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Abstract The van der Waals (VDW) force arises from purely quantum mechanical
charge fluctuations and is variously called a dispersion or London or Casimir force.
This often considered as weak, yet ubiquitous, attractive interaction is important in
many nanoscale systems. This chapter provides an overview of the Coupled Dipole
Method (CDM), an atomistic and accurate computational method widely adopted to
predict the VDW forces between dielectric nanomaterials. There is a concern about
the burden of memory and computing time needed to solve eigenvalue problems by
either diagonalization or iteration, which have hindered the implementation of CDM
for large systems. Here, an efficient way, named trace-CDM (TCDM), is presented.
TCDM uses the simple fact that the trace of a square matrix is equal to the sum of its
eigenvalues and thus calculates the accurate VDW energies without solving for the
eigenvalues. Four examples are solved to demonstrate the advantages of the method.
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London force � Casimir force � Coupled dipole method (CDM) � Trace-CDM
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VDW energies

1 Introduction

The van der Waals (VDW) interaction between atoms and molecules composing or
being near a soft or hard condensed matter has always been one of the major research
interests in diverse science and engineering fields. At separations large compared to
atomic dimensions such that the overlap of electronic densities is negligible, atoms,
molecules, self-assemblies, and surfaces interact via VDW dispersion forces giving
arise to physical adsorption, atomistic friction, surface tension, and the aggregation
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and stability of nanomaterials. This interaction is often considered as a weak, and thus
less significant, force in macroscopic systems. However, the degree of importance of
VDW force varies for different systems and thus cannot be universally summarized.
After all, the very existence of the attraction between any two neutral non-polar atoms
or molecules was the mystery that made many scientists puzzle for a long time even
after Johannes Diderik van der Waals empirically modified the ideal gas law and
introduced the well-known van der Waals equation of state [1–5]

Pþ a
V2

� �
V � bð Þ ¼ NkBT ð1Þ

Here kB, V, P, T, and N are the Boltzmann constant, total volume, pressure,
temperature, and the number of gas atoms, respectively. The constants a and b in
the correction terms can be empirically determined. The correction term in volume
(b) represents the reduced accessible volume for each atom due to the repulsion
from other atoms that already have occupied the volume b. The correction term in
pressure (a/V2) implies that the atoms at the boundary have less kinetic energy than
those in the interior due to the attractive force exerted by other atoms. The attractive
correction term in potential energy of atoms is proportional to 1/V2, i.e., propor-
tional to 1/r6 if r is the mean separation of the gas atoms. The identity of this
mysterious attractive force observed between neutral atoms was unsolved until the
introduction of quantum mechanics. In 1930, London [6–10] solved the many-
electron Schrödinger equation by second-order perturbation theory and represented
the energy gain by the attractive force with an integral over the dynamic polar-
izaiblites of each atom. London’s derivation of the VDW dispersion interaction is
thus considered as one of the major early successes of quantum mechanics [3].

In short, the problem of calculating the interaction energy between two atoms
reduces to a solution of the Schrödinger equation with a Hamiltonian:

H ¼ H1 þ H2 þ V ð2Þ

where H1 and H2 are the Hamiltonians for the isolated atoms. The last term V is the
Coulomb interactions between all the charges in atom 1 and those in atom 2 and is
treated as a perturbation in the Shrödinger equation, which can then be solve by
either perturbation theory or the variational method [2]. Eisenschitz and London [6]
and London [7–10] made a dipole approximation which allows only one transition
state per atom, and showed that the first term in the solution of the perturbation
theory vanishes for nonpolar atoms. Therefore, from the second-order perturbation
theory, London obtained the VDW interaction for two isotropic neutral atoms, 1
and 2, at separation r:

V ¼ �C6=r
6 ð3Þ

C6 ¼ 3�h
p

� �Z
dx a1 ixð Þ a2 ixð Þ: ð4Þ
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Here, α1 (iω) and α2 (iω) represents the dynamic polarizabilities of atoms 1 and
2, respectively.

For systems involving atoms or molecules with non-zero (or excess or non-
vanishing or non-negligible) permanent electric multipoles (charge, dipole moment,
quadrupole moment, etc.), the VDW interaction is definitely weaker than the
electrostatic or induction contributions. However, for many systems composed of
neutral non-polar particles, the VDW interaction becomes the dominant force and
starts to play a crucial role in the function and stability of the system. This is mainly
due to the fact that the dispersion interaction is ubiquitous like the gravitational
interaction, and more importantly to the fact that it depends strongly on the detailed
structure or shape of the nanoscale materials [11, 12]. The VDW interaction is
ubiquitous since it is originated from the quantum mechanical fluctuation of elec-
tronic density (or dynamic polarization) of any atom or molecule in the universe. In
fact, this is the force responsible for the condensation and crystallization of van der
Waals crystals (such as solid helium), for the structures and energetics in colloid
chemistry and biology, for the formation of liquid crystalline phases in solutions,
for the anomalous swelling of clay soils on addition of water, for the formation of
molecular crystals, and for viral self-assembly, to name a few [1–5, 13–20]. As the
size of the system decreases into the region of micro and nanotechnology, the
property of material in nanoscale changes from that of macro system [21]. The
variety of modern technologies, especially electronic, mechanical, chemical, and
bioengineering applications, indeed demand an accurate prediction that can lead to
a delicate control over nano-sized small clusters of particles or devices [22, 23]. A
specific example would be the micro-machine and nano-machine. Nanocolloids is
also a research field in which the VDW forces play a key role in designing and
manufacturing devices, such as nanoelectromechanical systems (NEMS), low-
power circuits, miniature barcodes, etc. Another example among many others is the
research field of physical adsorption [24–26] of atoms or molecules on various
surfaces with possible applications to micro- and nano-sensors.

From a theoretical point of view in dealing with macro or even micro-sized
systems, the common understanding until very recent years has been that the
estimation of long-range van der Waals force is a well-defined problem and easily
calculable. On the other hand, the estimation of short-range forces is considered as
computationally more challenging because it involves the many-electron problem
with overlapping electronic densities that requires inevitable approximations. It
should be noted here that, in principle, the estimation of VDW dispersion forces
also involves collective many-body problem: among atoms and molecules or
between atoms and a surface or between clusters of atoms or molecules. However,
this complication of atomistic many-body problem was often considered resolved
by using the Clausius-Mossotti relation [27] to estimate the effective atomic
properties (atomic polarizability) from the readily measurable macroscopic prop-
erties (permittivity function) of the corresponding condensed-matter bulk system.
Using this effective atomic polarizability, the dispersion interaction of an atom
and a cluster of atoms, for example, has been represented by a sum of London’s
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two-body interactions between the atom and each constituent atoms of the cluster
assigned with the effective atomic polarizabilities. This approach is commonly
called the pair-sum or 2-body approximation [28].

The procedure of calculating the interaction energy of macroscopic bodies by
summing the pair interactions between the individual atoms or molecules of these
bodies, as mentioned above, is based on the assumption of additivity of the inter-
atomic interaction energies. This assumption of additivity is justified only within
the scheme of the second order perturbation theory [2, 29, 30] since the first
nonadditive contribution occurs in the third-order perturbation theory. The non-
additive correction term due to three-body (or, triple-dipole) interactions was first
obtained by Axilrod, Teller, and Muto (ATM) [31–33] in 1943 using the third order
perturbation theory. Since then considerable efforts have been spent to evaluate the
contribution of the nonadditive corrections to the pairwise 2-body interaction term,
due to three-body and even four-body interactions derived from the third- and
fourth-order perturbation theory, respectively [34–38]. The common reasoning
behind the reluctance to explore further the higher-order many-body contributions
was the assumption that the higher-order term in the perturbation theory would be
smaller than the lower-order terms. However, at the same time, a concern recog-
nized by some researchers was that the higher-order many-body contributions
might not be so simply negligible in condensed matter systems. As will be see in
the next section, the number of combinations of atoms that contribute to each n-th
order many-body term in the perturbation theory increases significantly as the order
n increases. Therefore, even though the VDW interaction of each combination of
many-atoms might become weaker as n increases, the net contribution of the n-th
order term after summing over the largely increased number of combinations might
not necessarily be negligibly smaller than, for example, that of the (n − 1)-th order
term. The main reason, at least to my opinion, that has kept many researchers away
from further estimating the actual “quantitative” contribution of higher-order many-
body interaction terms whose expression can be derived from the perturbation
theory is the impractically cumbersome expressions of these many-body terms, as
can be seen in Refs. [34–36]. Avoiding the use of these cumbersome expressions is
one of the main advantages of using the trace-CDM (TCDM) which is presented in
the next section.

