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Preface

Graphics Processing Unit (GPU) technology is playing an important role in com-

puting today. This book presents a collection of state-of-the-art research on GPU

computing and their applications. The major part of this book is selected from the

work submitted to the 2013 Symposium on GPU Computing and Applications

jointly organized by the Institute for Media Innovation of Nanyang Technological

University, and NVIDIA Corporation (South East Asia).

The book addresses the fundamental issues in GPU computing with a focus on

big data processing. Three major domains of GPU applications are covered in the

book including (1) Engineering design and simulation; (2) Biomedical Sciences;

and (3) Interactive & Digital Media.

This book has 17 chapters. Each chapter is carefully selected to present ideas and

techniques with insight in a specific area. In Chap. 1, Panpan Cai et al. will report a

GPU-enabled parallel genetic algorithm for path planning. In Chap. 2, Alexandre

Kaspar and Bailin Deng will introduce real-time deformation of constrained meshes

using GPU. In Chap. 3, Yanlin Luo et al. will investigate GPU-based real-time

volume interaction for scientific visualization education. In Chap. 4, Petros

Papanikoloaou and George Papagiannakis will illustrate real-time separable sub-

surface scattering for animated virtual characters. In Chap. 5, Yusha Li et al. will

describe adaptive NURBS tessellation on GPU. In Chap. 6, Huagen Wan et al. will

discuss a graphics native approach to identifying surface atoms of macromolecules.

In Chap. 7, Farhoosh Alghabi et al. will explain their scalable software framework

for stateful stream data processing on multiple GPUs. In Chap. 8, Tananan

Pattanangkur et al. will share their solution for high performance mobile medical

imaging. In Chap. 9, David Mainzer and Gabriel Zachmann will showcase their

collision detection based on fuzzy scene subdivision. In Chap. 10, Philip Boyer

et al. will present the smoothed particle hydrodynamics applied to cartilage defor-

mation. In Chap. 11, Kyrylo Shegeda and Pierre Boulanger will describe a

GPU-based real-time algorithm for virtual viewpoint rendering from multi-video.

In Chap. 12, Ettikan K. Karuppiah et al. will illustrate a middleware framework for

programmable multi-GPU based big data applications. In Chap. 13, Byungjoon

Chang et al. will talk on the efficient implementation of a real-time Kd-tree

v
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construction algorithm. In Chap. 14, Niko Lukac and Borut Zalik will discuss fast

approximate k-nearest neighbors search using GPGPU. In Chap. 15, Shafaatunnur

Hasan et al. will share their soft computing methods for big data problems. In

Chap. 16, Martin Němec and Lumı́r Janošek will show a numerical solution of BVP

on GPU with application to path-planning. And in Chap. 17, Amirul Abdullah

et al. will investigate fast multi-keyword range search in GPGPU.

Readers will benefit from this book which is contributed by experienced GPU

researchers and educators. The book may also motivate researchers and developers

to develop new possible applications of GPU technology in various areas.

Singapore Yiyu Cai

Singapore Simon See
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Fédérale de Lausanne, Lausanne, Switzerland

Radoslav Fasuga Department of Computer Science, VŠB-Technical University,
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Chapter 1

A GPU-Enabled Parallel Genetic Algorithm

for Path Planning of Robotic Operators

Panpan Cai, Yiyu Cai, Indhumathi Chandrasekaran, and Jianmin Zheng

Abstract Genetic algorithm (GA) is a class of global optimization algorithm

inspired by the Darwinian biological evolution. It is widely applied in the field of

robotic path planning. Parallel GA (PGA) is a subclass of GA which is able to

achieve good solutions in a short time. This chapter discusses the utilization of a

PGA in determining collision-free path for robotic operators. GPU-style genetic

operators are designed to speed up the GA process while improving the quality of

solutions. GPU parallelization for a master–slave parallel GA (MSPGA) is

implemented by parallelizing the selection, crossover and mutation operators.

Keywords Genetic Algorithm • Parallel GA • GPU • Master-slave Parallel GA

1.1 Introduction

1.1.1 Motivation

Genetic algorithms (GA) [1–3] are promising in achieving globally optimized

solutions for path planning. The process of GA requires a large number of iterations

with intensive computations. Thus, it is difficult to have fast GA optimization in

serial platform. GPUs provide a highly parallel computing structure which enables

various types of data processing. By embedding GA into the GPU platform, it is

possible to achieve significant performance improvements. The structure of GPU is
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quite different with single-core and multi-core CPUs [4]. It performs in a massively

parallel pattern with minimum communication between stream processors. As such

the design of parallel GA also needs to be adapted to the GPU architecture.

Automated path planning for robotic operators is highly desired in many appli-

cations. Path planning is an optimization problem with non-explicitly represented

objective function and multiple hard constraints. Because of the high degrees of

freedom (DOF) of robotic operators, the search spaces of the optimization problems

are extremely huge. Therefore designing a fast and effective GA-based path

planning algorithm becomes challenging.

1.1.2 Objectives

The objectives of this work include:

• Designing an efficient GPU-based genetic algorithm

• Implementing a GPU-enabled parallel genetic algorithm

• Developing an automated path planning system using GPU-based parallel GA

(GPUPGA) with fast convergence and good solution quality

1.1.3 Organization of the Chapter

The rest of the chapter is organized as follows: Sect. 1.2 presents the prior arts.

Firstly a comprehensive review of the concept and theories of GA is given. Then

commonly used parallel genetic algorithms will be introduced. Section 1.3 dis-

cusses about the GPU-based genetic algorithm. Detailed algorithm design and GPU

implementation will be discussed in this section. In Sect. 1.4, the application of the

GPUPGA algorithm in the path planning problem of robotic operators is presented

with graphic and statistical results. Conclusions and discussions are presented at the

end of the chapter in the final section.

1.2 Prior Arts

1.2.1 GA Study

GA is a class of combinatorial optimization algorithm first put forward by John

Henry Holland in the 1960s. It is described as a computational abstraction of

Darwinian biological evolution [3, 5]. Selection, crossover and mutation are the

three most important components in GA which are noted as genetic operators. The

2 P. Cai et al.



evolutionary procedure formed by specific designs of genetic operators is called the

“adaptive plan”.

Many types of genetic operator designs exist, and some are tested in different

applications. For crossover operators, the most commonly used are one point, two

point, multi-point and parameter based. Popular mutation strategies include single-

point mutation, multi-point mutation and parameter-based mutation. Major selec-

tion criteria include roulette wheel selection, rank selection [6, 7], tournament

selection [2] and so on. Different selection scheme will cause different selection

pressure in the population. Some of them assert higher pressure at start stage, and

others will increase pressures when the evolutionary process goes on.

One important component in the selection is calculating fitness values for

chromosomes (strings). This process is called fitness evaluation. The fitness func-

tion is actually the objective function of the optimization problem. It will directly

affect the chance of reproduction of chromosomes. Thus, it is the major guiding

force of the evolutionary direction of the population. For constrained problems,

constraints usually perform as part of the fitness function.

A genetic algorithm equipped with standard operators and selection schemes is

called a simple genetic algorithm (SGA). It usually has the following features [1, 2]:

• Binary bits

• Fixed length linear chromosomes, and

• With simple GA procedure

Parameter setting has substantial influence on the performance of SGA. These

parameters include the size of population, severity of selection, crossover rate and
mutation rate. The trade-off between the selection pressure and crossover rate [2] is
most important. If no beneficial crossover happens before the population being

conquered by a single chromosome, the process would stop before global conver-

gence. On the other hand, if crossovers happen too frequently, building blocks

(BB) [8, 9] will be easily destroyed and thus hinder the convergence.

1.2.2 Parallel GA (PGA) Study

Parallel genetic algorithm (PGA) is one kind of GA making use of the power of

parallel computing to achieve better performance. Major types of parallel GA

include master–slave parallel GA, coarse-grained parallel GA and fine-grained

parallel GA. Coarse-grained parallel GA divides the set of chromosomes into

multiple populations with minor communications. Parallelism is implemented

among subpopulations. In order to achieve shorter execution time, the sizes of

subpopulations need to be decreased, which have negative effects on the supply of

building blocks in the initial populations. Fine-grained parallel GA assigns topo-

logical structure to the single population and restricts global communications to

better fit parallel computational structures. Lower communication ability in

1 A GPU-Enabled Parallel Genetic Algorithm for Path Planning of Robotic Operators 3



populations hinders the spread of building blocks. Thus, the convergence speed of

fine-grained GAs is usually slower than MSPGA.

Master–slave parallel GA is a straightforward parallel version of serial GAs. As

the MSPGAs preserve the original procedure of serial GA, their behaviours are

more predictable. The master processor takes care of the overflow of the GA

process while handling simple components [10]. Functional parts where intensive

computation is required are pulled into the slave processor. The most typical

component handled by the slave processor is fitness evaluation where computations

like hard constraint evaluation, distance calculation and fitness calculation are done

[11]. Other operators like crossover and mutation may also be parallelized [12].

Researchers have started investigating the adaptation of parallel GAs in GPU in

recent years. Pospı́chal et al. [13] investigated the general GPU implementation of a

coarse-grained parallel GA. Feier et al. [14] applied the GPU coarse-grained PGA

in optimizing NP-complete problems. Jaros [15] implemented the algorithm in

solving the knapsack problem. In the field of hybrid PGAs, Munawar et al. [16]

implemented an adaptive resolution PGA in dealing with Minimization Linear

Programming (MINLP) problems and reported good results.

MSPGA is the most popular type of PGA investigated these years. Arora

et al. [17] discussed the GPU implementation of both binary-coded and real-coded

MSPGA and reported a significant speed-up. Oiso et al. [18] tested a steady-state

MSPGA for function optimization in GPU. Wang and Shen [19] applied a

GPU-based MSPGA in generating daily activity plans. Some researchers like

Fujimoto and Tsutsui [12] specified in the parallel design of single genetic operators.

1.3 GPU-Enabled PGA

1.3.1 GPU Fundamentals

GPUs are equipped with tremendous computational horsepower and high memory

bandwidth which can bring substantial speed-ups in a variety of applications

[20]. General purpose GPUs (GPGPUs) are a new generation of GPUs which is

aiming at handling more general, complex and intensive processing. GPGPU pro-

vides a complete functional set of operations which work on arbitrary length data. A

GPGPU contains several streaming multiprocessors (SMs) which can run hundreds

of threads concurrently. The SMs are equipped with caches and control units which

are shared by internal threads.

CUDA C [20] is a typical GPU accessing APIs designed by nVIDIA as an

extension of the standard C language. It allows programmers to allocate GPU

memories and run kernels on parallel threads in a C/C++ like style [4, 20]. A

variety of types of access to GPU memory is provided in CUDA C/C++. Global

memory, constant memory and texture memory lie in the global physical memory,

while shared memory resides inside SMs. Local memory and register memory are

only usable for the threads who allocated them.

4 P. Cai et al.



CUDA has a hierarchical thread structure reflecting the hierarchical hardware

architecture. Each launched kernel is handled by one thread grid. The thread grid

consists of an array or matrix of thread blocks, and the blocks contain a similar

matrix of threads.

1.3.2 GPU PGA Design and Implementation

We investigate the GPU parallelization of a master–slave parallel GA. The master

processor is the CPU and the slave processor is GPU. We aim to do the GA search

using a single CPU and a single GPU. The overall flow of MSPGA process is shown

in Fig. 1.1. Highly parallelized 3D collision detection is done in iterations. Thus, no

preprocessing (such as configuration space generation) is required for the

algorithm.

In the starting phase of an MSPGA, an initial population is firstly generated by

random approaches. Hard constraints are applied to the random generation process

to make all initial chromosomes within the feasible space. Then the MSPGA

proceeds into an evolutionary iteration loop where four functional components

are performed in sequence (Fig. 1.2).

The first procedure in the loop is to evaluate the fitness value of chromosomes

which are proportionally scaled into unified selection rates later. Next, a roulette

wheel selection operator is applied in the population. In the selection process,

chromosomes with higher fitness value have better chances to be pulled into the

mating pool for reproduction.

The mating pool is represented as indexes of chromosomes instead of actual

chromosomes. In order to achieve global communications in parallel processors, we

use a specially designed generating process (as denoted in Fig. 1.3). Firstly a CUDA

kernel is launched with kernel parameters specified as <<<1,N,1>>> where N is

the population size. A uniform random float number r2 [0, 1) is then generated in

each thread and is compared between the array of selection rates of chromosomes.

