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Data Applications
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Abstract Current application of GPU processors for parallel computing tasks

shows excellent results in terms of speedups compared to CPU processors. How-

ever, there is no existing middleware framework that enables automatic distribution

of data and processing across heterogeneous computing resources for structured and

unstructured Big Data applications. Thus, we propose a middleware framework for

“Big Data” analytics that provides mechanisms for automatic data segmentation,

distribution, execution, information retrieval across multiple cards (CPU and GPU)

and machines, a modular design for easy addition of new GPU kernels at both

analytic and processing layer, and information presentation. The architecture and

components of the framework such as multi-card data distribution and execution,

data structures for efficient memory access, algorithms for parallel GPU computa-

tion, and results for various test configurations are shown. Our results show

proposed middleware framework, providing alternative and cheaper HPC solution

to users. Data cleansing algorithms on GPU show a speedup of over two orders of

magnitude compared to the same operation done in MySQL on a multi-core

machine. Our framework is also capable of processing more than 120 million of

health data within 11 s.

Keywords GPGPU • CUDA • GPU • Architecture • Big Data • High-performance

computing • Middleware framework

12.1 Introduction

NVIDIA CUDA-enabled GPGPU (general purpose graphic processing unit) has

made its name by being part of world super computers to enable high-performance

computation. Thus, GPGPUs are widely accepted and becoming common for many

high-performance computing applications. GPGPUs are used for both specific and

general purpose applications either running in large-scale system or desktop PCs.
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The design of PC pluggable GPGPU cards provides new programmable computing

paradigm as the cost-effective solution. High-performance parallel applications and

algorithms can be designed and developed, utilizing both CPU and GPU processors

capabilities. However, the environment including middleware, framework, appli-

cations, and supporting tools must be capable of supporting parallel computing and

execution, otherwise serial performance will be the outcome.

Big Data processing certainly has become imminent for enterprises that wish to

process large amount of data which mainly comes from the social network, seman-

tic web, sensor networks, geo-based service information, patient information, and

employee or transaction-based applications. These areas observe quick growth of

large data which needs either timely analytics or batched processing. Thus, the

challenge is to analyze and mine these big data in order to effectively exploit the

information to improve efficiency and quality of service for consumers and pro-

ducers alike. However, the computing capabilities of current multi-core micropro-

cessors are unable to meet the data mining requirements to effectively mine the data

on time, thus needing parallel acceleration hardware such as GPUs [1] to accelerate

the data mining. Even though high-performance computing solutions are available

today for the above processing usage, the cost is still relatively high for general

deployment and usage. For example, Netezza-, Teradata-, and Vertica-based sys-

tems are computationally fast and cater for terabytes of data processing in milli-

seconds but not affordable for small and medium enterprises. On the other hand,

MapReduce framework-based applications such as Apache Hadoop and Drill which

are free and stable are suitable for large-scale data processing. GPU-based Big Data

processing system complements the above MapReduce-based solution. In our

proposed Big Data and BI (business intelligence) solution framework, we have

positioned GPU in two different layers, namely, analytics and processing, as

illustrated in Fig. 12.1. These positioning provides flexibility to application-specific

analytics algorithm coupled with data processing algorithms. For example, edit

distance algorithms (analytics component) which are written in CUDA/GPU are

tightly coupled with other generic data processing (processing component) compo-

nent such as sorting, searching, etc., providing high-performance solutions. Thus,

we believe GPU-based solution will coexist with other MapReduce systems as a

complementing solution. The implementation section will demonstrate an example

of this combination.

GPUs are massively parallel multi-threaded multi-core processors that allow

large amounts of data to be processed in parallel to speed up computation time. The

single instruction multiple threads (SIMT) architecture of the NVIDIA GPU places

it between the single instruction multiple data (SIMD) architecture for vector

processing and the simultaneous multithreading (SMT) architecture for hardware

multithreading in terms of flexibility and efficiency. Current benchmarking shows

that GPUs can execute up to a few orders of magnitude faster than CPUs for certain

types of algorithms [2] and a large set of work has been done in order to leverage on

the GPU computing capabilities [3, 4].

Since GPUs are treated as a coprocessor with its own architecture, applications

must be designed to reflect the two-processor nature of the system. As such, data

188 E.K. Karuppiah et al.



Fig. 12.1 Architecture of

middleware framework
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needs to be transferred from host (PC) processor to GPUs (device) for processing.

