
Chapter 16

Numerical Solution of BVP on GPU
with Application to Path Planning

Lumı́r Janošek, Martin Němec, and Radoslav Fasuga

Abstract The problem of path planning in a virtual environment is a widely

researched area, which finds application in fields such as robotics, simulations,

and computer games. This article focuses on a comparison of numerical methods

for solving partial differential equations with BVP on the GPU with NVIDIA

CUDA, used in the path planning of virtual characters using the potential fields.

The most commonly used methods for computing the potential fields on the GPU

are compared in this article in terms of time consumption.

Keywords Path-planning • Agent • Iteration methods • Potential fields

16.1 Introduction

The original purpose of a graphic processing unit (GPU) was primarily for image

data processing. Programming of graphical chips was not a simple matter. It was

necessary to use an application programming interface (API) to access the graphic

processor such as Direct3D® or OpenGL®. The release of NVIDIA CUDA in 2007

changed the approach to the programming of graphic processors [1].

This article focuses on a comparison of the implementation of iterative methods

for solving partial differential equations on a GPU in the agent path-planning

domain. This article is not intended to present new approaches, but only to show

the differences in iterative methods implemented on the GPU, which are used in

potential field-based path planning. In this article the most widely used methods for

the generation of potential fields used for agent navigation are compared in terms of

time consumption.

The problem of path planning is widely applied in areas such as robotics and

computer games. Path finding can generally be understood as finding the optimal

path from an arbitrary position in a virtual world to a goal. In practical applications,

there is often the requirement that the methods must be able to find paths in real

time. Currently, the A* algorithm is still widely used for path planning [2], falling

among graph-oriented algorithms. An alternative to graph-oriented algorithms are

L. Janošek (*) • M. Němec • R. Fasuga

Department of Computer Science, VŠB-Technical University, Ostrava, Czech Republic

e-mail: lumir.janosek.st@vsb.cz; martin.nemec@vsb.cz; radoslav.fasuga@vsb.cz

© Springer Science+Business Media Singapore 2015

Y. Cai, S. See (eds.), GPU Computing and Applications,
DOI 10.1007/978-981-287-134-3_16

249

mailto:lumir.janosek.st@vsb.cz
mailto:martin.nemec@vsb.cz
mailto:radoslav.fasuga@vsb.cz


methods for path planning using the potential fields. These methods are tradition-

ally used in robotics. The application of potential field-based path planning can also

be found in computer games [3]. Application of the BVP path planning may not be

limited just to 2D. In [4] a method for the new application of BVP path planning on

the surface of a 3D object is presented.

The idea of BVP path planning is using the interplay between repulsion from

obstacles and attraction to a target position to create the expected behavior.

Potential fields are obtained from the class of partial differential equations (PDE)

called the boundary value problem (BVP) [5]. BVP-based path planning can create

realistic-looking complex humanlike behavior similar during the agent’s movement

toward to the goal. Implementation of the numerical solution of the BVP on the

GPU then enables the application of these methods in multi-agent real-time

applications [6].

This chapter is structured as follows: Sect. 16.2 summarizes the problems of

BVP in the path-planning domain, Sect. 16.3 describes the iterative methods used

for solving the partial differential equations, Sect. 16.4 presents the implementation

of the listed methods on the GPU, Sect. 16.5 summarizes the achieved results

during the implementation, and the final section presents our conclusion and

future work.

16.2 Harmonic Potential Field

One of the most widely used methods for generating a potential field for agent

navigation in a virtual environment is the numerical solution of a partial differential

equation based on the boundary value problem (BVP). One of the first steps in this

area was undertaken by Connolly and Grupen [7]. In their work they presented a

method for the generation of potential fields, which do not have local minima. Such

a local minimum may be the reason why the agent can end up trapped in local

minima. In their work, Connolly and Grupen proposed a method for generating a

potential field through a solution to the Laplace equation:

∇2u ¼ 0, g x; yð Þ ¼ 1,obstacle
0,goal , x; yð Þ 2 ∂Ω

n
ð16:1Þ

called harmonic function. The property of the Laplace equation is that it does not

present local minima. This property is based on the so-called maximum principle,

which the Laplace equation satisfies [8].

