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Risk Averse Energy Hub Management
Considering Plug-in Electric Vehicles
Using Information Gap Decision Theory
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Abstract The energy hub is defined as themulti-inputmulti-output energy converter.
It usually consists of various converters like thermal generators, combined heat and
power (CHP), renewable energies and energy storage devices. The plug-in electric
vehicles as energy storage devices can bring various flexibilities to energy hub
management problem. These flexibilities include emission reduction, cost reduction,
controlling financial risks, mitigating volatility of power output in renewable energy
resources, active demand side management and ancillary service provision. In this
chapter a comprehensive risk hedgingmodel for energy hubmanagement is proposed.
The focus is placed on minimizing both the energy procurement cost and financial
risks in energy hub. For controlling the undesired effects of the uncertainties, the
Information gap decision theory (IGDT) technique is used as the risk management
tool. The proposed model is formulated as a mixed integer linear programming
(MILP) problem and solved using General Algebraic Modeling System (GAMS). An
illustrative example is analyzed to demonstrate the applicability of the proposed
method.
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Nomenclature

Uc t,vð Þ Binary variable indicating the charging state
Ud(t,v) Binary variable indicating the discharging state
ggechp CHP efficiency in converting gas to electricity

gghchp CHP efficiency in converting gas to heat

Pc(t,v) Charged power of vehicle v in time t
gcv Charging efficiency of vehicle v
Pdðt; vÞ Discharged power of vehicle v in time t
gvd Discharging efficiency of vehicle v
Le(t) Electric load in time t
ket Electricity price

gghf Furnace efficiency in converting gas to heat

kg Gas price
Lh(t) Heat load in time t
Pw(t) Injected wind power
Pcvmin=max Min/max charging limits of vehicle v

Pdvmin=max Min/max discharging limits of vehicle v

OF Objective function
Pg(t) Purchased gas power
PebðtÞ Purchased electricity power
aLe Radius of uncertainty for electric load
aLh Radius of uncertainty for heat load
aw Radius of uncertainty for wind power generation
PesðtÞ Soled electricity power
SOC(t,v) State of charge of vehicle v in time t
PgchpðtÞ Share of purchased gas power to feed into CHP
Pgf ðtÞ Share of purchased gas power to feed into furnace
Ptrðt; vÞ Traveling requirement of vehicle v in time t

5.1 Introduction

The concept of energy hub was first introduced in [1]. It is defined as a combination
of energy conversion units which satisfy different types of energy demands. Fig-
ure 5.1 illustrates an example of energy hub, which provides an interface between
the different inputs and outputs energy carriers.

A relevant number of recent researches have proposed some models for energy
hub concept. These models describe the energy hubs as a combination of nuclear
plants, wind turbines, solar panels, biomass reactors, electrolyzers, fuel cells [2] and
energy storage devices. Different optimization techniques are available for solving

108 A. Soroudi and A. Keane



the optimal management of energy hubs like Simulated Annealing algorithm [3],
genetic algorithm [4] and multi-objective goal programming [5]. The optimal
operating schedule of an energy hub highly depends on the input parameters of the
model. Usually these input parameters are subject to uncertainty due to various
reasons. For example, renewable power generations are volatile because of their
natural primary resource like wind speed, solar radiation, temperature and etc.
Another important uncertain input parameter is the demand whether it is electrical
or heat which should be treated properly [6]. It is highly dependent on the consumer
behavior which cannot be predicted easily. The last important uncertain parameter
is the electricity price which directly affects the payments or benefits of the decision
maker. The electricity prices in deregulated electricity markets are uncertain due to
various reasons like: competition between the price maker generating companies,
contingencies and etc.

There are different types of uncertainty modeling in energy hub management.
The most famous technique is stochastic method [7, 8]. The Monte Carlo Simu-
lation (MCS) [9] is used in uncertainty modeling of energy prices [10]. The
shortcoming of this technique is that it is computationally expensive and it also
requires the probability density functions (PDF) of uncertain parameters. Without
them the problem cannot be solved. The second issue is that using the Monte Carlo
simulation gives the decision maker the expected value of objective function and
also its variance. It’s more useful in assessment applications rather than optimi-
zation applications. The scenario based modeling which defines some discrete

Fig. 5.1 The general concept
of energy hub
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scenarios with specific probabilities and then tries to minimize the expected values.
It improves the computational burden significantly compared to MCS.