If the selection rate array is denoted by (c0, c1, . . ., cN� 1), then the task of threads is

to find the index i which satisfies ci� 1� r< ci. Here c� 1 is counted as zero. The

index generated by this process is then stored into the corresponding position in the

mating pool.

After mating pool data are settled, the crossover operator is applied immediately

(Fig. 1.4). The CUDA kernel parameters are specified as<<<N, L, 1>>>where

N is the population size and L is the chromosome length. In the GPU kernel, the j th

thread block Bj ( j 6¼ 0) handles a pair of chromosomes sij�1
, sij

� �
where ij stands for

the index in the j th position of the mating pool B0 is reserved for elitism. Data of the

two chromosomes are pulled into the shared memory of the block for future use.

Next, gene pairs of parents are assigned accordingly into the thread arrays. The

k th thread in the j th thread blocks retrieves gj� 1
k and gjk into its local memory. Then

the following work is the generation of the offspring gene from parent genes.

1 A GPU-Enabled Parallel Genetic Algorithm for Path Planning of Robotic Operators 5



Fig. 1.1 Overall flow of the

master–slave genetic

algorithm process

Fig. 1.2 Indication of the

procedure inside the

evolutionary iteration
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Several generation strategies can be applied. In this work, we select a better one

from the parents to be the offspring. After all gene positions in all threads are

determined, the kernel will terminate and the offspring remain in the GPU global

memory.

Fig. 1.3 GPU implementation details of mating pool generation

Fig. 1.4 GPU implementation details of the parameter-based crossover operator

1 A GPU-Enabled Parallel Genetic Algorithm for Path Planning of Robotic Operators 7



1.4 GPU-Enabled PGAApplication for Collision-Free Path

Planning

1.4.1 Collision Avoidance Path Planning

The chromosome structure of the GPUPGA for the path planning problem is

designed as a linear structure with each gene representing a configuration node.

Some operators have restrictions on neighbouring configurations. Some operations

are not allowed to happen simultaneously. Hence the final structure of the chromo-

some is an interrelated linear string.

For path planning optimization problems, collision avoidance performs as a hard

constraint. In our algorithm, this constraint performs as a part of the fitness function.

To make the collision avoidance constraint “hard”, the gradient of fitness function

along the collision violation should be large enough. Another component in the

fitness function would be the distance cost of the path which is the weighted sum of

the motional cost of all operations. Combining all the considerations, the fitness

function is written as:

f sið Þ ¼
c

Ni
,Ni > 0

c 1þ c

di

� �
,Ni ¼ 0

8><
>:

Where c is a constant scaling factor and di is the distance cost of the i th string.

The kernel parameters of the fitness evaluation kernel are written as<<<N, L,
1>>>. GPU implementation is shown in Fig. 1.5. Each chromosome in the

population is assigned into a thread block, while genes in the string are handled

by separate threads. Within each thread, continuous collision detection is done for

genes. A synchronized shared memory unit is used to count the number of collision

violations in the chromosome (wrote as Ni in the formula). This counted number is

further used in the fitness function. The kernel returns when the fitness values are

settled in the GPU global memory, and the values will be used to generate the

mating pool later on.

Another try to fulfil collision avoidance is through adding constraints to the

crossover operator. Collision violation can be taken into consideration when two

parent genes are compared. If one of the parent genes is colliding with the

environment, the non-colliding one will be chosen. By this approach, the survival

chances of invalid genes are largely reduced.
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1.4.2 Terminal Conditions

As GA is an optimization process with many random factors, it is hard to determine

the precise point of termination. The algorithm uses multiple clues to decide when

to terminate the search. These criteria [21, 22] include:

• When the iterations do not bring improvements for several consecutive steps

• When the best fitness value in the population reaches some user defined value

• When the latest optimal solution shows a satisfactory performance

1.4.3 Global Optimization

Unlike path planning algorithms such as the A* or potential field method, our

algorithm aims to achieve globally optimized solutions. To show that the designed

GPUPGA could achieve globally optimized solutions for path identification, we

build a site environment using CAD tools which contains eight boxes, three

cylinders, one cone and a Z-shaped road. A robot is designed to simulate a mobile

crane with 3 degrees of freedom for lifting jobs in industrial sites. All objects are

within the working area of the crane. The experiment is done on a PC with a

GeForce GTX 660 graphic card and an Intel i7-3770 CPU. It takes 31.5 s to achieve

the result shown in Fig. 1.6.

Fig. 1.5 GPU implementation details of the fitness evaluation process
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Fig. 1.6 The automated planning results for the lifting job of a mobile crane. The nine snapshots

stand for the nine configuration steps in the final path. The result is done within an execution time

of 31.5 s. Parameters of the search are set as: population size-50, chromosome length-5, mutation

rate-25 % and crossover rate-75 %

10 P. Cai et al.



1.4.4 Performance

To test the performance of the algorithm, we used four plant models with various

complexities. The least complex one contains 48 triangles, while the most complex

one contains 104,202 triangles. Here we estimate the CPU time of the algorithm by

multiplying the execution time with the number of parallel cores. It would be an

upper bound of the actual CPU time. The results are shown in Table 1.1 and

Fig. 1.7.

From Fig. 1.7, we can see that, for environments with different numbers of

triangles, the execution time is similar. When considering the average execution

time and CPU time, they are actually fast decreasing when triangle number

increases. The result shows that the algorithm has good scalability and is highly

suitable for complex environments.

Table 1.1 Execution time in CPU and GPU for plants with various complexities

Plant 1 Plant 2 Plant 3 Plant 4

Estimated CPU execution

time

30 s with

960 cores

31.5 s with

960 cores

32 s with

960 cores

34 s with

960 cores

Triangle number 48 1,342 34,791 104,202

Estimated CPU time per

triangle

600 s 22.53 s 0.88 s 0.31 s

Execution time (wall time)

per triangle

625 ms 23.5 ms 0.9 ms 0.32 ms

Fig. 1.7 The data chart for execution times for plant models
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Conclusions

Contributions
A GPU implementation scheme of MSPGA is designed in this chapter which

considers the hardware architecture of GPUs. The algorithm parallelizes four

functional components in GA including fitness evaluation, mating pool gen-

eration, crossover and mutation. The GPU MASPGA algorithm is further

tuned to solve the path planning problem by applying proper chromosome

structure, collision detection and termination criteria.

The algorithm manages to identify global optima for path planning prob-

lems in random 3D environments. It is able to provide a clear and zigzag-free

path with high operability for human operators. The algorithm is fast and has

promising potential in further speed-up.

Limitations
The fast performance of GPU hardware is still not fully exploited. Balance

among different memory types needs to be further analysed to reach a

maximum use of the memory bandwidth. Communication between the CPU

and GPU is still necessary in the algorithm which may limit the speed-up of

the parallelization.

Future Improvements
To further improve the performance and solution quality of the GPUMAPGA

algorithm, we will optimize the program design in a more GPU-friendly style

taking full consideration of the memory usage and multiprocessor occupa-

tion. Selection and crossover operators will be improved to enable more

effective search and higher convergence speed.

Acknowledgements The authors would like to express their sincere thanks to those who help this

work in one way or another.
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Chapter 2

Real-Time Deformation of Constrained

Meshes Using GPU

Alexandre Kaspar and Bailin Deng

Abstract Constrained meshes play an important role in free-form architectural

design, as they can represent panel layouts on free-form surfaces. It is challenging

to perform real-time manipulation on such meshes, because all constraints need to

be respected during the deformation while the shape quality needs to be maintained.

This usually leads to nonlinear constrained optimization problems, which are

challenging to solve in real time. In this chapter, we present a GPU-based shape

manipulation tool for constrained meshes, using the parallelizable algorithm pro-

posed in Deng et al. (Computer-Aided Design, 2014). We discuss the main chal-

lenges and solutions for the GPU implementation and provide timing comparison

against CPU implementations of the algorithm. Our GPU implementation signifi-

cantly outperforms the CPU version, allowing real-time handle-based deformation

for large constrained meshes.

2.1 Introduction

With the advances in computer-aided design tools, complex free-form shapes are

becoming more and more popular in architectural design nowadays. While digital

models can be easily created using a computer, the construction of such shapes

remains a challenge, due to the limitation of fabrication technologies. To realize

free-form architectural designs at a reasonable cost, the design surfaces usually

need to be decomposed into panels of simple shapes that facilitate manufacturing.

This process is called rationalization, which amounts to approximating the

NURBS-based design surface using a set of panels subject to requirements such

as approximation tolerance, panel types, aesthetics of panel layouts, etc. Rational-

ization usually involves nonlinear optimization with a large number of variables

and is therefore computationally expensive [1].
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From a designer’s point of view, it is important to explore different design

shapes and their corresponding panel layouts. One possible way is to modify the

NURBS design and perform rationalization for each new shape. Due to the heavy

computational cost of rationalization, it is time-consuming to explore designs via

this approach. An alternative approach is to directly manipulate the panel shapes

and layouts while respecting the shape requirements for panel types and

maintaining the aesthetics of the overall shape. In this way, the user only explores

panel layouts that satisfy all the requirements, with intuitive feedback about what

modifications are possible under the given requirements. Such fabrication-aware
shape exploration methods for free-form architecture have been a popular research

topic recently [2–7].

Usually, a panel layout can be represented by a polygonal mesh, with mesh faces

representing the panels and mesh edges representing the panel boundaries. The

shape requirements for panel layout induce geometric constraints for mesh ele-

ments. For example, a layout of planar panels corresponds to a polygonal mesh

where the vertices of each face are required to be coplanar (see Fig. 2.1). Therefore,

manipulating the panel layout reduces to deforming the mesh while satisfying

certain geometric constraints and maintaining the shape quality. This usually

leads to a nonlinear constrained optimization problem for mesh vertex positions.

Due to the difficulty of the optimization, it is a challenging task to perform real-time

manipulation, especially for large meshes.

Bouaziz et al. [3] proposed a general framework for handle-based deformation

of meshes subject to soft constraints, formulated as a nonlinear least-squares

problem. Utilizing projections of individual mesh elements onto their feasible

configurations, they propose an iterative solver that alternates between global linear

system solving and local mesh element projections. The projections are indepen-

dent and can be executed in parallel, thus achieving significant speedup on multi-

core processors. When run on a multi-core CPU, the method achieves interactive

results for meshes with about 1K vertices, but is still unable to handle large meshes.

Recently, this method was extended in [8] to allow both hard and soft constraints.

The proposed numerical solver consists of a series of simple subproblems similar to

those in [3], enabling speedup from parallelism. In this chapter, we present an

implementation of the method in [8] on GPU using CUDA, which provides many

more computational cores than CPU. By carefully optimizing for performance, our

implementation allows real-time deformation of constrained meshes with up to

20 K vertices and 20 K constraints.

2.1.1 Related Work

Besides [3] and [8], other handle-based deformation methods for constrained

meshes have been developed in recent years. Zhao et al. [5] extended the shape

space exploration approach in [2], using curve handles to control target shapes.

Vaxman [4] proposed a method to deform polyhedral meshes while keeping their
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faces planar, using affine transformations of mesh faces. The computation reduces

to solving a linear system for mesh vertex positions, allowing real-time deforma-

tion. The method only works for polyhedral meshes (meshes with planar faces).

Moreover, since only affine transformations are allowed, only a subset of the

feasible deformations are considered, which limits the degree of freedom for

shape control. Poranne et al. [6] provided an optimization approach to deform

polyhedral meshes, not limited to affine transformations of faces. The deformation

is computed through an alternating least-squares approach similar to [3]. However,

only face planarity constraints are considered by the method. Deng et al. [7]

proposed a framework to deform meshes under hard constraints, with a focus on

computing local deformations. But their framework does not consider soft con-

straints. On the contrary, the deformation method in this chapter considers general

shape constraints for meshes and allows both soft and hard constraints, providing

more flexibility in shape manipulation.

Recently, computational design shape exploration tools have also been proposed

for other types of architecture, such as reciprocal frame structures [9] and building

layouts [10]. As these problems require other representations than polygonal

meshes, they cannot be handled by our method.

2.1.2 Overview

The rest of the chapter is organized as follows. Section 2.2 briefly presents the

method in [8]. Section 2.3 gives an overview of the implementation of our system.

Section 2.4 provides more details about the CUDA implementation. Finally, results

are presented in Sect. 2.5, followed by a discussion about limitation and future work

in Sect. 2.6. The final section concludes this chapter.

Fig. 2.1 Panel layouts can be represented by polygonal meshes subject to geometric constraints.