Equation (16.1) is solved with preset values on the boundaries. This type of

boundary condition is called the Dirichlet boundary condition in the terminology of

the BVP given by g(x,y). In the case of obstacle space, the potential values at the

obstacles are preset to a higher value, while in the goal area the values are preset to

zero. The resulting potential field is used to find the agent’s path to the goal by

gradient descent. Higher values of the obstacles repel the agent to prevent collision.

250 L. Janošek et al.



On the other hand, zero values of the goal create an attraction force. Because there

is only one minimum defined in the goal area, there exists exactly one path from any

point on the map to the goal [9].

16.3 Iterative Methods

In general, there exist two methods for solving the boundary value problem,

classified as direct methods and iterative methods. Direct methods lead to an

exact solution to the problem with the use of a finite sequence of operations. In

contrast to direct methods are iterative methods, in which the solution is obtained

by a number of iterations [10]. A typical procedure is to determine the initial

solution, on the basis of which the new values are calculated. This procedure is

repeated until the convergence reaches the desired solution. This is usually deter-

mined by some criterion of convergence.

The iterative solution of elliptic equations most commonly uses the following

methods: Jacobi, Gauss-Seidel, or Successive Overrelaxation (SOR).

In the Jacobi method, the dependent variable at each grid point is solved using

the initial values of the neighboring points or previously computed values [10]:

u
kþ1ð Þ
i, j ¼ 1

4
u

kð Þ
i�1, j þ u

kð Þ
iþ1, j þ u

kð Þ
i, j�1 þ u

kð Þ
i, jþ1

h i

where k denotes the values computed in the previous iteration and i, j denotes the
grid point.

The Gauss-Seidel method is a modification of the Jacobi method. To compute

the value of a dependent variable in the current iteration, the values from the

previous and current iteration are used. This will certainly increase the convergence

rate dramatically over the Jacobi method [10]. The iteration formula for the Gauss-

Seidel method has the following form:

u
kþ1ð Þ
i, j ¼ 1

4
u

kþ1ð Þ
i�1, j þ u

kð Þ
iþ1, j þ u

kþ1ð Þ
i, j�1 þ u

kð Þ
i, jþ1

h i

where k denotes the values computed in the previous iteration, k +1 denotes the

values computed in the current iteration, and i, j denotes the grid point.

Better convergence can be achieved with the Successive Overrelaxation (SOR)

method. The main idea behind the SOR algorithm is to compute a better approx-

imation to the true solution by forming a linear combination of the current updated

solution k +1 and solution k from the previous iteration [11]. The iteration formula

for SOR method is defined as:

16 Numerical Solution of BVP on GPU with Application to Path Planning 251



u
kþ1ð Þ
i, j ¼ 1� ωð Þu kð Þ

i, j þ
ω

4
u

kþ1ð Þ
i�1, j þ u

kð Þ
iþ1, j þ u

kþ1ð Þ
i, j�1 þ u

kð Þ
i, jþ1

h i
ð16:2Þ

where ω denotes the relaxation parameter and i, j denotes the grid point. The

optimal value of ω should be in the range 1<ω< 2. If 0<ω< 1, this is so-called

under-relaxation [12]. In the case of ω¼ 1, the SOR algorithm is reduced to Gauss-

Seidel.

16.4 Implementation

With access to today’s NVIDIA CUDA-enabled GPU, it is possible to significantly

accelerate the methods of numerical solution of elliptic equations using parallel

implementation. With the parallel performance of the GPU, which is provided by

the CUDA interface, it is possible to solve many complex computational problems

with more efficiency than on the CPU. GPU is suitable for solving problems which

require the parallel processing of large amounts of data.

Not all iterative methods for solving elliptic equations are suitable for imple-

mentation on the GPU. For parallel implementation and performance comparison

of the numerical solution of elliptic equations on the GPU, the Jacobi, Jacobi

Red-Black, and SOR Red-Black methods were chosen. The sequential implemen-

tation of the Gauss-Seidel uses two values from the current iteration and two values

from the previous iteration to calculate the current cell. In the implementation of

this method on the GPU, it is necessary to have some synchronization, which can

lead to performance degradation [13]. Gauss-Seidel is an effective method for

implementation on the CPU. Due to the need for synchronization, the Gauss-

Seidel method is not best suited for parallel implementation on the GPU, and

therefore was not taken into account for the implementation of iterative methods

on the GPU.