One of the most studied VDW systems is the inert gases. The potential energy of
like pairs of inert gas atoms is quite well known empirically. However, the total
potential energy of a bulk system of inert gases is not precisely equal to the sum of
the atomic pair potentials. There is an extensive body of work [39–41] which shows
that if accurate pair potentials are used, the inclusion of the ATM three-body VDW
interaction gives a good agreement with experiment for condensed rare gas systems.
For example, the triple dipole dispersion energy for solid xenon is 10 % of the total
cohesive energy of xenon, with similar fractional contributions for the lighter inert
gases (Ne, Ar or Kr) [39]. More significantly found is that if the ATM interaction is
omitted there is a definite disagreement with experiment, which cannot be remedied
by simply modifying the pair potential. This is due to the strong dependence of the
ATM interaction on the relative location of the three atoms involved, that is, on the
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type of triangle formed by these three atoms. As material becomes denser and as its
shape becomes more anisotropic, the importance of the many-body interaction
terms increases.

There is another extreme theoretical approach to obtain the dispersion interaction
between an atom with a substrate or a large cluster of atoms, or between two large
clusters of atoms. That is to consider the substrate or the large cluster of atoms as a
continuum, characterized with a dielectric tensor ε (ω), instead of recognizing it as a
cluster of many individual atoms characterized with atomic polarizabilities α(ω).
This continuum description of matter has an advantage over the prior-mentioned
atomistic description of matter as all the many-body terms are intrinsically included.
This continuum approximation method is, however, known to work well only when
the distance between interacting particles is much larger than the interatomic dis-
tance of atoms within a cluster or a substrate [4, 5, 42–45]. In fact, the continuum
methods are found to overestimate the many-body “screening” effect in nanoscale
systems [28].

The significant improvement in accuracy achieved in recent experimental
measurements of the force between nanoscale materials, especially in the force
microscopy, such as atomic force microscopy (AFM), challenges for advanced
calculations and thus more accurate predictions that can (1) incorporate the detailed
atomistic nanostructures at the surface or edge of nanomaterials and (2) include all
the nonadditive many-body interaction terms as well [46]. Because the aforemen-
tioned atomistic approach has the advantage of being sensitive to the detailed
structure of the nanomaterials, many efforts have been made to find an atomistic
approach that also can include “all” the many-body terms, beyond the three-body
terms.

Since early 2005, the author was involved in an effort to explore better ways to
estimate the van der Waals dispersion interaction accurately in nanoscale systems in
collaboration with a group of enthusiastic theoretical and experimental experts. This
collaborative effort led us to a series of studies using the coupled dipole method
(CDM) [28, 47–52]. The focus of our original work was mostly on the accurate
estimation of the van der Waals interaction between two nano-sized dielectric
clusters of various shapes and relative orientations. However, the method is general
and is readily applicable to other systems.

The aim of this chapter is to provide a self-contained overview of the subject of
CDM. Also presented is an efficient way to execute CDM, henceforth called trace-
CDM (TCDM), in order to reduce the computational burden of memory and run
time, while maintaining accuracy. TCDM will allow cost-effective implementation
of CDM for systems composed of large number of particles, such as those in
computer simulation studies. The formulations and computational techniques are
summarized in great details as some of these were omitted in the original publi-
cations due to space limit.

The outline of this chapter is as follows. The next section provides the formu-
lation of CDM which calculates the nonretarded VDW interaction energies exactly
within the dipole approximation. Also presented is the formulation of TCDM, an
efficient computational way of solving CDM, which obtains accurate VDW
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energies without having to solve for all the eigenvalues. A few simple cases are
solved analytically, as examples, to demonstrate the use of both CDM and TCDM.
Section 3 concludes this chapter with a brief discussion on the importance of
including all the many-body interaction terms (or at least up to the 10-th order term)
and the practical advantages of using TCDM over two traditional ways of including
many-body terms, the eigenvalue method of CDM and the perturbation theory.

2 Coupled Dipole Method (CDM) and Trace-CDM
(TCDM) for Non-retarded VDW Interaction

The VDW attraction is truly a quantum mechanical phenomenon. That is why, as
mentioned in the previous section, the mystery of VDW attractive dispersion
interaction could only be unveiled by London adopting then newly established
quantum mechanics theory. Quantum theory in its simplest form tells us that
everywhere in space there are quantized electromagnetic radiation fields. In other
words, there are photons everywhere in random motion. These photons get con-
stantly absorbed and emitted by any particles in the system, so that induced dipole
moments are formed instantaneously on the particles. The interaction energy
between these instantaneously induced dipoles obtains the attractive VDW dis-
persion interaction energy which obeys the 1/r6 relationship for two atoms at
separation r as shown in Eqs. (3) and (4). The final form of the VDW dispersion
energy is given in terms of their atomic or molecular dynamic polarizabilities, and
tends to increase rather than decrease with increasing temperature due to the
increase of polarizabilites with increasing temperature [53].

Using the Schrödinger formalism, the correct free energy of the coupled elec-
tron-photon system is obtained only if both the electron and the photon remain
essentially in their ground states. This implies the restriction to direct electron
transitions to and from an excited state with no successive transitions through
different excited states, and thereby implies that only zero or one photon of cor-
responding transition energy of each excited state is absorbed or emitted. Each
transition may be represented by a single excitation of a quantum mechanical
harmonic oscillator. London simplified the system by assuming that only one
excited state is available for each harmonic oscillator, and thus the interacting
ground-state atoms can be represented by equal number of interacting harmonic
oscillators whose characteristic frequencies are equal to the electronic excitation
energies. This is the point where the quantum mechanical formulation of London
makes a connection to the classical Lorentz harmonic oscillator model of atoms
(frequently also called Drude model) which has been used to explain the interaction
between electromagnetic fields and matter since 1900 [54, 55].

It should be noted that the Schrödinger formalism adopted by London is non-
relativistic, and the many-electron Schrödinger equation assumes static electro-
magnetic interaction potentials between all electrons. There is an exact quantum
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mechanical treatment, the quantum electrodynamics (QED) procedure, of the dis-
persion interaction which involves quantization of both matter and electromagnetic
fields (or photons). The full quantum mechanical analysis is far too complicated and
would not add much to our current purpose. The conclusion in non-relativistic
regime and thus in the non-retarded VDW interaction, which is the subject of
interest in this chapter, remains unaltered.

In practice, to calculate the VDW interaction energies, certainly among con-
densed matter scientists and engineers, the oscillator model has been strongly
favored due to its simplicity and to the fact that they already have a readily available
tool to estimate the atomistic polarizability from the macroscopic dielectric constant
using the Clausius-Mossotti relation. In 1963, McLachlan [56, 57] derived the
VDW dispersion interaction starting from the Drude model of atoms. In CDM,
following McLachlan’s approach, the oscillator model is employed to derive the
nonretarded VDW interaction energy of a cluster of atoms or between clusters of
atoms. The general form of the dynamic atomic polarizability of a Drude harmonic
oscillator is:

aðxÞ ¼ e2

m

� �X
k

1
x2

ok � x2
� � ¼X

k

aok

1� x2

x2
ok

� � ð5Þ

Here ω0k and α0k is the characteristic frequency and static polarizability of the k-
th electron transition in the atomic states. For the simplest Drude atomic model,
where an atom is represented with one characteristic frequency (ω0) and the iso-
tropic static polarizability (α0) as assumed by London, the dynamic atomic polar-
izability becomes:

aðxÞ ¼ ao

1� x2

x2
o

� � ð6Þ

Substituting Eq. (6) to (4) yields, after the integration over frequency, another
form of London’s formula for the VDW interaction energy of two identical atoms at
separation r:

V ¼ � 3
4
�hx0

a20
r6

ð7Þ

Before going any further, it should be noted here that the London’s simple
oscillator model has been generalized [2, 29, 30] by allowing more than one
electronic transition states per atom. With this generalized oscillator model, there
appear additional nonvanishing higher-order terms in the second order perturbation
theory for two isolated atoms which correspond to the instantaneous dipole-quad-
rupole, quadrupole-quadrupole interaction, etc. (see Eqs. 36 and 37 in Ref. [2])
Although these higher-order multipole interaction terms are interesting on their
own, they are out of scope of this chapter. Here, we will focus on the dispersion
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interaction due to the instantaneous fluctuating dipole moments of ground state
atoms as adopted in London’s work.

