
Chapter 20
Stability Analysis of STATCOM
in Distribution Networks
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Abstract This chapter presents the stability analysis based on bifurcation theory of
the distribution static compensator (DSTATCOM) operating both in current control
mode as in voltage control mode. The bifurcation analysis allows delimiting the
operating zones of nonlinear power systems and hence the computation of these
boundaries is of interest for practical design and planning purposes. Suitable
mathematical representations of the DSTATCOM are proposed to carry out the
bifurcation analyses efficiently. The stability regions in the Thevenin equivalent
plane are computed for different power factors at the Point of Common Coupling
(PCC). In addition, the stability regions in the control gain space are computed, and
the DC capacitor and AC capacitor impact on the stability are analyzed in detail. It
is shown through bifurcation analysis that the loss of stability in the DSTATCOM
is in general due to the emergence of oscillatory dynamics. The observations are
verified through detailed simulation studies.
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20.1 Introduction

The transient and steady state response of a power system can be computed by
conventional numerical integration methods; this method is known as a Brute Force
approach [1]. Therefore the stability of any electric system may be computed
through time domain simulations. On the other hand, with bifurcation theory it is
possible to predict the system behavior around the operating points without
resorting to the numerical integration solution. The results obtained with this
analysis can be represented in a bifurcation diagram providing qualitative infor-
mation about the behavior of the periodic steady state solutions as the parameters
vary. In bifurcation points, infinitesimal changes in system parameters can cause
significant qualitative changes in periodic solutions. Knowing the set of bifurcation
values in the parameter space, it is possible to design an electrical circuit within
stable operating conditions, but an important problem is the computation of these
bifurcation sets. Upon obtaining the global feature of the bifurcation set, various
non-linear phenomena, such as the coexistence of many stable states [2], the jump
behavior of periodic responses [3], the phenomenon of hysteresis and the appear-
ance of chaotic states [4], etc., can be observed. In general terms, the construction of
a bifurcation diagram consists of the following steps [1, 5]: (1) find a first periodic
steady-state solution, (2) based on the first solution, find other equilibrium solutions
using a continuation method [1, 5], and (3) determine the stability of each solution.

The bifurcation theory has been used in stability analysis [6] for the demonstration
of chaotic motions in the two-degree freedom swing equations. Subsequent appli-
cations of this theory have been directed to diverse studies such as voltage collapse
[7], subsynchronous resonance [8], voltage source converters [9, 10], ferroresonance
oscillations [4], and design of nonlinear controllers [11]. Furthermore, this theory has
been applied to assess the dynamical behavior of nonlinear components such as
induction motors [3], load models [12, 13], tap changing transformers [14], Flexible
AC Transmission Systems (FACTS) [15, 16], and custom power devices [17, 18]. In
addition, bifurcation theory has been used to analyze the stability of power converter
and nonlinear switched circuits. In [19, 20] a wide collection of results related to
nonlinear phenomena in power electronics is presented.

Conventional stability analyses in power systems are basically based on brute force
approach and eigenanalysis. In these analyses, the system is modeled using root mean
square (rms) quantities and the network dynamics are neglected. In this chapter, the
power system is represented through instantaneous quantities, the network transients
are taken into account and the electric sources voltage are assumed to be sinusoidal.

20.2 DSTATCOM

The basic purpose of the DSTATCOM is to compensate the load in such a way that
at the PCC the source current and the PCC voltage are balanced and sinusoidal. The
DSTATCOM can compensate the load, correct the power factor and reduce the
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harmonic content in the network. This device can even regulate the voltage at the
connection bus. There are important differences between the DSTATCOM and
the STATCOM. The STATCOM injects almost sinusoidal a balanced three-phase
current, whereas the DSTATCOM must be able to inject an unbalanced and
harmonically distorted current in order to balance and eliminate the harmonic
distortion in the source current. Therefore, the compensation algorithm and the
control are significantly different between DSTATCOM and STATCOM. Addi-
tionally, there are two operating modes of the DSTATCOM associated to the
control scheme and compensation algorithm. These operating modes are named
voltage control mode and current control mode.