Left: Yas Viceroy Hotel in Abu Dhabi, designed by Asymptote Architecture (image courtesy of

Asymptote Architecture). Right: a quad mesh representing the hotel facade, with the constraint that

the vertices of each face lie on a common plane. This constrained mesh represents a layout of

planar quadrilateral panels on the facade
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2.2 Overview of the Method

In this section, we give a brief overview of the problem formulation in [8], as well

as its numerical solution. Interested readers are referred to [8] for more details.

2.2.1 Problem Formulation

We consider polygonal meshes as a representation of panel layouts for free-form

architectural surfaces. The mesh is deformed by changing its vertex positions while

fixing its topology. During deformation, the vertex positions are subject to certain

soft constraints and/or hard constraints. To control the deformation, a user specifies

target positions for some vertices using handles that are freely movable. When the

handles are moved, the mesh vertex positions are updated such that:

• The new mesh satisfies the soft constraints as much as possible and satisfies the

hard constraints strictly.

• The handle vertices are close to their target positions.

• The non-handle vertices stay close to their original positions.

• The vertex deformation field is smooth across the mesh.

With a given topology, the shape of a mesh is determined by its vertex positions

p1,p2, . . .,pN2ℝ3, where N is the number of vertices. A shape constraint involving

m vertex positions pi1 ,pi2 , . . . ,pim can be represented by the condition

pi1 ; . . . ; pim
� � 2 C, where C � ℝ3m is the feasible set. We assume that the constraint

is translation invariant, meaning that applying a common translation to all involved

vertices does not change the status of constraint satisfaction (which is the case for

most shape constraints relevant to free-form architecture). To facilitate numerical

solution, we introduce auxiliary variables yi1 , yi2 , . . . , yim 2 ℝ3 and rewrite the

constraint as

yi1 . . . yim

� �
2 C,

pj �mean pi1 ; . . . ; pim
� � ¼ yj, for j ¼ i1, . . . , im;

(
ð2:1Þ

where mean pi1 ; . . . ; pim
� � ¼ pi1 þ � � � þ pim

� �
=m is the barycenter of pi1 , . . . , pim :

Note that the second constraint in (2.1) is a linear condition which can be written in

matrix form ACp ¼ yC; where vector p2ℝ3N packs all vertex positions, vector yC
2 ℝ3m packs the auxiliary variables, and matrix AC 2 ℝ3m�3N . For each soft

constraint with feasible set S, we introduce auxiliary variables yS 2 S to derive

an equivalent condition ASp ¼ yS . Then the constraint violation can be measured

with a function FS ¼ ASp� yS
�� ��2

2
. Similarly for each hard constraint with

feasible set ℋ, we introduce auxiliary variables yℋ2ℋ to derive its equivalent
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condition Aℋp¼ yℋ. Given Ns soft constraints and Nh hard constraints with

feasible sets Sj j ¼ 1, . . . ,Nsj� �
and {ℋk|k¼ 1, . . .,Nh}, respectively, the vertex

positions p are computed by the following optimization:

min
p, y

whFhandle þ wcFclose þ wfFfair þ
XNs

j¼1

ws
j FSj

þ
XNs

j¼1

σSj
ySj

� �
þ
XNh

k¼1

σℋk
yℋk

� �
s:t: Bp ¼ yH:

Here y ¼ yS1
; . . . ; ySNs

; yℋ1
; . . . ; yℋNh

h i
packs all auxiliary variables for soft

constraints and hard constraints, FSj
is the soft constraint violation function

introduced above, and side condition Bp¼ yH collects all linear relations from

the equivalent conditions of hard constraints, with B ¼ AT
ℋ1

; . . . ;AT
ℋNh

h iT
and

yH ¼ yT
ℋ1

; . . . ; yT
ℋNh

h iT
. Functions Fhandle,Fclose,Ffair measure respectively the

distance from handle vertices to their target positions, the distance from

non-handle vertices to their original positions, and the smoothness of the vertex

deformation field based on its Laplacian:

Fhandle ¼
X
i2Γ

pi � tik k22, Fclose ¼
X
j=2Γ

pj � p0j

��� ���2
2
, Ffair ¼ L p� p0

� ��� ��2
2
;

where Γ is the index set for handle vertices, ti is the target position for vertex i, p
0
j is

the original position for vertex j, p0 packs the original positions for all vertices, and

L is the Laplacian matrix. The indicator function σSj
ySj

� �
makes sure ySj

2 Sj in

the solution, with

σSj
ySj

� �
¼ 0, if ySj

2 Sj,

þ1, otherwise:

	

Indicator function σℋk
yℋk

� �
is defined in the same way. wh,wc,wf and wSj

are

positive weights trading off different terms. The optimization problem can be

written in matrix form as

min
p, y

Dp� rk k22 þ wf L p� p0ð Þ�� ��2
2
þ
XNs

j¼1

ws
j ASj

p� ySj

��� ���2
2

þ
XNs

j¼1

σSj
ySj

� �
þ
XNs

j¼1

σℋk
yℋk

� �
,

s:t: Bp ¼ yH;

ð2:2Þ
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where

D ¼
d1I3

⋱
dNI3

2
4

3
5, r ¼

r1
⋮
rN

2
4

3
5;

with I3 being the 3� 3 identity matrix, and

di ¼
ffiffiffiffiffiffi
wh

p
if i 2 Γffiffiffiffiffi

wc
p

otherwise
, ri ¼

	
diti if i 2 Γ
dip

0
i otherwise

	
for i ¼ 1, . . . ,N:

2.2.2 Numerical Solution

2.2.2.1 Alternating Minimization

Without hard constraints, problem (2.2) reduces to minimizing quadratic terms with

indicator functions. It is solved by alternating between two steps until convergence:

1. Projection: fix p and minimize over y.

2. Linear solve: fix y and minimize over p.

The minimization in step 2 simply amounts to solving a symmetric positive

definite (SPD) sparse linear system, hence the name. For step 1, the problem is

separable for auxiliary variables from different constraints and is solved in parallel.

Specifically, we solve a set of independent subproblems, each of which is associ-

ated with one constraint and has the following form:

min
yC

yC � x
�� ��2

2
þ σC yC

� �
;

where C is the feasible set and yC are the auxiliary variables for the constraint. The

solution is the closest projection from x ontoC, which we call the proximal operator
of C for input data x. For many constraints, we can derive the closed-form

representation of the proximal operator. For example (see [3] for details):

• Coplanarity. This constraint requires n> 3 vertices to lie on a common plane. It

can be used to model planar panels, for example, by requiring the vertices of each

mesh face to be coplanar (see Fig. 2.1). The proximal operator finds n coplanar

points y1, . . ., yn2ℝ3 closest to the input data x1, . . ., xn2ℝ3. The solution is yi
¼ xi � n n � xi � xð Þ½ � i ¼ 1, . . . , nð Þ; where x ¼ mean x1; . . . ; xnð Þ and n is the

left singular vector of matrix [x1, . . ., xn] for the smallest singular value.

• Regular polygon. This constraint requires a face with n� 3 vertices to be a

regular n-gon. It can be used to induce shape regularity of mesh elements (see

Fig. 2.2). The proximal operator finds a regular n-gon closest to a polygon with

vertices x1, . . ., xn2ℝ3. This can be done by computing the translation, rotation,

and scaling of a predefined regular n-gon to fit the target polygon, using the

algorithm in [11].
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2.2.2.2 Augmented Lagrangian Method

When dealing with hard constraints, extra care has to be taken to ensure that the

linear side constraints in problem (2.2) are satisfied. This is done using the aug-
mented Lagrangian method (ALM) [12], which searches for a saddle point of the

following augmented Lagrangian function:

ℒ p; y; λ; μð Þ ¼ F p; yð Þ þ λTh p; yð Þ þ μ h p; yð Þk k22; ð2:3Þ

where F(p, y) is the target function in (2.2), h(p, y)¼Bp� yH is the residual of side

constraints in (2.2), λ is a vector of dual variables, and μ> 0 is a penalty parameter.

The solver iteratively updates p, y, λ and μ until convergence. In each iteration, new

values p̂ , ŷ , λ̂ , μ̂ are computed from current values p, y, λ, μ using the following

steps:

1. Primal update: ðp̂ , ŷ Þ ¼ minp,yℒ p; y; λ; μ
� �

.

2. Dual update: λ̂ ¼ λþ μh ; p̂; ŷð Þ.
3. Penalty update: choose μ̂ � μ.

The problem in step 1 has a similar structure as the one from Sect. 2.2.2.1 and is

solved in the same way. Specifically, it alternates between two steps:

1. Projection step with proximal operator evaluations:

Fig. 2.2 Handle-based deformation of a constrained mesh subject to the soft constraint that each

face is a regular polygon. Left: the initial mesh with the handles (shown in red and blue) attached to
the boundary vertices and four vertices in the middle. The handles for the middle positions are

moved to new target positions (shown in red). Right: the mesh deforms according to the handle

positions while satisfying the soft constraints
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min
ySj

ySj
� ASj

p

��� ���2
2
þ σSj

ySj

� �
, j ¼ 1, . . . ,Ns,

min
yℋk

yℋk
� Aℋk

pþ λℋk

2μ

� �����
����
2

2

þ σℋk
yℋk

� �
, k ¼ 1, . . . ,Nh;

where λℋk
collects the components of λ in the same positions as yℋk

in yH.

2. Solving a sparse SPD system for p:

DTDþ wfL
TLþ μBTBþ

XNs

j¼1

ws
j A

T
Sj
ASj

 !
p

¼ DTrþ wfL
TLp0 þ μBT yH � λ

2μ

� �
þ
XNs

j¼1

ws
j A

T
Sj
ySj

:

ð2:4Þ

The primal update step is the most time-consuming part of the solver. We will

not go into the details of steps 2 and 3, but refer the readers to [8] instead. Note that

for a given problem, the linear system matrix in (2.4) only changes according to the

penalty parameter μ. The penalty update scheme in [8] only generates a predefined

set of values for μ, so we can precompute all linear system matrices that appear in

(2.4).

2.3 General Implementation Strategies

We developed an interactive handle-based shape manipulation system for

constrained meshes, based on the algorithms presented in the previous section.

For an initial mesh, the user selects a set of handle vertices and specifies their target

positions (which we call handle positions) by dragging 3D manipulators. Whenever

the manipulators are moved, the system deforms the mesh according to the new

handle positions, providing immediate feedback to the user (see Fig. 2.2 for an

example).

Figure 2.3 shows the architecture of our system. Here we distinguish between the

work of the threads from the user side (user interface, mouse and keyboard

interaction, mesh display, etc.), which we gather as the user module, and the

work done within a single thread dedicated to a GPU-based ALM solver, which

we call the optimization module. The latter loops over three main logical steps:

1. Input phase: transfer current handle positions to GPU.

2. Optimization phase: iterate the ALM steps on GPU, until some output conditions

are satisfied.

3. Output phase: read back updated vertex positions from GPU.

To run the ALM solver on GPU, we store on the GPU all the optimization

variables, as well as other auxiliary data [such as matrices ASj
,B,D and vector r in
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formulation (2.2) and the linear system matrices in problem (2.4)]. Many of these

data remain constant during optimization and only need to be initialized once at the

beginning. Thus, in the input phase, we only need to transfer the latest handle

positions to the GPU to update the problem specification.

As an iterative solver, the optimization phase requires initial values of the

variables. To initialize the current optimization phase, we always use the resulting

variable values from the previous optimization phase. The motivation is that when a

Fig. 2.3 The architecture of our GPU-based implementation

Fig. 2.4 The update of the handle data on GPU is done using a kernel that fills vector r according

to the handle position vector (on GPU) and a precomputed index map
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user drags the handles continuously, the handle positions used in two consecutive

optimization phases are close to each other. Thus, their solutions will be close to

each other as well, making the solution from the previous phase a good guess for the

current solution.

Depending on the data, the optimization phase might take a large number of

iterations to fully converge. To keep the process interactive, we allow switching

from optimization phase to output phase even if it is not fully convergent yet. When

the handles are dragged, they are likely to be moving at the same time as the ALM

solver is running. Rather than solving the current problem to a very high accuracy, it

is more important to output the current result and start a new optimization phase

with the new handle positions, so that the mesh shape follows the handle positions

smoothly and shows how the shape reacts to handle position changes. Even if the

output mesh shape is not the exact solution, it is still a good approximation because

the solver usually converges quickly to an approximate solution [13]. Therefore, we

switch from optimization phase to output phase, if one of the following conditions

is satisfied:

1. The optimization phase fully converges.

2. The number of iterations within the optimization phase exceeds a limit Mmax.

The output phase is responsible for reading back new vertex positions in order to

update the mesh data structure in host memory, which is then used to update the

mesh display. Both operations (vertex readback and mesh display update) involve

data transfer between CPU and GPU. To avoid unnecessary transfer while keeping

the process interactive, we only read back vertex positions if the elapsed time

(in milliseconds) from the last readback is larger than a threshold ε. With such a

strategy, the maximum frame rate for mesh display is 1, 000/ε FPS.
After the output phase, depending on the availability of new handle positions and

the convergence of the optimization phase, we are in one of the following cases:

• If there are new handle positions, transfer them to GPU and start a new

optimization phase.