In [11], this method is used to handle the uncertainty of wind, price and elec-
tricity demand. The conditional value at risk (CVaR) [12] is also used for risk
controlling. Another uncertainty modeling technique is robust optimization [13].
This technique does not require the PDF of the uncertain parameters. Instead, it uses
an interval for uncertain parameters. It tries to find the optimal decision variables
while some predefined degree of conservativeness is taken into account. This
technique is used for uncertainty modeling of energy prices, energy demand and
also the converter efficiencies of energy hubs [14]. To cope with the increasing
volatile renewable generation in energy hubs it is possible to use energy storage
[15]. Different energy storage technologies have been used in energy hubs such as
solid hydrogen storage [3], water electrolyzers for hydrogen production [16],
thermal energy storage [17], Hydrogen-Natural Gas Co-Storage [18] and plug-in
electric vehicles (PEV) [19]. The PEVs have recently attracted a great deal of
attention in energy system management strategies. The advents of these new
technologies have changed the original operating philosophy of PEVs from pure
transportation into important energy system flexibility providers. They can be used
as an energy storage device when not in use for transportation purposes. In this
chapter, a risk averse Information Gap Decision Theory (IGDT) [20] framework is
proposed for optimal energy management of an energy hub. This technique is exact
and does not require the PDF of the uncertain parameters. This hub purchases
energy from different resources and converts them to different output forms. It also
uses the flexibilities that PEV may provide. The problem is analyzed with the
following constraints, decision variables and objective function:

• Decision variables:

– Electricity purchase from the electricity market
– Electricity sell to the electricity market
– Gas purchase from the gas network
– Operation schedule of energy conversion devices
– Operation charging and discharging of PEV

• Constraints:

– Uncertainty of thermal demand
– Uncertainty of electricity demand
– Uncertainty of energy production of renewable resources
– Technical constraints of energy conversion/storage of PEVs
– Different demand balance
– Risk of energy management strategy due to different uncertainties

Objective function: it is defined as the total payments regarding the energy
management.
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5.2 IGDT Based Uncertainty Modeling

The decision makers need some strong tools in order to handle the severe uncer-
tainties. Specially when not enough information is available from the uncertain
input parameters (like probability density function or membership function). The
information gap decision theory provided such a tool which is computationally
efficient and it is robust against the prediction errors. It has been successfully
applied on various energy system applications such as:

• Energy procurement in distribution networks [20]
• Risk-constrained self-scheduling of GenCos [21]
• Multi-objective robust transmission expansion planning [22]
• Optimal bidding strategy of generation station in power market [23]

In this chapter, an IGDT based model [8] is proposed to handle the uncertainty
of wind power generation, electric load and heat load. The mathematical formu-
lation of risk hedging IGDT framework is as follows:

minX f ðX;wÞ ð5:1Þ

HiðX;wÞ� 0; i 2 C ð5:2Þ

C is the set of all constraints. w is the vector of input uncertain parameters. In
this work, an IGDT based energy management is formulated as:

maxX ‘̂ ð5:3Þ

HiðX;wÞ� 0; i 2 C ð5:4Þ

‘̂ ¼ max‘ jf ðX;wÞ � Kc � 0f g ð5:5Þ

w 2 Uð�w; ‘Þ ¼ fw : jw� �w
�w

jg� ‘ ð5:6Þ

Kc is the critical value of objective function (for a given value of X) which can
be exceeded when the realized values are not the same as forecasted ones. �w is the
forecasted value of w. ‘ is the unknown radius of uncertainty.
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5.3 Problem Formulation

The general operating concept of an energy hub can be described as follows:

OF ¼
X
t

kcðtÞPin
c ðtÞ ð5:7Þ

Pout
c ðtÞ ¼ APin

c ðtÞ ð5:8Þ

where, c is the set of energy carriers. Pin
c ðtÞ, Pout

c ðtÞ denote the input and output
energy carriers of the hub, respectively. kcðtÞ is the price of energy carrier c at time
t. The matrix A is the core function of the energy hub which defines the conversion,
storage and distribution of different energy carriers. The energy hub under study in
this chapter is depicted in Fig. 5.2.