In order to cancel-out unbalance or harmonics in the line current, the voltage
source converter that constitutes the DSTATCOM must be able to inject currents in
one phase independently of the other two phases. From this point of view the
structure of a DSTATCOM is very important. The DSTATCOM structure adopted
in our analysis is shown in Fig. 20.1. This structure contains three H-bridge Voltage
Source Converters (VSC) connected to a common DC storage capacitor. Each VSC
is connected to the network through a transformer. The purpose of the transformers
is to provide isolation between the inverter legs and prevents the DC capacitor from
being shorted through switches of the different inverters. The converter allows three
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Fig. 20.1 Structure of the DSTATCOM
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independent current injections. It is to be noticed that due to the presence of
transformers, this topology is not suitable for canceling any DC component in the
load current [21]. The inductance Lf represents the leakage inductance of each
transformer and additional external inductance, if any. The switching losses of an
inverter and the copper loss of the connecting transformer are represented by a
resistance Rf. For more details about this structure please see [21]. This converter
topology with a hysteresis modulation technique is used in this chapter for the
DSTATCOM operating in voltage and current control mode; however, other
topologies or modulation techniques can be used.

Now, let us consider the following nonlinear system periodically excited with a
T-periodic function (20.1), which can describe the dynamic behavior of the
equivalent circuit of the compensated system shown in Fig. 20.2.

_x tð Þ ¼ f t; x;Mð Þ ð20:1Þ

where x and f are n-dimensional vectors andM is a m-dimensional parameter vector.
In particular, for the electric system shown in Fig. 20.1, the dynamic system is
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Please notice that in (20.2) each variable is a three-phase variable. The nonlinear
load is an Electric Arc Furnace (EAF); however, a different load can be connected
to the PCC. The dynamic behavior of the v–i characteristic of the EAF is described
by the differential equation introduced in [22]. This differential equation is based on
the principle of energy balance.
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Fig. 20.2 Compensation of a weak system with an EAF

690 J. Segundo-Ramírez et al.



It is possible to represent the different stages of the arcing process by simply
modifying the parameters of m and n in the EAF. The complete set of combinations
of these parameters for different stages of the electric arc can be found in [22].

20.2.1 Simplified Representation of the DSTATCOM

In the detailed model, the switching devices, the modulation process and the DC
capacitor dynamic are explicitly represented. The switching elements are modeled
as ideal switches. This model sometimes requires very short time steps to well
represent the commutation process; thus, the simulation time can be considerably
long. If we are not interested in the switching phenomena, we can use a source
having the average value computed upon a switching period. With the simplified
model, one can simulate the system using a larger time step and consequently a
smaller simulation time. Of course, these simplifications have to be accurate enough
to preserve the information of interest. Here, two ways for obtaining simplified
representations of the DSTATCOM are developed. The first one is to assume the
converter as a set of ideal current or voltage sources. The second one is to assume a
zero hysteresis band for the modulation technique, which is called smooth hys-
teresis band approach.

20.2.1.1 Ideal Sources

For this approach, the converter can be replaced by three ideal current or voltage
sources, depending on the case. The link between the DC side and the AC side of the
converters is well represented using the energy preservation principle. This mod-
eling approach is equal to suppose an instantaneous response of the power electronic
converters without commutation harmonics; in other words, this approach assumes
that the DSTATCOM converters follow perfectly the control references.

20.2.1.2 Smooth Hysteresis Band Approach

In the ideal sources approach we assume an instantaneous response of the converter
to generate the reference currents or voltages. However, this approach does not take
into account neither the switching control nor the converter structure. The smooth
hysteresis band approach is simpler than the ideal sources approach, since it is
possible to obtain the simplified model from the detailed model in a straightforward
way. In addition, this approach takes into account the converter structure and the
switching control.