Even though there are performance gains by using GPUs, functional-specific

algorithms and application-specific algorithms exploiting GPU architecture need

to be designed for optimum data processing. Thus, we have designed a set of library

suites named as “MIMOS Accelerator Libraries” (Mi-AccLib) for various domain-

specific (analytics component) and generic applications (processing component).

These algorithms are categorized into different groups, namely, “Common

Mi-AccLib,” “Finance Mi-AccLib,” “Text/String Mi-AccLib,” “DB Mi-AccLib,”

etc. These libraries are designed and developed using Mi-AccLib framework such

that the code can run seamlessly on different processor (GPU and multi-core for

now) architectures exploiting underlying parallelization capabilities. The processed

information in turn is fetched and displayed at presentation layer facilitated by

interface layer (refer to Fig. 12.1).

In order to exploit current GPU computing capabilities for Mi-AccLib, we have

to take into consideration the characteristics of the GPU and how it can cooperate

with the CPU. One such consideration is the disparity of the computation capabil-

ities between versions of the NVIDIA GPU cards. As such, a chunking and load

balancing mechanism that splits and distributes data to different GPU cards in the

system based on their computing capability has to be developed. Secondly, the I/O

delays due to moving data to and from the hard disk, RAM, and GPU cards need to

be considered when designing the framework in order to ensure that the overall

system performance (multi-core CPU and GPU) is actually better by at least an

order of magnitude compared to a multi-core CPU alone. Otherwise, there is no

justification for multi-architecture development.

To meet these requirements, we designed the Mi-AccLib framework for multiple

GPU support along with CPU synchronization. Our initial goal was to exploit GPUs

for text-based processing and analytics work. In order to evaluate our middleware

framework, we implemented one search and one sort algorithm for text processing

on our framework and demonstrate how we can utilize these algorithms for data

cleansing application. We then evaluate these algorithms against multi-core GPU

versions.

Section 12.2 describes related works, while Sect. 12.3 details our Big Data

framework and system architecture embracing our Mi-AccLib libraries via analytic

and processing components. We outline our implementation in Sect. 12.4 and show

the results of our algorithms on various different GPU cards in Sect. 12.5. Finally,

we conclude in the last section.

12.2 Related Work

The MapReduce [5, 6] framework for distributed computing has been widely

adopted in large-scale data processing. Mars [4] applies a flexible parallel program-

ming in managing tasks partitioning and data distribution by using a GPU, which is

an accelerated run-time system. However, Mars only works by distributing the data
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set over streaming processors on a single GPU card. MapCG [7] provides source

code level portability between CPU and GPU for a high-level programming model.

Nevertheless, this implementation has scarified the usage of shared memory and

constant memory in GPUs due to the compiler support issues. There are more

MapReduce on GPUs implementation [8–10], yet, these systems have faced the

overhead issues on data transfer and kernel launching issues. The proposed Big

Data middleware framework using Mi-AccLib has a more macro-level data distri-

bution orientation that works by chunking data into multiple GPU cards.

GPUMiner [1] is a parallel data mining framework for using GPUs for data

mining work. It is composed of three parts – a storage and buffer management

module, a visualization module, and a mining module. GPUMiner utilizes DirectX

for visualization and CUDA for the data mining module. Chidchanok [11] works on

an experimental framework for searching large Resource Description Framework

(RDF) and performing the semantic query using JCUDA.1 It takes advantage of

GPUs parallel thread and block for retrieving, joining, and finding operations to the

corresponding RDF graph. While the focus of these systems are on data mining,

Mi-AccLib components utilize the GPU for a wide range of string processing

functions including, but not limited to, data mining, analytics, and in-memory

database like operations.

OpenAcc is a standard for the directives and programming model which has

been developed by CAPS, Cray, The Portland Group, and NVIDIA [12]. There are

two commercialized directive compilers integrating with NVIDIA NVCC com-

pilers, which are CAPS (HMPP) and PGI (PGCC) [13] compilers. Directive-based

high-level programming model is a simple and portable method to parallelize loops

in C code. This intermediate high-level code is compiled by the NVCC compiler.

Subsequently, it converts to a CUDA assembler source (PTX2) and optimizes the

defined code. Then, it generates the final CUDA binary (a .cubin file). Ghosh, Liao,

Calandra, and Chapman [14] evaluated the GPU directive compilers, which

resulted 1.5� to 1.8� improvement in performance for both ISO and TTI kernels

in single GPU against multi-core CPU by using OpenMP. In addition, they con-

cluded this reduce efforts in code optimization with pragmas. Directive approach is

complementary to Mi-AccLib rather than a competitor since it works on a different

level of parallelization.