This energy hub has three inputs as the supplying resources namely electric
power purchased from electricity market (PebðtÞ), wind power generation (PwðtÞ)
and finally natural gas (PgðtÞ). The output of energy hub has three different parts
namely electric load (LeðtÞ), heat load (LhðtÞ), power sold to energy market (PesðtÞ)
and power charge/discharge for PEV (Pdðt; vÞ;Pcðt; vÞ). The question is how to
optimally exploit the energy hub in order to minimize the payments for energy
procurement.

The performance of the described energy hub in Fig. 5.2 can be modeled as
follows:

( , )Pd t v( )bPe t

( )Pw t

( )Pg t

( ) ge
chp chpPg t η

( ) gh
chp chpPg t η

( )fPg t ( ) f
f ghPg t η
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( )chpPg t

Electric
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Fig. 5.2 The energy hub under study
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PebðtÞ þ PwðtÞ þ PgchpðtÞggechp þ
X
v

Pdðt; vÞ ¼ LeðtÞ þ PesðtÞ þ
X
v

Pcðt; vÞ

ð5:9Þ

0 � PebðtÞ �Pemax
b ð5:10Þ

0 � PesðtÞ � Pemax
s ð5:11Þ

PwðtÞ � 1� awð Þ �PwðtÞCapw ð5:12Þ

LeðtÞ ¼ 1þ aLeð Þ �LeðtÞLemax ð5:13Þ

LhðtÞ ¼ 1þ aLhð Þ �LhðtÞLhmax ð5:14Þ

PgðtÞ ¼ PgchpðtÞ þ Pgf ðtÞ ð5:15Þ

LhðtÞ ¼ Pgf ðtÞgghf þ PgchpðtÞgghchp ð5:16Þ

The electric balance is modeled in (5.9). This means that the electric output of
the energy hub (LeðtÞ þ PesðtÞ þ

P
v Pcðt; vÞ) is fed using PebðtÞ þ PwðtÞ

þPgchpðtÞggechp þ
P

v Pdðt; vÞ. The third term is the converted gas to electricity in
CHP units. The purchased gas PgðtÞ is divided into two streams PgchpðtÞ;Pgf ðtÞ.
The PgchpðtÞ is fed into the CHP unit and the Pgf ðtÞ is fed into the furnace unit as
described in (5.15). Finally, the heat load (LhðtÞ) is supplied using furnace and CHP
units as given in (5.16).

The operation modeling of PEV is described in (5.17–5.23).

SOC(t, v) = SOC(t � 1; v) + gcvPcðt; v)�
Pdðt; v)

gdv
� Ptrðt, v) ð5:17Þ

SOC(t,v) = E0
v þ gcvPcðt; vÞ �

Pdðt; vÞ
gdv

� Ptrðt,v) ð5:18Þ

SOCv
min � SOC(t,v) � SOCv

max ð5:19Þ

Ptrðt,v) = DD(t,v) Xv ð5:20Þ

PcvminUcðt; vÞ�Pcðt; vÞ� PcvmaxUcðt; vÞ ð5:21Þ

PdvminUcðt; vÞ�Pdðt; vÞ� PdvmaxUcðt; vÞ ð5:22Þ

Ucðt; vÞ þ Udðt; vÞ� 1 ð5:23Þ

The state of charge in vth PEV at time t (SOCðt; vÞ) depends on the state of
charge at time t − 1 (SOCðt � 1; vÞ). as well as the charging/discharging or
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traveling state of the PEV as modeled in (5.17) and (5.18). The relation between the
required energy for traveling of vth PEV (Ptrðt,v)) depends on the traveling distance
(DD(t,v)) and also the efficiency of the vehicle (Xv) as described in (5.20). The state
of charge should be kept between operating limits as (5.20). The charging and
discharging rate of each PEV are limited by technical characteristics as well as the
operating state as enforced by (5.22) and (5.23). It is assumed that each PEV is
either in charging (Ucðt; vÞ ¼ 1)/discharging state Udðt; vÞ ¼ 1 or traveling state
(Ucðt; vÞ þ Udðt; vÞ ¼ 0) as described in (5.23).