This model is based on the assumption that the hysteresis band shown in
Fig. 20.3 is decreased until h = 0, as a consequence the harmonic distortion
introduced by the commutation process no longer exists. The hysteresis curve in the
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detailed model can be replaced for a sigmoid function or a hyperbolic tangent. The
approximation of the hysteresis curve using the sigmoid function is defined as

u ¼ 2
1þ e4uc=h

� 1 ð20:3Þ

The approximation through the hyperbolic tangent is defined as

u ¼ �tanh uc=hð Þ ð20:4Þ

here, uc is a continuous function defined as the controlled current or voltage
obtained from measurements minus the reference signal. Figure 20.3 shows the
hysteresis function represented with solid lines and the smooth hysteresis curve is
drawn with dashed lines.

20.2.2 DSTATCOM Operating in Current Control Mode

In the current control mode, the DSTATCOM compensates for any unbalance or
distortion in the load; thus, a balanced current from the system for any unbalance or
harmonic distortion in the load is drawn [23]. One of the most important issues for
the load compensation is the generation of the reference compensator currents.
There are several techniques proposed [24, 25]. However, most of these methods
assume that the voltage at the PCC is stiff. Unfortunately this is not a valid
assumption for the most practical applications. In this chapter, the computation of
the reference currents will be done using instantaneous symmetrical components
[26]. For a more realistic case, the source is not assumed to be stiff.

u

cuhh−

Fig. 20.3 Hysteresis modulation technique and the smooth hysteresis approximation
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20.2.2.1 Compensation Algorithm and Control

In (20.2), u is the control signal constrained between +1 and −1. Once the reference
currents are generated, they are tracked-down in a hysteresis band current control
scheme. The control signal is computed through,

u ¼ hys if � i�f
� �

ð20:5Þ

where i�f is the reference compensation current. These are given by [26],

i�fa ¼ ila � vta þ ðvtb � vtcÞbP
x¼a;b;c v
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� �
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where β is computed based on the desired power factor. In (20.6), Pav
l is the average

power drawn by the load, Ploss is the power loss due to Rf, and vtfx is the funda-
mental component of vtx, for x = a, b, c.

The hysteresis function hys is defined by,

hys wð Þ ¼ 1 for w� � h
�1 for w[ h

�
ð20:7Þ

where 2 h is the hysteresis band.
The power loss Ploss is computed through the proportional controller [23], i.e.,

Ploss ¼ Kpdc v�dc � vavdc
� �þ Kidc

Z
v�dc � vavdc
� �

dt ð20:8Þ

where v�dc is the reference DC voltage, vavdc is the average voltage across the DC
capacitor.

To compute β, we introduce a simple proportional-integral control given by,

b ¼ Kpb b�t � bt
� �þ Kib

Z
b�t � bt
� �

dt ð20:9Þ
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where

b�t ¼
1ffiffiffi
3

p tan cos�1 PF�ð Þ� � ð20:10Þ

bt ¼
1ffiffiffi
3

p tan cos�1 PFð Þ� � ð20:11Þ

and PF* is the desired reference power factor at the PCC bus and PF is the
measured power factor at PCC.

20.2.2.2 Simplified DSTATCOM Model

The ideal switch model has some disadvantages [27]. One way to mitigate the
adverse effects on the simulation related to the switching process is to use a small
integration time step to carry-out the simulation. However, it takes long simulation
time. The source of numerical problems for the integration process arises from the
discontinuities and the non-differentiability introduced by the ideal switch model
[20, 28], and one way to avoid these problems is to smooth the switching
transitions.

In Fig. 20.4 the schematic representation of the simplified DSTATCOM model
in current control mode is shown. Figure 20.5 shows the schematic representation
of the DC link model. The power balance between the DC and AC side can be
given as,

Pdc ¼ vdcidc

¼ ifavta þ ifbvtb þ ifcvtc þ Rf i2fa þ i2fb þ i2fc
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Fig. 20.4 Schematic representation for the simplified model

694 J. Segundo-Ramírez et al.



where
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D ¼
X
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v2tfx ð20:16Þ

20.2.2.3 Comparative Analysis of Models for the DSTATCOM
in Current Mode

In this section, the performance of the simplified model presented in the previous
section is compared against the detailed model where the voltage source inverter
based on the three H-bridge inverter is used. The test system is shown in Fig. 20.2.
The system and the DSTATCOM parameters are given in Table 20.1. The hys-
teresis band for the detailed model is h = 1 A.

