ � Bijk

� 	
;

l ¼ 0; . . . ;Hijk tð Þ � 1; 8k 2 Kt
ij; 8j 2 Ji

ð3:23Þ

emax
ijk ðtÞ ¼ SOCijk tð ÞBijk; 8k 2 Kt

ij; 8j 2 Ji ð3:24Þ

70 Z. Hu et al.



emax
ijk ðt þ lÞ ¼ min emax

ijk ðt þ l� 1Þ þ q� Pmax
ijk � D; SOCD;a

ijk tð Þ � Bijk

� 	
;

l ¼ 1; . . . ;Hijk � 1; 8k 2 Kt
ij; 8j 2 Ji

ð3:25Þ

where emin
ijk ðtÞ and emax

ijk ðtÞ are respectively the energy lower and upper bounds of
PEV k at time t. Equations (3.22) constrain the energy state of a PEV after its
departure, which has to be fixed at the requested departure state. Equations (3.23)
specify the minimum energy state of PEV at the t þ lð Þ-th interval could be at most
q� Pmax

ijk � D lower than its energy state at time t þ lþ 1ð Þ, (l ¼ 0; . . . ;
Hijk tð Þ � 1) but cannot be lower than its initial energy state. Equations (3.24) imply
the initial energy state and Eq. (3.25) make sure that the maximum energy state of a
PEV at one period later can be as much as q� Pmax

ijk � D larger than the energy state
of the adjacent previous time period and should also be strictly no larger than
SOCD;a

ijk tð Þ � Bijk.
The charging power upper limits of a single PEV from time step t to time step

t þ Hij tð Þ � 1 are determined by the rated power of the charging port. Specifically,
if the PEV is connected to a charging port, its charging power can be no larger than
the rated power, otherwise its charging power should be zero. Analytically,

pmax
ijk ðt þ lÞ ¼ Pmax

ijk ; l ¼ 0; . . . ;Hijk tð Þ � 1; 8k 2 Kt
ij; 8j 2 Ji ð3:26Þ

pmax
ijk ðt þ lÞ ¼ 0; l ¼ Hijk tð Þ; . . . ;Hij tð Þ � 1; 8k 2 Kt

ij; 8j 2 Ji ð3:27Þ

where pmax
ijk ðtÞ is the power upper limit of PEV k at time step t.

Based on the energy and power boundaries of each PEV in aggregator j, the
collective energy and power boundaries of this aggregator are computed by simple
summation. Additionally, the aggregate charging power should also not lead to the
overloading of the local distribution transformer as in (3.30). Each aggregator then
reports the aggregate charging load boundaries (3.28)−(3.30) to the DSO for further
centralized coordination.

Emin
ij ðt þ lÞ ¼

X
k2Kt

ij

emin
ijk ðt þ lÞ; l ¼ 0; . . . ;Hij tð Þ � 1; 8j 2 Ji ð3:28Þ

Emax
ij ðt þ lÞ ¼

X
k2Kt

ij

emax
ijk ðt þ lÞ; l ¼ 0; . . . ;Hij tð Þ � 1; 8j 2 Ji ð3:29Þ

Pmax
ij ðt þ lÞ ¼ min

X
k2Kt

ij

pmax
ijk ðt þ lÞ;Aij � nijðt þ lÞ

0
@

1
A; l ¼ 0; . . . ;Hij tð Þ � 1; 8j

2 Ji

ð3:30Þ
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3.5.4 Centralized Aggregate Charging Load Optimization
at the DSO

With the aggregate charging load boundaries, the DSO attempts to coordinate the
charging of all aggregators to minimize energy costs and to control peak demand.
Preferred charging curves for each aggregator are centrally determined via a linear
optimization model, where the aggregate charging requirements of each aggregator
and system load profile are explicitly considered [22].

Specifically, we propose the centralized charging coordination model to be
solved at t as follows.

min
h;prij

WiðtÞ ¼
X
j2Ji

XHij tð Þ�1

l¼0

cijðt þ lÞ � prijðt þ lÞ � D

þ l�
XHi tð Þ�1

l¼0

hðt þ lÞ � j�
XHi tð Þ�1

l¼0

ðHi tð Þ � lÞ � prijðt þ lÞ
ð3:31Þ

s:t: prijðt þ lÞ�Pmax
ij ðt þ lÞ; l ¼ 0; . . . ;Hij tð Þ � 1; 8j 2 Ji ð3:32Þ

prijðt þ lÞ ¼ 0; l ¼ Hij tð Þ; . . . ;Hi tð Þ � 1; 8j 2 Ji ð3:33Þ

Emin
ij ðt þ lÞ�

Xl�1

s¼0

q� prijðt þ sÞ � Dþ Emax
ij ðtÞ�Emax

ij ðt þ lÞ;

l ¼ 1; . . . ;Hij tð Þ; 8j 2 Ji

ð3:34Þ

X
j2Ji

prijðt þ lÞ�Ai � niðt þ lÞ þ hðt þ lÞ; l ¼ 0; . . . Hi tð Þ � 1 ð3:35Þ

where prijðtÞ is the preferred aggregate charging power for aggregator j at time t; l is
a large positive penalty factor for positive slack variables h tð Þ, which is introduced
as slack variable to ensure the feasibility of the optimization problem in cases of
excessive charging demands or limited charging load margins; j is a small positive
factor related to charging earliness considerations and will be explained in detail
later. Hi tð Þ is the planning horizon of the DSO i, which is selected as the maximum
value of the planning horizons of all aggregators. Ai is the capacity of the primary
distribution transformer and niðtÞ is similarly defined as the proportion of available
capacity of the primary distribution transformer that can be used for PEV charging
at time step t.

The first term of the objective function quantifies the electricity purchase costs of
all aggregators over the planning horizon. The second term penalizes positive slack
variables h tð Þ so as to keep the planned power at each time interval from violating
the distribution transformer capacity limit to the greatest extent but also helps
ensure the problem feasibility in case of excess charging demand. The last term
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implies our preference to early charging. As the weight factor of charging power
declines associated with time, the charging system tends to plan PEVs charging
power early so as to prepare for unexpected early departure of PEVs or unantici-
pated mass arrivals for charging.

Following the linear objective function, constraints (3.32) imply power upper
limits on the preferred power curves. At any interval, the preferred power for each
aggregator should not exceed its maximum charging power boundary. Constraints
(3.33) constrain the preferred power at intervals out of the range of the aggregator’s
planning horizon, which should be strictly fixed at 0. Constraints (3.34) ensure the
preferred charging curves within aggregator’s energy boundaries. Constraints
(3.35) are capacity limits. The introduction of slack variables keeps the model from
infeasibility.

The computational burden of the above linear programming model is directly
related to the number of aggregators controlled and the length of planning horizon
but has little to do with the number of PEVs connected. Therefore, the prevalent
algorithms, such as Interior Point Method or Simplex Algorithm can effectively
solve this linear programming problem.

Note that with abundant available capacity for PEVs charging during off-peak
periods in practices, values of hðtÞ can be well restricted at zero under most con-
ditions. In cases when the value of hðtÞ is positive, we proportionally derate the
preferred charging power prijðt þ lÞ to ensure system reliable operation. With der-
ated prijðt þ lÞ, undesirable sacrifice of customer charging requirement might occur.
Mathematically, prijðt þ lÞ are adjusted by following equations:

prijðt þ lÞ ¼ prijðt þ lÞ � Ai � niðt þ lÞ
Ai � niðt þ lÞ þ hðt þ lÞ ; l ¼ 0; . . . Hi tð Þ � 1; 8j 2 Ji

ð3:36Þ

Then the DSO sends the updated preferred charging power prijðtÞ at time t to
corresponding aggregator j for further power allocation.

3.5.5 Charging Coordination Within Aggregator

With the preferred power dictated by the DSO, the objective of each aggregator at
this step is to allocate the planned power prijðtÞ to its controlled PEVs. Specifically,
we design a fast, completeness value based scheduling algorithm [22]. We define
the completeness value of a PEV charging task as follows. It is jointly determined
by PEV’s current SOC, departure SOC requirement and remaining parking
duration.
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Wijk ¼ Hijk tð Þ � Cijk tð Þ
SOCD;a

ijk tð Þ � SOCijk tð Þ
� 	

� Bni

ð3:37Þ

where Cijk tð Þ ¼ SOCD;a
ijk tð Þ � SOCijk tð Þ

� 	
� Bijk=ðq� Pmax

ijk � DÞ, i.e. the minimum

remained charging time needed for this PEV to charge to its required SOC level.
In the scheduling algorithm, we design the aggregator always choose to allocate

the power to vehicles with the smallest completeness value first. Specifically, the
fast, completeness value based scheduling power allocation algorithm can be
schematically illustrated in Fig. 3.4.

Each aggregator then implements the charging schedule based on the results of
the presented scheduling algorithm at the beginning of time step t. When the time
proceeds to the beginning of next time interval t þ 1, the above three-step proce-
dure is repeated to determine the charging schedule for interval ðt þ 1; t þ 2� based
on updated system information.

3.6 Three Level Coordinated Charging for Large Scale
of PEVs

In the previous part, we investigated the problem of coordinating PEV charging
across multiple aggregators at the distribution system level. When large scale of
PEVs integrates into the power networks, their charging flexibilities could be
potentially exploited further at the transmission level. Especially for regions with

Input          and updated PEV information( )ij
rp t

Compute charging completeness value for each PEV 
in aggregator j

Rank the completeness value from lowest to highest

Satisfy the charging demand of PEV with the  lowest 
completeness value first before         is depleted 

Implement the charging decisions

( )ij
rp t

Fig. 3.4 Power allocation algorithm for aggregator i
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vertically regulated utilities, where the transmission and distribution sectors are
operated by a single company, the charging coordination of large scale of PEVs are
more appropriate to be implemented in a hierarchical way. In this subsection, a
three-level hierarchical framework for coordinated PEV charging is presented [26].

3.6.1 Three Level Hierarchical Coordinated Charging
Framework

We demonstrate the proposed three level hierarchical framework for coordinated
charging of a large scale of PEVs in Fig. 3.5. In general, this hierarchical control
framework includes three levels: transmission level control, distribution level
control and charging station level control [26]. We assume the system operation
data can be communicated between the transmission level operator and the distri-
bution level operator directly. Stations including parking decks with charging
points, charging stations and battery swapping stations are at the lowest level in the
coordinated control framework. By arbitraging the TOU prices, the electricity
purchase costs are minimized under the constraints of customer charging require-
ments. Meanwhile, we assume the station level operators in this framework comply
with the regulation signal sent by the distribution operator under the pre-specified
incentive and penalty terms.

Specifically, at the transmission level, the day-ahead forecast of the aggregated
charging demand of PEVs and the base load profiles are carried out. A day-ahead
reference aggregate charging load curve for each distribution system operator is
then decided with the objectives of minimizing system peak load, load fluctuation
and total charging costs while respecting the aggregated PEV charging demand
flexibility of each distribution system operator and various generation and trans-
mission constraints.

Fig. 3.5 Three-level hierarchical framework for coordinated charging of PEVs
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In real time, at the distribution level, based on the day-ahead referential PEV
charging curves sent by the transmission-level operator and real time aggregated
charging needs of charging stations, the distribution operators dynamically allocate
charging power to each station to satisfy their charging requirements and to achieve
distribution system load control objectives at the same time. The decision process is
similar to Sect. 3.5.

At the station level, the assumptions of arrival and departure processes of PEVs
at each station are similar to those as described in Sect. 3.5. For battery swapping
stations, we also assume the information of the size and initial SOC of the depleted
batteries could also be conveniently obtained, and the expected time for next usage
of this battery with SOCD

ijk ¼ 1 is estimated in advance. With charging require-
ments, the station level operator dynamically communicates and negotiates with the
distribution level operator, follows the preferred charging power specified by the
distribution system operator and flexibly determines the charging schedule of PEVs
or batteries to satisfy customer charging preferences while minimizing its charging
costs under TOU tariffs.

As the coordination process between the distribution operator and the station
operator in real time is almost the same as described in Sect. 3.5. In this subsection,
we mainly focus on introducing the problem formulation at the transmission level
operator and the formulation at the distribution level operator, which also seeks to
follow the day-ahead reference charging curve.

3.6.2 Problem Formulation

3.6.2.1 Charging Load Aggregations at the Distribution Level

Similar to the charging aggregation process at the station level as in Sect. 3.5.3, the
charging load can be further aggregated at the distribution level [26]. We forecast
the charging need of PEVs in each aggregator and describe each charging load
through its energy and power bounds. We then aggregate the charging demand of
PEVs both at the charging station level and the distribution level. Specifically, the
forecasts of the aggregation of charging demands requested by the distribution
operator i are calculated based on the following equations in the day-ahead.

Êmax=ðminÞ
i ðtÞ ¼

X
j2Ji

X
k2Kij

emax=ðminÞ
ijk ðtÞ; 8t 2 T ð3:38Þ

P̂max
i ðtÞ ¼

X
j2Ji

X
k2Kij

pmax
ijk ðtÞ; 8t 2 T ð3:39Þ
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Note that the realized charging requirement of each PEV or battery in real time
operation does not necessarily match with the day-ahead forecasts precisely.
However, the pooled charging needs at the distribution level can still be reasonably
estimated when each distribution operator provides charging services to sufficient
number of PEVs. Therefore, we apply the day-ahead forecasted aggregated
charging requirements of each distribution operator for day-ahead charging coor-
dination at the transmission level.

3.6.2.2 Day-Ahead Charging Coordination at the Transmission Level

With the aggregated charging demand information of each distribution operator, the
transmission operator seeks to find optimal referential charging load profiles for
each distribution operator to optimize the transmission level objectives [26]. Day-
ahead unit commitment and economic dispatch considering both network and
flexible charging load could be implemented at this level. For illustrative purposes,
we only formulate a centralized coordination problem without considering the
generation and network constraints. Specifically, the optimization problem that is
solved day-ahead by the transmission operator is formulated as follows.

min
P̂r
i
ðtÞ;Lp ;Li

Lp þ k�
X
i2I

Li þ /�
X
i2I

X
t2T

P̂r
i ðtÞ � ciðtÞ � Dþ a�

X
t2T

P̂BLðtÞ þ
X
i2I

P̂r
i ðtÞ

 !2

þ b�
X
i2I

X
t2T

P̂BL
i ðtÞ þ P̂r

i ðtÞ
� �2

ð3:40Þ

s:t: P̂BLðtÞ þ
X
i2I

P̂r
i ðtÞ� Lp; 8t 2 T ð3:41Þ

P̂BL
i ðtÞ þ P̂r

i ðtÞ� Li; 8i 2 I; 8t 2 T ð3:42Þ

0� P̂r
i ðtÞ� P̂max

i ðtÞ; 8i 2 I; 8t 2 T ð3:43Þ

Êmin
i ðtÞ�

Xt
s¼1

q� P̂r
i ðsÞ � D� Êmax

i ðtÞ; 8i 2 I; 8t 2 T ð3:44Þ

where Lp is the day-ahead peak demand of the system over the planning horizon. Li
is the day-ahead peak demand of the i-th DSO. P̂r

i tð Þ stands for the day-ahead
referential charging load trajectory for the DSO i at time t. ciðtÞ is time-of-use
charging cost per kWh at time t, which is uniform for all aggregators under the
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DSO i. P̂BLðtÞ is the forecasted base load of the system at time t and P̂BL
i ðtÞ is the

forecasted base load under the DSO i. k; /; a and b are weighting coefficients.
The first term of the objective function (3.40) quantifies the system peak load at

the transmission level over the planning horizon. Meanwhile, the second term
quantifies the peak loads of all distribution operators. The third term indicates system
preferences for lower charging costs. Finally, to consider system operator’s pref-
erences for smoother load profile, we add the last two terms to penalize projected
load variations in the whole system and each distribution operator, respectively.
Following the quadratic objective function, constraints (3.41) impose the limit on
system peak load. Likewise, we introduce constraints for distribution peak demand
in (3.42). Equation (3.43) constrain that the referential charging power of each
distribution operator should be well kept below their respective power boundaries.
Constraints (3.44) make sure the referential charging power of each distribution
operator satisfy their forecasted aggregated cumulative charging energy boundaries.

Note that the above model is a quadratic convex optimization problem and its
dimension is mainly related to the number of distribution operators. Hence, it can be
solved efficiently. Since the aggregated charging demand of each distribution
operator can be reasonably estimated in the day ahead when sufficient number
of PEVs are integrated, in real time operations, the distribution operator does not
communicate with the transmission operator but only seeks to follow the dictated
referential charging power trajectory P̂r

i as closely as possible by coordinating the
charging power of charging stations.

3.6.2.3 Real-Time Charging Coordination at the Distribution Level

Similar to the Sect. 3.5 in real time operations, the charging power of each charging
station is dictated by its corresponding DSO [26]. At each time interval, the
operator of charging station j under the distribution operator i first computes its
aggregated charging load based on (3.21)–(3.30) and sends its cumulative charging
energy and power boundaries (Emax

ij ;Emin
ij ;Pmax

ij ) to the distribution operator i for
further coordination. The DSO i then solves the following convex optimization
model at time t.

min
Pr
ij
;Di

UiðtÞ ¼
X
j2Ji

XHijðtÞ�1

l¼0

ciðt þ lÞ � Pr
ijðt þ lÞ � Dþ c�

XHiðtÞ�1

s¼0

P̂r
i ðt þ lÞ �

X
j2Ji

Pr
ijðt þ lÞ














� j�
X
j2Ji

XHijðtÞ�1

l¼0

HiðtÞ � lð Þ � Pr
ijðt þ lÞ þ l� Li þ m

�
XHiðtÞ�1

l¼0

P̂BL
i ðt þ lÞ þ

X
j2Ji

Pr
ijðt þ lÞ

 !2

ð3:45Þ

s.t. 0�Pr
ijðt þ lÞ�Pmax

ij ðt þ lÞ; 8l ¼ 0; . . . ;HijðtÞ � 1; 8j 2 Ji ð3:46Þ
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Emin
ij t þ 1ð Þ�

Xl
s¼0

q� Pr
ij t þ sð Þ � D�Emin

ij t þ 1ð Þ; 8j 2 ji;

8l ¼ 0; . . . ;Hij tð Þ � 1

ð3:47Þ

P̂BL
i ðt þ lÞ þ

X
j2Ji

Pr
ijðt þ lÞ� Li; 8l ¼ 1; . . . ;HiðtÞ � 1 ð3:48Þ

where c, l and m are weight coefficients.
The control objective of the distribution operator includes five components. The

first term quantifies the projected total charging costs under the TOU tariffs along
the real time planning horizon. The second term quantifies the total deviations of
the total charging power from the day-ahead referential charging profile dictated by
the transmission operator. The third term implies the preferences for early charging.
As the weight factor of referential charging power declines in time, the charging
system tends to plan PEV charging early so as to prepare for unexpected early
departure or unanticipated mass arrivals for charging. The last two terms of the
objective function respectively quantify the projected distribution peak load and
load variations along the planning horizon. Since the optimization of distribution
load profile has been included in day-ahead transmission level coordination model,
the choices of parameters of l and m can be small in real time control. Following the
objective function, similarly, the resulting aggregate charging profile of each
charging station is supposed to satisfy their respective accumulated energy and
power boundaries in constraints (3.46) and (3.47). In addition, the value of peak
demand over the real time planning horizon is characterized in constraints (3.48).
Though other system constraints such as voltage and line thermal limits are not
considered explicitly in this formulation as [8, 27], they can be readily incorporated
if needed in practice.

The complexity of this problem is primarily related to the number of charging
stations, which makes the formulated optimization problem easy to solve. After
solving the above convex optimization model, the distribution operator then sends
the resulting referential charging power at time step t to each charging station for
further intelligent power allocation.

3.6.2.4 Real-Time Charging Coordination at the Station Level

With the referential charging power dictated by the distribution operator, the
objective of the station operator is to intelligently allocate the planned power Pr

ijðtÞ
to its controlled PEVs or batteries. For the detailed allocation algorithm, please refer
to Sect. 3.5.5.
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3.6.2.5 Hierarchical Coordinated Charging Control Framework

Based on the above description of computation at each operator level, we can
summarize the hierarchical decision processes at different levels of operators in
Fig. 3.6 [26].

3.6.3 Case Studies

In this subsection, to understand how the control strategies perform under various
circumstances, we carry out numerical simulations on three cases. Each case has
three distribution system operators and the number of PEVs in each case is dif-
ferent. All simulations are conducted on a PC with Intel, Core i3 (2.93 GHz) CPU
and 4 GB RAM. The formulated optimization problems at the transmission and the
distribution level charging coordination are solved via CPLEX [23].

3.6.3.1 Case Specifications

In order to account for the differences in charging behaviors of various types of
vehicles, we consider four types of PEVs, i.e. buses, taxis, cars owned by gov-
ernment or public institutions (abbreviated as GIOcar) and private cars (abbreviated
as PRIcar) [28]. At the initial stage of PEV adoptions, the development of PEVs is
still subject to many uncertainties, in terms of vehicle technology maturity, gov-
ernment subsidies, charging infrastructure availability and public awareness, etc. In
many places around the globe, such as China, PEVs are first widely introduced in
public transportation, but only have limited adoptions in the private sector. With the
maturity of PEV technology and the wide availability of charging infrastructure,

Predict station level aggregate charging 
demand at the station by Eqns. (3.21)-(3.30)

Predict the aggregate charging demand at the 
distribution level through Eqns. (3.38)-(3.39) 

Optimize the referential charging load curve 
for each distribution operator at the 

transmission level operator through solving 
(3.40)-(3.44)

Day Ahead

Station level charging demand aggregation 
through (3.21)-(3.30) in real time

Real time charging coordination by (3.45)-
(3.48)

Intelligently allocate the referential charging 

power to each PEV within aggregators 

following the algorithm as described in 3.5.5

Real time

Fig. 3.6 The hierarchical decision processes at different levels of operators
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private customers will become more inclined to adopt PEVs. To account for these
development trends, in our designed case A, PEVs are widely adopted in public
transportation but the adoptions in private sector are still very limited. In our case B
and case C, we respectively consider a scenario where PEVs are normally adopted
in private sector and a scenario that PEVs are heavily integrated. To be specific, the
scales of different types of PEVs in all of three cases are listed in Table 3.1.

Considering that fast charging is more widely applied for electric buses, we
assume that 60 % of buses get charged through fast charging and 40 % of buses
adopt battery swapping. We further assume other types of PEV get refueled only
through charging.

According to our empirical study on PEV charging behavior [29], parameter
settings of different categories of PEVs are given in Table 3.2, where Nða; b2Þ
denotes a normal distribution with mean a and standard deviation b and Uða; bÞ
stands for a uniform distribution with support ½a; b�.

The electricity rates we adopted in our simulations are Time-of-Use tariffs,
which is designed to encourage PEV off-peak charging, being $0.1659/kWh and
$0.0411/kWh for 7:00–23:00 and 23:00–7:00 (next morning), respectively. We
select three typical base load profiles for each DSO.

We assume that the decision interval D ¼ 0:25 hour and charging efficiency
q ¼ 0:92. Other parameter values are tuned as follows: k ¼ 0:1, / ¼ 1, a ¼ 0:01,
b ¼ 10�4, c ¼ 10�5, j ¼ 10�3, l ¼ 5� 10�6 and m ¼ 5� 10�9. The choices of
these weight coefficients can be arbitrarily adjusted to satisfy the control preferences
of system operators.

Table 3.1 Scales of PEVs
under three different cases
(in thousand)

Aggregator Type Case A Case B Case C

X Bus 0.1 0.3 0.6

Taxi 0.4 0.5 1

GIOcar 0.2 0.5 1

PRIcar 0.2 10 20

Y Bus 0.1 0.2 0.4

Taxi 0.4 0.5 1

GIOcar 0.2 0.5 1

PRIcar 0.4 13 26

Z Bus 0.2 0.6 1.2

Taxi 0.4 0.5 1

GIOcar 0.4 1.5 3

PRIcar 1 45 90
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3.6.3.2 Other Charging Strategies

In order to demonstrate the effectiveness of the proposed three-level hierarchical
coordinated control framework (abbreviated as ThrC), three other benchmarks are
also considered [26].

• The no-control strategy (abbreviated as NoC) or uncoordinated charging strat-
egy is considered. Once a PEV is connected to its charging port, it is charged at
its rated charging power until the PEV departs or its battery is full.

• A strategy where charging coordination is only implemented at the station level
(abbreviated as OneC) is considered. In other words, each station level operator
decides their charging schedule independently with the objective of minimizing
total station charging costs and completing charging as early as possible.

• Finally, we consider a strategy where the day-ahead charging coordination at the
transmission level is absent (Abbreviated as TwoC). Specifically, each distri-
bution operator independently decides charging reference trajectories for
charging stations in real time by solving problem (3.45)–(3.48) without con-
sidering the second term in objective function (3.45).

3.6.3.3 Simulation Results

We carry out simulations for the three cases mentioned above, following four
different charging strategies. The overall system performances in terms of average
charging costs and system peak demand are summarized in Table 3.3. It is shown
that cost savings can be effectively achieved by following coordinated charging
strategies, i.e. ThrC, TwoC and OneC. Furthermore, even with other load control
objectives, the ThrC and the TwoC strategies also realize similar cost savings as the
OneC strategy. In case A, when most of the PEVs on roads are used for public
transportations, the cost savings are limited. Whereas the average cost savings reach
over 40 % both in case B and case C, this is because both in these two cases, the
charging schedules of a large number of private PEVs can be flexibly determined
and thus the off-peak prices can be better exploited and the reductions in charging
costs become significant.

In addition, note that increasing system peak load implies additional generation
capacity and network reinforcement, we investigate how different charging strate-
gies impact system peak under all of these three cases. In case A, the impact of PEV
charging on system peak is not significant. In case B and C, however, the benefits of
coordinated control have been clearly demonstrated. Under the ThrC and the TwoC
strategies, the system peak demand is effectively reduced compared to that under
the OneC or the NoC strategies. The ThrC outperforms other strategies in terms of
reducing the total peak demand whereas the resulting peak demand of DSO turns
out to be better under the TwoC strategy, when the coordination at the transmission
level is absent in the day-ahead. Moreover, though cost savings can be effectively
achieved under the OneC strategy, the absence of coordination across multiple
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aggregators leads to the undesirable increase both in the DSO and the transmission
system peak demand.

Figures 3.7 and 3.8 show the system load profiles following different charging
strategies under case B and case C, respectively. The base load (system load
excluding charging load) is referred to as BSL. It is indicated that, the ThrC, the
TwoC and the OneC strategies have all successfully delayed the charging demand
to off-peak period, which starts from 23:00. Whereas when no charging coordi-
nation is implemented under the NoC, the charging process begins instantaneously
when massive private PEVs are connected at night. The overlapping of the charging
peak and system base load undesirably increases overall system peak demand. We
also observe that under the OneC strategy, at the moment of price turning cheaper at
23:00, station operators choose to charge PEVs due to the charging earliness
preferences. Though this undesirable rebound effect does not become the major
cause of the peak demand increase in both case B and case C, it requires significant
amount of system ramping up reserves at 23:00 and may cause system operation
stability issues. The system peak demand reduction and valley filling are effectively
achieved under the ThrC and the TwoC strategies.

Based on the above observations, we find that through charging coordination,
the charging costs can be reduced by exploiting the charging flexibility and shifting
the charging loads to off-peak periods. Meanwhile, when the scales of PEVs are not
large and most PEVs are public vehicles which only have limited charging flexi-
bilities, the benefits of implementing charging coordination at the distribution and
the transmission level turn out to be still insignificant and unnecessary. While in

Table 3.3 System performances following different charging control strategies

Control strategy Aggregator Charging costs ($/kWh) Increase of peak load (MW)

A B C A B C

ThrC X 0.11 0.09 0.09 2.3 19.1 49.1

Y 0.11 0.08 0.08 3.6 6.5 21.9

Z 0.11 0.08 0.08 7.1 20.2 29.0

Total 0.11 0.08 0.08 17.1 40.1 62.9

TwoC X 0.11 0.10 0.10 2.3 10.7 27.0

Y 0.11 0.09 0.09 3.6 6.5 21.8

Z 0.11 0.10 0.10 7.1 9.1 10.0

Total 0.11 0.10 0.10 17.1 43.2 63.5

OneC X 0.11 0.09 0.09 5.0 20.2 47.2

Y 0.11 0.08 0.08 4.4 15.0 38.8

Z 0.11 0.08 0.08 7.4 78.2 14.8

Total 0.11 0.08 0.08 17.3 125.2 236.5

NoC X 0.12 0.15 0.15 5.0 20.2 73.8

Y 0.12 0.15 0.15 4.4 27.5 105.4

Z 0.13 0.16 0.15 7.4 78.2 204.2

Total 0.12 0.15 0.15 17.3 125.2 405.4
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case B and case C, charging coordination at the distribution and transmission level
seems to become effective in alleviating the rebound effect and thus reducing
system requirements on ramping reserves and achieving better system load profiles.
System operators can deploy the charging coordination operators step by step
depending on the development scale of PEVs and other system control
requirements.

8 12 16 20 0 4 8
600

900

1200

1500

Time (hour)
(X)

L
oa

d 
(M

W
)

ThrC
TwoC
OneC
NoC
BSL

8 12 16 20 0 4 8
600

900

1200

1500

Time (hour)
(Y)

L
oa

d 
(M

W
)

ThrC
TwoC
OneC
NoC
BSL

8 12 16 20 0 4 8
3000

4000

5000

6000

Time (hour)
(Z)

L
oa

d 
(M

W
)

ThrC
TwoC
OneC
NoC
BSL

8 12 16 20 0 4 8
4000

5000

6000

7000

8000

9000

Time (hour)
(Total)

L
oa

d 
(M

W
)

ThrC
TwoC
OneC
NoC
BSL

Fig. 3.7 Load profiles following different charging control strategies under case B
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Fig. 3.8 Load profiles following different charging control strategies under case C
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3.7 Chapter Summary

In this book chapter, we investigate the hierarchical charging coordination strategies
for PEVs. Starting from investigating the problem of charging coordination in the
charging station and battery swapping station, we further introduce a two level
coordination framework across multiple aggregators. Finally, we present a hierar-
chical charging coordination framework, which consists of three levels: the trans-
mission level control, the distribution level control and the charging station level
control. The respective control objective and constraints of each level operator are
specified. Communication/control interfaces between different levels are also
clearly presented.

We propose the cumulative energy and power boundaries to present the
aggregate flexibility of large scale of PEVs both at the station operator and dis-
tribution system operator and effectively reduce the computation burden and
communication overhead. The hierarchical control framework with reduced infor-
mation exchange and computation also makes the whole control system more
reliable to system communication and computational failures. Even if the com-
munication is lost between the distribution operator and the station operator, the
station level operator can still switch to local coordination strategy and effectively
shift the charging load to off-peak periods by dynamically responding to TOU
prices. Based on mathematical models of three levels control framework, simulation
studies on three case studies are performed. Numerical examples demonstrate the
effectiveness of the proposed control framework, and indicate its scalability.

Finally, for simplicity, we neglect the network constraints in our study. While it
is worth noting that the hierarchical coordinated charging control framework is
flexible to incorporate system constraints, such as power flow constraints, in the
transmission and the distribution formulations.

References

1. Lopes JAP, Soares FJ, Almeida PMR (2011) Integration of electric vehicles in the electric
power system. Proc IEEE 99(1):168–183

2. Su W, Rahimi-Eichi H, Zeng W, Chow MY (2012) A survey on the electrification of
transportation in a smart grid environment. IEEE Trans Ind Inform 8(1):1–10

3. Roe C, Meisel J, Meliopoulos S, Evangelos F, Overbye T (2009) Power system level impacts
of PHEVs. In: 42nd Hawaii international conference on system sciences, pp 1−10

4. Fernandez LP, Romn T, Cossent R, Domingo CM, Frłas P (2011) Assessment of the impact of
plug-in electric vehicles on distribution networks. IEEE Trans Power Syst 26(1):206–213

5. Clement K, Haesen E, Driesen J (2010) The impact of charging plug-in hybrid electric
vehicles on a residential distribution grid. IEEE Trans Power Syst 25(1):371–380

6. Han S, Han S, Sezaki K (2010) Development of an optimal vehicle-to-grid aggregator for
frequency regulation. IEEE Trans Smart Grid 1(1):65−72

7. Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles
considering distribution grid constraints. IEEE Trans Smart Grid 3(1):26–37

86 Z. Hu et al.



8. Richardson P, Flynn D, Keane A (2012) Optimal charging of electric vehicles in low-voltage
distribution systems. IEEE Trans Power Syst 27(1):268–279

9. Sortomme E, El-Sharkawi M (2012) Optimal combined bidding of vehicle-to-grid ancillary
services. IEEE Trans Smart Grid 3(1):70–79

10. Wu D, Aliprantis DC, Ying L (2012) Load scheduling and dispatch for aggregators of plug-in
electric vehicles. IEEE Trans Smart Grid 3(1):368–376

11. Vagropoulos SI, Bakirtzis AG (2013) Optimal bidding strategy for electric vehicle aggregators
in electricity markets. IEEE Trans Power Syst 28(4):4031–4041

12. Luo Z, Hu Z, Song Y, Xu Z, Lu H (2013) Optimal coordination of plug-in electric vehicles in
power grids with cost-benefit analysis—part I: enabling techniques. IEEE Trans Power Syst 28
(4):3546–3555

13. Yao W, Zhao J, Wen F, Xue Y, Ledwich G (2013) A hierarchical decomposition approach for
coordinated dispatch of plug-in electric vehicles. IEEE Trans Power Syst 28(3):2768–2778

14. Qi W, Xu Z, Shen ZJM, Hu Z, Song Y (2014) Hierarchical coordinated control of plug-in
electric vehicles charging in multifamily dwellings. IEEE Trans Smart Grid 5(3):1465–1474

15. Wen C, Chen J, Teng J, Ting P (2012) Decentralized plug-in electric vehicle charging
selection algorithm in power systems. IEEE Trans Smart Grid 3(4):1779–1789

16. Hamid QR, Barria JA (2013) Distributed recharging rate control for energy demand
management of electric vehicles. IEEE Trans Power Syst 28(3):2688−2699

17. Liu H, Hu Z, Song Y, Lin J (2013) Decentralized vehicle-to-grid control for primary frequency
regulation considering charging demands. IEEE Trans Power Syst 28(3):3480–3489

18. Ma Z, Callaway DS, Hiskens IA (2013) Decentralized charging control of large populations of
plug-in electric vehicles. IEEE Trans Control Syst Technol 21(1):67–78

19. Gan L, Topcu U, Low SH (2013) Optimal decentralized protocol for electric vehicle charging
IEEE Trans Power Syst 28(2): 940−951

20. Sheikhi A, Bahrami Sh, Ranjbar AM, Oraee H (2013) Strategic charging method for plugged
in hybrid electric vehicles in smart grids: a game theoretic approach. Int J Electr Power Energy
Syst 53:499–506

21. Xu S, Chen W (2006) The reform of electricity power sector in the PR of China. Energy Policy
34(16):2455–2465

22. Xu Z, Hu Z, Song Y, Zhao W, Zhang Y (2014) Coordination of PEVs charging across
multiple aggregators. Appl Energy 136:582–589

23. IBM ILOG CPLEX Optimization studio 12.5 (2013) IBM ILOG. http://www-947.ibm.com/
support/entry/portal/overview/software/websphere/ibmilogcplexoptimizationstudio. Accessed
15 March 2013

24. Bohnsack R, Pinkse J, Kolk A (2014) Business models for sustainable technologies: exploring
business model evolution in the case of electric vehicles. Res Policy 43(2):284–300

25. Xu Z, Hu Z, Song Y, Luo Z, Zhan K, Wu J (2010) Coordinated charging strategy for PEVs
charging stations. In: Proceedings of power and energy society general meeting, pp 1−8

26. Xu Z, Su W, Hu Z, Song Y, Zhang H (2014) A hierarchical framework for coordinated
charging of plug-in electric vehicles in China. Submitted to IEEE Trans Smart Grid (under 3rd
round review)

27. Deilami S, Masoum A, Moses P, Masoum M (2011) Real-time coordination of plug-in electric
vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE
Trans Smart Grid 2(3):456−467

28. Luo Z, Hu Z, Song Y, Xu Z, Lu H (2013) Optimal coordination of plug-in electric vehicles in
power grids with cost-benefit analysis—part II: a cast study in China. IEEE Trans Power Syst
28(4):3556–3565

29. Luo, Z (2012) Formulations, solutions and benefits analyses on coordinated charging/
discharging of large scale plug-in electric vehicles. Ph.D. dissertation, Department of Electrical
Engineering, Tsinghua University, Beijing

3 Hierarchical Coordinated Control Strategies … 87

http://www-947.ibm.com/support/entry/portal/overview/software/websphere/ibmilogcplexoptimizationstudio
http://www-947.ibm.com/support/entry/portal/overview/software/websphere/ibmilogcplexoptimizationstudio


Chapter 4
Impacts of Plug-in Electric Vehicles
Integration in Distribution Networks
Under Different Charging Strategies

Filipe J. Soares, Pedro N.P. Barbeiro, Clara Gouveia
and João A.P. Lopes

Abstract The uncertainties related to when and where Plug-in Electric Vehicles
(PEVs) will charge in the future requires the development of stochastic based
approaches to identify the corresponding load scenarios. Such tools can be used to
enhance existing system operators planning techniques, allowing them to obtain
additional knowledge on the impacts of a new type of load, so far unknown or
negligible to the power systems, the PEVs battery charging. This chapter presents a
tool developed to evaluate the steady state impacts of integrating PEVs in distri-
bution networks. It incorporates several PEV models, allowing estimating their
charging impacts in a given network, during a predefined period, when different
charging strategies are adopted (non-controlled charging, multiple tariff policies and
controlled charging). It uses a stochastic model to simulate PEVs movement in a
geographic region and a Monte Carlo method to create different scenarios of PEVs
charging. It allows calculating the maximum number of PEVs that can be safely
integrated in a given network and the changes provoked by PEVs in the load
diagrams, voltage profiles, lines loading and energy losses. Additionally, the tool
can also be used to quantify the critical mass (percentage) of PEV owners that need
to adhere to controlled charging schemes in order to enable the safe operation of
distribution networks.
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4.1 Introduction

The foreseen rollout of Plug-in Electric Vehicles (PEVs) will considerably affect
distribution grids management and operation. The extra amount of power they will
demand from the grid will oblige system operators to understand the impacts
resulting from PEVs connection into distribution networks.

Several approaches to this problem have been pursued. In [1], for instance,
authors follow a deterministic strategy to locate PEVs along the network buses and,
consequently, determine PEVs load during an entire day. Conversely, in [2],
authors introduced a probabilistic method for determining PEVs load. In [3], Heydt
analyzed the changes in the load diagram of a community of about 150–300
thousand people, in the USA, for increasing penetration levels of PEVs in the
vehicle fleet. The author concluded that a salient factor to be considered in PEVs
deployment is their charging during peak hours and referred that a possible method
to alleviate peak loading and temperature rise in distribution transformers is through
the use of load management techniques. Lopes et al. [1, 4], studied the impacts of
PEVs in distribution grids. These authors evaluated the PEVs charging impact on
the grid technical constraints and concluded that PEVs can lead to the violation of
statutory voltage and ratings limits, as well as to a significant increase in the energy
losses. The authors stressed the need to develop and implement efficient manage-
ment procedures for coordinating PEVs charging, in order to minimize the need to
reinforce the grid infrastructures. Papadopoulos et al. [5], also addressed the
technical challenges related with the PEVs integration. Steady state voltage profiles
of a typical Low Voltage (LV) network from the UK, under different PEVs pen-
etration scenarios, were investigated and the results obtained showed that the grid
voltage profiles are highly dependent on the number of PEVs integrated in the grid.
Clement et al. [2, 6], analyzed the PEVs impacts in distribution grids power losses
and voltage deviations. The authors concluded that PEVs uncoordinated charging is
very likely to lead to voltage problems, even for low PEVs integration levels. Other
works, such as [7–10], presented similar studies with analogous conclusions.

Several approaches to this problem have been pursued. In [1], for instance,
authors follow a deterministic strategy to locate PEVs along the network buses and,
consequently, determine PEVs load during an entire day. Conversely, in [2],
authors introduced a probabilistic method for determining PEVs load. In [3], Heydt
analyzed the changes in the load diagram of a community of about 150–300
thousand people, in the USA, for increasing penetration levels of PEVs in the
vehicle fleet. The author concluded that a salient factor to be considered in PEVs
deployment is their charging during peak hours and referred that a possible method
to alleviate peak loading and temperature rise in distribution transformers is through
the use of load management techniques. Lopes et al. [1, 4], studied the impacts of
PEVs in distribution grids. These authors evaluated the PEVs charging impact on
the grid technical constraints and concluded that PEVs can lead to the violation of
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statutory voltage and ratings limits, as well as to a significant increase in the energy
losses. The authors stressed the need to develop and implement efficient manage-
ment procedures for coordinating PEVs charging, in order to minimize the need to
reinforce the grid infrastructures. Papadopoulos et al. [5], also addressed the
technical challenges related with the PEVs integration. Steady state voltage profiles
of a typical Low Voltage (LV) network from the UK, under different PEVs pen-
etration scenarios, were investigated and the results obtained showed that the grid
voltage profiles are highly dependent on the number of PEVs integrated in the grid.
Clement et al. [2, 6], analyzed the PEVs impacts in distribution grids power losses
and voltage deviations. The authors concluded that PEVs uncoordinated charging is
very likely to lead to voltage problems, even for low PEVs integration levels. Other
works, such as [7–10], presented similar studies with analogous conclusions.

One common point from the studies presented in [1–10] was that the technical
problems identified could be easily avoided if adequate PEVs load management
techniques were implemented. This proved to be true, as described by several
authors in [11–15]. These works were focused on the determination of optimal (or
near optimal) PEVs charging schedules. In [11], for instance, Lopes et al. suggested
a smart charging scheme based on a hierarchical structure that monitors the grid
operating conditions and manages PEVs charging to avoid violations of the grid
technical restrictions. In [14], Geth et al. developed an algorithm to determine the
optimal charging profiles for fleets of PEVs in Belgium. Sortomme et al. [15],
suggested three distinct smart charging schemes that exploited the relationship
between feeder losses, load factor and load variance.

Interesting approaches were proposed in these works, though they were only
able to reveal the effects of a possible scenario for a given period.

Therefore, it is important to develop tools that allow exploring different sce-
narios in a coordinated way, which may result in both average scenarios and
extreme case scenarios to be used for network steady state evaluation. Such tools
can be used to help system operators in planning their operation for the next hours
or to enhance existing system operators planning techniques, allowing them to
obtain additional knowledge on the impacts of PEVs battery charging. Given the
fact that PEVs are mobile loads that may appear in almost any bus of a given
electricity network, voltage profiles, lines loading, peak power and energy losses
variations need to be properly evaluated for the simulation of the operating con-
ditions or for the planning exercise.

To achieve these objectives, a simulation tool to accurately estimate the PEVs
impacts along one typical week (with 336 time intervals of 30 min) in Low and
Medium Voltage (LV/MV) networks was developed, considering different PEV
charging strategies. It includes a stochastic model to simulate PEVs movement in a
geographic region and a Monte Carlo method to create different scenarios of
operation. This tool, which uses PSS/E [16] and Python programming language
[17] to conduct power flow studies in 30 min time steps, will be described in detail
in this chapter, as well as the results of its application to several case studies.
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The tool can also be used to quantify the critical mass (percentage) of PEV owners
that need to adhere to controlled charging schemes in order to enable the safe
operation of the distribution networks.

The charging approaches modelled in the simulation tool will be presented in
Sect. 4.2. Section 4.3 presents details regarding the modelling approach, while the
case studies used to evaluate the tool performance and the results obtained are
presented in 4.4. The main conclusions are drawn in Sect. 4.5.

4.2 PEVs Charging Approaches

Taking into account the expected business models in the PEV field, [18], three
different charging approaches were assumed to be the most promising in the near
future and modelled in the simulation tool: Non-controlled Charging (commonly
referred in the literature as “dumb charging”); Multiple Tariff; and Controlled
Charging (commonly referred in the literature as “smart charging”). These
approaches are described in the following sections. Although not modelled in the
simulation tool, a brief description of Vehicle-to-Grid (V2G) will also be provided.

4.2.1 Dumb Charging

This is a no control mode where PEVs can be freely operated having no restrictions
or incentives to modulate their charging. Therefore, PEVs are regarded as normal
loads, like any other appliance. In this mode, it is then assumed that PEV owners
are completely free to connect and charge their vehicles whenever they want. The
charging starts automatically when PEVs plug-in and lasts until its battery is fully
charged or charge is interrupted by the PEV owner. In addition, electricity price for
these users is assumed to be constant along the day, what means that no economic
incentives are provided in order to encourage them to charge their vehicles during
the valley hours, when the grid operating conditions are more favorable to an
increment in the energy consumption.

For scenarios of large PEV deployment, this approach will provoke technical
problems in the generation system and on the grid (potential large voltage drops and
lines overloading). The only way to tackle the foreseen problems provoked by PEV
is then to reinforce the existing generation system and grid infrastructures and plan
new networks in such way that they can fully handle PEV grid integration. Yet this
is a somewhat expensive solution that will require high investments in network
infrastructures that utilities would like to avoid.
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4.2.2 Multiple Tariff Policy

As in the previous approach, the multiple tariff policy assumes that PEV owners are
completely free to charge their vehicles whenever they want. However, electricity
price is assumed to vary along the day, existing some periods where its cost is lower
(during valley hours). However, as this is not an active management strategy, its
success depends on the PEV owner willingness to take advantage of this policy, and
thus only part of the PEVs load will eventually shift to valley hours.

It should be taken into account that the economic signals provided to PEV
owners with the multiple tariff policy might have a perverse effect in scenarios
characterized by a high integration level of PEVs. It might happen that a large
number of PEVs connects simultaneously in the beginning of the cheaper electricity
periods, making the grid reach its technical limits.

4.2.3 Smart Charging

The uncontrolled PEVs charging strategies referred above are more prone to pro-
voke negative impacts for the networks operation. In addition, the non-controlla-
bility of the PEVs charging will also impact negatively the profit that the electricity
retailers (commonly referred in the literature as PEV Supplier/Aggregators—PEVS/
A) might achieve from the markets negotiations. They will not have flexibility to
shift the PEVs load towards the lower demand periods, being thus incapable of
profiting from lower energy prices. Given the high number of technical restrictions
violations that are expected to occur, the Distribution System Operator (DSO) will
only have one possible solution to maintain the quality of service levels: make large
investments in network reinforcements to solve the problems as they arise.

In this sense, an alternative path that might be followed is to foment the
adherence of the PEV owners to controlled slow charging schemes, like the smart
charging. The smart charging strategy envisions an active management system, as
described in [11], where there are two hierarchical control structures, one headed by
an PEVS/A and other by the DSO. The possibility of controlling the PEVs charging
will be of great benefit for both PEVS/A and DSO. The PEVS/A will have the
possibility of exploiting the PEVs flexibility for charging, namely the PEVs that are
parked during large periods of time overnight, thus profiting from lower energy
prices. Under these circumstances, the PEVs charging management performed by
the PEVS/A will naturally shift a significant amount of the PEVs load from the peak
hours towards lower demand periods, contributing to improve the network oper-
ating conditions, to reduce the energy losses and to reduce the DSO need to invest
in network reinforcements.

As explained in [11], when operating the grid in normal conditions, PEVs will
be managed and controlled exclusively by the PEVS/A, whose main functionality
will be grouping PEVs, according to their owners’ willingness, to exploit business
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opportunities in the electricity markets. The PEVS/A will monitor all the PEVs
connected to the grid and its state, providing power or requesting from them the
services that it needs to cope with what was previously defined in the market
negotiations. This is accomplished by sending set points to vehicle controllers
related with rates of charge or requests for provision of ancillary services. To
accomplish successfully such a complex task, it is required that every fixed period
(likely to be defined around 30 min), the State of Charge (SoC) of each PEV battery
is communicated to the PEVS/A, to assure that, at the end of the charging period,
batteries will be charged according to PEV owners requests.

In presence of emergency operating conditions, i.e. when the grid is being
operated above its technical limits, the DSO should have the possibility of acting
over PEVs charging. In these situations, PEVs might receive simultaneously two
different set points, one from the PEVS/A and other from the DSO. To avoid
violation of grid operational restrictions, the DSO signals should override the
PEVS/A ones. This type of PEVs charging management provides the most efficient
usage of the resources available at each moment, enabling congestion prevention
and voltage control [19].

Since the smart charging not only contemplates PEVs management performed
by the PEVS/A, but also the DSO control over the PEVs charging when required, it
offers the possibility to manage the load of the smart charging adherents in the way
that best fits the PEVS/A purposes as well as the network needs.

However, it should be stressed that the DSO and PEVS/A flexibility to manage
the load of the smart charging adherents is always constrained by the PEV owners’
requests, which should be fulfilled at all times. For the purpose of this work, the
smart charging performed by the PEVS/A is assumed to be the management of the
PEVs load in such a way that flattens the load diagram as much as possible.