Now, using the harmonic oscillator model in Eq. (6) requires atomic values of α0
and ω0. Derived from the continuum theory, the Clausius-Mossotti relation con-
nects the macroscopic matter property to the “effectively screened” microscopic
property of the composing atoms [27]

eðixÞ � 1
eðixÞ þ 1

¼ 4p
3
qaðixÞ ð8Þ

Thus, by knowing the permittivity function for a single resonant peak, atomistic
values for ρα0 and ω0 can be calculated, where ρ is the bulk density of the material.
More details on how to use this equation to obtain atomic values from experimental
data and some typical atomic values can be found in Appendix D of Ref. [51]. The
validity of using the Clausius-Mossotti relation, which after all is derived from the
continuum model of bulk material, in estimating the atomic properties in nanoscale
materials is still an open question. As the size of clusters of atoms becomes smaller,
the finite-size effects such as discrete boundary conditions become evident.
Therefore, the bulk properties such as the dielectric constant or bulk density are not
well defined. Although it is very important and interesting, this subject is out of
scope of this chapter. Since the CDM formulation is independent from how one
estimates the atomic polarizability and the characteristic frequency, we proceed
without digressing. Following formulations and calculations of CDM and TCDM
adopt the Clausius-Mossotti relation.

The CDM is a self-consistent method that is intrinsically atomistic and yet
includes all many-body interaction terms, both of which are the characteristics of
the very method, as described in Sect. 1, that can best estimate the VDW inter-
actions among nanoscale materials. The detailed formulation is as follows [28,
49–52].

2.1 Formulation

Let us consider a system of two clusters of atoms of nano-size and of arbitrary
shape as an example. By definition, the VDW interaction between two clusters A
and B (with number of atoms N and N0, respectively) is the change in total energy
of the system with two clusters at finite separation relative to that of the system with
two clusters at infinite separation. Therefore, using CDM, one may first calculate
the total energy (VN+N0) of a system of N + N0 atoms, the total energy (VN) of a
system of N atoms, and the total energy (VN0) of the system of (N0) atoms sepa-
rately. And then, the VDW interaction energy of the system is simply obtained from
subtracting the self-energy of individual clusters from the total energy of the
composite system:
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Vvdw ¼ VNþN 0 � VN � VN 0 ð9Þ

To demonstrate the CDM formulation in detail, let us start with a system con-
taining only one cluster A of N atoms. An arbitrary atom i in the cluster will have an
instantaneous dipole moment (characterized by the dynamic atomic polarizability)
induced by the net local instantaneous electric field, ~E ~xið Þ:

~pi ¼ a
$
i �~E ~xið Þ ð10Þ

where the atomic polarizability is written in its general form of a tensor, which is
assumed isotropic in Eqs. (5) and (6). ~xi is the position vector of the atom i. The
local instantaneous electric field at~xi, in the absence of any externally applied field,
results from the vector sum of instantaneous electric fields due to instantaneously
induced dipole moments of all other atoms in the system:

~E ~xið Þ ¼
XN
j¼1
j6¼i

T
$
ij �~pj ð11Þ

where, T
$
ij is the usual 3-dimensional static-dipole-interaction tensor (or, a 3 × 3

matrix):

T
$
ij �

3n̂ijn̂ij � I
$

r3ij

 !
for i 6¼ j

0 for i ¼ j

8><
>: : ð12Þ

Here, n̂ij ¼~rij=~rij
�� �� is the unit normal vector between atoms i and j, and I

$
is the

3-dimensional identity tensor. Substituting Eq. (11) into Eq. (10), one obtains a set
of self-consistent equations for the dipoles, one for each atom in the system:

~pi �
XN
j¼1
j 6¼i

a
$
i � T

$
ij �~pj ¼ 0 ð13Þ

Note here that the indices i and j indicate the atoms, not the vector components
(e.g. px, py, pz,, etc.). The scalar product notation assumes the usual dot-product
operation between vectors and tensors. The synchronizations of the dynamic group
talk between ever-fluctuating atomic polarization (or, instantaneously responding
dipole moment) of N atoms in the system lead to 3N normal modes, where the
factor 3 originates from the three-dimensionality of atomic structure.1

1 Despite the same notation adopted, the static-dipole-interaction tensor shown in Eq. (12) of this
chapter has a different definition from the T-matrix used in Eq. (2) in Ref. [49], where the
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Assuming now the isotropic atomic polarizability of Lorentz oscillator model
(Eq. 6), one obtains,

~pi � a0i

1� x2

x2
0i

� �XN
j¼1
j6¼i

T
$
ij �~pj ¼ 0: ð14Þ

Rearranging terms, one obtains,

~pi 1� x2

x2
0i

� �
� a0i

XN
j¼1
j 6¼i

T
$
ij �~pj ¼ 0 ð15Þ

One then arrives at the formation of an eigenvalue problem,

~pi � a0i
XN
j¼1
j6¼i

T
$
ij �~pj ¼ x

x0i

� �2

~pi ð16Þ

For a system composed of identical atoms (just to simplify the formulation), ω0i

and α0i is simply replaced by ω0 and α0, respectively, and one may rewrite Eq. (16)
as a matrix form to obtain

I
$ þ Q

$� �
�~P ¼ x

x0

� �2
~P: ð17Þ

Here,~P is now a 3N column matrix (x,y,z-components of each N dipoles), I
$
is a

3N × 3N identity matrix, and Q
$ � �a0T

$
is a 3N × 3N square matrix for a system

composed of identical atoms. Standard linear algebra algorithms, such as the free
software LAPACK (Linear Algebra PACKage) [58] or ScaLAPACK (Scalable
LAPACK) [59], can be used to solve this eigenvalue problem by diagonalization of

the matrix I
$ þ Q

$� �
. There are 3N eigenvalues ((ωk/ω0)

2) with the integer index k

runs from 1 to 3N obtained in this eigenvalue problem, which can then provide the
3N normal mode frequencies (ωk) in units of ω0. Since each normal mode fre-
quency contributes a ground state energy of �hxk=2 (or at finite temperature,

(Footnote 1 continued)

dimensionless T-matrix is defined as T
$
ij ¼ �aiðxÞ 3n̂ijn̂ij � I

$� �
=r3ij for i ≠ j. Note that this

dimensionless T-matrix adopted in Ref. [49] corresponds to the Q-matrix defined in Eq. (17) of

this chapter. Accordingly, Eq. (1) in Ref. [49] should be corrected as~pi þ
PN
j¼1
j 6¼i

T
$
ij �~pj ¼ 0, which

then becomes equivalent to Eq. (13) of this chapter as it should be.
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�hxk=2ð Þ coth �hxk=2kTð Þ [60]2), one finds the total energy of a system composed of
N-Lorentz oscillators from

VN ¼ �h
2

X3N
k¼1

xk ð18Þ

Therefore, by solving 3N linear equations self-consistently, CDM automatically
provides the contributions of all many-body interactions. Note that one can also
calculate the 3N eigenvectors corresponding to these eigenvalues, which corre-
sponds to the dynamic polarizability of the cluster of atoms, i.e., the dipole
moments of the system of atoms as a whole. It should be noted as well that the
assumption of isotropic atomic polarizability made here is purely for computational
convenience and the general form of anisotropic atomic polarizability can be
adopted in CDM.