The objective function is defined as the total payments regarding the energy
purchase as follows:

OF ¼
X
t

PgðtÞkg þ ket ðPebðtÞ � PesðtÞÞ ð5:24Þ

If the OF is negative in (5.24) it means the energy hub is making profit in the
electricity market.

5.4 Simulation Results

The proposed mixed integer linear programming (MILP) model is implemented in
GAMS [24] environment solved by CPLEX solver running on an Intel® Xeon®
CPU E5-1620 @ 3.6 GHz PC with 8 GB RAM. The predicted hourly electric/heat
demand, wind power, electricity price pattern are depicted in Fig. 5.3. The wind
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Fig. 5.3 The hourly electric/heat demand, wind power, electricity price pattern
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capacity is assumed to be Capw ¼ 15 kW. The energy hub characteristics and data
are described in Table 5.1. The peak electric and heat load is Lemax ¼ 5 kW,
Lhmax ¼ 4:5 kW, respectively. The peak value of electric price is 47 $

kWh. The gas

price is assumed to be constant and equal to kg ¼ 30 $
kWh.

The travel pattern of PEV (km) are given in Table 5.2.
In order to demonstrate the applicability and strength of the proposed approach

different scenarios are considered as follows:

• Base case (no uncertain parameter exists in the model)
• Wind uncertainty (aw)
• Electric load uncertainty (aLe)
• Heat load uncertainty (aLh)

5.4.1 Base Case

In this case, it is assumed that no uncertain parameter exists in the model. The
objective function to be minimized is the energy procurement cost. It is called the
base cost (benefit) OFb. The following optimization is solved:

minDVb OFb ¼ OF ð5:25Þ

Subject to: (5.9–5.24)

Table 5.1 Energy hub
characteristics and data Parameter Value Unit

ggechp 35 %

gghchp 45 %

gghf 75 %

Pemax
s 7 kW

Pemax
b 7 kW

gdv 93 %

gcv 90 %

E0
v 3 kWh

SOCv
max 25 kWh

SOCv
min 1 kWh

Pðc=dÞvmin 0 kW

Pðc=dÞvmax 12.5 kW

Xv
1
6

kW
km
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aLh ¼ aLe ¼ aw ¼ 0 ð5:26Þ

DVb ¼ Pebðt), Pesðt), Pw(t), Pgchpðt), Pgf ðt), Pd(t, v), Pc(t, v), Ud(t, v), Uc(t, v)
n o

ð5:27Þ

The total costs would be OFb ¼ � $0:480165. The hourly total charge and
discharge pattern of PEVs is shown in Fig. 5.4.

The hourly gas input to CHP and furnace is shown in Fig. 5.5.
The hourly purchased/sold power from/to electric grid is shown in Fig. 5.6.

Table 5.2 The travel patterns of PEVs (km)

Time (h) v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

t1 0 0 0 4.6 0 0 0 4 0 0

t2 0 3.6 0 1.8 0 2 0 0 0 0

t3 0 5 0 0 0 2.2 0 0.6 0 2

t4 0 0 0 0 3.6 0 0 1.2 0 0

t5 2.4 0 0 0 1.8 4.2 2.8 3.6 0 4.4

t6 0 4.8 0 0 1.4 1.8 0 0 0 0

t7 0 0 0 0 1.6 2.6 0 0 0 0

t8 4.8 0 1 2 0 3.8 0 0 0 2

t9 0 0 0 0 1.2 3 1.2 0.8 0 1.2

t10 0 2.4 0 4 0 0 3.4 0 0 1

t11 0 0 0 4.6 2.4 0 0 4.4 0 0.4

t12 4 0 0 0 4.2 3 0 1.2 0 0

t13 0 0 0 0 2 0 3.4 0 4.2 0

t14 0 0 0 0 3 0 0 4 0 0

t15 0 0 0 0 0 1.4 0 0 3.8 0

t16 3.6 0 0 4.6 0 0 3.8 0 0 4

t17 0 0 3.6 0 1.6 0 0 3 0 4

t18 0 0 0 4 0 0 0 1.8 0 0

t19 0 0 4 0 2.2 2.6 0 0 2 4

t20 0 0 0 0 3 0 4.2 3.2 2.2 0

t21 0 0 4.8 3.8 0 0 0 2.6 1 1

t22 0 0 0 0 3.8 0 0 0.4 0 0

t23 0 4.8 0 0 0 0 0 0 0 2.2

t24 0 0 0 0 2.2 0 3.2 0 0.4 0
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Fig. 5.4 The hourly total charge and discharge pattern of PEVs in base case
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Fig. 5.5 The hourly gas input to CHP and furnace in base case
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5.4.2 Uncertain Wind (aw 6¼ 0)