• Otherwise, if the previous optimization phase was not fully convergent, resume

the optimization.

• Otherwise, wait for new handle positions.

2.4 CUDA Implementation Details

Our GPU implementation was done with CUDA. We targeted NVIDIA GeForce

GTX 580 [14], which runs under the Fermi architecture [15, 16]. It has 16 streaming

multiprocessors providing a total of 512 cores. Each of them has 64 kB of memory

available between the L1 cache and the shared memory. The rest of this section will

present the challenges and specific implementation details.
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2.4.1 Kernels

We implemented custom kernels for two critical operations: updating the handle

data and evaluating the proximal operators.

2.4.1.1 Handle Update

When starting an optimization phase with new handle positions, we need to update

the GPU memory storage of vector r in formulation (2.2). With the number of

handle vertices being usually much smaller than the number of vertices, we first

transfer the handle positions onto the GPU as a contiguous vectorVh2ℝ3 |Γ|. Then a

custom kernel updates the entries of r according to Vh, using a precomputed index

map (see Fig. 2.4). Note that the index map remains unchanged during optimiza-

tion, since neither the choice of handle vertices nor the mesh topology is allowed to

change.

Another strategy would be to transfer only the handle positions that are being

changed by the user. This requires a dynamic index map for writing to vector r, as

well as checking which handles are being moved. To simplify implementation, we

did not use such strategy.

2.4.1.2 Proximal Operator Evaluation

As we saw in Sect. 2.2, proximal operators are responsible for updating auxiliary

variables. Each type of constraint corresponds to one proximal operator, which

involves a predefined set of operations. For different constraints of the same type,

their proximal operator evaluation is independent since the involved auxiliary

variables do not overlap. Such characteristics make it suitable to evaluate proximal

operators using custom CUDA kernels. Specifically, we implement one kernel for

each type of constraint, within which each thread handles one constraint.

For high performance, we need to ensure coalesced memory access. Thus, we

store the auxiliary variables y in formulation (2.2) into a contiguous array in global

memory, where the components corresponding to the same kernel reside in a

contiguous region. The input data for proximal operators are of the same dimension

as y, and we store them with an array in global memory using the same layout as

y (see Fig. 2.6 for an example).

Another performance consideration is the grid and block sizes. We follow [17]

which suggests a number of threads per block:

1. Dividing the maximum number of threads per SM, i.e., 1,536 for Fermi

2. At least 32 threads per block, i.e., the warp size

3. At most 3 blocks per SM, so as to maximize occupancy (and thus at least 1,536/

8¼ 192 threads per block)
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Since we do not know the relation between different types of kernels, we chose

to simply saturate them by using a block size of 512 threads, which proved to be

sufficient for our need according to experiments.

Coplanarity Constraint

Because of specific features and limitations of GPU, additional care needs to be

taken when implementing some proximal operators. Here we use the vertex copla-

narity constraint as an example to show the challenges and our solutions. Copla-

narity constraint is one of the most important shape constraints in free-form

architecture. It can be used to model planar panels [18] (Fig. 2.1), as well as planar
webswhich consist of curve elements of planar shapes [19] (Fig. 2.5). For input data

x1, . . ., xn2ℝ3, a key step of the proximal operator is a singular value decomposi-

tion (SVD) to extract the left singular vector of M¼ [x1, . . ., xn]2ℝ3� n for the

smallest singular value (see Sect. 2.2.2.1).

Due to the memory layout requirement mentioned before, the global memory

storage of x1, . . ., xn is already a column-major representation for matrixM. Thus, a

naı̈ve approach is to implement an SVD solver that operates directly on the global

memory storage of M. However, this might lead to excessive access to global

memory, lowering the performance significantly [20].

To reduce global memory access, we implemented the kernel as follows. First,

note that the target singular vector is the same as the right singular vector of 3� 3

matrix MMT¼∑ n
i¼ 1xix

T
i for the smallest singular value. Thus, we create matrix

MMT on local memory, by reading each xi from global memory and summing up

xix
T
i . Afterwards, we perform SVD on matrix MMT. In this way, each global

memory element of M needs to be accessed only once for computing the singular

vector. Moreover, this approach only performs SVD on a 3� 3 matrix. For copla-

narity constraints involving a large number of vertices, this significantly reduces the

Fig. 2.5 For a regular triangle mesh (i.e., each interior vertex has valence 6, and each boundary

vertex has valence no larger than 6), there exist three families of edge polylines (shown in blue).
Being a planar web requires each polyline to be planar, namely, all vertices on the polyline lie in a

common plane
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matrix storage on local memory compared to the original matrix M. Such compact

storage helps to reduce register spilling and L1 cache misses, which improves the

performance of the kernel. Furthermore, with this approach, we are able to deal with

coplanarity constraints with different number of vertices using a single kernel, by

precomputing an array that stores for each coplanarity constraint the following

information: (1) the number of vertices and (2) the address of input data. Using a

single kernel helps to increase parallelism for the implementation, resulting in

improved throughput of the system. Figure 2.6 provides a schematic diagram for

the kernel of coplanarity constraints.

Fig. 2.6 Schematic diagram for the proximal operator kernel of coplanarity constraints. Input data

x and output data y are stored in two contiguous arrays, respectively. Within each array, data

associated with a thread reside in a contiguous region. Our implementation is able to handle

coplanarity constraints for different number of vertices within a single kernel. Here N-planarity
refers to a coplanarity constraint for N vertices
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For 3� 3 SVD, we implemented a simple SVD solver based on [21]. There

exists a branch-free 3� 3 SVD solver [22] that might provide higher performance,

but our simple implementation turned out to be sufficient.

2.4.2 Sparse Linear Algebra

In general, all matrices in formulation (2.2) are sparse, while the vectors are all

dense. Therefore, the solver requires many sparse matrix vector multiplications

(SpMV). For these operations, we used the Cusp library [23] which provides an

easy C++ interface for sparse linear algebra with CUDA. Among the sparse matrix

formats provided by Cusp, we chose the hybrid format (ELL +COO) as it provides

faster linear operations for general unstructured sparse matrices [24].

Since we are targeting large meshes, we solve the sparse linear system (2.4)

using a conjugate gradient (CG) solver provided by Cusp. To warm-start the solver,

we always use the previous CG solution as initial value for the current CG solving.

Typically, the right-hand side of system (2.4) changes gradually within the ALM

solver; thus, two consecutive solutions of problem (2.4) do not deviate significantly

from each other, making this warm-starting strategy a reasonable choice. Alterna-

tively, direct solvers based on Cholesky factorization can be more efficient. On the

other hand, they often require more memory storage, because the sparsity of the

linear system matrix is not preserved by its Cholesky factors. This could be an issue

for GPU, since typically the amount of GPU memory is smaller than the host

memory. Thus, in our implementation, we opted for a simple CG solver.

2.5 Results

In this section, we provide some performance results of our GPU-based constrained

mesh deformation method and compare them against the CPU version. The CPU

version follows the same optimization workflow as described in Sect. 2.3, except

that all the data reside in the host memory so there is no need to transfer handle

positions in input phase and read back vertex positions in output phase. For both

CPU and GPU versions, the frame rate was limited to 30 FPS (i.e., the minimum

elapsed time between two vertex readback operations is 33.3 ms), and the maxi-

mum number of iterations in optimization phase was set to Mmax¼ 50.

Both CPU and GPU versions were implemented for double-precision floating

point data. We used two CPU implementations with different solvers for system

(2.4): one uses CG, and the other uses a direct solver based on Cholesky factoriza-

tion. Both CPU implementations reduce system (2.4) into three smaller systems for

the x, y, z coordinates of the vertices, respectively, with the same system matrix

[3]. This allows the three coordinates of each vertex to be solved in parallel. The

CPU version utilized OpenMP for the parallelization of proximal operator evalua-

tion and linear system solving and used the Eigen library [25] for linear algebra
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operations. For the CG solver on both CPU and GPU, we set the maximum number

of iterations to 100 and the tolerance for the 2-norm ratio between the residual and

right-handle side to 1� 10� 6. The CPU and GPU implementations were run on a

PC with an NVIDIA GTX 580 and an Intel Core i7 870 with four cores.

For comparison, each implementation was run with the same set of meshes and

constraints. Since the optimization phase spends most of the running time on

proximal operator evaluation and linear system solving, we focused the perfor-

mance comparison on these two steps. Thus, we only used soft constraints in our

experiments, so that the optimization phase alternated between proximal operator

evaluation and linear system solving. Figures 2.7 and 2.8 show the meshes used in

our experiments, with the configuration of meshes and their constraints listed in

Fig. 2.7 The first sets of models with their configuration and output illustrations
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Table 2.1. Here the initial mesh in Roof2 is a subdivided version of the initial mesh

in Roof1, while Lilium1 and Lilium2 have the same initial mesh shape under

different constraints. The coplanarity constraints (for planar faces and planar

web) are applied to a face or a polyline only if it has more than three vertices,

while the constraints of regular polygons are applied to all faces of a mesh.

For each mesh, some boundary vertices and interior vertices were chosen as

handle vertices, with their handle positions shown in blue and red, respectively. In

each experiment, the red handles were moved to trigger mesh deformation.

Fig. 2.8 The second sets of models with their configuration and output illustrations
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Table 2.2 shows the average elapsed time between two entries to the output

phase, which we refer to as average frame time. A system with average frame time

of α milliseconds can achieve an average frame rate up to 1, 000/α FPS if the frame

rate is not limited. Thus, smaller average frame time indicates more interactive

result. We can see that even for a mesh with 80K vertices and 79K constraints, our

GPU implementation achieves a frame rate of 9 FPS, while the frame rates for CPU

implementations are much lower than 1 FPS. For a smaller model with about 1K

vertices and 1K constraints, our GPU implementation can potentially achieve a

frame rate of over 300 FPS, well beyond the specified upper limit. The comparison

on average frame time shows that our GPU implementation gained significant

speedups with respect to the CPU implementations.

The accompanying video shows the user interaction for Roof2. We can see that

due to the large number of vertices and constraints, the CPU implementations failed

to respond quickly to handle position changes. On the other hand, the GPU

implementation remains interactive, leading to more intuitive shape manipulation.

Finally, Table 2.3 gives the timing ratio between input phase (input), proximal

operator evaluation (projection), linear system solving (CG), and output phase

(output) for a typical interaction session on GPU. It can be seen that linear system

solving spent the largest portion of time.

Table 2.1 Configurations for meshes shown in Figs. 2.7 and 2.8

Reference label Vertices Faces Constraint type Handles

Roof1 20,464 19,712 Planar faces 1,505

Roof2 80,352 78,848 Planar faces 3,012

Lilium1 3,504 3,505 Regular polygon faces 100

Lilium2 3,504 3,505 Planar faces 100

Skyscraper 1,517 2,884 Planar web 5

Snale 1,092 1,020 Planar faces 143

Yas 1,085 976 Planar faces 221

Table 2.2 Average frame

time for different

implementations
Mesh

Average frame time [ms]

CPU CG CPU Cholesky GPU CG

Roof1 2,159.43 791.03 29.32

Roof2 14,965.90 3,842.25 107.20

Lilium1 638.45 132.84 17.82

Lilium2 210.34 43.99 14.01

Skyscraper 119.77 279.12 3.92

Snale 115.29 63.78 23.89

Yas 94.64 52.45 3.04
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2.6 Limitation and Future Work

In our system, the linear system solving is the bottleneck of performance. This is

due to the well-known fact that SpMV involves irregular data access and thus

achieves lower performance compared to dense operations on GPU. This motivates

us to explore more advanced GPU SpMV techniques such as [26] to further

optimize the performance. Another option is to adapt Cholesky-based direct solvers

to GPU, as direct solvers outperformed CG for CPU implementations in many of

our experiments.

A more ambitious improvement would be a hybrid GPU/CPU optimization.