As mentioned in the introduction, the methods presented in this article are

focused on agent navigation in a virtual world. A virtual environment contains a

number of obstacles, which the agent tries to avoid on the way to the goal. Before

the start of the potential field calculation, it is necessary to discretize the virtual

environment into a fixed homogeneous grid representation. Each grid cell (i,j) is
associated with a small region of the real environment and maintains the potential

value ui,j, which holds information about whether the given cell is an obstacle or

free space. Cells defined in place of the obstacles have the initial potential set to

1, while cells containing a goal have the potential value set to 0. Such a manner of

setting the initial values corresponds to the Dirichlet boundary conditions [14].

With such a defined initial boundary condition, the values of all other cells are

computed using a certain number of iterations. In order for the method to converge

to the correct solution, a sufficient number of iterations must be specified. The

number of iterations varies depending on the used method. One option of how to

control the number of iterations is assessment of some convergence criteria based

252 L. Janošek et al.



on which the calculation is terminated. Such criteria could be check of the error that

occurred during the iterations, for instance. The iteration is terminated once the

error is less than the given tolerance [11]. An alternative way is to specify a fixed

number of iterations at the beginning of the algorithm. [12] shows that the required

number of iterations can be determined by an analytical formula. The number of

iterations r required to reduce the error by a factor 10� p , for the Jacobi method, is

defined as:

r � 1

2
pJ2 ð16:3Þ

J2 denotes the number of grid points.

Using the Red-Black method in conjunction with the Jacobi method, it is

possible to achieve certain optimization [11]. The Red-Black method divides grid

points into odd and even, symbolically expressed by red-black coloring. The

coloring of the grid points is done so that no point is directly adjacent to a point

of the same color. The red point values from the previous iteration are utilized

during the calculation of the values of the black points. This step is identical to the

Jacobi iteration, applied to all black points. Updated black point values are used in

the next step in the computation of the red points, which is identical to the Gauss-

Seidel iteration. The Red-Black method is thus composed of one Jacobi iteration

and one Gauss-Seidel iteration. As mentioned in the previous Sect. 16.3, the Gauss-

Seidel method uses values computed in the previous iteration to compute the

current values, thus significantly contributing to speeding up the convergence

rate. The number of iterations for the Jacobi Red-Black method can then be defined

practically as well as for the Gauss-Seidel method, for which it is defined as [12]:

r � 1

4
pJ2 ð16:4Þ

J2 denotes the number of discrete grid points. The GPU implementation of the

Red-Black methods uses two kernels, one for computation of the red points and one

for computation of the black points. The number of black or red points on the y-axis

of the grid is half. This can reduce the number of threads in each kernel on the

y-axis by half. Reducing the number of threads leads to a certain optimization of the

iterative process.

Compared to the Jacobi or Jacobi Red-Black, the SOR method leads to much

faster convergence. As already stated, the SOR method uses the values from the

previous iteration and the values from the current iteration to compute the current

point, similarly as the Gauss-Seidel method, see (16.2). The parallel GPU imple-

mentation of the SOR method is enabled using the Red-Black ordering

[15]. Updated values of the black points, i.e., values of the current iteration, are

used to compute the red points. Updated values of the red points, i.e., values of the

previous iteration, are used to compute the black points. The number of required

iterations needed in order to reduce error by factor 10� p is given by [12]:

16 Numerical Solution of BVP on GPU with Application to Path Planning 253



r � 1

3
pJ ð16:5Þ

Comparing the number of iterations of the SOR method with the number of

iterations of the Jacobi method (16.3) and Jacobi Red-Black (16.4), it is obvious

that the optimal number of iterations of the SOR method is in the order of J,
compared with J2 of the Jacobi and Jacobi Red-Black method. The weak point of

the SOR may be the choice of overrelaxation parameter ω. In [12] the following

equation is stated, which can be used to estimate the overrelaxation parameter:

ω � 2

1þ π
J

In general, finding the correct value of ω is not an easy task. In many cases

experimentation is the only possible way to determine the correct value of param-

eter ω.