4.2.4 Vehicle-to-Grid

This approach is an extension of the previous one where, besides the charging, the
PEVS/A controls also the power that PEVs might inject into the grid. In the V2G
mode of operation, both PEVs load controllability and storage capabilities are
exploited. From the grid perspective, this is the most interesting way of using PEVs
capabilities given that besides helping managing lines overloading and voltage
related problems in some problematic spots of the grid, PEVs have also the
capability of providing regulation services, such as frequency control. Nevertheless,
there are also some drawbacks related with the batteries degradation. Batteries have
a finite number of charge/discharge cycles and its usage in a V2G mode might
represent an aggressive operation regime due to frequent shifts from injecting to
absorbing modes. Thus the economic incentive to be provided to PEV owners must
be even higher than in the smart charging approach, so that they cover the battery
damages owed to its extensive use.
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Being the most aggressive mode for charging PEVs, due to possible implications
with PEV batteries lifecycle, this option is not likely to be a reality neither in the
short run nor in the medium term. Only when battery technology has reached a high
maturation stage, this strategy may be adopted. For this reason, it has not been
considered in the current implementation of this software tool.

4.3 Simulation Tool

The simulation tool was developed to perform three different types of studies:

1. Evaluate the impacts of a given number of PEVs in a distribution network.
For this study, a Monte Carlo simulation method was implemented to make the
tool capable of simulating different scenarios (for the same PEV integration
percentage), providing a reliable characterization of the grid operating condi-
tions regarding voltage profiles, branches loading, grid peak power, energy
losses and the networks components that are more likely to be operated near, or
even above, their technical limits. An overview of the Monte Carlo simulation
method is provided in the light grey area of Fig. 4.1.

2. Compute the maximum number of PEVs that can be integrated in a given
network. This is achieved by using iteratively the procedure described in 1,
increasing in a stepwise manner the integration of PEVs (in steps of 1 %). The
algorithm, whose flowchart is presented in Fig. 4.1, is stopped when there is a
violation of the specified voltage limits or a line overloading.

3. Quantify the critical mass (percentage) of PEV owners that need to adhere
to the controlled charging schemes to enable the safe operation of the
networks. For this study, the first step of the algorithm consists in considering a
fixed PEV integration percentage, of which one half of the PEVs is assumed to
be “non-controlled charging” adherents and the other “time of day tariffs”
adherents. Then, if problems are not detected, PEV integration is increased by
10 %. This procedure is repeated until a problem in the network is detected
(either a voltage lower limit violation or a line overloading). After, the second
step of the algorithm consists in iteratively increasing the percentage of “con-
trolled charging” adherents, in steps of 5 %, while the “non-controlled charging”
and the “time of day tariffs” adherents are decreased accordingly. The second
step is repeated until the technical problems identified are solved. In the end of
the procedure, the percentage of controlled charging adherents that allowed
solving the problems is stored.
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Fig. 4.1 Flowchart of the simulation tool
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4.3.1 Impacts of a Given Number of PEVs in a Distribution
Network

Concerning the study described in 1, the cycle to quantify the network impacts of a
given number of PEVs runs for each Monte Carlo simulation (light grey area in
Fig. 4.1) the steps described next.

Step 1—Read input data
The input data is related with variables defined for each case study (e.g. number

of conventional vehicles in the geographical area under study) and technical details
of the network components (i.e. data required to run power flows).

Step 2—Run power flows for the initial scenario, without PEVs, and store
relevant results

A power flow for each time step (30 min) is run considering only the network
base load (no PEVs considered). The network indexes (voltages, lines ratings,
losses and peak load) are stored to compare them later with the different PEV
integration scenarios evaluated.

Step 3—Characterize the PEV fleet
During this procedure, all the PEV characteristics relevant for the simulation are

generated. The PEVs battery capacity, charging power, energy consumption and
initial battery SoC (battery SoC in the beginning of the simulation) are defined
according to truncated Gaussian probability density functions, whose average,
standard deviation, maximum and minimum values allowed are presented in
Table 4.1.

While the parameters of the Gaussian density function used for the initial battery
SoC were assumed for the purpose of this work, the parameters for battery capacity,
slow charging rated power and energy consumption were obtained from the
information made available by the manufacturers of 42 different PEVs. In [20–23]
are presented some of the Internet sites from where PEV characteristics were
obtained for this study. The maximum and minimum values allowed, presented in
Table 4.1, were used to confine the values drawn for each PEV within realistic
boundaries. A driver behavior was also assigned initially to each PEV. The different
behaviors considered in this study were defined according with the findings of a
survey made within the framework of the MERGE project [24]. The results

Table 4.1 Gaussian distributions for PEVs characterization

Average Standard
deviation

Maximum value
allowed

Minimum value
allowed

Battery capacity (kWh) 29.0 14.5 72.0 10.0

Slow charging rated
power (kW)

3.0 1.5 9.0 2.0

Energy consumption
(kWh/km)

0.16 0.08 0.25 0.10

Initial battery SoC (%) 90.0 25.0 100.0 50.0
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revealed that there are four major types of behaviors regarding PEVs charging, as
presented in Table 4.2.

For the purpose of this work, regarding the behaviors modeling and simulation,
there was no relevant differences between the drivers that “charge at the end of the
day” and those who “charge whenever is convenient and they have time”. There-
fore, the PEVs to which one of these drivers’ behaviors was assigned were assumed
to behave equally along the simulations.

For the drivers who charge their PEV only when it needs, it was assumed that the
minimum battery SoC that triggers the need for charging was 30 %.

Step 4—Simulate PEVs movement and charging
The PEVs movement was simulated using a discrete-state, discrete-time Markov

chain to define the states of all the PEVs at each time step of 30 min. A detailed
description of the Markov chain can be found in [25]. It was assumed that, at every
unit of time, PEVs can be in one of the following states: “in movement”, “parked in
a residential area”, “parked in a commercial area” and “parked in an industrial
area”.

If a PEV is in the state “in movement”, there is no need to define its location.
However, if it is in a “parked” state and connected to the grid for charging purposes,
it is crucial to know the PEV location to allocate its load to a specific network bus.
Thus, for each time instant, a bus location was attributed to parked PEVs.

In the beginning of the simulation, a draw was made using Eqs. 4.1 and 4.3, to
define the network nodes where each PEV stays parked when they are in the states
“parked in a residential area” and “parked in an industrial area”. These nodes
represent the location of the household and of the workplace of each PEV and they
were kept fixed during the simulations to emulate daily home-workplace com-
muting. Thus, every time a PEV was in “parked in a residential area” and “parked
in an industrial area” states, it was automatically assumed to be parked in the nodes
initially defined.

The procedure followed for “parked in a commercial area” was different. Every
time a PEV was in this state, a new draw is made, using Eq. 4.2, to define the
network bus where the PEV is parked. This means that PEVs can be in different
places of the network when they are in the “parked in a commercial area” state.

The draw of the PEVs location was made taking into consideration the real
nature of the loads connected to each network bus, as it can be observed in
Eqs. 4.1–4.3. Thus, for the network under study, all the existing loads were clas-
sified as industrial, commercial or residential loads.

Table 4.2 Drivers’ behaviors considered

Percentage of the responses (%)

PEV charge at the end of the day 33

PEV charge only when it needs 23

PEV charge whenever possible 20

PEV charge whenever is convenient and the driver has time 24
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PR Bus bð Þ ¼ LoadRBus bP
LoadR

ð4:1Þ

PC Bus bð Þ ¼ LoadCBus bP
LoadC

ð4:2Þ

PI Bus bð Þ ¼ LoadIBus bP
LoadI

ð4:3Þ

where PR=C=I Bus bð Þ is the probability of a PEV be located in bus b, if “parked in a

residential/commercial/industrial area”, LoadR=C=IBus b is the residential/commercial/
industrial load installed in bus b and

P
LoadR=C=I is the network total residential/

commercial/industrial load.
For the PEVs in movement, a procedure was developed to account for their

energy consumption and the respective reduction in the battery SoC. First a
Gaussian probability density function was used to draw the travelled distances for
all the PEVs in movement. Therefore, if a PEV was in movement in time instant t
and its battery SoC went below a predefined threshold (assumed to be 15 %) in time
instant t þ 1, it was considered that the PEV would make a short detour to a fast
charging station for recharging purposes. The travelled distance during the detour
was obtained using also a Gaussian probability density function, whose parameters
are presented in Table 4.3.

The fast charging was assumed to be made during 15 min with a power of
40 kW [26].

The average of the Gaussian distribution used to characterize the travelled dis-
tance in common journeys was obtained by dividing the average daily mileage in
Europe by the average number of journeys per day [27]. The standard deviation was
assumed to be 50 % of the average.

The values of the Gaussian function for the travelled distance to the fast charging
station, were obtained by assuming that they were 25 % of those used in the
travelled distance in common journeys distribution.

For the parked PEVs, an optimization procedure is used by the PEVS/A to define
which smart charging adherents should charge at each time step to minimize the
deviations between the energy bought in the market by the PEVS/A and the energy
consumed by PEVs. It should be stressed that it was assumed that the power

Table 4.3 Gaussian distributions for travelled distances

Average Standard
deviation

Maximum
value allowed

Minimum
value allowed

Travelled distance in
common journeys (km)

40 20 200 10

Travelled distance to fast
charging station (km)

10 5 50 2.5
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charging rate for smart charging adherents could be controlled between 0 and the
slow charging rated power presented in Table 4.1. To achieve the intended
objective, it is required to find a set of n load values, being n the number of smart
charging adherents, which can be defined as optimal in the sense that they allow
minimizing the deviations referred above. This problem can be formulated as an
optimization problem, as shown next.

min EBAt � TIPEVLt �
Xn
i¼1

FPEVLit

�����

����� ð4:4Þ

subject to

0� SOCRi
td � SOCi

t �
FPEVLit þ td � t þ 1ð Þð Þ �MCRi
� �� 1=2� PEVce

PEVbc
i

� 100
ð4:5Þ

0�FPEVLit �MCRi ð4:6Þ

0� SOCRi
td � 100 ð4:7Þ

0� SOCi
t � 100 ð4:8Þ

t þ 1� td ð4:9Þ

where:

• i—represents the “flexible PEV” index; “Flexible PEV” are the PEV whose
owners adhered to the smart charging;

• t—represents the time index;
• n—is the nr. of “flexible PEV” under the PEVS/A control;
• EBAt—represents the average power during ½ h, in kW, related with the energy

bought in the day-ahead market by the PEVS/A for time period between t and
t þ 1; EBAtðkWÞ ¼ energy boughtt!tþ1ðkWhÞ=1=2 h;

• TIPEVLt—is the “inflexible PEV” load, in kW, in time step t; “Inflexible PEV”
are the PEV whose owners adhered to the dumb charging or multiple tariff
schemes;

• FPEVLit—is the power absorbed by “flexible PEV” i, in kW, in time step t; the
nFPEVLit are the decision variables of the optimization problem; they can
assume continuous values in the interval 0;PEV maximum charging rate½ �;

• td—represents the time step at which a given “flexible PEV” disconnects from
the grid;

• SOCi
t—are the PEV i battery SoC, in percentage, in time step t;

• SOCRi
td—represents the battery SoC required by the owner of PEV i, in per-

centage, in time step td;
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• PEVbc
i —represents the battery capacity, in kWh, of PEV i;

• PEVce—represents the efficiency of the PEV charging process.

Equation 4.5 is used to assure that the PEV battery SoC, required by the PEV
owners at the moment of disconnection, is possible to attain when considering the
PEV maximum charging rate.

Equation 4.6 assures that only charging rates between 0;PEV maximum½
charging rate� kW will be attributed to “flexible PEV”.

Equations 4.7 and 4.8 are used to guarantee that the required battery SoC and
battery SoC in the time step t are always within the interval 0; 100½ �%.

Equation 4.9 assures that the time of disconnection always takes place after time
step t þ 1.

The objective of this optimization problem is then to minimize the sum of the
absolute value of the deviations. It is a linear optimization problem, which is
suitable for quasi-real-time applications since it is very fast to solve and does not
require any type of forecasted data. It is only needed to know, for the current time
step (t), the energy bought by the PEVS/A, the power consumed by the “inflexible
PEV”, the moment of disconnection of the “flexible PEV” that are plugged-in and
the energy required by their owners during the connection period.

At each time instant, the PEVs battery SoC is updated according to the energy
spent travelling, using Eq. 4.10 or according to the energy absorbed in slow
charging mode or in fast charging stations, using Eq. 4.11.

It was assumed that PEVs “parked in a residential area” and “parked in an
industrial area” charge at their nominal charging rate while “parked in a commercial
area” PEVs have the capability of charging at the double of their nominal charging
rate.

PEVtþ1
SoCð%Þ ¼ PEVt

SoC � PEVkWh=km consumption � PEVTravelled distance

PEVBattery capacity
� 100 ð4:10Þ

PEVtþ1
SoCð%Þ ¼ PEVt

SoC þ PEVCharging efficiency � PEVCharging power � 1=2
PEVBattery capacity

� 100

ð4:11Þ

where:

• PEVtþ1
SoC—represents the battery SoC in time step t þ 1;

• PEVt
SoC—represents the battery SoC in time step t;

• PEVkWh=km consumption—is the PEV energy consumption in kWh/km;
• PEVTravelled distance—is the distance that the PEV travels in time step t;
• PEVBattery capacity—is the capacity of the PEV battery in kWh;
• PEVCharging efficiency—is the efficiency of the PEV charging process;

PEVCharging efficiency 2 0; 1½ �;
• PEVCharging power—is the PEV charging power in kW.

4 Impacts of Plug-in Electric Vehicles Integration … 101



Step 5—Compute the network load discriminated per bus (base
load + PEVs load)

The total load in each bus is obtained by summing the network initial load to the
PEVs load (in each bus).

Step 6—Sample analysis
The evaluation of the samples is made by running a power flow for each time

instant to gather information regarding voltage profiles, power flows in branches
and energy losses.

During the simulations, the day where the highest peak load occurs is recorded,
in order to provide an idea of the worst situation that might occur when a per-
centage of conventional vehicles are replaced by PEVs.

In order to keep track of the most problematic buses and branches within the
grid, the number of out of limit voltages and lines overloading occurrences are
recorded along the simulations. According with [28], voltages must be kept with the
interval 0.90–1.10 p.u. during 95 % of the time, in a weekly basis. It was considered
in this work that a voltage violation occurs when the values are outside the referred
interval. Then, the probability of having voltages below the imposed limit and
branches overloading is computed using Eqs. 4.12 and 4.13.

PBus b
Voltage violation ¼

Voltage violationBus b

Nr: iterations� 336
� 100 ð4:12Þ

PLine l
Overloading ¼

OverloadingLine l

Nr: iterations� 336
� 100 ð4:13Þ

where:

• PBus b
Voltage violation—represents the probability of a voltage violation occur in bus b;

• PLine l
Overloading—represents the probability of a line overloading occur in line l;

• Voltage violationBus b—represents a voltage violation occurred in bus b;
• OverloadingLine l—represents a line overloading in line l;
• Nr: iterations—is the number of iterations run until reaching the Monte Carlo

convergence;
• 336—represents the number of 30 min time intervals within a week.

Step 7—In case of network problems, adjust the load of the PEVs that
adhered to the smart charging and that are contributing for the network
problem identified

The indexes recorded in previous step are evaluated. If a network problem
occurs and if there are smart charging adherents in the scenario being analyzed, a
load reduction signal is sent to those that are contributing for the problem. A 10 %
load reduction is requested.

Step 8—Compute new network total load
The total load in each bus is updated, taking into account the load reduction of

the smart charging adherents.
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Step 9—Sample reevaluation
The procedure described in Step 6 is used to update network indexes.
Step 10—In case of network problems, readjust the load of the PEVs that

adhered to the smart charging
The network indexes stored in the previous step are evaluated. If the network

problem persists, a new load reduction of 10 % is requested to the smart charging
PEVs, following the same procedure as in Step 7. Steps 8–10 are repeated until the
problem is solved or until the smart charging adherents load is reduced to zero.

Step 11—Check convergence criteria
To terminate the Monte Carlo process, two criteria are used: number of iterations

and the variances of the aggregated network load of each one of the 336 time
instants. The latter means that one variance value is computed for the total network
load per time instant. The process is set to perform 500 iterations (500 weeks) and
check, in the end, if the variation of all the 336 variances in the last 5 iterations is
lower than 1e�3. If at least one of the 336 variances did not meet this convergence
criterion, the process is kept running more iterations until all the variances varia-
tions are lower than the predefined value. The variances variation is calculated
using Eq. 4.14.

DVariance ¼ Varianceth � Varianceth�5

�� ��\1e�3 ð4:14Þ

where Varianceth is the variance of the network load at time instant t, t 2 ½1; 336�, in
the hth iteration.

4.3.2 Maximum Number of PEVs That Can Be Integrated
in a Given Network

Regarding the study to compute the maximum number of PEVs that can be inte-
grated in a given network, the algorithm stops if any technical problems are
detected and the maximum number of PEVs that can be integrated in the network is
computed. Otherwise, the PEV integration percentage is increased and the steps
from 3 onwards are repeated.

4.3.3 Critical Mass of PEVs

For the critical mass study, the first step of the procedure followed consists in the
consideration of a fixed PEV integration percentage, of which one half of the PEVs
are assumed to be dumb charging adherents and the other half multiple tariff
adherents.
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Then, if problems are not detected, the PEV integration percentage is increased
by 10 %, assuming the same proportion of dumb charging and multiple tariff
adherents (50 % of each).

This procedure is repeated until a problem in the network is detected (either a
voltage lower limit violation or a branch overloading).

After detecting a technical problem, the second step of the procedure consists in
iteratively increasing the percentage of smart charging adherents, in steps of 5 %,
while the dumb charging and multiple tariff adherents percentage is decreased
accordingly, as explained in Fig. 4.2.

The second step of the procedure is repeated until the technical problems pre-
viously identified are solved. In the end of the procedure, the percentage of smart
charging adherents that allowed solving the problems detected (the critical mass of
smart charging adherents) is recorded.

4.4 Simulations and Impacts Evaluation

In order to test the tool developed, several test cases were considered: a LV network
and five MV networks. For each of the networks, three PEV charging scenarios
were considered:

• All PEVs in dumb charging mode;
• All PEVs in multiple tariff mode;
• All PEVs in smart charging mode.

The maximum allowable PEV integration was computed by increasing in a
stepwise manner the integration of PEVs in the network, until a violation of the

Fig. 4.2 Flowchart of the
steps followed for the critical
mass estimation
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voltage limits or a branch overloading occur. By considering these three extreme
scenarios, it is possible to evaluate separately the effectiveness of the implemented
algorithm for every charging strategy. Combinations of charging strategies would
also be feasible, but in a first instance, for the purpose of validation, would not be as
meaningful.

In a second stage, two distinct approaches were followed for the LV and the MV
networks.

In the LV network case, four more simulations were performed in order to
evaluate the effectiveness of the smart charging strategy when compared with the
dumb charging and with two distinct multiple tariff policies. These simulations
allow evaluating the network operating conditions when the number of PEVs that
can be integrated with the smart charging behave as:

• Dumb charging adherents;
• Multiple tariff (22–8 h) adherents;
• Multiple tariff (1–7 h) adherents;
• Smart charging adherents.

For the MV networks, only three more simulations were performed considering
the maximum allowable PEV integration with the dumb charging, multiple tariff
(1–7 h) and smart charging.

4.4.1 Networks Used as Case Studies

The networks used as case studies were carefully chosen in order to evaluate
systems with different characteristics, like their topology (rural or urban) and their
type of consumers (industrial, commercial or residential).

4.4.1.1 Low Voltage Grid

Figure 4.3 shows the single line diagram of the LV network from an urban area
(400 V) used as test case. It is composed essentially by residential loads, having
only a small share of commercial clients.

The power factor assumed for the conventional load is 0.96, whereas the
specified voltage in the feeding point is 1.00 p.u. There are a total of 125 con-
ventional vehicles enclosed in the geographical area covered by this network. As
this is a LV network, no fast charging station was assumed to be available within
the grid boundaries, as this type of infrastructures will be most likely connected at
the MV level.

The network’s typical weekly load diagram used in the simulations is presented
in Fig. 4.4. It was obtained by aggregating the load diagrams of the residential and
commercial consumers within the network. The residential and commercial con-
sumers’ diagrams were combined taking into account the proportion of installed
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Fig. 4.3 Single line diagram of the network
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power related with each type of these consumers. As shown in the pie chart of
Fig. 4.4, the final diagram has a contribution of ca. 90 % of the residential sector
and ca. 10 % of the commercial sector.

The peak of conventional load is 170 kW, distributed over 69 of the 74 network
buses, and the energy consumption during a typical week assumes the value of 18.7
MWh.

As the clients of this type of network usually leave their homes in the morning to
go to work and only return at night, it is assumed that PEVs only plug-into one of
the network nodes for charging when they are “parked in a residential area”. When
PEVs are “parked in a commercial area” or “parked in an industrial area”, it is
assumed that they are outside of the network boundaries and thus their load is not
assigned to any network node.

4.4.1.2 Medium Voltage Grids

The set of five real MV networks analyzed cover a wide spectrum of systems, where
rural and urban environments were enclosed, as well as different types of con-
sumers: industrial, commercial and residential. A detailed description of these
networks can be found in [29]. The networks are the following:

• MV Network 1—urban network from a historic city zone, mainly with com-
mercial consumers;

• MV Network 2—rural network;
• MV Network 3—urban network from a recently built residential area in a city

center;
• MV Network 4—network from a residential area in a city surroundings;
• MV Network 5—network from a touristic area.

The load profiles of each network, during a typical week, are presented in
Fig. 4.5. As it can be seen, there is a significant variety of load profiles, which may
be explained by the different climate, social-cultural and economic conditions of
each area. Despite the differences, well defined daily patterns are easily identified
for all the networks except the rural, where the load consumption along the week is
more irregular.

The most relevant characteristics of the tested networks are presented in
Table 4.4.

4.4.2 Maximum Allowable PEV Integration

4.4.2.1 Low Voltage Grid

The maximum allowable PEV integration percentages in the LV network are
depicted in Fig. 4.6. The percentages are relative to the total number of
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Table 4.4 Networks characteristics

MV
Network 1

MV
Network 2

MV
Network 3

MV
Network 4

MV
Network 5

Type of network Urban network
from a historic
city zone, mainly
with commercial
consumers

Rural
network

Urban network
from a recently
built residen-
tial area in the
city center

Network from a
residential area
in the city
surroundings

Network
from a
touristic
area

Nr. of HV/MV
substations

9 5 18 8 8

Voltage level (kV) 15/20 13/13.2/20 13.2/20 20 20

Nr. of buses 930 5,292 2,323 4,598 15,077

Nr. of branches 1,150 5,355 2,462 4,680 15,353

Peak power (MW) 128.5 21.5 108.3 94.9 226.1

Weekly energy
consumption (GWh)

14.9 2.1 12.2 12.8 27.0

Power factor of the
conventional load

0.93 0.93 0.93 0.93 0.93

Nr. of conventional
vehicles

21,135 5,203 109,641 21,749 34,155

Bus where the fast
charging station is
installed

25 4,614 1,419 31 12,524

Voltage lower
limit (p.u.)

0.93 0.93 0.93 0.93 0.93

Period of lower
energy price (h)

1–7 1–7 1–7 1–7 1–7
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conventional vehicles enclosed in the geographical area covered by this network,
which is, as referred previously, ca. 125 vehicles. For the dumb charging, multiple
tariff and smart charging, the number of PEVs that can be safely integrated in this
network is therefore 23, 19 and 39, respectively. For this network, it was assumed
that the period of lower energy prices is between 22 and 8 h, every day of the week,
and that PEV owners that adhere to this charging approach will always put their
vehicles charging during this period.

As it will be further discussed ahead, both under voltage problems and branches
overloading were the factors that limited the PEV integration in all the charging
modes studied.

In this network, the multiple tariff (22–8 h) is the charging strategy that leads to
the lowest PEV integration percentage. Despite the maximum allowable PEV
integration being the lowest with the multiple tariff, this is the charging strategy that
accounts for the highest peak load, as shown in Fig. 4.10. The instantaneous
increase of the PEVs load verified around 22 h, due to a large number of multiple
tariff adherents starting their charging almost simultaneously, is the reason why the
maximum allowable PEV integration with the multiple tariff is lower than with the
dumb charging. This load increase occurred in specific locations of the grid, where
some grid components were already operating very near their limits, provoking the
occurrence of voltage limits violations and lines overloading.

4.4.2.2 Medium Voltage Grids

An overview of the maximum PEV integration percentage and the correspondent
absolute value of PEVs allowed in each of the MV networks studied are presented
in Table 4.5.

From the results obtained, it can be observed that the analyzed systems can
handle, up to a certain level, the penetration of PEVs without concerns to the
network infrastructures. However, it was verified that the maximum number of

Dumb Charging

Multiple Tariff (22h - 8h)

Smart Charging

18%

15%

31%

Fig. 4.6 Maximum allowable PEV integration in the LV network
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PEVs that can be safely integrated in the networks depends on the charging
schemes adopted by the PEV owners. From the three strategies analyzed, smart
charging yielded better results in all the case studies addressed, as with it was
possible to reach higher PEV integration levels without violating the network
technical restrictions, meaning that higher investments deferral can be obtained.
The multiple tariff can be classified as the second best strategy, as in three of the
five networks it attained better results than the dumb charging. It should be noted
that for the MV networks, it was assumed that the period of lower energy prices is
between 1 and 7 h, every day of the week, and that PEV owners that adhere to this
charging approach will always put their vehicles charging in this period.

The fact of the dumb charging yielding better results than the multiple tariff in
some of the networks can be explained by the instantaneous increase of the PEVs
load verified around 1 h. This occurs due to a large number of multiple tariff
adherents’ start charging almost simultaneously. This load increase might occur in
specific locations of the grid, where some grid components are already operating
very near their limits, provoking the occurrence of technical violations.

4.4.3 Power Demand

4.4.3.1 Low Voltage Grid

Although an entire week has been simulated, only the load diagrams changes during
Wednesday are shown in Fig. 4.7, with the dumb charging (upper right), multiple
tariff (22–8 h) (lower left), multiple tariff (1–7 h) (lower right) and with the three
referred scenarios plus the aggregators’ smart charging (upper left). The results
presented were obtained considering a PEV integration percentage of 31 % in all
the charging strategies, which is the maximum PEV integration possible with the
smart charging strategy, without any network reinforcements.

With the dumb charging strategy, the PEVs tend to charge mostly at the end of
the day, which is the time period when people arrive home from work. The amount
of power requested by the PEVs provokes a very large increase in the peak load,
leading to the violation of the technical limits of several network components. In
order to avoid these violations, the DSO would have to curtail 62.3 kWh of the

Table 4.5 Maximum allowable PEV integration in the MV networks

Dumb charging Multiple tariff Smart charging

MV Network 1 24 % (5,072 PEVS) 34 % (7,186 PEVS) 56 % (11,836 PEVS)

MV Network 2 40 % (2,081 PEVS) 57 % (2,965 PEVS) 74 % (3,850 PEVS)

MV Network 3 2 % (2,193 PEVS) 4 % (4,386 PEVS) 8 % (8,771 PEVS)

MV Network 4 28 % (6,090 PEVS) 24 % (5,220 PEVS) 42 % (9,135 PEVS)

MV Network 5 10 % (3,416 PEVS) 5 % (1,708 PEVS) 24 % (8,197 PEVS)
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energy demanded by PEVs during the day analyzed (black areas in the upper right
chart).

In the multiple tariff strategy, it was assumed that PEVs will only charge
between 22 and 8 h, since this is the period when the energy prices are assumed to
be lower. For these reasons, there are a high number of PEVs connecting to the grid
for charging at 22 h and the amount of power requested provokes the violation of
the technical limits of several network components. In order to avoid these viola-
tions, the DSO would have to curtail 102.5 kWh of the energy demanded by PEVs
(black areas in the lower left chart).

As it can be observed, the multiple tariff policy adopted is not the most adequate
for the PEVs charging, as it does not allow shifting a substantial part of the PEVs
load to the valley periods. For this reason, a different multiple tariff policy was
tested, where the energy prices were assumed to be lower between 1 and 7 h. The
results obtained are presented in the lower right chart of Fig. 4.7. This multiple tariff
strategy allows shifting a very significant part of the PEVs load to the valley hours.
As a result, the occurrence of technical limits violations is greatly reduced. The
DSO would only have to curtail 5.5 kWh of the energy demanded by PEVs, against
the 102.5 kWh with the previously discussed multiple tariff strategy (22–8 h). It
should be noted, however, that the amount of power consumed by PEVs in the
multiple tariff (1–7 h) scenario is lower than in the multiple tariff (22–8 h). This
happens because in the former PEVs only have a 7 h period to charge their batteries,
while in the latter they have a 10 h period. The consequence will probably be
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having more PEVs using to the fast charging station during the remaining hours of
the day in the multiple tariff (1–7 h) scenario.

The optimal curve for the PEVS/A smart charging is represented by the black
line in Fig. 4.8 and is basically the result of an optimization problem run to flatten
as much as possible the load diagram. Thus, the PEVS/A will try to manage the
smart charging adherents to minimize the deviations between their optimal load
curve and the energy effectively consumed by PEVs (light grey area in Fig. 4.8,
referred to as smart charging). The deviations between the energy bought by the
PEVS/A and the energy effectively consumed by PEVs would probably be greatly
reduced if more smart charging adherents were available in the network.

The load curtailed by the DSO when the system enters in the emergency
operating state is presented in the zoomed area of Fig. 4.8 (black areas). As it can be
observed, in the period between 13:30 and 14:30 h, a load curtailment of ca. 7 kWh
(black area) was performed by the DSO. This load reduction allowed the DSO to
solve some low voltage problems and lines overloading that were detected in some
areas of the network.

To provide a clear picture of the load diagram changes provoked by the PEV
integration in this LV network, the load diagrams, discriminated per bus, obtained
in the scenario without PEVs (upper left), dumb charging (upper right), multiple
tariff (22–8 h) (lower left) and PEVS/A smart charging (lower right) are presented
in Fig. 4.9.

Differently from the load diagrams presented in Figs. 4.7 and 4.8, which rep-
resent the average load values obtained along the 500 iterations of the Monte Carlo
run for each scenario, the results presented in Fig. 4.9 are referred only to the load
values obtained in the last iteration.
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In the scenario without PEVs, this network has a peak load of 170.0 kW, which
is incremented to 239.6 kW with the dumb charging, to 260.2 kW with the multiple
tariff (22–8 h), to 188.5 kW with the multiple tariff (1–7 h) and to 180.4 kW with
the PEVS/A smart charging.

Figure 4.10 shows the highest peak load recorded in all the scenarios studied, as
well as the respective increase when compared with the scenario without PEVs.
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4.4.3.2 Medium Voltage Grids

The PEVs power demand profile in the MV network 1, for the three charging
strategies, is shown in Fig. 4.11. When considering the dumb charging strategy, the
PEVs tend to charge essentially at the end of the day, which is the time period when
people arrive home from work. In the multiple tariff scenario, the PEV owners tend
to charge their vehicles between 1 and 7 h, which is the period of time when the
energy prices are assumed to be lower. With the smart charging, the PEVs are
charged mostly during the night, as this is the period when the PEVs availability is
higher and the demand is lower. These two facts combined, make it possible to
integrate a large number of PEVs in this grid without causing any technical con-
straints violations.

Adding the PEVs load depicted in Fig. 4.11 to the conventional load of this
network clients, makes it possible to compute the total load diagrams for the three
charging strategies addressed, as presented in Fig. 4.12. The load diagram for the
scenario without PEVs reveals a relatively constant pattern during the week and the
weekend days. A significantly large valley period is notorious during the nights,
while during the days two small peaks are easily identifiable, one occurring during
lunch time and the other during the evening.

In the scenario without PEVs, this network has a peak load of 128.5 MW, which
is incremented to 135.6 MW using the dumb charging, to 133.9 MW using the
multiple tariff and to 132.1 MW using the smart charging. The latter can be con-
sidered an outstanding achievement, since the peak load only increased 3.6 MW
with a PEV integration of 57 %, representing ca. 12047 PEVs.

It is interesting to notice that the PEVs charging, for the dumb charging and the
multiple tariff provokes changes in the hour at which the network peak load occurs.
In the particular case of this network, the peak load occurrence changes from 14 to
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19 h of Thursday. For the smart charging, the hour at which the peak load occurs
remains unchanged.

In MV Network 2, as shown in Fig. 4.13, the week considered is a typical
summer week, where several farmland irrigation pumps are in operation during the
night. This fact has a curious impact on the load diagram: it provokes a significant
load increase during the night, making the valley periods occur during the
afternoons.

When the smart charging is adopted, as PEVs will tend to be charged during the
valley hours, when the grid is far from reaching its operational limits, a significant
number of PEVs will be charged during the afternoons. However, as during the day
the PEVs availability is lower, it is impossible to put all PEVs charging during the
afternoons. The PEVs that are unavailable to charge during the day are usually
available during the night. This fact explains the reason why there is a significant
amount of PEVs that charge during the night and why it is impossible to obtain a
“smoother” load diagram.

In the scenario without PEVs, this network has a peak load of 21.5 MW, which
is incremented to 25.2 MW using the dumb charging, to 24.5 MW using the
multiple tariff and to 23.2 MW using the smart charging.
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It is interesting to notice that the PEVs charging, for the multiple tariff, provokes
a shift in the hour at which the daily peak load occurs, from around 22 to 1 h. For
both the smart and the dumb charging, the hour at which the daily peak load occurs
remains unchanged.

The load diagram of MV Network 3 for the scenario without PEVs is depicted in
the dark grey area of Fig. 4.14. It reveals that the hour at which the daily peak load
occurs changes from day to day. Conversely, the valley periods that occur during
the night are considerably less volatile, what allows charging a high number of
PEVs in these periods, as it is observed with the multiple tariff and the smart
charging.

In the scenario without PEVs, this network has a peak load of 108.3 MW, which
is incremented to 110.1 MW using the dumb charging, to 108.6 MW using the
multiple tariff and to 112.5 MW using the smart charging. The latter can be con-
sidered an outstanding achievement, since the peak load only increased 4.2 MW
with a PEV integration of 9 %, representing ca. 9868 PEVs.

As the PEVs consumption in this grid is not very relevant when compared to the
total consumption of the conventional loads, the daily peak hours are kept almost
unchanged.
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Given the particular characteristics of this network, it happens that the peak
power in some days of the week increases when the smart charging is implemented.
This fact is explained, on the one hand, by the higher number of PEVs that are
being considered in the smart charging scenario (9,868 against 5,482 with the
multiple tariff and 3,289 with the dumb charging). On the other hand, the smart
charging allows increasing the network load in the non-problematic buses, while it
postpones PEVs charging in the problematic ones (always taking into account the
PEVs availability). This provokes a non-uniform increase of the load in the network
that might result in having higher peak loads with smart charging. Nevertheless, it
should be stressed that “higher peak load” does not necessarily mean “worst net-
work operating conditions”.

The load diagrams of the MV Network 4 are presented in Fig. 4.15. The shape of
load diagrams is similar in all the week days, as well as during the weekend days.

The multiple tariff is the charging strategy that accounts for the highest peaks of
PEV consumption in all the days of the week, despite the number of PEVs in the
grid be the lowest. The instantaneous increase of the PEVs load verified around 1 h,
is probably the reason why the maximum allowable PEV integration with the
multiple tariff is lower than with the dumb charging. This load increase might occur
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in specific locations of the grid, where some grid components are already operating
very near their limits, provoking the occurrence of technical violations.

Given the particular characteristics of this network, it happens that the peak
power in some days of the week increases when the smart charging is adopted,
similarly to what happened in the previous case study.

In the scenario without PEVs, this network has a peak load of 94.9 MW, which
is incremented to 101.5 MW using the dumb charging, to 98.4 MW using the
multiple tariff and to 102.2 MW using the smart charging.

In MV Network 5, the changes in the load diagram owed to the PEVs charging is
almost imperceptible in all the charging approaches, since the PEVs load is almost
insignificant when compared with the total load of the conventional clients. For this
reason, as shown in Fig. 4.16, the hour at which the peak load occurs did not
change in all the scenarios simulated. The load diagram for the scenario without
PEVs reveals a relatively constant pattern during the week and the weekend days.
A significantly large valley period is notorious during the nights, while during the
days two small peaks are easily identifiable, one occurring during lunch time and
the other during the evening. The multiple tariff is the charging strategy that
accounts for the highest peaks of PEV consumption in all the days of the week,
despite the number of PEVs in the grid be the lowest.
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In the scenario without PEVs, this network has a peak load of 226.1 MW, which
is incremented to 231.1 MW using the dumb charging, to 226.7 MW using the
multiple tariff and to 229.3 MW using the smart charging

As for the MV Network 4, the instantaneous increase of the PEVs load verified
around 1 h, due to a large number of multiple tariff adherents starting their charging
almost simultaneously, might be the reason why the maximum allowable PEV
integration with the multiple tariff is lower than with the dumb charging. This load
increase might occur in specific locations of the grid, where the components are
already operating near their limits, provoking the occurrence of technical violations.

4.4.4 Voltage Profiles

4.4.4.1 Low Voltage Grid

In order to evaluate the impacts that a PEV integration level of 31 % might provoke
in what regards voltages in the LV network analyzed, the highest peak load reg-
istered along the 500 iterations performed for each scenario was analyzed, and the
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corresponding voltage values were plotted in Fig. 4.17. A significant voltage drop
occurs along the grid, namely during the periods when the demand is higher, which
as Fig. 4.17 shows, causes some violations of the limit of 0.90 p.u. in the dumb
charging and multiple tariff (22–8 h) scenarios. These are some of the violations
that trigger the emergency operating state and that obliges the DSO to curtail some
of the PEVs load. In the PEVS/A smart charging some minor voltage violations
were also registered. The network voltage profile for the peak load in the scenario
without PEVs is also presented in Fig. 4.17, for comparison purposes.

Figure 4.18 shows the impact of the PEVs charging in the voltage profile of one
feeder, during Wednesday. As these charts show, the multiple tariff (22–8 h) is the
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worst scenario in what regards voltages, as the extra power demanded by PEVs
provokes a pronounced voltage drop along this feeder, namely at the beginning and
at the end of the day. Nevertheless, no violations of the voltage lower limit were
detected for the buses represented. As shown in the lower right chart, the voltage
drop is greatly reduced in the PEVS/A smart charging scenario. It should be
mentioned that the results presented are referred to the average voltage values
obtained from the 500 iterations performed for each scenario.

The worst voltages recorded in all the scenarios studied, as well as the respective
voltage drop when compared with the scenario without PEVs, are shown in
Fig. 4.19.

All the voltage limits violations were recorded along the simulations, in order to
keep track of the most problematic areas of the network. With the results obtained
and using Eq. 4.12, the probabilities of having voltages below the imposed limit
were calculated for each bus and plotted in Fig. 4.20.
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4.4.4.2 Medium Voltage Grids

Figure 4.21, depicts for each of the MV networks analyzed, the voltage values
obtained in the worst bus of the respective network, when the maximum allowable
PEV integration is reached. The values presented are referred to the hour at which
the worst voltage conditions in the networks are verified, which can be different
from the hour of the peak load.

As it can be observed, with the exception of the MV Network 2, the PEVs extra
demand provokes almost insignificant decreases in the voltage values with relation
to the initial value (with no PEVs present in the grids). It is important to recall that
in MV networks the R/X ratio is low, contrarily to LV networks, what makes the
impacts of the active power consumed by PEVs less relevant regarding voltage
drops. In addition, as the majority of the MV networks studied are from urban areas,
they are more prone to overloading problems than under voltage issues.
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Thus, as expected, the voltage values attained for the MV Network 1, MV
Network 3, MV Network 4 and MV Network 5 are within acceptable values, while
for the MV Network 2 they reach values near or even below the minimum limit
allowed (defined for these networks as 0.93 p.u.).

From these results, it is possible to conclude that the voltage lower limit is
probably the technical constraint that impedes a higher PEV integration level in the
MV Network 2.

Although the voltage values regarding the use of different charging strategies are
presented in the same figure, for each network, it should be stressed that they are
referred to different scenarios of PEV integration. Thus, the only possible fact that
can be concluded from the figures presented is that the smart charging provides
better results, as it is the charging strategy that allows the safe integration of a larger
number of PEVs in all the case studies evaluated.

4.4.5 Lines Overloading

4.4.5.1 Low Voltage Grid

As urban networks are usually composed by short lines and are subjected to high
power demand levels, they are prone to face lines overloading problems. As shown
in Fig. 4.23, this is exactly what happens in the case of the LV grid under analysis,
where ratings above 100 % in several lines of the network were detected in all the
scenarios analyzed, including the PEVS/A smart charging scenario. Figure 4.22
provides an overview of the impact provoked by PEVs in the network lines loading,
for the peak load demand in the scenario without PEVs (upper left), dumb charging
(upper right), multiple tariff (22–8 h) (lower left) and smart charging (lower right).
The color grading between blue and red stands for increasing line loading values,
ranging from 0 to 100 %. In Fig. 4.23 the worst ratings recorded in all the scenarios
studied are presented, as well as the respective increase when compared with the
scenario without PEVs.

A considerable number of violations were registered for some lines, as shown in
Fig. 4.24. The results obtained for the worst line reveal that there is a probability of
overloading occurrence of ca. 12 % in both the dumb charging and multiple tariff
(22–8 h) scenarios. The probabilities presented in Fig. 4.24 were obtained using
Eq. 4.13.

4.4.5.2 Medium Voltage Grids

In the MV, differently to what was verified for the voltage profiles, lines over-
loading was the most critical aspect in the generality of the studied grids, with
especially emphasis in the networks with urban characteristics.
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charging (upper right), multiple tariff (22–8 h) (lower left) and smart charging (lower right)
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Looking at Fig. 4.25, where the rating percentage of the most loaded branch
during the hour at which the worst overloading occurs is depicted, it is possible to
observe the effects of the PEVs charging when the three different charging methods
are applied. The maximum rating allowed was assumed to be 100 %.

The results obtained show, in all the networks, that the branches loading levels
considerably worsen with the growth of the number of PEVs present in the grids. In
fact, lines loading are the factor limiting a further PEV integration in the MV
Network 1, MV Network 3, MV Network 4 and MV Network 5. The MV Network
2, besides having low voltage problems, has also overloading issues.

Likewise to the stated in the analyses performed for voltage profiles, the rating
values presented in Fig. 4.25 for the different networks are referred to different
scenarios of PEV integration. Thus, as for the voltages results, the only possible fact
that can be concluded is that the smart charging provides better results, as it is the
charging strategy that allows safely integrating a larger number of PEVs in all the
case studies evaluated. If it was considered a fixed number of PEVs in the grids, the
worst rating percentage obtained with the smart charging would be significantly
lower than the value obtained with the dumb charging and the multiple tariff.

The dumb charging strategy is the charging scheme that accounts for the worst
results in theMVNetwork 1,MVNetwork 2 andMVNetwork 3, while multiple tariff
strategy accounts for the worst results in the MV Network 4 and MV Network 5.

As referred previously, the worst results of the multiple tariff obtained in the MV
Network 4 and MV Network 5, in comparison with the dumb charging approach,
might be explained by the specific characteristics of these grids or by the location of
the fast charging station, which might be connected in a more fragile place of the
network.

The location of the fast charging station is, in fact, a very important variable in
what regards branches overloading, as the large amount of power absorbed by these
facilities might overload the branches upstream. For this reason, it is advisable that
the installation of a fast charging station should always be preceded by a detailed
impact study.
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4.4.6 Energy Losses

4.4.6.1 Low Voltage Grid

In Fig. 4.26, the average value of the weekly energy losses is depicted, obtained
along the 500 iterations performed for each scenario, as well as the percentage of
the consumption they represent.

The weekly energy losses grow 72 % from the scenario without PEVs to the
dumb charging, 65 % to the multiple tariff (22–8 h), 55 % to the multiple tariff
(1–7 h) and 54 % to the PEVS/A smart charging scenario.
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4.4.6.2 Medium Voltage Grids

Looking at Fig. 4.27, it is possible to evaluate the effects of the PEVs charging in
the weekly energy losses of the networks analyzed.

Each chart presents the absolute value of the losses (bars), referred to the left
vertical axis, and their value relative to the overall energy consumption (circles),
referred to the right vertical axis.

In all the networks a significantly increase in the absolute value of the weekly
losses can be observed when comparing the scenarios with and without PEVs.

As the energy losses are directly proportional to the square of the current, when
the demand increases, due to the PEVs charging, the current flowing along the grid
branches rises as well, provoking an increase in the losses.

Although the absolute value of energy losses increases with the smart charging,
when comparing with all the other scenarios, its relative value reveals that this
charging strategy yields some benefits in the majority of the cases studied, namely
in the MV Network 1, MV Network 3 and MV Network 4.

The adoption of the multiple tariff strategy could also lead to some positive
results. As it can be observed, when comparing this strategy with the dumb
charging, it is possible to decrease losses relative value in four of the analyzed
networks (MV Network 1, MV Network 3, MV Network 4 and MV Network 5),
mainly due to the load valleys in the load diagrams that occur between 1 and 7 h.
The exception is the MV Network 2 because valley hours, occurring in the late
afternoon, do not coincide with the period when the majority of the multiple tariff
adherents charge their PEV: between 1 and 7 h.

Generally, the charging method that yields worst results is the dumb charging,
since it leads to the occurrence of the highest peak loads, which, expectably, lead to
the higher increases in the energy losses.
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Fig. 4.26 Energy losses in all the scenarios studied (during the entire week)
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4.4.7 Critical Mass Analysis

The main goal of this section is to identify the percentage of PEV owners that need
to adhere to the smart charging in order to safely integrate a given number of PEVs.

The first step of the methodology implemented consisted in the consideration of
an initial PEV integration percentage, of which one half of the PEVs were assumed
to be dumb charging adherents and the other half multiple tariff adherents.

Then, if problems were not detected in the network, the PEV integration per-
centage was increased by 10 until a problem in the network was detected. For the
MV Network 1, used as test case, the initial PEV integration percentage assumed
was of 10 % and the first technical violation was detected with a 30 % PEV
integration.

The second step of the methodology consisted in iteratively increasing the
percentage of smart charging adherents, in steps of 5 %, while decreasing the dumb
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charging and multiple tariff adherents accordingly. This procedure was repeated
until the technical problems identified were solved.

The problems identified were assumed to be solved when the voltage values in
all the network buses and the line ratings in all the branches are within the pre-
defined limits (voltage lower limit—0.93 p.u.; voltage upper limit—1.07 p.u.;
maximum rating allowed—100 %).

For the case study under analysis, the percentage of smart charging adherents
that allowed solving the problems detected—the critical mass—was of 45 %.

A rather obvious assumption about the critical mass is that its value is expected
to increase as the number of PEVs connected to the grid increases. In order to
demonstrate it, a second scenario with a higher PEV integration (40 %) was
analyzed.

4.4.7.1 Case I—MV Network 1 with 30 % of PEVs

As it can be seen in Fig. 4.31, when considering 30 % of PEV integration, with
50 % dumb charging and 50 % multiple tariff, there are already some lines over-
loading. The worst branch is 1.6 % above its maximum rated capacity.

By incrementing the share of smart charging adherents to 45 % (critical mass
value), while decreasing both dumb and multiple tariff adherents to 27.5%, the
worst branch rating decreases to 98.4 %, value within the allowed limits. The
differences between both scenarios referred have a direct influence on the PEVs
load profiles, as presented in Fig. 4.28. In the first scenario (in blue), the PEVs
power consumption has two daily peaks: one in the late afternoon (due to dumb
charging adherents) and other during the first hours of the night (due to multiple

0

2

4

6

8

10

12

14

P
ow

er
 (

M
W

)

50% Dumb + 50% Multiple Tariff 27.5% Dumb + 27.5% Multiple Tariff + 45% Smart Charging

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Fig. 4.28 PEV load demand profiles in the MV Network 1 (30 % PEVs)

4 Impacts of Plug-in Electric Vehicles Integration … 129



tariff adherents). When the value of the smart charging adherents is incremented to
45 %, a decrease in PEVs power during the late afternoon peak can be noticed.

In Fig. 4.29 the load diagrams for both cases studied are presented. The peak
load in the scenario with 45 % of smart charging adherents slightly decreases, in
comparison with the scenario with 50 % dumb charging and 50 % multiple tariff.

Figures 4.30, 4.31 and 4.32 present, respectively, the voltages in the worst bus,
the rating in the worst branch and the weekly energy losses for both scenarios
simulated. As it can be noticed, the increase in the number of smart charging
adherents yields benefits in all the indexes analyzed.

0

20

40

60

80

100

120

140

160

P
o

w
er

 (
M

W
)

Without PEVs 50% Dumb + 50% Multiple Tariff 27.5% Dumb + 27.5% Multiple Tariff + 45% Smart Charging

Monday Tuesday          Wednesday       Thursday                  Friday            Saturday             Sunday 

Fig. 4.29 Load profiles without and with PEVs (MV Network 1, 30 % PEVs)

1.0238

1.0237

1.0238

1.0235

1.0236

1.0237

1.0238

1.0239

Without PEVs 50% Dumb + 50%
Multiple Tariff

27.5% Dumb + 27.5%
Multiple Tariff + 45%

Smart Charging

V
o

lt
ag

e 
(p

.u
.)

Fig. 4.30 Voltage in the worst bus (30 % PEVs)

130 F.J. Soares et al.



4.4.7.2 Case II—MV Network 1 with 40 % of PEVs

As referred previously, in Case II it was considered that 40 % of total conventional
vehicles were electric. As it can be seen in Fig. 4.36, when considering 40 % of
PEV integration, the branches overloading are considerably aggravated, when
comparing with Case I. The worst branch is ca. 10 % above its maximum rated
capacity, against the 1.6 % verified in the previous case. Under these conditions, the
worst branch rating can only be decreased to acceptable values if the smart charging
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adherents’ percentage reaches 60 % (critical mass value). The differences between
both scenarios referred have a direct influence on the PEV load profiles, as pre-
sented in Fig. 4.33. When the share of the smart charging adherents is incremented
to 60 %, a decrease in PEVs power during the late afternoon peak can be noticed.
This reduction is even more evident than the one verified in Case I, mostly due to
the higher share of controllable PEVs present in the network.