Currently, the CPU is only used for managing the GPU, and it is mostly idle during

the optimization. Thus, we plan to investigate workload distribution between CPU

and GPU to gain higher performance.

Our implementation requires frequent readback of vertex positions from GPU in

order to update the display, which incurs some performance loss. One of our future

plans is to directly update mesh display on GPU using vertex buffer object, thus

totally avoiding data transfer between CPU and GPU in the output phase.

Finally, our system runs on CUDA-enabled GPUs only. We intend to develop an

OpenCL-based system to make the algorithm available for a wider range of

hardwares and platforms and to compare the performance between different GPUs.

Conclusion

In this chapter, we present an efficient handle-based constrained mesh manip-

ulation system implemented on GPU. The mesh manipulation is formulated

as a constrained optimization problem, which is decomposed into simple

subproblems that can be solved in parallel. Utilizing the computational

power of GPU, we achieve significant speedup of constrained mesh defor-

mation compared to CPU implementations, as shown by our experiments on

meshes with different sizes and constraints. On the other hand, linear system

solving becomes the performance bottleneck, which provides an interesting

avenue for future research.

Table 2.3 Ratio of running time in each part of the optimization phase on GPU

Mesh

% of the time spent in GPU optimization phase

Input Projection CG Output

Roof1 0.34 4.27 88.29 7.10

Roof2 0.00 3.32 86.81 9.87

Lilium1 0.00 0.21 98.01 1.78

Lilium2 0.04 0.16 97.22 2.59

Skyscraper 0.00 0.85 98.43 0.72

Snale 0.01 0.04 99.89 0.07

Yas 0.28 0.74 98.71 0.28
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Chapter 3

GPU-Based Real-Time Volume Interaction

for Scientific Visualization Education

Yanlin Luo, Zhongke Wu, Zuying Luo, and Yanhong Luo

Abstract In this chapter, we introduce the interaction methods of our self-

developed VisEdu as a visual teaching system to teach scientific visualization

courses at Beijing Normal University. VisEdu provides real-time visualization

and interaction of midsize CT datasets at interactive frame rates via CUDA-based

volume rendering. We describe various rendering methods through plane,

superquadric, and virtual lenses tools which offer different views of the same

dataset. It aids the students to better understand the feature of virtual contents and

the core algorithms of the scientific visualization course such as volume rendering,

volume interaction, etc.

Keywords Scientific visualization • Visual teaching system • CUDA-based vol-

ume rendering • Transfer function • Volume interaction

3.1 Introduction

Now scientific visualization courses have been taught at universities around the

world. It is becoming an important part of the curriculum in a number of disciplines.

It mainly studies the computational methods for converting and exploiting visual

information that is easy to be understood from scientific data. At Beijing Normal

University, we offer the scientific visualization course for several years. This course

teaches the fundamentals of scientific visualization, the main concepts and algo-

rithms of visualization techniques, which covers some topics including the visual

programming techniques, volume rendering and isosurfacing, volume illustration,

volume interaction, vector and tensor fields’ visualization, etc.
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Among those course contents, volume rendering-related topics take the most of

time. At first the Visualization Toolkit (VTK) consisting of a C++ class library was

used in assignments or teaching, but it is not visual system for easy study. The

students began to use our self-developed visual teaching system VisEdu to build

their visualizations since 2011. VisEdu integrates our new research results espe-

cially on volume rendering and volume interaction. Because of the limited space,

we only describe its interaction method in this chapter.

Volume rendering has been an active area of research for few years. Much work

concentrate on the direct rendering of complete volumes, but that process has

traditionally been very slow and is thus used to obtain final images, not to perform

interaction.

Volume interaction has instead usually been a process of finding clever ways to

abstract something meaningful or simplify the datasets into something more rapidly

displayable. Recent developments exploit the programmability features and speed

of the specialized GPU, allowing the system to achieve interactive speed on an

ordinary desktop.

The motion of virtual content via interaction can cause our eye reflex so as to

draw our attention [1]. And during the interaction, the abstraction makes our visual

system to reduce presented information and improve our understanding of complex

datasets based on our structure recognition [2]. For visualization education, the

real-time volume interaction aids the student to better understand the feature of

virtual contents and the core algorithms of the scientific visualization course such as

volume rendering, volume interaction, etc.

This chapter is structured as follows. Section 3.2 gives an overview of related

work concerning GPU-based visualization and interaction. Section 3.3 follows on

describing the proposed method including the design of transfer function and

interaction tools. Section 3.4 shows implementation and results. The final section

gives some conclusions and ideas for future work.

3.2 Related Work

Nowadays volumetric datasets are growing in terms of number and size, resulting in

two challenges: maintaining performance and extracting meaningful information.

3.2.1 GPU-Accelerated Volume Rendering

Direct volume rendering (DVR) using ray casting is the most widely used and

accepted technique to produce high-quality images. The volume rendering is based

on the classical ray casting, which implements a simple physical light emission and

absorption model without scattering effects [3]. The general approach is to shoot
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rays through the pixels into the field volume and to accumulate the color and

opacity contributions at discrete locations to produce the final pixel color.

In the last few years, many sophisticated techniques for real-time volume

rendering have been proposed on desktop platforms [4]. Current high-quality

solutions, based on ray casters fully achieved in GPU, have demonstrated the ability

to deliver real-time frame rates for moderate-size data, but they typically require the

entire dataset to be contained in GPU memory. Long data transfer times and GPU

memory size limitations are often the main limiting factors, especially for massive,

time-varying, or multivolume visualization. In this issue, compression, multi-

resolution schemes, and out-of-core techniques are proposed. For example, an

out-of-core approach, which is based on the management of a hierarchical multi-

resolution structure, is proposed by Gobbetti and Crassin et al. [5, 6]. And Balsa

gives a variety of level-of-detail (LOD) data representations and compression

techniques [7].

It may result in the occlusion of interesting structures when using ray-casting.

Many overlapping structures may not embody the important structural details such

that the cluttered images are quite difficult to understand. Occlusion is a view-

dependent problem and cannot be solved easily by transfer function design. With

regard to this, Haidacher introduced importance-driven rendering to create feature-

emphasized visualization by defining importance via transfer function [8]. Bruckner

et al. proposed the maximum intensity difference accumulation (MIDA) [9].

3.2.2 Volume Interaction

Real-time volume interaction is very important to offer different views of the same

dataset and enhances its understanding. Recently, different techniques and strate-

gies have been proposed. A clipping plane can be moved through the volume to

reveal internal structures, permitting a close inspection of the entire range of data

values [10, 11]. However, it can also remove important context information that

leads to confusing and somewhat misleading. Bruckner et al. suggest cutaway

views to focus the attention on the intersection region and ghosting views which

give a better impression of the spatial location of the object [12]. Ropinski

et al. propose volumetric lenses to interactively focus ROI, rendering the parts of

the volume intersecting the lens defined by a convex 3D shape [13]. Monclús

et al. present the Virtual Magic Lantern (VML), an interaction tool which behaves

like a lantern providing the focal region visualized using a secondary transfer

function or different rendering styles [14, 15]. Bruckner et al. propose style transfer

functions (TF) which enables flexible data-driven illumination for inspection

[16]. D’ıaz et al. develop illustrative visualization techniques to improve perception

of depth and shapes of the models being inspected [17]. Most of them provide a

view of the feature of interest without occlusions of other neighbor structures to

prevent visual overload.
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3.2.3 Volume Illustration

Illustrative techniques are generally applied to produce stylized renderings. Various

illustrative styles have been applied to volumetric datasets, depicting complex

structures or shapes in an easily comprehensible way such as silhouette or contour

enhancement, pen and ink, stippling, hatching, etc. The early work done by Ebert

et al. combines some physics-based illumination model with non-photorealistic

techniques to enhance the perception of structure, shape, orientation, and depth

relationships in a volume model [18]. Bruckner et al. present an illustrative volume

rendering technique inspired by ghosted views [19]. Svakhine et al. utilize outlining

techniques and selective depth enhancement to provide perceptual cues of object

importance as well as spatial relationships [20]. Recently, these techniques are

focused on to interactively modify the illustration styles and effects based on GPU

for large datasets. For example, Pelt et al. adopt user-configurable particle systems

to produce stylized renderings based on GPGPU paradigm [21]. Ruiz et al. propose

a simple and interactive technique by the difference between the original intensity

values and a low-pass filtered copy with a CUDA implementation [22].

In this chapter, we introduce the interaction methods of our VisEdu system on

CUDA-based volume rendering with layered control mechanism via our transfer

function design different from the above methods. We give various rendering

methods through plane, superquadric, and virtual lenses tools offering different

views of the same dataset and enhancing its understanding. The framework exploits

the CUDA framework and the hierarchical structures such as octree for both

compression of volume data and speed optimization of ray-casting process,

allowing the system to achieve interactive speed.

3.3 The Proposed Method

For facilitating understanding the interior and exterior structures, we define plane,

superquadric tools and virtual lenses based on our transfer function with layered

control mechanism.

3.3.1 Transfer Function Design

Usually the density or grayscale varies in a certain range for different organizations

in a CT dataset. Taking human tissue, for example, we describe it in Fig. 3.1 and

identify it with gray value in [0,255]. According to this, we design our transfer

function below.

We design transfer function which defines a mapping from data properties to

optical properties by specifying the RGBA (for red, green, blue, alpha) value for
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every possible voxel value. We illustrated in Fig. 3.2 in which one trapezoid

expresses one band or layer of CT datasets. The depicted transfer function is defined

by all trapezoid functions.

Let k be the number of bands. Each band is parameterized by four ordered

values. Let the jth ( j¼ 1, 2, . . ., k) band be defined by Bj¼ [bj,0, bj,1, bj,2, bj,3] with
color Tj and its maximum opacity Aj. Because the actual two adjacent ranges often

overlap, Bj and Bj+ 1 ( j¼ 1, 2, . . ., k� 1) have an overlapping region.

Let fi be the scalar value of Pi,and fi2Bm (m¼ 1, 2, k� 1). The weight wi of Pi is

defined by the following equation:

wi ¼
g

f i � bm, 0
bm, 1 � bm, 0

� �
, f i 2 bm, 0; bm, 1½ �

1, f i 2 bm, 1; bm, 2½ �
1� g

f i � bm, 2
bm, 3 � bm, 2

� �
, f i 2 bm, 2; bm, 3½ �

8>>>><
>>>>:

ð3:1Þ

and g(t) is a cubic function which value is in [0,1] for smooth transition. The opacity

αi of Pi is defined by the following equation:

Fig. 3.1 Distribution of CT value for human tissue

Fig. 3.2 Illustration Bj and Bj+ 1 ( j¼ 1, 2, . . ., k� 1) of two bands. Bj is defined by a trapezoid-

shaped function with a highest opacity Aj in the middle, increasing opacity on the left side, and

decreasing on the right side. Bj+ 1 is its adjacent band with an overlap region in scalar domain
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αi ¼

g
f i�bm,0
bm,1�bm,0

� �
Am , f i 2 bm,0;bm,1½ �

Am , f i 2 bm,1;bm,2½ �
1�g

f i�bm,2
bm,3�bm,2

� �� �
Amþg

f i�bmþ1,0

bmþ1,1�bmþ1,0

� �
Amþ1

AmþAmþ1

, f i 2 bm,2;bm,3½ �

8>>>>>><
>>>>>>:

ð3:2Þ

where for the last overlap region [bm,2,bm,3], the opacity is decided by their weights
as 3.1.

Suppose the color ci of Pi can be obtained from the color of Bm, ci¼ αiTm.
Accumulating αi and ci according to conventional ray-casting algorithm,

c�i ¼ c�i�1 þ 1� α�i�1

� �
αici

α�i ¼ α�i�1 þ 1� α�i�1

� �
αi

�
ð3:3Þ

where α�i , c
�
i are the accumulated opacity and color corresponding to one viewing

ray through the pixels into the field volume implemented by one thread in CUDA.

3.3.2 Plane Tools

Suppose a reference plane is defined byQ:n̂ þ D ¼ 0, and the view-dependent side

where the normal vector toward the observer viewpoint, i.e., Q:n̂ þ D > 0, is used

to be clipped or keep the context within a fixed distance to the plane. We propose

the following methods:

(a) Doubled-Sided Clipping

In this case, we keep information of the reference plane and take Phong

shading for enhancement. For this purpose, we set

h ¼ 1:0þ di=t ð3:4Þ

where t is the thickness, and if h¼ 1 is satisfied, it is on the plane.