OpenCL [15] is a platform-independent standard for programming heteroge-

neous systems. OpenCL programs are compiled just in time for execution and can

be used together with Mi-AccLib or other run-time libraries. These works [16–18]

experienced a performance penalty on the NVIDIA GPU, due to the OpenCL

abstraction layer. Thus, we have disabled OpenCL support as it is not optimized

1 It is a CUDA binding for the Java language, which exploiting the features of NVIDIA GPU

computing from Java-based applications.
2 Parallel Thread Execution (PTX) is a pseudo-assembly language used in NVIDIA CUDA

programming environment.
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for GPUs at the moment, and real gains on GPUs can only be seen through

optimized code as there are additional overheads from data movement.

CUDA [19, 20] or Compute Unified Device Architecture is NVIDIA’s parallel
computing architecture for their GPU cards. It is an intuitive and scalable program-

ming model which is an extension of C [21]. Additionally, it provides the entire

GPU platform accessing for developers. This architecture unifies the devices of

CPU and GPU by performing a heterogeneous computation system [22]. It has

rapidly evolved and scaling parallel performance since 2007. There are sets of

libraries that are mostly for non-graphics-related processing. Mi-AccLib is built on

CUDA for the GPU computation parts.

12.3 Middleware Framework Design

The proposed Big Data application framework in this chapter comprises of presen-

tation layer, interface layer, middleware layer, and storage component. Middleware

layer is further decomposed to analytics component, processing component, and

orchestration engine. Mi-AccLib libraries are positioned at both analytics compo-

nent and processing component. The presentation layer includes business intelli-

gence (BI) dashboard and the interface layer includes MIMOS business

intelligence suite (Mi-BIS 1.x API). Meanwhile, off-the-shelf technology will be

used for the storage layer.

The following subsection describes these frame layers and middleware compo-

nents in details, followed by specifically focusing on GPU-based solutions.

12.3.1 Big Data Needs

Digital data explosion has exceeded the petabytes and entered into the zettabyte era,

based on IDC Digital Universe Study 2011 [23] as shown in Fig. 12.2. As of year

2011, as a society, we have generated and consumed ~1.8 zettabytes of data. But the

question is, was the data analyzed for useful information in a timely manner for

instantaneous usage? The ultimate value of a big data implementation will be

judged based on one or more of these three criterions:

• Able to provide more useful information

• Able to improve the reliability of the information

• Able to improve the timeliness of the response

Thus, a Big Data application framework which meets the above three criteria is

inevitable to provide reliable, useful, and timely information, enabling quick

response by the data owner. Otherwise, Big Data is worthless.

Meeting the growing demand for Big Data processing, large-scale parallel

processing for data mining and analytics has sparked innovative solutions both in
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commercial and scientific domain. Some of the commercial applications (e.g.,

Netezza, Teradata, Vertica) are computationally fast and cater for terabytes of

data processing in milliseconds, however, relatively expensive to be used by

small and medium enterprises. On the other hand, generally scientific communities

rely on the MapReduce framework like applications such as Apache Hadoop which

is free and stable for large-scale data processing. Following this open-source

success, many applications are designed and developed in a parallel manner.

Usage of parallel computing hardware such as GPGPU and Intel MIC (Many

Integrated Core) coupled with parallel computing capability aware middleware/

application can provide another less expensive approach of Big Data processing.

Companies like Intel and NVIDIA are on track to realize many-core and multi-

core parallel computing hardware with increasing number of parallel cores. Intel

MIC equips with 60 cores and 244 threads for hyper-threading. NVidia Tesla K20c

offers 14 SMX (streaming multiprocessor extension) with 2496 CUDA cores. Both

Intel and NVIDIA claim their processor is much faster compared to the others. The

fact is that this competition is important for total paradigm shift in hardware enables

parallel computing.

For example, Kepler architecture of Tesla series of NVIDIA GPU promises

higher 1.3 teraflops (double precision), while Intel MIC Xeon Phi provides 1.2

teraflops with both having 6 GB memory for big data analytics. Streaming func-

tionality enables seamless data movement between CPU and GPGPU for ultrahigh

speed data processing. Leveraging the hardware technological capabilities,

MIMOS is building various solutions including Mi-AccLib to enable ultra-speed

big data processing with data and process parallelism. MIMOSMi-AccLib libraries

reside at both analytics component and processing component of the middleware,

being part of the overall building block of the MIMOS Big Data (Mi-BD)

processing solution.