In Fig. 4.34 the load diagrams for both cases studied are depicted. As in Case I,
the peak load in the scenario with 60 % of smart charging adherents decreases
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slightly, in comparison with the scenario with 50 % dumb charging and 50 %
multiple tariff.

Figures 4.35, 4.36 and 4.37 present, respectively, the voltages in the worst bus,
the rating in the worst branch and the weekly energy losses for both scenarios
simulated. As it can be noticed, the increase in the number of smart charging
adherents yields benefits in all the indexes analyzed.
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4.5 Conclusions

By analyzing the results presented along this chapter, it is easy to understand that
the magnitude of the PEV impacts in distribution networks are influenced by
several factors, like the PEV integration level, the PEV owners’ behavior, mobility
patterns, the networks load profiles and technical characteristics, the number and
location of fast charging stations in the grid, the PEV charging modes, among
others. These factors have been carefully analyzed during the simulations per-
formed, as reported along the chapter, being possible to reach the following
conclusions:

• Maximum allowable PEV integration levels (without considering network
reinforcements): The analyzed systems can handle, up to a certain level, the
penetration of PEVs without concerns to the networks infrastructures. However,
it was verified that the maximum number of PEVs that can be safely integrated
in the networks depends on the charging schemes adopted by the PEV owners.
From the three strategies analyzed, smart charging yielded better results in all
the case studies addressed, as with it was possible to reach higher PEV inte-
gration levels without violating the networks technical restrictions, meaning that
higher investments deferral can be obtained.

• Dumb charging: The dumb charging revealed to be the most problematic
charging mode, as letting PEV owners charge freely leads to a considerable
increase in the networks peak load, with negative consequences in what regards
voltage profiles, branches overloading and energy losses. This happens due to
the simultaneity that exists between the PEVs home arrival and plug-in for
charging and the periods when the households consumption is higher.
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• Multiple tariff: As referred, the multiple tariff strategy can be an effective
charging strategy for some networks, provided that pronounced valley periods
exist in the daily load diagrams and that they occur more or less during the same
daily periods. Nevertheless, it should be stressed that the instantaneous increase
of the PEVs load verified in the beginning of the lower energy price period, due
to a large number of multiple tariff adherents starting their charging almost
simultaneously, might cause several technical problems in some networks,
namely in those operating in more strained conditions.

• Smart charging: The smart charging is the charging mode that allows obtaining
better results, as the envisaged mechanisms to manage the PEVs charging
enable a better exploitation of the resources available at each moment, pre-
venting the occurrence of voltage problems and branches overloading. The
smart charging also proved to be very effective in reducing the energy losses,
and consequently the CO2 emissions inherent to the electricity generation sector,
as it prevents the occurrence of high peak loads. Nevertheless, it should be
stressed that even with smart charging, there is a moment when it is impossible
to integrate further PEVs in the networks and investments in reinforcements are
then unavoidable.

• Urban networks: As these networks are usually composed by short lines and
are subjected to high power demand levels, they are very likely to face branch/
transformer overloading problems faster than voltage drop issues. The results
presented in this report prove this fact, as congestion problems were identified in
all networks studied with urban topology: LV network, MV Network 1, MV
Network 3, MV Network 4 and MV Network 5.

• Rural networks: Differently from urban networks, rural networks have usually
long radial lines, which provoke considerable voltage drops. Thus, low voltage
problems are expected in this type of networks, namely in the buses farthest
from the feeding points. The results presented in this report prove this fact, as
low voltage problems were only registered in the rural network analyzed (MV
Network 2).

• Changes in the load diagrams: The extra power demanded by PEVs provokes
several changes in the networks load diagrams, which are more pronounced as
the PEV integration level rises. Nevertheless, the analysis performed allows
concluding that it is impossible to generalize results in a rigorous manner, as the
changes induced in the load diagrams depend of several factors that are different
from network to network, like the PEV integration level, the PEV owners’
behavior, mobility patterns, the networks load profiles and technical charac-
teristics, the number and location of fast charging stations, the PEV charging
modes, etc. Even so, some simplistic statements can be made, which should
interpreted by the reader as case dependent information: (1) the increase in the
power demand, with the dumb charging, is highly related with the journeys
distribution along the day; (2) the increase in the power demand, with the
multiple tariff, is highly related with the period during which the energy prices
are lower; (3) the smart charging allows, to a certain extent, filling the valleys in

4 Impacts of Plug-in Electric Vehicles Integration … 135



the load diagrams, resulting in relatively more uniform power demand profiles
along the day.

• Fast charging stations: The location of the fast charging stations should be
carefully analyzed, as they might provoke severe voltage violations or branches
overloading, due to the large amount of power that they consume (ca. 40 kW ×
nr. PEVs charging).

• Critical mass (i.e. percentage of PEV owners that need to adhere to the
smart charging, for a given PEV integration level, in order to enable the
safe operation of the networks): The methodology proposed for this purpose
proved to be an effective procedure to calculate the critical mass, as with it was
possible to identify the percentage of smart charging adherents that are required
to solve the network problems identified for a given PEV integration level.
Nevertheless, as it happened with the load diagrams, the simulations performed
allow concluding that it is impossible to generalize results in a rigorous manner.
From the analysis of the results obtained, it is only possible to conclude that the
critical mass, besides being dependent of the network considered, increases with
the PEV integration level.

From what was stated in the previous points, it is clear that the path to safely
integrate large quantities of PEVs in distribution networks, without making large
investments in components reinforcements, is to implemented mechanisms that
allow managing the PEVs charging not only taking into account their owners’
requests, but also the networks technical conditions. Nevertheless, it should be
remarked that the adherence to these controlled charging schemes will ultimately be
always a decision of the PEV owners. Thus, it is of utmost importance to timely
define and implement adequate incentives policies, attractive enough to make PEV
owners willing to participate in such controlled charging schemes.
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Chapter 5
Smart Management of PEV Charging
Enhanced by PEV Load Forecasting

E. Xydas, C. Marmaras, L.M. Cipcigan and N. Jenkins

Abstract According to the U.K. Department for Transport, the 97 % of transport
energy consumption comes from the usage of oil. Therefore, a fuel diversification is
needed to improve the energy security, and plug-in electric vehicles (PEVs) seem
promising in giving an alternative solution. However, PEV owners need electric
power from the grid in order to recharge the batteries of their vehicles. PEV
charging load is a new type of demand, influenced by additional factors such as
travel and driving patterns. Average travel distance within a day, the connection and
disconnection time and the PEV’s power consumption will directly affect the daily
load curve. This chapter proposes a decentralized control algorithm to manage the
PEV charging requests. The aim of the control algorithm is to achieve a valley-
filling effect on the demand curve, avoiding a potential increase in the peak demand.
The proposed model includes an algorithm for PEV short term load forecasting.
This forecast contributes to the effectiveness of the control model. Through different
case studies, the performance of the proposed model is evaluated and the value of
the PEV load forecasting as part of the PEV load management process is illustrated.

Keywords Plug-in electric vehicle (PEV) � Data mining � PEV load forecast �
Energy management

5.1 Introduction

Due to environmental concerns and energy security issues, the proportion of the
PEVs in the car sales is anticipated to increase in the following years. A large
deployment of PEVs will lead to lower greenhouse gas emissions, fuel efficiency,
oil independency and increased penetration of renewable energy. Road transport
today is dominated by oil-delivered fuels and internal combustion engines and such
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a high level of dependence on one single source of primary energy carries strategic,
climatic and economic risks [1, 2]. Electric mobility offers an opportunity for
diversification of the primary energy sources used in transport, but also brings new
risks, technological challenges and commercial imperatives. Depending on the
location and the times the PEVs are plugged in, they could cause local constraints
on the grid [3]. According to [4], for the extreme scenario of the PEV penetration in
Great Britain in 2030, it is estimated that the electricity demand will increase by
59.6 %. In order to maintain the normal operation of the power grid, the generation
capacity must be increased to meet this new additional demand of PEV charging.
Equipment, especially in the existing distribution and transmission networks, will
be overloaded and this may affect the stability and reliability of the power system. It
is anticipated that the system may face voltage-drops, power losses increase and
overloading of distribution transformers [4]. The impact of PEVs is significant for
the Distribution Network Operators (DNO) as there is a need to manage the line
congestion and voltage drops [3]. The future electricity networks will also have to
integrate distributed generators, as well as energy storage and adapt to new types of
demand in addition to the need to power electric vehicles [5]. Network reinforce-
ment is one solution to cope with the large deployment of PEVs, however this
solution is expensive. An alternative way is to integrate smart grid control tech-
niques which avoid large investments on the electricity grid [5].

As the penetration of electric vehicles grows, the number of recharging stations
where the PEVs can replenish their energy needs is increasing. These charging
stations are divided in three main categories according to their location and tech-
nical specifications: private residential, private non-residential and public charging
stations [6]. The private residential charging stations are installed mainly at home,
and have a slow charging rate. Private non-residential chargers are usually installed
in the parking lot of a company, accommodating the PEVs energy needs of its
employees. Local authorities install publicly available recharging infrastructure on
the streets, mainly located at the city centers. The majority of the charging stations
have data collection capabilities, keeping records of the PEV charging events.

With the number of PEVs and charging stations gradually rising, charging
events are going to occur in various locations and times. This creates a large volume
of data, recorded and stored by the individual charging stations or back up offices
[7]. According to [8], collecting and managing the dispersed data in a central point
is impractical. Therefore, distributed data collection centers are proposed to manage
the data from a group of charging stations. The main role of these centers is to
aggregate the data from many charging stations offering data reduction services.

According to the recorded charging events, the databases contain information
related to (i) the time and place of each charging event, (ii) the amount of requested
energy, and in some cases (iii) the ID of the PEV and/or the charging station. This
information is used for understanding the charging and travel patterns of the PEV
owners, as well as the activity of each charging station. The value of the collected data
is useful in many different fields. Various actors are using this information according
to their targets. For example a Distribution System Operator (DSO) uses the temporal
and spatial information of the charging events to plan future investments in network
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upgrades. In addition, these data can also be used to determine the PEV charging load
profiles [9]. The flexibility of PEV charging load will allow new market entities like
PEV aggregators to develop the suitable business models for demand side manage-
ment in order to provide ancillary services to grid operators [10–14]. PEVs are entities
that live in both electricity and transport networks. Charging a PEV in public or street
locations requires at least a parking space per charging point. Due to the finite number
of parking spaces in a city, especially in the city center, the number of PEVs that are
charging at the same time is limited. This will affect the road transport networks
particularly the daily travel patterns and the congestion parameters [15]. Authorities
should take into consideration this effect and utilize proper mechanisms and parking
schemes for the PEV deployment [16]. Different data collected from a typical
charging event are used for different applications. More specifically, the analysis of
real charging data assists in creating typical PEV charging profiles, informationwhich
is important to the planning of the future PEV charging infrastructure. The appropriate
number and the charging rate of the public charging stations of an area are defined by
understanding the trend of the charging data. Moreover, the extracted charging load
patterns are used to explore opportunities for possible ancillary services to the grid
operators (load management, frequency response). Using these real data is also
important to develop appropriate business models to promote the mass deployment of
PEVs. Finally, PEV charging is not only affecting the electric power systems but also
the transport networks.

For this reason, authorities are considering possible impacts of PEV charging on
the traffic condition or parking spaces of a geographic area.

Due to the variety of charging data, a generic data analysis methodology is
needed for extracting the relevant information for each application. The complexity
of this process and the large amount of data, make data mining techniques a
promising solution in extracting information from charging events records [17, 18].

The chapter is structured as follows: Sect. 5.2 describes the stages of the data
mining process and the development of a generic framework for the PEV load
forecast methodology based on the data mining principles. Section 5.3 presents the
importance of PEV load forecast to the management of the PEV charging. Also, the
integrated proposed model is illustrated in detail as well as the operation of the main
entities of the model. Section 5.4 presents the simulation results and the effectiveness
of the integrated model is evaluated. Finally, conclusions are drawn in Sect. 5.5.

5.2 PEV Load Forecasting Using Data Mining Methods

5.2.1 Data Mining

Data mining is an interdisciplinary process combining different techniques like
machine learning, pattern recognition and statistics in order to extract information
from large datasets [19]. It is the process of discovering hidden patterns,
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associations, anomalies and significant structures in large amounts of data. Data
mining is a step in the procedure known as Knowledge-Discovery-from-Databases
(KDD) [20]. Data pre-processing, data formatting, and data mining actions con-
stitute the KDD process, as presented in Fig. 5.1.

The Data Pre-processing stage includes data selection and data clearance actions.
Once the data are collected from a database, a preliminary analysis takes place in
order to understand and select the useful data. This selection is critical for the
extraction of information as the unnecessary data create noise, and lead to incorrect
conclusions. Furthermore, the data selection is reducing the size of the dataset,
resulting in lower storage and computational requirements, as well as in reduced
processing time. The selected data are then forwarded into a sequence of clearing
actions, where missing values are either removed or forecasted whenever it is
possible. In addition, outliers like unrealistic charging durations are detected and
eliminated so that the extracted conclusions are not distorted.

Fig. 5.1 The flowchart of the KDD process
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The Data Formatting stage is a stage between the Data Pre-processing and Data
Mining processes. In this stage the data are transformed and formatted according to
the Data Mining technique of the next stage. According to the available data,
attributes are defined to express the different features in the dataset. The data are
then organized in attribute groups that express the same type of information. This
arrangement is essential for the KDD procedure, and a potential error in the Data
Formatting stage will influence the outcome.

The Data Mining stage is the final and the most important stage of the KDD
procedure. This stage includes data processing with one or more algorithms, defined
accordingly to the goal of the analysis. Two main types of algorithms exist based on
the applied learning procedure: unsupervised and supervised learning algorithms.
Unsupervised learning algorithms include clustering procedures, often useful for an
initial understanding of a dataset, as well as (depending on the application) data
partitioning and pattern recognition. In supervised learning algorithms each data
string is a pair of an attribute vector and a target (desired) value. Because of this
formulation the model is forced to learn the correlation between the attributes and
the target values, and they are widely used for classification and forecasting tasks.
In order to evaluate the learning capability of a data mining method, the initial
dataset is divided in the training and the testing dataset. The training dataset is
provided to the KDD procedure to learn the correlations among the attributes and
create a trained model. This process is called “training process”. The testing dataset
is then forwarded to the trained model to evaluate its performance (“testing pro-
cess”). In case the trained model fails to provide the desired output (within a
confidence interval), a reconfiguration of the data mining method is applied and the
training-testing sequence is repeated. This iterative process is terminated once the
desired output is reached.

5.2.2 PEV Load Forecasting Methodology

In order to develop a PEV load forecasting model, all the stages of the KDD process
are considered. Recorded datasets of PEV charging events contain both useful and
irrelevant information to the purpose of the particular analysis. For example, in case
the purpose is a behavioral analysis of the PEV owners, information regarding the
time, the location and the User ID of each charging event are most relevant in
contrast to data regarding the charging station manufacturer. On the other hand, in
case the purpose is to calculate the utility of a particular company’s charging
stations, information about the charging station manufacturer becomes more
important than data regarding the User ID. Therefore, according to the target of the
particular analysis and the availability of the data, an appropriate data selection
process is important to be applied. Data regarding a charging event is recorded from
the charging station and then forwarded to one or more data collection centers. This
process involves a number of components and communication links increasing the
risk of a potential failure in this chain. Corrupted or missing data are not a rare
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phenomenon in such complex communication networks. Therefore, data clearing
processes are important to remove the noisy data and the outliers. For example,
charging events with zero or negative energy are removed from the dataset.
However, a careful analysis at this stage is beneficial from another point of view.
By keeping track of the location or the station’s ID from where the corrupted data
come, an indication of the normal/abnormal operation is obtained.

Due to the amount of charging events and variety of additional data, the Data
Pre-processing stage of the KDD process is time consuming without an automated
way of processing this volume of information. Furthermore, it is highly possible
that additional information about charging events (Stations info or User Info) may
be stored in different files. Thus, in order to effectively cope with the data, a script
for integrating all sources of information in one dataset is developed. Then, another
script is executed in order to select the appropriate data for the ongoing analysis as
well as to check the data for mistaken values or outliers within the dataset. The
steps of the Data Pre-processing stage are illustrated in Fig. 5.2.

In the Data Formatting stage, a transformation script is applied to the Cleared
Data in order to change their structure. For forecasting applications, the structure of
the data follows the template presented in Table 5.1. This structure is important for
training the model to decode the correlations among the attributes. The time horizon
of the forecast defines the time difference between the target and the attribute

Fig. 5.2 The data pre-processing stage
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values. For a day ahead PEV charging demand forecast for example, the target
values are related to the charging demand of N day while the attribute values refer
to N − 1 day. Moreover, the resolution of the forecast defines the time difference
between consecutive rows. In the day ahead PEV charging demand forecasting case
for instance, assuming a half hour resolution, each row is related to a specific half
hour of a day. The new data structure is presented in Table 5.2.

Once the Data Formatting stage is complete, the formed data are used to train the
forecasting model. The training process of the forecasting model is shown in
Fig. 5.3. An appropriate data mining technique is selected for the forecasting model
depending on the characteristics of the PEV charging events. Factors like ran-
domness can make one data mining technique more suitable than another. For
example, advanced data mining techniques are needed for an accurate forecast, if
high fluctuating data are coming from a public charging station. On the other hand,
charging events from a residential charging point are more periodic and easier to
predict. A simple method like linear regression can be used for less complicated
forecasting models while powerful methods like Support Vector Machines (SVM),
Artificial Neural Networks and Trees [21, 22] are used by advanced forecasting
models. Regardless the fluctuation of data, a proper configuration of the selected
data mining method is also important for the accuracy of the forecasting model
(parameters tuning process).

SVM was selected as the appropriate data mining method for the PEV load
forecast model due to its high performance. SVM is a machine learning method
associated with classification, regression and other learning tasks and was devel-
oped by Vapnic, Guyon and Boser [23–27]. SVM tries to find linear separations

Table 5.1 Structure of the formed data

Target Title Attribute_1 Title … Attribute_M Title

Target Value-1 Attribute_1 Value-1 … Attribute_M Value-1

Target Value-2 Attribute_1 Value-2 … Attribute_M Value-2

… … … …

Target Value-N Attribute_1 Value-N … Attribute_M Value-N

Table 5.2 Data structure for a day-ahead PEV charging demand forecast with half hourly
resolution

PEV charging demand Attribute_1 Title … Attribute_M Title

PEV charging demand for
1st half hour of N day

Attribute_1 Value for 1st
half hour of N − 1 day

… Attribute_M Value for 1st
half hour of N − 1 day

PEV charging demand for
2nd half hour of N day

Attribute_1 Value for 2nd
half hour of N − 1 day

… Attribute_M Value for 2nd
half hour of N − 1 day

… … … …

PEV charging demand for
48th half hour of N day

Attribute_1 Value for 48th
half hour of N − 1 day

… Attribute_M Value for
48th half hour of
N − 1 day
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between the data (“decision boundaries” for separating one class from another).
Assuming data with two attributes, SVM depicts them into a two dimensional space
and search for possible separating lines. If the data are depended on three attributes,
they are projected on a three dimensional space, and SVM searches for the possible
separating planes. Generalizing for n-attributes, the depiction is on an n-dimension
space and SVM search for separating hyperplanes. SVM will find many different
lines or hyperplanes which divide the data. The optimal line/hyperplane is selected
based on the maximization of the separating distance. When SVM cannot find
linear separations in the initial data, they transform these data into new spaces using
the kernel functions. For each kernel type, there are different variables that need to
be tuned in order to perform effectively [28–33]. The Gaussian Radial Basis
Function (RBF) described in Eq. 5.1 is found to outperform in many cases of
learning tasks, and thus this kernel type was used in the PEV load forecast model
[34]. Thus, for the PEV load forecast model the parameters γ, C and ε are con-
sidered in the tuning process. Parameter γ expresses the width in the kernel function
[30], parameter C represents the trade-off between the training error and the
maximum number of data points that can be separated in all possible ways [35],

Fig. 5.3 The training and forecasting process
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while parameter ε influences the number of support vectors and consequently the
generalization capability of the model [36].

K x; yð Þ ¼ exp �c x� yk kð Þ2
� �

; c[ 0 ð5:1Þ

where x and y express samples of different attribute vectors.
The formed data are separated in two parts, the Training and Testing dataset.

Since the appropriate data mining method and its parameters are selected, the model
is trained based on the training dataset. Once the model is trained, the testing dataset
is used to evaluate the performance of the forecasting model. In the evaluation
process, only the attribute values of the testing dataset are supplied to the trained
model in order to forecast the corresponding target values of the testing dataset. By
comparing the forecasted values with the actual target values of the testing dataset,
the performance of the model is evaluated. If the accuracy of the model is not
sufficient, a reconfiguration of the parameters of the data mining method is required
and then the model is retrained. Subsequently, the performance of the new trained
model is evaluated and this iterative process terminates when the accuracy level is
reached.

Once this procedure is completed, the forecasting model can be used on
unknown data. The new dataset includes values in the attribute columns, while the
target values are missing (unknown). The forecasting model based on the corre-
lations learned from the training process and the supplied attribute values will
predict the unknown target values. Note that the time difference between the
attribute and target values of the new dataset will match the one of the training
dataset. If the model was trained for a day-ahead forecast for example, this will be
the time horizon of the forecast, and the target values of the next day constitute the
output.

5.2.3 Case Study

The proposed methodology is applied on a dataset coming from real charging
events recorded from public charging stations. The data are from a pilot project in
Paris involving 71 PEVs. The PEVs’ charging activities were recorded for 1 year.
The charging events were classified according to the ID of each PEV, and examined
individually. For each PEV, charging patterns like the connection/disconnection
time and the energy demand per charging event were analyzed in order to produce
weekly distributions. An example of the charging demand distribution of four
random PEVs for one week is shown in Fig. 5.4.

These distributions are important for analyzing the charging demand profile of
each PEV owner. Useful information is also extracted analyzing the distributions
for the times the PEV owners connect and disconnect their vehicles to a public
charging station. Due to the small size of this sample, a generalization was
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necessary in order to build a larger PEV fleet. The distributions of the analyzed
features were used to create PEVs with similar charging demand profiles. In this
scenario 2,130 PEVs were created, and the total charging demand of this fleet was
calculated for 1 year.

Based on the available information in the initial dataset, the attributes used for
the training and testing procedures are:

1. Previous Day Load: The charging demand of the previous day for each half
hour.

2. Previous Week Load: The charging demand of the same day of previous week
for each half hour.

3. Week: Number of the week (1–53).
4. Day: Number of the day (1–7) starting with Monday.
5. Half Hour: 1–48 half hour parts of each day.
6. Number of New Connections: The new PEV plug-in connections for every half

hour.

Once the dataset is properly formed, the last day is considered “unknown” and
constitutes the target of the forecast. The rest of the data are split in training and
testing datasets, and the procedure presented in Fig. 5.3 is followed. SVM was
applied as the data mining method. There are various performance indexes which
are used to assess the effectiveness of a model.

Mean Absolute Percentage Error (MAPE) is an accepted industry standard for
measuring the forecasting accuracy of model while Root Mean Square Error
(RMSE) penalizes large absolute differences between actual and forecasted values.

Fig. 5.4 Charging demand distribution for 1 week for four random PEVs
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The r-correlations show the general performance of a model. These performance
indexes are calculated with the following formulas:

MAPE ¼
PN
i¼1

Xi�Yij j
Xi

� �

N
� 100% ð5:2Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

Xi � Yið Þ2

N

vuuut
ð5:3Þ

r ¼
PN

i¼1 Xi � X
� �

Yi � Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Xi � X

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Yi � Y

� �2q ð5:4Þ

where:

N is the number of the forecasted values
X is the actual values
Y is the forecasted values
�X is the mean of the actual values
�Y is the mean of the forecasted values

In this case study the termination criterion of training the model was used to
reach a MAPE with less than 5 %. After training the model, the “unknown” last
week is supplied for forecast. The results are shown in Fig. 5.5. The performance
was evaluated using Eqs. 5.2–5.4, and the results are summarized in Table 5.3.

Fig. 5.5 Day-ahead forecasted charging demand
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Considering that the charging events were recorded from public stations and
present high fluctuation, the performance of SVM was considered accurate enough.
Additional information and attributes may increase the accuracy of the forecast.
Weather data when available can be used to reduce the errors of a forecast. However,
adding more attributes could increase the risk of finding irrelevant connections
between the data and reduce the learning capability of the model. Therefore, several
trials are necessary to achieve the best results involving different datasets.

5.3 Incorporating PEV Load Forecast in the PEV Load
Management

5.3.1 The Importance of PEV Load Forecast in the Charging
Control Model

The coordination of PEV charging belongs to demand side management (DSM) or
demand response (DR) applications. In those applications, the philosophy of adapting
power demand to power generation is applied to maintain the normal operation of the
electricity grid. Coordinating PEV charging is an effective and low cost solution to
reduce the impacts of this additional electricity demand on the electric power systems.
Themajority of PEVowners are expected to plug in their vehicles in the evening hours
when they return home after work. They would like to have their vehicles fully
charged the next day morning when they go to work. Considering the fact that no less
than 90%of the cars are parked during a day, there is opportunity to shift the electricity
consumption from PEV charging to times with lower demand [4]. Smart charging
control algorithms make use of this flexibility in order to reduce peak loads or charge
PEVs preferential from renewable energy sources. These algorithms decide the
charging schedules of PEVs according to their objective (e.g. valley-fill, peak shaving,
and frequency regulation). Several approaches for the optimal coordination of PEV
charging have been proposed in literature. Two main categories are predominantly in
the literature: centralized control [37–39] and decentralized control [40–47]. Cen-
tralized control approaches are found to perform well for a limited number of PEVs.
While the number of PEVs is increasing, the interactions between PEVs and the
central aggregator become more complicated. This bi-directional communication
requires a large amount of data to be acquired and processed from a central unit,
increasing the minimum requirements of the computational resources [46]. In con-
trast, the effectiveness of the distributed control techniques is independent to the
number of PEVs, as each PEV solves the scheduling problem individually.

Table 5.3 Performance
indices of the forecasting
model

Performance index Value

MAPE (%) 4.79

RMSE 33.87

r-Correlation (%) 99.26
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PEV charging load is a specific type of demand associated with the travel
patterns of the PEV owners [21, 22]. Their daily trips can determine their energy
requirements for recharging the PEV batteries as well as the times they connect and
disconnect their vehicles to the charging stations. The information of where and
when the PEV owners will recharge their vehicles will lead to a more effective
algorithm for coordinating the PEV charging schedules. In the future smart grids
there will be a bi-directional flow of information allowing the network operators to
collect data of the charging events within a geographical area. The PEV Aggre-
gator, an entity that will be responsible to coordinate the PEV charging schedules
providing ancillary services to network operators will make use of the knowledge
recorded in the historical charging data. Data mining techniques are applied to
extract useful information that will enhance the effective coordination of the PEV
charging schedules [48]. In [43] forecasting actions were found to play an important
role in scheduling of the PEV charging. These forecasts are related to probability
distributions of arrival/departure times and the initial/desired battery state of charge
(SOC) of the upcoming PEV. The model estimates the aggregated charging load
and plans the scheduling process of PEV charging accordingly.

To our knowledge, the majority of charging control models assumes that all
PEVs are participating in the control scheme. However, this is not a realistic sce-
nario for the future composition of the PEV fleet. In a realistic case, the PEV fleet is
separated in responsive and non-responsive PEV to control signals coming from the
aggregator. Responsive PEVs are the ones that participate in coordination process
responding to control signals from the PEV aggregators or other central manage-
ment entities. On the contrary, non-responsive PEVs are not willing to participate in
the control scheme. This willingness to participate in the control scheme is defined
by the PEV owners and their routine. For example, if the daily routine of a PEV
owner is affected due to an event, this may also influence the flexibility in charging
the vehicle. Note also that some PEVs can be responsive to control signals in most
cases. However, this does not mean that abnormal charging events are not hap-
pening occasionally from the same PEV. Forecasting the demand from unrespon-
sive PEVs is critical for the effectiveness of the control scheme. Historical charging
events are used to extract information about the abnormal charging demand from
unresponsive PEVs. The value of PEV load forecast to the control of PEV charging
is illustrated through an example.

In this example a mixture of responsive and unresponsive PEVs is assumed. The
arrival and departures times of both types of PEVs are shown in Fig. 5.6a. An
abnormal event occurs at 10:00, when a number of unresponsive PEVs are con-
nected to the charging stations requiring charging for a short period of time. Despite
other PEVs (the responsive ones) having a level of flexibility for the connection
time, the inflexible demand from the unresponsive PEVs is critical for the effec-
tiveness of the control algorithm. In this example, a control algorithm was applied
to coordinate all PEVs without having future knowledge of the demand from the
unresponsive PEVs. The objective of this control algorithm is to have a valley-
filling effect on the demand curve of the assumed network. Figure 5.6b shows the
final demand from the responsive PEVs. Based on the control model, a number of
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Fig. 5.6 a Distributions of arrival/departure times of responsive/unresponsive PEVs b Demand
without adding the demand from unresponsive PEVs, c Total demand

152 E. Xydas et al.



PEVs were responsive to the control signals and as a result they are coordinated to
charge at times when the demand is low. However, in a mix scenario like this
example, without forecasting the demand from the unresponsive PEVs, the final
result of the coordination algorithm is not optimal. Figure 5.6c indicates this
weakness of the majority of the control models proposed in the literature.

5.3.2 The Integrated Model for PEV Load Management

A decentralized algorithm was developed to manage the PEV charging schedules,
enhanced by PEV load forecast. The aim of the control algorithm was to achieve a
valley-filling effect on the demand curve, avoiding a potential increase of the peak
demand. The structure of this model follows the architecture of a multi agent system
where each entity is an agent. Therefore, in this model there are three agent classes,
the PEV agent, the PEV aggregator agent and the Distribution System Operator
(DSO) agent. Figure 5.7 shows the location of each entity in an example network.
PEV agents are located at the low voltage level and each Low Voltage (LV) feeder

Fig. 5.7 Schematic example of a decentralized charging system
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constitutes a PEV cluster. Each PEV cluster is a group of PEVs which are supplied
with energy from the same LV feeder of which the technical constraints have to be
respected. On the top level of the network, there is the DSO agent who is
responsible to monitor the demand and voltage in the most significant parts of the
network. PEV aggregator is an entity which is located in an intermediate level
between PEVs and DSO. Based on the objectives of the control algorithm, the PEV
aggregator can be located either in MV transformer or in a LV transformer.

The proposed control algorithm is designed based on the structure of a UK
Generic Low Voltage Distribution Network obtained from [49], without affecting
the generality of the model. The PEV aggregator is located on the Medium Voltage
(MV) level, while the PEV agents are dispersed in the Low Voltage (LV) feeders.
The PEV aggregator’s role is to collect the historical charging data of the PEV fleet
and apply machine learning algorithms to provide accurate forecasts of the future
charging demand of unresponsive PEVs. The PEV Load Forecasting process uses
Support Vector Machines, and is executed by the PEV Aggregator to improve the
effectiveness of the algorithm. The PEVs are coordinated to achieve a local valley-
filling effect in the demand curve of the LV feeder to which they are connected. In
order to demonstrate the importance of the PEV load forecast algorithm in the
proposed control scheme, different charging scenarios and composition of the PEV
fleet were considered.

Figure 5.8 presents the basic operations of the PEVs and the PEV Aggregator.
The DSO provides information to the PEV aggregator regarding the technical
constraints of the network. This information is linked with the maximum power
demand of the corresponding feeder, transformer loading and the thermal limits of

Fig. 5.8 Flow of information
diagram
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the network cables. In addition, PEV aggregator is receiving the forecasted non
PEV demand of the next 2 days. In the proposed model, it is assumed that none
PEVs owners leave their vehicles connected in a charging point for more than 24 h.

Initially, the PEV load forecast model is updated with charging data of the
previous day. These data are processed based on the methodology presented in
Sect. 5.2.2. Moreover, in case other sources of information like weather data or
traffic measurements are accessible to the PEV aggregator, they are also included in
the forecast model in order to increase the accuracy of the predictions. The fore-
casting model is updated with the latest data and provides the 2-days ahead fore-
casted charging demand from unresponsive PEVs. Once the output of the forecast
model and relevant data from DSO are available to the PEV aggregator, the next
stage includes the calculation of the control signals. The PEV aggregator calculates
the network’s capacity for PEV charging demand based on the PEV forecasted
demand. The objective of the control model is a valley-filling effect on the demand
of the LV feeders. Therefore, each PEV cluster is associated with a specific LV
feeder and each group of PEVs receives the same control signals. These signals are
related to the existing charging schedules and the predicted PEV demand for the
corresponding part of the network. Based on those signals, each PEV defines its
own charging schedule by selecting when to charge. The charging events are
recorded, and used to update the forecasting procedure.

The timeframe resolution of the proposed model is measured in time steps (e.g.
10 min interval). The time steps affect the regularity of the control actions, for
example a small time step indicates a more frequent delivery of control signal to the
PEVs, and vice versa. However, the effectiveness of the proposed model is not
affected by this interval. In this control model, 6 min time step duration is con-
sidered and thus every day is consisted of 240 time steps.

In the proposed control scheme, there are four main procedures which are
repeated sequentially in a daily or a time step basis (see Fig. 5.9). At the beginning
of each day, forecasting actions are taking place in order to estimate the future
demand from the unresponsive PEVs.

The selected data mining method used in the PEV load forecast model is Support
Vector Machines due to its high performance and its ability to extract information
behind difficult patterns. Figure 5.10 presents the flowchart of the PEV load forecast
model.

The PEV load forecast model is updated at the end of each day with all recorded
charging events. The charging data include information about the connection times,

Fig. 5.9 Daily and time step routine in the control model
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disconnection times and the energy requirement of the PEV fleet. In addition, each
PEV has an ID and this is used to identify the charging pattern of a PEV owner. In
addition, information about the ID of the PEV and its responsiveness to control
signals is provided to the forecasting model. Based on the available information, the
attributes used for the training and testing procedures are listed below:

1. Two-day Unresponsive Load: The aggregated charging demand from unre-
sponsive PEVs of the previous 2 days for each time step.

2. Two-day Responsive Load: The aggregated charging demand from responsive
PEVs of the previous 2 days for each time step.

3. Two-day Unresponsive Load of previous week: The unresponsive PEV
charging demand of the same days of previous week for each time step.

4. Two-day Responsive Load of previous week: The responsive PEV charging
demand of the same days of previous week for each time step.

5. Day: Number of the day (1–7) starting with Monday.
6. Month: Number of the month (1–12) starting with January.
7. 6 min time step: 1–240 parts of each day.
8. Number of Unresponsive PEV Connections: The number of unresponsive PEV

connections for every time step.
9. Number of Responsive PEV Connections: The number of responsive PEV

connections for every time step.

Fig. 5.10 PEV load forecast model for unresponsive PEVs
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10. Number of Unresponsive PEV Disconnections: The number of unresponsive
PEV disconnections for every time step.

11. Number of Responsive PEV Disconnections: The number of responsive PEV
disconnections for every time step.

The target for the PEV forecast model is to forecast the PEV demand from unre-
sponsive PEVs for each time step of the next 2 days. Once the training data are
properly formed, the SVM and the RBF kernel parameters are initialized randomly.
A script is executed in order to divide the sample in two separate datasets, one for
the training and the other for the evaluation of the model. The testing dataset
includes the values of the last 2 days of the initial datasets while the rest constitute
the training dataset. Once the model is trained with the initial SVM parameters, it is
evaluated through the testing dataset. The MAPE is calculated based on Eq. 5.2.
The model is using a second script for updating the SVM parameters. The
parameter C takes all integer values between the minimum and the maximum target
value [30]. Additionally, parameter γ is updated within a range of [0.85/n, 1.15/n]
with a step of (0.1/n), where n is the number of the attributes. The parameter ε is
considered constant 0.001 (default value). All possible combinations of C and γ
within the specified range are checked and the ones which result in the minimum
MAPE are selected. Once this process is completed, the model is tested on the new
dataset (which contains the attributes of the next 2 days) in order to provide a
forecast of the charging demand from unresponsive PEVs for the next 2 days. The
accuracy of this process is significant to the effectiveness of the control model.

In every time step, two main procedures are taking place namely “Dispatch” and
“Schedule”. Every process involves different tasks from both the PEV aggregator
and the corresponding PEV. The “Dispatch” procedure involves the execution of
the existing PEVs charging schedules. In this procedure, the PEV aggregator first
runs power flows for the specific part of the distribution network according to the
PEV’s scheduled charging demand. According to this scheduled demand, the total
non PEV demand and the demand from the unresponsive PEVs, the real time
network constraints are calculated by the aggregator and sent to the corresponding
PEV. After receiving these constraints, the PEV checks for a possible violation of
the network constraints. In case the limits are violated, the PEV is rescheduling this
charging demand in future time steps. This procedure is repeated until the scheduled
demand of every existing PEV is either supplied or rescheduled. The “Dispatch”
procedure is presented in Fig. 5.11.

In case new PEVs are connected (or the existing charging schedule violates the
technical constraints of the network) the “Schedule” phase is activated (see
Fig. 5.12). During this phase, each PEV will solve the scheduling problem to satisfy
its charging requirements. Internal information such as the battery SOC and the
charging station power rate, as well as information coming from the PEV aggre-
gator (external) like the network’s capacity and the forecasted PEV demand are
used in the scheduling process.
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Fig. 5.11 Flowchart of the dispatch process

Fig. 5.12 Flowchart of the schedule process
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The scheduling problem for PEV-n is formulated as follows:

min
Xtnþdn

tn

Pn tð Þ � Vn tð Þ½ � ð5:5Þ

where tn is the connection time of PEV-n, dn is the charging duration of PEV-n,
Pn(t) is the instantaneous charging power demand of PEV-n and Vn(t) is the virtual
cost value of a time step.

Every PEV tries to minimize a virtual cost function given in Eq. 5.5. The virtual
cost values Vn(t) are calculated by the PEV Aggregator according to the forecasted
demand from unresponsive PEVs, the existing PEV charging schedules and the non
PEV demand. The PEV aggregator sends to every PEV a vector Vn. This vector
contains the order sequence of the time steps with the lowest to highest demand for
the period [tn, tn + dn]. For example, the virtual cost value for the time step with the
lowest demand is 1, while the one with the highest demand is dn, and the inter-
mediate time steps are taking values between 1 and dn.

Minimizing Eq. 5.5 will result in an adaptive PEV behavior based on the local
network’s condition. Each PEV has knowledge of the future local aggregated
demand and adjusts its charging schedule accordingly. The scheduling problem is
subject to the following constraints:

Ztnþdn

tn

Pn tð Þdt ¼ SOCfinaln � SOCinn

� �Cbatn

deffn
ð5:6Þ

Pn tð Þ�Pch:nomn ð5:7Þ

8n 2 1 . . .Nð Þ; 8t
where SOCfinaln is the desired SOC of PEV-n, SOCinn is the initial SOC of PEV-n,
Cbatn is the battery capacity of PEV-n, deffn is the efficiency of the charging station
and Pch:nomn is the nominal power rate of the charging station.

Equation 5.6 expresses the energy requirements of PEV-n. These requirements
are satisfied during the connection period of the particular PEV [tn, tn + dn]. The
instantaneous charging power Pn(t) must not exceed the power rating of the
charging station (Pch:nomn ) for every t, as described in Eq. 5.7. The next two con-
straints are related to the network topology and characteristics. Let us denote f as the
LV feeder that a PEV is connected. Every such feeder has a group Af that is
consisted of all PEVs charging on LV feeder f at time t. Based on the network
topology, the size of this group (|A|) has an upper boundary C1 (maximum number
of PEVs on feeder f). Additionally, denoting l as the MV/LV transformer that LV
feeder f is attached, there is a group Bl containing all the corresponding feeders. C2

expresses the number of feeders on a transformer. Equations 5.8 and 5.9 are used to
keep the power demand of feeder f and the transformer l between the limits.
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Pn tð Þ�Pfd:nomf �
X
m

Pm tð Þ ð5:8Þ

8f9Af ¼ nj connected on f ¼ truef g; Aj j �C1

8m 2 Af � nf g
8n 2 1 . . .Nð Þ; 8t

where Pfd:nomf is the nominal power of feeder f and Pm tð Þ is the power demand of
PEV-m in feeder f. Equation 5.8 expresses that the charging power for PEV-
n should not exceed the corresponding nominal feeder limit considering also all the
other PEVs which are charging in the same feeder.

Pn tð Þ�Ptr:noml �
X
f

X
m

Pm tð Þ ð5:9Þ

8l9Bl ¼ f j connected on l ¼ truef g; Bj j ¼ C2

8f 2 Bl

8m 2 Af � nf g
8n 2 1 . . .Nð Þ; 8t

where Ptr:noml is the nominal power limit of the transformer. Equation 5.9 expresses
that the charging power for PEV-n should not exceed the corresponding nominal
transformer limit considering also all the other PEVs which are charging in the
same transformer.

5.4 Simulation Results

The following sections present the decentralized control for PEV charging. In order
to demonstrate the importance of the PEV load forecast in the proposed control
scheme, different charging scenarios and different composition of the PEV fleet
were considered. A specific distribution network was used to test the performance
of the control model. Different percentage of unresponsive PEVs were considered
and the effectiveness of the control model is evaluated through case studies. In
addition, the effect of the charging rate on the valley filling effect on the local
demand curve is also presented.

5.4.1 Network Topology

The typical 33/11/0.4 kV UK generic distribution network model is based on [49].
The system is comprised of a 33 kV three-phase source, two 33/11.5 kV 15 MVA
transformers with on-line-tap-changer and an 11 kV substation with five 11 kV
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outgoing MV feeders. Each 11 kV feeder supplies eight 11/0.433 kV 500 kVA
distributed transformers. Each MV/LV transformer has 4 LV feeders, and each LV
feeder provides energy to 96 customers. The topology is presented in Fig. 5.13.

The PEVs are connected at the LV level, while the PEV aggregator is located on
a MV feeder, and is responsible for 3,072 customers. In order to evaluate the
control model, a realistic PEV fleet with the following characteristics is created, as
shown in Table 5.4.

According to [50], the PEV uptake level of 20 % is considered as the Business as
Usual Scenario. This uptake level was used for different case studies to investigate
the impact of PEV load forecast on the effectiveness of the proposed control model.
Representative charging rates of 3.6, 11 and 22 kW for the charging stations are
considered to study their effect on the flexibility of a responsive PEV fleet. Non

Fig. 5.13 Typical 33/11/0.4
UK generic distribution
network

Table 5.4 PEV fleet characteristics

PEV fleet variables Mean value (μ) Standard deviation (σ)

Battery capacity (kWh) 30 2

Initial SOC (%) 40 5

Final SOC (%) 90 10

Arrival time of responsive PEVs (h) 09:00 1

Departure time of responsive PEVs (h) 17:00 1

Arrival time of unresponsive PEVs (h) 10:30 0.5

Departure time of unresponsive PEVs (h) 13:30 0.5
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PEV demand curves are obtained from [51] for a typical spring weekday. Different
ratios of unresponsive/responsive PEVs are used to analyze the influence of this
ratio to the effectiveness of the proposed model.

5.4.2 Case Study 1

In this case study a number of 614 PEVs were assumed, equivalent with 20 %
uptake, having the characteristics presented in Table 5.4. Different PEV fleet
synthesis with responsive and unresponsive PEVs is considered, charging at 11 kW
charging stations. Two control options are presented, one without activating the
forecasting modules of the model, and the second one that uses the forecasting
model. Figure 5.14 shows the demand on the MV level for both options (without
and with PEV load forecast) for different responsive/unresponsive PEVs ratio.

The results show that when PEV load forecast option is activated, PEVs are
modifying their charging schedules in order to reduce the impact of unresponsive
PEV charging on the demand curve. The charging demand of the responsive PEVs
is adapted to the unresponsive PEV charging demand so that their aggregation
results in a valley filling effect on the Non PEV demand curve. In most cases, this
adaptive behavior of responsive PEVs leads to a reduction of the aggregated
charging demand peak. For low levels of unresponsive PEVs (until 20 %), the
control model is able to completely absorb the unresponsive PEV demand. On the
other hand, high levels of unresponsive PEVs lead to inflexible demand, thus the
capability of the proposed control model to reduce the peak charging demand is
limited. Obviously, without having responsive PEVs in our system, the integrated
model with PEV load forecast is not affecting the final charging demand.

5.4.3 Case Study 2

This case study investigates the effect of the charging stations’ power rate on the
effectiveness of the control model. The charging rates of 3, 11 and 22 kW and an
uptake of 20 % PEVs are used for this analysis. The Peak-to-Average ratio (PAR)
and peak reduction criteria are used to evaluate the performance of the model. Peak-
to-Average Ratio is calculated according to Eq. 5.10. This index indicates the valley
filling effect on the demand curve.

PAR ¼ Pmax

Paverage
; ð5:10Þ

where Pmax is the peak power demand of a day and Paverage is the mean power
demand for the specific day.
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Fig. 5.14 Charging demand for different levels of unresponsive PEVs after two control strategies
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As seen from Fig. 5.15, different charging rates have a different effect on PAR-
index. At low charging rates (3.6 kW) the control model with PEV load forecast is
capable to delay the increase of this index, even until a 50/50 ratio of responsive/
unresponsive PEVs is achieved. For higher charging rates, unresponsive PEVs have
a significant impact on PAR, even at low penetration levels. Despite this, the control
model with PEV load forecast improves the results. At 0 and 100 % levels of
unresponsive PEVs the results are identical, and both control options lead to the
same demand curve. In every combination of responsive/unresponsive PEVs (except
of course the extreme values of 0 and 100 %) there is a peak reduction due to the
contribution of the forecasting model. For every charging rate, this reduction can
reach up to 35 %. However, this reduction occurs at different percentage of

Fig. 5.15 Peak-to-average ratio and peak reduction for a 3.6 kW, b 11 kW and c 22 kW charger
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unresponsive PEVs for each charging rate. For low charging rates a significant peak
reduction is observed at a wide range of unresponsive PEVs percentages. On the
contrary when the charging rate is increased, this range is narrower and the maxi-
mum peak reduction is found on lower unresponsive PEVs percentages.

5.5 Conclusions

The flexibility of the electricity sector in managing changes will have a significant
influence to the success of the electric vehicle deployment. The development of the
charging infrastructure is often seen as an essential investment to offer PEVs drivers
the psychological support to overcome the range anxiety, one of the most inhibiting
factors in electric vehicles adoption. In order to manage the electric vehicles
charging in distribution networks, DNOs will have to upgrade their infrastructure or
implement smart control techniques in parallel with the development of regulative
measures to serve these new customers.

The “aggregator” is a new player which will control multiple PEVs. This
research is proposing a decentralized control framework for a mixture of responsive
and unresponsive PEVs enhanced by PEV load forecasting. The main aim of the
control algorithm is to achieve a valley-filling effect on the demand curve. The
effectiveness of the control algorithm was tested in a UK generic distribution
network considering a geographical area with 3,072 customers. Two case studies
were presented. The first case study considered a PEV fleet charging at 11 kW
charging stations comprising of responsive and unresponsive PEVs. It was dem-
onstrated that when the PEV load forecast option is activated the PEVs are adapting
their charging schedule to reduce the impact of the unresponsive PEVs on the
demand curve. The second case study investigated the effect of the charging sta-
tion’s power rate on the effectiveness of the decentralized control model. It was
shown that when the forecasting module is activated there is a demand peak
reduction for every combination of responsive/unresponsive PEVs considering
charging rates of 3, 11 and 22 kW.

Smart management of PEVs charging based on aggregation enhanced by PEV
load forecasting could be seen as a win-win strategy for both the DNO and the
vehicle owner.
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Chapter 6
Optimal Charging Strategies of Plug-in
Electric Vehicles for Minimizing Load
Variance Within Smart Grids

Linni Jian, Guoqing Xu and C.C. Chan

Abstract With serious concerns on global warming and energy crisis, there are
plenty of motivations for developing and commercializing plug-in electric vehicles
(PEVs). It is believed that substitution of PEVs for conventional fuel vehicles can
help reduce the greenhouse gases emission, increase the energy efficiency, enhance
the integration of renewable energy, and so forth. At the same time, the impact of
PEVs as an emerging electrical load for power grid has drawn increasing attention
most recently. The possible challenge for power grids lies in that the penetration of
large number of PEVs may trigger extreme surges in demand at rush hours, and
therefore, harm the stability and security of the existing power grids. Nevertheless,
there are also potential opportunities for power grids. An optimal scenario is to dig
the potential of PEVs as moveable energy storage devices, which means PEVs
withdrawing electricity from grid at off-peak hours and then feeding back energy
deposited in the onboard batteries to grid at peak hours. This concept is also termed
as vehicle-to-grid (V2G) technology. The key to the implementation of V2G is how
to effectively integrate information into energy conversion, transmission and
distribution. V2G should be carried out within the framework of smart grid, so that
the status information of power grid can be perceived. In addition, the demand
information of PEV owners should also be taken into account, so that the function
of PEVs as transportation tools can be guaranteed. In this chapter, the possible
scenarios of V2G implementation within both the household smart micro-grid and
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the smart regional grid will be discussed. The related mathematical formulation will
also be analyzed. It is essentially an optimization problem, and the objective is to
minimize the overall load variance of power grids. Case studies will be conducted.
The results demonstrate that V2G operation can definitely help flatten the overall
power load curves and it enables power grid to contain newly added PEV loads to
some extent without boosting its capacity.