In this case, it is assumed that the only uncertain parameter existing in the model is
wind power generation. The objective function in this case is radius of wind power
uncertainty (not the total cost (benefit)). The following optimization is solved:

maxDVwaw ð5:28Þ

OF�OFb þ b OFbj j ð5:29Þ

Subject to: (5.9–5.24)

aLh ¼ aLe ¼ 0 ð5:30Þ

DVw ¼ DVb; awf g ð5:31Þ

The interpretation of each b value is simply defined as the relaxation degree of
objective function. The objective function is defined as aw and the decision maker
tries to maximize it for a given b value. In this way, the traditional objective
function OF would be immune against the wind uncertainty. This means even if the
forecasted value of wind doesn’t come true, the total payments do not increase more
than b percent of the base case costs OFb. The b is increased from 0 to 1 and the
variation of different variables (DVw) versus b is shown in Fig. 5.7.
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Fig. 5.6 The hourly purchased/sold power from/to electric grid in base case
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In this way, the decision maker has a portfolio of the decision variables (DVw)
for each b. The simulation results show that the aw varies from 0 to 5.829 %. This
means that if the total cost is 100 % increased then the decision maker can be
immune up to 5.829 % error in wind power prediction. In order to increase the
immunity of the objective function against the wind power uncertainty,
PesðtÞ; Pgf ðtÞ are decreased and PgchpðtÞ is increased. Both charging and dis-
charging of PEVs (Pdðt; vÞ; Pcðt; vÞ) are increased. For clarification, the decision
variables DVw are given in Table 5.3 for b ¼ 30%. In this table, the hourly optimal
schedule of energy hub b ¼ 30% under PwðtÞ uncertainty are described. The total
payments would be OF = − $0.3361 and the maximum wind uncertainty that can be
tolerated would be aw ¼ 1:748692%.

5.4.3 Uncertainity Electric Load Missing (aLe 6¼ 0)

In this case, it is assumed that the only uncertain parameter existing in the model is
electric load. The objective function in this case is radius of electric load uncertainty
[not the total cost (benefit)]. The following optimization is solved:
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maxDVw aLe ð5:32Þ

OF�OFb þ b OFbj j ð5:33Þ

Subject to: (5.9–5.24)

aLh ¼ aw ¼ 0 ð5:34Þ

DVLe ¼ DVb; aLef g ð5:35Þ

The objective function is defined as aLe and the decision maker tries to maximize
it for a given b value. In this way, the traditional objective function OF would be
immune against the electric load uncertainty. This means that even if the forecasted
value of electric load is not equal to the real value, the total payments do not
increase more than b percent of the base case costs OFb. The b is increased from 0
to 1 and the variation of different variables versus b is shown in Fig. 5.8.

Table 5.3 The hourly optimal schedule of energy hub b ¼ 30% under Pw(t) uncertainty