16.5 Results

Implementation of the Jacobi, Jacobi Red-Black, and SOR Red-Black methods was

compared in terms of time performance. These methods were tested on GeForce

GTX 560 and GeForce GTX 670 graphics cards.

A map of static obstacles is copied into the device memory before the start of the

actual iterative procedure. Since the obstacle map is read only, it is copied into the

texture memory of the GPU before the calculation. The texture memory is opti-

mized for a 2D spatial locality, so threads of the same warp that read texture

addresses that are close together will achieve the best performance [16]. The map

of obstacles only holds information about the position of the obstacles and walkable

spaces. For this reason, the 8-bit data format was chosen for maximum reduction of

the memory requirements.

In practical applications of these numerical methods in the field of path finding

and agent navigation in a virtual environment, such as in [17], it is necessary to

change the global obstacle map only in case of adding new obstacles or removing

existing ones. Due to the individual approach to the implementation of the global

obstacle map, the data transfers from the host to the device were not taken into

account during the speed comparison of the methods.

Maps of different sizes were used to compare the speed of these methods. The

resulting time difference of the method is shown in Fig. 16.1. The most optimal

performance was achieved with SOR Red-Black when compared with the Jacobi

and Jacobi Red-Black. For each method the number of iterations was determined

based on equations (16.3) for Jacobi, (16.4) for Jacobi Red-Black, and (16.5) for

SOR Red-Black.

254 L. Janošek et al.



Implementation of the tested methods was performed in the double-precision

floating-point format. Potential field computation was tested in such obstacle

configurations which simulated the cramped spaces. These configurations were

often the cause of the loss of the potential value in locations too far from goal,

because of insufficient accuracy of the real number. One such situation is illustrated

in Fig. 16.2b. Values in this potential field were rounded to 1 due to insufficient

accuracy of the real number. Final computation of the gradient cannot then be

achieved in these cases. The potential field gradient illustrated on Fig. 16.2a and

Fig. 16.1 Speed differences (in milliseconds) of the GPU computation of the Jacobi, Jacobi

Red-Black, and SOR Red-Black methods. The comparison was made for input grid size

322� 10242

Fig. 16.2 Picture 1.2a shows the resulting gradient of the potential field. Picture 1.2b illustrates

the failure of the calculation in confined space due to a lack of real number precision

16 Numerical Solution of BVP on GPU with Application to Path Planning 255



fig. 16.2b with size of 642 was computed using the Jacobi Red-Black method. The

number of iterations required to obtain a valid solution was determined using

equation (16.4).

Conclusion
In this chapter the implementations of the numerical methods for solving

elliptic equations using CUDA with application on BVP path planning were

compared. The Jacobi, Jacobi Red-Black, and SOR Red-Black methods were

compared in terms of time complexity. Using the SOR Red-Black, we

reached the fastest convergence, in comparison with Jacobi and Jacobi

Red-Black. These methods were applied to the obstacle configuration simu-

lating a real environment. It was shown that the configuration of obstacles

simulating cramped spaces, such as underground caves, does not provide

sufficient freedom for the convergence of methods. The information is lost

due to insufficient accuracy of the real number during the convergence to the

final potential field.

In [18] the methods of BVP path planning were combined with the Full

Multigrid method, which solves elliptic equations using a hierarchical strat-

egy. The hierarchical approach overwhelms the speed of convergence of the

original SOR method.

In the previous section, an error caused by insufficient accuracy of the real

number, leading to early rounding to 1, was described. One option of solving

this problem is described in [19]. Future development of this work will focus

on finding an alternative way to solving the problem with insufficient accu-

racy of the real number and to optimizing the convergence in cramped spaces.

This would then allow the application of BVP path planning for space-limited

interiors.

Acknowledgment This work was partially supported by the SGS in VSB Technical University of

Ostrava, Czech Republic, under the grant No. SP2013/185.