Now, let us return to our original problem of a system of two clusters, A and B,
composed of N and N0 identical atoms, respectively. One obvious way to obtain the
VDW interaction energy between two clusters is to strictly follow the method
described above and solve for 3N eigenvalues of the cluster A. And then use the same
procedure to solve for 3N0 eigenvalues of the cluster B, and then again use the same
procedure to solve for 3(N + N0) eigenvalues for the composite system of (N + N0)-
atom system of two clusters A and B. That is, one would diagonalize the matrix in the
eigenvalue problem (Eq. (17)) to solve for all eigenvalues, and sum up the zero-point
energy contributions of each and every eigenmode as shown in Eq. (18) to obtain the
total energy of each cluster (VN and VN 0 , separately) and that of the total system
(VNþN 0 ) [49–52]. The final step is to use Eq. (9) to obtain Vvdw. If one were to estimate
the VDW energy of a system composed of many (N +N0, for example) atoms, instead
of the VDW energy between two clusters of atoms, one simply needs to replace VN

and VN 0 in Eq. (9) by a sum of self-energies of individual atoms 3N �hx0=2 and
3N 0 �hx0=2, respectively. In Eq. (9) the subtraction of self-energies of individual
atoms were not explicitly shown since the atomic self-energy terms from single-
cluster systems A and B cancel those from the whole system (A + B). In other words,
while the total energies in Eq. (9), VN , VN 0 and VNþN 0 , include the self-energies of
composing atoms, the final VDW interaction energy Vvdw is free from the self-
energies of composing atoms or clusters. The VDW interaction energy obtained this
way includes all the higher-order many-body interaction terms, and thus is exact
within dipole approximation. This method of solving CDM has been successfully
implemented in various quantum chemistry calculations based on density-functional
theory (DFT) [13, 61–63] and computer simulations [64]. In principle, one may
extend this method to include the higher-order multipole interactions by including

2 Lifshitz EM (1956) The theory of molecular attractive forces between solids. Sov. Phys. JETP
2:73-83; The dispersion force can be treated for finite temperature by substituting �hx

2 by �hx
2 þ

�hx
e�hx=kT�1 ¼ �hx

2 coth �hx
2kT

� �
to account for the thermal excitation of the modes.
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more characteristic frequencies than one per each harmonic oscillator [2] as men-
tioned in the introduction.

In a quantum chemistry study based on DFT with CDM implemented [63], it is
observed that the computational cost of calculating the many-body VDW interac-
tions using CDM is negligible compared to the underlying electronic structure
calculation. It should be, however, noted here that these quantum chemistry cal-
culations are done for systems composed of very small number of atoms (less than
200). On the other hand, computational material scientists [64] are making an effort
to implement CDM into the Massively Parallel Monte Carlo (MPMC). MPMC is an
open-source computer code [65] developed to study the interactions of gas phase
sorbates and various metal-organic materials (MOF). As the number of particle N
increases, the increasing size of matrices renders the matrix diagonalization in the
eigenvalue method of CDM impractical. The bottle-neck of this challenge of
implementing the CDM for large size systems comes from both memory size and
run time since these grow as N2 and N3, respectively [28]. To circumvent the
challenge of memory size, many studies involving large number of particles such as
computer simulation studies in Ref. [64] calculates the many-body VDW interac-
tion by solving the eigenvalue problem iteratively. Another way to meet this
challenge of memory size is to parallelize the computer code so that diagonalization
of large-size matrix can be performed. Successfully parallelized codes of CDM
have been demonstrated to study systems of large (unlimited, in principle) number
of particles [28, 64]. The challenge in the computational run time of using the
eigenvalue method of CDM for a large system remains unresolved thus far.

There is, however, a way to circumvent both of these challenges. This procedure,
which will be called as Trace-CDM (TCDM) from here on, does not require matrix
diagonalization and allows one to obtain the VDW interaction energy Vvdw with
much better efficiency and still with great accuracy. TCDM simply uses the fact that
the trace of a square matrix is equal to the sum of its eigenvalues [37, 66, 67].
According to this, once the eigenvalue problem is written in its matrix form, the
sum of all the eigenvalues equals the trace of the square matrix of the eigenvalue
problem. This would be a great alternative way for those who are not interested in
obtaining the individual eigenvalues, but just the sum of those as shown in Eq. (18).
Unfortunately for those, however, the eigenvalue problem shown in Eq. (17) has
eigenvalues as x2

k=x
2
0

� �
, not xk=x0ð Þ. Therefore, the trace of the square matrix

I
$ þ Q

$� �
in Eq. (17) is equal to

P3N
k¼1 x2

k=x
2
0

� �
, not to

P3N
k¼1 xk=x0ð Þ. Only if one

could set up the eigenvalue problem so that the eigenvalues are not x2
k=x

2
0

� �
, but

xk=x0ð Þ, the VDW interaction energy of the system can be obtained straightfor-
wardly according to Eq. (18). For that, the eigenvalue problem in matrix form in
Eq. (17) may be rewritten as:

I
$ þ Q

$� �1=2
�~P ¼ x

x0

� �
~P ð19Þ
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and from this, one obtains the total VDW energy of the system of N particles:

Tr I
$ þ Q

$� �1=2
¼
X3N
k¼1

xk

x0

� �
¼ VN= �hx0=2ð Þ; ð20Þ

where Tr denotes the invariant trace, the sum of eigenvalues. Finding the square

root of a matrix, I
$ þ Q

$� �1=2
, however, is not an easy task and requires expensive

linear algebra computations which would not offer any advantage over solving for

all the eigenvalues of the original matrix, I
$ þ Q

$� �
, as would have been done in the

eigenvalue method of CDM.
To meet our original purpose of finding the memory-efficient and cost-effective

way to solve CDM, let us take a detour route similar to the one taken in the
perturbation theory. In short, noticing the form of the matrix in Eq. (20), let us

expand it in the power series in terms of Q
$ n

using the usual binomial expansion as
follows [37, 67]:

I
$ þ Q

$� �1=2
¼
X1
n¼0

cnQ
$ n

: ð21Þ

Here cn are the coefficients found in the following binomial expansion

1þ yð Þ1=2 ¼
X1
n¼0

cny
n ð22Þ

c0 ¼ 1

cn ¼ cn�1
3
2n

� 1
� �

for n 6¼ 0

Then, using the properties of trace in linear algebra, the trace of the square-root
of the matrix in Eq. (20) may be represented as a sum of traces of the multiples of

the matrix (Q
$ n

) as follows:

Tr I
$ þ Q

$� �1=2	 

¼ Tr

X1
n¼0

cnQ
$ n

" #
¼
X1
n¼0

cnTr Q
$ nh i

ð23Þ

Now, the total VDW interaction energy of the system of a cluster of N atoms is,

VN ¼ �hx0

2
Tr I

$ þ Q
$� �1=2	 


¼ �hx0

2

X1
n¼0

cnTr Q
$ nh i

� �hx0

2

X1
n¼0

W ðnÞ
N ð24Þ

An Efficient Coupled Dipole Method for the Accurate Calculation … 97



Obtaining the traces of Q
$ n

is not much of a computational burden. As discussed
later in this section, each n-th order term in this power series expansion indeed
corresponds to the n-th order term in the perturbation theory. Also, according to the
exact CDM calculations done in Ref. [49], including up to 10-th order terms in this
power series expansion reproduces the exact CDM result for varying shapes and
orientations of nanomaterials within much less than 1 % error (see Table 1). Fig-
ure 2 of Ref. [49] is reproduced in Fig. 1. The fractional percent energy is defined as

Fractional % Energy of order M ¼
�hx0
2

PM
n¼0

W ðnÞ
N

VN
� 100 ¼

PM
n¼0

W ðnÞ
N

P1
n¼0

W ðnÞ
N

� 100 ð25Þ

Also, the numeric values of the fractional percent energy are listed in Table 1 up
to the interaction order M = 15. Same symbols as adopted in Fig. 1 are used in
Table 1 to indicate the corresponding configuration (orientations and types) of
clusters to the ones shown in the inset of Fig. 1.

Therefore, TCDM provides a great alternative way for those who are interested
only in obtaining the final VDW interaction energies (Vvdw), and not in obtaining
the individual eigenvalues (ωk

0s) and/or the corresponding eigenvectors. Returning
back to our original problem of a system of two clusters A and B, composed of N
and N0 identical atoms, respectively, to solve it with TCDM one starts with the self-
consistent equations for ‘all’ atoms in the system (N + N0) that can be expressed in
matrix form

Table 1 Numerical values of the fractional percent energy of order M to the total VDW
interaction energy as a function of the highest-order (M) of many-body terms included. Each
symbol indicates the cluster configuration shown in the inset of Fig. 1

M Decamer Decamer Cubes

2 48.66 93.93 99.33

3 65.96 77.22 95.29

4 81.93 92.87 101.03

5 89.64 94.37 99.41

6 94.42 97.37 100.23

7 96.94 98.44 99.87

8 98.36 99.19 100.07

9 99.12 99.56 99.96

10 99.53 99.77 100.03

11 99.75 99.87 99.98

12 99.87 99.93 100.02

13 99.93 99.96 99.99

14 99.96 99.98 100.01

15 99.98 99.99 99.99
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X
$ �~P ¼ k2~P; ð26Þ

where the eigenvalues λ2 of the square matrix

X
$ ¼ I

$ þ Q
$

M
$

M
$ 0

I
$0
þ Q

$ 0

 !
ð27Þ

are the squared eigen frequencies (i.e.,k2 ¼ x=x0ð Þ2) of the composite system

A + B. Here, Q
$
denotes a 3N × 3N symmetric, traceless matrix, made of dimen-

sionless dipole tensors connecting two atoms within cluster A and I
$
is the 3N × 3N

identity matrix, as already have been used in Eq. (19) for the system of N particles.