Fig. 12.2 Digital data

growth in terms of storage

size with forecasted data
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12.3.2 Presentation Layer

The presentation layer is responsible to provide precise, concise, and simple

visualization capability for the processed big data, enabling the user to make

sense of the data in an informative manner. MIMOS business intelligence and

Big Data framework provides client, web, dashboard, and native mobile solutions

for easy representation of data for various audiences with visually comprehensible

format. Usually the information is presented in chart and graph forms. It also allows

easy integration of other 3rd-party software tools.

12.3.3 Interface Layer

This layer provides the interfacing between the middleware layer and the presen-

tation layer. It caters for various types of application programming interface (API)

toward presenting on various types of user interfaces, such as through business

intelligence dashboards, where the orchestration engine interacts with Mi-BIS 1.x

to output results through tabular, graphical, and charts display. At the same time,

portlet, web service, ESB (enterprise service bus), and Mi-Mobile BIS outputs

result on third-party Web sites, third-party cloud, and MIMOS web EKMS

(MIMOS interactive dashboard) and also on native Windows applications and

native Android/IOS applications for smartphones and tablets. GIS API is responsi-

ble for producing mapping results on web, MIMOS web, native client, and mobile

display.

12.3.4 Middleware Layer

Middleware layer consists of orchestration engine, analytic component, and

processing component. The orchestration engine is responsible to orchestrate the

entire process from acquiring/ingesting data contained in the storage; processing

data; providing the required analytic library requested by the user interface, in order

to produce the desired results, which are mapped via API of the interface layer; and

finally presenting results through web, mobile, native client, and cloud connections.

The analytics component, which would be utilized to handle selected types of

analytics, algorithm, statistical analysis, and prediction depending on the required

user needs, currently, consists of:

• Mi-Acclib (GPGPU libraries)

• Reporting and OLAP (online analytical processing) for business intelligence

(BI)

• Data mining libraries

• Machine learning and predictive analytics
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• Semantic engine

• Image BI for video/image analytics

• Predictive algorithm suites

The processing component, which handles data processing such as extracting,

transforming, and loading (ETL) data from databases, before passing to analytics

components or passing data directly to the API layer as per instructions from the

orchestration engine, consists of:

• Mi-Morphe (MIMOS ETL tool)

• Mi-Acclib for fast processing

• Parallel in memory DB

• Pig and Hive for big data ETL

• Portal subscription

• Batch (Hadoop) and real-time (Storm [24] and Impala [25]) big data processing

Processed data before analysis and after analysis are stored in the storage

components in the form of data warehouse for BI API to utilize. The orchestration

engine will determine, based on user selection from the presentation layer or

predefined configuration, which analytics model and processing model to be uti-

lized. The orchestration engine will ingest incoming data (structured or unstruc-

tured) and pass the result to interface layer which will be mapped to the display

channels, such as MIMOS dashboard (EKMS), BI dashboard, or native mobile

application.

12.3.5 Orchestration Engine (with Example of Use Case)

As mentioned above, the orchestration engine plays a significant part to process,

analyze, and send the processed data to the respective display channels via the

appropriate interface API layers. Through the API on the interface layer, the

orchestration engine could also call hybrid technologies. For example, orchestra-

tion engine may access libraries with various algorithms for preconfigured purposes

such as utilizing GPGPU libraries to edit distance algorithm and using Pig with

Hadoop to perform MapReduce function and processing structured data from

RDBMS (relational data bases management system) data while grouping the

unstructured result within the same system to achieve the aggregated task.

The orchestration engine could very well be used for different scenarios. The

following paragraph explains the implementation of Mi-BIS for video analytics

(or image analytics) as an example, where the purpose is to identify the various

types of events such as “event detected,” “face detected,” and “motion detected”

per given camera location for given time stamp information as reported by the video

analytics system. This data when analyzed on real time requires real-time

processing speed, volume, and complexity of aggregating from other structured

database tables such as listing the names of guards in charge during the occurrence
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of certain type of events for a period of 1 year pertaining to the camera locations.