Keywords Smart micro-grid � Smart regional grid �Vehicle-to-grid � Load variance
minimization

6.1 Introduction

Most recently, a general consensus has been reached extensively, namely, energy
crisis and global warming are becoming two critical issues which may threaten the
sustainable development of our human beings. On one hand, the exploitable
reverses of fossil fuels, such as coal, oil, and natural gas, may be exhausted in the
near future, due to the rapid growth of global energy consumption. On the other
hand, statistics indicate that the average global temperature has increased by about
0.8 °C since 1880, in which two-thirds of the warming has occurred since 1975 [1].
The greenhouse gases arising from burning fossil fuels are believed to be the major
contributor to the climate change. Generally, energy use in transportation sector
accounts for a significant proportion in the overall energy consumption. According
to the latest International Energy Outlook issued by U.S. Energy Information
Administration, almost 30 % of the world’s delivered energy is used for trans-
portation in 2013. Moreover, it is predicted that transportation sector accounts for
the largest share (63 %) of the total growth in world consumption of petroleum and
other liquid fuels from 2010 to 2040 [2]. Therefore, the transport electrification has
been deemed as a promising solution to relieve energy crisis and global warming. It
can greatly reduce the dependence on fossil fuels through diversifying the energy
sources of transportation tools, and improve the efficiency of energy conversion.
Consequently, the emission of greenhouse gases can be significantly reduced.

As far as transport electrification is concerned, plug-in electric vehicles (PEVs)
definitely lies within the most popular topics. As for electric vehicles, electric
motors are wholly or partially substituted for internal combustion engines (ICEs) to
drive the wheels. The electricity needed can be either produced via onboard gen-
eration systems, such as hybrid electric vehicles and fuel cell electric vehicles, or
recharged by any external electricity sources, for example, battery electric vehicles
and plug-in hybrid vehicles. In the latter subcategory, large-capacity batteries are
often equipped. In addition, these batteries can be charged by plugging into the
power grid very conveniently. Therefore, this subcategory of electric vehicles is
usually termed as PEVs or gridable EVs. Compared with conventional ICE vehi-
cles, PEVs can offer very high efficiency of around 80 %, and extremely low
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operating cost. For example, in December 2011, the operating costs of Nissan Leaf
and Chevrolet Volt are 3.5 cents per mile and 3.8 cents per mile, respectively, while
for ICE vehicles, this number can reach as high as 12.5 cents per mile [3].
Nevertheless, the initial prices of PEVs are significantly more expensive than
conventional ICE vehicles due to the additional cost of their battery packs. In
summary, the characteristics of PEVs include:

• PEVs are equipped with large-capacity batteries, and can offer full-electrical
operation mode. Therefore, PEVs are able to help reduce the greenhouse gases
emission and the dependence on fossil fuels.

• Onboard batteries of PEVs are rechargeable by connecting into power grid.
Thus PEVs are novel emerging electric loads for power grids.

• PEVs can also feed back electricity deposited in their onboard batteries to power
grid, if necessary. Thus they may also play their potential role as movable and
distributed energy storage systems for power grids.

The traditional method to charge the PEVs are either fast charging or slow charging
[4]. The key difference between them lies in the charging power rating, thus the
charging time. Generally, slow charging takes about 6–8 h to bring the battery to a
full charge with a charging power of around 3 kW. Therefore, slow charging is
typically associated with the overnight charging. Comparatively, fast charging is
much quicker and with much more complex definitions. In a word, any scheme
other than slow charging can be deemed as fast charging. Sometimes, it can be
further specified as fast charging, rapid charging and quick charging as shown in
Table 6.1. Both slow charging and fast charging operate regardless of the status of
power grids. Hence, with the increase of penetration of PEVs, these uncertain
intermittent power loads will definitely trigger extreme surges in demand side at
rush hours, and therefore, threaten the stability and security of the power grid.
Consequently, smart charging which carries information into power has been ten-
tatively conducted to solve these problems [5]. In smart charging, both the real-time
status of power grid and the demand of the PEV owners are taken into consider-
ation. The charging power is adjusted on line under the smart charging strategies so
as to avoid the conventional peak loads. Apparently, one-way power flows from
grid to vehicles are adopted in both traditional charging and smart charging.
Another step forward is the so called vehicle-to-grid (V2G) operation [6, 7], in
which bi-directional power flow can be carried out. This means the PEVs can be
charged at off-peak hours and then feedback energy deposited in onboard batteries
to grid at peak hours. Therefore, by digging the potential of PEVs as moveable and

Table 6.1 Fast charging, rapid charging and quick charging for PEVs

Charging type Charging power rating

Heavy duty (kW) SUV (kW) Small Sedan (kW)

Fast charging, 10 min, 100 % Soc 500 250 125

Rapid charging, 15 min, 60 % Soc 250 125 60

Quick charging, 60 min, 70 % Soc 75 35 20
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distributed energy storage devices, V2G operation can aid to flatten the power load
curves [8–11], improve the stability and efficiency, as well as reduce the overall
operating cost of power grid [12–19]. Figure 6.1 depicts the subtle differences
among power grid’s overall load curves in one-day period with traditional charging,
smart charging, and V2G operation, respectively. Another remarkable benefit arising
from conducting smart charging or V2G is to promote the integration of renewable
energy sources, such as wind power, solar power, wave power, and so forth. Due to
their severe dependence on climate conditions, renewable energy sources are sig-
nificantly different from the traditional dispatchable power sources. Hence, how to
integrate such unpredictable and unstable electricity into conventional power grids
becomes a tough issue [20]. In the scheme of smart charging or V2G operation,
onboard batteries of PEVs could help match the fluctuations between renewable
energy production and power load consumption seamlessly [21, 22].

The key to the implementation of V2G is to what extent information can be
effectively integrated into the energy conversion, transmission and distribution.
There are several actual challenges ahead of us: Firstly, what are the crucial
information related to the effective energy exchange between power grid and PEVs;
Secondly, how does these information affect the overall energy efficiency and
exhaust emission; Thirdly, how to acquire, transmit and process these information;
Finally, how to effectively and correctly use these information to turn the com-
plicated and chaotic process into somewhat ordered and effective process, so that
the maximum benefits towards a win-win ecosystem can be achieved. These
problems could be considered from three levels. The top level question is what the
basic business model should be. What are the key players? Who invests? Who
benefits? This is a question involving many aspects, such as people’s lifestyles,
geographical environment, degree of urbanization, condition of infrastructures and
existing power grid, government policies, and so forth. The middle level question is

Fig. 6.1 Overall power load curves of regional power grid with different charging strategies
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how to model and formulate the problem. What are the control objectives? What are
the key variables? What are the constraints? How to solve the problem in real time
so that the algorithm can be operated practically? The bottom level question is how
to realize the designed business model and optimal charging strategy. This includes
how to layout the charging posts or charging stations, how to build up the sensor
networks and how to configure the computing resources. Therefore, V2G should be
carried out within the framework of smart grid [23–25], so that the status infor-
mation of power grid can be perceived. Another prerequisite is the massive data
processing capability. As illustrated in Fig. 6.2, there are so much information
should be taken into account, which includes traffic condition, weather condition,
power grid condition, vehicle’s condition, and conditions of charging facilities. The
demand information of PEV owners should also be taken into account, so that the
function of PEVs as transportation tools can be guaranteed.

This chapter will be focus on discussing the aforementioned problem formula-
tion for V2G operation. Mathematically modeling concerning all kinds of crucial
information can lead to optimal charging strategies of PEVs, which are aimed at
maximizing the benefits of V2G operation. Generally, there are three kinds of
optimization targets: minimizing the power losses of power grid, maximizing the
load factors of power grid and minimizing the load variance of power grid. It has
been theoretically demonstrated that, for practical systems, minimizing load vari-
ances will minimize power losses approximately. Additionally, maximizing load
factor is almost equivalent to minimizing the load variance [17]. Herein, the

Fig. 6.2 Crucial information related to V2G implementation of PEVs
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optimization target of minimizing load variance is preferred since it will not involve
any details on structural connection of the power grid, and has better universality
for understanding, predicting and evaluating the performance of V2G operation.
Two scenarios will be discussed, one is for the household smart micro-grid and the
other is for smart regional grid.

6.2 Optimal Charging Strategy of PEVs for Minimizing
Load Variance in Household Smart Micro-grid

6.2.1 V2G in Household Smart Micro-grid

Figure 6.3 depicts the scheme of a typical household smart micro-grid. Up till now,
most of the home appliances are AC-powered, such as TV set, air conditioner,
refrigerator, washing machine, computer, microwave oven, and so on. Still, more
and more DC-powered home appliances are emerging nowadays, for example, LED
lightings, fire alarms, exhaust fans, and so forth. So that, AC-DC power converters
should be adopted to connect these equipments to the AC power line. PEVs can be
plugged into the micro-grid through charging facilities when they are parked at the
garage. These charging facilities can ensure bi-directional power flows between the
PEVs and the micro-grid. The property of ‘smart’ refers to the sensor network and
the power management unit (PMU) involved. The sensor network consists of smart
meters, sensors for AC-powered devices, sensors for DC-powered devices and
sensory components of the charging facilities for PEVs. They are employed to
measure and acquire the comprehensive information regarding electricity usage
within the household micro-grid and that of the outside grid delivered from the
upper level operators. The PMU takes charge of coordinating the power flow
patterns within the micro-grid according to the information acquired by the sensor
network. Generally, micro-grids can work in either grid-connected mode or
islanded mode [26], and intelligent control algorithms are performed by the PMU to
automatically switch between different working modes, so as to satisfy the demands
of power loads, reduce electric shock to the upper level grid, and achieve highly
efficient operation of the whole system.

The micro-grid shown in Fig. 6.3 is essentially an AC-bus micro-grid. The red
solid line and the green solid line are the AC power line and the DC power line,
respectively, while the blue dash line representing the signal line. Generally
speaking, DC-bus micro-grid may take advantages when renewable energy gen-
eration systems, such as on-roof photovoltaic power unit and yard-standing wind
power unit, and energy storage systems, such as batteries and ultra capacitors, are
involved. For DC-bus household micro-grid, a power isolation unit which takes
charge of AC-DC power conversion and power factor correction is needed to
connect the household micro-grid to the up level AC power grid.
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6.2.2 Optimal Problem Formulation for Minimizing Load
Variance in Household Smart Micro-grid

Naturally, the one-day cycle from 00h00 to 24h00 is chosen for discussing. For
convenience, the 24-h period is divided into T time-slots, and the length of each
time-slot is given by Dt. In addition, each PEV is assumed to start charging at the
beginning of some time-slot and complete charging at the end of another time-slot.
Consequently, the problem can be formulated as:

min
XT
t¼1

1
T

PA
t � lHT þ

XN
n¼1

PC
t;n

 !2
2
4

3
5 ð6:1Þ

Subject to:

PA
t þ

XN
n¼1

PC
t;n �PH

t;max; t ¼ 1� Tð Þ ð6:2Þ

�PC
n;max �PC

t;n �PC
n;max; t ¼ Cs

n �Ce
n ; n ¼ 1�N

� � ð6:3Þ

socmin;n � soct;n � socmax;n; t ¼ Cs
n �Ce

n ; n ¼ 1�N
� � ð6:4Þ

XCe
n

t¼Cs
n

PC
t;n gCn
� �sgnt;nDth i

¼ DWn ¼ We
n �Ws

n; n ¼ 1�Nð Þ ð6:5Þ

Fig. 6.3 Scheme of V2G operation in a typical household smart micro-grid
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lHT ¼ 1
T

XT
t¼1

PA
t þ

XN
n¼1

PC
t;n

 !
ð6:6Þ

sgnt;n|ffl{zffl}
t¼Cs

n �Ce
n ; n¼1�N

¼
1; PC

t;n � 0
� �

�1; PC
t;n\0

� �
8<
: ð6:7Þ

soct;n|ffl{zffl}
n¼1�N

¼
Ws

nþPC
t;n gCnð Þsgnt;nDt

Qn
; t ¼ Cs

n

� �
soct�1;n þ PC

t;n gCnð Þsgnt;nDt
Qn

; t ¼ Cs
n þ 1; . . . Ce

n

� �
8<
: ð6:8Þ

where
Dt is the length of the time-slot (min);
T is the number of the time-slots in one-day cycle;
N is the number of the PEVs available for the micro-grid;
Cs
n is the serial number of the time-slot when the n-th PEV being connected

to the micro-grid;
Ce
n is the serial number of the time-slot when the n-th PEV being

disconnected from the micro-grid;
PA
t is the power of the home appliance loads at the t-th time-slot (kW);

PC
t;n is the operating power of the n-th charger at the t-th time-slot (kW);

sgnt;n is the sign function of PC
t;n [equal to either 1 or −1 defined by (6.7)];

PH
t;max is the maximum operating power of the whole micro-grid at the t-th

time-slot (kW);
PC
n;max is the maximum operating power of the n-th charger at the t-th time- slot

(kW);
gCn is the efficiency of the n-th charger (value lies in between 0 and 1);
lHT is the average power of the whole micro-grid in one-day period (kW);
DW is the net charging quantity of the n-th PEV required by its owner (kWh);
Ws

n is the initial charge of its battery when the n-th PEV being connected to
the micro-grid (kWh);

We
n is the finial charge of its battery when the n-th PEV being disconnected

from the micro-grid (kWh);
soct;n is the state of charge (Soc) of the n-th PEV at the t-th time-slot (value lies

in between 0 and 1);
socmin;n is the allowed minimum value of the Soc of the n-th PEV (value lies in

between 0 and 1);
socmax;n is the allowed maximum value of the Soc of the n-th PEV (value lies in

between 0 and 1);
Qn is the capacity of the battery equipped in the n-th PEV (kWh).
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It is worth noting that the chargers’ efficiencies vary with both the operating
power and the work voltage. It has been demonstrated that they don’t change
fiercely in magnitude [27], thus herein they are set as constant for simplicity.
Another simplification involved in the modeling is that the onboard batteries are
deemed as ideal energy storage systems, namely, their transient performance during
charging/discharging process are not taken into account.

In what follows, the operating power instructions for each charger during each
time-slot which can satisfy the problem (6.1)–(6.8) the best will be determined.
Nevertheless, this is a nonconvex problem due to the constraints (6.5) and (6.8). It
is rather difficult to find the global optimal solution directly, especially for cases
with large number of variables. Consequently, some tricks are engaged and the
problem is solved as per following procedures:

Step 1: The original problem is slacked into a quadratic programming (QP)
problem by ignoring the nonlinear factor gCn

� �sgnt;n existing in constraints (6.5)
and (6.8)
Step 2: Make the indicator j = 1. Find the global optimal solution of the QP
problem obtained in step 1, and denote them by PC

t;n jð Þ
Step 3: Determine the values of sgnt;n according to PC

t;n jð Þ, and substitute them
into constraints (6.5) and (6.8). Then, the problem (6.1)–(6.8) becomes a QP
problem
Step 4: Solve the QP problem obtained in step 3, and denote the global optimal
solution by PC

t;n jþ 1ð Þ
Step 5: If the signs of PC

t;n jþ 1ð Þ are identical with that of PC
t;n jð Þ, cease the

procedure, and PC
t;n jþ 1ð Þ is the final solution, otherwise, go back to step 3.

It is well known that the global optimal solution of QP problem can be efficiently
solved in polynomial time [28]. Thus the resulted optimization problem is of
polynomial time-space complexity.

6.2.3 Case Study

In case 1, it is assumed that there are two PEVs available for the smart household
micro-grid, viz., PEV1 and PEV2. The parameters involved are listed in Table 6.2.
For a typical weekday, PEV1 is disconnected from the micro-grid at 07:00 in the
morning and connected into grid at 18:00 in the evening, while PEV2 is discon-
nected from the micro-grid at 14:00 in the afternoon and connected into grid at
17:00 in the evening. The initial charge Ws

n of the onboard battery of PEV1 and
PEV2 are set as 2.8 and 2.2 kWh, respectively. The initial Soc values are both
0.2 for the two PEVs. Correspondingly, the net charging quantities DWn are set as
8 and 6 kWh, respectively. Herein, DWn is defined as the difference between the
final charge and the initial charge of the onboard battery, and it represents the
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demanded energy consumed by the PEVs on their way for the next itinerary. The
length of the time-slot Dt is set as 15 min, thus there are 96 time slots in the one-day
cycle. Actually, a tradeoff should be made when setting the length of the time slot.
On one hand, if the time slot is too long, a coarse optimization procedure can not
ensure satisfactory effect on the reduction of the load variance. One the other hand,
if the time slot is too short, the frequent adjustment on the charging power
instruction is no good for both the power electronic circuits and the batteries. In
addition, very short time slot will result in considerable large number of variables,
and make the problem too difficult to solve.

Figure 6.4 gives a typical load profile of household micro-grid in one-day cycle
when PEV loads are excluded. With the development of smart grid technology, the
24-h-ahead conventional power load (excluding PEV loads) forecasting based on
meteorological information and historic data [29] is believed to be with acceptable
accuracy in the future. The mean and the variance of the conventional power load
profile given in Fig. 6.4 are 4.15 kWh and 0.57632, respectively. The optimal
charging profiles of the two PEVs for minimizing the load variance can be obtained
as illustrated in Fig. 6.5. It can be observed that both PEVs absorb electrical energy
from the micro-grid with different power during each time slot. Sometimes, they
may even feed back the deposited energy to the micro-grid in order to compensate
the energy demands by other loads.

Table 6.2 Parameters involved in case 1

Cs
n Ce

n socmin;n socmax;n Qn
(kWh)

Ws
n

(kWh)
DWn
(kWh)

PC
n;max

(kW)
gCn Dt

(min)
PH
t;max

(kW)

PEV1
(n = 1)

72 28 0.2 0.8 14 2.8 8 1 0.92 15 6

PEV2
(n = 2)

68 56 0.2 0.8 11 2.2 6 1 0.92 15 6

Fig. 6.4 Typical load profile of household micro-grid (excluding PEVs) in 24-h period
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Figure 6.6 gives calculated V2G operation results in this case. The comparisons
of the conventional load profile, the load profile with optimal charging and the
average power load of the micro-grid are illustrated in Fig. 6.6a. It can be observed
that the overall power load demand of the micro-grid can be dramatically smoothed
out via V2G operation. The resulted mean and variance with optimal charging are
4.7884 kW and 0.00547, respectively. Figure 6.6b gives the Soc curves of the two
PEVs. The Soc values when disconnected from the grid are 0.7714 and 0.7818 for
PEV1 and PEV2, respectively.

In case 1, the initial charges of the two PEVs are given directly based on
assumptions. Nevertheless, it is easy to understand that these initial statuses do have
profound impact on the overall performance of the V2G operation. In order to find

Fig. 6.5 Calculated optimal charging profiles in case 1: a for PEV1, b for PEV2
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out the greatest capability to subdue load variance by using optimal charging, the
case with optimized initial charges of batteries should be investigated. Therefore, in
case 2, the initial charges of the onboard batteries of the two PEVs are also set as
variables. Then, they are solved along with the other variables aiming at satisfying
the aforementioned optimal charging problem the best. All the other parameters are
kept exactly the same with those in the case 1.

Figure 6.7 illustrates the resulted optimal charging profiles of the two PEVs with
optimal initial charges of the batteries (case 2). It can be observed that there are
subtle differences between the resulted charging patterns of case 1 and 2, especially
in the parts enclosed by the ellipses in dash line. In case 2, the PEVs feedback more

Fig. 6.6 Calculated V2G operation results in case 1: a comparison of load-power profiles, b Soc
curves of two PEVs
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electricity into grid than they did in case 1. This means the initial statuses of the
onboard battery really can affect the energy exchange between the PEVs and the
micro-grid. What is more, the comparisons of the conventional load profile, the load
profile with optimal charging and the average power load of the micro-grid are
illustrated in Fig. 6.8a. Since the PEVs are able to feed back power immediately
when connected to the micro-grid, the resulted variance of the load power is
0.00132, much less than that resulted in case 1. The mean of the load power equals
4.7873 kW in case 2. Figure 6.8b gives the Soc curves of the two PEVs. The values
of Soc when disconnected from the grid are 0.7943 and 0.7800 for PEV1 and
PEV2, respectively.

Fig. 6.7 Calculated optimal charging profiles in case 2: a for PEV1, b for PEV2
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Through optimizing the initial charges of onboard batteries, both the variance
and the mean of the load power profile can be further reduced. Moreover, the mean
of the load power curves are different in the two cases, which implies that there are
extra energy losses caused by the regulated charging process. As we all know,
energy losses will occur when it flows through the power electronic circuits. The
total energy losses ELT during the one-day cycle can be given by:

ELT ¼
XN
n¼1

XCe
n

t¼Cs
n

sgnt;nP
C
t;n 1� gð Þg

sgn
t;n�1
2 Dt ð6:9Þ

Fig. 6.8 Calculated V2G operation results in case 2: a comparison of load-power profiles, b Soc
curves of the two PEVs
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Apart from the energy losses ELW which is responsible for withdrawing energy
from the micro-grid by the PEVs, the energy losses ELF aroused by feeding back
energy to the micro-grid from the PEVs can be obtained by:

ELF ¼ ELT � ELW ¼ ELT �
XN
n¼1

1� gð Þ We
n �Ws

n

� ��
g ð6:10Þ

Let’s consider a new case, viz., the case 3, in which the discharging of the PEV
batteries is not allowed by amending the constraint (6.3) into:

0�PC
t;n �PC

n;max; t ¼ Cs
n �Ce

n ; n ¼ 1�N
� � ð6:11Þ

Then, the optimal charging pattern of case 3 can be solved. It should be noted that
the initial charge of the onboard batteries have no impact on the overall performance
in this case, since the energy can not be fed back to the micro-grid. The overall
performances including mean and variance of the power load profile with optimal
charging and the power losses involved of these three cases are listed in Table 6.3 for
comparison. It can be found that by feeding back power to the micro-grid when
necessary, it can further reduce the load variance by 77.04 %, from 0.00575 to
0.00132, with consuming 0.0782 kWh more electricity. Although it is a trifle cost,
there is no reason to require customers to pay for the extra bill for their good deeds.

Subsidy mechanism could be developed by power companies under the guid-
ance of governments since they can really benefit from promoting V2G operation of
PEVs. Recently, the floating electricity pricing has become a worldwide topic, and
in some regions, it has been implemented. With no doubt, it can benefit costumers
by depositing extra electricity during low-price time periods, and then compensate
the demands during high-price time periods. However, there may still be two
problems: (1) it is not easy to design suitable pricing mechanism which can ensure
the optimal overall performance; (2) by conducting floating pricing, the optimiza-
tion target of the regulated charging discussed herein may be shifted into maxi-
mizing the profits, and it may contradict the minimization of load variance. Thus,
we believe that a better way to develop the subsidy mechanism may lie in inves-
tigating the comprehensive benefits arising form reducing the load variance,
including the increase of the grid’s efficiency, stability, and the reduction of the
greenhouse gases emission. Then, governments and power companies should share

Table 6.3 Comparison of performance in different cases

Performance index Case studied

Case 1 Case 2 Case 3

Mean 4.7884 kW 4.7873 kW 4.7841 kW

Variance 0.00547 0.00132 0.00575

ELW 1.2174 kWh 1.2174 kWh 1.2174 kWh

ELF 0.1053 kWh 0.0782 kWh 0
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these benefits with the customers by refunding them, so as to reach the win-
win situation.

Next, the impacts of the capacity of onboard batteries and the requested net
charging quantities on the performance of V2G operation concerning minimizing
the power load variance are investigated. It is worth noting that the case with
optimized initial statuses can eliminate the impact of the initial charge of the
onboard batteries. Thus, in what follows, all the discussion and analysis will be
based on such kind, so as to ensure the fairness of the comparisons.

Figure 6.9 gives the calculated results with different requested net charging
quantities DW of the two PEVs. It can be observed that the requested net charging

Fig. 6.9 Calculated optimal charging results with different requested net charging quantities of
PEVs. a Variance of load power. b Mean of load power
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quantity has an effect on the resulted variance and mean of the load power. For this
case, the bigger the requested net charging quantity is, the smaller the variance of
the load power will be. However, this does not fit for all other cases. Actually, the
impact of DW is also influenced by the time slots when the PEVs are connected into
the micro-grid and the pattern of the load curve of the home appliances.

Figure 6.10 gives the calculated results with different battery capacities Q of the
two PEVs. Customers may take it for grant that by using batteries with larger
capacities better performance of the V2G operation could be achieved. Neverthe-
less, it is quite interesting to observe that once the battery capacities of PEV1 and

Fig. 6.10 Calculated optimal results with different battery capacities of the PEVs. a Variance of
load power. b Mean of load power
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PEV2 are larger than 14.0 and 11.0 kWh, respectively, there is no significant
improvement by using batteries with even larger capacities. Since the battery is one
of the main reasons for the high initial cost of the PEVs, customers ought not
to choose the PEVs with unnecessarily large battery capacities, just out of the
consideration for expanding the benefits of V2G operation.

6.3 Optimal Charging Strategy of PEVs for Minimizing
Load Variance in Smart Regional Grid

6.3.1 A Scenario of V2G Operation Within Smart
Regional Grid

V2G implementation in regional grid is a rather more sophisticated issue than that
in micro-grid. It involves new technique patterns, innovative business models and
even novel industrial rules. Figure 6.11 illustrates the information flow and the
energy flow concerning V2G in regional smart grid. The central control center
(CCC) takes charge of acquiring and processing the key signals. Based on that, the
CCC generates optimal charging instructions to guide the energy exchanging
between PEVs and power grid bridged by the charging posts (CPs). In what fol-
lows, a possible scenario for implementing V2G within regional smart grid which
involves a booking mechanism will be elaborated.

Fig. 6.11 Scheme of V2G operation in smart regional grid

186 L. Jian et al.



Firstly, the CCC should be aware which CPs are available for the V2G opera-
tion, and what their key charging-planning-related parameters are. All the CPs, no
matter whether they are public or private, should be reported to the CCC. Conse-
quently, the CCC can build data tuples on its server to record every CP involved:

CP ¼ ½CPID;CPLoc;P
max
CP ;Flag� ð6:12Þ

where the entities are:
CPID the identity number of the CP;
CPLoc the location of the CP;
Pmax
CP the allowed maximum charging power of the CP;

Flag to indicate whether the CP is available for public use. Flag = 0 means this
is a public CP, while, Flag = 1 represents this is a private CP.

Secondly, the CCC should also understand the necessary information on PEVs
involved. Vehicle owners who are willing to associate their PEVs with V2G in the
smart regional grid should register their vehicles in advance by, for example,
submitting the registration form online to the CCC. Then, CCC will allot a unique
identity number for each PEV that are successfully registered. Consequently, CCC
builds data tuples on its server to record every possible PEV involved:

EV ¼ ½EVID;EVMod;BATTyp;BATCap; Socupper; Soclower� ð6:13Þ

where the entities represent:
EVID the identity number of the PEV;
EVMod the model of the PEV;
BATTyp the type of the battery equipped;
BATCap the capacity of the battery equipped;
Socupper the allowed upper limit for the Soc value of battery;
Soclower the allowed lower limit for the Soc value of battery.

The battery Soc is an equivalent quantity of a fuel gauge for battery packs. It
indicates the amount of electric energy left in a battery compared with the energy it
has when it is fully charged [30, 31]. In order to extend the lifetime of batteries,
upper limit and lower limit for the Soc value should be set to avoid over charging
and deep discharging, which both can harm the physical constitution of batteries.

Thirdly, PEV owners propose request for joining V2G Operation. Normally, the
CCC plans the charging schedule for every 24 h (one-day cycle), for example, from
06:00 to 05:59 a.m. (next day). Thus, each vehicle owner who intends to join V2G
operation for the coming one-day cycle should propose request to the CCC before
by the due time (06:00 a.m.), and tell when and where their PEVs will be connected
to grid. This can be conducted by logging into the designed online booking system.
For our mathematical modeling, some key information should be reported to the
CCC: (1) The estimated latest moment when this PEV can be connected into grid;
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(2) The estimated earliest moment when this PEV will be detached from grid;
(3) Which charging post this PEV will be connected to; (4) The estimated battery
Soc value when this PEV connected into grid; (5) The required battery Soc value
when this PEV detached from grid. For point 3, if the vehicle owner plans to
connect his/her PEV into his/her private charging post, he/she reports the ID
Number of the charging post directly. Otherwise, he/she reports the location or area
where the PEV will stop, and request the CCC to allocate a public charging post for
the PEV. For point 4, the battery Soc value when the PEV connected into grid is
affected by many factors, such as the energy efficiency of the PEV, the initial Soc
when the last charging is completed, the travel way of the PEV before being
connected in, the on board passengers and loads, and so on. We believe that with
better understanding on the people’s lifestyle and the social eco-environment in the
region considered, an ‘Estimator’ program can be developed to help the vehicle
owner exactly estimate the battery Soc when his/her PEV connected into grid.

Fourthly, PEV owners’ request is confirmed and the CCC starts data preparation
for system modeling. After the vehicle owner submits his/her request, the CCC
attempts to include the proposed PEV into the V2G operation by allocating an
available charging post for it. On the server of the CCC, there is a database to
record the mappings between the location where PEV stops and all the charging
posts installed nearby. The charging posts are available on the principle of first-
proposed first-served. The allocation may be failed for two reasons: (1) There is not
any charging post located within the area where the PEV will be parked; (2) The
charging posts nearby have all been allocated to other PEVs. The CCC feedbacks
its allocation results to the vehicle owners and asks for their confirmation by the
online booking system. If the plan is confirmed, this case will be included into the
V2G operation. After that, the CCC conduct data preparation for mathematical
formulation according to the confirmed allocation plans. For the first step, it gen-
erates a set of the active charging posts as:

SACP ¼ ½A1
CP;A

2
CP;A

3
CP; . . . ;A

N
CP� ð6:14Þ

where An
CP, n ¼ 1; 2; 3; . . . ;N, represents the n-th active charging post that is

assigned to offer charging services in the next 24-h, and N is the number of the
active charging posts.

For the second step, the CCP builds up a 2D data tuple for each charging post
An
CP as given by:

An
CP ¼

Cs�1
ACP�n; Ce�1

ACP�n; EVID�1
ACP�n; BATCap�1

ACP�n; Socupper�1
ACP�n ; Soclower�1
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ACP�n; Soce�1
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where the quantities are:
Cs�k
ACP�n

the k-th charging service offered by An
CP will start at the beginning of

the Cs�k
ACP�n-th time-slot;

Ce�k
ACP�n

the k-th charging service offered by An
CP will finish at the ending of the

Ce�k
ACP�n-th time-slot;

EVID�k
ACP�n the ID Number of the PEV connected to An

CP during the k-th charging
service offered by An

CP;

BATCap�k
ACP�n

the battery capacity of the PEV connected to An
CP during the k-th

charging service offered by An
CP;

Socupper�k
ACP�n

the allowed battery Soc upper limit of the PEV connected to An
CP

during the k-th charging service offered by An
CP;

Soclower�k
ACP�n the allowed battery Soc lower limit of the PEV connected to An

CP
during the k-th charging service offered by An

CP;
Socs�k

ACP�n the estimated battery Soc value of PEV when the k-th charging service
offered by An

CP starts;
Soce�k

ACP�n the required battery Soc value of PEV when the k-th charging service
offered by An

CP ends;
KðnÞ Charging post An

CP is assigned to offer KðnÞ times charging service in
the coming one-day cycle.

Up till now, the CCC gets enough information on the PEVs, the charging posts,
and the vehicle owners’ expectations. Some other key points should be gotten
known before the CCC can carry out optimal charging planning for every charging
service, and this will be elaborated in the following sections. We must make it clear
that the scenario of V2G implementation presented herein is come out by focusing
on the essential functions V2G operation, and it does not concern any consider-
ations on economic incentives, business models or government policy makings.

6.3.2 Optimal Problem Formulation for Minimizing Load
Variance in Smart Regional Grid

The optimal charging planning is to determine the charging power at each time slot
for every charging post when it is offering charging services for PEVs. For each
charging post, its charging power in the same time slot is kept unchanged. The
objective is to minimize the overall load variance of the regional grid during the
coming one-day cycle. Hence, the problem can be formulated as:

min
XT
t¼1

1
T

Pt
Con � PAvg þ

XN
n¼1

Pt
ACP�n

 !2
2
4

3
5 ð6:16Þ
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Subject to:

Pt
Con þ

XN
n¼1

Pt
ACP�n �Pt

max; t 2 1; T½ � ð6:17Þ

PAvg ¼
XT
t¼1

Pt
Con þ

XN
n¼1

Pt
ACP�n

 !,
T ð6:18Þ

�Pmax
ACP�n �Pt

ACP�n �Pmax
ACP�n; t 2 [k¼KðnÞ

k¼1 Cs�k
ACP�n;C

e�k
ACP�n

� 	
; n 2 1;N½ � ð6:19Þ

Pt
ACP�n ¼ 0; t 2 1; T½ � � [k¼KðnÞ

k¼1 Cs�k
ACP�n;C

e�k
ACP�n

� 	
; n 2 1;N½ � ð6:20Þ

XCe�k
ACP�n

t¼Cs�k
ACP�n

Dt � Pt
ACP�n

� 	 ¼ Soce�k
ACP�n � Socs�k

ACP�n

� � � BATCap�k
ACP�n;

k 2 1;KðnÞ½ �; n 2 1;N½ �
ð6:21Þ

Soclower�k
ACP�n � SockACP�n jð Þ� Socupper�k

ACP�n j 2 Cs�k
ACP�n;C

e�k
ACP�n

� 	
;

k 2 1;KðnÞ½ �; n 2 1;N½ � ð6:22Þ

SockACP�n jð Þ ¼ Socs�k
ACP�n þ

Xj

t¼Cs�k
ACP�n

Dt � Pt
ACP�n

.
BATCap�k

ACP�n

h i
ð6:23Þ

where
Pt
ACP�n is the charging power of An

CP in the t-th time-slot;
Pt
Con is the estimated conventional power in the t-th time-slot;

PAvg is the estimated average power of the regional grid during the
coming one-day cycle;

Pt
max is the maximum total power that can be supplied by the regional grid

in the t-th time-slot;
Pmax
ACP�n is the allowed maximum working power of An

CP;
SockACP�n jð Þ is the battery Soc value at the end of the j-th time-slot when An

CP
offers its k-th charging service.

As mentioned in Sect. 6.2, it is assumed that with the development of smart grid,
the 24-h-ahead load forecasting for conventional power loads (excluding PEV
loads) can be achieved with high accuracy.
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6.3.3 Double-Layer Optimal Charging Strategy

It can be observed from the above problem formulation that the number of variables
increase linearly with the number of charging posts involved, and the number of
restraints are related to both the number of charging posts and the number of
charging services they plan to offer which is partly decided by the number of PEVs
involved. This means, with the large scale of penetration of PEVs and charging
posts, the computational complexity will become tremendously high. Therefore, a
double-layer optimal charging (DLOC) strategy is proposed for dealing with this
challenge. Figure 6.12 illustrates the scheme of the proposed DLOC strategy, in
which both the energy flow and the information flow are indicated. The basic idea is
to categorize all the charging posts in the regional grid under the administration of
several charging stations. The charging posts located in the same area, or connected
to the same node transformer can be classified into the same charging station, such
as those installed on the same streets, in the same parking lot, or in the same
residential community. In the first layer optimization (FLO), the CCC plans the
optimal operating power schedule for each charging station as a whole aiming to
minimize the overall load variance. Then in the second layer optimization (SLO),
the station control server plans the charging power for each charging post under its
governance, aiming to meet the instructions ordered by CCC which has been
generated in the first layer optimization.

Fig. 6.12 Scheme of proposed double-layer optimal charging strategy
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Let’s discuss the FLO problem first. The data tuple given by (6.12) should be
updated due to the introduction of charging stations:

CP ¼ ½CPID;CPLoc;P
max
CP ;CSID;Flag� ð6:24Þ

where the added entity CSID denotes the identity number of charging station into
which this charging post is classified. Then, the set given by (6.14) is changed to:

SCS�h
ACP ¼ ½A1�h

CP ;A2�h
CP ;A3�h

CP ; . . . ;ANðhÞ�h
CP � ð6:25Þ

where SCS�h
ACP is the set of the active charging posts in the h-th charging station,

h 2 1;H½ �, and H is the number of the active charging station in the V2G operation
for the coming one-day cycle. An�h

CP denotes the n-th active charging post in the h-th
charging station, n 2 1;N hð Þ½ �, N(h) is the number of the active charging post in the
h-th charging station. An�h

CP is also a 2D data tuple with the same structure as
illustrated in (6.15), but the entities are updated into:
Cs�k�h
ACP�n the k-th charging service offered by An�h

CP will start at the beginning
of the Cs�k�h

ACP�n -th time-slot;
Ce�k�h
ACP�n the k-th charging service offered by An�h

CP will finish at the ending of
the Ce�k�h

ACP�n -th time-slot;
EVID�k�h

ACP�n the ID Number of the PEV connected to An�h
CP during the k-th

charging service offered by An�h
CP ;

BATCap�k�h
ACP�n

the battery capacity of the PEV connected to An�h
CP during the k-th

charging service offered by An�h
CP ;

Socupper�k�h
ACP�n

the allowed battery Soc upper limit of the PEV connected to An�h
CP

during the k-th charging service offered by An�h
CP ;

Soclower�k�h
ACP�n the allowed battery Soc lower limit of the PEV connected to An�h

CP

during the k-th charging service offered by An�h
CP ;

Socs�k�h
ACP�n the estimated battery Soc value of PEV when the k-th charging

service offered by An�h
CP starts;

Soce�k�h
ACP�n the required battery Soc value of PEV when the k-th charging

service offered by An�h
CP ends.

The target variables become the operating power of charging stations at every
time slot. Thus, the objective function given in (6.16) becomes:

min
XT
t¼1

1
T

Pt
Con � PAvg þ

XH
h¼1

Pt
CS�h

 !2
2
4

3
5 ð6:26Þ
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where Pt
CS�h is the operating power of the h-th charging station at the t-th time slot.

The restraints (6.17) and (6.18) become:

Pt
Con þ

XH
h¼1

Pt
CS�h �Pt

max; t 2 1; T½ � ð6:27Þ

PAvg ¼
XT
t¼1

Pt
Con þ

XH
h¼1

Pt
CS�h

 !,
T ð6:28Þ

Moreover, restraints (6.19) and (6.20) become:

�
XNðhÞ
n¼1

nhn tð ÞPmax�h
ACP�n

� ��Pt
CS�h �

XNðhÞ
n¼1

nhn tð ÞPmax�h
ACP�n

� � ð6:29Þ

nhn tð Þ ¼ 0
1
;
;



if :
if :

t 2 1; T½ � � [k¼KðnÞ
k¼1 Cs�k

ACP�n;C
e�k
ACP�n

� 	
t 2 [k¼KðnÞ

k¼1 Cs�k
ACP�n;C

e�k
ACP�n

� 	 ð6:30Þ

where Pmax�h
ACP�n is the allowed maximum working power of the charging post An�h

CP .
The restraints (6.21)–(6.23) are set to guarantee the demanded charging quan-

tities of each charging service, and to make sure that the batteries are neither over
charged nor deeply discharged. Considering the k-th charging service that going to
be offered by the charging post An�h

CP , the charging process can be illustrated by the
change of battery Soc versus time as shown in Fig. 6.13. As long as the battery Soc
value is located in the shadow area, the restraints (6.21)–(6.23) can be satisfied.

Fig. 6.13 Variation of Soc during a charging process
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Denoted by Wk�h
ACP�n tð Þ the accumulated charging quantity from the first time slot

to the t-th time slot offered by the charging post An�h
CP in its k-th charging service, it

can be known from Fig. 6.13 that the lower boundary and upper boundary of
Wk�h

ACP�n tð Þ are given by:

Wk�h
ACP�n tð Þ��lower¼

0
Sock�h

ACP�n tð Þ��lower�Socs�k�h
ACP�n

� �
BATCap�k�h

ACP�n

Soce�k�h
ACP�n � Socs�k�h

ACP�n

� �
BATCap�k�h

ACP�n

8><
>:

;
;
;

if :
if :
if :

t\Cs�k�h
ACP�n

Cs�k�h
ACP�n � t�Ce�k�h

ACP�n
t[Ce�k�h

ACP�n

ð6:31Þ

Wk�h
ACP�n tð Þ��upper¼

0
Sock�h

ACP�n tð Þ��upper�Socs�k�h
ACP�n

� �
BATCap�k�h

ACP�n

Soce�k�h
ACP�n � Socs�k�h

ACP�n

� �
BATCap�k�h

ACP�n

8><
>:

;
;
;

if :
if :
if :

t\Cs�k�h
ACP�n

Cs�k�h
ACP�n � t�Ce�k�h

ACP�n
t[Ce�k�h

ACP�n

ð6:32Þ

where

Sock�h
ACP�n tð Þ��lower¼ max Soclower�k�h

ACP�n ; Socs�k�h
ACP�n �

Pmax�h
ACP�n t � Cs�k�h

ACP�n þ 1
� �

Dt

BATCap�k�h
ACP�n

" #
; Soce�k�h

ACP�n þ
Pmax�h
ACP�n t � Ce�k�h

ACP�n

� �
Dt

BATCap�k�h
ACP�n

" #( )

ð6:33Þ

Sock�h
ACP�n tð Þ��upper¼ min Socupper�k�h

ACP�n ; Socs�k�h
ACP�n þ

Pmax�h
ACP�n t � Cs�k�h

ACP�n þ 1
� �

Dt

BATCap�k�h
ACP�n

" #
; Soce�k�h

ACP�n �
Pmax�h
ACP�n t � Ce�k�h

ACP�n

� �
Dt

BATCap�k�h
ACP�n

" #( )

ð6:34Þ

Thus, the accumulated charging quantity from the first time slot to the t-th time
slot offered by the h-th charging station as a whole has the lower boundary and the
upper boundary, given by:

Wh tð Þ��lower¼X
NðhÞ

n¼1

XKðnÞ
k¼1

Wk�h
ACP�n tð Þ��lower ð6:35Þ

Wh tð Þ��upper¼X
NðhÞ

n¼1

XKðnÞ
k¼1

Wk�h
ACP�n tð Þ��upper ð6:36Þ

Hence, the following restraint can be derived:

Wh tð Þ��lower � Xm
t¼1

Dt � Pt
CS�h

� ��Wh tð Þ��upper;m 2 1; T½ � ð6:37Þ
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Next, the SLO problem is discussed. In the SLO, the station control server plans
the charging power for each charging post, aiming to meet the instructions ordered
by CCC which has been generated in the FLO. Therefore, The problem can be
formulated as:

min
XT
t¼1

1
T

XN hð Þ

n¼1

Pt�h
ACP�n � Pt

CS�h

 !22
4

3
5; h 2 1;H½ � ð6:38Þ

Subject to:

�Pmax�h
ACP�n �Pt�h

ACP�n �Pmax�h
ACP�n; t 2 [k¼KðnÞ

k¼1 Cs�k�h
ACP�n; C

e�k�h
ACP�n

� 	
; n 2 1;N hð Þ½ � ð6:39Þ

Pt�h
ACP�n ¼ 0; t 2 1;T½ � � [k¼KðnÞ

k¼1 Cs�k�h
ACP�n;C

e�k�h
ACP�n

� 	
; n 2 1;N hð Þ½ � ð6:40Þ

XCe�k�h
ACP�n

t¼Cs�k�h
ACP�n

Dt � Pt�h
ACP�n

� 	 ¼ Soce�k�h
ACP�n � Socs�k�h

ACP�n

� � � BATCap�k�h
ACP�n ;

k 2 1;KðnÞ½ �; n 2 1;N hð Þ½ �
ð6:41Þ

Soclower�k�h
ACP�n � Sock�h

ACP�n jð Þ� Socupper�k�h
ACP�n ; j 2 Cs�k�h

ACP�n;C
e�k�h
ACP�n

� 	
;

k 2 1;KðnÞ½ �; n 2 1;N hð Þ½ � ð6:42Þ

Sock�h
ACP�n jð Þ ¼ Socs�k�h

ACP�n þ
Xj

t¼Cs�k�h
ACP�n

Dt � Pt�h
ACP�n

.
BATCap�k�h

ACP�n

h i
ð6:43Þ

The proposed DLOC strategy can effectively reduce the computational com-
plexity. For the first layer, the number of variables depends on the number of
charging stations, which is dramatically shrunk compared to the number of all
charging posts in the regional grid. For the second layer, the optimization program
can be executed at the same time for all the charging stations. The results and
performance will be presented in the following section.

6.3.4 Case Study

Several cases are studied to assess the performance of the proposed V2G and the
DLOC strategy. A set of programs are designed to randomly generate the data
needed for simulation studies. The one-day cycle starts at 06:00 a.m. and ends at
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05:59 a.m. (next day). Also, the time slot is set to be 15 min. Some practical
situations are taken into account when designing the random data generation pro-
grams, for example, the conventional load is likely to reach peak values at noon and
in the evening, the PEVs are likely to be connected to grid at night and at noon, and
so forth.

Totally four cases with different problem scales as listed in Table 6.4 are sim-
ulated. For each case, two models are employed. One is the single-layer model
(model 1) introduced in Sect. 6.3.2 and the other is the double-layer model (model
2) proposed in Sect. 6.3.3. Figure 6.14 gives the performances of V2G operation in
selected cases 1, 3, and 4. It can be observed that the overall load curves are
successfully flattened with the V2G operation of the PEV loads. What is more, it
can also be found that the peak value of the total load is slightly lower than that of
the conventional load, attributed to the energy feedback of the PEVs. This dem-
onstrates that power grid is able to contain newly added PEV loads to some extend
without boosting its capacity, if the V2G operation can be effectively carried out.

Calculation results demonstrate that the PEV load curves obtained by using
single-layer model (model 1) and the other is the double-layer model (model 2) are
almost the same. This implies that the proposed DLOC strategy agrees very well
with the design objectives. However, this does not mean that model 2 is exactly
equivalent to model 1. Figure 6.15 gives the optimal charging schedules of the 10
charging stations in case 1. It can be found that there are tiny differences between
the results obtained by using these two models. Fortunately, these tiny differences
will not cause obvious degradation in the performance of our proposed DLOC
strategy.

In addition, Fig. 6.16 gives the optimal charging schedules of two selected
charging post (CP #8 and 69) in case 1 obtained by using two models. Both
charging posts are assigned to offer five charging services (I-IV) by the CCC in the
coming 24-h. The upper part of each plot gives the resulted optimal charging power
provided by the corresponding charging post. With these regulated charging

Table 6.4 Specifications and computing time consumed

Case 1 Case 2 Case 3 Case 4

Number of PEVs 100 500 1,000 2,000

Number of
charging posts

100 500 1,000 2,000

Number of
charging stations

10 22 31 44

Number of
services

336 1,738 3,433 6,919

Computing time
(model 1)

1.38 s 12.72 s 32.60 s 81.67 s

Computing time
(model 2)

0.64
(layer 1) + 0.38
(layer 2) = 1.02 s

1.51
(layer 1) + 1.17
(layer 2) = 2.68 s

2.32
(layer 1) + 2.06
(layer 2) = 4.38 s

3.67
(layer 1) + 3.60
(layer 2) = 7.27 s
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profiles, the electricity charging demand of the PEV connected can be guaranteed,
moreover, the minimized overall load variance can be achieved. The lower part of
each plot illustrates the battery Soc curve of the PEV connected to the

Fig. 6.14 Calculated power load profiles with V2G operation: a case 1, b case 3, c case 4
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Fig. 6.15 Calculated optimal charging schedules in case 1: a charging station # 1, b charging
station # 2, c charging station # 3, d charging station # 4, e charging station # 5, f charging station
# 6, g charging station # 7, h charging station # 8, i charging station # 9, j charging station # 10
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Fig. 6.16 Calculated optimal charging services in case 1: a CP #8 with model 1, b CP #8 with
model 2, c CP #69 with model 1, d CP #69 with model 2
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corresponding charging post by engaging the optimal charging pattern. Also, subtle
distinctions can also be observed in the results of the two models.

The two models are solved on the same workstation (CPU 3.20 GHz, RAM
6 GB), and the computing time consumed are listed in Table 6.4. For model 2, the
time consumed in the FLO plus the longest time consume in the SLO is given for
comparing with that consumed by calculating the model 1. It clearly demonstrates
that the proposed DLOC strategy can dramatically reduce the computational
complexity.

6.4 Conclusions

In this chapter, the potential in minimizing the power load variance of V2G
operation is thoroughly investigated. Two scenarios one for the household smart
micro-grid and the other for smart regional grid are discussed.

In the scenario for household smart micro-grid, the mathematic model of the
optimal charging problem is built up. Then, study of several cases is conducted, and
it demonstrated that by planning the charging profiles of PEVs involved the vari-
ance of the load power in the micro-grid can be dramatically reduced. Several
related issues, such as energy losses, subsidy mechanism, impacts of the charging
demands, and impacts of the onboard battery capacity are also investigated.