Initially, for t < 0 the switch sw is open and the electric circuit is in periodic
steady-state. At t = 0 s the switch sw is closed and the DSTATCOM starts the
compensation with the DC capacitor pre-charged at 1,200 V. Selected waveforms
are presented in Fig. 20.6. Figure 20.6a shows the compensation current ifa, while

X ÷

vd

if

idc
vdc∫-Cdc

Fig. 20.5 DC link model
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Fig. 20.6b shows the DC voltage vdc with the simplified model and with the detailed
model for an integration step size of 65 and 1 μs, respectively. A good agreement
between the two models has been achieved, even though the simplified model has a
considerably larger integration step size (125 times).

20.2.3 DSTATCOM Operating in Voltage Control Mode

Here, the control strategy proposed in [29] is used. With this algorithm, the
DSTATCOM operates as a voltage regulator to maintain constant the voltage of a
specified bus (PCC). The magnitude of the bus voltage is pre-specified while its
phase angle is generated from a DC capacitor control loop. A deadbeat controller
for the inverter is used for voltage tracking. With this algorithm, the DSTATCOM
can compensate the terminal voltage, for any distortion or unbalance in the load or
in the voltage source.

Table 20.1 System parameters of the DSTATCOM in current mode

System DSTATCOM

Voltage (|Vs|): 440 V (peak), sinusoidal and may
contain harmonics, exhibit sags and swells, and
possible unbalance.

Voltage controllers gains of DC
capacitor loops: Kpdc = 80, Kidc = 500.

Feeder impedance (Rs, Ls): 1 + j7.54 Ω β control loop gains: Kpβ = 0.5,
Kiβ = 300.

AC capacitor (Cdc): 70 μF DC capacitor(Cdc): 1,500 μF

Feeder load impedance (Rl, Ll): 0.5 + j3.77 Ω Interface circuits (Rf, Lf): 0.05 + j3.77
Ω

EAF constants: K1 = 15, K2 = 0.05, K3 = 800, m = 0
and n = 2.

Reference value of DC capacitor volt-
age: 1,200 V
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Fig. 20.6 Comparison in the
time domain between the
detailed and the simplified
model for a compensation
current ifa and b DC capacitor
voltage vdc
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20.2.3.1 Simplified DSTATCOM Model

In the simplified model, the three H-bridge converters are replaced by three con-
trollable voltage sources. The main advantage of this model is to allow larger
integration steps with high precision and reliability. In Fig. 20.7, the schematic
representation for the simplified model of DSTATCOM operating in voltage mode
is shown. This model is based on the assumption that vtx ¼ v�tx, where v�tx is the
reference terminal voltage. Figure 20.8 shows the schematic representation of
the DC link model.

The reference terminal voltage v�tx is

v�tx ¼ Vmsin xt � d� /xð Þ ð20:17Þ

and δ is computed using a proportional-integral controller described by,

d ¼ Kpd Psh � P�
sh

� �þ Kid

Z
Psh � P�

sh

� �
dt ð20:18Þ

Psh is the instantaneous power reference in the shunt link and P�
sh is its reference;

Psh is given by

Psh ¼ vtaifa þ vtbifb þ vtcifc ð20:19Þ
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Fig. 20.7 Schematic representation for the simplified model

X ÷

vd

i f

idc vdc∫-Cdc

Fig. 20.8 DC link model
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P�
sh is obtained as,

P�
sh ¼ Kpdc vaveragedc � v�dc

� �þ Kidc

Z
vaveragedc � v�dc
� �

dt ð20:20Þ

where v�dc is the reference DC voltage, vaveragedc is the average voltage across the DC
capacitor. The converter terminal voltage is given by,

vdx ¼ Rf idx þ Lf
didx
dt

þ vtx ð20:21Þ

The current injected by the compensator is calculated by,
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The dynamic capacitor voltage is given by,
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20.2.3.2 Comparative Analysis of Models for the DSTATCOM
in Voltage Control Mode

In this section, the performance of the simplified DSTATCOM model is compared
against the detailed model. The system parameters and the DSTATCOM parame-
ters for the circuit shown in Fig. 20.2 are given in Table 20.2. The hysteresis band
for the detailed model is h = 10.