Before accumulating, generally we use the traditional Phong model to

perform the shading effect. Let ka be an ambient reflection constant, kd diffuse
reflection constant, and ks a specular reflection constant. We make it

highlighted and more opaque on the reference plane, otherwise the original

shading and less transparency off the plane. For doing so, modifying the color

ci derived from transfer function to be the shaded color ci,shaded on the side

where di�� t is as follows:
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ci, shaded ¼ ϕi hð Þci ð3:5Þ

where

ϕi hð Þ ¼ ka, new þ kd, new L̂ :ĝ i

� �þ ks, new Ĥ :ĝ i

� �ke ð3:6Þ
ka, new ¼ ka þ kd þ keð Þh
kd, new ¼ kd 1� hð Þ
ks, new ¼ ks 1� hð Þ

ð3:7Þ

and

Substitute ci with ci,shaded into Eq. 3.3 to perform the normal accumulation

process.

(b) One-Sided Clipping

In this case, the clipping plane cut away parts of volume datasets, i.e.,

eliminated its contribution on the side where Q:n̂ þ D > 0 is satisfied. On

the other side where di�� t is satisfied, we use the enhancement algorithm

similar to (a).

(c) Clipping Keeping Context

The view-dependent side is where the normal vector toward the observer

viewpoint, i.e., Q:n̂ þ D > 0, is used to keep the context within a fixed

distance to the reference plane. We use the following distance-based methods

to remedy the deficiencies of simple clipping plane, which removes certain

parts of the volume including fine interest structures.

Let dmax be the maximum Euclidean distance to the reference plane for

keeping the context. The distance di from Pi to the reference plane is defined

by

di ¼ Pi:n̂ þ D: ð3:8Þ

If di< dmax is satisfied, the opacity and color are modified as follows:

αi, new ¼ αi � κi dið Þ ð3:9Þ
ci, new ¼ αi, new � ci ð3:10Þ

where

κi dið Þ ¼ sa 1� 		vĝ Pi

		� �se � sin π:di
2dmax

� �
ð3:11Þ

Substitute ci with ci,new and αi with αi,new into Eq. 3.3 to perform the normal

accumulation process. On the other side where di�� t is satisfied, we take

enhancement algorithm similar to (a) in Sect. 3.3.2.
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3.3.3 Superquadric Tools

We set the shapes of superquadric tools including a family of geometric one defined

by the following equation [23]:

f x; y; zð Þ ¼ x

rx

� � 2
e2 þ y

ry

� � 2
e2

" #e2
e1

þ z

rz

� � 2
e1 ¼ 1 ð3:12Þ

where rx, ry, and rz are scale factors on x-, y-, and z-axis, respectively, and e1, e2,
and e3 are positive real numbers that determine the main features. It includes

different basic shapes with rounded edges and corners. If e1� 1, e2� 1, it is an

ellipsoid. If e1<< 1, e2<< 1, it is a cube, and if e1<< 1, e2� 1, it is a cylinder.

The region within the superquadric defines the ROI as shown in Fig. 3.3. We give

the following superquadric tools with different functionalities.

(a) Superquadric Clipping

In this case, ROI is a clipping region. We eliminate the voxels contribution

within ROI when accumulating as shown in Eq. 3.3. It entails the problem of

possible occlusion because of the voxels situated between the view point O

and ROI, which impede the correct visualization of the interest region inside

the ROI. We cancel the accumulated color just before the first intersection M

of the viewing ray and ROI.

(b) Band Picker

In ROI, we control the layer by our transfer function design as described in

Sect. 3.3.1 where we set the opacity of visual band as (0, 1] and the others are

0. Outside ROI the conventional CUDA-based volume rendering is used as

shown in Eq. 3.3. Also it entails the problem of possible occlusion similar to

(a) in Sect. 3.3.3; the resolution is the same.

(c) Focus+Context Exploration

Fig. 3.3 Diagram of user-driven ROI
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We divide the ROI into focus and context region by the following pq-norm

[24]. The superquadrics are used to get consistent focus shapes based on

pq-norm defined as follows:

Pik kpq ¼ xi; yið Þk kp; zið Þk kq ð3:13Þ

which is a generalized Euclidean distance ( p¼ 2, q¼ 2) and

xi; yið Þk kp ¼ xij jp þ yij jpð Þ1p ð3:14Þ

is the p-norm. This norm is always 1 on the surface of the superquadric.

Let P¼ (x, y, z), and define

Pk kpq ¼ ρ ρ � 1ð Þ: ð3:15Þ

The focus region satisfies kPkpq� ρ (ρ� 1 ), and the context region is the

difference between the ROI and the focus region where ρ< kPkpq� 1 is

satisfied. In focus region, we use MImP (maximum importance projection)

borrowing the idea of importance-driven volume rendering [8]. Take

βi¼ 1� δi,and define

δi ¼ 1 if Ii > Imax

0 else

�
ð3:16Þ

where Ii denotes the importance value at location Pi and Imax is the current

maximum importance along the ray. The accumulated color and opacity is

defined as follows:

c�i ¼ c�i�1βi þ 1� βiα
�
i�1

� �
αici

α�i ¼ α�i�1βi þ 1� βiα
�
i�1

� �
αi

�
ð3:17Þ

If setting higher importance Mi of the ith band, we can focus it.

In the context region, we use the following context-preserving model. Let

the gradient of Pi be gPi
¼ ∇f Pið Þ and ĝ Pi

be its normalized gradient. We set

global view with reduced detail by modifying the distance-based silhouette

factor in the context area as follows:

silhouette factor ¼ sa 1� vĝ Pi

		 		� �se � d Pið Þ ð3:18Þ

where sa controls the amount of silhouette enhancement, se controls the

sharpness of the silhouette curve, and d(Pi) is defined as follows:
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d Pið Þ ¼ gβ
Pik kpq � ρ

1� ρ

� �
ð3:19Þ

where gβ(t) is the Schllick function defined as follows [25].

gβ tð Þ ¼ t

eβ 1� tð Þ þ t
ð3:20Þ

which controls more opacity far from the center due to the property of its

monotone increasing.

3.3.4 Virtual Lenses

The main function of magnifying glass is to amplify and highlight local details in

some focus region. Virtual magic lamp is an interaction tool to obtain a lantern-

based inspection using a virtual cone [14], which divides the model into two regions

whose illumination cone determines the region of interest. Combining magnifying

glass with virtual magic lamp, this section gives a simplified model similar to real

lenses, constructing 2D local region for the display of different layers according to

3D viewing frustum and viewing focus region as described in Fig. 3.4. Comparing

to band picker of above superquadric tools, it eliminates the inner side view for

clipping effect.

The user defines virtual lenses by the cursor position and a specified radius.

According to the above simplified model, the volume dataset is divided into two

parts including ROI which is the intersection of a cone with the window of virtual

lenses as base and the viewpoint, and the rest of volume datasets. In ROI, we can get

separated layer by modifying its opacity in (0, 1] and 0 for others. Outside ROI the

conventional CUDA-based volume rendering is used.

Fig. 3.4 Diagram of virtual

lenses
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3.3.5 User Interaction and Implementation

All operations which affect viewing parameters and optical properties of inner

structures are performed interactively by the following transfer function widget

and the user interface for interaction tools.

3.3.5.1 Transfer Function Widget

The 2D view for editing the transfer function is shown in Fig. 3.5, where the x-axis
represents the voxel value and y-axis represents the opacity. All bands of trapezoid
give the volume a classification, and each one has its color and maximum opacity.

b0, b1, b2, b3 of the current selected one are called control points supporting

dragging and moving by mouse.

3.3.5.2 GUI of Interaction

The interaction page controller is shown in Fig. 3.6. The shapes of superquadric

tools include sphere, smooth cube, and cylinder. We can drag and drop our defined

tools by mouse button with different combinations to mimic 6DOF manipulation,

for example, the left button for rotation about z-axis, right button for translation in

xy-plane, and scroll button for translation along z-axis after choosing plane or

superquadric tools. For the virtual lenses, we can manipulate the mouse by dragging

and dropping the left button for translation of xy-direction on the projection plane.

But the above methods are not intuitive in projection-based virtual learning

environments. One of our goals is to enlarge the continuity between visualization

and interaction by adopting a 3D interaction technique. We choose 3D input device

such as Phantom Omni or InterSense Tracker for 6-DOF manipulation. They

provide SDK and Tookit by which we can get the affine transform matrix to take

6DOF manipulation. Because it is concerned with different operation, we take the

following two ways:

(a) If only interaction with the volume datasets, 2D mouse or 3D input device is

independently used.

Fig. 3.5 Opacity transfer function window
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(b) If the defined plane or superquadric tool is activated, the 2D mouse is used for

volume datasets and 3D input device is used for the defined tools.

3.3.5.3 CUDA Implementation

The framework exploits the CUDA framework and the hierarchical structures such

as octree for both compression of volume data and speed optimization of

ray-casting process as shown in Fig. 3.7. The original volumetric datasets are

organized into a coarse octree structure for the implementation of out-of-core.

About the out-of-core techniques, we based on the work of Enrico Gobbetti and

refer the interested reader to their paper [5, 26] for a survey. The octree contains the

original data at the leaves and a filtered representation of children at inner nodes.

Each node also stores the range of values and pre-computed gradients. At runtime,

an adaptive loader updates a view- and transfer function-dependent working set of

bricks incrementally maintained on CPU and GPU memory by asynchronously

fetching data from the out-of-core octree.

Each ray is assigned to a thread by using an appropriate “kernel” function. In the

beginning of ray-casting, we need to determine the thread index in CUDA and then

test the intersection between the viewing ray and the volume. If intersect,

resampling is done in the volume. Data mapping means from data properties to

optical properties specifying the RGBA. For each sample point, it needs to decide

the relationship between the voxel and the defined tools before compositing as

Eq. 3.3. We adjust the opacity and color according to the tool specification if it is

inside the ROI; else take data mapping from the transfer function as Sect. 3.3.1.

Phong illumination model is used for shading before accumulating the color.

Fig. 3.6 The user interface of interaction module for VisEdu
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Because all threads run at the same time and process the data, the performance is

greatly increased and real-time rendering is achieved.

3.4 Results

We have implemented our algorithm on an Intel Core 2 Quad CPU Q9400 at

2.66GHz equipped with 4 GB of RAM on Windows 7 using OpenGL and CUDA

3.0. The graphics card is a NVIDIA GeForce GTX 570 with 1GB of RAM. The

framework exploits the CUDA framework and the hierarchical structures such as

octree for both compression of volume data and speed optimization of ray-casting

process, allowing the system to maintain an interactive frame rate with an average

of 30 fps with CT 256	 256	 256 volumetric datasets. We test the proposed

techniques with CT datasets such as the angiography datasets of human head

from our lab, neghip and human foot downloaded from the volume library

Fig. 3.7 Scheme of method overview
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http://www.volren.org/, and human body from the radiology department of Geneva

University.

Figure 3.8 shows the results of plane tools for neghip datasets including double-

sided clipping in (a), one-sided clipping in (b), and keeping context clipping in (c).

Figure 3.9 presents the plane clipping in (a) in comparison with superquadric ones

in (b), (c), and (d) for sphere, smooth cube, and cylinder clipping separately.

Figure 3.10 shows superquadric tools with different functionalities for human

body datasets in (a) for superquadric clipping, in (b) for band picker, and in

(c) for focus+context exploration. Figure 3.11 shows results of virtual lenses for

different models in (a) for angiography datasets of a human head where the focus

layer is blood vessels and in (b) for human foot with focus layer of bone. Figure 3.12

is snapshot of 3D interaction in virtual learning environment by Phantom Omni

where it can be switched from the volume datasets to the defined plane or

superquadric tools for 6DOF manipulation.

Conclusions

In this chapter, we describe the various rendering methods for scientific

visualization education system, VisEdu. By specifying plane, superquadric,

and virtual lenses tools, rendering offers different views of the same dataset

and enhances its understanding. The implementation uses the CUDA frame-

work to achieve real-time visualization from user inputs. For the layered

control mechanism of band picker and virtual lenses, the results strongly

depend on the transfer function design by which non-segmented CT datasets

are automatically decomposed using a simple, threshold-based method. But

the accuracy for this coarse classification still needs to be investigated in the

near future.

We also hope to extend our method to support multiuser cooperative

interaction by 3D device in projection-based virtual learning environments

in the future, by which different users can manipulate different tools at the

same time.