Time (h) PebðtÞ PesðtÞ PgðtÞ PgchpðtÞ Pgf ðtÞ
P

v Pc t; vð Þ P
v Pd t; vð Þ

t1 0 7 6.245 6.245 0 0 3.353

t2 0 7 7.808 7.808 0 0 3.145

t3 0 3.729 8.787 8.787 0 0.36 0

t4 7 0 5.974 0 5.974 7.63 0

t5 7 0 5.306 0 5.306 7.708 0

t6 0 4.569 9.502 9.502 0 0 0

t7 0 7 9.385 9.385 0 0 2.568

t8 0 7 10 10 0 0 0.724

t9 0 7 9.044 8.159 0.885 0 0

t10 0 7 9.091 9.091 0 2.048 0

t11 0 7 8.387 6.866 1.522 2.862 0

t12 0 7 5.544 0 5.544 1.511 0

t13 0 7 7.214 4.718 2.496 4.031 0

t14 0 7 6.536 3.663 2.874 4.378 0

t15 0 7 6.183 3.391 2.792 4.061 0

t16 0 7 8.23 8.23 0 6.186 0

t17 0 7 6.603 4.656 1.947 5.129 0

t18 0 7 8.807 8.807 0 5.439 0

t19 0 7 5.448 0 5.448 1.087 0

t20 0 7 9.011 9.011 0 3.582 0

t21 0 7 6.002 4.207 1.795 0 0

t22 0 7 8 8 0 0 0.389

t23 0 7 7.558 7.558 0 0 0.835

t24 0 5.113 6.713 6.713 0 0 0
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In this way, the decision maker has a portfolio of the decision variables (DVLe)
for each b. For clarification, the decision variables are given in Table 5.4 for
b ¼ 30%. In this table, the hourly optimal schedule of energy hub b ¼ 30% under
Le(t) uncertainty are described. The total payments would be OF = − $0.336115
and the maximum wind uncertainty that can be tolerated would be
aLe ¼ 3:963492% .

5.4.4 Uncertain Heat Load (aLh 6¼ 0)

In this case, it is assumed that the only uncertain parameter existing in the model is
heat load. The objective function in this case is radius of heat demand uncertainty
(not the total cost (benefit)). The following optimization is solved:

maxDVLh aLh ð5:36Þ

OF�OFb þ b OFbj j ð5:37Þ

Subject to: (5.9–5.24)
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Fig. 5.8 The variation of different variables versus b (uncertain electric load)
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aLe ¼ aw ¼ 0 ð5:38Þ

DVLh¼ DVb; aLhf g ð5:39Þ

The interpretation of each b value is simply defined as the relaxation degree of
objective function. The objective function is defined as aLh and the decision maker
tries to maximize it for a given b value. In this way, the traditional objective
function OF would be immune against the heat load uncertainty. This means that
even if the forecasted value of heat load is not equal to the real value, the total
payments do not increase more than b percent of the base case costs OFb. The b is
increased from 0 to 1 and the variation of different variables (DVLh) versus b is
shown in Fig. 5.9.

In this way, the decision maker has a portfolio of the decision variables (DVLh)
for each b. For clarification, the decision variables are given in Table 5.5 for
b ¼ 30%. In this table, the hourly optimal schedule of energy hub b ¼ 30% under

Table 5.4 The hourly optimal schedule of energy hub b ¼ 30% under Le(t) uncertainty

Time (h) PebðtÞ PesðtÞ PgðtÞ PgchpðtÞ Pgf ðtÞ
P
v
Pc t; vð Þ P

v
Pd t; vð Þ

t1 0 7 6.245 6.245 0 0 3.398

t2 0 7 7.808 7.808 0 0 3.213

t3 0 3.645 8.787 8.787 0 0.359 0

t4 7 0 5.974 0 5.974 7.533 0

t5 7 0 8.843 8.843 0 10.707 0

t6 0 4.482 9.502 9.502 0 0 0

t7 0 7 9.385 9.385 0 0 2.657

t8 0 7 10 10 0 0 0.781

t9 0 7 9.079 8.246 0.832 0 0

t10 0 7 9.091 9.091 0 2.048 0

t11 0 7 9.402 9.402 0 3.778 0

t12 0 7 5.544 0 5.544 1.557 0

t13 0 7 5.327 0 5.327 2.442 0

t14 0 7 8.452 8.452 0 6.134 0

t15 0 7 4.826 0 4.826 2.955 0

t16 0 7 7.247 5.774 1.473 5.417 0

t17 0 7 4.74 0 4.74 3.594 0

t18 0 7 8.343 7.646 0.697 5.114 0

t19 0 7 7.686 5.595 2.091 3.111 0

t20 0 7 5.407 0 5.407 0.489 0

t21 0 7 7.199 7.199 0 1.079 0

t22 0 7 8 8 0 0 0.385

t23 0 7 7.558 7.558 0 0 0.835

t24 0 5.101 6.713 6.713 0 0 0
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Lh(t) uncertainty are described. The total payments would be OF = − $0.336115
and the maximum wind uncertainty that can be tolerated would be
aLh ¼ 4:040376%.