Initially, the electric system is in periodic steady state and the switch sw is open.
At t = 0 s, the switch sw is closed, thus, the DSTATCOM starts to regulate the
terminal voltage vt at the PCC bus. Figure 20.9a shows the results comparison for
the phase angle δ, Fig. 20.9b shows the comparison for the voltage across the DC

Table 20.2 System parameters of the DSTATCOM in voltage mode

System Parameters DSTATCOM

Voltage (Vs): 440 V (peak), sinusoidal and may
contain harmonics, exhibit sags and swells, and
possible unbalance

Voltage controllers gains of DC capac-
itor loops: Kpdc = 154, Kidc = 3,500

Feeder impedance (Rs, Ls): 1 + j7.54 Ω δ control loop gains: Kpδ = 27e−6,
Kiδ = 8e−3

AC capacitor (Cac):70 μF DC capacitor(Cdc): 1,500 μF

Feeder load impedance (Rl, Ll): 0.5 + j3.77 Ω Interface circuits (Rf, Lf): 0.05 + j3.77 Ω

EAF constants: K1 = 15, K2 = 0.05, K3 = 800,
m = 0 and n = 2

Reference value of DC capacitor
voltage: 1,200 V
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Fig. 20.9 Comparison in the
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capacitor vdc, and Fig. 20.9c for the compensation current ifa. The results show a
very good agreement between the simplified model and the detailed model, with an
integration step size of 60 and 1 μs, respectively. An excellent agreement between
the two models is achieved, even though the simplified model has a considerably
larger integration step (60 times).

20.2.4 Comparison of the Simplified Modeling Approaches

20.2.4.1 DSTATCOM Operating in Current Mode

A comparison between the detailed model and the simplified model based on the
ideal source approach is shown in Fig. 20.10. The compensator current ifa, the
terminal voltage vta, and the DC voltage capacitor vdc, are shown in Fig. 20.10a, b,
and c respectively.

The same comparison for the simplified model based on the hyperbolic tangent
approach is presented in Fig. 20.11. For this numerical experiment, the hysteresis
band has been selected as h = 5 A. Observe that the DC voltage capacitor computed
with the ideal current source models has a small error. This error is because this
model assumes that the DSTATCOM generates the compensation currents
instantaneously. The model based on the hyperbolic tangent gives much better
solutions since it is not based on this assumption.
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on the smooth hysteresis band approach for a compensation current ifa, b terminal voltage vta, and
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20.2.4.2 DSTATCOM Operating in Voltage Mode

The solution comparison for the DSTATCOM operating in voltage mode for the
phase angle δ, the DC capacitor voltage vdc, and the terminal voltage vta are pre-
sented in the Fig. 20.12a, c and e respectively. Observe from Fig. 20.12b, d and f
that for this particular case, the solution obtained with the simplified model based
on ideal voltage sources is not accurate during the first cycles.

The same comparison for the simplified model based on the hyperbolic tangent
is presented in Fig. 20.13. Please notice that the initial transients can be accurately
reproduced with the simplified model based on this approach.

The presented simplified models allow the fast computation of the periodic
steady state solution by time domain simulations and by the application of an
iterative method such as the Newton method. This method computes the periodic
steady state solution despite its stability and it is commonly used as the corrector in
the continuation methods for tracing bifurcation diagrams. Due to the discontinuity
of the detailed model, the Newton method presents convergence issues and
becomes difficult the construction of stability regions. To tackle these issues, the
previously presented simplified models can be used instead. In particular, the fastest
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and best suited modeling approach was that based on ideal sources, therefore, this
will be used for the bifurcation analysis and the detailed models will be used to
corroborate the computed stability regions.