Q
$ 0 and I

$0 are the corresponding matrices for the N0 atoms within cluster B. M
$

is a
3N × 3N0 matrix representing the dipole interaction tensors connecting one atom in

A to another atom in B. M
$ 0 is the transpose matrix (a 3N0 × 3N matrix) of matrix M

$

representing the dipole tensor connecting one atom in B to another atom in A. The

eigenvalue problems of I
$ þ Q

$
and I

$0 þ Q
$ 0 correspond to that of each cluster A and

B (see Eq. 19), respectively. As mentioned before, in TCDM, the exact non-
retarded VDW dispersion energy from each eigenvalue problem is obtained by
taking the trace of the square matrices:
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Fig. 1 Fraction of total VDW interaction energy as a function of the highest-order (M) of many-
body terms included. Triangles (circles) correspond to the VDW interaction between two decamers
at separation r/a = 50, where a is the separation between nearest atoms in the linear chain.
Diamonds corresponds to the VDW interaction between two 27-atom cubic clusters at r/a = 10.
Atoms in each cubic cluster are arranged in a simple cubic lattice structure with lattice constant a.
The dashed lines are drawn to guide the eye. Refer to Ref. [49] for more details
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Wvdw ¼ Tr X
$1=2
	 


� Tr I
$ þ Q

$� �1=2	 

� Tr I

$0 þ Q
$ 0

� �1=2	 

: ð28Þ

This equation is essentially identical with Eq. (9), except that Wvdw is now a
dimensionless VDW energy and is equal to Vvdw/(ħω0/2) when all the atoms in the
system are identical.

The second term in the right hand side of Eq. (28) is the matrix for a system of a
cluster (A) of N particles, and has already been expanded earlier in Eq. (23).
Similarly, the third term in the right hand side of Eq. (28) may be expanded as:

Tr I
$0 þ Q

$ 0
� �1=2	 


¼
X1
n¼0

cnTr Q
$ 0n
h i

: ð29Þ

The power law expansion of the first term in the right hand side of Eq. (28) can
also be done as follows:

Tr X
$1=2
	 


¼ Tr I
$

0
0 I

$0

 !
þ Q

$
M
$

M
$ 0 Q

$ 0

 !( )1=2
2
4

3
5 ¼

X1
n¼0

cnTr
Q
$

M
$

M
$ 0 Q

$ 0

 !n" #

ð30Þ

Consequently, the dimensionless total interaction energy in Eq. (28) can now be
written as a sum of all {W(n)} contributions, which again is equivalent to Eq. (9) in
units of ħω0/2:

Wvdw ¼
X1
n¼0

W ðnÞ ð31Þ

where, W(n) is the n-th order contribution to the dispersion interaction:

W ðnÞ ¼ cn Tr Q
$

M
$

M
$ 0 Q

$ 0

 !n" #
� Tr Q

$ nh i
� Tr Q

$ 0
� �nh i( )

ð32Þ

Incidentally, since the eigenvalues of X
$
and I

$ þ Q
$
(or I

$0 þ Q
$ 0) are necessarily of

the form k2i ¼ 1þ xi and k20i ¼ 1þ x0i, respectively, these traces are readily
expressed in terms of xi and x0i. Therefore we obtain yet another form of the general
n-th order contribution to the dispersion interaction:

W ðnÞ ¼ cn
X3ðNþN 0Þ

i¼1

xið Þn�
X3N
j¼1
j2A

x0j
� �n �X3N 0

k¼1
k2B

x0kð Þn
2
664

3
775 ð33Þ
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This expansion is the equivalent power-series (or perturbation) expansion in
terms of ρα0, as demonstrated in Ref. [49] using the eigenvalue method of the exact

CDM, to which all M
$

and Q
$
matrices are proportional.

In Eq. (32), since the power series expansion is in matrix form, it is easier to
identify where each n-th order many-body term originates from. For example,
W(0) = 0 due to the cancellation of atomic zero-point energies; W(1) = 0 due to the
tracelessness of Q matrices for a neutral non-polar system; W(2) = 2c2 Tr (MM0) due
to the pairwise interaction terms with one atom in A and another in B; W(3) = 3c3 Tr
(QMM0 + Q0M0M) due to the triplets with one atom in A and two atoms in B or vice
versa; W(4) = 4c4 Tr(QQMM0 + Q0Q0MM0 + QMQ0M0 + M0MM0M/2), etc. A quick
review of linear algebra reveals that the matrix in a trace of a product can be
switched allowing tr(AB) = tr(BA). Equivalently, the trace is invariant under cyclic
permutations, i.e., tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC). This gives the
factors of 2 and 3 in the above expressions of W(2) and W(3), respectively. In Fig. 2,
schematic diagrams are drawn to aid the intuitive understanding of the n-th order
many-body interaction contributions.
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Fig. 2 Schematic diagrams
of the n-th order many-body
interaction contributions
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To gain a solid understanding of how the TCDM works and what makes it so
efficient, we will lay out four examples of calculating the VDW interaction energies
for a couple of simple systems using both ways: (1) The eigenvalue method of exact
CDM which adds all the eigenvalues obtained from diagonalizing the square matrix
in the eigenvalue problem, and (2) the alternative way of TCDM which calculates
the trace of the square-root of the matrix by expanding it in binomial power series.
We will show that these two methods give same results as they should.

2.2 Example 1: Calculation of the VDW Interaction Energy
of a Pair of Identical Non-polar Atoms Using TCDM

Let us consider a pair of identical non-polar atoms at a distance of r (Fig. 3). This
problem is the simplest case and the eigenvalue problem becomes:

1 0 0 c 0 0
0 1 0 0 c 0
0 0 1 0 0 �2c
c 0 0 1 0 0
0 c 0 0 1 0
0 0 �2c 0 0 1

0
BBBBBB@

1
CCCCCCA

p1x
p1y
p1z
p2x
p2y
p2z

0
BBBBBB@

1
CCCCCCA

¼ x
x0

� �2

p1x
p1y
p1z
p2x
p2y
p2z

0
BBBBBB@

1
CCCCCCA

ð34Þ

where, γ = α0/r
3.

To remain closely related to the general formulations discussed previously for
the VDW interactions between two clusters of atoms, purely for the purpose of
demonstration, let us assume that these atoms belong to two different clusters A and

B. Then, comparing Eq. (34) to Eqs. (26) and (27), one obtains Q
$ ¼ Q

$ 0 ¼ 0 and

M
$ ¼ M

$ 0 ¼
c 0 0
0 c 0
0 0 �2c

0
@

1
A: ð35Þ

From Eq. (32), then, one obtains the n-th order contribution to the dispersion
interaction:

W ðnÞ ¼ cnTr 0 M
$

M
$ 0 0

 !n( )
: ð36Þ

r

z

Fig. 3 A pair of identical non-polar atoms at separation r
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Note that, alternatively, one could have considered this problem as a cluster of
two atoms, instead of two clusters composed of one atom each. In that case, the
eigenvalue problem of Eq. (34) corresponds to Eq. (19) with

Q
$ ¼ 0 M

$

M
$ 0 0

 !
ð37Þ

and thus regaining Eq. (36) from Eq. (23). Both perspectives of the same physical
system are of course equivalent.