In the scenario for smart regional grid, a possible method of V2G implemen-
tation is elaborated. The key issue is how to conduct effective communications
regarding the crucial information on the power grid, the charging posts, and the
PEVs, among the central control center and the PEV owners. An online booking
mechanism is introduced to address this challenge. Then, the problem concerning
optimal charging for minimizing the power load variance is mathematically for-
mulated. With the increase of the scale of PEVs and charging posts involved, the
computational complexity may become tremendously high. Therefore, a double-
layer optimal charging strategy is proposed. Case studies also demonstrate that the
V2G operation can help flatten the overall power load curves and it enables power
grid to contain newly added PEV loads to some extent without boosting its
capacity. Comparative study shows that the proposed double-layer optimal charging
strategy can dramatically reduce the computational complexity.

The simulation results indicate that tremendous economic and social interests
can be derived from V2G operation of PEVs, which states the reasonability and
necessity for developing V2G. Nevertheless, there is still a long way ahead of us
before it can be implemented in practice. Two major prerequisites are the devel-
opment of smart grid and the improvement of massive data processing capability.
Some other techniques, such as conventional power load forecasting, floating
electricity prices, long life-cycle batteries, and so on, should be further developed in
order to make V2G a more pragmatic issue.
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Chapter 7
A Model Predictive Control-Based
Approach for Plug-in Electric Vehicles
Charging: Power Tracking, Renewable
Energy Sources Integration and Driver
Preferences Satisfaction

Alessandro Di Giorgio and Francesco Liberati

Abstract This chapter presents a model predictive control (MPC) framework for
controlling in real-time the charging processes of a set of plug-in electric vehicles
(PEVs) located in a load area (LA), namely a distribution system operator (DSO)-
defined portion of the grid under a secondary substation. The LA considered in the
reference scenario hosts remotely controlled, IEC 61851-compliant electric vehicle
supply equipment (EVSE), where the PEVs are plugged to recharge the batteries,
and a share of generation from renewable energy sources (RES). The proposed
framework works regardless of the EVSE technology and power level (direct
current, alternating current, single phase or three phases). The controller, named
load area controller (LAC), works under the requirements of: (i) seeking costs
minimization while respecting drivers’ preferences on the amount of energy to
recharge (or desired final state of charge) and the time flexibility for recharging
specified by the driver; (ii) tracking of a LA-level power reference established by
the DSO on a day-ahead basis and possibly updated intraday; (iii) integrating RES
by, e.g., maximizing the share of photovoltaic power absorbed by the LA, thus
ensuring economic saving while avoiding the injection into the grid of possibly
intermittent power profiles. The design of the controller is based on the analysis of a
possible future charging scenario in an unbundled electricity system, but is general
enough to be tailored to a large number of possible regulatory frameworks and
business models. Starting from the available equipment and the role of actors
possibly involved, use cases are presented and controller functional requirements
and technical specifications identified; based on that, the reasons for using MPC
methodology are explained and the discrete time optimal control problem at its
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basis is presented. The issue of estimating the battery state of charge is discussed,
which constitutes a delicate point for the deployment of the control system in a real
environment. A set of incremental simulations is presented in order to validate the
concept and show its effectiveness.

Keywords Plug-in electric vehicles charging control � IEC 61851 � Model
predictive control � Demand side management � Renewable energy sources
integration

7.1 Introduction

During the last decade regulatory and technological advancements have been
quickly driving the renovation of legacy power systems towards the future smart
grids. The unbundling process has created new grid players and some others are
expected to arise in coming years while progressively emerging new technical
solutions for grid efficiency and interdependences with other systems. This is the
case of the mobility sector, where a significant shift from fossil fuels to electro-
mobility is expected for the coming years, creating huge opportunities and chal-
lenges in the way distribution electricity grids will be operated.

On one hand relevant investments for network upgrade and the establishment of
new business models are necessary [1], on the other massive penetration of plug-in
electric vehicle (PEV) technology will have a significant technical impact, as
highlighted in [1–4]. A first consequence will be a relevant change in the magnitude
and shape of distribution lines loading, considering the significant difference
between the traditional electricity demand and the current mechanical power on the
road [5]. Further, strengthening the coupling between transportation and electrical
systems will increase uncertainty and intermittency of load profiles, which are
typical “side effects” associated with renewable energy sources (RES). As a result,
grid operation will become more complex, in terms of load balancing, survivability
of network elements and overall power quality [6], asking for charging strategies
aimed at providing the new load with a more regular behavior.

Nevertheless, PEV technology also represents a valuable opportunity [7]. The
rapid integration of RES, recognized as a priority for an eco-sustainable growth of
industrialized countries [8], asks for the availability of negative and positive bal-
ancing power as a basic requirement for mitigating the effects of RES volatility on
grid stability and reliability [9]. Depending on the size and placement of RES, the
balancing task can be performed at different levels, according to the basic principle
“the smaller the distance between renewables and consumption, the higher the benefit
for the grid”. In this sense early works [10] have recognized that a proper control of
PEVs charging at fleet level can contribute to meet this requirement. Such result can
be achieved by combining the control offleet charging power [11] with the control of
reverse energy flows from the PEVs to the grid (vehicle to grid—V2G) [5],
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then exploiting the flexibility of drivers through proper demand side management
(DSM) programs and the huge potential of PEVs of acting as distributed storage
systems. In the light of above a charging control system appears as the enabler of local
matching between demand and supply, and the regulator of power flow exchanges
between the charging area and the distribution grid, according to the needs of the
distribution system operator (DSO) and the distributed energy resources (DER)
operator owning RES in the charging area.

In this chapter, a model predictive control (MPC) framework for automatic
control of a set of charging sessions running in a load area (LA) is discussed. A LA
is a DSO-defined portion of the distribution grid under a secondary substation [12].
In the considered scenario, the LA is equipped with photovoltaic (PV) plants and
hosts a set of remotely controlled, IEC 61851-compliant electric vehicle supply
equipment (EVSE), also known as charging stations (CSs), which are the stations
where the PEVs are brought and plugged in by the PEVs’ users to have the batteries
recharged. The proposed framework works regardless of the particular EVSE
technology and charging power level (direct current, alternating current, single
phase or three phases). The controller, named load area controller (LAC), works
under the main requirements of: (i) pursuing the minimization of the charging costs
to be sustained by the PEVs’ users, while respecting the PEVs users’ preferences
regarding the maximum available time for charging and the amount of energy to be
recharged (or the desired final state of charge (SoC)); (ii) tracking of a LA-level
power reference defined by the DSO according to its own criteria (as clarified in the
following) on a day-ahead basis and possibly updated intraday; (iii) favoring the
integration of RES into the grid by, e.g., maximizing the share of PV power
absorbed by the LA and flattering the overall LA load profile, thus avoiding the
injection into the grid of possibly intermittent power profiles and hence resulting
into greater economic benefits for both the DSO and the RES operators. As regards
the costs minimization requirement, the LAC is designed to work under both
designed and market indexed pricing models, and is able to react to DSM signals.
Secondly, differently from other works in literature [4, 13], which integrate grid
constraints directly in the charging control problem formulation (via, e.g., power
flow constraints), this work, in line with the electromobility business chain, regards
the LAC as a software module belonging to a specific electromobility business actor
(e.g. the EVSE operator, i.e. the business actor managing the EVSEs) and able to
provide smart charging services to the interested actors. In this way, in a DSO-
oriented scheme for example, the DSO works out (via its SCADA/distribution
management system (DMS) running dedicated power flow routines) a desired daily
LA-level power reference for electromobility, to ensure safe and efficient operation
of the grid. The LAC takes the DSO-generated power reference as an input and
ensures, given the power tracking requirement, that the charging sessions are
dynamically updated so that the aggregated charging power matches the reference.
RES integration can be achieved either via the establishment, by the DSO, of a
proper LA power reference taking into account RES profiles, or, as shown in this
work, by ensuring the maximization of RES self-consumption by the LA
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(by properly controlling the charging processes); for this purpose the controller is
able to update the control when receiving a new RES generation forecast.

The control problem is formulated as a MPC problem, based on mixed integer
quadratic programming. An instance of the problem is built and solved by the LAC
on a periodic basis considering all the meaningful events triggering the controller
(such as, a new user request, a price signal, a volume DSM signal, notifications of
availability of new RES forecasts, etc.). The objective function is given by a linear
weighted combination of the (controlled) cost for satisfying the charging requests
currently managed, of the L-2 norm of the error between the aggregated (controlled)
charging power and the LA power reference, and a term for RES self-consumption
maximization. The control variables are given by the PEV charging rates. They are
either Boolean or semi-continuous in nature, depending on if on-off charging is
chosen (as reasonably the case for slow charging) or the charging power is mod-
ulated (when different from zero) between a minimum positive value and a maxi-
mum positive value, in accordance with standard IEC 61851 (this latter choice
being relevant in case of high-power charging processes); discharging (i.e. V2G) is
also considered. Constraints are given by User Preferences (UP) (thus directly
integrated at problem formulation level, and which can be updated at any time by
the driver), by technical limits at EVSE-level imposed by IEC 61851, by technical
limits of the PEV battery, by the overload power at LA level, etc. In particular, a
battery control model is integrated in order, for the LAC, to be able to predict the
future SoC of the PEVs based on the assigned charging load profile and the measure
or estimation of the current SoC; considering the current unavailability of real time
data about the battery SoC from car manufacturers, two practical strategies are
reported for SoC estimation, based on the use of (i) meter readings and; (ii) a very
detailed, highly non-linear model [14] of the batteries considered representative of a
real battery pack. A set of simulations is proposed in order to validate the concept
and show its effectiveness.

The remainder of the chapter is organized as follows. Section 7.2 discusses the
state of the art in control approaches for PEVs charging. Section 7.3 presents the
reference charging scenario, detailing the role of actors involved and components
making part of the architecture. In Sect. 7.4 the considered use cases are presented,
and consequently a set of functional requirements and technical specifications for
the controller are listed. Based on that, the proposed control system flow of oper-
ations and the open loop optimal control problem at the basis of the closed loop
MPC approach are presented in Sects. 7.5 and 7.6, respectively. Section 7.7 is
dedicated to the delicate point of SoC estimation, which is necessary to achieve a
closed loop control system. Simulation results are shown in Sect. 7.8 and finally the
conclusions are drawn in Sect. 7.9. Starting from some key concepts proposed
within the reference ADDRESS project [12] like the one of LA, aggregator and
DSM signals, the solution reported in the chapter is the result of the investigation
performed by the authors in the framework of the European Union SMART V2G
[15] and MOBINCITY [16] projects, where the local charging control problem has
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been studied on an incremental basis, collecting use cases, requirements and
specifications through the interaction with DSOs and other players of the electro-
mobility sector.

7.2 State of the Art and Proposed Innovation

The emerging concept of smart grid is based on the deployment of a multi-level
control architecture, with the aim of reaching a deeper integration between gener-
ation and demand. Demand response, DSM and active demand are terms which all
refer to new central paradigms evoked for referring to a direct influence of demand
on the technical and economical balance of the grid [17]. Load management
problems have received an increasing attention from academics and industry during
the last decade. Industry has been the driving sector for many years and it is also the
first one for which pioneer DSM programs have been proposed [18–20]. Load
shifting concept is being deeply investigated also in the residential sector, with the
purpose of optimally controlling smart household appliances, storage devices and
local renewable energy sources [21–23].

The concepts established in the aforementioned works in the field of load
management find a natural application also to electromobility. An interesting
approach for coordinating charging operation of multiple EVs in a smart grid
system is presented in [13]. A maximum sensitivities selection (MSS) optimization
problem is established, with the aim of minimizing cost of energy consumption and
network losses. PEVs are divided into priority groups, depending on UP and
sensitivity of system losses due to each PEV. Moreover, voltage constraints at each
EVSE of the network and congestion constraints are considered. Grid variables are
computed through simulation, via a standard Newton-based load flow routine. The
main drawbacks of this work are: (i) charging control signals are continuous in
nature but not IEC 61851 compliant; (ii) there is not a strict control over the time
needed to provide the charging service and on the desired final state of charge of the
batteries; (iii) backfeeding is not considered. These are rather common drawbacks
in the relevant literature.

A similar approach is presented in [24], where the authors set up an optimization
problem seeking to maximize the amount of energy available for charging opera-
tions, while considering constraints on voltage levels, charging rates changes,
network congestion and thermal loading of network components. Voltage levels
and thermal loadings are calculated based on load flow analysis. Interestingly, a
weighted objective function is proposed, in order not to penalize charging points
characterized by a high sensitivity (in radial networks, voltage level is generally
more sensitive to addition of load far from the transformers). Among the drawbacks
of the work there is the fact that charging control signals are continuous in nature
but not IEC 61851 compliant; moreover, UP are poorly modelled (the overall
energy available for charging operations is maximized, not taking into account the
precise amount of energy demanded by each PEV, or the time preferences for

7 A Model Predictive Control-Based Approach … 207



charging operations set by the users). Also in this work the authors do not take into
account the possibility of delivering active demand services to the grid.

An original control approach is presented in [25]. The charging process is
controlled by using a distributed additive increase multiplicative decrease (AIMD)
feedback control algorithm, known for its use in telecommunication resource
management problems. The main advantage of the approach is related to its dis-
tributed nature, which keeps low the number of communications needed to achieve
the objectives. The main drawbacks are also related to the AIMD concept. It
requires that the PEVs have the ability to vary their charge rate in a continuous
manner from zero to a maximum value, a very common assumption which, again, is
not compliant with the standard IEC 61851. Moreover, the vehicle-to-grid concept
is not considered in that work.

Another interesting contribution from the control methodology point of view is
given in [26], where the authors apply sliding mode control principles to achieve
stability and robustness with respect to system uncertainties. The authors derive a
simple centralized control strategy in which a unique charging rate signal for all the
PEVs is adjusted in order for the aggregated charging power profile to track the
available power trajectory resulting from both renewable and traditional generation.
The interesting achievements of this work are the stability and robustness to the
collective effects of system uncertainties (in particular, drivers’ arrival at the EVSE
and power generation from RES). However, only the high level behavior of the
system is investigated; driver preferences are not considered in the problem for-
malization and the applied control is the same for all the PEVs. So doing the
benefits for the drivers are not differentiated in relation to their degree of flexibility.

Another work taking inspiration from communication engineering is [27], in
which the author proposes a distributed framework for PEVs charging, based on the
concept of congestion pricing in Internet traffic control. The work is based on
concepts already well known and studied also in smart grid research: each PEV is
modeled as an agent with an associated utility function. The objective of the agent
is to maximize its individual surplus (the utility minus costs). The cost of energy is
calculated by the agent based on the unit price of energy, which is centrally updated
depending on the state of congestion of the network. Based on this information,
agents update their charging rates, depending also on the so called “willingness to
pay preference”, a parameter which has a similar role as the quality of service class
parameter in telecommunications. The work does not include network constraints
and does not give detailed suggestions for the selection and tuning of utility
functions (which is the delicate point of such an approach). Therefore, it is not clear
how UP could be modeled via utility functions.

Concluding, works in literature mostly differentiate depending on: (i) the control
architecture (centralized control schemes opposed to decentralized control
schemes); (ii) the control methodology (optimization techniques, optimal control,
nonlinear control, telecommunication algorithms, etc.); (iii) the nature of control
variables (on/off signals or continuous charging rate signals); (iv) quality and
effectiveness of UP modeling; (v) inclusion of backfeeding in the problem for-
mulation. In this respect, the characterizing aspects of this work are:
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• The charging rate is modelled as a Boolean variable or as a semi-continuous
variable (in compliance with the standard IEC 61851), depending on the max-
imum allowed charging power

• Backfeeding is also modelled in a Boolean or semi-continuous manner. Now-
adays there is not a commonly accepted and standardized vision on V2G power
from the technical point of view. By reasonably extending the technical
requirement of the charge mode to backfeeding, it is shown the relevance of
such a concept for the fulfilment of grid and drivers’ requirements

• The controller works on a time driven basis. It updates the control signals
periodically, taking into account all the events triggering it during the sampling
period, such as charging requests, user preferences updates, RES forecast
updates and DSM signals, then adapting its behavior to the uncertainty of
mobility dynamics and different grid players’ needs

• The expected cost for the charging service is notified to the driver just after the
charging request is made. A modification to the cost in reaction to possible DSM
signals is taken into account in order to establish the minimum rebate for
drivers’ acceptance

• Each PEV is associated with its own control signal, which is built and updated
according to the time of arrival, the UP and the user flexibility in terms of
parking time. So doing, the controller is able to exploit the time varying nature
of the energy price and the backfeeding capability to guarantee a higher eco-
nomic benefit to the drivers with the higher level of flexibility

• The controller performs the tracking of an aggregated power reference for
charging. By properly managing drivers’ flexibilities, the effects of multiple
charging sessions are mitigated so that large excursions in power withdrawal are
avoided

• The controller acts so as to maximize the self-consumption from PV generation,
then mitigating the intermittency of generation and allowing the penetration of
RES into the electricity system

• Battery aging is taken into account through the inclusion of a depreciation term
in the objective function which depends on the control. So doing, it is possible
to achieve a balance between the benefit coming from multiple activations of the
battery and the decrease in the battery life cycle

• The state of charge is used as feedback signal for control purposes.

It is to remark that, although grid constraints could be included in the problem
formulation, the peaks shaving of charging power results in acceptable losses and
voltage levels, as shown in [13]. In this sense, differently from most of the works
appearing in the relevant literature, in which the aggregated power can freely evolve
together with other physical variables within given thresholds, the power reference
here considered for tracking purpose can be seen as a signal validated by the DSO
for a reliable operation of the electrical infrastructure, in compliance with an un-
bundled scenario where, in principle, the owners of the charging infrastructure and
the electricity grid are two different grid players, as detailed in Sect. 7.3.
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7.3 Charging Scenario

7.3.1 Actors and Components

The charging scenario considered in this chapter (Fig. 7.1) is limited to a set of
PEVs connected to EVSEs located in the same LA, the size and topology of which
are established in advance by the DSO. The sample LA considered in the picture is
represented by the portion of the distribution grid under a secondary substation;
however, its extension can be further limited, as established within the ADDRESS
project [12]. A PV generator is also connected in the LA and managed by a DER
operator. The owner of the charging infrastructure is supposed to be an EVSE
operator, which makes the EVSEs available to drivers having a retailing contract
with qualified electric vehicle service providers (EVSPs); the charging sessions are
managed in real time by the LAC, a software module hosted by the EVSE operator
back-end, the basic functionality of which is to control the power withdrawals by
dynamically solving a load shifting problem according to drivers’ contracts and
needs, PV generation forecasts received by the DER operator and a set of boundary
conditions established by the DSO on a day-ahead and intra-day basis.

At current time, pioneer charging infrastructures in operation or used within
demonstration projects are typically owned by the DSO itself, due to the need of
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validating the system and understanding the best way to manage it while the
penetration of PEVs increases. For the coming future, as a consequence of the
unbundling process driving the renovation of electricity sector in a large number of
industrialized countries, the idea of establishing EVSE operator companies as
owners of local charging infrastructures appears reasonable. As regards this chapter,
in absence of a commonly accepted business and regulatory framework, the control
system presented in the following is sufficiently general to cover the proposed
reference scenario and also a number of other possible situations, such as: (i)
EVSPs competing in the LA maintaining the ownership of the EVSEs or not (which
implies static or dynamical EVSEs assignment, respectively); (ii) a DSO directly
controlling the service and making available the metering data to the EVSPs for
billing purpose only; (iii) a municipality which guarantees the charging service
based on a bilateral energy contract subscribed with a generation company. Finally,
also the concept of LA is sufficiently general to be tailored to specific DSO needs.

The main actors involved in the reference scenario are the PEV drivers, the DSO,
the EVSP, the EVSE operator and the DER operator [28], the role of which is more
specifically detailed in the following.

• Driver. It is interested in obtaining the charging service at low price and in
respect of his/her UP. The PEV driver subscribes a contract for charging service
provisioning with an EVSP, receiving an radio-frequency identification (RFID)
card for the authentication at the EVSE; depending on his/her flexibility in PEV
charging, the contract establishes if the charging has to be uncontrolled (always
at maximum power) or “smart” (power modulation); in the latter case some
additional clauses can regard incentives for the acceptance of power modulation
and the participation in DSM programs, and additional costs for the update of
UP during the charging

• DSO. It is the owner of the electricity distribution infrastructure and is
responsible for the safe operation of the network. It establishes maximum and
reference power withdrawal at LA level on a day-ahead basis. In particular, the
reference power curve for electromobility could be established by the DSO
according to a range of criteria, with the possible objectives of, e.g., (i) ensuring
safe operation of the network (e.g. by choosing flat or shaved profiles); (ii)
supporting network through, e.g., balancing of peaks from RES; (iii) ensuring
that the load profiles at primary substation level agreed on a day-ahead basis
with the transmission system operator are met (i.e. by properly choosing the
references for the LACs “under” the primary substations in question), etc.
Furthermore, the presence of a tunable reference for the LAC controllers is a
degree of flexibility which could be exploited in the future by broader control
schemes for optimal balance of the energy resources in a macro load area, as
explained in [29]. Also, depending on the grid status acquired in real time by the
SCADA system and its possible evolution, the DSO is expected to trigger the
EVSE operator with DSM signals, then calling for charging rescheduling, and
provide it and flexible drivers with a remuneration which depends on the grid
operation saving coming from the rescheduling action
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• EVSP/Retailers. Business companies qualified to act in the electricity markets
for the acquisition of the electric energy and to offer proper energy contracts to
the drivers. As a result of the day-ahead market trading, each EVSP/Retailer is
associated with daily energy and cost profiles, with hourly resolution. Based on
that, EVSP/Retailer defines daily energy tariffs for the drivers, which can be the
same every day or indexed to the market; also, the tariffs can include incentives
for flexible drivers participating in DSM programs. Contract schemes including
DSM are expected to be key elements allowing PEVs to be part of a future intra-
day local balancing market, where managing short term requirements for the
balance of demand and supply from traditional and renewable energy sources;
as a matter of fact the EVSP can play the role of intermediary between grid
players asking for power modulation and the drivers, taking a margin from the
provided remunerations

• DER operator. It is the owner of PV generators installed in the LA. In order to
support the maximization of the hosting capacity and then sustain its business, it
provides the EVSE operator with generation forecasts at LA level, then enabling
the local demand/supply matching. Also, the DER operator is expected in the
future to trigger grid players with DSM signals for charging rescheduling

• EVSE operator. It is the owner of the charging infrastructure; it allows each
charging session to take place only after an authentication process involving an
EVSP, aimed at verifying the existence of an energy contract for the driver
making the request. Charging processes are managed according to drivers’
contract and UP, PV generation forecasts and boundary conditions established
by the DSO at LA level. It is remunerated by the EVSP, the DSO and DER
operator, as a consequence of its ability to provide the charging service to
drivers, assure the respect of grid requirements and minimize the effect of
fluctuating power generation.

The equipment making part of the reference architecture can be summarized as
follows:

• Plug-in electric vehicles. Fully PEVs [30] are considered, characterized by the
following technical parameters: (i) the capacity of the battery pack; (ii) the input/
output battery performance coefficients; (iii) the maximum and minimum
allowed charge levels and; (iv) the maximum and minimum charge/discharge
rates

• EVSE. Depending on the circuit and on the current and voltage levels, different
charging levels are today available [31]. This chapter deals with two different
kinds of slow charging taking place at 230 V voltage level: (i) single-phase
charging with 16 A maximum current (about 3.6 kW) and three-phase charging
with 32 A maximum phase current (about 22 kW), being them quite common in
practice; however the proposed control algorithm is also suitable for other
charging levels. The power flow from the EVSE to the PEV cannot be varied
continuously from zero to the maximum value: the standard IEC 61851 estab-
lishes that, beyond the standby mode (no power flow), the charging current has
to be in the range from 6 to 48 A, being then a semi-continuous variable. This
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range can be further limited by the EVSE manufacturers, as for the case here
considered

• EVSE operator back-end. It is the charging monitoring and controlling platform;
it allows drivers authentication and EVSE socket unlock, monitoring of EVSE
meter readings and remote control of the charging current. It represents the heart
of the infrastructure, managing in real time data of different players and able to
react to different kind of events like charging requests, forecasts updates and
DSM signals for charging rescheduling. It hosts two main subsystems:

– The EVSE operation, responsible for driver authentication, socket unlock,
events recording, trigger of LAC, power to phase current conversion and
communication of load profiles to the EVSEs for actuation to the PEVs

– The Load Area Controller, a control entity logically acting at LA level,
responsible for real time computation of the charging power. The LAC
calculates the control signals for each ongoing charging session, namely the
power withdrawal over the time and the budgeted charging costs for drivers.

From the communication point of view, it is assumed that a data connection can
be established between (i) the PEV and the EVSE (e.g.: via power line, wireless,
GSM, etc.); (ii) the EVSE and the EVSE operator back-end (e.g. via the Internet).
Reference documents on this topic are IEC 61851 and IEC 62196 and ISO 15118.

7.3.2 Use Cases

Four relevant use cases are considered:

• UC1: charging request. The driver arrives at the EVSE site, makes the
authentication through its RFID card and plugs the PEV; he/she makes a
charging request by using the dashboard of the EVSE (or a mobile Internet
enabled device), specifying the PEV model, initial state of charge as read on the
PEV dashboard and the following UP:

– The desired final level of charge
– The time at which the charging process can start (typically the current time)
– The time within which the charging process has to be terminated.
This is in the following called a “charging request (CR) event”. The control
system is expected to notify the driver of the optimal charging cost and to
provide the EVSE with the optimal charging load profile

• UC2: user preferences update. During charging the driver realizes to need the
PEV charged at the desired level of charge before the departure time declared
when making the charging request, then he/she sends an update of the UP
(specifically the departure time) to the EVSE operator back-end by using an
Internet enabled device. In the following this is referred to as “user preferences
update event,” for which the control system is expected to react by updating the
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load profiles for all the ongoing charging sessions and calculating a new bud-
geted cost for the driver. This event represents the breach of the charging
conditions established at the moment of making the charging request; then there
is no need of keeping the original budgeted cost as target for the whole charging
session and a new one for the remaining part of the charging session has to be
calculated

• UC3: forecast update. In this case the DER operator notifies the EVSE operator
back-end of an update in PV generation forecast for the coming hours. In the
following, this is referred to as “forecast event”. The control system uses this
new data as boundary condition for the future calculations, and is expected to
update the load profiles for the ongoing charging sessions

• UC4: demand side management. In this case the involved actor is the DSO,
which notifies the EVSE operator back-end of an intra-day change in the ref-
erence available power for a specific temporal slot (volume signal). The control
system is expected to react to this event by updating the control signals for the
EVSE and evaluating the related changes in the cost for flexible drivers, which
gives rise to minimum rebates for them.

7.4 Controller Requirements and Specifications

7.4.1 Functional Requirements

The analysis of the proposed use cases results in requirements and specifications for
all the involved equipment. In the following, a set of requirements and specifica-
tions are reported, to be intended as referred to the LAC component, the design of
which represents the focus of this chapter. The functional requirements for the LAC
can be broken down into categories as follows, depending on the grid player asking
for them:

• Driver perspective:

– The LAC has to be able to provide each individual EVSE with a cost-
effective charging power profile which satisfies driver preferences on
charging

– The LAC has to be able to provide the budgeted cost for charging in
response to a charging request and to guarantee a waiting time for the driver
in line with a real time application

– The LAC has to be able to guarantee that the real cost evaluated at the end of
the charging session does not differ significantly from the budgeted one.

• DSO perspective:

– The LAC has to be able to flatter the aggregated charging curve in the LA
while managing the dynamical and asynchronous arrival of charging requests
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– The LAC has to be able to provide ancillary services for short term grid
needs, in reaction to price/volume signals

– The LAC has to be able to produce a schedule of the control signals both for
the present and the coming hours, so that a lack in communications from the
EVSE operator back-end to the EVSEs does not preclude the actuation of the
controlled load profiles, even if suboptimal.

• DER operator perspective:

– The LAC has to be able to maximize the self-consumption from PV while
managing the dynamical and asynchronous arrival of charging requests, then
minimizing the injection offluctuating power profiles into the distribution grid.

7.4.2 Technical Specifications

The technical specifications for the LAC are as follows:

• The aggregated cost for charging has to be minimum
• The budgeted cost for charging has to be available in response to each charging

request
• The difference between the real cost and the budgeted one must not exceed a

given bound
• The minimum rebate for drivers has to be calculated in reaction to DSM signals
• The charging can take place only during the time period notified by the driver

when asking for service
• The final level of charge has to be the one notified by the driver when asking for

service
• Self-consumption from PV has to be maximized
• The net aggregated power withdrawal in the LA has to track the reference given

by the DSO
• The tracking error of the net aggregated power reference has to be minimum
• The net aggregated power withdrawal must not exceed a given threshold
• The power flow for 22 kW three-phase charging has to be limited according to

the standard IEC 61851
• The gradient of power flow over the time for 22 kW three-phase charging has to

be limited
• The power flow for 3.6 kW single-phase charging has to be subject to on/off

control
• During charging, the state of charge must not exceed a given upper bound
• During charging, the state of charge must not be lower than a given lower bound
• The number of charging sessions managed simultaneously has to be compatible

with the size of a typical LA
• Feasible suboptimal control and cost have to be provided if a given allowed

maximum computational time is overcome.
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7.5 Control System Working Logic

The plant to be controlled is constituted by a time varying set of charging PEVs,
while the controller to be designed has to work taking into account a set of
boundary conditions including the UP established by the drivers, the power ref-
erence established by the DSO, the PV generation forecast provided by the DER
operator and the energy tariff, all of them subject to possible updates during the
operation. Considering the heterogeneity of PEVs to be charged, and the stringent
objective to provide them with the desired level of charge at a given time, it is
reasonable to let the controller relying on a PEVs SoC prediction model and the
measure or an estimation of the PEVs SoC as feedback signal. Also, considering the
use of digital systems and communications in a real implementation (e.g. the
electronic meter hosted in the EVSE), it is reasonable to let the controller work in a
discrete time framework. All these considerations suggest to design a MPC
framework, by which the optimal control (the load profiles for the PEVs) over a
specified control horizon is obtained at each sampling time by retrieving the PEVs
SoC and solving an open loop optimal control problem. A principle scheme is
reported in Fig. 7.2. The problem to be solved at each iteration can be based on a
target function to be minimized taking into account the cost for charging and the

t

CONTROLLER PLANT

CONTROL SoC

Forecast

CR

CR

CR

CLOCK

Fig. 7.2 Control system concept

216 A. Di Giorgio and F. Liberati



tracking error, subject to a set of constraints modeling the technical specifications
previously detailed, including the main one of guaranteeing the desired PEVs level
of charge.

The optimal solution found at each iteration of the algorithm is intrinsically
open-loop, loosing optimality over the time as a consequence of new events trig-
gering the controller. This issue is solved by collecting the new boundary condi-
tions and iterating optimization at the next sampling period; as customary in MPC
system design, the new calculated control sequence replaces the portion of the
previous control sequence that has not been actuated yet. Then the calculation of
control is time-driven, while the update of boundary conditions is event-based. This
approach allows to properly manage system model inaccuracies and react to the
asynchronous dynamics of the environment, whatever the arrival frequency of new
events will be.

In the light of above, each sampling period is characterized by the same base set
of sequential steps and a number of possible events, as shown by the sequence
diagram reported in Fig. 7.3. More in detail, the considered flow of operations is as
follows:

Wait for next 
time slot

kT + T
e.g. 10:03

(K+1)T+ T
e.g. 10:08

LAC

TIME

EVSE
OPERATION EVSE

EVSE 
Operation 

Timing
kT

e.g. 10:00

(k+1)T
e.g. 10:05

TIME

EVSE 
Timing

Computation

Actuation

Load profile Phase current

T

Trigger

Meter readings

GRID 
PLAYERS

…

Events

Collecting
events

EVSE OPERATOR BACK-END

Fig. 7.3 Sequence diagram
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• Each EVSE sends the metering data to the EVSE operation module, including
the energy absorbed since the beginning of the charging session, the current
power withdrawal and the current SoC, in case it can be retrieved and com-
municated by the PEV

• The EVSE operation collects all the events coming from drivers, DSO and DER
operator

• The EVSE operation triggers the LAC providing it with all the new boundary
conditions

• The LAC calculates the load profiles and sends them to the EVSE operation.
Also the budgeted cost for charging in case of a new charging request is pro-
vided (not reported in the figure)

• The EVSE operation converts the load profiles to phase current profiles,
depending on the three-phase or single-phase nature of the charging sessions,
and sends them to the EVSEs

• At new sampling time, EVSEs actuate the control signals.

Considering the time needed by the LAC to solve the open loop optimal control
problem, it is important to remark that, though the EVSE operation and EVSEs use
the same time resolution T, the related sampling instants have to be shifted by a
proper time period Dt\T. This precaution, together with the choice of a proper
timeout for the solver, guarantees that the new control signals are actually available
(i.e. they have been computed) at the moment in which the actuation command is
given (i.e. when they have to be sent to the EVSEs for actuation). As far as
concerns the meter readings from the EVSEs, this data can be used to build an
estimation of the PEVs SoC in case a direct measure is not available; details on this
point are given in Sect. 7.7.

7.6 Problem Formalization

The following subsections detail the discrete-time, open-loop optimal control
problem that the LAC solves each time it is triggered by the EVSE operation and
the PEVs’ SoC feedback is estimated. The mathematical formulation of the problem
is discussed starting from the objective function and then detailing the different set
of constraints considered. Finally, in the last subsection, an equivalent mathematical
formulation of the problem, suitable for implementation on the calculator, is given.

7.6.1 Target Function

Let T denote the discretization step of the optimal control problem and I the first
time interval of problem definition (i.e. the time when the LAC is triggered for
computation). The target function J can be written as
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J ¼ Jcost þ JDER þ Jreg ð7:1Þ

where: (i) Jcost accounts for the cumulative cost associated to the ongoing controlled
charging sessions; (ii) JDER is a discount term taking into account DER exploitation
and; (iii) Jreg is a term accounting for the remuneration associated to the tracking of
a DSO-defined load profile. This function is such that its minimization leads the
EVSE operator to find a trade-off between the optimal costs for PEV users, RES
self-consumption and tracking error. Some notation is introduced to define the
terms of J in details. Let M denote the set of charging sessions to be controlled at
time I, Umk the control signal associated to the mth charging session at time k
(m 2 M univocally identifies the charging session), Ck the tariff at time k. Fur-
thermore, let DPm denote the maximum charging power applicable during the
charging session (which is given by the minimum between the power rating of the
PEV, of the charging cable and the EVSE) and Em the last allowed end time for the
charging session (set by the PEV user). The term Jcost can be therefore written as

Jcost ¼
X
m2M

XEm

k¼I

DPmTCkUmk ð7:2Þ

in which the control variable Umk specifies the charging rate and, therefore,
UmkDPm the power actually flowing in the cable connecting the mth PEV to the
corresponding EVSE. The term Jcost can be further expanded to model the cost of
batteries’ wear deriving from charging/discharging operations. For each PEV, a
depreciation term can be added, which is proportional to the amount of energy
exchanged with the grid during each sampling interval. The effect of the depreci-
ation term is such that V2G is chosen only if the deriving economic benefit at least
is greater than the cost of the associated components’ wear. It should be noted that
the inclusion of a depreciation term accounts for a phenomenon (wear) that is
different from that of batteries’ energy losses (modelled as well in the following),
although the deriving effect which can be observed (decrease of V2G power flow) is
similar. The term Jcost can be thus finally written as

Jcost ¼
X
m2M

XEm

k¼I

DPmT CkUmk þ Cdep
m Umkj j� � ð7:3Þ

where the coefficient Cdep
m can be computed based on the cost of the batteries and

their expected life time.
Then, the term JDER in the objective function introduces a discount proportional

to the amount of self-consumed DER energy. It is written as

JDER ¼ �
XE
k¼I

PDERk TCDERhk ð7:4Þ
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where PDERk is the last available forecast for DER power at time k, CDER is a
discount parameter associated with self-consumption and hk a continuous variable
indicating the share of DER power self-consumed at time k (0� hk � 18k). Coef-
ficient E denotes the last time interval of problem definition (which therefore spans
from I to E), and is given by

E ¼ max
m2M

fEmg ð7:5Þ

The effect of JDER, being it a discount term appearing with the minus sign in a
minimization problem, is such that the controller tends to increase as much as
possible at each k the value of variable hk, representing the share of self-consumed
power from DER. By posing a constraint (see (7.12) below) stating that, at each k,
the amount of self-consumed DER power hkPDERk shall be less or equal than the
charging power at the same instant, it is made sure that the power hkPDERk accounted
in the objective function actually “matches” a portion of the load curve from
electromobility (eventually, that charging load is shifted under the curve of DER
generation).

Finally, the last term Jreg appearing in the objective function is a regulation term,
which allows the EVSE operator to shape the aggregated charging power according
to a positive power reference Prefk , set by the DSO. Jreg can be written as

Jreg ¼ l
XE
k¼I

kk Pk � Prefk � PDERk

� �2 ð7:6Þ

where Pk is the aggregated controlled charging power in the LA at time k, which
can be written as

Pk ¼ Psk þ
X
m2Mk

DPmUmk ð7:7Þ

being Mk � M a subset of M defined as

Mk ¼ m 2 M : I � k�Emf g ð7:8Þ

and representing the set of flexible PEVs involved in the smart charging operation at
time interval k. Psk denotes the aggregated power consumption of those PEVs whose
charging profile cannot be rescheduled (i.e. PEVs which do not allow smart
charging). kk 2 ½0; 1� is a shaping factor which is included to differently weight the
tracking requirement along the control horizon. Acting on kk it is possible to
influence the way the charging power is allocated in the time window ahead of the
current time I. A general rule of thumb for kk is that it has to go to zero as k goes to
E (or, in any case, to values considerably smaller than the ones taken for k close to
I), since the tracking requirement cannot be stringent for the time periods close to E,
where there might be not enough demand for charging power to let the aggregated
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load profile follow the reference (as a matter of fact, charging requests arrive
sequentially, and hence, at time I, the demand close to time E might be small). The
parameter kk can be also chosen adaptively, in order to adjust the way power is
allocated depending on, e.g., the congestion rate of the grid (e.g. the arrival rate of
new charging requests). Finally, l 2 R is a positive weight which, together with kk
is associated to the remuneration assured for the provisioning of the tracking
service.

Concluding, (7.1) represents the objective function of the optimization problem
to be solved in order to optimally schedule the charging sessions according to the
requirements (posed in Sect. 7.4.1) of (i) minimizing charging costs, (ii) maxi-
mizing self-consumed DER power and, (iii) tracking of a DSO-defined, LA-level
reference load curve for electromobility. Formula (7.1) also represents the function
through which the exact cost minimization values associated to the found solutions
can be determined. It is important to notice that the actual costs/revenues for the
different actors involved in the PEV load management problem (i.e. the PEV users,
the EVSE operator, the DSO, the retailer) are determined starting from metering
data and based on agreed billing/revenue repartition policies, which are not dealt
with in this chapter. For example, the overall charging costs for the PEV users could
be determined by subtracting from the actual costs incurred for charging (accounted
for by the term Jcost) proper remuneration from the DER operator and the DSO, in
consideration of the fact that it is actually the flexibility provided by the PEV users
taking part in smart charging the key factor which enables the DER operator and the
DSO to extract value from the process of PEV charging control.

The next subsection starts the review of the problem’s constraints.

7.6.2 Control Model

The control model is a tractable mathematical representation of the process under
control, given here by the set of PEVs and the associated EVSEs to be controlled.
The control model is employed to derive a relation between the control variables
(the charging rates) and the controlled output of the plant (the PEVs’ SoC). It has to
be therefore simple enough to keep low the complexity of the resulting control
problem, and yet accurate enough to capture the main dynamics of the physical
process under control.

The following first-order control model is considered

xmk ¼ xm;k�1 þ DPmTðUmk � nmjUmkjÞ
xm;I�1 ¼ X0

m

�
8k 2 I;Em½ �; m 2 M ð7:9Þ

which allows to predict the future SoC of the PEVs and write it as a simple (linear)
function of the initial SoC and the control sequence (notice that SoC here denotes
the absolute, not percentage, value of the energy stored). The captured phenomena
are the integral behaviour of the battery pack and the losses in the PEV converters
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and in the battery pack (a simple constant loss factor nm is considered). X0
m denotes

the initial SoC of the mth PEV (which is either communicated by the PEV user via,
e.g., a smartphone or the PEV/EVSE dashboard, or is automatically exchanged
between the PEV and the EVSE as soon as the charging session is authorized). Note
that X0

m represents one of the feedback signals considered in the presented control
scheme (see the explanation in Sect. 7.5): in case the current SoC can be read and
automatically communicated by the PEV to the EVSE, the value of X0

m can be
updated at each iteration of the problem, thus allowing to counteract disturbances
and model uncertainties, and making sure that the controlled charging process
actually ends with a final SoC that is in accordance with the UP.

Finally, a second, very detailed model of the EVSE/battery pack, referred to as
simulation model, will be given in Sect. 7.7 for the purpose of validating the
proposed strategy on a simulation basis. As explained in Sect. 7.7, the simulation
model accurately replicates the non-linear dynamics of the battery pack, and is
therefore used for the purposes of: (i) simulating the feedback of the SoC from the
field and, (ii) evaluating the actual SoC evolution resulting from the implementation
of the proposed strategy, then verifying that all the posed requirements (see
Sect. 7.4) are met. In particular, it will be shown via the simulations how the
combined effect of reoptimization and feedback from the field lets the system
recover from the inaccuracies of the control model.

7.6.3 Control Constraints

The first set of control constraints is related to the nature of the control variables
Umk and hk. Standard IEC 61851 prescribes that the charging power shall be either
zero (when recharging is paused), or limited between a minimum positive value and
a maximum positive value (when charging is in progress). By reasonably extending
the same specification to the discharge phase (which is not addressed by IEC
61851), the following set of constraints for Umk arises

Umk 2
cc 2 am; 1½ � in case of charging
0 in case of standby
dd 2 �1;�am½ � in case of discharging

8k 2 I;Em½ �; m 2 M

8<
:

ð7:10Þ

where am is the ratio between the minimum positive charging power and the
maximum allowed charging power (without loss of generality we assume the same
ratio holds for the discharging phase). For each charging session, am has to be
determined depending on maximum/minimum allowed positive charging rates of
the EVSE, of the charging cable and the PEV (am shall be computed at the
beginning of the charging session, when these values are discovered). It is worth
mentioning that more restrictive values for am can be also set when designing the
control strategy. For example, it can be decided to allow charging power
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modulation only in case of high power charging sessions (e.g. when DPm is equal or
greater than 22 kW), while performing on-off charging in case of low power
charging sessions (i.e. single phase charging, DPm around 3.6 kW), for which it
may not be worth to modulate the charging power. The latter can be simply
achieved by setting am ¼ 1 for the charging sessions to be controlled in an on-off
manner. Formula (7.10) translates into mathematical formulation the technical
specifications posed in Sect. 7.4.2 about IEC 61851-compliant control of 22 kW
three-phase charging processes and on/off control of single-phase 3.6 kW charging
processes.

As regards hk, it is not a control variable input to a real process; it represents the
share of RES power self-consumed by the PEV fleet at time k. The following
simple constraint then holds

hk 2 0; 1½ � 8k 2 ½I;E� ð7:11Þ

The second set of control constraints is related namely to the definition of
variables hk, and reads as follows

PDERk hk � Psk þ
X
m2Mk

DPmUmk 8k 2 ½I;E� ð7:12Þ

which assures that the share of RES power self-consumed is properly computed (by
definition it cannot exceed the allocated charging power). Notice that hk either
saturates at 1 (in case the allocated charging power exceeds RES power), or it is
limited by the above constraint (in case all the charging power is “matched” by
DER power). Constraints (7.12), (7.11) and the term JDER allow to translate into
mathematical formulation the requirement posed in Sect. 7.4.2 about maximization
of self-consumption of DER power.

The next set of control constraints aims at avoiding that the aggregated charging
power exceeds the LA threshold P�k set by the DSO at each k. The difference
between the threshold and the reference can be seen as the maximum displacement
which is allowed without penalties. Moreover, the threshold could also be estab-
lished by the DSO during the emergency operation of the distribution grid. Such set
of overload constraints can be written as

Psk þ
X
m2Mk

DPmUmk � P�k þ PDER 8k 2 I;E½ � ð7:13Þ

The former constraints were related, respectively, to the RES and the DSO. The
next set of constraints is instead explicative of those constraints imposed by PEV
users. In particular, until this point, only cost minimization and technical constraints
satisfaction related to the entire set of PEVs under control have been addressed.
However, it may happen that a cost-efficient and technically feasible solution for the
entire fleet does not equally distribute the cost (or the saving) among the PEVs, thus
penalizing some PEVs and excessively rewarding some others. Notice that the term
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Jcost appearing in the target function is a cumulative cost, then the minimization of
the target function does not guarantee that the price of the service provided to each
driver remains close to the price notified at the moment of making the charging
request. To take this into account, a set of constraints on the cost of charging/
discharging operations is added for each PEV. Such constraints guarantee that, as
required by the specifications given in Sect. 7.4.2, the cost of the charging service
for each driver remains bounded iteration after iteration, without growing unpre-
dictably. Let c�m denote the cost announced to the user upon arrival at the EVSE
(after the first iteration of the algorithm) and cmI the cost for the charging service
provided up to time I. Then the control action can be bounded as follows

cmI þ
XEm

k¼I

DPmTCkUmk � 1þ 2ð Þc�m 8m 2 M ð7:14Þ

where the real number ∈ > 0 is a small tolerance parameter, necessary to account for
modelling inaccuracies.

A final set of control constraints is included as representative of the technical
constraints that are imposed by the PEVs (constraints which are put, for example, to
ensure safe charging operations and preserve the PEV energy storage and
recharging systems). In particular, according to the technical specifications given in
Sect. 7.4.2, a constraint is put here on the maximum allowed rate of change of the
charging power from a time slot to the following one. The constraint is

DPmUmk � DPmUm;k�1

�� ��� dmax 8k 2 Iþ 1;Em½ �; 8m 2 M ð7:15Þ

The maximum allowed change of charging rate dmax has to be such that
dmax � amDPm, in order to allow the termination of the charging process (when the
charging power goes to zero from a previous positive value).

7.6.4 State and Termination Constraints

State constraints are related to the capacity of the batteries and the related technical
limitations. In principle, the level of charge must be non negative and upper
bounded by the battery capacity. In practice, for reasons related to efficiency and
life cycle, as specified by the technical specifications given in Sect. 7.4.2, the
battery pack is never allowed to fully charge or deplete. Then it is straightforward to
establish that

Xmin
m � xmk �Xmax

m 8m 2 M; 8k 2 I;Em½ � ð7:16Þ

where xmk is the SoC expressed in kWh of the mth PEV at the end of the kth time
interval, Xmax

m is the maximum allowed level of charge and Xmin
m represents the
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allowed depth of discharge of the mth PEV. Interestingly, a minimum guaranteed
charging profile can be established for each PEV by choosing Xmin

m as an increasing
function of time. So doing, a minimum ‘‘safety’’ state of charge is guaranteed at
each time interval. That is relevant to remedy to real word uncertainties, among
which there is the possibility that a driver terminates the charging process before the
declared Em, without giving any notification to the system.

Finally, a termination constraint must be considered in order to ensure that the
final desired SoC set by the PEV user is eventually reached at time Em (as required
by the technical specifications in Sect. 7.4.2). Such set of constraints is simply
given by

Xref
m � xmEm �Xmax

m 8m 2 M ð7:17Þ

where the upper limit (given in the above by Xmax
m ) can be replaced by a smaller

value (greater, in any case, than Xref
m ) in order to avoid that the PEV is recharged too

much above the SoC value specified by the user.

7.6.5 Overall Problem Definition

The above detailed optimal control problem can be summarized as follows.
Problem 1 (Optimal control of PEVs charging operations in a Load Area)
Given a set M of PEVs plugged-in at time interval I, associated with UPs

fXref
m ;Emg, technical data fDPm;Xmin

m ;Xmax
m ; nmg, SoC measure X0

m and known
market/grid data fCk; Prefk ; P�kg, minimize J subject to the dynamics (7.9), control
constraints (7.10)–(7.15), and state and termination constraints (7.16), (7.17), where
E and Mk are defined in (7.5) and (7.8) respectively.

7.6.6 Equivalent Optimization Problem

The mathematical formulation of the problem given above (presented as a classical
MPC problem) is not suitable for direct implementation on a calculator (observe,
for example, that variables Umk are defined over the union of disjoint sets). This
section is therefore dedicated to show how an equivalent mathematical formulation
suitable for implementation can be derived. Eventually, the MPC problem will be
written as a mixed integer quadratic programming problem, which can be inter-
preted and solved via well-established optimization tools.

Some additional notation is introduced. First of all, let us introduce two sets of
continuous variables ymk and zmk, defined as
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ymk charging rate for the mth PEV at time k
zmk discharging rate for the mth PEV at time k

�
ð7:18Þ

Recalling from the previous sections that the charging power is semi-continuous
in nature (i.e. it is either zero or greater than a positive value), variables ymk and zmk
can be further specified as follows

ymk ¼ 0 _ ymk 2 ½am; 1�
zmk ¼ 0 _ zmk 2 ½am; 1�

�
8m 2 M; 8k 2 I;Em½ � ð7:19Þ

A treatable definition of ymk and zmk can be achieved by introducing two cor-
responding sets of Boolean variables pmk and qmk defined in such a way that, when
ymk ¼ 0 (zmk ¼ 0), pmk ¼ 0 (qmk ¼ 0), and when ymk 2 ½am; 1� (zmk 2 ½am; 1�) pmk ¼
1 (qmk ¼ 1). That can be forced by writing

ampmk � ymk � pmk
pmk 2 f0; 1g

�
amqmk � zmk � qmk
qmk 2 f0; 1g

�
8m 2 M; 8k 2 I;Em½ � ð7:20Þ

The control variable Umk can be then rewritten as

Umk ¼ ymk � zmk
jUmkj ¼ ymk þ zmk

�
8m 2 M; 8k 2 I;Em½ � ð7:21Þ

and the additional constraint

pmk þ qmk � 1 8m 2 M; 8k 2 I;Em½ � ð7:22Þ

is put in order to state that charging and discharging cannot take place
simultaneously.