Fig. 3.8 Plane tools, (a) double-sided clipping, (b) one-sided clipping, (c) keeping context

clipping
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Fig. 3.9 Comparison between the plane and superquadric clipping, (a) clipping plane (b) sphere

clipping, (c)smooth cube clipping, (d) cylinder clipping

Fig. 3.10 Superquadric tools with different functionality, (a) superquadric clipping, (b) band

picker, (c) focus+context exploration

Fig. 3.11 Virtual lenses for inspection of different layers of CT models, (a) angiography datasets

of a human head, (b) human foot
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14. Monclús, E., Dı́az, J., Navazo, I., Vázquez, P.P.: The virtual magic lantern: an interaction

metaphor for enhanced medical data inspection. VRST 2009, 119–122 (2009)
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Chapter 4

Real-Time Separable Subsurface Scattering

for Animated Virtual Characters

P. Papanikolaou and G. Papagiannakis

Abstract In this chapter, we present our real-time, GPU-accelerated separable

subsurface scattering method for interactive, skeletal-based deformable animated

virtual characters. Our screen space implementation is based on state-of-the-art

algorithms, and we propose specific algorithmic and implementation extensions so

that these algorithms can be employed in real-time virtual characters. We have

created a physically principled real-time rendering framework, which features a

series of rendering effects based on widely available open-source tools such as

Open Scene Graph, C++, and GLSL so that it can be easily integrated in modern

rendering engines and scene graphs via commodity graphics h/w.

Keywords Real-time rendering • Separable subsurface scattering • Dynamic sur-

faces • Virtual character skin simulation

4.1 Introduction

In order to enhance the user’s experience, the graphics community is continuously

working on enriching these environments with realistic depiction of light interac-

tion with objects. One of the most controversial decisions for a graphics developer

is to either increase the accuracy of the scene or the rendering speed.

In order to produce high-fidelity images in an environment, where virtual

characters exist, we have to depict realistically the way light interacts with

human skin. To do that, we have implemented a set of physically principled effects

that take place on skin rendering: real-time separable subsurface scattering includ-

ing specular surface reflectance.

We have thus created a physically principled real-time rendering framework,

which features a series of effects that can be applied on skeletal-based deformable

animated virtual human characters. The implementation of our rendering frame-

work is based on widely available open-source tools such as Open Scene Graph,
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C++, and GLSL so that it can be easily integrated in modern rendering engines and

scene graphs via commodity graphics h/w.

4.2 Previous Work

A lot of research has been published based on how the light interacts with human

skin [1, 2], real-time virtual characters [2] rendered in both VR and AR environ-

ments [3–14], and also how the BSSRDF can be alternatively modeled to run in real

time [4–6]. Two major effects are among the most common that describe the light’s
interaction with virtual character skin. The first one is taking place on skin surface

and it is called specular reflection, while the second one models light’s behavior
after entering the inner layers of the skin. Even though for most objects, the Phong

approach suffices for real-time specular reflection implementation, it does not

approximate realistically this effect for human skin. The Phong model fails to

depict accurately the specularity at grazing angles. The Kelemen/Szirmay-Kalos

model is a common approach that is used to implement the specular reflection on

human skin, because not only it depicts the effect with high quality, but it also uses

a Fresnel reflectance factor that handles accurately the specularity at grazing angles.

Subsurface scattering (SSS) is the second effect that takes place during interac-

tion between light and skin. After the light hits the surface, only a low percent (6 %)

of the incident radiance is reflected directly, while the rest enters the skin. Subsur-

face scattering is the phenomenon which describes the light’s behavior after its

entrance to inner layers. While it travels through the skin, it is either absorbed

partially or scattered many times before it exits to a neighboring area. The initial

rendering equation formulation of light’s subsurface propagation is referred to [7],

which is extended in [1] to model the human multilayered skin.

To implement the subsurface scattering effect, we have two options. The first

one is the texture space diffusion method [8], which, even though it approximates

this effect with high accuracy, needs a lot of adjustments in order to make it run

efficiently in real time. The other method is the screen space one [9], which not only

offers great rendering speed but also scales better in large environments. The main

difference is that it applies a 2D convolution on screen instead of object’s texture.
In order for the subsurface scattering effect to be simulated accurately, we need

to take into account the light’s absorption while it travels through human skin.

Knowing that light consists of three colors (red, green, and blue), we have to

calculate the attenuation for each one of them. We will refer to each color’s
exhaustion as diffusion profile. A fast and accurate approach of diffusion profile

is explained in [8], which is based on [2].

In the last few years, a lot of systems that support the subsurface scattering effect

for human skin have been published, but none of them support skeletal-based

deformable animated characters. Jimenez’s demo applies the SSS effect only on

static human head along with a lot of post-processing effects. Also, NVidia™
recently has presented a demo, which applies a wide range of effects on animated
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virtual human heads, whose animation is not only implemented via morphing,

instead of skeletal based, but also in order to run properly, it requires specific and

expensive high-end graphics cards (Titan). Our rendering framework applies sub-

surface scattering along with other effects on skeletal-based deformable animated

virtual characters. It also achieves high visual accuracy along with efficient real-

time execution in modern commodity graphics h/w.

4.3 Separable Subsurface Scattering for Dynamic Surfaces

There are mainly two kinds of reflectance that take place when a light ray interacts

with the human skin. The first one is the surface reflectance, which causes a small

percentage (6 %) of the light to be reflected directly without being colored. It occurs

due to the topmost oily layer of skin and it can be modeled using a specular

reflection function. In our rendering framework, we have implemented this behav-

ior using Kelemen/Szirmay-Kalos [10]. The other kind of interaction between the

light and the skin is the subsurface reflectance (subsurface scattering). This effect

occurs due to the fact that the human skin is a translucent material. Translucent

objects allow the light to pass through, but with a high degree of absorption. The

subsurface scattering effect is described in terms of Bidirectional Surface Scattering

Reflectance Distribution Function (BSSRDF), which relates the outgoing radiance

L0 at the point x0 in direction ω0 to incident radiance at the point xi from direction

ωi:

Sd xi;ωi; x0;ω0ð Þ ¼ 1

π
Ft xi;ωið ÞR xi � x0k k2

� �
Ft x0,ω0ð Þ: ð4:1Þ

where Ft is the Fresnel transmittance function and R is the diffusion profile. We can

convert the BSSRDF into BRDF if we consider x0¼ xi The outgoing radiance can

be computed by using the equation

L0 x; υð Þ ¼
ð

A

ð

Ω
Sd xi;ωi; x0;ω0ð ÞLin x; Ið Þ I:nð ÞdI ð4:2Þ

where A is the area affected by subsurface scattering.

Subsurface scattering describes the way light behaves after it enters the skin.

While it travels through the skin, it is either absorbed partially or scattered many

times before it exits a neighboring area. In order for virtual human faces to be

rendered realistically, we have to simulate this effect. In this chapter, we will

discuss about our implementation of subsurface scattering (SSS), which can be

supported by high-detailed skeletal-based animated models. We have used the [9]

implementation of approximating light’s scattering underneath the surface of a

translucent material. To simulate the subsurface scattering effect for thin parts of
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human face (ears, nostrils), we have employed a different technique, which first

introduced again by [11] and it is based on [12].

What makes virtual skin rendering difficult to simulate is the fact that it consists

of multiple translucent layers. Each one of them has a large variety of properties and

interacts with the light in a different manner. The more layers we take into account,

the more realistic results our system will produce. In our system, we assume that

skin consists of three layers of translucent material [2]. In this section, we will

discuss only the real-time implementation of the subsurface scattering effect.

4.4 Implementation

The main use of subsurface scattering (SSS) algorithm in a system is to blur the

high-frequency details in human skin. To implement it in our system, we employ

the [9] method, which is based on the idea of performing the diffusion approxima-

tion in screen space. The reason why we prefer this method to the texture space is

because it eliminates a lot of problems that affect the real-time performance. These

problems are explained extensively in Jimenez’s paper.
In screen space method, diffusion profile is applied directly to the image with the

face. Two passes are needed in order to apply a horizontal and a vertical convolu-

tion. We do not have to sample all the texels in a straight line. Instead we use only

17 jittered samples retrieved from Jimenez’s method and generated based on

[13]. At this point, we have to mention that the number of samples is dependent

to the resolution. The higher the resolution of our output image, the more samples

we have to use in order to keep the final result undistorted. In our system, we render

with 1,024� 768 resolution; thus, 17 samples are sufficient. Each sample has its

own red, green, and blue weights, which describe the attenuation for each of the

light’s colors. They also contain information of how far they are from the main

pixel, which is the first sample. Eight samples are used for each side of the current

direction (horizontal or vertical).

We implement the subsurface scattering (SSS) in two passes in fragment shader.

The first pass takes as input the depth buffer of the main camera and a rendered

image of the face without SSS. It applies the horizontal convolution using 17 jittered

samples. Then, it renders the result to a texture, which will be used as input in the

second pass, along with the depth buffer. The second pass will convolute the image

vertically. Its result will be the final in the whole procedure and it will render to

screen. At this point, we have to mention the fact that the subsurface scattering
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effect has to be applied only on skin surfaces, leaving hair and cloths unaffected.

That is why we use a 1-bit per color texture with white color indicating the skin

(Fig 4.1).

An important factor that has to be considered is that the convolution has to be

applied only on points that are close to each other in 3D space. This condition is not

always true for adjacent points in a 2D image. That is why we need the depth buffer

in both passes. By comparing the depths between each sample and the main pixel,

we can reduce the error of using nonadjacent points in convolution. We will take

into account only those samples that the depth difference does not exceed a

threshold. In case the depth difference is greater than the threshold, we will use

the main pixel’s color along with the sample weights for the convolution. At this

point, we also have to add the specular reflection calculated in the main pass and

rendered in a separate texture. The reason why we had to do this is because specular

reflection must be applied after the 2D convolution of subsurface scattering on the

surface color. By doing so, we avoid artifacts created by the specular highlight on

virtual character’s surface (Fig 4.2).

Fig 4.1 Skin texture of character’s head
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The following code shows the fragment shader implementation of subsurface

scattering effect in our rendering framework. The variable scale_separable in the

code segment below, modifies the area that is affected by the light striking at any

point and the user through a GUI widget can adjust it. Increasing its value means the

light travels farther under the skin surface. In Fig 4.3, we compare the rendering

results of the character’s head without and with subsurface scattering. Notice how

the high-frequency details in the human skin are blurred.

Fig 4.2 Specular reflection applied on surface before (left) and after (right) subsurface scattering

Fig 4.3 Character’s head as rendered without subsurface scattering (left) and with subsurface

scattering (right)
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Subsurface Scattering Convolution Passes

void main(){
float depth_threshold = 0.3;
float kernel_range = 2; //kernels range from -2 to 2.
vec2 texcoords = vec2(
(gl_FragCoord.x - 0.5)/(window_width-1.0),
(gl_FragCoord.y - 0.5)/(window_height-1.0));

float depth = texture2D(camera_depth_texture, texcoords).r;
vec4 color = texture2D(color_texture, texcoords);
vec3 final_color = color.rgb;
bool is_skin=texture2D(skin_texture,
gl_TexCoord[1].xy).r == 1.0;
vec2 final_step = vec2(0.0,0.0);
if (is_skin){
final_color = final_color * sample_kernel[0].rgb;
final_step = scale_separable * blur_dir
* 0.0025 * 1.0/depth * 1.0/kernel_range;
float eye_depth = -(depth * (far-near) + near);
for (int i = 1; i < 17; i++) {
vec2 offset = texcoords + sample_kernel[i].a * final_step;
vec4 sample_color = texture2D(color_texture,

offset);
float sample_depth =
texture2D(camera_depth_texture, offset).r;
float sample_eye_depth = -(sample_depth *

(far-near) + near);
if (abs(eye_depth - sample_eye_depth) < depth_threshold)
final_color.rgb += sample_color.rgb *

sample_kernel[i].rgb ;
else
final_color.rgb += color.rgb *

sample_kernel[i].rgb;
}
}
if (blur_dir.y == 1)

final_color += 
texture2D(specular_texture,texcoords).rgb;
gl_FragData[0] = vec4(final_color, 1);
}

4.4.1 Light’s Transmission Through Thin Skin

The simulation of subsurface scattering effect with convolution gives great results.