5.5 Comparison and Discussion

In this section, the four assessed cases are compared and discussed. The simulation
results show that in order to increase the robustness of the decision variables against
the wind uncertainty, some actions should be taken. Selling electricity to the pool
should be reduced. This holds also for reducing the undesired impacts of electric
demand uncertainty. In contrary to these two cases, the energy selling to the pool
market should be increased in order to avoid the financial risks due to uncertainty of
heat load. Increasing the amount of gas purchase would have positive impacts on
reducing the risks of all uncertain parameters (including wind power generation,
electric and heat load). However in order to make the objective function immune to
uncertainty of wind and electric load, the share of the natural gas which is fed into
the CHP unit is increased and the furnace share is decreased. The decision maker
should increase the share of furnace unit to avoid the risks of uncertain heat
demand. The amount of PEVs in charging and discharging should be increased in
order to handle the uncertainties of wind and electric load in contrary to the
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Fig. 5.9 The variation of different variables versus b (uncertain heat load)
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uncertain head load case. The comparison between different cases and the actions to
be taken is shown in Fig. 5.10.

Some lines of future research can be concluded from this work, as follows:

• To consider more elements (like energy conversion and storage units) in energy
hub

• To consider other uncertain parameters affecting the performance of the energy
hub

• To consider the possibility of participating in other markets in addition to energy
market

• To assess the Impacts of smart grids on energy hub energy management policies
• To analyze the reliability issues of elements in energy hub
• To develop a model for describing the interaction of multiple energy hubs from

technical and economical points of view
• To incorporate the grid (gas and electric) integration constraints of energy hubs

Table 5.5 The hourly optimal schedule of energy hub b ¼ 30% under Lh(t) uncertainty

Time
(h)

PebðtÞ PesðtÞ PgðtÞ PgchpðtÞ Pgf ðtÞ
P

v Pc t; vð Þ P
v Pd t; vð Þ

t1 0 7 6.497 6.497 0 0 3.181

t2 0 7 8.123 8.123 0 0 2.943

t3 0 4.272 9.142 9.142 0 0.042 0

t4 7 0 6.331 0.29 6.041 7.831 0

t5 7 0 5.52 0 5.52 7.809 0

t6 0 4.814 9.886 9.886 0 0 0

t7 0 7 9.764 9.764 0 0 2.326

t8 0 7 10.404 10.404 0 0 0.447

t9 0 7 9.096 7.705 1.391 0 0

t10 0 7 9.458 9.458 0 2.365 0

t11 0 7 5.869 0 5.869 0.677 0

t12 0 7 5.768 0 5.768 1.749 0

t13 0 7 5.542 0 5.542 2.632 0

t14 0 7 8.793 8.793 0 6.435 0

t15 0 7 8.369 8.369 0 6.057 0

t16 0 7 5.137 0 5.137 3.564 0

t17 0 7 8.219 8.219 0 6.639 0

t18 0 7 7.553 5.138 2.415 4.391 0

t19 0 7 8.295 6.565 1.729 3.593 0

t20 0 7 5.625 0 5.625 0.619 0

t21 0 7 6.002 3.771 2.231 0 0

t22 0 7 8.323 8.323 0 0 0.156

t23 0 7 7.864 7.864 0 0 0.615

t24 0 5.307 6.984 6.984 0 0 0
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5.6 Conclusions

The problem of considering the input uncertainties within the context of the energy
hub management has been addressed in this chapter. An IGDT based technique was
proposed to obtain the optimal operating strategy of the energy hub. The PEVs have
been used as the energy storage device in order to maximize the flexibility of
decision making framework. The optimal energy procurement from different
resources is determined taking into account the influence of electric/heat demand as
well as the wind power generation uncertainties. The obtained results from the
proposed risk-averse strategy assures the decision maker that although the predicted
values of the uncertain input parameters are not exact, the outcome of the proposed
model (payments) would be immune against the prediction error to some controlled
extent. The method can be extended to consider the risk seeking behavior of
opportunistic decision maker.

Acknowledgments This book chapter is gratefully dedicated to Simin, Shahryar, Mona and
Soudeh who taught me how to be a better man.

Fig. 5.10 The comparison between different cases and the actions to be taken
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