20.3 Stability Analysis of Periodic Steady State Solutions

Continuation schemes are used to determine how the solutions of a system vary
with a given parameter. Implementing a predictor–corrector scheme, a continuation
algorithm can trace the path of an already established solution as the parameters are
varied. XPPAUTO [30] is a software package widely used for this purpose;
however, this software has not been used in the presented analyses since it has
convergence problems to trace the bifurcation diagrams of periodically forced
nonlinear-switched systems. In this chapter, the sequential method [5] is used as the
predictor; in this method, the periodic solution determined in the previous step is
used as an initial guess for the periodic solution to be determined in the next
step. After the third point, an extrapolation method based on the cubic spline is used
as a predictor. The Newton method based on the direct exponential expansion
(DEE) process [31] is used as the corrector.

The stability of a periodic solution is computed from its Floquet multipliers; they
describe the stability near the limit cycle of interest. Floquet theory is based on the
observation that a periodic solution can be represented through a fixed point of an
associated Poincaré map. Consequently, the stability of a periodic solution can be
determined by computing the stability of the corresponding fixed point of the
Poincaré map. The Floquet multipliers are the eigenvalues of the Jacobian of this
Poincaré map obtained in the DEE method. Stable periodic solutions correspond to
Floquet multipliers inside the unit circle; on the other hand, unstable periodic
solutions have at least one Floquet multiplier outside the unit circle. Therefore, loss
of stability is encountered when a multiplier leaves the unit circle; this can occur in
three different ways: A fold bifurcation is encountered when a single real Floquet
multiplier crosses the unit circle at +1. The flip bifurcation or period-doubling
bifurcation takes place when a single real Floquet multiplier crosses the unit circle
at −1. At this bifurcation point, the prevailing solution branch becomes unstable
and a new branch is born. Solutions on this new branch have twice the period of the
previous limit cycle. The generalized Hopf bifurcation or Neimark bifurcation is
found when two complex conjugated Floquet multipliers leave the unit cycle.
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20.3.1 Stability Analysis of the DSTATCOM in Current
Control Mode

20.3.1.1 Stability Regions in the Ls-Rs Plane

The network of Fig. 20.2 has been represented through its Thevenin equivalent. The
network upstream from the PCC towards the source side may contain different
feeders and loads. Thus, the radial line and the source shown in figure is a Thevenin
representation of the upstream network, where vs, Rs, and Ls represent the Thevenin
equivalent looking towards the left into the network. Since the Thevenin equivalent
can change at any time depending on the load at left side of the PCC, it is desirable
to assess a set of vs, Rs, and Ls, for which the DTATCOM performance is stable.

For the electric system shown in Fig. 20.2, only the Neimark bifurcation was
located in the parametrical-space used in this analysis. In analogy with the Hopf
bifurcation, a bifurcation is expected at a critical value, as the limit cycle losses its
stability, so that an attracting torus is born; this is the secondary Hopf bifurcation or
a Neimark bifurcation. Besides, the bifurcated solution can be either stable and
supercritical or unstable and subcritical [5].

Figure 20.14 shows the bifurcation set on the Rs–Ls plane. This Figure shows the
stability regions for different power factor corrections with |Vs| = 440 V, where |Vs|
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is the peak value. The solid line represents the Neimark bifurcation set. Inside the
contour line the solutions are T-periodic and the gray zones represent the unstable
regions. The stable region in the Rs–Ls plane changes according to the power factor
at the PCC. For instance, Fig. 20.14d shows that for a 0.822 lead power factor, an
unstable region within the stable region exists. In a practical distribution system, the
set (Rs, Ls) is smaller than those stable sets computed through the bifurcation
analysis, which means that for all the possible operating points the DSTATCOM
operating in current control mode will properly compensate.

20.3.1.2 Stability Regions in the Gains Plane

In this section, the stability region in the Kidc – Kpdc space, and in the Kiβ – Kpβ

space, as well as the contour lines for different Floquet multipliers are computed.
Figure 20.15a shows the stability regions in the Kidc – Kpdc space, and Fig. 20.15b
shows the stability regions in the Kiβ – Kpβ space. Also, in these figures, contour
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lines are presented for different Floquet multipliers to show the different speed of
response. For example, from the Fig. 20.15a, it is easy to notice that the pair of
gains Kidc = 80,000 and Kpdc = 1,040 give the fastest response. The implementation
of this set of gains in a physical controller depends on the precision available in the
hardware and software employed.