References

1. Kirk, D.B., Hwu, W.-W.: Programming Massively Parallel Processors: A Hands-on Approach,

1st edn. Morgan Kaufmann Publishers Inc, San Francisco, CA (2010)

2. Cui, X, Shi, H.: A*-based pathfinding in modern computer games. IJCNIS 11(1), 125–130
(2011)

3. Silveira, R., Fischer, L., Jos’ e AntônioSalini F., Prestes, E., Nedel, L.: Path-planning for RTS
games based on potential fields. In: Proceedings of the Third international conference on

Motion in games, MIG’10, pp. 410–421. Springer, Heidelberg (2010)

4. Fischer, L., Fischer L.: Semi-automatic navigation on 3d triangle meshes using bvp based

path-planning. In: 24th SIBGRAPI Conference on Graphics, Patterns and Images (Sibgrapi),

pp. 33–40, (2011)

256 L. Janošek et al.



5. Marcelo, T., Idiart, M.A., Edson, P., Engel, P.M.: Exploratory navigation based on dynamical

boundary value problems. J. Intell. Robotics Syst. 45(2), 101–114 (2006)

6. Fischer, L.G., Silveira, R., Nedel, L.: Gpu accelerated path-planning for multi-agents in virtual

environments. In: VIII Brazilian Symposium on Games and Digital Entertainment

(SBGAMES), pp. 101–110, (2009)

7. Connolly, C.I., Grupen, R.A.: On the applications of harmonic functions to robotics. J. Robot.

Syst. 10, 931–946 (1993)

8. Strauss, W.A.: Partial Differential Equations: An Introduction. Wiley, New York, NY (1992)

9. Dapper, F., Prestes, E., Idiart, M.A.P., Nedel, L.P.: Simulating pedestrian behavior with

potential fields. In: Proceedings of the 24th international conference on Advances in Computer

Graphics, CGI’06, pp. 324–335. Springer, Heidelberg (2006)

10. Klaus, A.: Hoffmann and Steve T Chiang. Computational fluid dynamics vol.i - hoffmann.pdf.

Int. J. Comut. Fluid. Dyn. 126(2), 581–594 (2000)

11. Zhu, J.: Solving Partial Differential Equations on Parallel Computers. World Scientific Pub-

lishing Co. Inc., River Edge, NJ (1994)

12. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd

Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York,

NY (2007)

13. Gomes, G.A.A.: Linear solvers for stable fluids: GPU vs CPU. In: 17th EncontroPortugues de

ComputacaoGrafica (EPCG09), pp. 145–153 (2009)

14. Dapper, F., Prestes, E., Nedel, L.P.: Generating Steering Behaviors for Virtual Humanoids

Using BVP Control. In: Proc. of CGI, pp. 105–114 (2007)

15. Konstantinidis, E., Cotronis, Y.: Graphics processing unit acceleration of the red/black SOR

method. Concurr Comput. 25(8), 1107–1120, (2012)
16. NVIDIA. CUDA C BEST Practices Guide (2012)

17. Fischer, L.G., Silveira, R., Nedel, L.: Gpu accelerated path-planning for multi-agents in virtual

environments. In: VIII Brazilian Symposium on Games and Digital Entertainment

(SBGAMES), pp. 101–110, (2009)

18. Silveira, R., e Silva, E.P., Jr., PorcherNedel, L.: Fast path planning using multi-resolution

boundary value problems. In: IEEE/RSJ International Conference on Intelligent Robots and

Systems, 18–22 October 2010, Taipei, Taiwan, pp. 4710–4715. IEEE (2010)

19. Renato, S., Fbio, D., Edson, P., Luciana, N.: Natural steering behaviors for virtual pedestrians.

Vis. Comput. 26(9), 1183–1199 (2010)

16 Numerical Solution of BVP on GPU with Application to Path Planning 257


	Chapter 16: Numerical Solution of BVP on GPU with Application to Path Planning
	16.1 Introduction
	16.2 Harmonic Potential Field
	16.3 Iterative Methods
	16.4 Implementation
	16.5 Results
	Conclusion
	References