As stated earlier, both W(0) and W(1) are zero due to the cancellation of self-
energies of each atom and the tracelessness of Q matrix, respectively. When n = 2,
c2 = −1/8, and

Tr 0 M
$

M
$ 0 0

 !
0 M

$

M
$ 0 0

 !( )
¼ Tr M

$
M
$ 0 0

0 M
$ 0M

$

 !
¼ Tr M

$
M
$ 0 þM

$ 0M
$h i

¼ 2 Tr M
$
M
$h i

ð38Þ

The last step is taken using M = M0 since the two atoms are identical. Also, from
Eq. (35), Tr(MM) = 6γ2 = 6(α0/r

3)2. Consequently, one obtains the first surviving
term (n = 2) in the many-body power series expansion,

V ð2Þ
vdw ¼ 1

2
�hx0

� �
W ð2Þ ¼ 1

2
�hx0

� �
� 1
8

� �
ð2Þ 6

a20
r6

� �
¼ � 3

4
�hx0

a20
r6

ð39Þ

Including only till the second-order term, we now recover the London’s formula,
Eq. (7), for two identical non-polar atoms at separation r. Let us further explore the
higher-order terms. Because all the diagonal elements are zero in the matrix in
Eq. (36), the trace of the n-th power of the matrix is zero for all odd n. Therefore,
the next non-zero term is when n = 4, c4 = −5/128 which gives

W ð4Þ ¼ c4Tr 0 M
$

M
$ 0 0

 !4
8<
:

9=
; ¼ c4Tr M

$
M
$ 0M

$
M
$ 0 0

0 M
$ 0M

$
M
$ 0M

$

" #

¼ 2c4Tr M
$
M
$
M
$
M
$h i

¼ 36c4
a0
r3

� �4
ð40Þ

Or, the 4-th order VDW interaction term is obtained as

V ð4Þ
vdw ¼ 1

2
�hx0

� �
W ð4Þ ¼ � 45

64
�hx0

a40
r12

: ð41Þ

Here, note that the power expansion coefficient cn is always a negative number for
even n due to the (−1)n−1 factor in it. On the other hand, Tr[Mn] = γn [1 + 1+(−2)n] is
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always positive for even n. Therefore, one can conclude that all the non-zero con-
tribution of W(n) is negative. Therefore, including higher-order terms in the VDW
interaction between two atoms increases the attraction. Note that this next higher
order term of n = 4 in the VDW interaction of two atoms also shows up as one of the
4-body interaction terms in the VDW interaction between two clusters of many
atoms (see W(4) in Fig. 2).

It should be noted that the n-th order contribution of Eqs. (32) and (33) in the
“many-body” power series expansion of Eq. (31) is not exactly the same as the “n-
body” interaction. This example of VDW interaction between “two” atoms
(therefore, two-body) demonstrates that the power expansion always is an infinite
order expansion [68]. The reasoning behind the conventional use of London’s
formula for the VDW interaction energy for the two-atom system is based on the
usual assumption of perturbation theory that the contributions of the higher-than-
the-second-order terms will be smaller than the first nonvanishing second-order
term. This assumption is valid for certain systems such as the one considered in this
example, however is not always the case in general as demonstrated in our previous
work of VDW interaction between two odd-shaped clusters [49, 50].

2.3 Example 2: Calculation of the VDW Interaction Energy
of a Pair of Identical Non-polar Atoms Using
the Eigenvalue Method of Exact CDM

The eigenvalues of Eq. (34) in the general form of

X
$ �~P ¼ u~P ð42Þ

can be numerically found from solving the characteristic equation of the eigenvalue
problem:

det X
$ � uI

$h i
¼ 0 ð43Þ

After some lines of derivation, one obtains:

ð1� uÞ6 � 6c4 1� uð Þ4þ9c4 1� uð Þ2�4c6 ¼ 0 ð44Þ

which gives six solutions,

x�
z ¼ x0 1� 2cð Þ1=2; x�

x ¼ x�
y ¼ x0 1� cð Þ1=2 ð45Þ

Due to symmetry, the x- and y-direction normal mode frequencies are degenerate.
The corresponding normal modes (eigenvectors) are listed in Table 2. Here, the dot
and cross symbols indicate out-of-plane and into-the-plane direction, respectively.
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Now, the VDW interaction between two atoms can be obtained following
Eq. (18) after subtracting the zero-point self-energy of two atoms when they are at
infinite separation:

Vvdw ¼ �hx0

2
1þ 2cð Þ1=2 þ 1� 2cð Þ1=2 þ 2 1þ cð Þ1=2þ 2 1� cð Þ1=2�3� 3

h i
ð46Þ

Here, the 3-dimensional harmonic oscillator of each atom has zero-point self-
energy of 3ħω0/2. For γ ≡ α0/r

3 < 1, one can expand the square-root terms as done
in Eq. (22) to obtain,

Vvdw ¼ �hx0

2
� 1
8

� �
12c2 þ � � �� �	 


¼ � 3
4
�hx0

a20
r6

� 45
64

�hx0
a40
r12

� � � � ð47Þ

The first non-zero term gives again the London’s VDW representation. Each of
the higher order terms with γn with n > 2 equals to the n-th order contribution to the
dispersion interaction W(n). This power expansion of VDW interaction indeed
corresponds to Eq. (33) for the simplest case of a two-atom system and demon-
strates that the xi shown in Eq. (33) is proportional to γ in the Drude atomic model.

2.4 Example 3: Calculation of VDW Interaction Energy
of a Linear Chain of Four Identical Atoms Using TCDM

The eigenvalue problem is formulated following Eqs. (26) and (27):

X
$ �~P ¼ k2~P

Table 2 Eigenvalues and corresponding eigenmodes in a system of two atoms at separation r

xþ
z ¼ x0 1þ 2cð Þ1=2

xþ
x ¼ x0 1þ cð Þ1=2

xþ
y ¼ x0 1þ cð Þ1=2

x�
x ¼ x0 1� cð Þ1=2

x�
y ¼ x0 1� cð Þ1=2

x�
z ¼ x0 1� 2cð Þ1=2
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with

X
$ ¼ I

$ þ Q
$

M
$

M
$ 0

I
$ þ Q

$ 0

 !

Here, Q
$ ¼ 0 M

$
12

M
$ 0
12 0

 !
, Q

$ 0
¼ 0 M

$
34

M
$ 034 0

 !
, M

$ ¼ M
$
13 M

$
14

M
$
23 M

$
24

 !
, and

M
$ 0

¼ M
$ 0
13 M

$ 0
23

M
$ 0
14 M

$ 0
24

 !

with M
$
ij ¼ M

$ 0
ij ¼

cij 0 0
0 cij 0
0 0 �2cij

0
@

1
A and cij � a0

r3ij
¼ a0

z3ij
.

The distance between two atoms i and j is noted as rij, and is equal to zij when the
linear chain lies along z-axis as shown in Fig. 4. Now, the n-th order contribution to
the dispersion interaction in the chain system becomes:

W ðnÞ ¼ cnTr
Q
$

M
$

M
$ 0 Q

$ 0

 !n( )
ð48Þ

Since both Q
$
and Q

$ 0 are traceless 6 × 6 matrices,

Tr Q
$ n

¼ 2 ð2þ 2nÞcn12 for even n ðn� 2Þ
Tr Q

$ n
¼ 0 for odd n ðn� 1Þ

And similarly,

Tr Q
$ 0n
n o

¼ 2 ð2þ 2nÞcn34 for even n ðn� 2Þ
Tr Q

$ 0n
n o

¼ 0 for odd n ðn� 1Þ

On the other hand, since M
$
ij is a 3 × 3 diagonal matrix,

Tr M
$ n

ij

n o
¼ ð2þ �2ð ÞnÞ cnij for all n ;

z1 2 3 4

Fig. 4 A linear chain of four identical atoms

106 H.-Y. Kim



which can be delineated as:

Tr M
$
ij

n o
¼ 0 for n ¼ 1

Tr M
$ n

ij

n o
[ 0 for even n

Tr M
$ n

ij

n o
\ 0 for odd n ð[ 1Þ

Again, as stated earlier, both W(0) and W(1) are zero due to the cancellation of
self-energies of each atom and the tracelessness of the Q and Q0 matrices,
respectively.

When n = 2, c2 = −1/8, and

Tr Q
$

M
$

M
$ 0 Q

$ 0

 !2
2
4

3
5 ¼ Tr Q

$
Q
$ þM

$
M
$ 0 Q

$
M
$ þM

$
Q
$ 0

M
$ 0Q

$ þ Q
$ 0M

$ 0 M
$ 0M

$ þ Q
$ 0Q

$ 0

 !

¼ Tr Q
$
Q
$ þM

$
M
$ 0 þM

$ 0M
$ þ Q

$ 0Q
$ 0

h i
ð49Þ

Here, Tr Q
$ 2

¼ 12c212, Tr Q
$ 02 ¼ 12c234, and

Tr M
$
M
$ 0

n o
¼ Tr M

$ 0
M
$

� �
¼ 6 c213 þ c223 þ c214 þ c224
� �

.