Figure 20.16a shows time domain simulations of the convergence error for
Kpdc = 1,040 and different Kidc. It can be observed that this agrees with the
bifurcation diagram of Fig. 20.15a. From Fig. 20.15b, it is easy to notice that in the
stable region, there is an important area for which the maximum Floquet multiplier
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is constant. This means that for this area, the speed of response should be almost the
same. To corroborate this observation, the convergence error for Kpβ = 1.5 and
different Kiβ is shown in Fig. 20.16b. As expected, the convergence error is almost
the same in this area.

Figure 20.17 shows the torus solution for compensation current if for Kpβ = 0.5,
Kiβ = 300, Kpdc = 1,040, and Kidc = 2.5 × 105. This operating point corresponds to a
quasiperiodic solution. Please notice that the detailed model and the simplified
model are in very good agreement, even in the unstable regions.

20.3.1.3 DC Capacitor Impact on the Stability

The impact of the DC capacitor size in the stability regions in the Rs – Ls plane is
qualitatively shown through bifurcation analysis. This analysis shows that the stable
region increases asymptotically as the DC capacitor size increases, thus, the size of
the DC capacitor can be chosen to suit the load demand. Figure 20.18 shows the
stability regions in the Rs – Ls plane for different DC capacitor sizes.

20.3.1.4 AC Capacitor Impact on the Stability

The purpose of the capacitor filter Cfil is to provide a path for the switching
harmonic current introduced by the DSTATCOM. However, it is shown in [23],
that this passive filter has an important impact on the DSTATCOM performance
and on its stability. High capacitances in the capacitor filter provide a low
impedance path for the harmonic currents. However, there are three problems
related to high capacitances. The first one is the cost, the second one is that the
speed of response becomes slower, and the third one is that the stable region
decreases as the capacitance becomes larger. This is shown in Fig. 20.19, where the
stability region in the Rs – Ls plane has been computed for three different capacitor
filters.
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20.3.2 Bifurcation Analysis for DSTATCOM in Voltage
Control Mode

In this section, the bifurcation theory is applied to the same system to assess the
stability regions of the electric system including the DSTATCOM operating in
voltage control mode. In the section to follow, bifurcation diagrams in the Thevenin
space are computed to show the set of Ls, Rs, and vs (derived from Thevenin
reactance) for which the DSTATCOM contains stable solutions. The stability
regions on the gains space are calculated through bifurcation theory, and the set of
gains for the fastest speed response of the DSTATCOM is obtained from this
analysis. Besides, the gains impact on the stability regions in the Thevenin space is
analyzed. Finally, the AC and DC capacitors size impact on the stability in the
Thevenin space is analyzed.

The simplified DSTATCOM model based on ideal sources is used in this
analysis; however, the solutions will be compared against the detailed DSTATCOM
model to validate the results. The simplified model is used in this analysis rather
than the detailed model basically because the detailed model does not allow the
correct implementation of the shooting method during the correcting process in the
computation of the bifurcation branches through the continuation methods.

20.3.2.1 Stability Regions in the Rs – Ls Plane

The Fig. 20.20 shows the bifurcation set on the Ls – Rs plane for different Thevenin
voltages. The dotted line represents the Neimark bifurcation set. Inside the contour
line the solutions are T-periodic, and the dark zone is the unstable region. The
stability region for |Vs| = 350 V, |Vs| = 400 V, and |Vs| = 440 V, are shown in
Fig. 20.20a–c, respectively. In Fig. 20.20d a comparison is presented between the
different stability boundaries; the stability region decreases as the source voltage
becomes smaller. Also, Fig. 20.20a–c can be seen as bifurcation diagrams in the
Thevenin space.
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Figure 20.20d shows that the only region for which the DSTATCOM properly
operates in the Thevenin space for |Vs| is from 350 to 440 V; between the inner
stability boundary of |Vs| = 440 V and the outer stability boundary of |Vs| = 350 V.
In this region, the DSTATCOM can compensate any disturbance from the network.