This would help the security companies or public safety organization to place their

staff at strategic locations within their planned coverage area for patrolling, based

on predictive analytics. Thus, probability of similar occurrence could be observed

within certain time frame. In terms of implementation, the sources of video files

from all the cameras being monitored are stored in HDFS of Hadoop nodes. Mi-BD

(MIMOS Big Data) will sqoop in the files based on schedule time with the various

types of events detected and performs ETL using Pig/Hive. Hadoop is used here for

batch MapReduce processing, where the results would be stored in the storage

component for later date. When a business user logs in through the display channel

of Mi-BIS dashboard, the user could construct the required dimensions to view the

report chart such as events, day, month, year, personnel names, and camera

locations from the various data sources (structured or unstructured as stored in

the storage components). Mi-BIS presentation/display layer will communicate with

Mi-BD via the interface layer; Mi-BIS 1.x. Mi-BD will determine if this request is

for real time or could utilize any previously stored preprocessed data. If real-time

big data (from large video files of many camera sources) is required, then Storm

would be used. In this example, the batch Hadoop ETL data that was pre-produced

earlier is utilized by the BI dashboard in order to view the relationship in a bar chart

(or tabular format) between time of year, type of events, camera locations, and

guards in charge. The user can view an image and an 8-s video clip of the event (6 s

before and 2 s after the event) when each individual event is clicked. If the user

decides to open any statistical analysis tools, then Mi-BD, the orchestration engine,

would be responsible to call machine learning/predictive analysis libraries or

Mi-Acclib to drill down on the statistics of occurrences and pass the result back

to the presentation layer via API from the interface layer.

12.3.6 Storage

The storage component consists of storage for structured and unstructured data.

RDBMS such as SQL, MySQL, and Postgres supports the storage of structured

data, while HDFS (Hadoop Distributed File System) and NonSQL such as Mongo

DB or Cassandra could support unstructured data such as live feed from Twitter,

Facebook, and log files. The storage component also store processed and analyzed

data in the storage or as data warehouse in order to be used by API to display results

in the various display channels and devices. In the next section, Mi-Acclib as an

analytics component with GPGPU libraries is further elaborated.
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12.3.7 Mi-AccLib and Analytics Component

We designed the Mi-AccLib framework to be modular in order for it to be

extensible. Mi-AccLib is divided into two layers, which are an application-specific

layer (analytic component) and a functional algorithm layer (processing compo-

nent) as shown in Fig. 12.3. The Mi-AccLib framework is built to run on top of

different processor architectures. One of the challenges of such a system is the need

to support libraries written on different languages for different architectures. How-

ever, we focus on our work with GPU in this chapter.

The library interface wrapper layer provides a common interface for users to

utilize functions that have been implemented for various hardware processors and

coprocessors. For example, a search function can be used on either a GPU card or a

multi-core CPU card or on both as the user requires. The functions exposed to the

users at this layer share a common format as shown in Fig. 12.4.

The function takes in a variable number of parameters. All these parameters

provide users with a fine-grained level of control when executing tasks. However,

they can also leave the parameters to the default value for the framework to

determine the best parameters for performance based on the available resources,

function profiling, and data size.

The application-specific libraries (analytic component) are a set of basic func-

tions that have been linked together to perform a certain task. An example of such a
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Fig. 12.3 Mi-AccLib framework architecture
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task is a financial calculation of value at risk (VAR) [26]. The VAR application-

specific library (finance Mi-AccLib) takes in a set of data and first preprocesses the

data for sorting using a preprocessing kernel (processing component) (e.g., chang-

ing floating point numbers to unsigned integers), sorts the preprocessed data using a

sorting kernel, sends the sorted data to a percentile kernel to obtain the result, and

converts the final result back into a floating point value.

The functional algorithm libraries (processing component) are a collection of

kernels that perform tasks in similar areas and are the basic building blocks for the

library framework. For example, the string processing library contains a set of

different search algorithms that are exposed through the library wrapper interface.

Each search algorithm gives a different set of performance that users can try to use

for different application purposes. Sets of kernels from different functional algo-

rithm libraries can also be integrated to perform a larger task by the application-

specific libraries (analytic component).

In order to achieve an overall improvement of the whole system rather than

emphasizing just faster execution of parts of the workflow, a holistic view needs to

be taken during system architecture design. This is especially true when considering

latency for I/O and load balancing for data distribution to GPUs of varying

capabilities.

The first step is to decide which parts of the workflow are more suitable to be

executed on the CPU or GPU. Typically, functions that require a lot of calculations

that can be parallelized or have a lot of uncorrelated data to be processed are

suitable for execution on the GPU. For example, matching data from columns of

two different tables is very suitable for GPU processing as each entry of a column

can be compared independently from any other entry. This allows the system to

leverage on the parallel nature of the GPUs.