Therefore, one obtains the VDW energy of a chain of four identical atoms at
arbitrary separations:

W ð2Þ
chain ¼ c2Tr

Q
$

M
$

M
$ 0 Q

$ 0

 !2
2
4

3
5 ¼ � 3

2
c212 þ c234 þ c213 þ c223 þ c214 þ c224
� � ð50Þ

Note that this second-order contribution is a simple sum of London’s pair
interaction terms over all possible distinct pairs of atoms in the system. This VDW
result corresponds to the VDW interaction calculated under the 2-body pair-sum
approximation described in the introduction of the present chapter. Six distinct pairs
listed in Eq. (50) are schematically drawn in the Fig. 5.

In the next higher-order term with n = 3, c3 = 1/16 and

Tr Q
$

M
$

M
$ 0 Q

$ 0

 !3
2
4

3
5 ¼ Tr Q

$ 3
þ Q

$ 03 þM
$
M
$ 0Q

$ þ Q
$
M
$
M
$ 0 þM

$ 0Q
$
M
$ þ Q

$ 0M
$ 0M

$ þM
$ 0M

$
Q
$ 0 þM

$
Q
$ 0M

$ 0
	 


:

ð51Þ

Here, Tr Q
$ 3

¼ Tr Q
$ 03 ¼ 0. Also, Tr M

$
M
$ 0Q

$n o
¼ Tr M

$ 0Q
$
M
$n o

¼ Tr Q
$
M
$
M
$ 0

n o
and Tr Q

$ 0M
$ 0M

$n o
¼ Tr M

$ 0M
$
Q
$ 0

n o
¼ Tr M

$
Q
$ 0M

$ 0
n o

due to the cyclic invariance of

the trace of the multiples of matrices [66]. After some calculations, one obtains
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Tr M
$
M
$ 0Q

$n o
¼ �12 c13c32c21 þ c14c42c21ð Þ

and

Tr Q
$ 0M

$ 0M
$n o

¼ �12 c34c41c13 þ c34c42c23ð Þ:

Therefore, the third-order contribution becomes

W ð3Þ
chain ¼ c3Tr

Q
$

M
$

M
$ 0 Q

$ 0

 !3
2
4

3
5

¼ � 9
4

c13c32c21 þ c14c42c21 þ c34c41c13 þ c34c42c23ð Þ ð52Þ

Note here that this third-order contribution of the VDW interaction of this
system corresponds to the sum of Axilrod-Teller-Muto (ATM) 3-body VDW
interaction terms [18–20] for all possible distinct set of three atoms. The ATM 3-
body term of one set of trio (A, B, C) then gives:

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

Fig. 5 Schematic diagrams
of the 2nd-order many-body
interaction contributions
listed in Eq. (50), W(2)
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DVATM
vdw ¼ 9

8
a30

1þ 3 cos hA cos hB cos hCð Þ
r3AB r

3
BC r

3
CA

1
2
�hx0

� �

¼ � 9
4

a30
r3AB r

3
BC r

3
CA

1
2
�hx0

� � ð53Þ

Here, the angles θA, θB and θC are the inner angles in the triangle formed by
three atoms A, B, and C, as shown in Fig. 6. In the linear configuration of the
present example, since all the atoms lie in a line, two of these angles will be zero
and one angle will be 180°, for example θA = θB = 0 and θC = 180°, making the
term (1 + 3 cosθA cosθB cosθC) = −2 for any combination of three atoms A, B and
C. That allows us to take the last step in the above equation.

In the system of a linear chain of four atoms, there are four sets of trio made of
distinct three atoms ({1, 2, 3}, {1, 2, 4}, {3, 4, 1}, and {3, 4, 2}) as listed in

Eq. (52) of W ð3Þ
chain, which are schematically drawn in Fig. 7.

When n = 4, c4 = −5/128, and

Tr Q
$

M
$

M
$ 0 Q

$ 0

 !4
2
4

3
5 ¼ Tr

Q
$ 4

þ Q
$ 04 þ Q

$
Q
$
M
$
M
$ 0 þ Q

$
M
$
M
$ 0Q

$ þM
$
M
$ 0Q

$
Q
$ þM

$ 0Q
$
Q
$
M
$

þQ
$ 0Q

$ 0M
$ 0M

$ þ Q
$ 0M

$ 0M
$
Q
$ 0 þM

$ 0M
$
Q
$ 0Q

$ 0 þM
$
Q
$ 0Q

$ 0M
$ 0

þQ
$
M
$
Q
$ 0M

$ 0 þM
$
Q
$ 0M

$ 0Q
$ þ Q

$ 0M
$ 0Q

$
M
$ þM

$ 0Q
$
M
$
Q
$ 0

þM
$
M
$ 0M

$
M
$ 0 þM

$ 0M
$
M
$ 0M

$

2
6666664

3
7777775

Here, Tr Q
$ 4

¼ 36c412, Tr Q
$ 04 ¼ 36c434, and Tr M

$
ij

� �4
¼ 18c4ij. Also,

Tr Q
$
Q
$
M
$
M
$ 0

h i
¼ Tr Q

$
M
$
M
$ 0Q

$h i
¼ Tr M

$
M
$ 0Q

$
Q
$h i

¼ Tr M
$ 0Q

$
Q
$
M
$h i

;

Tr Q
$ 0Q

$ 0M
$ 0M

$h i
¼ Tr Q

$ 0M
$ 0M

$
Q
$ 0

h i
¼ Tr M

$ 0M
$
Q
$ 0Q

$ 0
h i

¼ Tr M
$
Q
$ 0Q

$ 0M
$ 0

h i
,

Tr Q
$
M
$
Q
$ 0M

$ 0
h i

¼ Tr M
$
Q
$ 0M

$ 0Q
$h i

¼ Tr Q
$ 0M

$ 0Q
$
M
$h i

¼ Tr M
$ 0Q

$
M
$
Q
$ 0

h i
, and

Tr M
$
M
$ 0M

$
M
$ 0

h i
¼ Tr M

$ 0M
$
M
$ 0M

$h i
due to cyclic invariance of the trace of multiples

A

B C

A 

B C 

rAB rCA 

rBC 

Fig. 6 The triangle in the Axilrod-Teller-Muto triple-dipole interaction
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of matrices. These four distinct traces are obtained after some calculations as
follows.

Tr Q
$
Q
$
M
$
M
$ 0	 


¼ Tr M12M
0
21M13M

0
31 þM12M

0
21M14M

0
41 þM12M

0
21M23M

0
32 þM12M

0
21M24M

0
42


 �
¼ 18 c221c

2
13 þ c221c

2
14 þ c212c

2
23 þ c212c

2
24

� �

Tr Q
$ 0
Q
$ 0
M
$ 0
M
$

	 

¼ Tr M34M

0
43M

0
13M31 þM0

34M43M
0
14M41 þM34M

0
43M

0
23M32 þM0

34M43M
0
24M42


 �
¼ 18 c243c

2
31 þ c234c

2
41 þ c243c

2
32 þ c234c

2
42

� �

Tr Q
$
M
$
Q
$ 0
M
$ 0	 


¼ 2 Tr M12M23M34M
0
41 þM12M24M

0
43M

0
31


 �
¼ 36 c12c23c34c41 þ c12c24c43c31ð Þ

Tr M
$
M
$ 0
M
$
M
$ 0	 


¼ Tr
M4

13 þM4
14 þM4

23 þM4
24

þ2M2
31M

2
14 þ 2M2

13M
2
32 þ 2M2

14M
2
42 þ 2M2

32M
2
24 þ 4M13M32M24M41

" #

¼ 18 c413 þ c414 þ c423 þ c424 þ 2c231c
2
14 þ 2c213c

2
32 þ 2c214c

2
42 þ 2c232c

2
24 þ 4c13c32c24c41

� �

Thereby, the fourth-order contribution of the many-body VDW interaction
becomes:

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

Fig. 7 Schematic diagrams
of the 3rd-order many-body
interaction contributions
listed in Eq. (52), W(3)
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W ð4Þ
chain ¼ � 45

32

c412 þ c413 þ c414 þ c423 þ c424 þ c434
� �
þ 2 c221c

2
13 þ c221c

2
14 þ c212c

2
23 þ c212c

2
24þc243c

2
31 þ c234c

2
41

�
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2
32 þ c234c

2
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2
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2
32 þ c214c

2
42 þ c232c

2
24

�
þ 4 c12c23c34c41 þ c12c24c43c31 þ c13c32c24c41f g

2
6664

3
7775
ð54Þ

Note here that this fourth-order contribution of the VDW interaction agrees with
its general from of Eq. (1) in Ref. [36] which is derived from the fourth-order
perturbation theory. Each term in the fourth-order many-body interaction contri-
butions corresponds to distinct set of two atoms, three-atoms, and four atoms in this
four-atom system. The combinations of atoms involved in Eq. (54) are schemati-
cally drawn in Fig. 8 in the order each term appears in the equation.