The aggregated controlled charging power can be rewritten in terms of ymk and
zmk as

Pk ¼ Psk þ
X
m2Mk

½DPmymk � DPmzmk� 8k 2 I;E½ � ð7:23Þ

Similarly, it is easy to rewrite all the constraints given in Sects. 7.6.2–7.6.4,
along with the linear terms Jcost and JDER in the objective function, in terms of the
new continuous variables ymk and zmk: The regulation term Jreg can be easily
rewritten as well making use of matrix notation, in which the term can be written as

Jreg ¼ P� Pref � PDER
� �T

K P� Pref � PDER
� �

, where P;Pref andPDER are vec-
tors of proper dimensions whose elements are, respectively, Pk, Prefk and PDERk ,
while K is a diagonal matrix with diagonal entries kk. The quadratic term of Jreg is
PTKP: It is seen from (7.23) that P is linearly dependent on the control variables
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ymk and zmk, and therefore it can be written as P ¼ ½AB� y
z

� 	
, where y and z are

proper vectors of grouped control variables and A and B proper matrices. Finally,
the quadratic term PTKP is rewritten in terms of the control variables as

PTKP ¼ yTzT½ � AT

BT

� 	
K AB½ � y

z

� 	
, being then the coefficient matrix of the quadratic

term given by AT

BT

� 	
K AB½ �.

The mathematical problem here defined is a mixed integer quadratic program-
ming problem (i.e. a problem with quadratic terms in the objective function and
linear constraints, with both Boolean and continuous variables), for which global
solution methods and related tools [32] are available (the optimization problem has
been here solved via the cplexmiqp function of CPLEX [32], dedicated specifically
to the solution of mixed integer quadratic programming problems). Further details
on mixed integer quadratic programming, the related solving techniques and other
applications to smart grid research field can be found in [33–36].

7.7 The State of Charge Feedback

Among the PEV users’ requirements considered for the derivation of the proposed
centralized charging strategy there is the fulfilment by the controller of the charging
requests according to the associated UP. In particular, one of the objectives of the
controller is to let the PEVs reach the final desired SoC set by the PEV users. That
is the reason why SoC feedback has to be foreseen for the correct implementation of
the proposed strategy (SoC feedback allows evaluating the mismatch between the
SoC evolution predicted by the controller and the actual one). The SoC feedback is
easily included in the problem formulation through parameter X0

m, which can be
updated according to the feedback signal at each iteration of the problem, as
explained in Sects. 7.5 and 7.6.2. Currently, at the best of the authors’ knowledge,
there is no standardized way of automatically retrieving SoC measurements during
a charging session. Such necessity is however recognized by the technical com-
munity and standards on digital communication between the EVSE and the PEV (in
particular, ISO 15118) are going in this direction, making possible in the future to
exchange a whole set of data crucial for enabling smart charging applications (e.g.
user preferences, technical specifications of the PEV, SoC data, etc.).

For the sake of completeness, this section discusses two approaches that can be
implemented in case SoC feedback is not directly available. They are based, the
first, on the usage of EVSE meter readings and, the second, on the usage of detailed
battery models [14].
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7.7.1 Case 1: Indirect SoC Measurement Through EVSE
Meter Readings

In the advanced electromobility management systems the EVSEs can be remotely
controlled and monitored from the EVSE operator back–end. In particular, metering
data can be retrieved from the meters inside the EVSEs. Metering data regard the
instantaneous charging power supplied by the EVSE at metering time, and the
charging energy supplied from the beginning of the charging session. Contrary to
SoC metering, the feedback from the EVSE is already technically feasible and
commonly implemented in the field. The feedback from the EVSE regarding the
charging power is employed in the presented formulation to evaluate in particular
the fulfilment of the tracking requirement, which is precisely related to the aggre-
gated power supplied by the EVSEs in the LA. The feedback on the energy sup-
plied by the EVSE up to metering time can be instead employed to monitor the
correct provisioning of energy to the PEVs. In this regard, notice that the user
preference related the final SoC could be replaced by a similar requirement related
to the amount of energy to be provided by the EVSE. The feedback on energy
would then represent a feedback precisely of the controlled variable (i.e. the energy
to be provided by the EVSE). Instead, in case the user requirement is on the SoC,
mathematical models of the EVSE converters and the EVSE battery pack can be
employed to estimate the current SoC based on the metering data on supplied
energy (the feedback would be again included in the mathematical formulation via
parameter X0

m).
In the next subsection a SoC estimation model [14] is presented as well, which is

not intended however for real time usage in the present control scheme. It is a
highly detailed nonlinear model used in the simulations to emulate the real SoC
feedback from the EVSEs (feedback which is not obviously available in the sim-
ulations), thus making possible to evaluate the effectiveness of the controller.

7.7.2 Case 2: SoC Estimation Using Detailed
Simulation Model

The employed simulation model [14] works according to the scheme presented in
Fig. 7.4. The two converters in the PEV are assumed to be characterized by constant
efficiency, being the losses modelled by parameter g. The battery is modelled as the
series of an internal resistance and a controlled voltage source, whose voltage
depends, according to a nonlinear relation, on the charge stored in the battery [14].
Referring to the scheme in the figure, v is the voltage of the battery pack, i the
current, ~q the charge (measured in Ah), e the voltage of the controlled voltage
source, Q the nominal capacity of the battery (Ah), Z the polarization voltage and,
finally, a and b are two model parameters. The charge ~q (not to be confused with the
Boolean variable qmk) is computed according to the (discrete time) relation
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~qm;kþ1 ¼ ~qmk þ T imkpmk � iKmkqmk
� � ð7:24Þ

in which K is the Peukert coefficient amplifying the loss of charge during
discharge (an hysteresis phenomenon). Also the equivalent resistance varies
depending on the direction of the power flow (Req ¼ R 1:5pmk þ qmkð Þ).

7.8 Simulation Results

This section reports an explicative simulation study aimed at showing the effec-
tiveness of the proposed charging controller. First of all, in the next subsection the
simulation setup is detailed. Then in the subsequent section it is shown how the
LAC is able to dynamically control the charging sessions in order to fulfil all the
posed requirements (from the PEV users, the DSO and the DER operator), while
respecting all the constraints. That is achieved by updating the computed charging
load profile over the time in reaction to the asynchronous events. Among these
events, a reaction to a DSM volume signal is also simulated, showing how the LAC
can successfully react to the request of reducing the aggregated charging power
level according to proper DSM volume signal specifications (on the amount of
power reduction and the associated timelines).

7.8.1 Simulation Setup

Both single-phase and three-phase charging are considered in the following. The
former refers to charging with currents limited between 6 and 16 A (resulting in a
value of am equal to 0:375). Considering a constant grid voltage level of 230 V, the

EVSE

CURRENT 
CONTROL

AC/DC
CONVERTER

DC/DC
CONVERTER

BATTERY PACK

PLUG-IN ELECTRIC 
VEHICLE

CURRENT 
SETPOINT 
(IEC 61851)

Fig. 7.4 Block scheme of the accurate simulation model
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maximum charging power is therefore equal to 3.68 kW. In three-phase case
instead, they are considered phase currents limited between 6 and 32 A (resulting in
am ¼ 0:1875), and being thus the maximum charging power equal to 22.08 kW. It
is worth recalling that it has been decided to let the LAC modulate the charging
processes with higher power withdrawal, while the other charging processes are
controlled by the LAC in an on-off fashion. For the sake of simplicity, all the
simulated PEVs are characterized by the same following parameters:
Xmax

m ¼ 26 kWh, Xmin
m ¼ 2:6 kWh n ¼ 0:04. Also, the same simulation model

(see Sect. 7.7.2) is considered for all the simulated PEVs. As suggested in [14], the
values of the PEV model’s parameters can be deduced from manufacturer’s data-
sheet by achieving an accurate matching of the experimental charging and dis-
charging curves (a Lithium-ion battery block [37] specifically designed for PEV
applications has been considered and the following values resulted:
g ¼ 1� n ¼ 0:96, Z ¼ 0:14 V, a ¼ 10, b ¼ 0:007, K ¼ 1:05, Req ¼ 0:01 X,
Q ¼ 297:3 A h and e0 ¼ 74 V). The kth diagonal entry of matrix K is chosen as
Kkk ¼ kk ¼ 1=k2, the power reference Pref is taken constant for simplicity
(Prefk ¼ 25 kW). P�k is taken as P�k ¼ 1:2Prefk . A daily profile of the Italian day-ahead
tariff “prezzo unico nazionale” (PUN) has been considered for Ck. All PEVs are
assumed subject to smart charging (i.e. Psk ¼ 0). Real profiles for PDER have been
taken by measurements of specific PV plant outputs [38].

Finally, simulations have been performed on an INTEL Core i5-3230 CPU,
2.40 GHz, 8 GB RAM computer, running the MS WINDOWS 8 64-bit operating
system. The simulation environment has been built in MATLAB. The mixed
integer quadratic programming problem defined in Sect. 7.6.6 has been solved by
calling from MATLAB the cplexmiqp function, made available by the CPLEX for
MATLAB feature of the IBM ILOG CPLEX Optimizer. The CPLEX for MATLAB
module allows a user to define optimization problems and solve them within
MATLAB (via the cplexmiqp function in this case).

7.8.2 Simulations

The simulated charging requests are reported in Table 7.1. In the following simula-
tions V2G has been disabled for the sake of simplicity. Figure 7.5 reports the
aggregated power profile resulting from uncontrolled charging, i.e., when charging
starts atmaximumpower as soon as the charging sessions are authorized. In particular,
Fig. 7.5a reports a bar chart visualization of the charging profiles (a different color is
associated to the different charging profiles). Figure 7.5b reports the power reference,
the threshold set by the DSO, the DER profile (PDER, positive values are injections
into the LA) and the net power profile of the LA (positive values mean the LA absorbs
power from themain grid). It is seen that the net power profile shows large fluctuations
and peaks, which is highly undesirable. As obvious, the DSO-defined reference load
curve is not tracked, since no PEV load management is implemented.
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Secondly, in the same charging scenario as above, the proposed controller is
tested considering a high weight l (l ¼ 10) of the tracking term Jreg of the
objective function. In other words, it is simulated the case in which the remuner-
ation offered by the DSO for the tracking of the DSO-defined reference Pref is
considerably higher than the other sources of revenues (i.e. charging cost optimi-
zation and DER energy self-consumption). It is therefore expected that the net load
profile accurately tracks the power reference Pref : As a matter of fact, Fig. 7.6
clearly shows that accurate tracking is achieved (notice from Fig. 7.6 how the peaks
present in the previous Fig. 7.5 have been shaved thanks to a proper control of the

Table 7.1 Simulated charging scenario

PEV
ID

Arrival time
(hh:mm)

Departure
time (hh:mm)

Initial
SoC (kWh)

Desired final
SoC (kWh)

Single phase/three
phases charging

1 10:00 14:00 5 20 Three phases
2 10:10 14:25 7 14 Single phase
3 10:15 14:25 9 15 Single phase
4 10:20 15:00 10 26 Three phases
5 10:40 16:00 10 20 Single phase
6 11:10 14:35 5 15 Three phases
7 11:35 17:00 7 15 Three phases
8 12:00 16:45 5 17 Three phases
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Fig. 7.5 Uncontrolled recharging: a load profiles of the different charging sessions and resulting
aggregated demand, b relevant resulting power profiles, including the net power profile, the
reference profile, the power threshold and the DER forecast power output
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charging sessions resulting from the presented control approach). From Fig. 7.6a it
is easy to distinguish single-phase charging sessions from three-phase charging
sessions, due to the different nature of control (on-off control for the formers, power
modulation for the latters). Also, all the posed constraints are satisfied. In particular,
it can be noticed from the figure that the constraint (7.15) on the maximum rate of
change of the charging power is respected. Finally, the achieved solution is such
that all the charging preferences expressed by the PEV users are met (i.e. all the
charging sessions end within the time specified by the users and with the desired
final SoC values, as it will be explicitly shown, for the sake of brevity, in the next
simulation only for the case of one of the simulated charging sessions).

In the next simulation, the weight of the tracking term is decreased (l ¼ 0:001)
in order to give more relevance to the revenue coming from the maximization of
self-consumption of the energy from RES. As expected, the aggregated charging
curve is increasingly flattered in order to match the PV profile on a longer horizon
with respect to the two previous cases (notice from Fig. 7.7a how the PEV load is
shifted ahead in time with respect to what reported in Fig. 7.6a). In this case, the
tracking of the DSO-defined reference load profile is not accurate as in the previous
simulation, since the controller now pursuit more the objective of maximizing self-
consumption of RES power, which ensures greater revenues compared to the
objective of DSO-defined load tracking. Also in this case all the constraints and, in
particular, the user preferences, are met.

After having reported and discussed about load profiles at PEVs fleet level, the
following discussion deals with the profiles (i.e. control signal and SoC evolution)
at single PEV level, related to the last simulation presented in Fig. 7.7. Figure 7.8
reports the evolution of the charging control signal associated to PEV #1 at three
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Fig. 7.6 Simulation with l ¼ 10 (i.e. high weight given to the revenue coming from the DSO,
associated to the tracking of the DSO-defined reference)
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different optimization times. The control signal is either zero, or it is modulated
between a minimum positive value am and a maximum one, as prescribed by the
standard. It is evident how the control signal is updated at each optimization time in
order to let the LAC accommodate the new charging requests arriving sequentially.
The resulting evolution of the SoC, as computed at three different time instants via
both the control model (continuous line) and the simulation model (dashed line), is
reported in Fig. 7.9. Notice how the desired final SoC is reached within the time
specified by the PEV user, and the bounds on SoC are respected.

Finally, a simulation of the LAC reaction to a DSM volume signal is given in the
following. The DSM signal is notified to the LAC at 10:25 [hh:mm], and consists of
a reprofiling of the DSO-defined reference power profile. The shape of the DSM
volume signal is the typical one (see Fig. 7.10) considered for the composition of
active demand services [12], and is characterized by a service time interval (i.e. the
time interval during which the active demand service—i.e. the DSM volume
reduction—is performed), and a “payback” zone (in the opposite direction) regu-
lating the power profile in the immediate aftermath of the DSM service, when the
impact of the payback effect is greater [12].

Making reference to Fig. 7.10, the simulated DSM signal is characterized by the
following technical specifications: Vser ¼ 8 kW, Vpb ¼ 3 kW, Tser þ Tpb ¼ 1 h.
Figure 7.11 reports the relevant LA load profiles immediately before the DSM
signal is notified. From the figure it can be noticed how the LAC control is such that
the aggregated load profile accurately tracks the reference only close to time I,
while, ahead of time I the charging power is shifted so as to optimize costs and
exploit available RES.
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Fig. 7.7 Simulation with l ¼ 0:001 (i.e. high weight given to the revenue coming from DER self-
consumption)
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Then, Fig. 7.12 reports the load profiles shortly after the notification of the DSM
signal (at 10:40 [hh:mm]). It is seen how the LAC is able to properly reacting to the
volume signal by dynamically rescheduling the ongoing charging sessions.
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Fig. 7.8 Evolution of the control signal Umk at three different LAC optimisation times
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Fig. 7.9 Controlled evolution of the SoC of PEV#1 at three different time instants
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Finally, Fig. 7.13 reports the final evolution of the relevant LA load profiles. The
DSM volume signal is met almost perfectly. The power threshold is respected and
all the charging requests are fulfilled according to the user preferences. This sim-
ulation is relevant since it shows the potential of controlling via the LAC the
aggregated load profile at LA level. As a matter of fact, control of demand will be
more and more a tool by which active demand services will be provided to inter-
ested grid actors, especially for balancing purposes. As an example, the proper
coordination and composition of a number of LA reprofiling actions (as the one
reported in Fig. 7.13), by a higher level coordinating entity, could allow to compose
and trade to interested upper level grid actors (i.e. a retailer, a DSO, a large DER
operator, etc.) large volume active demand products, which could be employed by
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Fig. 7.10 DSM signal shaped as a typical active demand product (positive values are power
reductions)
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Fig. 7.11 Relevant controlled load profiles at 10:20 [hh:mm], immediately before the DSM signal
notification (simulation performed with l ¼ 10)
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such actors to, e.g., remedy to short term grid imbalances (in case of the DSO) or to
large variation in the RES output schedule, thus avoiding to incur in penalties.

Significantly, the capability of the LAC of dynamically rescheduling the
charging sessions can be also effectively exploited to mitigate the effects of RES
intermittency, guaranteeing a flattered net profile at LA level. That can be achieved
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Fig. 7.12 Relevant controlled load profiles at 10:40 [hh:mm], shortly after the DSM signal
notification
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Fig. 7.13 Final relevant controlled load profiles
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by simply updating control each time a new RES forecast is available and com-
municated to the LAC. The maximization of RES self-consumption (for which the
term JDER in (7.1) is responsible), and the mitigation of the effect of RES inter-
mittency (achieved also via the term Jreg) are two key factors for increasing RES
integration into the distribution grid, and they are fully taken into account by the
presented LAC control approach to smart charging.

7.9 Conclusions

In this chapter a MPC approach for the management of PEVs charging in distri-
bution grids has been presented. The work has moved from an in depth analysis of
the state of the art of smart charging control. Then the relevant actors and com-
ponents making part of the PEV charging scenario have been identified, and their
role in the provisioning of the smart charging service has been discussed. Four
different use cases related to smart charging have been then introduced, being them
the most relevant ones that the proposed controller (named Load Area Controller—
LAC), aims to support. They are: (i) LAC reaction to a charging request, (ii) LAC
reaction to an update of the user preferences, (iii) LAC reaction to a DER forecast
update and, (iv) LAC reaction to a demand side management signal. All these use
cases rely on the solution of the smart charging control problem addressed in this
chapter (i.e. on the smart charging control functionality provided by the LAC).
Based on the analysis of the charging scenario and the review of the relevant use
cases, requirements and specifications for the presented LAC charging controller
have been given. The LAC working logic has been then discussed, giving a
motivation for the adoption of the presented MPC-based charging control strategy
(basically, the need of optimizing a set of key performance indicators, the presence
of constraints, the need of reacting to asynchronous events from the environment
and, finally, the availability of a simple control model of the plant). The resulting
MPC formulation has been then presented and discussed. In particular, the proposed
control framework has been designed with the aim of: (i) optimizing charging costs,
thus seeking a saving for the PEV users in a scenario characterized by time variant
tariffs, (ii) seeking integration of local RES, via their balancing with the controlled
charging demand and, (iii) providing a load management service to the DSO,
consisting in the tracking of a DSO-defined reference power curve at load area
level. Proper constraints have been introduced to make the control action compliant
with the technical limitations imposed by the relevant standards (i.e. IEC 61851)
and with the technical and economic requirements posed by the PEV users, the
DSO and the DER operator. The natural formulation of the open-loop optimal
control problem at the basis of the MPC approach has been then handled in order to
achieve an equivalent mixed integer quadratic programming problem, which can be
solved in near real-time to provide the EVSEs with the charging load profiles and
the driver with the notification of the expected cost for charging.
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Explicative simulations have been presented to show how effectively the
charging requests are managed and fulfilled by the LAC, according to the three
aforementioned objectives (i.e. cost minimization, RES integration and load
tracking). It has been shown how the LAC can effectively update time after time the
charging controls in order to react to asynchronous events coming from the envi-
ronment, being them new charging requests, updates of the user preferences,
notifications of DSM signals, updates of the DER forecast, etc. Such a capability,
here relevant for an effective matching between PEVs charging load and RES in
respect of DSO and drivers’ needs, proves fundamental in all the active demand and
demand side management applications so crucial in the smart grid concept.
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Chapter 8
QoS Schemes for Charging Plug-in
Electric Vehicles in a Smart Grid
Environment

Irfan S. Al-Anbagi and Hussein T. Mouftah

Abstract Plug-in Electric Vehicles (PEVs) are expected to greatly reduce the
carbon emissions from surface transport if they are widely used and efficiently
charged. One of the main limitations of PEVs is their limited range and relatively
long recharging times. This limitation is closely associated with the current battery
technologies used in the PEVs. In order efficiently utilize the PEVs, their charging
schedules and locations must be effectively integrated within the smart grid.
Real-time and reliable integration of PEVs with the smart grid could solve problems
related to demand response, cost and time of charging. In this chapter, we survey
the state-of-the-art in wireless communication systems for PEVs integration with
smart grid, different control and wireless communication strategies. We highlight
the main challenges associated with the PEV-smart grid communication system.
We then propose a QoS scheme for charging PEVs (QCEV) in a smart grid
environment and propose a Channel Access Control (CAC) scheme that provides
QoS differentiation to PEVs that are transmitting delay critical information. Unlike
conventional contention based distributed QoS approaches used by the IEEE
802.11p MAC protocol, both of the QCEV and the CAC schemes provide
centralized QoS differentiation in situations where immediate PEV battery charging
is required. The centralization is done at the Access Point (AP) which takes an
informed decision on which PEV should receive highest priority to access the
channel based on the individual PEV battery levels, and also based on the avail-
ability and cost of the electricity at different locations.
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8.1 Introduction

Plug-in Electric Vehicles (PEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) are
considered as “green” as the electricity used to charge their batteries [1]. Unlike
PHEV, Pure Battery Driven PEVs (we refer to them as PEVs) depend solely on the
available battery charge. Different PEV models have different features and options;
they vary mostly on the range (i.e. km/charge) and the engine power in addition to
other comfort features. Most compact to mid-size PEVs available in the market
today can have an average of up to 160 km/charge [2]. However, luxury PEVs can
provide double that range. Hence, among other factors we notice that there is a
trade-off between battery cost and additional range, which explains the high cost of
some PEVs that provide extended range. Based on the above, the availability of
charging stations, cost and time of charging the PEVs are considered some of the
main reasons why PEVs are not widespread in today’s market.

Security issues, the availability of charging stations and the power required to
charge multiple PEVs at the same time is a major concern for electrical utility
operators and PEV owners. For example, in today’s power grid, the cost of elec-
tricity is dependent on the time of the day and the instantaneous load on the grid.
This is obviously done to allow the “smart grid” to manage the load on a micro-
level. This is basically achieved by enabling communication between PEVs and
electricity suppliers so that load and generation can be scheduled and distributed in
an optimum manner. Efficient and reliable integration and communication will
mitigate load issues resulting from recharging batteries, where the smart grid would
match generation to electricity use and manage loading on different PEVs charging
infrastructures. In doing so, the smart grid becomes an optimum solution to multiple
problems which enables dynamic real-time integration of information exchange
between the electricity network and the electrical transportation system [1].

Communication systems are considered as the backbone of any smart grid
system. In addition to that, efficient communication and data management between
the smart grid and PEVs to optimize charging cost and durations calls for an
efficient, reliable and low communication latency integration between these two
sub-systems. One of the main determining factors for successful integration of these
systems depends on the ability of the communication system to provide Quality of
Service (QoS) guarantees. QoS in a wireless communication environment can have
several meanings. For example, QoS can indicate the capability to provide assur-
ance that the service requirements of a specific application can be met. QoS can also
be defined as the ability of the network to adapt to specific classes of data. QoS is a
challenging issue in wireless networks in general and in mobile networks in specific
due to the highly dynamic nature and dense communication environment between
PEVs and Access Points (APs) (i.e. the road side units).

Wireless vehicular communication can be achieved in several different tech-
nologies such as IEEE 802.11 (WiFi), IEEE 802.16 (WiMAX), 3G cellular, and
satellite technologies. PEV-smart grid communication can be supported through
Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications.
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V2I communications involve vehicular nodes and APs. In these scenarios, there are
several technologies that can support this communication, such as IEEE 802.11
(WiFi), IEEE 802.16 (WiMAX), and Dedicated Short Range Communications
(DSRC). V2V communication scenarios include PEVs on a road which forms a
Vehicular Ad hoc Network (VANET). V2V communication is basically used for
transmitting safety information, warning messages and traffic information system.
In addition to that, V2V communication can also be used in PEVs scenarios such as
relaying battery charge information in multi hop communication network.

Among the many available wireless communication standards in vehicular
environments, the IEEE 802.11p standard is the most popular standard for such
environments. The IEEE 802.11p standard is an amendment to the IEEE 802.11
standard which is proposed for Wireless Access in Vehicular Environments
(WAVE) [3]. The standard is basically designed to enable communication in mobile
environments e.g. V2V and V2I communication. The IEEE 802.11p physical layer
is similar to that of the IEEE 802.11a standard. However, to cope with the highly
mobile environment, the bandwidth of the IEEE 802.11p is reduced to the half. Its
Medium Access Control (MAC) protocol is inspired from the MAC of the IEEE
802.11e standard [4] with some modifications to make it more suitable for mobility
(e.g. the use of 4 ACs instead of 8). Similar to the IEEE 802.11e, the IEEE 802.11p
uses the Enhanced Distributed Channel Access (EDCA) mechanism. The EDCA
mechanism allows the high-priority traffic to have a higher chance of acquiring the
channel access and being transmitted compared to the low-priority traffic. However,
the QoS differentiation used in both standards is based on the traffic type which is
predefined by the application layer.

The integration of PEVs and the smart gird system in applications such as PEV
charging optimization requires real-time collaboration between the AP and the
PEVs to make proper QoS differentiation decisions. Conventional QoS approaches
used in the IEEE 802.11p standard may not be efficient for such applications, since
an uninformed QoS differentiation decision by one PEV may lead to affecting the
entire energy optimization process or even affecting the overall network perfor-
mance especially in dense networks.

In this chapter, we survey the state-of-the-art in wireless communication systems
for PEVs integration with smart grid, different control and wireless communication
strategies. We highlight the main challenges associated with the PEV-smart grid
communication system. We then propose a QoS scheme for charging PEVs
(QCEV) in a smart grid environment and propose a Channel Access Control (CAC)
scheme that provides QoS differentiation to PEVs that are transmitting delay critical
information. Unlike conventional contention based distributed QoS approaches
used by the IEEE 802.11p MAC protocol, the QCEV and the CAC schemes
provide centralized QoS differentiation in situations where immediate PEV battery
charging is required. The centralization is done at the AP which takes an informed
decision on which PEV should receive highest priority to access the channel based
on the individual PEV battery levels, and also based on the availability and cost of
the electricity at different locations.
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8.2 Background

In the past few years, the integration of PEVs with the smart grid has been the focus
of several research papers and technical reports. PEVs charging infrastructure in a
smart grid environment has been extensively discussed in [5]. Furthermore, the
impact of the number of the connected EVs on the stability of the electrical system
has been presented in [6]. In addition to that, automated energy management
between EVs and the smart grid has been studied, where multiple objective func-
tions have been formulated to maximize customer benefits and maintain acceptable
power grid operation levels [7].

In the literature, there has been many publications that review the electrification
of the transportation system, vehicle area networks and the applications of the IEEE
802.11p standard.

In [8], the authors have presented an overview of the electrification of trans-
portation system where they have considered different aspects of the integration of
the EVs and PHEVs with the smart grid including some communication require-
ments. However, the authors have not considered the possibility of using either the
IEEE 802.16 and the IEEE 802.11p protocols as possible communication protocols
for this integration. The consideration of the IEEE 802.11p protocol for the inte-
gration of the ITS with the smart grid is of considerable importance since the IEEE
802.11p protocol is specifically designed to provide wireless access in vehicular
environments. Furthermore, one of the main features of the protocol is that it can
provide QoS which is considered as one of the main requirements identified in [9].

Faezipour et al. [10], have surveyed the main innovations in vehicle area net-
works featuring driver safety. They have focused on recent developments of
intelligent transportation systems for intra-vehicle and inter-vehicle-area-networks
to assist driver safety. Furthermore, Huang et al. [11], have discussed issues related
to the challenging smart grid deployment environments and existing solutions for
such environments. They have also proposed to deploy cognitive radios for smart
grid communication infrastructures in challenging environments.

Msadaa et al. [12], have compare IEEE 802.16e standard and the IEEE 802.11p
standard. They have investigated the potential and limitations of both technologies
as a communication media for V2I communications. The authors have evaluated
the performance of the two systems for different vehicle speeds, traffic data rates,
and network deployments.

In this section, we discuss the state of the art in wireless communication
architecture for the communication of EVs and the smart grid and the communi-
cation architecture in ITS in general. We then review the work that discuss medium
access control techniques in ITS environments. We finally discuss the state of the
art in QoS mechanisms in ITS scenarios and in EV-smart grid communication.
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8.2.1 PEV-Smart Grid Wireless Communication Architecture

The requirements of the data communication systems used in smart grid has been
widely discussed in the literature. A comprehensive overview of smart grid
communication needs has been highlighted in [9], the report has discussed the
challenges and opportunities in implementing EVs in the smart grid. The use of
real-time wireless networks for the automation of the smart grid has been widely
discussed in the literature [13, 14]. In addition to that, Zafalon et al. [15], have
discussed how electric mobility influences the development of PEV in automotive
industry by integrating the PEVs into the Internet of Energy (IoE) and Smart grid
infrastructure by providing novel business models and requiring new semicon-
ductor devices and modules.

A number of publications have presented wireless communication scenarios for
managing the charging and discharging of EVs in smart grid scenarios. Conti et al.
[16], have presented an architecture using Bluetooth for the wireless communica-
tion between driver’s smart phone, vehicle and charging infrastructure. Ferreira
et al. [17], have presented a mobile information system. Their application gives
relevant information to Full Electric Vehicle (FEV) drivers, by supporting the
integration of several sources of data in a mobile application. Their application
provides recommendations to the drivers about the FEV range autonomy, location
of battery charging stations, information of the electricity market, and also a route
planner taking into account public transportations and car or bike sharing systems.
Jansen et al. [18], have outlined an architecture of EV based vehicle-to-grid (V2G)
integrating virtual power plant. They have provided the overall system architecture,
a sketch of the trip-prediction algorithm, and the associated optimization problem.
The authors have derived the communication requirements for their architecture and
considered reliability, responsiveness, security, and application-level behaviour.
Cespedes et al. [19], have specified block components, protocols and technologies
required for IPv6 support in V2G communications. The authors have evaluated the
performance of their proposed the framework for different V2G applications data
rates and channel conditions.

The use of wireless communication to schedule the charging of EVs in smart
grid architecture has been considered in [20] and [21]. Dong et al. [20], have
adopted a battery replacement strategy for charging process in a charging station.
The authors have developed the scheduling scheme for PHEV charging. An
optimization problem is formulated and solved for an optimal charging policy that
minimizes the cost due to power consumption and performance degradation. They
have shown that if multiple data communication channels are available for trans-
ferring the power price information, the scheduling performance can be improved
significantly. Yuan et al. [21], have proposed a coordinating control charging
management system for EVs charging station consisting of single-node charging
controllers and a centralized management system. Their system obtains
charging data and transmits control instructions via ZigBee and GPRS wireless
communication networks technology. The authors have included a model of battery
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State-Of-Charge (SOC) for calculating the charging current that each EV needs and
the exchange of other data through CAN-Bus.

On the other hand the issue of demand response and load management using
wireless communication between EVs and the smart grid has been considered in
[22, 23, 24]. Erol-Kantarci et al. [22], have proposed a communication-based
PHEV load management scheme to control the load of the PHEVs. They have
utilized provisioning a certain amount of energy for each distribution system based
on the predicted supply level. The provisioned energy is communicated to the
substation control center where each charging request is either accepted or rejected
based on the utility set limits. The information is sent to the smart charging stations
through a Wireless Mesh Network (WMN) that uses IEEE 802.11s. Xu et al. [23],
have proposed an integrated vehicle-to-grid, grid-to-vehicle, and renewable energy
sources coordination algorithm. They have implemented their algorithm over a
broadband fiber-wireless communications infrastructure by co-simulating both
power and communications perspectives. The authors have shown that their scheme
could reduce the peak demand and enhance the performance in flattening the overall
demand profile and maintaining network constraints. In addition to that, their
proposed communication system shows an improvement to the throughput and the
end-to-end latency. Kovacs et al. [24], have presented results from the PowerUp
project, where they have specified and developed an end-to-end EV to Grid com-
munication system, respecting the applicable communications standards. They have
presented the system architecture for the end-to-end integration of the V2G com-
munications interface and described critical Smart-Grid integration aspects for each
protocol layer within the V2G communications protocol stack. The authors have
also presented prototype test observations. They have shown that their ISO/IEC
15118-based solution would not interfere with the stability of the electric grid.

The use of wireless communication to control the cloud infrastructure and
resources for managing the EV has been also considered in the literature. Yu et al.
[25], have proposed a hierarchical cloud architecture for vehicular networks. Fig-
ure 8.1 shows their proposed cloud-based vehicular network architecture. The
authors have created a pervasive cloud environment for mobile vehicles by inte-
grating redundant physical resources in ITS infrastructures, including data centers,

Fig. 8.1 The proposed cloud-based vehicular network architecture [25]
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roadside units, and vehicles. The authors have aggregated these resources to
compose cloud resources for vehicles. They have also proposed a three-layered
architecture to organize the cloud resources. Their layered structure allows vehicles
to select their cloud services resiliently. Their central clouds have sufficient cloud
resources but large end-to-end communications delay and roadside and vehicular
clouds have limited cloud resources but satisfy communications quality.

8.2.2 Medium Access Techniques

There are not many publications that discuss medium access techniques for the
IEEE 802.11p standard in PEV-smart grid communication scenarios. Although,
there are several studies that discuss new and improved MAC protocols for IEEE
802.11p-based communications. Cheung et al. [26], have studied the random access
in a in situations where roadside APs are installed on a highway to provide tem-
porary Internet access for vehicles. Figure 8.2 shows their drive-thru vehicle-to-
roadside (V2R) communications with multiple APs. The authors have considered
the problem of finding the optimal transmission policy with a single AP and random
vehicular traffic arrivals. They have formulated the problem as a finite-horizon
sequential decision problem, solved it using dynamic programming and designed a
general dynamic optimal random access (DORA) algorithm. The authors have
derived the conditions under which the optimal transmission policy has a threshold

Fig. 8.2 The drive-thru vehicle-to-roadside (V2R) communications with multiple APs [26]
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structure, and propose a monotone DORA algorithm with a lower computational
complexity for this special case. They have also considered the problem of finding
the optimal transmission policy with multiple APs and deterministic vehicular
traffic arrivals.

On the other hand, Rezgui et al. [27], have proposed a Reliable Broadcast for EV
Charging Assignment (REBECA) scheme. They have considered the time a
transmitting vehicle on the road requests to be served, up until the time the service
has been completed and the efficiency of the required service. They have shown that
their scheme could determine how many EVs can be efficiently served by a number
of electrical vehicle supply equipment without increasing the probability of over-
load on supply equipment or latency time on EVs. The authors have also we
propose a random access allocation algorithm for a feasible/initial charging process
solution of the proposed model. Their algorithm chooses a supply equipment
location randomly among the set of available equipment. They have proposed a best
access allocation algorithm, in which the EV selects the supply equipment with the
smallest free slots which are able to contain the EV demand. Finally they have
proposed a power balancing access allocation algorithm which takes into consid-
eration the power balancing between supply equipment to keep a minimal variance
of electricity usage between them while providing a short latency time for EVs and
then guarantees service efficiency.

8.2.3 QoS in IEEE 802.11p Communication

The consideration of the IEEE 802.11p protocol in critical applications has been
extensively discussed in the literature [12, 28, 29]. Furthermore, several studies
have considered the use of analytical models to evaluate the performance of IEEE
802.11p-based networks [30, 31] and the use of simulation model have also been
considered in [32, 33]. The use of a centralized provisioning mechanism to provide
QoS differentiation to EVs communicating to an AP in a smart grid environment
has not been considered in the literature. Furthermore, the concept of enforcing real-
time communication between EVs and the smart grid to optimize the charging
schedule and location has not addressed in such environments.

Erol-Kantarci et al. [34], have proposed a QoS-aware admission control scheme
for the PHEV charging infrastructure. Their scheme operates on the energy
management system of the smart grid distribution system and relies on a wireless
communication network that delivers the demands of PHEVs to the energy
management system and delivers the admission decisions of energy management
system to PHEVs. Figure 8.3 shows there wireless packet format for both the
charge request packet and the charge serve packet. They have proposed that PHEV
users pay more to charge faster than the best-effort users similar to the internet
traffic service differentiation mechanisms. The authors have provided mathematical
analysis and simulation results for the proposed scheme.
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Bohm et al. [28], have propose a deterministic MAC scheme for V2I commu-
nication by extending the IEEE 802.11p standard with a collision-free communi-
cation phase controlled by an AP. Their scheme schedules safety-critical, real-time
data traffic in a collision-free manner by the AP. The remaining bandwidth is
available to other services according to the contention-based random access scheme
defined in IEEE 802.11p. The authors have used real-time scheduling analysis to
adapt the bandwidth dedicated to safety critical real-time traffic to the current
number of communicating vehicles and their communication needs, while maxi-
mizing the possible amount of best effort traffic in the network.

Herrera et al. [35], have introduced a platform for real-time simulation for PHEV
charging stations. Their system can simulate in real-time key elements of a smart
grid such as: high speed power electronics, distributed energy resources, and
communication networks. The authors have presented and integrated a description
of the platform for real time simulation and communication emulation. They have
also presented an introduction to networked control systems and a case study of
PHEV charging stations which displays the latest results accomplished with the
current setup.

Analytical studies of real-time communication in WAVE scenarios has been
considered in [36, 37, 38]. Li et al. [36], have presented an analytical model that
evaluates the end-to-end delay against the transmission range in 802.11p-based
VANETs. They have analyzed the transmission delay in saturated and non-satu-
rated VANETs and derived the queuing delay by modeling a vehicle as a M/M/1/N
model. Ran et al. [37], have studied the time requirements for last-mile commu-
nication in an low voltage smart grid by considering a futuristic neighborhood
scenarios with large penetration of distributed energy sources and EVs. Luan et al.
[38], have investigated the provisioning QoS ensured multimedia applications to
in-motion vehicles. Figure 8.4 shows their proposed Vehicle to infrastructure

Fig. 8.3 The proposed packet formats; a CHARGE-REQ packet, b SERVICE-STAT packet [34]
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road-side unit communication. The authors have established a mathematical model
to evaluate the performance of EDCA, the fundamental MAC scheme of
802.11p. Their model have considered the node mobility, represented by the
velocity, in the modeling of MAC and unveils the impacts of mobilities on the
resultant QoS performance provisioned to vehicles. The authors have reinforced the
QoS provision by adjusting the QoS parameters in EDCA in tune with the mobility
of vehicles.

8.3 Challenges of Implementing Wireless Networks
in V2G Applications

Reliable and real-time two-way communication in V2G scenarios is one of the
major issues that need be addressed to have real-world implementation of an effi-
cient PEV-smart grid system. Due to the nature of the V2G environment and the
challenges for system deployment, a communication protocol needs to consider
several issues. In addition to that, in V2G communication, QoS is important to
guarantee the normal operations of the smart grid. These challenges can be sum-
marized as follows.

Fig. 8.4 The proposed vehicle to infrastructure road-side unit communication [38]
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8.3.1 Mobile Environment

Obtaining information about real-time power price and peak hours in addition to
en-route charging station reservation in highly mobile environment is one of the
main challenges for these applications. Furthermore, the application of PEV-smart
grid collaboration introduces a new class of applications. For example, PEVs can be
used regulate the frequency and smooth the power flow of the smart grid. Therefore,
in such applications a PEV needs to initiate and terminate the communication with
an AP while the PEV is still within its range, especially if an PEV is traveling at an
average speed of 80 km/h. Therefore, the integration of PEVs into the smart grid to
satisfy such application requirement is not an easy task.

The IEEE 802.11p standard is required to handle not only communication at
high mobility but also in real-time fashion. Thus, the IEEE 802.11p standard must
handle the two-way communications before the communicating PEVs leave the
coverage area of their AP. In addition to that, mobile PEV environment makes
reliable transmission in smart grid more challenging.

The charging information of PEVs is exchanged with the AP through wireless
transmission to enable real-time decision making and to improve the PEV charging
efficiency. However, in a mobile environment, the charging of a PEV is becoming
more demanding and challenging due to the mobility, changing power levels and
limited number of APs. Furthermore, in a smart grid environment, QoS commu-
nication is essential for the entire system to adapt system behavior and provide
real-time pricing. The communication delay is critical for PEV charging process
decision making. Many studies consider the battery charging schemes and mech-
anisms of PEV in a smart grid environment, and developing the communication
standard. However, the consideration of QoS and mobility in PEV-smart grid
scenarios has not been considered in the literature.

8.3.2 Cooperative Communication

Cooperative (i.e. cognitive) communication among PEVs in a smart grid environ-
ment is a challenging aspect and still needs to be developed for such environments
and such applications. The main aim of cognitive communication for such appli-
cations is to facilitate data exchange between PEVs and create a highly informative
smart grid network. The development of a heterogeneous network architecture that
enables real-time, reliable, and secure communication in V2G environment is an
open research issue. The main issue in these applications is security; for instance,
the information that can or cannot be broadcasted or received by PEVs and the
message format associated with that. The challenge becomes even bigger when
PEVs are required to provide QoS guarantees along with cognitive communication.
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8.3.3 Harsh Environment

V2G communications may exist in situations where severe weather, such as snow
storms, hurricanes, heavy rain and extreme heat, which may impact the QoS
performance of such systems. Satisfying QoS requirements for V2G in such
environments is another challenging issue that needs to be studied using field
testing or using realistic models. In addition to that, during extreme weather
conditions, power may be interrupted and hence the APs and the RSU need to
maintain operational to support the V2G infrastructure, this issue has to be
considered in such scenarios. Another challenge which is related to the nature of the
implementation environment is the existence of metal structures, buildings and
other natural obstacles; these in turn may cause multipath propagation, fading, path
loss and other radio wave propagation effects. The effects of the propagation
environment on the QoS performance of V2G systems is another open issue in this
domain that needs to be studied.

8.3.4 Security Issues

In addition to the nature of bursty traffic, mobility and harsh environment, security
issues also need to be considered when implementing wireless networks in
V2G applications. For instance, the security and privacy of billing, payment pre-
authorization and online payments from PEVs directly to the utility administrator or
the charging station owner is a major concern for PEV drivers and smart grid
administrators alike. In addition to that, the actual PEV location needs to be kept
confidential for user privacy. Another security concern is the unauthorized trans-
action. Therefore, V2G security is one of the most important issues and challenges
that need to be addressed. Furthermore, any security and privacy protocol should
consider the QoS guarantees of such applications.

8.4 An Overview of the IEEE 802.11p MAC Protocol

The IEEE 802.11p MAC implements the EDCA mechanism adopted by IEEE
802.11e MAC. Like the IEEE 802.11e the IEEE 802.11p is designed to enable QoS
support for contention-based communications. This is basically done by allowing the
MAC protocol to categories each frame to a different class, which is also known as
AC. The basic idea behind this categorization is that these packets are placed into
different queues based on their AC number. The IEEE 802.11p defines four queues to
specific ACs, each AC provides data categorization based on the characteristics and
requirements of each traffic. To provide data differentiation, each AC queue is con-
figured with different minimum Contention Window size (CWmin), maximum
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ContentionWindow (CWmax), Arbitration Interframe Space (AIFS) and Transmission
Opportunity (TXOP).

The IEEE 802.11p MAC layer uses an internal scheduler to prevent internal
collisions between traffic of different ACs. This is basically done by selecting which
AC has the priority to get medium access. Table 8.1 shows an example of different
ACs used for different applications.

Based on the above description, each AC queue will independently contend for
channel access. To physically achieve this, each (ACi) is allowed to contend for the
medium access after an AIFS period. Each AC has a different AIFS duration as
shown in Fig. 8.5. Therefore, each AIFS[i] can be given by the following relation:

AIFS½i� ¼ TSIFS þ AIFSN½i� � TTS ð8:1Þ

where TTS and TSIFS are the duration of the timeslot and SIFS respectively. AIFSN i½ �
is the AIFS slot count for priority class i for each ACi. The IEEE 802.11p [3]
defines the values of AIFSN i½ �, CWmax and CWmin for each AC, Table 8.2 shows
these defined values.

By examining the values presented in Table 8.2, we notice that low AIFSN
values are assigned to high-priority ACs. Furthermore, ACs with higher priority
have smaller CW. In addition to that, a larger TXOP means more packets can be
exchanged between the device and its base station. Each ACi enters into a backoff
period after waiting for AIFS i½ �, if it finds an idle channel, it initiates its packet
transmission. The backoff counter is an integer which is selected randomly in the
range 0;CWið Þ. Where CWi is defined as the maximum window size at stage i and is
defined according to the following relation:

Table 8.1 Different ACs and
application requirements Access

category
Application

AC[3] Emergency information

AC[2] Information broadcasted by vehicles

AC[1] Inter-vehicle information exchange

AC[0] Non-safety-related connections using
SCHs

Fig. 8.5 Channel access prioritization in IEEE 802.11p
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CWi ¼
CWmin þ 1; i ¼ 0

2i � ðCWi�1 þ 1Þ � 1; 1� i�M � 1

CWmax; M� i�M � f

8
><

>:
ð8:2Þ

Therefore, the window size Wi

Wi ¼
CWmin þ 1; i ¼ 0

2i �W0; 1� i�M � 1

CWmax þ 1; M� i�M þ f

8
><

>:
ð8:3Þ

The value of CWmin and CWmax are defined as 15 and 1,023 as reported by the
draft standard of IEEE 802.11p [3]. For every time slot sensed idle, the backoff
counter is decremented by one unit, otherwise it keeps the same value until the
channel becomes idle again for a period of AIFS i½ �. When the counter reaches zero,
the packet in the ACi queue is transmitted. In case of a collision, the backoff
window size doubles, and the backoff procedure is re-initiated. After reaching the
maximum number of retries Rmaxð Þ which is equal to M þ f , the packet is dropped
and the system returns back to the idle state and waits for a new packet.

8.4.1 EDCA for 802.11p

In addition to the adoption of the IEEE 802.11e EDCA in the IEEE 802.11p
protocol, the protocol also uses additional enhancement due to the nature of IEEE
802.11p applications. One of the major enhancements at the MAC layer is the use
of multi-channel operation. These different channels (i.e. Control Channel (CCH)
and Service Channel (SCH)) provide different traffic categories to achieve addi-
tional QoS guarantees to critical traffic.

Both the CCH and SCH provide four ACs labelled from AC[0] to AC[3].
Whereas AC [3] has the highest priority and AC[0] has the lowest priority.
Table 8.1 shows examples of different ACs with typical application requirements in
the IEEE 802.11p protocol. In the IEEE 802.11p, for delay critical traffic, more time
is assigned to CCH, and for regular traffic more time is assigned to SCH [3].
Therefore, a balance between the time allocated to CCH and SCH channels is

Table 8.2 IEEE 802.11p
parameters AC CWmin i½ � CWmax i½ � AIFSN i½ �

AC[3] ðCWminþ1Þ
4 � 1 ðCWminþ1Þ

2 � 1 2

AC[2] ðCWminþ1Þ
4 � 1 CWmin 3

AC[1] ðCWminþ1Þ
2 � 1 CWmax 6

AC[0] CWmin CWmax 9
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required depending on the traffic type and the environment [3]. In addition to
different ACs and channel type, the size of the Contention Window (CW) (where
CWmin is 15 and CWmax is 1,023) along with the combination of the backoff
window are used to enforce different QoS guarantees [3].

8.4.2 Multi-channel Operation

The IEEE 802.11p protocol divides the MAC layer of the Dedicated Short Range
Communication (DSRC) into two sub-layers. The upper MAC layer (defined by
IEEE 1609.4 standard), which uses channel coordination, channel routing and UP.
The lower sub-layer is responsible for wireless medium access. The standard
provides guidelines for a single station (PEV) under one CCH and SCH by pro-
viding alternating channel access mechanism. The combination of these alternating
CCH and SCH intervals is referred to as Sync interval [3]. The CCH and SCH
intervals are 50 ms long each [3], with a guard interval of 2 ms to separate them.

Network management messages such as WAVE Short Message (WSM) and
Service Advertisements (SAs) are exchanged over CCH. Therefore, initially all
PEVs are required to instantaneously listen to the CCH to achieve synchronisation
and network management. This listen period has to be considered when distributing
the channel allocation between the CCH and the SCH channels especially in heavy
data transmission [3]. The IEEE 1609.4 standard provides four possible access
choices, these namely are; continuous, alternating, immediate and extended channel
access [39]. These different channel access choices depend very much on the
application traffic and the QoS requirements. Figure 8.6 shows the four channel
access mechanisms defined in [3].

From Fig. 8.6, we notice that during CCH time channel activities on SCH are
terminated and during SCH activities CCH activities are terminated [3].

Fig. 8.6 Channel access mechanisms; a continuous, b alternating, c immediate, d extended
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8.5 Scenario Description

There are multiple options to charge PEVs [1], the choice of one charging option
over the other depends very much on the cost of charging, the availability of the
charging, time required to charge and the distance from the PEVs to the charging
stations. In this scenario, we assume that there are three options to charge the PEV.
In our scenario we categorise these options based on cost, availability and time.
Therefore, we assume that the Change Station (CS) is the best option followed by
the fast charging station then finally charging at home as shown in Fig. 8.7.