The second step is to determine how to order the data transfer and processing so

that latency can be hidden. Mi-AccLib provides methods to split data into chunks

that are readily transferrable to multiple GPU cards based on their available

Fig. 12.4 Format of function
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memory and computing power profiles. This ensures the data is distributed and

processed optimally so that delays are kept to a minimum. Data chunking also needs

to be done in a manner that allows the data structure to be preserved so that each

chunk can be processed individually. The data in the chunks will normally need to

be converted into a structure of arrays for faster processing. This is identical to the

normal column format in databases, so data will need to be transposed when copied

to the GPU.

12.4 Implementation

We have currently implemented a few different functional algorithm libraries into

our framework. We will discuss some of the implementation details and challenges

in this section.

One of the biggest limitations to using GPU cards for text processing is the large

amounts of data that must be moved through the PCI-e bus to and from the GPU and

also the reading and writing of data from the hard disk, which is five times or more

slower than the PCI-e bus. Streaming is the method commonly used to hide or

minimize the data transfer latency, where data is sent and received in small chunks

using direct memory access (DMA) methods in the background, while data

processing is performed on the chunks already received by the GPU.

To enhance the parallel processing of data and memory transfer, profiling of

kernels needs to be performed beforehand to determine the duration of the kernel

execution time. Based on the kernel execution time, the size of the data chunks used

can be determined using the PCI-e data transfer speed as well as the kernel

execution time. On initial observation, it may seem that chunking data to the

minimum size chunk would seem like the logical choice to minimize overall

delay as that will give the most overlap between data transfer and data processing.

However, the transfers of many small chunks give rise to additional overhead time

between data transfers. For example, the transfer of a single chunk size of 64 MB

gives the highest data transfer throughput, but multiple transfers of 64 MB chunks

incur a 33 % overhead on that of a single chunk transfer as we observed.

Getting outputs from kernel execution on the GPU is another trade-off issue that

has to be considered during implementation. For example, an algorithm returning

multiple search results in an array needs to ensure that the global variable that

serves as the index of the array is not accessed simultaneously by multiple threads.

Since there is no concept of critical sections in CUDA, a mutex must be

implemented using the “atomicCAS” instruction to allow CUDA cores to lock

the variable for reading and incrementing before releasing it for other cores.

While this works well if there are only a few results to be returned, searches with

many results will cause many threads to be executed serially for this section.

Besides this, atomic instructions in CUDA are slower than other instructions

since they need to access global memory every time a read and write is performed,
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and a timeout may occur if too many threads in the same warp try to lock the same

global variable.

A trade-off using additional memory can be done by allocating an array of bytes

or bits equivalent to the size of search data. Each thread can mark the equivalent

byte or bit in the result array without the need for a mutex. However, this requires a

much larger memory allocation for the output and a larger delay when moving the

results back to the CPU.

As an alternative HPC solution to GPU, we have implemented Big Data appli-

cations using the proposed middleware framework. In this experiment, we have

incorporated a sample scenario using the presentation layer (Mi-BI dashboard), via

Mi-BiS 1.x (API and connectors), middleware, storage, and the orchestration

engine with the MapReduce functions managing the nodes. We have configured

seven virtual machines with one master node (8 cores) and six worker nodes

(4 cores each) running on a few of HP DL380p G8 servers installed with Apache

Hadoop, Cloudera’s Hadoop, and Impala. We have also installed Postgres on

another same model of HP server with 8 GB RAM with 4 cores and another

high-end HP machine with 96 GB RAM and 48 cores. At the same time, we have

installed a GPU card, NVIDIA Tesla K20c, on a DELL Precision T5500 worksta-

tion withWindows Server 2008 R2 Enterprise SP1 64-bit operating system, running

on Intel Xeon E5630@2.53 GHz processor, with 12GB RAM, 1 TB SATA hard

drive (7,200 rpm). The Kepler GK110 GPU card provides 2496 CUDA cores. Next,

we have written scripts within the orchestration engine to import ~120 million

records from four significant tables of inpatient record table, state code names table,

disease code names, and age groups from the hospital database, originally residing

in Postgres database of our high-end physical server, into the storage of the Hadoop

clusters which is in HDFS (Hadoop distributed file storage) format. Through our

libraries in the middleware framework, our ETL processing component uses Hive

to extract, cleanse, transform, and load the dataset to be accessed for the new data

warehouse. Mi-BiS 1.x uses the cleansed data from the warehouse using connectors

(API that had been developed for the interface), given by the business user, when

logged on through BI dashboard. For example, the user could request for informa-

tion such as the type of disease and age group distribution on a pie chart or view the

trend of the selected disease for the duration of several years. Mi-BIS dashboard

creates the reports for the types of query (or SQL select statements) for the different

API/connectors. The processing time has been recorded with at least five trials for

each of the different setup. The results of the average processing time are shown in

Table 12.1.