2.5 Example 4: Calculation of the VDW Interaction Energy
of Two Dimers Lying Along the Connecting Line Using
TCDM

To demonstrate the application of TCDM for the calculation of VDW interaction
energy between two or more clusters of atoms, we will look at the system of four
identical atoms located along a line from a different perspective. Let us consider this
system of four atoms as two dimers lying along the connecting line (Fig. 9). A
practical example of this system would be the linear alignment of hydrogen mol-
ecules (H2) studied in Ref. [20]. Now, the VDW interaction energy between the two
dimers can be obtained by subtracting the self-energy of each dimer from the total
energy of the system. Recall that the self-energy of each dimer has already been
obtained in Examples 1 and 2.

The eigenvalue problem of this system will be of the same form as derived in
Example 3 for the system of a liner chain of four atoms. To estimate the VDW
interaction between two dimer, however, the Eq. (48) should be modified, since
now the self-energy of each dimer should be subtracted from the total energy
following the general expression given in Eq. (32):

Thereby, the first nonvanishing term is the second-order many-body
contribution:

W ð2Þ
two
dim ers

¼ c2Tr Q
$ M

$

M
$0

Q
$0

� �2� �
� c2Tr Q

$ 2
� �

� c2Tr Q
$ 02
n o

¼ � 3
2

c213 þ c223 þ c214 þ c224
� � ð55Þ

Note that this second-order contribution is a simple sum of London’s pair
interactions over all possible pairs of atoms, with one atom from the first dimer (A)
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Fig. 8 Schematic diagrams
of the 4th-order many-body
interaction contributions
listed in Eq. (54), W(4)
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and another from the second dimer (B), in the system. This again corresponds to the
VDW interaction from calculations based on pair-sum approximation. Note that the
two-body interaction terms involving two atoms that belong to the same cluster (c212
and c234 terms, in this example) are subtracted as self-energies of each cluster (or
dimer, in this example).

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

z1 2 3 4

Fig. 8 continued

z1 2 3 4

Fig. 9 Two identical dimers lying along the z-axis
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It should be noted here that the third-order contribution of the VDW interaction
between two dimers remains the same as that in the chain of four atoms which was

considered in Example 3. This is because of the fact that Tr Q
$ 3

¼ Tr Q
$ 03 ¼ 0.

Therefore, W ð3Þ
two
dim ers

¼ W ð3Þ
chain. In fact, Tr Q

$ n
¼ Tr Q

$ 0n ¼ 0 for all odd n due to the

tracelessness of Q and Q0 matrices. Therefore, the n-th order contribution of the
VDW between two dimers or of a chain of four atoms remains the same,

W ðnÞ
two
dim ers

¼ W ðnÞ
chain, for odd n.

3 Discussion and Concluding Remarks

The aim of this chapter is to present an overview of the CDM method which is
intrinsically atomistic method which includes all the many-body interaction terms
self-consistently. This rare combination of characteristics makes CDM an ideal
method to calculate the VDW interaction energy involved in nanoscale systems.
However, to obtain the VDW interaction energy using the eigenvalue method of
exact CDM, one first needs to obtain all the eigenvalues in the eigenvalue problem
of matrix size (3N × 3N) for a system composed of N particles. Usually the
eigenvalue problems are solved by direct diagonalization or iterative methods. As a
result, there was a concern for solving the eigenvalue problems of exact CDM for
systems composed of many atoms and molecules such as those found in computer
simulation studies. The computational burden is from both in memory size and in
run time. As N increases, the memory size and the run time increases as N2 and N3,
respectively. The problem with memory size can be resolved by parallelization. The
burden from the run time still remains. Thereby, a memory-efficient and cost-
effective computational method, TCDM, is presented.

TCDM, an alternative way to execute CDM, is to obtain VDW interaction
energy by calculating the trace of the square-root of the 3N × 3N square matrix,
rather than its eigenvalules. It is demonstrated in this chapter that the power series
expansion in TCDM is indeed equivalent to that of the perturbation theory.
Therefore, one will have to terminate the series and determine how many higher-
order terms to include, unlike the eigenvalue method of exact CDM discussed
above which intrinsically includes all the many-body terms. It is however shown, in
our previous studies [49], that including terms less than 10 (n < 10) gives an
excellent convergence (much less than 1 %) to the exact value of VDW Interaction
energy for various configurations as listed also in Fig. 1 and Table 1 in this chapter.

A question might be raised. If TCDM is based on the power series expansion
that is equivalent to that of the traditional perturbation theory, why do we use
TCDM? From the perturbation theory, in principle, one can derive all the higher-
order many-body interaction terms. However, most researchers have studied and/or
included the contribution of three-body interactions in addition to the pair-wise sum
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approximation as the only many-body correction term. There has been no quanti-
tative estimation of many-body interaction terms beyond the three-body term done
using the expression derived from the perturbation theory, to the best knowledge of
the author. I believe that this is because the analytic formula of the n-th order many-
body term that can be derived from the perturbation theory becomes impractically
cumbersome as the order n increases beyond three. Only the two-body (London
formula) and three-body (ATM formula) terms have been adopted by researchers.
On the other hand, in TCDM, one just needs to set up the initial 3N × 3N matrix of
the eigenvalue problem of the system. The matrix multiplications are executed in
the computer code which would be much more cost-effective than diagonalization.
One does not need to explicitly derive the analytic form of each n-th order term.
This feature of TCDM will make it practical for any interested future users to
include increasingly many higher-order n-body terms as desired.

It should be noted that, although, in this chapter, two simple systems (composed
of two and four identical atoms, respectively, aligned in a line) are considered as
examples to explicitly demonstrate the actual execution of CDM and TCDM, the
use of both methods can be extended for accurate estimates of the VDW energy in
any nanoscale systems composed of dielectric materials. The formulation of exact
CDM and efficient TCDM can readily be generalized for systems composed of non-
identical atoms.

Finally, I would like to conclude this chapter with the following list of a few
unresolved issues that can further improve our understanding of the VDW
interaction:

(1) Retardation should be included as a function of inter-atomic and/or inter-
cluster separation. The CDM presented in this chapter calculates the non-
retarded VDW interaction. As the separation increases, larger than about
10 nm, the retardation effect gradually increases due to the finite speed of light.
Even though this retardation effect is receiving increasing attention due to
rapid advances in the nanotechnology in both fundamental/applied sciences
and engineering, calculations have been limited to either non-retarded VDW
or fully-retarded VDW interactions. One may refer chapter 6 of ref. [2], for
example, for a detailed discussion of both relativistic and semi-classical
methods to calculate the retarded dispersion forces at intermediate separations,
but the extension of these methods to many-body systems is not a trivial
problem.

(2) The higher-order multipole dispersion interaction terms beyond the dipole
approximation should be investigated. Just like the higher-order many-body
interaction terms, the higher-order multipole dispersion interaction terms have
been commonly assumed as negligible compared to the dipole interaction
terms. As the common assumption on the higher-order many-body interaction
terms being small is shown incorrect for some odd-shaped nanoparticle sys-
tems [49], it is critical to test this assumption of the small higher-order mul-
tipole interaction terms in nanoscale systems.
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(3) The validity of using the Clausius-Mossotti (CM) relation (see Eq. 8) in
nanoscale materials should be investigated as mentioned in Sect. 2. The
“effective” atomic polarizability is required as an input in calculating the
VDW interaction. There has been a considerable effort made in developing the
effective non-local atomic polarizability tensor using a self-consistent quantum
mechanical calculation using DFT [61], which includes both bonded and non-
bonded many-body interaction terms. It would be interesting to see the
extension of such calculation for the larger nanoscale systems of varying shape
and size to test the validity of the CM relation.

Achievement of these important and challenging tasks will allow us to accurately
predict the VDW forces in nanoscale systems at varying separations as well as in
those of varying shape, size and composition.
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