In our scenario, we assume that there are (N) PEVs on the road at any moment of
time and that these PEVs travel at an average speed of 60 km/h. Furthermore, all of
these PEVs have established a link with one or more APs (within their transmission
range) using the IEEE 802.11p protocol as shown in Fig. 8.7. These PEVs com-
municate with the AP to exchange various safety information and also to exchange
available charge information. Each AP is connected to a Smart Grid Server (SGS) to
acquire information for optimizing the cost of charge (CC), distance to charging
locations (DC) and time to charge (TC). During the initial network set-up phase, all
PEV send their State-of-Charge (SoC), distance to arrival (d) and their destination (D)
to the AP. The AP responds by providing optimum charging options to these PEVs

Fig. 8.7 Scenario description
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and also provides QoS differentiation to an PEV that requires immediate charging.
The optimization of charging options is done in a near real-time manner at the AP by
communicating with the SGS. The PEV driver can decides which option to take and
then makes the reservation to charge at the selected option through the AP.

8.6 The QCEV Scheme

The QCEV scheme provides QoS differentiation to PEVs that require immediate
charging due to the low battery level available at the time of link establishment with
the AP. The aim of QCEV scheme is to give the PEV with critical battery charge
higher probability in accessing the channel and hence reducing the end-to-end delay
and increasing the throughput.

The QCEV scheme works as follows; a group of (N) PEVs within the WAVE
Basic Service Set (WBSS) broadcast their charge status to the AP during the
network association phase using the normal DCF procedure described in [3]. At the
same time, the AP has access to available charging infrastructure and current
charging costs through communicating with smart grid servers. After the associa-
tion phase is complete, the AP evaluates the available charge in all PEVs in its
WBSS and then decides which PEV will have higher priority to have channel
access.

The QCEV scheme modifies the default prioritization of transmission in EDCA
which is implemented by an Arbitrary Inter-Frame Space (AIFS). AIFS is an
extension of the backoff procedure in DCF by assigning new AIFS values for
different ACs. The duration AIFS [AC] is a duration derived from the AIFS
Number (AIFSN) and is given in the Eq. 8.1.

Duration (BD) is given by:

BD ¼ CWmin � SlotDuration ð8:4Þ

where, CWmin is the minimum CW described in [st].
According to [3], different ACs are associated with different AIFSNs. Therefore,

by using Eqs. 8.1 and 8.2, we see that the AC with a smaller AIFS has higher
priority to access the channel. Furthermore, different CW sizes are assigned to
different ACs which is also used to enforce propriety. This procedure is used by the
default IEEE 802.11p MAC protocol which uses EDCA. Based on Fig. 8.6 and
Table 8.2, we see that both the CCH and SCH channels support four traffic classes
each having different priorities. Therefore, allocating more time to CCH will
considerably reduce the delay of critical message since medium access is faster.

In the application proposed in this chapter, a more centralized QoS differentia-
tion is required. The centralization is enforced by the AP based on evaluation of the
remaining charges in all of the PEVs and based on the information fed back form
the smart grid at that moment. It is essential to highlight that a distributed QoS
differentiation described in the IEEE 802.11p protocol is not an optimum solution
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for this scenario due to the need for learned decision based on available battery in
all PEVs in a BSS. In the QCEV scheme, when the AP determines that a specific
PEV (we refer to it as xPEV) needs to have higher priority compared to other PEVs,
it broadcast an “alarm signal” to all PEVs in its WBSS indicating the address of the
xPEV. Upon the reception of this broadcast, all of the PEV except xPEV will use
AC[0] and the alternating channel access mechanism. xPEV on the other hand, will
be the only station allowed to use AC[3] and use the CCH extended channel access
mechanism. The CCH extended channel access mechanism is more efficient in
terms of delay (since it is used for emergency short messages) than the alternating
channel access mechanism because half the length of channel is allocated for short
message exchange. Algorithm 1 shows the QCEV algorithm run at the AP.

Algorithm 1 QCEV Algorithm at the AP.
//Network establishment phase
//For all STAs
AP ← (SoC), (d) & (D)
//For N STAs findMin (SoC) & Max (d)
STAMin(SoC),Max(d) ← xSTA
AP ← (CC), (DC) & (TC) from SGS
//Find Min (CC) & Min (TC) for xSTA
AP broadcast xSTAIPadd , xSTACCMin & xSTATCMin

//Find Min (CC) & Min (TC) for
[
(N-1) STA

]

TransmitMin [CC(N−1)] & [TC(N−1)]
(EDCA Algorithm)

8.7 The CAC Scheme

In the second proposed scheme, we assume that there are two traffic classes being
transmitted across the network. The first is the high priority traffic for delay critical
data such as transmission by electrical emergency vehicles or transmission of critical
incidences on the road. The second class is the low priority traffic which is trans-
mission of routine traffic such as exchange of road traffic information, weather, SoC,
location of BCS and etc. We assume that all of the vehicles (PEVs) connect to an AP
using a star topology and that the communication between PEVs is done through the
AP. Therefore, a message transmitted from one PEV to the rest of the PEVs con-
nected to the same AP should be done before the PEVs leave the coverage area of the
AP. This assumption is made to ensure real-time delivery of delay critical messages.
We assume that APs are interconnected through an intelligent transportation system
network and that the propagation delay from one AP to another is negligible.

The proposed centralized Channel Access Control (CAC) scheme provides
service differentiation to vehicles that have high priority and need immediate
channel access. Therefore, we expect a reduction in the delay when the CAC
scheme is used. The CAC uses the same technique used by the QCEV, but it uses
further QoS differentiation.
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The CAC scheme works as follows; during the network establishment phase, a
group of (N) vehicles within the WBSS exchange their network ID (i.e. MAC
address) and the priority level with the AP using the normal DCF procedure
described in [3]. Based on the network ID and the priority level of the received
handshake, the AP classifies the traffic into two categories, namely, low priority and
high priority traffic. High priority traffic is allocated to vehicles that are transmitting
delay critical data such as emergency vehicles (i.e. data with an alarm flag). Whereas,
low priority traffic is assigned to all other vehicles (i.e. no alarm flag). Based on that,
if within a group of N vehicles there is one or more high priority vehicles, the AP will
broadcast a message to all vehicles in its WBSS indicating a high priority trans-
mission and the source of this transmission. In the CAC scheme, in addition to the
differentiation technique used by QCEV, low priority vehicle use ½Rmax

2 � and high
priority vehicles use Rmax � 2½ �. In doing so, low priority vehicles have less number
of transmission retries and hence give up channel access and give up transmission
sooner than high priority vehicles. In addition to that, different CW sizes are assigned
to different ACs which is also used to enforce propriety. This procedure is used by
the default IEEE 802.11p MAC protocol which uses EDCA. Based on Fig. 8.5 and
Table 8.2, we see that both the CCH and SCH channels support four traffic classes
each having different priorities. Therefore, allocating more time to CCH will con-
siderably reduce the delay of critical message since medium access is faster.
Therefore, when the broadcast is received from the AP, the high priority vehicle will
be the only vehicle allowed to use AC0 and use the CCH extended channel access
mechanism. Similar to QCEV, the CCH extended channel access mechanism is
more efficient in terms of delay than the other channel access mechanisms. It is
important to mention here that if we permanently allow high priority vehicles to use
½Rmax

2 � and low priority vehicles to use Rmax � 2½ �, this will lead to deterioration in
network performance. Because, when high priority vehicles do not exist or do not
communicate in the WBSS, low priority vehicles will suffer from unnecessary
transmission delay and drop in throughput. Therefore, the CAC scheme allows the
AP to adaptively control when this data differentiation should take place.

8.8 Simulation Results and Analysis

To evaluate the performance of the QCEV and the CAC schemes, we use QualNet
[40] network simulator to simulate the scenario described in Fig. 8.7. We assume
that there are (N) PEVs on the road at a given time and that these PEVs travel at an
average speed of 60 km/h. We run each simulation for 1 h and average 10 simu-
lation runs to obtain the results.

Figure 8.8 shows the end-to-end delay from the xPEV to the AP. We show that
when the default QoS defined in the IEEE 802.11p MAC protocol is used, the end-
to-end delay is always higher compared to the situation where the QCEV is used.
This reduction in delay takes place since the distributed QoS mechanisms used by
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the IEEE 802.11p MAC allow different PEVs to use contention based on internal
decisions of remaining battery charge levels and hence making independent priority
levels. Therefore, if multiple PEVs decide that their battery levels are low, they all
consider this situation as a high priority, and use the same AC leading to higher
contention. In the QCEV scheme on the other hand, since PEVs send their battery
levels, the AP decides which PEV deserves the highest channel access priority. We
show that the reduction in delay becomes more obvious when the number of PEVs
increase due the reduction in the contention level.

Figure 8.9 shows the throughput when the IEEE 802.11p protocol and the
QCEV scheme are used. We show that the throughput is always higher when the
QCEV mechanism is used; this is due to the reduction in the contention when
centralized QoS mechanism is used.

Fig. 8.8 QCEV end-to-end delay

Fig. 8.9 QCEV throughput
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Figure 8.10 shows the end-to-end delay from the two different classes of vehicles
to the AP. We show that when the default QoS defined in the IEEE 802.11p MAC
protocol is used, the end-to-end delay is always higher compared to the situation
where high priority data is transmitted. Furthermore, we show that when low pri-
ority data is transmitted the delay is higher than the default situation. If multiple
PEVs decide that their traffic is critical, they all consider this situation as a high
priority, and use the same AC leading to higher contention. In the CAC mechanism
on the other hand, since PEVs send their network ID and alarm level to the AP, the
AP decides which PEV gets the highest priority. We show that the reduction in
delay becomes more significant as the number of PEVs increase.

Figure 8.11 shows the throughput when the IEEE 802.11p, low priority and the
high priority data are transmitted. We show that the throughput is not affected when

Fig. 8.10 CAC throughput

Fig. 8.11 CAC throughput
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the high priority is transmitted and that it remains very close to the IEEE 802.11p
throughput values even with very high number of PEVs. On the other hand, when
PEVs are transmitting low priority data, the throughput remains comparable to the
other two situations. However, when the number of PEVs increase beyond 60, the
throughput begins to slightly decrease due to the reduced channel access rates and
the limited number of retries.

8.9 Conclusions

Quality of Service (QoS), Reliable and real-time communication between PEVs/
PHEVs on one side and the smart grid on the other side has been identified as one
of the main challenging issues to successfully integrate these two technologies. In
fact electrical utility operators have set up specific delay and reliability requirements
for certain V2G applications.

In this chapter, we presented a survey of the state-of-the-art in wireless com-
munication systems for PEVs integration with smart grid. We highlighted the main
challenges associated with the PEV-smart grid communication system. We also
presented two QoS schemes for charging PEVs (QCEV) in a smart grid environ-
ment and a centralized Channel Access Control (CAC) scheme.

Our schemes considers the charging requirements of PEVs communicating with
the Access Point (AP) using the IEEE 802.11p protocol and centrally provides
Quality of Service (QoS) differentiation to PEVs that require immediate access to a
charging infrastructure. The QCEV scheme controls the channel access of con-
tending PEVs by forcing PEVs with less priority to use lower Access Categories
(ACs) with longer channel access mechanism. The CAC scheme builds on the
QCEV scheme, but it provides further enhancements by forcing PEVs with less
priority to spend more time in backoff. Our simulation results show that the QCEV
scheme and the enhanced CAC scheme could effectively reduce the end-to-end
delay and increase the throughput for PEVs with high priority. Furthermore, sim-
ulation results show that as the number of PEVs communicating to an AP increase,
the effectiveness of the QCEV and CAC schemes becomes more pronounced.

As a future work we intend to investigate the performance of the two schemes in
multihop environment where the data packets are routed through multiple PEVs
before reaching the AP.
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Chapter 9
Centralized Charging Control of Plug-in
Electric Vehicles and Effects
on Day-Ahead Electricity Market Price

Pavan Balram, Le Anh Tuan and Lina Bertling Tjernberg

Abstract Global policy targets to reduce greenhouse gas emissions have led to
increased interest in plug-in electric vehicles (PEV) and their integration into the
electricity network. Existing electricity markets, however, are not well suited to
encourage direct participation of flexible demand from small consumers such as
PEV owners. The introduction of an aggregator agent with the functions of gath-
ering, aggregating, controlling and representing the energy needs of PEV owners in
the electricity market could prove useful in this regard. In this chapter, a mathe-
matical model of PEV aggregator for participation in the day-ahead electricity
market is described. The modeling is done by treating each of the individual vehicle
batteries as a single large battery. The centralized charging and discharging of this
battery is then scheduled based on the traveling needs of the PEV owners deter-
mined by an aggregated driving profile and the cumulative electrical energy needs
of vehicles over the optimization horizon. Two methods for scheduling PEV
demand named as joint scheduling method (JSM) and aggregator scheduling
method (ASM) are presented. The two methods are subsequently used to observe
the effects of introducing flexible scheduling of PEVs on the day-ahead market
price in an IEEE test system and a Nordic test system. Results from the IEEE test
system case studies will indicate that the scheduling of PEV energy through direct
centralized control at high PEV penetration levels of 50 % or greater could lead to
potential lowering of day-ahead market prices as compared to an indirect control
method such as the use of fixed period charging. Results from the Nordic test
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system case study shows that controlled scheduling of PEV demand could lead to
only a small increase in day-ahead market price of electricity.

Keywords Aggregator � Demand scheduling � Electricity markets � Day-ahead
market � Plug-in electrical vehicles

9.1 Introduction

Today’s electricity markets are typically designed based on the operational char-
acteristics of large, conventional production units. The structural and operational
rules of electricity markets are continuously being adapted to changes that are
occurring due to the pro-active environmental policies in the energy sector [1]. In
line with these policies, electricity generation from renewable energy sources has
received much focus in the recent past and is only expected to increase in the coming
decades as reported by the International Energy Agency [2]. Most of the newly
installed generating capacity from wind and solar power sources are intermittent in
nature, thereby giving rise to limited control over power generation. To maintain
energy balance within the power system at all instances, it could become imperative
to have controllability from other resources, which could be either non-renewable
energy sources from the generation side, or control of resources on the demand side.

The introduction of smart metering systems at households, and integration of
information and communication technologies (ICT) with power system compo-
nents, gives rise to a potential for control of virtually any type of demand. This
means that even the lowest power consuming devices within households could be
collectively controlled to provide services during power system operation. Cur-
rently, many demand response programs delving into the control of household
appliances have been launched and are being researched upon. It is imperative to
understand the implications of investing in ICT and smart meters for end consumer
demand control. The main question of whether demand control on small consumer
level would benefit in any way would need to be answered. A starting point would
be to categorically observe the effects of demand control on consumers. Two cat-
egories that could have a direct effect are:

i. Social effects—including the behavioral changes needed to be adopted by con-
sumers to perform demand control, and consumer feeling of performing a com-
mon good by promoting and supporting environmentally friendly resources and
participating in programs that could prove to be good for the society in general.

ii. Economic effects—the customers would need to know how demand response
programs would affect their electricity bills. Investment in smart meters could
result in better awareness for the consumers on their consumption patterns that
could, in the long term, result in overall energy demand reduction. To observe
the effects of demand response on the electricity market price would require
further research to study the system level impacts.
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Electrification within the transportation sector is considered to provide good
opportunities for demand control in future power systems [3]. With battery energy
storage systems, PEVs provide flexibility regarding the sources of electrical energy
for charging. Hence, if global policies are driven towards tapping renewable
resources such as wind, solar, biomass, biogas, wave, tidal for power production,
then power sources with lower carbon footprint could be used to charge the
vehicles. With battery systems in PEVs, greater flexibility could be achieved by
storing renewable energy when it is available, and then re-using this energy during
times of higher power imbalance. Hence, PEVs could also be utilized to offset some
of the intermittency in power production from renewable sources.

9.2 The Nordic Electricity Market

The electricity market is an arrangement for sale of electrical energy as a com-
modity between various free players—producers, consumers, retailers and traders.
Additional players such as transmission system operators (TSO) and DSO facilitate
the functioning of electricity markets and the subsequent delivery of electrical
energy to end consumers. The power generated by the producers is delivered to
consumers through transmission and distribution networks. As the electricity net-
work acts as a backbone for the delivery of energy, the network owners are gen-
erally established monopolies that are independent and neutral. The producers and
consumers pay a fee known as the point tariff to the network owners for every kWh
of electric energy produced into or consumed from the network [4]. This ensures
that the market mechanism is facilitated, while assuring financial compensation to
the TSO/DSO for managing network related operations.

The electricity markets within the European Union (EU) as well as and other
parts of the world are constantly evolving. The basic structure is however similar to
that of the Nord Pool, which was the first international electricity market [5].
Considering the EU level plan of a harmonized electricity market to facilitate cross-
border trading [1], it could be reasonably assumed that future developments would
not drastically change the framework of electricity markets from the present.
Currently, market players can enter into various power contracts that are further
described below in the context of the Nordic electricity market. Figure 9.1 shows an
overview of market participants along with the various types of contracts they could
enter into. A description of some important contracts that the players could enter
into is described in the following subsections.

9.2.1 Bilateral Contracts

The market participants can enter into conventional bilateral contracts that involve a
direct trade between a buyer and seller of electrical energy. Considering around
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84 % of power consumption in the Nordic and Baltic countries are bought at the
day-ahead market (DAM) [5], it could be observed that electricity market trading is
becoming more appealing to the players. The physical markets including the DAM
are described in the following subsection.

9.2.2 Physical Electricity Markets

Like many other commodities, electricity could also be traded within a wholesale
market framework. A common DAM called Elspot exists for the Nordic and Baltic
countries where the market players trade bulk of the electricity production and
consumption. The clearing of Elspot results in a production and/or consumption
plan for each market player with a delivery obligation, which requires the players to
abide by their individual plans.

Electrical energy is however, dynamic, in the sense that electricity has to be
instantaneously available when there is demand with few economically viable
storage options. This singular characteristic along with the fact that Elspot is cleared
ahead of the delivery time of electricity necessitates the use of forecasting methods
by the players to estimate their production and consumption. The resulting power
deviations that could occur due to forecasting errors, component failures etc., need
to be rectified. Players are provided an opportunity to do this through the

Large Consumers

Physical Markets

Producer

Retailer

Trader

Small 
Consumers

Financial Market

Retail Market

Direction of cash flow

Bilateral Transaction

Retail Market Transaction

Financial Market Transaction

Physical Market Transaction

Fig. 9.1 Market players and their interactions within an electricity market framework
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continuously traded Elbas market that is available to balance out the players’
individual deviations from their Elspot plans.

It is still possible that last minute imbalances could occur due to failure of
components or various faults within the power system. The responsibility of
maintaining power balance within the power system during delivery period rests on
the TSO who jointly operate the regulating power market (RPM) to provide a
mechanism for correcting the resulting imbalance during delivery period and ensure
the desired level of security of supply within the power system. This market is
cleared retroactively as opposed to the Elbas market.

There is a physical obligation associated with the electricity markets, i.e., it has
to be ensured that the energy traded in the market is delivered to the end consumers
during the specified delivery period. Hence, the Elspot, Elbas and regulating power
markets are collectively addressed as physical markets.

9.2.3 Financial Electricity Markets

It is imperative that the market players are able to quantify and hedge the financial
risks associated with their participation in the physical markets. Financial markets
provide a platform to manage risks by hedging against price fluctuations in the
wholesale markets. Common contracts made available in financial markets are [6]:
Futures, Forwards, Options and Contracts-for-difference.

It is also important to mention that the financial and physical markets have a
specific time-line over which they are operated. Contracts in financial markets are
cleared days, weeks, months or years ahead of delivery as opposed to physical
markets that are generally cleared 45 min to 1 day-ahead. E.g., an overview of the
time-line for Nordic electricity markets operation is shown in Fig. 9.2.

9.3 Demand Response in Electricity Markets

Demand response could be defined as the independent variation in consumption
made by consumers as a reaction to different possible incentives. An incentive
could, e.g., be price signals from a market for electricity or a network signal

Day-ahead

Physical Markets
• Buying and selling of bulk power
• Physical delivery

TodayDays/Weeks aheadMonths/Years ahead

Financial Market
• Trading contracts for a future period
• Only financial agreement. No physical delivery

Day after

Delivery hour

Fig. 9.2 Overview of timeline of Nordic physical and financial markets
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provided by the distribution system operator (DSO) in order to maintain the security
and reliability of the power system during emergency conditions. Regardless of the
type of incentive used, the end result of demand response could be represented as
one the load shaping objectives described in [7, 8]:

a. Peak clipping—implies the reduction of peak load by using direct load control
over customers’ appliances. This form of control could be used to reduce the
overall cost and dependence on peaking generating units. A good example of
peak clipping is the use of interruptible or curtailable tariffs for industrial cus-
tomers in many vertically integrated power system architectures.

b. Valley Filling—implies the process where incentives are provided to increase
new demand during off-peak hours. This could be accomplished, e.g., by pro-
viding price incentives to new space heating or electric vehicle demand to
consume during off-peak hours.

c. Load Shifting—implies shifting part of the load from on-peak to off-peak
periods. This could involve displacing loads during a particular hour that would
otherwise normally be served by electricity.

d. Flexible Load Shaping—implies a combination of various incentives. These
incentives could include interruptible load, integrated energy management
systems or individual customers’ load control, etc.

The consumers who are willing to respond to incentive-based signals could be
referred to as active consumers. An active consumer could be either a large
industrial consumer or a small domestic consumer. Since, the consumption levels of
domestic consumers are small compared to the volumes traded in electricity mar-
kets, an agent similar to a retailer could become essential to represent the needs of
domestic consumers in electricity markets. With controllable resources, however,
this agent generally referred to as an ‘aggregator’ could possibly assume new
functions that might require it to control consumer appliances in real-time.

Demands could respond to the price of electricity in the market to consume
during low price hours as opposed to high price hours. Alternatively, response from
demand could also be used to provide ancillary services to network operation such
as frequency response, voltage and reactive power control, black start capability,
voluntary load shedding etc. Such programs involving control of demand-side have
historically been utilized but limited to large industrial consumers. With the roll out
of smart meters, real-time control of domestic consumers’ consumption could also
be achieved. This could result in greater demand side participation in electricity
markets possibly leading to more efficient use of generation resources while also
reducing the stress on transmission network during peak consumption periods.
Realizing its importance, many electricity markets have begun to open up for
greater demand side participation—notable are the area-price based Nordic elec-
tricity market and the locational marginal pricing (LMP) based PJM market [9, 10].
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9.3.1 Nordic Electricity Market

Features: The Nordic physical markets provide opportunities for price dependent
demand to compete directly with price dependent generation. This is especially the
case with large scale industrial consumers who have the flexibility to bid for energy
directly on the market on an hourly basis and to adjust their consumption in order to
prevent being exposed to very high prices. When it comes to small and medium
sized consumers, there is a plan to move towards a common retail electricity market
with the Nordic region that offers the option of variable retail pricing for consumers
directly based on the wholesale price of electricity. In this regard, the installation of
smart metering systems has been adapted to measure real-time consumption pattern
of domestic and commercial consumers of electricity.

Challenges: Notable challenges exist for domestic consumer participation in the
Nordic electricity markets. Though an aggregator agent could be a legal entity in
current Nordic day-ahead, intra-day and financial electricity markets, barriers arise
when the aggregator would want to participate in the regulating power market. This
is due to the fact that aggregator would need to assume the role of a balance
responsible party (BRP) in order to participate in RPM, or contract with another
BRP. There could be further limitations due to the rules and regulation regarding
aggregation of demand in general and also, regarding a new market player
assuming the role of a BRP. Another barrier that could hinder the participation of an
aggregator is the minimum bid volume requirement by the TSO in RPM, which is
5 MW. This could prove to be a large volume for aggregators, especially in bidding
areas with surplus production resources.

9.3.2 Pennsylvania-Jersey-Maryland Market

Features: In the Pennsylvania-Jersey-Maryland (PJM) electricity market, the end-
users can participate in PJM’s day-ahead energy, capacity, reserves and regulation
markets by reducing their demand for electricity. Currently, the mechanism pro-
vided through demand response programs only attempts to replicate electricity
market price signals instead of exposing them directly to end-users. This is done
through curtailment service provider (CSP). Specifically, the role of CSP is defined
by PJM as [10], “the entity responsible for demand response activity for electricity
consumers in the PJM wholesale markets.” Some notable features about a CSP are:

• It may be a company that solely focuses on a customer’s demand response
capabilities, a local electricity utility, an energy service company or other type
of company that offers these services.

• It identifies demand response opportunities for customers and implements the
necessary equipment, operational processes and/or systems to enable demand
response both at the customer’s facility and directly into the appropriate
wholesale market.
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• It should have appropriate operational infrastructure and a full understanding of
all the wholesale market rules and operational procedures.

Challenges: Some barriers [11] that limit customer exposure to wholesale electricity
prices could be due to the inadequate metering infrastructure, lack of jurisdictional
clarity among regulatory authorities, lack of clear business rules etc. Furthermore,
retail prices are set by regional authorities whose operations are decoupled from
federal agencies.

9.4 PEV Aggregator

Small and medium level consumers do not have means to directly trade in elec-
tricity markets due to the multi-MW size of minimum bid requirement imposed. In
order to trade their flexibility, they would require the services of an aggregator
agent that gather the flexibility offered by many consumers and builds or pools in
active demand capacity to be traded as a single resource. Example of loads that
could be aggregated include: fans, electric cooling and heating, electric boilers,
refrigerators etc. The aggregators could also generate agreements with consumers to
adjust their electricity consumption at moment’s notice. A dedicated aggregator for
trading flexibilities offered by electric vehicles is the ‘PEV aggregator’. Within the
context of electricity markets, the functions of a PEV aggregator are similar to that
of an electricity retailer. Figure 9.3 describes the interaction of an aggregator with
other market participants. The aggregator could purchase electricity from wholesale
markets and subsequently sell them to PEV owners through retail contracts.
However, it is imperative for the DSO to ensure that the electricity traded by the
aggregator is within the capacity of the distribution network. Hence, there could be
an additional need for the DSO to communicate and subsequently validate the
energy trading performed by an aggregator.

There could be additional functions that need to be accommodated in order to
include the concept of aggregator more efficiently within the electricity market [12].
Some of these have been listed as follows:

Aggregator

Day-aheadMarket

PEV owners

DSO
Communication signal

Retail Market Transaction

Control signals

Day-ahead Market Transaction

Direction of signal/
transaction flow

Fig. 9.3 Overview of the
aggregator and its interaction
in the physical markets
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i. There should be necessary communication infrastructure in place for the
aggregator to obtain near real-time electricity consumption measurement,
vehicle battery state and consumption needs of PEV owners [13].

ii. There should be a mechanism in place for the control of PEV owner batteries.
The batteries could be controlled directly by the aggregator with energy
schedule validation by the DSO if the necessary automatic control infra-
structure is established and market and power system operational rules permit
the same. If the rules impose separation of the operational aspect and business
aspect of the aggregator, then it could be possible for the DSO to take over the
PEV battery control function based on the energy scheduling plan commu-
nicated to the DSO by the aggregator [12].

iii. For higher participation from small consumers, it could become essential to
reduce minimum bid size in the market to values lower than 1 MW [14].

iv. It might become necessary to introduce shorter time periods of around 30 min
or less between market closure and operating hour in order to reduce forecast
errors by the aggregator [14].

In this chapter, (i) and (ii) described above are assumed to be available to the
aggregator. It is also possible to incorporate (iii) could be incorporated within a
RPM model by reducing the minimum bid size to be submitted by the aggregator to
the market and (iv) within the DAM by modifying the time resolution for sched-
uling by the aggregator.

The following section presents two methods for incorporating PEV aggregator
and their charge scheduling in DAM [15]. Firstly, the Joint Scheduling Method
(JSM), where PEV energy is scheduled simultaneously with the generation units—
the objective function being minimization of total generation cost. Secondly, the
Aggregator Scheduling Method (ASM), where the PEV battery energy is first
scheduled independently by an aggregator agent based on the estimated electricity
market price. The charging schedule, which represents the PEV energy demand, is
then submitted to the market in the same way as other conventional loads. Con-
sequently, it is possible to assess the effects of PEV energy demand on electricity
market price and compare the impacts among cases with and without PEVs, as well
as among cases with the two different scheduling approaches.

9.5 Methods for PEV Energy Scheduling

9.5.1 Joint Scheduling Method

In JSM, the PEV energy scheduling is considered to be performed by a central
entity like a system operator that also plans for the dispatch of the generators. The
central operator is assumed to receive data related to the generators and PEV
batteries. The operator could then schedule both the generators and the PEV
charging energy demand by minimizing the total cost of generation. In a scenario
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where advanced methods of communication and control are feasible, individual
PEV owners could directly interact with the market by submitting the necessary
PEV data. In this scheduling method, the central operator is assumed to receive the
following three sets of information:

(1) Generator costs along with its technical constraints.
(2) Daily PEV driving energy requirements, driving pattern data and aggregated

PEV battery energy limits.
(3) Hourly conventional load data, which represents the inflexible demand from

all other loads other than PEV demand.

Using these three sets of information, the market model jointly schedules the
generators and PEV load to minimize the total generation cost within a unit
commitment framework [16]. This is shown in Fig. 9.4.

The generators are assumed to bid their true marginal cost of generating elec-
tricity and the market is settled with the minimum generation cost objective [17].
Loads except PEVs are considered to be perfectly forecasted a priori, and are fixed
for each hour.

The objective function of the market model is to minimize the total cost of
generation to supply the load over the time horizon T. This cost also includes the
start-up cost of generating units. This is formulated as shown in (9.1).

Minimize DAMC ¼
X
t2T

X
i2N

VCipi;t þ yi;t SCi

 !
ð9:1Þ

where, DAMC is the total cost of scheduling the generators in the day-ahead market,
VCi is the variable cost of power production of generating unit i and pi;t is the power
produced by unit i at time t, yi;t is a binary variable indicating the starting up of unit
i at time t and SCi is the start-up cost of unit i.

The objective function DAMC in JSM as shown in (9.1) is subject to constraints
(9.2)–(9.15) imposed by the generating units, (9.16)–(9.19) imposed by the
aggregated PEV batteries and power balance constraint (9.20).

Market Model
(Minimize total generation cost)

Generator data
• Subject to generator 

technical constraints

Load data
• Hourly conventional

load

PEV data
• Subject to PEV 

constraints

• Generator schedule
• PEV charging schedule
• Hourly market price

Fig. 9.4 Overview of the
JSM
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9.5.1.1 Generating Unit Constraints

The generating units should generate power greater than their minimum limits at all
times t as shown in (9.2)

pi;t � vi;tP
min
i ; 8i 2 N; t 2 T ð9:2Þ

where, pi;t is the active power output of generator unit i at time t, vi;t is a binary
variable indicating the online status of generator unit i at time t and Pmin

i is
the minimum active power output of generator unit i. The decision of whether the
generating unit generates power at time t is taken using a binary variable vi;t. The
value of vi;t ¼ 1 indicates that the unit i is committed to generate power at time
t whereas a value of vi;t ¼ 0 indicates that the unit i is de-committed from gener-
ating power at time t.

The constraints for maximum available power from the generating unit and its
ramp rate limit are formulated as shown in (9.3) and (9.4). These constraints
account for the generating unit capacity, start-up ramp rate limit, shut-down ramp
rate limit and the ramp-up limit of the unit. The maximum available output from the
generator becomes zero when vi;t ¼ 0, i.e., the unit is offline.

pi;t �Pmax
i vi;t � zi;tþ1
� �þ zi;tþ1SDi; 8i 2 N; t 2 T ð9:3Þ

pi;t � pi;t�1 �RUivi;t�1 þ SUiyi;t; 8i 2 N; t 2 T ð9:4Þ

where, Pmax
i is the maximum active power output of generator unit i, SDi is the shut-

down ramp limit of generating unit i, RUi is the ramp-up limit of generating unit i,
SUi is the start-up ramp limit of generating unit i and zi;t is a binary variable
indicating shut down status of generator unit i at time t (the unit is shut down if
value of zi;t is 1 and online if its value is 0).

The constraint in (9.5) enforces the ramp-down rate limit and the shut-down
ramp rate limit for the unit.

pi;t�1 � pi;t �RDivi;t þ SDizi;t; 8i 2 N; t 2 T ð9:5Þ

where, RDi is the ramp-down ramp limit of generating unit i.
Expressions (9.6)–(9.9) impose minimum up time constraints on the generating

units.

XGUi

t¼1

1� vi;t
� � ¼ 0; 8i 2 N ð9:6Þ

GUi ¼ Min T; UTi � U0
i

� �
V0
i

� �
; 8i 2 N ð9:7Þ
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XtþUTi�1

k¼t

vi;t �UTiyi;t; 8i 2 N; t 2 GUi þ 1; . . . ; T � UTi þ 1f g ð9:8Þ

XT
k¼t

vi;t � yi;t
� �� 0; 8i 2 N; t 2 T � UTi þ 2; . . . ; Tf g ð9:9Þ

where, GUi is the number of period that generating unit i must be online at the
beginning of the day-ahead market optimization horizon due to its minimum up time
constraint, UTi is the minimum up time of generating unit i, U0

i is the time periods
that generating unit i has been online at the beginning of the day-ahead market
optimization horizon, V0

i is the initial commitment status of generating unit i (1 if it
is online and 0 if it is offline), yi;t is a binary variable indicating start-up status of
generator unit i at time t (the unit is started up if its value is 1 and offline if it is 0).

Constraint (9.6) accounts for the initial status of the units. GUi is the total
number of initial periods during which the unit i must be online and is calculated as
shown in (9.7). The constraint in (9.8) ensures that the minimum up time constraint
during all the possible sets of UTi consecutive periods is satisfied for each period
following GUi. If a generating unit is started up in one of the last UTi � 1ð Þ periods,
(9.9) ensures that it remains online during the rest of the periods until t 2 Tf g.

The set of expressions in (9.10)–(9.13) impose the minimum down time con-
straints on the generating units. These are similar to the minimum up time con-
straints with the difference that 1� vi;t

� �
, yi;t, UTi, U0

i in (9.6)–(9.9) are replace by
vi;t, zi;t, DTi, S0i in (9.10)–(9.13), respectively.

XGDi

t¼1

vi;t ¼ 0; 8i 2 N ð9:10Þ

GDi ¼ Min T; DTi � S0i
� �

1� V0
i

� �� �
; 8i 2 N ð9:11Þ

XtþDTi�1

k¼t

1� vi;t
� ��DTizi;t; 8i 2 N; t 2 GDi þ 1; . . . ; T � DTi þ 1f g ð9:12Þ

XT
k¼t

1� vi;t � zi;t
� �� 0; 8i 2 N; t 2 T � DTi þ 2; . . . ; Tf g ð9:13Þ

where, GDi is the number of period that generating unit i must be offline at the
beginning of the day-ahead market optimization horizon due to its minimum down
time constraint, DTi is the minimum down time of generating unit i and S0i is the
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time periods that generating unit i has been online at the beginning of the day-ahead
market optimization horizon.

The constraints in (9.14) and (9.15) are necessary to model the start-up and shut-
down status of the units and avoid simultaneous commitment and de-commitment
of a unit.

yi;t � zi;t ¼ vi;t � vi;t�1; 8i 2 N; t 2 T ð9:14Þ

yi;t þ zi;t � 1; 8i 2 N; t 2 T ð9:15Þ

9.5.1.2 PEV Battery Constraints

In the developed mathematical model, the individual batteries are assumed to be
aggregated and treated as a single battery. The constraints essentially reflect the
charging and discharging operation of the aggregated vehicle battery while
accounting for the traveling energy needs of PEV owners based on their aggregated
driving pattern. It is further assumed that the vehicles are available to the grid for
charging at all times when they are not traveling.

Minimum Energy Requirement
It is assumed that the PEV owner gives the aggregator information about when and
how much of traveling is intended for the next day. Based on this information, the
battery is charged only that amount of energy necessary over its initial state.

SOCini þ
XT
t¼1

Et � SOCmin þ
XT
t¼1

Enext
t ð9:16Þ

where Enext
t is the MWh energy required by the PEV for next day travel during hour

t 2 T , SOCini is the initial state of energy in the battery in MWh and SOCmin is the
minimum energy requirement imposed by the PEV owner on the battery in MWh.
An example of minimum energy requirement input data of a single PEV provided
to the aggregator is shown in Table 9.1.

Charging Period Limit
The PEV aggregator should ensure that the charging of the PEV occurs in such a
way that the battery is charged during hours tf ¼ 1; 2; . . . ; ðt � 1Þ before it travels

Table 9.1 PEV related data
[15, 19] Battery capacity 24 kWh

Energy consumption 0.192 kWh/km

Distance travelled 40 km/day

Energy consumption per day 7.68 kWh/day

Charging power 3.7 kW
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during hour t for all values of t 2 T . This is formulated mathematically as shown in
(9.17).

Xt�1

tf¼1

Etf � Enext
tf

� �
�E next

t ð9:17Þ

Battery State
Charging and discharging of the battery during consecutive hours results in a
change in its energy level for all t 2 T . This is formulated as shown in (9.18).

SOCt ¼ SOCt�1 þ Et � Enext
t ð9:18Þ

Battery Energy Limits
The energy state in the battery should not deviate from its minimum and maximum
limits, SOCmin and SOCmax, respectively for all t 2 T as shown in (9.19).

SOCmin � SOCt � SOCmax ð9:19Þ

It could be noted that the aggregator could face uncertainty by obtaining input
data from PEV owners. One method to plan for PEV charging scheduling while
considering uncertainty in PEV demand as well as electricity price in the day-ahead
market is proposed in [18] using a stochastic programming framework.

9.5.1.3 Power Balance Constraints

The power balance between generation and supply must be maintained. This is
mathematically formulated as shown in (9.20).X

i

pi;t ¼ CLt þ Et ð9:20Þ

The total demand consists of the conventional demand CLt and the demand from
the PEV charging energy Et. The PEV charging energy is an endogenous variable
when PEV scheduling is performed using the JSM. However, it is provided as an
input parameter to the DAM model when the ASM is utilized.

9.5.2 Aggregator Scheduling Method

In ASM, the PEV aggregator is assumed to function similar to an electricity retailer
in the market. The aggregator plans for DAM participation by independently
scheduling PEV energy based on its objective of minimizing the total cost of
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charging. For the scheduling, the PEV aggregator is assumed to have the following
three sets of information:

(1) Daily PEV driving energy requirements, driving pattern data and aggregated
PEV battery energy limits.

(2) Hourly conventional load data, which represents the inflexible demand from
all other loads other than PEV demand.

(3) Estimated supply function to model the PEV aggregator as a price maker. If
the aggregator needs to be modeled as a price taker, then the estimate supply
function input data could be replaced directly with the forecasted electricity
price profile.

Using the above sets of data, the aggregator schedules the charging energy of
PEVs such that the total cost of charging is minimized as shown in Fig. 9.5.

9.5.2.1 The PEV Aggregator Model

The PEV aggregator ensures that the charging and discharging events of the vehi-
cle’s aggregated battery is scheduled considering the unavailability of PEVs due to
driving needs. Batteries within electric vehicles are essentially loads that are required
to be charged with sufficient energy to ensure smooth operation of the vehicle
according to the driver’s needs. Hence, it could be reasonable to assume that the
main position held by the PEV aggregator is as a consumption entity within the
electricity market. Considering such a stance, the objective function of the aggre-
gator would then be to make sure that the cost from energy purchased for charging of
all the PEVs is minimized while accounting for the driving needs of the PEVs. Due
to its participation in the day-ahead market, the charging energy price would depend
on the market price of electricity. If hourly charging costs are directly imposed on the
PEV owners, the objective function could then be represented using (9.21).

Aggregator Model
(Minimize total charging cost)

Estimated 
supply function

To Market Model• PEV charging schedule

• Estimated charging cost

Stage1

PEV data
• Subject to PEV 

constraints

Load data
• Hourly conventional

load

Fig. 9.5 Overview of the
ASM: Stage-1
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Minimize ACC ¼
X
8 t2T

pmt � Et

 !
ð9:21Þ

where, ACC is the total cost of charging estimated by the PEV aggregator, pmt is the
estimated market price from the estimated supply function and Et is the charging
energy to be scheduled at time t over the optimization horizon T. It is possible that
the charging price used by the PEV aggregator is either an endogenous variable or
an exogenous parameter. If the market is such that it requires the aggregator to plan
the hourly charging needs before submitting its energy requirements to the market,
then the electricity price would need to be estimated and it would identify itself as
an exogenous parameter within the aggregator model.

The objective function of the PEV aggregator shown in (9.21) is subject to
constraints imposed by the needs of vehicle owners along with the technical lim-
itations of the battery as described in (9.16)–(9.19).

The estimated supply function gives an approximation of how the market price
varies with changes in total demand. This function is important to identify the effect
of total PEV demand on the market price when it is no longer a price taker. The
estimated charging price could be modeled as a function of the total demand within
the system as is shown in (9.22).

pmt ¼ f ðCLt;EtÞ ð9:22Þ

where, CLt is the aggregator forecasted conventional load. The supply function can
also be estimated from historical data on price and demand level cleared in the
market.

9.5.2.2 The Market Model

The PEV charging schedule Et from the ASM: Stage-1 is then input into the market
model in the ASM: Stage-2 where the generators are scheduled to meet the total
demand from the conventional load and the scheduled PEV energy in a way so as to
minimize the total generation cost. This is shown in Fig. 9.6.

The objective function of the market model in ASM: Stage-2 is described by
DAMC in (9.1) and is subject to constraints (9.2)–(9.15) imposed by the generating
units and the power balance constraint (9.20).

9.6 Case Studies

In this section, the presented joint scheduling and aggregator scheduling methods
are applied on a modified IEEE 30-bus test system and a Nordic test system to
observe the effect of PEV demand scheduling on changes in price of electricity.
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PEV related data shown in the following paragraphs is used that is common to all
the case study simulations performed. The description of the IEEE 30-bus test
systems and the representative Nordic system along with the results from the case
studies are further described in Sects. 9.6.1 and 9.6.2, respectively.

The input data related to PEVs used for both the JSM and ASM case studies
were obtained from a report published by the Grid for Vehicles (G4 V) project
under the European Commission’s 7th framework program [19], and are shown in
Fig. 9.7 and Table 9.1.

The driving pattern in Fig. 9.7 is dependent on vehicle users and it is reasonable
to assume that the driving behavior would not change drastically with the intro-
duction of PEVs. Hence, the conventional vehicle user behavior is considered to be
representative of the expected PEV user behavior.

The battery capacity and energy consumption in Table 9.1 are calculated based on
the expected composition, at high penetration levels, of battery electric vehicles and
plug-in hybrid electric vehicles, and represent a weighted average value [15, 19].

The battery charging and discharging characteristics are highly non-linear and
depend on the type of battery. Li-ion batteries are considered as they appear to be
the most promising type for PEV application [20]. Their charging curve indicates

• Generator schedule
• Hourly market price
• Actual PEV charging cost

Market Model
(Minimize total generation cost)

Aggregator 
charging schedule

Stage2

Generator data
• Subject to generator 

technical constraints

Load data
• Hourly conventional

load

Fig. 9.6 Overview of the
ASM: Stage-2

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20
Driving PEVs

Time (hr)

P
er

ce
nt

ag
e 

of
 P

E
V

s 
dr

iv
in

g

Fig. 9.7 Driving pattern of PEVs based on conventional vehicle data [15, 19]

9 Centralized Charging Control of Plug-in Electric Vehicles … 283



that the charging power is nearly constant within a certain range of their state-
of-charge [21]. Hence, the values of SOCmin and SOCmax are fixed at 20 and 85 %
of the battery capacity for all simulations.

9.6.1 The IEEE 30-Bus Test System

The presented JSM and ASM have been applied to a modified IEEE 30-bus test
system [22] to observe the effects of PEV aggregator demand scheduling on the
price of electricity. The test system consists of nine generating units that are sub-
jected to the following general technical constraints [16]:

• Min/Max generation limit
• Min up/down time
• Ramp up/down rate limits
• Start-up/Shut-down ramp rate limits

The penetration level of PEVs is defined as the ratio of total number of PEVs to the
total number of vehicles in the system. It is estimated that a total of 170,000 PEVs
would, in addition to the conventional load, result in energy requirements that
would lead to the flattening of the daily load curve at a level corresponding to the
peak demand. Since, information about vehicles in this test system is not readily
available; it is assumed that there are a total of 170,000 vehicles in the system.

In ASM, the aggregator is considered to make use of the estimated supply
function described in (9.23) to estimate the effect of PEV load on the market price
and schedule the charging accordingly.

pmt ¼ a1 ðCLt þ EtÞ þ a0 ð9:23Þ

where, a1 and a0 are the constant coefficients. The estimated supply function for
this system is shown in Fig. 9.8.

9.6.1.1 Fixed Period Charging

To obtain an idea of how the total load and market price will vary with the
introduction of PEVs while the market has limited control over the charging, a fixed
period charging method is described. A simple controlled charging mechanism of
PEVs can be implemented by fixing their charging schedule during certain hours of
the day when the conventional load is low. Figure 9.9 shows the variation of total
hourly load at different levels of PEV penetration within the system when PEV
charging is limited to hours 1–6.

Figure 9.10 shows the variation of hourly market price with different levels of
PEV penetration within the system. It can be observed that at penetration levels of
20 and 50 %, increase in market price is not significant indicating that even a simple
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charging mechanism could be effective in maintaining an acceptable increase in
market price by the introduction of PEVs. But at higher penetration levels, i.e.,
100 %, Fig. 9.9 indicates that the total load during early hours exceeds the peak
demand due to conventional load alone (hour-18). The increase in market price can
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Fig. 9.8 Actual supply curve and estimated supply function used for modified IEEE 30-bus
system
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also be seen in Fig. 9.10 as more expensive generators need to be scheduled to
supply the additional PEV load resulting in a market price as high as 40 $/MWh
during the first 3 h.

9.6.1.2 Joint Scheduling Method

The JSM is implemented for this test system and the resulting market price for
various penetration levels of PEVs is shown in Fig. 9.11. Comparing Figs. 9.10 and
9.11, it can be seen that at lower penetration levels of 20 and 50 %, there is no
significant difference in the increase of market price between fixed period charging
and joint scheduling. But, at higher penetration level of 100 %, joint scheduling
results in a more uniform market price of 22 $/MWh, indicating better utilization of
generating resources.

Figure 9.12 shows the hourly total load at 100 % PEV penetration. It can be seen
that the total load in the system does not exceed the peak load at hour 18 even at
100 % PEV penetration. This can be significant in systems that are stressed and
might need network reinforcement in the case of fixed period charging, but the same
can be avoided using joint scheduling. It is interesting to note that little or no
charging takes place during the hours 23 and 24. This could possibly be due to two
reasons—one, the optimization horizon in the model is limited to 24 h and two, the
PEV energy requirements need to be respected before their hour of travel.
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9.6.1.3 Aggregator Scheduling Method

The results obtained from ASM are shown in Fig. 9.13 for various PEV penetration
levels. Comparing Figs. 9.10 and 9.13, it can be seen that at 20 % penetration, the
market price during the day increases similarly in both models. However, at 50 %
penetration level, the aggregator model results in an increase of market price by
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Fig. 9.11 JSM result: market price at zero and 100 % PEV penetration
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4 $/MWh during hours 9–20. This could be attributed to the aggregator not being
able to perfectly forecast the dependency of price on changes in demand. Since,
forecasting brings about an error in the estimated price, the aggregator schedules
higher or lower charging energy during an hour, depending on whether the demand
dependency was underestimated or overestimated, respectively.

The hourly load for ASM is compared with the result from JSM for 100 % PEV
penetration and is shown in Fig. 9.14. It can be seen that the error in estimation by
the aggregator results in lower PEV load to be scheduled between hours 2 and 7
when compared with the JSM. Due to this under-scheduling of PEV load during the
early hours, greater PEV load is scheduled between hours 9 and 21.

The corresponding changes in market price can be seen in Fig. 9.15. This price
directly reflects the errors in forecasting by the aggregator on market price. It is
lower by about 4 $/MWh during hours 2–7 but, consequently, increases by 4 $/
MWh during the later hours 9–21 when compared to JSM results.

9.6.2 The Nordic Test System

The joint scheduling approach is used to simulate the participation of PEV ag-
gregator and its charging energy scheduling in the Nordic day-ahead market, which
consists of four participating countries from the Nordic region, namely—Norway,
Sweden, Finland and Denmark. The market players who want to trade electricity on
the Elspot market must submit their sell offers and/or buy bids for every hour of
trading to the market, no later than 12:00 h, on the day before the power delivery.
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These bids are submitted via the internet to the website of Nord Pool Spot. The
collected sell bids are cumulated in increasing order of price to form a supply curve
and the buy bids are cumulated in decreasing order of price to form a demand curve
—for every hour. The intersection of the two curves gives the market price of
electricity for that hour. More information on the operation of Elspot can be found
in [4].
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Due to the physical restrictions imposed on energy trading by transmission lines,
the Nordic electricity market area is divided into a number of bidding areas. The
TSO decides on the criteria and number of bidding areas. Since, the operation of a
TSO is generally limited to one country; a bidding area does not traverse political
boundaries between countries. Currently, Norway is split into 5 bidding areas—
NO1 to NO5; Sweden into four—SE1 to SE4; Denmark into two—DK1 and DK2;
and Finland into one—FI.