20.3.2.2 Stability Regions in the Gains Plane

The dynamic behaviour of the DSTATCOM in transient state is strongly related to
the gain of the PI controllers; therefore, an important task to do deals with the
proper gains assessment. In addition, the set of gains has an important impact on the
DSTATCOM steady state performance, since they modify the stability regions. In
this section the stability region in the Kidc – Kpdc space, and in the Kiδ – Kpδ space
are computed, as well as the contour lines for different Floquet multipliers, with the
purpose of assessing the set of gains for which the fastest speed of response is
obtained. Figure 20.21b in the Kidc – Kpdc space. Also, in these figures, contour
lines are presented for different Floquet multipliers to show the different speed of
response. Figure 20.22a shows the convergence error for different pairs of gains Kiδ
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– Kpδ. In Fig. 20.22a, the convergence error for Kpδ = 30 × 10−6, and different Kiδ

are shown. From this figure, we can see that the fastest response is around
Kiδ = 10.5 × 10−3 and Kpδ = 30 × 10−6. Figure 20.22b shows the convergence error
for Kpdc = 74, and different Kidc. From this figure, it is easy to see that the fastest
response is around Kpdc = 74 and Kidc = 1,320. These results are in agreement with
the bifurcation analysis illustrated in Fig. 20.21.

As mentioned previously, the gains of the controller have a direct impact on the
system stability. However, it is not known how the size of the stable region in the
Thevenin space varies as the gains are varied. To investigate the effect of the gains
variation in the stability of the system, a bifurcation analysis is carried-out to assess
the stable and unstable regions for different sets of gains. In particular, the stability
region obtained for Kidc = 1,320, Kpdc = 74, Kiδ = 8 × 10−3, and Kpδ = 27 × 10−6

with |Vs| = 440 V is compared against that shown in Fig. 20.20c. This comparison is
shown in Fig. 20.23; it can be noticed that the size of the stable regions significantly
change as we change the set of gains. Figure 20.23 has been computed using the
parameters given in Table 20.2; only the gains are varied.
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20.3.2.3 DC Capacitor Impact on the Stability Region

The DC capacitor is a very important element in the design of DSTATCOM, as it
stores the energy necessary to compensate the load during disturbances. In steady
state, the DSTATCOM has to provide the active power fluctuation and the reactive
power demanded by the system, in order to maintain the voltage at the PCC bus.
Thus, the DC capacitor size is important for the compensator performance, i.e.,
larger capacitances the storage more energy, consequently the DSTATCOM could
bear larger and more severe disturbances. This observation suggests that the stable
region increases as the DC capacitor size becomes larger. To corroborate this, a
comparison between the stability regions for different DC capacitor sizes is pre-
sented in Fig. 20.24. It can be seen that the stable regions on the Ls – Rs asymp-
totically increases as the DC capacitor becomes larger. Please notice that even the
inner unstable region decreases as the AC capacitor size increases. Figure 20.24 has
been computed using the parameters given in Table 20.2. From this analysis, the
DC capacitor size can be selected to suit the load demand. Obviously, the selected
DC capacitor size also depends on its cost.
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20.3.2.4 AC Capacitor Filter Impact on the Stability Region

The main purpose of the AC capacitor filter is to drain the harmonic currents
coming from the DSTATCOM converters. A small AC capacitor size presents high
impedance to the harmonic currents; in consequence, the harmonic currents are not
efficiently drained. For a large AC capacitor size, the harmonic currents are effi-
ciently drained; however, there are some problems with a large AC capacitor filter.
For instance, the transients in a capacitor increase as its size increases. To assess the
AC capacitor filter impact on the stability, the stable regions in the Thevenin plane
have been compared for three different AC capacitors; this comparison can be seen
in Fig. 20.25. From this figure, it easy to notice that the AC capacitor has a positive
impact on the stability, since the stable region on the Ls–Rs plane increases as the
AC capacitor becomes larger. However, it should be noticed that not only the outer
boundary increases; the inner boundary becomes larger as well. Basically, the AC
capacitor filter size has a positive effect on the stability because the AC capacitor
acts as reactive power compensator as well, and this action reduces the reactive
power injected by the DSTATCOM to maintain the reference terminal voltage.
Figure 20.25 has been computed using the parameters of Table 20.2.
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