The orchestration engine is responsible to interlink the storage layer toward

the self-service report creation from the Mi-BIS dashboard or running the real-

time analytics via the dashboard. Upon identification of large data request, the

predefined orchestration engine will use HDFS and run the search either in Impala,

GPU, or by combining the queries as hybrid parallel process and presenting the

output to the Mi-BIS dashboard.
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12.5 Results

Two of the most important features of text processing sorting and matching of

processing component and edit distance of analytics component are explored. In

this section, we discuss the results from our implementations of the string matching

in our Mi-AccLib framework, while results of edit distance operations are illus-

trated for various configurations. Finally, we present the results of experiment based

on the different setups using the middleware framework.

We implemented a string matching algorithm, which matches all the characters

in a keyword to a string from a large text file. This search is O(n) in complexity,

Table 12.1 Comparison of processing time for types of search query using RDBMS, Big Data

Hadoop/Impala nodes, and GPU parallel DB

No

Description of search query

vs. average processing time

(seconds)

SQL

(8GB/

4Core)

SQL

(96GB/

48Core)

Hadoop-

Hive

Impala-

Hive

GPU-

parallel

DB

1 Selecting sum from one column of

120 million records

1,466.7 s 218.7 s 347.6 s 3.7 s 0.3 s

2 Selecting a name column,

counting the name and ordering by

top 10 names

7,901 s 1612s 505 s 64.2 s NA

3 Selecting state code, years from

hospital patient records with one

disease code selected, group by

years and state code, order by

years and state code

1,464.7 s 103.6 s 383.5 s 3.5 s 3 s

4 Selecting state, years, disease

name from hospital patient records

where one disease name type is

selected and joining disease code

with disease name and state code

with state names; grouping by

years, states, and disease names;

ordering by years and state code

1,688.7 s 102.7 s N/A 2.9 s 1.6 s

5 Inserting the results of selecting

state code, years from hospital

patient records with ALL disease

type, group by years and state

code, order by years and state code

Failed 7,878 s 557.3 s 10.1 s N/A

6 Selecting state, years, disease

name from hospital patient records

where three disease name types

are selected and joining disease

type with disease name and state

code with state names; grouping

by years, states, and disease

names; ordering by years, states,

and disease names

1,893s 704 s N/A 3.7 s 6.3 s
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where n is the number of characters to be searched. To speed up matching, we copy

chunks of the text into the shared memory of the GPU, which is much faster than

accessing global memory. Then, each thread in a warp searches for the keyword at

different points of the text. The same search is repeated for other chunks of memory

at other streaming multiprocessors throughout the GPU. The results of the search

are returned either in array size of the search text or in arrays of integers pointing to

the positions of the characters in the search text, as detailed in the previous section.

From our results in Fig. 12.5, we can see that the algorithm scales well according

to the number of CUDA cores and shading processor speeds of the GPUs. For

example, the Tesla C2075 GPU is three times as fast as the Quadro 2000 due to

having almost three times as many CUDA cores as well as having a much higher

memory bandwidth between the global memory and the shared memory. This

allows it to complete memory-intensive jobs, such as matching and sorting, much

faster than the Quadro 2000.

When we distribute the matching load between two cards, the throughput for the

searches is slightly lower than the sum of the throughput of each card individually.

The reason for this is mainly due to the overhead of distributing data to two separate

cards on the same PCI-e bus. For example, performing a search for a 4-byte

keyword from two million characters takes an average of 275.85 ms on a C2075

and 545.84 ms on a Quadro 4000, but distributed matching on a Quadro 4000 and

C2075 takes only 198.80 ms. This gives us a throughput of 7.25 MB/s and 3.66 MB/

s for the C2075 and Quadro 4000, respectively, and a combined throughput of

10.91 MB/s. However, the distributed matching on both cards gives a throughput of

10.06 MB/s.

We also implemented Levenshtein distance (edit distance) matching on CPU

and GPU. This parallel version of edit distance feature is part of the analytic

component in Mi-AccLib. The following explanation describes how application-

specific analytic component and functional-specific processing components are

Fig. 12.5 Performance of single and dual GPU cards for string matching
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used for data cleansing example using the middleware framework. It is certain these

results prove GPU-based solution is an alternative to existing MapReduce-like

application for Big Data processing.