The total installed generating capacity in the Nordic region is around 96 GW
[23]. Figure 9.16 shows the share of total installed generation capacity based on the
bidding areas in the Nordic region (excluding Estonia, Latvia and Lithuania).

Installed generation capacity data for units greater than 100 MW including the
type of generating technology for all four countries is obtained from [24]. The
variable cost of power generation based on different technologies in [25] is used and
scaled to reflect the average system prices in Nord Pool Spot for the year 2012 [26],
after which the aggregated supply curve in the Nordic market can be obtained as
shown in Fig. 9.17.

The aggregated supply curve is based on installed generation capacity in four
countries—Norway, Sweden, Finland and Denmark. A normal market situation is
considered, where, all the installed generation capacity is available. Two generation
technologies that influence this assumption critically in the Nordic market are—
hydro and nuclear power. With respect to hydro power, it reflects a situation when
there is sufficient inflow to the hydro power station reservoirs in Norway and
Sweden. This can further be classified as a normal winter that occurs every other
year. This is in line with a study on vulnerabilities of the Nordic power system
where, 90 % hydro availability is assumed in Norway and Sweden during normal
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hydro conditions [27]. Similarly, due to the low probability of forced outages of
nuclear power generation in Sweden and Finland, 100 % availability is assumed.

The vehicle data required to simulate the participation of PEVs in the Nordic
market is based on statistics available for conventional fuel driven vehicles and is
obtained from [28–31]. The resolution of this data currently available is for each
county present in each of these countries. The total number of conventional vehicles
in the Nordic area is found to be around 12.7 million. These are approximately
segmented according to bidding areas and the resulting distribution is shown in
Fig. 9.18.

It is difficult to estimate the elasticity of conventional demand in the short-term
since this elasticity would occur in special circumstances, where, the price of
electricity is very high over a sustained period of time (days or weeks). Hence, the
conventional demand is assumed to be inelastic. The impact of the assumptions
made in this study on the final results and its analysis is optimistic, while at the
same time, reflecting a highly expected market situation. It is imperative to mention
that the simulation models are designed for a single auction market while the
Nordic market is, in fact, a double auction market where a number of market
players determine the outcome. A direct consequence of this may be a lower
resulting market price due to better utilization of generating resources.

The external interconnection capacities between countries within and outside of
the Nordic area are included as inelastic demand thereby representing an export
scenario from the Nordic countries. This is indicative of an anticipated market
situation, though, in reality, the complete transmission capacity may not be utilized.
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The JSM will be applied to the following two cases of the Nordic market:

(1) Unconstrained case: When the trading of electricity is not limited by the
interconnection capacities between different bidding areas in the Nordic
region.

(2) Constrained case: Trading of electricity is limited by the interconnection
capacities between different bidding areas in the Nordic region, which are
modeled based on the net transfer capacity (NTC) values [32].

Only joint scheduling is used for the case study of the Nordic market, because the
aggregator scheduling is heavily dependent on the accuracy of the estimated supply
function given by (9.23). The accuracy of this function could be improved by
modeling the price as a polynomial function of demand, although, by doing so, the
complexity of the optimization function increases and the resulting model might not
necessarily provide a solution. The consequence of such an assumption is the
results being more optimistic, where the available generation and flexible demand
are utilized more resourcefully.

9.6.2.1 Unconstrained Case

If there were no upper limits on interconnection capacities, one supply and one
demand curve could in theory be used for the clearing of the whole Nordic DAM.
In a single auction market, it would translate into a single supply curve for the entire
Nordic market. This would then be matched with the demand curve during that
particular hour to obtain the market price for electricity.

The demand profile for this system was obtained using the data in [33] for a
Tuesday during week 51 with an aggregated peak demand of 69 GW [23]. In such a
context, if EVs are introduced into the system and their charging energy traded in
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the Nordic market as flexible demands, the corresponding changes to the electricity
price in the day-ahead market, for various penetration levels of PEVs, can be
obtained as shown in Fig. 9.19.

It could be observed that even if all the 12.7 million conventional vehicles were
replaced by PEVs, the market price would increase by 8 €/MWh during low
demand periods. It would require an introduction of at least 37 million PEVs before
the system price during most hours corresponds to the peak load price of 35 €/MWh
during hour 18. Hence, the Nordic market could be considered to be highly resilient
towards the introduction of PEVs. The changes in hourly total load and market
price, with the introduction of 12.7 million PEVs in the Nordic region, are shown in
Figs. 9.20 and 9.21, respectively. Since, only a single auction market is considered,
it could be seen that JSM schedules the charging energy of PEVs during low
demand periods as shown in Fig. 9.20, when the price of electricity is low as shown
in Fig. 9.21. The impact of this is a minimal increase in total demand and corre-
sponding electricity price.

9.6.2.2 Constrained Case

With interconnection capacities in place, area prices apply when power traded
between at least two areas in the market exceeds the total available transmission
capacity between those areas. The area market prices in the Nordic market for the
constrained case are shown in Fig. 9.22. Y-axis denotes the area prices; x-axis
denotes the 12 bidding areas and the colored bars from blue to red denote the 24 h
under consideration for each area.

It can be seen in Fig. 9.22 that areas FI, SE4 and DK2 already suffer from high
prices compared to other areas primarily due to the dominant fossil fuel-based local
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generation. Prices in most of the areas are different indicating that the intercon-
nections between these areas have been fully utilized. In areas NO1 and NO2, it can
be observed that the prices during all of the 24 h are the same indicating that the
available transmission capacity is not completely utilized.

Extension of themodel to include scheduling of PEV charging results in area prices
as shown in Fig. 9.23, for 100 % penetration of PEVs in the market. In hydro power
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dominated areas—SE1, SE2, NO1-NO5, it can be seen that the market price remains
relatively the same during all hours even with a high penetration of PEVs. It is also
found that mainly two areas, namely—SE4 and DK2 are affected by the high levels of
PEV penetration. At 100 % PEV penetration level, the electricity price in DK2
increases to 54 €/MWh even during the low demand hours 1–7, whereas it increases to
38 €/MWh during the same hours. Further introduction of PEVs would result in a
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market price higher than 54 €/MWh in DK2 that corresponds to the price at peak
demand with only conventional demand.

Area price for SE4 at different penetration levels is shown in Fig. 9.24a. Simi-
larly, for the bidding area DK2, the area price at different penetration levels is
shown in Fig. 9.24b. It can be seen that the area prices in SE4 and DK2 increase
with an increased penetration of PEVs in the Nordic system. This may be attributed
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to a number of factors, e.g., these two areas are dominated by thermal generators
which are generally more expensive, capacity of transmission lines connecting them
to generator surplus areas are insufficient and greater population in these areas
account for relatively higher number of PEVs being integrated at higher penetration
levels.

9.7 Conclusions

In this chapter, two methods for scheduling PEV demand named as JSM and ASM
have been presented. These methods could be used to evaluate the effects of PEVs
scheduling on the overall system load shape and the effects on electricity market
price. The JSM could prove useful in a market setup where there is a possibility to
schedule both the generation and demand side resources; whereas the ASM could
be useful where individual market players would require performing their indi-
vidual energy scheduling. The two methods were applied to an IEEE 30-bus test
system and the Nordic test system to find the effects of PEV energy scheduling on
market price of electricity. From the case study on the IEEE 30-bus test system, it
was found that market integration of PEVs might lead to an increase in market price
at higher penetration levels using fixed period charging, at which point, advanced
methods of scheduling of PEV fleet charging could become necessary. The JSM
may require changes in the operational structure of electricity markets, but the
model could result in better utilization of resources as it simultaneously schedules
both the generation and demand resources. In the unconstrained case, the Nordic
market was found to be highly resilient toward integration of PEVs. Transmission
network constraints form an important factor on the system level which could
influence the actual flow of power, and hence, directly influence the penetration
level of the PEVs that could be accommodated in the system before a significant
increase in market price.
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Chapter 10
Optimal In-Home Charge Scheduling
of Plug-in Electric Vehicles Incorporating
Customer’s Payment and Inconvenience
Costs

Mahmud Fotuhi-Firuzabad, Soroush Shafiee
and Mohammad Rastegar

Abstract Plug-in electric vehicles (PEVs) are identified as one of the motivating
technologies in smart grid era. However, if their highly disruptive impacts on the
distribution system are left unaddressed, it may obstruct both smart grid develop-
ment and PEV adoption. This chapter develops a novel in-home PEV charging
control (PCC) algorithm that schedules both the time and level of charging PEVs
incorporating customer’s desired comfort level. This optimization-based problem
attempts to achieve a trade-off between minimizing the electricity payment and
minimizing the waiting time to fully charge the PEVs in presence of a time of use
(TOU) pricing tariff combined with inclining block rates (IBRs). The projected
algorithm is online in which each PEV is scheduled at its plug-in time, and the
charge scheduling of plugged-in PEVs are updated when the next PEV is plugged-
into the home outlet. The proposed method is applied to a smart home with different
number of PEVs and various levels of customer’s comfort. In addition, the impacts
of solving PCC problems on the specifications of the IEEE 34-bus residential test
feeder with different PEV penetration levels are investigated. The simulation results
are presented to demonstrate the effectiveness and applicability of the proposed
PEV charge scheduling scheme.
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10.1 Introduction

Power system reliability, environmental concerns, and energy efficiency are the
three major challenges of smart grid (SG) implementation [1]. In the SG era, plug-in
electric vehicle (PEV) technology is an emerging paradigm and a promising
solution to some environmental and economical problems. However, utilities are
becoming concerned about the performance degradations and overloads that may
take place in distribution systems due to multiple domestic PEV charging activities.
So, as PEVs become more popular, they are more threatening the reliability and
security of the grids.

In recent years, several studies demonstrated that high penetration levels of
PEVs have negative impacts on the distribution network [2–5]. Due to proven
adverse impacts of PEV charging, it seems necessary to monitor and control these
inappropriate consequences. SG provides an outstanding opportunity to intelli-
gently manage PEV charging in the distribution network.

Several literatures concentrated on the PEV charging control methods in a smart
environment. PEVs can be charged either in public places or at homes. An
aggregator of retail customers or distribution company (DISCO) is responsible for
public charging of PEVs at charging stations or parking lots. Various objective
functions such as maximizing customer benefit [6, 7] and maximizing average state
of charge (SOC) for all vehicles [8, 9] are formulated to control PEVs charging at
public charging places. A number of researches also focus on the in-home charging
control. To the best of authors’ knowledge, in almost all the literatures associated
with the in-home charging, an aggregator or distribution system operator (DSO) is
responsible for charging a group of PEVs. The responsible organization designs
different strategies or optimization-based programs to manage PEVs charging.
Sortomme et al. [10] propose three objective functions, i.e. minimizing losses,
maximizing load factor, and minimizing load variance, to achieve an optimum
scheduling of charging PEVs. References [3, 11] coordinate PEVs charging in a
residential distribution network to minimize power losses and voltage deviation.
Also, a smart load management is proposed in [12–14] to control in-home PEVs
charging in a residential network to minimize the cost of charging. In these studies
[3, 10–14], the DSO or aggregator manages PEVs charging.

It can be deduced from studying these literatures that the main purpose of pro-
posed PEVs charging algorithm is to maximize social welfare, i.e. minimize peak
load, system losses, or the total cost. As mentioned before, references [3, 10, 11]
minimize system losses while it might be unappealing for the customers themselves.
For example, presented results in [3] show that by applying the proposed optimi-
zation method, a PEV in one load point is charged faster than a PEV in another point.
This might lead to irrational different payment costs for PEV owners in a time-
varying pricing environment. Payment cost is the most important concern and
appealing motive for customers to control their PEVs charging. Although references
[12–14] minimize charging cost of a group of PEVs, this may also cause a
discrimination against customers; because in these optimization procedures,
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customer preferences are not considered properly. Moreover, recently, some reports
and surveys have been published about demand response programs, which prove
that customers do not properly respond to the price signal. These kinds of customers
do not sacrifice their comfort instead of the less payment cost. If such a program, for
which the customer participation is required, does not appropriately provide the
customers’ comfort, customers will not participate in that program. Similarly, an
applicable PEV charge scheduling program should cover all aspects of customer’s
preferences to satisfy the customer to participate in the program. The customers’
interests and comfort can be incorporated in the optimization process as constraints
[15, 16] and objective function [16–18].

The most prominent factor in customer’s decisions is payment cost. Therefore,
similar to many recent studies, the customer payment cost should be employed in
the optimization problem as an objective function. A difference between the results
of controlled and uncontrolled charging, only based on the payment cost, is that in
the case of controlled charging the charging time usually shifts from afternoon
hours to the later ones at midnight. This may not be desirable for all customers. We
should provide a situation for the customer in which the PEV can be charged as
soon as the customer wants. This can be presented as the waiting cost function in
the objective of optimization problem. The concept of waiting time was previously
used in [18] to schedule the household appliances. The presented method in [18] is
a day ahead scheduling which confronts uncertainties. The challenge of real time
pricing uncertainties is probed in the paper [18]. However, in the present study, the
uncertainty challenges raised by the day-ahead scheduling of PEV are mitigated by
proposing an online charge scheduling algorithm.

This chapter addresses the in-home PEV charging control (PCC) problem as an
optimization effort incorporating the customer’s comfort. The optimization problem
is solved from the customer point of view by a PEV charging scheduler (PCS)
improvised in each home. The output of the optimization problem would be the
charging time and the level of connected PEVs at home. The objective is to achieve a
trade-off between minimizing the customer inconvenience cost and payment cost of
PEV charging. The payment cost is a function of PEVs charging demand and
declared time-varying tariffs. In order to minimize the payment cost, the PCS shifts
the charging of PEVs to inexpensive periods which rationally coincide with the
valley of consumption profile. As a matter of fact, the peak to average ratio (PAR) of
the load profile would likely decrease which is desirable from the utility viewpoint.
The proposed inconvenience cost function encompasses the waiting time of the
customer to have a fully charged PEV battery. It is clear that the desired level of
convenience is different for various customers and should be set by the PEV owners
in each house. This is considered in the problem formulation and guarantees more
customer satisfaction. Also, in most of previous studies, the charge scheduling
problem is solved for a day-ahead period in which the customers’ behavior would
likely face to some uncertainties. For example, in [16], departure time, travelling
time, and out-of-home energy consumption of PEVs are modeled by a normal
probability distribution function due to lack of data about customer’s behavior. We
tackle the problem by proposing an online charge scheduling algorithm in which the

10 Optimal In-Home Charge Scheduling of Plug-in Electric Vehicles … 303



PCS gets required data from the PEV once it is plugged in, and schedules the
charging time and level of all the plugged in PEVs in the horizon time of scheduling.
The proposed problem is materialized in a simple linear programming (LP) fashion
that can be easily integrated in the energy management system of a household.

Verification of the proposed method effectiveness is probed and presented in
different cases. PCC problem is solved in a smart home with different number of
PEVs and different levels of comfort. In order to investigate the proposed PCC
problem impacts on the distribution networks specifications, the optimization
results with random customers’ comfort levels are applied to the IEEE 34-bus
residential test feeder with different PEV penetration levels.

The rest of the chapter is outlined as follows. The system data structure as well
as dynamic pricing model used in this chapter is treated in Sect. 10.2. The basic
PCC formulation, which just minimizes charging payment cost, is presented in
Sect. 10.3. In Sect. 10.4, the PCC formulation is extended in order to take into
account the inconvenience cost of waiting time for PEV charging. Simulation
results are presented and discussed in Sect. 10.5. The chapter is concluded in
Sect. 10.6.

10.2 System Data Structure and Dynamic Pricing

In this section, the data structure and requirements utilized in smart grids to manage
the PEV charging are initially reviewed and then, dynamic pricing methods, spe-
cifically time of use (TOU), inclining block rate (IBR) pricing and the combination
of these two pricing techniques are briefly discussed.

10.2.1 Data Structure and Requirements

A feasible data structure for applying an optimization program to schedule PHEV
charge at a home is presented here. The general wholesale electricity market
scenario is shown in Fig. 10.1, in which the retailer/utility serves a number of end

Fig. 10.1 Feasible data transfer structure
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users. The market is cleared by the ISO and prices are announced to the market
participants. Next, retailer declares retail price for end-users mainly based on the
wholesale market prices over a digital communication infrastructure, e.g., a local
area network (LAN). PCS dedicated to each advanced metering infrastructure
(AMI) is responsible for controlling the charging of PEVs by setting up charging
times of batteries. PCS solves the PCC problem considering declared time-varying
tariffs. As shown in Fig. 10.1, control signals are transmitted from PCS to the
responsive appliances over a home area network (HAN) [19].

10.2.2 Dynamic Pricing

One of the effective inputs of PCC problem is time-varying tariffs. Time-differen-
tiated pricing models can potentially lead to economic and environmental advan-
tages compared to the flat rates [19]. Changing the pattern of customer electricity
consumption is the basic idea behind the time-varying pricing. The tariffs consid-
ered in this chapter are TOU, and a combination of TOU tariff and IBR.

In the TOU tariff, electricity price changes in definite levels during hours of the
day. TOU can be described in different levels. Three-level TOU pricing can be
formulated as below:

ct ¼
c1 if t 2 T1
c2 if t 2 T2
c3 if t 2 T3

8<
: ð10:1Þ

where, t is the hourly time index, ct is the TOU electricity tariff at hour t,
c1; c2 and c3 are respectively tariffs at off-peak periods (T1), mid-peak periods
(T2), and on-peak periods (T3) during a day. Obviously T1 [ T2 [ T3 ¼ 24 h and
c1 � c2 � c3. Transferring PEV charging from on-peak tariff periods to lower tariff
ones leads to peak load shaving and valley filling which are desirable from DSO
point of view.

IBR pricing can lead to load balancing and reducing PAR [20]. In the IBR
pricing, energy consumption more than a predetermined threshold would impose a
penalty cost to the customer [21]. This penalty is such that the amount of consumed
energy more than the threshold should be paid by a higher tariff than that of below
the threshold. An hourly IBR tariff, rðLtÞ; is mathematically presented as:

rðLtÞ ¼
a 0� Lt � @

b Lt [ @

�
ð10:2Þ

where, Lt is the total amount of consumed energy at hour t which here is the total
energy consumption of connected PEVs at hour t, and @ is the predetermined
threshold of IBR pricing. The cost of energy consumption lower than and beyond
threshold @ is respectively calculated by tariffs a and b where b is greater than a.
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It is expected that by considering IBR pricing in PCC problem, charging level of
batteries be capped to the threshold, as much as possible. Thus, the periods of PEVs
charging at a home will be distributed during the allowable time interval of
charging PEVs. This prevents occurrence of high peak load demand, which could
take place due to overlapping the charging of PEVs at a home.

Combining these two non-flat rate pricings, TOU and IBR, can accumulate their
advantages together. Combination of TOU and IBR tariff, rtðLtÞ, can be formulated
as:

rtðLtÞ ¼ at 0� Lt � @
bt Lt [ @

�
ð10:3Þ

where, at and bt are, respectively, the tariff of consumed energy at hour t less and
higher than threshold @. Note that, in (10.2), a and b are constant and thus, the tariff
is independent of the hours of day and only depends on the level of hourly-
consumed energy. Nevertheless, in (10.3), at and bt depend on not only the total
hourly energy consumption at each hour, but also on the time of day. Off-, mid-,
and on-peak periods are determined in advance, and at and bt are predefined in
three levels for these periods. So, we have a1; b1f g; a2; b2f g; and a3; b3f g for
t 2 T1, t 2 T2, and t 2 T3, respectively. It would be rational to have at less than ct
and bt higher than ct [22].

10.3 Basic PCC Formulation

In this section, the objective function for basic in-home PCC, the online algorithm
of scheduling, and the associated constraints are described to control the charging
periods and charging level of PEVs.

Consider that K is the set of PEVs connected to the outlet at home.
tkp and tkd 8k 2 Kð Þ are respectively plug-in time and departure time of the kth PEV.

The charge scheduling vector associated with the kth PEV at home (Pk) can be
defined as:

Pk ¼ pktkp ; p
k
tkpþ1; . . . ; p

k
tkd�1

h i
; 8k 2 K ð10:4Þ

The PCS specifies the optimal choice for Pk , where pkt ; 8t 2 ½tkp; tkdÞ, is charging
level of the kth PEV at hour t. Note that

0� pkt � pk;max; 8t 2 tkp; t
k
d

h �
: ð10:5Þ

where, pk;max [kW] is maximum charging level of the kth PEV.
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The PEV battery should be fully charged before departure time. This is certified
by

Xtd�1

t¼tp

pkt ¼Ek
c ; 8k 2 K ð10:6Þ

where, Ek
c [kWh] is the energy required to fully charge battery of the kth PEV after

arriving home. It is obvious that tkd � tkp should be equal to or greater than the period
needed to fully charge the kth PEV with maximum charging level.

The basic objective function is to minimize household PEVs charge payment
cost, represented by:

min CCF ¼
Xte�1

t¼ts

CtðLtÞ ð10:7Þ

where, CCF is charge cost function, ts is the start time of scheduling, te is the end
time of scheduling, and CtðLtÞ is the payment cost at hour t based on the defined
three-level TOU tariff combined with IBR. The scheduling horizon ts; te½ �ð Þ is
determined based on the plug-in time and departure time of all connected PEVs,
which is clearly described later in this section. The tariff is mathematically
presented in (10.8).

CtðLtÞ ¼ atLt Lt\@
at@ þ ðLt � @Þbt Lt � @

�
ð10:8Þ

where,

Lt ¼
X
k2K

pkt ð10:9Þ

PCS determines the charge scheduling vector of connected PEVs based on the
declared pricings and PEV charging characteristics, i.e. the required energy for
charging the PEVs, their maximum charging level, plug-in time, and departure
time. When a new PEV arrives home and is plugged into the outlet, PCS adds this
PEV to the set K and schedules the charging of this new PEV. Since the scheduling
is done in an online way and the defined pricing in (10.3) depends on the level of
energy consumption at each time, charge scheduling vector of connected PEVs
should be updated when a new PEV is connected to the outlet at home. Thus, to
have an online scheduling, an algorithm is required to update the data and re-
schedule the new set of PEVs based on the objective functions. In the following, the
algorithm of charge scheduling is profoundly described by an example.

Consider a smart home with two PEVs; the first PEV arrives home at 5 p.m. with
30 kWh battery capacity, Ek

c ¼ 20 kWh, and maximum charging level of 4 kW. The
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driver plugs it to the outlet at 5 p.m. and sets 7 a.m. of the day after as the departure
time. Thus, the set K has one PEV with t1p ¼ 5 p:m:, t1d ¼ 7 a:m:, E1

c ¼ 20 kWh and

p1;max ¼ 4 kW. Also, Lt ¼ p1t . PCS should fully charge this PEV between 5 p.m.
and 7 a.m. according to (10.6). The objective function is to minimize the charging
cost in the scheduling horizon. Since there is only one connected PEV, the start
time of scheduling is the plug-in time of this PEV (ts ¼ t1p ¼ 5 p:m:) and the end

time of scheduling is the departure time of this PEV (te ¼ t1d ¼ 7 a:m:). Suppose
that the threshold for hourly IBR pricing is 3 kWh. The objective function is as
below:

min CCF ¼
X6 a:m:

t¼5 p:m:

Ctðp1t Þ ð10:10Þ

Assume that solving PCC results in the PEV charge scheduling vector of:

P1 ¼ ½p15 p:m:; p
1
6 p:m:; . . . ; p

1
6 a:m:� ¼ 0; 0; 0; 0; 3; 3; 0; 0; 3; 3; 3; 3; 2; 0½ �:

At 11 p.m., the second PEV comes back home with the battery capacity of
20 kWh, the remained energy of 10 kWh, and the maximum charging level of
2 kW. It is plugged into the outlet at this time. The vehicle owner also sets 9 a.m. as
its departure time. As the first PEV has been charged up to 11 p.m., the charge cost
up to the plug-in time of the second PEV should be considered in the cost function
which is here referred to as CC0. In this case, CC0 ¼ P10 p:m:

5 p:m: Ctðp1t Þ: At 11 p.m.,

the new connected PEV is added to the set K. So, t2p ¼ 11 p:m:, t2d ¼ 9 a:m:,

E2
c ¼ 10 kWh, and p2;max ¼ 2 kW. Once the second PEV is plugged in, the

scheduling horizon for PCS should be updated. Also, a new charge scheduling
should be effectuated for the set K in the updated forward horizon time. The start
time of scheduling (ts) is set to the plug-in time of the last connected PEV (11 p:m:).
Note that, the first PEV has been charged up to this time and it is necessary for PCS
to reschedule both the connected PEVs from this time. The end time of scheduling
is obviously the maximum departure time of both PEVs (te ¼ 9 a:m:). Also,
Lt ¼ p1t þ p2t . Therefore, the objective function for charging these two PEVs is
reformulated as:

min CCF ¼ CC0 þ
Xte�1

t¼ts

CtðLtÞ ¼ CC0 þ
X8 a:m:

t¼11 p:m:

Ctðp1t þ p2t Þ ð10:11Þ

subjected to (10.5), (10.6), (10.8) and (10.9). The charging vector of the first PEV
from 11 p.m. to 7 a.m. is rescheduled after the plug-in time of the second PEV. For
instance, solving PCC for the determined scheduling horizon may result in:
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P1 ¼ ½ p15 p:m:; p
1
6 p:m:; . . . ;|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

before plug�in time

of 2ndPHEV

p111 p:m:; p
1
12 p:m:; . . . ; p

1
6 a:m:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

after plug�in time

of 2ndPHEV

�

¼ ½ 0; 0; 0; 0; 3; 3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
before plug�in time

of 2ndPHEV

; 3; 3; 3; 1; 1; 1; 2; 0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
after plug�in time

of 2ndPHEV

� and

P2 ¼ ½p211 p:m:; p
2
12 p:m:; . . . ; p

2
8 a:m:� ¼ 0; 0; 0; 2; 2; 2; 0; 2; 2; 0½ �:

The elements of P1, before plug-in time of 2nd PEV, is the output of solving
(10.10) and after that is the output of solving (10.11). Moreover, when a PEV is
fully charged or unplugged, the PCS removes this PEV from the set K.

The above procedure for charge scheduling of the connected PEVs can be
generalized with more number of PEVs at a home. Figure 10.2 concludes the online
algorithm for PEV charge scheduling.

Fig. 10.2 Online algorithm
of PEV charge scheduling
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10.4 Inclusion of Customer Inconvenience Cost
in PCC Formulation

PEV characteristics, depended on vehicle owners’ behavior, are extracted from
2009 NHTS by analyzing four created files. These data include daily miles driven,
starting time of charging, number of vehicles per house, and vehicle type of houses.
References [10, 23, 24] assumed that the PEV owners plug in their vehicles when
they arrive home after their last trip in a day. Therefore, the last trip arrival time of
the vehicles is assumed as the starting time of charging.

Minimizing the payment cost is the most appealing requirement of customers in
consequence of PEV charging control. However, customers do not scarify their
comfort in return for minimizing cost. Therefore, the customer’s comfort should be
incorporated in the process of PCC to provide customer satisfaction and convince
him to participate in PEV charge scheduling programs. As mentioned before, the
waiting time to have a full charged battery is projected here as the inconvenience
cost whereby the PCC objective function is extended. The concept of waiting time
is proposed in [18], in which an optimization-based load control method has been
proposed that both the total payment associated to all appliances as well as cost of
waiting time are incorporated. Although the proposed algorithm in this chapter has
a few common concepts with [18], this chapter proposes an online charge sched-
uling algorithm that mitigates the uncertainty challenges raised by the day-ahead
scheduling. The inconvenience cost function and the extended PCC procedures and
formulations are deeply described in this section.

When the kth PEV is plugged into the outlet at tkp, its battery has an initial state of

charge equal to SOCkðtkpÞ. As the PCS charges the battery, the SOC of the battery
increases until it becomes 100 %. The SOC of battery of the kth PEV at hour t is:

SOCkðtÞ ¼ SOCkðtkpÞ þ
Xt�1

s¼tkp

pksg
k

Ck
ð10:12Þ

where, Ck is the battery capacity of the kth PEV [kWh], gk is its charger efficiency,
and SOCkðtÞ is the percentage of battery capacity remained in the kth PEV battery
at hour t. ð1� SOCkðtÞÞ shows the percentage of the kth PEV battery capacity
which has not been charged until hour t. The faster the PCS charges the battery, the
sooner ð1� SOCkðtÞÞ approaches zero. So, inconvenience function for the kth PEV
(IFk) can be reasonably the summation of ð1� SOCkðtÞÞ from the start time of
scheduling (ts) to its departure time when its owner wishes the battery to be fully
charged. This reflects the waiting time of the kth PEV owner to have a fully charged
battery and is formulated as below:
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IFk ¼ Ck
Xtkd�1

t¼ts

ð1� SOCkðtÞÞ ð10:13Þ

The total inconvenience cost function (ICF) shows the inconvenience cost of all
connected PEVs of the house and is presented in (10.14).

ICF ¼
X
k2K

nkIFk ð10:14Þ

Parameter nk in [¢/kWh] converts the nature of customer inconvenience into a
monetary value.

ICF well illustrates the inconvenience cost of waiting time for charging the
battery. Thus, the extended PCC is designated to minimize the summation of two
objective functions, household’s total electricity payment and inconvenience cost of
waiting for charging connected PEVs. The objective function of the extended PCC
is presented as:

min ðCCF þ ICFÞ ð10:15Þ

According to (10.14) and (10.15), nk acts as a knob to control the trade-off
between the two objective functions. The vehicle owner should decide how his
vehicle charges (faster with probable higher cost, or slower with probable lower
cost). Therefore, it is assumed that nk is set by the vehicle owner of the kth PEV when
he plugs in his vehicle to the outlet. Obviously, factor nk affects the speed of charging
directly. In practice, different choices of parameter nk can be defined. nk ¼ 0 makes
IFk to be excluded from the objective function. As nk is increased, the importance of
IF for the kth PEV rises. This may lead to a higher CCF in return for providing
costumer’s comfort. nk guarantees the convenience of the customers. As an instance,
a customer who wants to charge his/her PEV sooner and does not care about the
payment cost, sets factor nk a high value. In the other side, another customer for
whom the payment cost is more important, sets factor nk zero or a negligible value.

In conclusion, the charge scheduling results are clearly obtained from a
compromise between CCF and ICF.

10.5 Numerical Studies

This section analyses the basic and extended PCC formulations through different
cases to demonstrate the effectiveness of the proposed method. Since, the optimi-
zation model is linear, linear programming techniques such as the interior point
method [25] can effectively solve such problem. We use CPLEX solver of GAMS
software to solve the problem.
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The three-level TOU tariff utilized in the Baltimore gas and electric (BGE)
company’s program is taken from [26] and is used in the study results presented in
this chapter. On-peak tariff, between 10 a.m. and 9 p.m. is 13.757 ¢/kWh. Mid-peak
tariff between 7 a.m. and 10 a.m., and between 9 p.m. and 12 p.m. is equal to
8.866 ¢/kWh. In the remaining periods, the off-peak tariff is set to 7.67 ¢/kWh. This
tariff is pictorially shown in Fig. 10.3.

As defined in (10.3), the IBR pricing can be applied to the TOU tariff, to provide a
more proper tariff as the input of PCC problem. The lower level of the IBR tariff at
hour t, at, is assumed to be 0.9 of TOU tariff at that hour. The price of the higher level
of IBR, bt, is considered to be 1.4 of at [18]. The threshold @ is assumed to be 2 kWh.

The following case studies are conducted to probe the PCC results in a smart
home and its consequences on the distribution system characteristics:

Case I: Applying basic PCC to a home with one PEV;
Case II: Applying basic PCC to a home with two PEVs;
Case III: Applying extended PCC to a home with one PEV;
Case IV: Applying extended PCC to a home with two PEVs;
Case V: A residential test feeder with distributed PEVs at homes.

Note that, basic PCC only minimizes the payment cost, and extended PCC
includes the payment and inconvenience costs.

10.5.1 Case I

This case investigates the proposed charge scheduling method for a PEV at home.
This is a very simple case for which the correctness of obtained results can be readily
verified. The PEV characteristics are assumed to be C1 ¼ 15 kWh, t1p ¼ 6 p:m:,

t1d ¼ 8 a:m:, SOC1ðt1pÞ ¼ 0:2, and g1 ¼ 0:88. Also, as proposed in [30], the maxi-
mum charging level of the PEV is assumed to be 0.2 of its battery capacity; thus,
p1;max ¼ 3 kW. According to the SOC, the energy remained in the battery is 3 kWh

and thus, the required energy to fully charge the battery is E1
c ¼ ð15�3Þ

0:88 ¼ 13:64 kWh.
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The charge scheduling of one PEV at home with the goal of minimizing the charging
cost is obtained by solving basic PCC problem. Figure 10.4 depicts the charging
schedule of the battery with and without charging control, and in the case of charging
control, with and without applying IBR pricing to the existing TOU tariff.

As can be seen in Fig. 10.4, in the case of uncontrolled charging, the battery
starts charging immediately after plugged into the outlet (6 p.m.) with maximum
charging level (3 kW). On the other hand, in the case of controlled charging, the
PCS determines charging schedule based on the payment cost. It postpones the PEV
charging to low tariff periods (hour 24), as shown in Fig. 10.4.

Moreover, Fig. 10.4 demonstrates that by applying IBR to TOU pricing, PCS
limits the charging level of the battery below the threshold as much as possible in
order to avoid paying 40 % additional cost of exceeding the threshold. However,
without IBR application, PCS does not consider the charging level of the battery
and charges the battery with the maximum possible level.

The payment cost due to charging the battery for the cases of uncontrolled,
controlled without IBR, and controlled with IBR, is respectively ¢165, ¢104.6, and
¢94.1. The payment cost is high without any charging control compare to controlled
charging. Since, in the case of applying PCC, the battery is charged during off peak
hours. The cost would decrease further with applying IBR to TOU pricing due to
capped charging level below the threshold and paying 10 % less (at has been
assumed to be 0.9 of TOU tariff at that hour).

10.5.2 Case II

In this case, a house with two PEVs is considered. It is assumed that in addition to
the PEV of the previous case, another PEV with 12 kWh battery size and 30 % SOC
arrives home at 9 p.m. Its owner sets 6 a.m. as the departure time in the next day.

So, E2
c ¼ ð1�0:3Þ�12

0:88 ¼ 9:55 kWh. Its maximum charging level (p2;max) is assumed

Fig. 10.4 PEV battery charging profile in the cases of uncontrolled charging and controlled
charging with and without applying IBR to TOU tariff
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to be 0.2 of the capacity, i.e. 2.4 KW. Figure 10.5 shows the results of uncontrolled
charging as well as charge scheduling with and without applying IBR pricing.
Moreover, Table 10.1 presents the charge payment cost of the 1st and 2nd PEVs in
this case.

Fig. 10.5 Battery charging profile of two PEVs in the house, in the case of a uncontrolled
charging, b controlled charging without applying IBR, and c controlled charging with applying
IBR tariff

Table 10.1 Charging cost of
two PEVs in the house Charging cost (¢)

Without control 1st PEV 165

2nd PEV 131.3

Control without IBR 1st PEV 104.6

2nd PEV 73.2

Control with IBR 1st PEV 99.5

2nd PEV 74.2
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As depicted in above figure, without charging control, the batteries begin to
charge immediately after plugged into the outlet (6 p.m. and 9 p.m. for the 1st and
2nd PEV, respectively) with maximum charging level (3 and 2.4 kW, respectively).
This lead to significant increment in household peak load in addition to imposing
high payment cost to the customer, as presented in Table 10.1. On the other hand,
with controlled charging, not only the charging periods shift to medium and low
peak periods which highly desirable from distribution operator point of view, but
also the charging cost decreases significantly, which is a proper incentives for the
customers to participate in this program.

Furthermore, Fig. 10.5b illustrates that without applying IBR, PCS postpones
charging of both PEVs to the low tariff periods and charges them, simultaneously,
from hour 24 with maximum charging level. However, in the case of applying IBR,
PCS distributes the PEVs charging and limits the charging level of the batteries to
2 kW in order to avoid exceeding the threshold @. As a result, the second PEV is
charged in the medium tariff periods to avoid charging more than the threshold.
This would lead to a smoother household load demand. As shown in Table 10.1, the
total charge payment cost of PEVs decreases as IBR is applied.

10.5.3 Case III

In this case, the proposed extended PCC method, which incorporates customer’s
inconvenience cost, is probed. Although this is a simple case, it could easily verify
the correctness of obtained results and convey many interesting features of the
proposed PCC formulation. The PEV characteristics are the same as that of case I.
Different levels of customers’ comfort are considered for the PEV and the extended
OCC problem is solved for each to acquire the charge scheduling of the PEV at
home. Figure 10.6 shows the charge scheduling of the battery with different value if
n1, i.e. 0, 1, 2, with and without applying IBR pricing to the existing TOU tariff.
Table 10.2 also shows the payment and inconvenience cost of charging the PEV for
the mentioned values of n1.

Based on the presented results, the following remarks can be concluded:

• With n1 ¼ 0, the inconvenience cost of waiting time is not important for the
vehicle owner and the problem is turned to the basic PCC problem. So, the PCS
determines charging schedule just based on the charge payment cost and
postpones the PEV charging to low tariff periods, as shown in Fig. 10.6.

• With n1 ¼ 1 and n1 ¼ 2, inconvenience cost function becomes important for the
vehicle owner. Thus, as n1 is increased, the PCS charges the battery sooner even
in higher tariff periods in return for providing customer convenience. This results
in an increase in the charge payment cost as shown in Table 10.2. Also, by a
deeper analysis of the results, it can be deduced that when n1 ¼ 2, PEV starts
charging with the maximum rate at the plug-in time to reduce inconvenience cost.
This leads to a charge scheduling similar to uncontrolled charging in which the
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owner usually plugs in his vehicle at the time of arriving home and PEV starts
charging with maximum rate from this time.

• Figure 10.6 demonstrates that with any value sets for n1, by applying IBR to
TOU pricing, PCS tries to limit the charging level of the battery below the
threshold as much as possible in order to avoid paying 40 % additional cost of
exceeding the threshold. But, without IBR application, PCS does not care about
the charging level of the battery and since the waiting time to fully charge the
battery is important along with payment cost, PCS charges the battery with the
maximum possible level. In addition, with the presented combined tariff rates,
the customer payment is decreased in comparison with the sole TOU application

Fig. 10.6 PEV charge scheduling for a f ¼ 0, b f ¼ 1, and c f ¼ 2 with and without applying IBR
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as presented in Table 10.2, since by restricting the charging level below the IBR
threshold, the payment cost decreases by 10 % compare to sole TOU pricing.

• The inconvenience cost increases in the case of applying IBR; since, the PEV
battery is charged later with IBR application compare to that of without IBR.

10.5.4 Case IV

In this case, similar to case II, the house with two PEVs is considered. The char-
acteristics of both PEVs are the same as that of case II. Figures 10.7, 10.8, 10.9,

Table 10.2 Charge payment
and inconvenience cost of the
PEV based on different f1

with and without applying
IBR [¢]

n1

0 1 2

Without IBR Charge payment cost 104.6 125.3 158.3

Inconvenience cost 0 47.5 48

With IBR Charge payment cost 94.1 120.5 144.4

Inconvenience cost 0 47.9 58.1

Fig. 10.7 Charge scheduling of two PEVs in the house with n1 ¼ 0; n2 ¼ 0 a without applying
IBR and b with applying IBR tariff
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Fig. 10.8 Charge scheduling of two PEVs in the house with n1 ¼ 0; n2 ¼ 1 a without applying
IBR and b with applying IBR tariff

Fig. 10.9 Charge scheduling of two PEVs in the house with n1 ¼ 1; n2 ¼ 0 a without applying
IBR and b with applying IBR tariff
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and 10.10 illustrate the results of charge scheduling of each battery with different
values of nk. Besides, Table 10.3 shows the charge payment cost and inconvenience
cost of the 1st and 2nd PEVs.

Fig. 10.10 Charge scheduling of two PEVs in the house with n1 ¼ 1; n2 ¼ 1 a without applying
IBR and b with applying IBR tariff

Table 10.3 The charge payment and inconvenience cost of two PEVs in the house with and
without applying IBR [¢]

n1 0 1

n2 0 1 0 1

CCF (¢) Without IBR 1st PEV 104.6 104.6 125.3 125.3

2nd PEV 73.2 81.8 73.2 81.8

With IBR 1st PEV 99.5 96.3 115.3 121.8

2nd PEV 74.2 76.8 65.9 80

ICF Without IBR 1st PEV 0 0 47.5 47.5

2nd PEV 0 12.6 0 12.6

With IBR 1st PEV 0 0 43.2 39.6

2nd PEV 0 13.2 0 20.5
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According to above Figures, by applying IBR, the charge scheduling of the first
PEV before the plug-in time of the second one (hour 21) is the same as that of Case
III with different n s. But, after this hour, PCS reschedules the first PEV charging to
minimize the cost of both PEVs charging.

It is of interest to deeply investigate the obtained results with different customer
preferences in the following.

• n1 ¼ 0; n2 ¼ 0: In this case, actually the waiting time of charging the battery is
important for neither of vehicle owners and as a result, the charge scheduling
problem turns to the basic PCC problem in Case II. Thus, as shown in Fig. 10.7,
without applying IBR, PCS postpones charging of both PEVs to the low tariff
periods and charges them simultaneously from hour 24. However, in the case of
applying IBR,PCSdistributes thePEVs charging and limits the charging level of the
batteries to 2 kW in order to avoid exceeding the threshold @ and paying 40%more.
As a result, the secondPEV is charged in themedium tariff periods to avoid charging
more than the threshold. This would lead to a smoother household load demand.

• n1 ¼ 0; n2 ¼ 1: According to Fig. 10.8, the second PEV begins to charge from its
plug-in time, i.e. hour 21, due to importance of inconvenience function. Therefore,
its charge payment cost increases compared to the case in which n1 ¼ 0; n2 ¼ 0,
as presented in Table 10.3. Without applying IBR, the first PEV is charged with
3 kWcharging level fromhour 24; the same as n1 ¼ 0; n2 ¼ 0 case.With applying
IBR, the first PEVwaits until hour 1when the second PEV is fully charged; then, it
is charged with 2 kW charging level until its departure time, i.e. 8 a.m.

• n1 ¼ 1; n2 ¼ 0: The first PEV starts charging from its plug-in time, i.e. hour 18,
since the inconvenience function is important for the first PEV in this case.
Without applying IBR, the charge scheduling vector of the first PEV is the same
as n1 ¼ 1 in Case III, depicted in Fig. 10.6. The second PEV is also charged
similar to the case in which n1 ¼ 0; n2 ¼ 0. However, in the case of applying
IBR, the PCS changes the charge scheduling vector of the first PEV at the plug-
in time of the second PEV, i.e. hour 21, as illustrated in Figs. 10.6 and 10.9.

• n1 ¼ 1; n2 ¼ 1: In Fig. 10.10, without applying IBR, the charge scheduling
vector of the first and second PEV is, respectively, like the cases of n1 ¼
1; n2 ¼ 0 and n1 ¼ 0; n2 ¼ 1. With applying IBR, after hour 21, PCS simulta-
neously charges PEVs beyond the threshold for 2 h. This observation also cer-
tifies that inconvenience function is so important for PEVs’ owner such that he is
willing to pay more in return for providing comfort. According to Table 10.3, the
charge payment cost of PEVs decreases compared to that of without IBR.

10.5.5 Case V

In this case, the IEEE 34-node test feeder [27] is selected as a residential distri-
bution system to investigate the impacts of proposed PCC method on the
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distribution system load profile. This radial network is shown in Fig. 10.11. The
network medium voltage is 24.9 kV and low voltage is 230 V. The network
contains 33 load points, 8 of them including 810, 818, 820, 822, 826, 838, 856 and
864, are single phase and the others are three phases. Two houses are assigned to
each phase of load points [10]. Thus, the total number of houses is equal to 166.

A typical household load profile is shown in Fig. 10.12 [28]. This load profile is
assigned to each house.

The number of vehicles in the network and PEV characteristics including daily
miles driven, last trip arrival time, types of vehicle, all electric ranges (AER), and
charging levels are extracted from [2]. The departure time of vehicles, which has
not been determined in that chapter, is assumed to be the first trip start time. The
percentage of vehicles based on this characteristic is extracted from 2009 NHTS
[31] based on the method and the obtained database explained in [2]. Figure 10.13
shows the percentage of vehicle versus their first trip start time.

In this chapter, 11.3, 35 and 45 % PEV penetration levels are considered [24].
Based on the PEV penetration levels, PEVs are selected randomly from the existing
vehicles in the network. n should also be specified for each PEV. If the initial SOC
of a PEV is more than 50 %, it can be assumed that the cost of charging would
probably be more important for the vehicle owner than the speed of charging. Thus,

Fig. 10.11 IEEE 34-node test feeder [27]
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nk can be assumed to have a negligible value for such PEVs. In this study, for PEVs
with more than 50 % initial SOC, nk is selected randomly between 0 and 0.1. For
the rest of PEVs, this factor is selected randomly between 0 and 2. Load flow
analysis is performed to calculate the total load, feeder power loss, and voltage
deviation in different load points of the network. In this section, open-source dis-
tribution system simulator (OpenDSS) is used to execute load flow analysis.
OpenDSS is an electric power distribution system simulator for advanced analysis
of distribution systems [29].

The proposed charge scheduling method is applied to each house. PCC problems
are solved in each house and their impacts on the network load profile are explored
as well. Figure 10.14 illustrates the network load profile with and without charging
control. Table 10.4 concludes peak load, PAR of the system load demand, standard
deviation of the system load profile, and the charge payment cost for all the PEVs,
obtained from solving PCC in each house.

Accordingly, the following results can be presented:

• PCSs charge most of the PEVs in medium and low tarrif periods which coin-
cides with the off-peak periods of demand. Therefore, charge scheduling of
PEVs using the proposed method prevents significant peak load increment. Not
only the peak load of the network is not increased, but also the PEVs are
charged with lower cost. Table 10.4 clearly shows noticable decrement of
charge payment cost by applying the proposed PCC algorithm.

• The proposed charge scheduling method makes charging periods shift to low
load periods. This causes the average load to increase more than the peak load.
Consequently, the PAR decreases significantly compared to uncontrolled
charging. Moreover, Table 10.4 shows that by increasing the PEV penetration
level, PAR decreases by applying the scheduling method. However, in the
uncontrolled PEV charging cases, the PAR increases due to PEV penetration
level increment.
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• The third row of Table 10.4 shows that the standard deviation of the system load
profile decreases significantly by applying the proposed method compared to
uncontrolled PEVs charging. It means that the system load profile becomes
smoother. Also, by applying the IBR pricing, the standard deviation decreases
compared to the cases without application of the IBR pricing. Since, the
charging periods are distributed in each house to avoid exceeding the threshold
@. This confirms the effectiveness of the combined TOU and IBR pricing.

• The fourth and fifth rows of Table 10.4 show that using the proposed method to
schedule the charging time of PEVs in each household decreases the system

Fig. 10.14 Impacts of controlled and uncontrolled PEV charging on total load curve for a 11.3 %,
b 35 %, and c 45 % PEV penetration levels
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total loss and maximum voltage deviation of the load points, which is highly
desirable from the DSO points of view. This result implies that although in the
proposed method the social welfare and the distribution system specifications
are not explicitly considered, applying the method implicitly improves these
specifications.

10.6 Conclusion

This chapter proposes a novel method to schedule PEV charging in an online
manner; the charging period and level of each PEV are scheduled from the time that
it arrives home and then rescheduled later from the times that other PEVs arrive and
are plugged into the outlet. The proposed optimization-based algorithm is designed
to minimize payment and inconvenience costs. The proposed formulation gives the
customer an opportunity to set his convenience importance. The proposed method
is probed in different case studies. The implementation of optimization method in a
smart home with one PEV represents that PEV charging periods shift to the off-
peak tariff periods as much as possible. Also, as the importance of inconvenience
function for the customer increases, the payment cost ascends and the charge

Table 10.4 Specifications of the distribution system with and without PEV charge scheduling
with different PEV penetration levels

PEV penetration level

11.3 % 35 % 45 %

Peak load (kW) Without control 502 571 605

Control without IBR 476 501 516

Control with IBR 475 505 516

PAR Without control 1.62 1.72 1.77

Control without IBR 1.54 1.51 1.51

Control with IBR 1.53 1.52 1.51

Standard deviation (% average load) Without control 35.6 39.5 42.4

Control without IBR 31.3 30.0 30.1

Control with IBR 30.1 28.3 27.8

Total loss (%) Without control 1.40 1.55 1.64

Control without IBR 1.36 1.44 1.49

Control with IBR 1.35 1.43 1.46

Max. voltage deviation (%) Without control 3.42 3.96 4.24

Control without IBR 3.22 3.41 3.52

Control with IBR 3.21 3.44 3.53

Charge payment cost (Cent) Without control 3,449 10,226 13,224

Control without IBR 2,410 7,392 9,372

Control with IBR 2,200 6,845 8,670
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scheduling vector of PEV becomes similar to uncontrolled charging. The results in
a house with two PEVs show that the total charging payment cost increases due to
increment of convenience importance for each PEV. In both cases, application of
IBR to TOU pricing increases the positive impacts of the proposed method on the
household load curve; since, IBR application causes charging profile to be dis-
tributed during the allowable interval of charging. Also, the presented results
indicate that solving PCC problems in each house of a residential distribution
system not only decreases the total charge payment cost compared to the uncon-
trolled cases, but also improves specifications of the distribution systems, i.e.
decreases peak load, PAR, and standard deviation of load curve.
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