It is defined to be the smallest number of edit operation (insertions, deletions,

and substitutions) required to change one string into another [27]. Figure 12.6

shows one-to-many matching of execution time versus total records for the edit

distance algorithm by utilizing CPU cores and GPUs (C2075). Single GPU and dual

GPUs outperform the CPU multiple cores for processing much larger size. The

speedup (CPU time/GPU time) on single CPU cores is 13.9�, and the 8 cores CPU

is 1.78� for processing 75 million of records (3.14 GB). There is more speedup by

utilizing dual GPUs, as utilizing the single CPU core is as high as 38.34�, and the

8 cores CPU is 4.92�. By comparing the speedup of single and dual GPUs

processing, there is ~2.7� for the size of records from 14 to 75 million of records.

An application that we put together using sort and search was a data cleansing

application project. In this project, we compared the national registration identifi-

cation (NRIC) numbers from a database of 14 million records, which we call

database A, against a clean set with 13 million records, which we call database

B. Once the number matches, the kernel compares the names associated with the

identification numbers at each table to confirm the match.

For this application, we first extracted the data from the two databases. Then we

developed a kernel that first performs a sort on database B using the identification

numbers as keywords. The identification numbers vary in length based on whether

they are old, new, or army identification numbers. Then, for each record in

database A, we search through database B for a match. We use a binary search

algorithm to perform the search, and the brute force algorithm to perform the match.

The binary search algorithm takes an average of O(logN� 1) to find if there is a

match. After all the records from database A have been iterated through, we use the

results to perform a brute force name matching from database A to database B. The

total time taken using the GPU kernel for sorting and matching alone is below 15 s

Fig. 12.6 Edit distance result for CPU and GPUs
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compared to the time of over 12 h on an Intel Xeon Quad Core E5620 running

MySQL. The total time including data extraction from the databases and

preprocessing was below 5 min for the GPU processing.

The results are shown as in Table 12.1 for six types of searches for the different

environment setups using our middleware framework including the Mi-BIS pre-

sentation layer.

The average time for each query type was analyzed for Postgres database with

8 GB server and 96 GB server, Hadoop with Hive (7 nodes), Impala with Hive

(7 nodes), and GPU server processing in order to compare the processing time

(in seconds). The result shows the performance comparison of various setups for

real-time analytics processing of Big Data in the health sector, using Mi-BIS

presentation dashboard to analyze ~120 millions of records in HDFS and Postgres

(RDBMS) servers. Some of the results are reported as NA (not available) because

the work is still in progress.

GPU parallel DB processing takes the shortest time to process ~120 million of

records and the cost is also cheaper than implementing 7 nodes of Hadoop or SQL

on Postgres (medium and high-performance fully tuned Postgres database server).

SQL was not able to compute on big data especially for real-time analytics. It even

failed for insertion of output data in the same database. Hadoop with Hive is not

suitable for real-time processing and would only be useful for batch processing of

big data. Impala-Hive is as beneficial as GPU for general queries and could be used

to complement in the hybrid parallel processing approach especially led by the

orchestration engine with predefined rules within the scripts, developed for the

middleware layer. Impala-Hive is faster compared to GPU parallel DB when there

are multiple tables to be joined and with huge strings operations to be performed.

Conclusion

We have presented a middleware framework for big data processing using

data cleansing as an example application. It is certain the above results prove

GPU-based solution is an alternative to existing MapReduce-like application

for Big Data processing. Our layered middleware framework approach with

GPU capable analytic and processing components has facilitated seamless

integration of our Mi-AccLib. It allows users to exploit the powers of the

GPU by providing the ability for efficient work distribution across multiple

GPUs with regard to I/O access and load balancing. Using the Mi-AccLib

framework, we implemented and tested radix sort and string matching algo-

rithms on single and multiple GPU cards as part of processing component. On

the other hand, the edit distance algorithm as part of analytic component used

underlying processing component functionalities for application-specific

needs. Our results show a significant improvement by using two GPU cards

over single GPU cards and single GPU cards over multi-core CPUs for text

data sorting, matching, and cleansing. The performance of the GPU

(continued)
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implementation for data cleansing shows a speedup of over two orders of

magnitude over the same operation done in MySQL on a multi-core machine.

The proposed middleware framework can perform real-time analytical

queries using the hybrid Impala and GPU libraries of ~120 million records

for the selected hospital database, within less than 11 s.
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