The light travels underneath the skin surface affecting only the neighboring

areas, because it is fully attenuated after some distance. Although this method

simulates the effect realistically for thick surfaces, it does not suffice for thin

surfaces. When a light ray hits a thin surface, it might pass through the skin and

be emitted from the other side. In real life, this effect can be observed in ears,

nostrils, or any other thin part of the skin.
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In our rendering framework, we are based on the screen space algorithm from

Jimenez et al. (2010), and we extend it to support real-time, deformable characters

in commodity graphics h/w. The greatest problem of screen space algorithms is the

lack of information about geometry other than what the user can see. In this case,

we do not know how the thin surfaces are shaped from the other side. What we need

to know is the irradiance of a surface that is not observable by the user. In order to

calculate the irradiance at the back of a surface, we need the surface’s normal. The

key concept to Jimenez’s method is to assume that the normal at the back of an

object is the reverse of the current pixel normal. Certainly, this is just an approx-

imation, which reduces the accuracy of the effect, but this assumption solves our

problem and now we can proceed to irradiance computation.

Another matter that we have to deal with is the calculation of the distance the

light travels before it exits from the other side. For that purpose, we have used

Green’s method as described in [12]. The reason why we need this is to know how

attenuated the light will appear. Based on the diffusion profile [8], we can compute

its emittance color as implemented in [11]. In order for this effect to be independent

of the near and far planes, the distance is calculated in view space.

The depth buffer that is generated in a previous pass-by light causes here some

issues that we have to solve in order to improve the rendering results. The problem

is caused to due to the low resolution of the depth buffer. Specifically, some

artifacts appear around the projection’s edges, where the depth distance between

two adjacent pixels can be huge. A prompt fix is to use shadow maps with higher

resolution, as we already do to fix shadow-mapping issues. But even with four times

higher resolution than screen’s resolution, we still get the annoying artifacts. There
are two ways to deal with this. The first one is mentioned in Green’s SSS approach

[12], in which he grows the vertices towards normal when the shadow map is

rendered. Jimenez on the other hand prefers to shrink the vertices in normal

direction when creating the shadow coordinates for a vertex. We use Jimenez’s
approach, but instead of the fragment shader, we implement it in the vertex shader.

Figure 4.4 shows the difference between shrinked and non-shrinked vertices. The

two following code snippets show how we have implemented the vertex shrinking

in GLSL vertex shader and light’s transmission in GLSL fragment shader. The

Fig 4.4 Light transmission through character’s ear with low-resolution depth map and no vertex

shrinking (left), with high-resolution depth map and no vertex shrinking (middle), and with high-

resolution depth map and vertex shrinking (right)
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variable shrinked_bias is configurable by the user and it handles the amount of

vertex. Figures 4.5 and 4.6 show the subsurface scattering results along with light’s
transmission through thin skin in our rendering framework.

Our Vertex Shrinking Algorithm in a GLSL Vertex Shader

vec4 shrinked_vertex =
vec4(position_attribute.xyz - shrinked_bias *
normalize(normal_attribute.xyz), 1);

shadow_coords  =
light_projection * light_view * shrinked_vertex;

shadow_coords = shadow_coords / shadow_coords.w;
shadow_coords.xy = shadow_coords.xy / 2.0 +

0.5 * shadow_coords.w;
shadow_coords.z = (light_view * shrinked_vertex).z;

Our Light Transmission Algorithm in a GLSL Fragment Shader

vec3 getTransmission(){
vec4 shadowmap_depth = 

texture2D(light_depth_texture, shadow_coords.xy).r;
float eye_depth = -(shadowmap_depth * 

(light_far-light_near) + light_near);
float depth_diff = scale_transmittance * 

abs(shadow_coords.z - eye_depth);
vec3 profile = getProfile( -depth_diff * depth_diff  

);
float irrandiance = 

clamp(0.3 + dot(light_dir, world_normal) , 0.0, 
1.0);
vec3  transmission = profile * irrandiance;
return transmission;

}

Fig 4.5 Character’s head
rendered with SSS. Light is

placed behind the head

4 Real-Time Separable Subsurface Scattering for Animated Virtual Characters 61



4.4.2 Subsurface Scattering Implementation Novelties

As we have mentioned in this section, we based on Jimenez’s screen space method

to simulate the subsurface scattering effect in our rendering framework. But even

though this implementation is highly efficient, we had to significantly extend this

approach for real-time virtual characters. The first one appears in the vertex

shrinking part, which is used to avoid projection errors on the edges of the dynamic

surfaces. In Jimenez’s demo, it is implemented in the fragment shader of the main

pass, while in our system, it is implemented in the vertex shader of the same pass to

allow for performance boost with minimal artifacts. We made this decision due to

the fact the vertex shader is executed with far more minimal cost than the fragment

shader for our virtual character, in each rendering pass of our framework.

Our next major improvement in Jimenez’s method appears again in the separable

passes. If the retrieved jittered sample has high depth difference with the main

pixel, Jimenez interpolates the sample’s color with the main pixel’s color based on

that depth difference. In our implementation, we have defined a depth difference

threshold. Every sample that exceeds that distance does not contribute to the 2D

convolution of the subsurface scattering. That way we avoid the interpolation in the

fragment shaders of the two separable passes.

Apart from the above major in real-time performance extensions, we also have

modified the way user adjusts the width that SSS affects the virtual skin area. In

Jimenez’s method, a common modifier is used for both 2D screen convolution in

separable pass and light’s transmittance through thin skin in main pass. In our

system, we use two separate modifiable parameters, which allow the user to handle

the way light passes through skin in a different manner than the way light enters and

Fig 4.6 Character’s hand
rendered with SSS. Light is

placed above right hand
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exits from a neighboring area. This technique can also be used to ameliorate visual

errors caused by multi-geometries in body parts that normally should allow light to

pass through them, but they do not without affecting the subsurface scattering 2D

convolution on screen space.

4.5 Comparison with Ground Truth

Our real-time separable subsurface scattering effect is implemented in screen space.

Screen space techniques run faster than the respective ray tracing ones, making

them able to be used in real-time rendering systems. But how well can they match

the realism produced by ray tracing? No matter how fast a rendering technique is, it

is of no use if the visual results are not correct. In order to test the visual accuracy of

our SSS effect, we have to compare it with ground truth images. For this purpose,

we use 3D Studio Max to create our scene with the same camera and light position.

To render the scene in 3ds max, we use the offline mental ray renderer, because it

supports ray tracing and the generated images are depicted with great realism. In

this section, we compare the images produced by our effect with those produced by

the mental ray renderer of 3ds max. We consider the image generated by 3ds max to

be the ground truth. That way we will be able to evaluate our results based on

rendering time and accuracy criteria.

Subsurface scattering is the effect that describes the light’s behavior after it

enters the human skin. This phenomenon is taking place because the skin is a

translucent material and allows the light to travel through. While it propagates

underneath the skin surface, it is either absorbed or scattered many times before it

exits a neighboring area. In this section, two experiments will take place. In the first

one, we will compare the images produced by our system and 3ds max for SSS

effect in thick surfaces, where the light is either absorbed completely or it exits from

a neighboring area. In the second experiment, we will study this effect for thin

surfaces where the light passes through and is emitted from the other side.

To implement the subsurface scattering effect in our system, we need five

passes. In the first two we store information in textures that are going to be used

in the main pass, which is the third one. In the fourth pass we apply a horizontal

convolution on image in order to blur the high frequencies, and in the fifth pass we

blur the image vertically. This effect can be produced in 3ds max by using a mental

ray material: subsurface scattering fast skin, according to which the object is

considered to consist of multiple layers. In the figures below, we compare the

SSS in our system and in with the Autodesk 3ds max offline renderer. To under-

stand how the SSS affects the skin, we have to also present how the model was. We

can see that the visual results between our method and 3ds max are very similar.

Both methods are blurring the image with a red tone color. Our system produces

this result in 6 ms (160 fps) and 3ds max in 2 s (Figs 4.7 and 4.8).

In the second experiment, we will compare the results for light’s transmission

through thin body parts. To conduct this experiment, we have to change the position
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of the light source and place it behind the head to observe how light passes through

the ear. The light will not be able to be absorbed completely, and it will be emitted

from the other side with different colors due to its attenuation. In the figure below,

we compare this behavior between our system and 3ds max. It is noticeable that the

results look alike. The red color is the result of light’s attenuation, which is

approximated by the diffusion profile that we use. Skin tends to absorb blue and

green colors more than red. This image is rendered by 3ds max in 8 s, while we need

only 4 ms (250 fps) (Fig. 4.9).

Fig 4.7 Character rendered by 3ds max without SSS (left) and with SSS (right)

Fig 4.8 Character rendered by our system without SSS (left) and with SSS (right)

Fig 4.9 Light’s transmission through thin skin as rendered by our method (left) and by 3ds max

using ray tracing (right)
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Conclusions

The main purpose of this work was to prove that the subsurface scattering

along with other physically principled lighting and shading effects can be

applied on a skeletal-based deformable animated virtual human character and

executed with high accuracy in real time. The reason why such a project is

necessary is because even though there are similar systems, they either apply

only a subset of the effects we have implemented or they are not supported for

animated full virtual human characters. Jimenez in 2012 presented at

SIGGRAPH12 a demo set of extremely realistic effects that run in real time

but on a static virtual human head model. In 2013 NVidia presented a similar

set of algorithms, and they used an animated virtual human head instead of a

static one, utilizing their latest cluster of high-end dual GPU configuration.

Unlike these two examples, our system not only applies a set of dynamically

calculated realistic effects in real time using modern commodity hardware,

but also it supports fully animated virtual human characters as shown in the

figure below. To the best knowledge of the authors, there is currently no

similar rendering framework in the bibliography (Fig. 4.10).

Even though our visual results are very close to the ones produced by ray

tracing algorithms, there are still several aspects that need to be improved.

First of all, we could use more than one point light sources for sharp shadows

or area lights for soft ones. Although the number of passes would be

increased, by combining effects such as shadow mapping from multiple

light sources, we can create more realistic scenes. Apart from that, we

could also use area lights for the SSS instead of point lights. The benefit

would be the generation of low-frequency shadows instead of high-frequency

shadows. We could also use different specular reflection functions based on

each different virtual character geometry material.
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Chapter 5

Adaptive NURBS Tessellation on GPU

Yusha Li, Xingjiang Lu, Wenjing Zhang, and Guozhao Wang

Abstract This chapter presents a method for adaptively tessellating NURBS

surfaces on GPU. The method involves tessellation interval estimation, conversion

from NURBS to rational Bézier patches, and gap-free tessellation of rational Bézier

patches. All the computations are performed on GPU. The main contributions of the

chapter lie in two aspects: (1) we improve Zheng and Sederberg’s tessellation

interval estimation for rational curves and surfaces to give larger tessellation

interval and thus to produce fewer triangles, and (2) we propose an adaptive

tessellation strategy that allows to tessellate each rational Bézier patch on GPU

independently and meanwhile avoid gaps between rational Bézier patches. By

using GPU, complicated NURBS models can be easily rendered in real time.

Keywords NURBS • GPU • Gap-free • Real-time tessellation

5.1 Introduction

NURBS technique is the most frequently used design tool in CAD/CAM industry. It

provides high-quality shape descriptions with limited data set. Compared to the

tremendous data set of polygon models, NURBS models have advantages in

storing, transmitting, and editing, which make them useful in animation. NURBS

models easily control the shape using a few control points rather than editing a

group of polygons.

To render a NURBS surface, in current rendering pipeline, we have to convert it

to some primitives such as triangles or quads, which the pipeline can process.

Tessellation is such an operation which maps a regular grid in parameter domain

onto the surface. Then the surface is only evaluated at these grid points and

rendered as polygons. The approximation error is computed as the maximal dis-

tance between the original surface and the approximation polygons. The first step
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for tessellation is estimating the tessellation intervals to ensure a specified approx-

imation error over the whole surface. The density of the sampling grid is usually

selected uniformly or adaptively according to the variance of the surface.

Good tessellation intervals for curves/surfaces should be as large as possible

while making the approximation error within the provided error tolerance. Plenty of

methods have been proposed to estimate the tessellation intervals of curves/surfaces

while ensuring the approximation error within a bound [1–6, 11, 12]. Since the

approximation error and tessellation interval are closely related to the shape of the

surface, generally, the step size is determined according to the variance of the

surface. A most widely adopted criterion is using the upper bounds of the second

derivatives over the whole surface [7]. Applying this criterion on nonrational

surface is pretty easy. For rational surfaces, researchers must spend much more

effort, either computing the maxima of second-order derivatives very costly [7–10]

or using other strategies to avoid this computation [11, 12]. Cheng [11] and Zheng

and Sederberg [12] proposed such kind of method. They evaluated the upper

bounds of the second derivatives of the polynomial curves/surfaces instead of

rational curves/surfaces. On the other hand, since the polynomial curves/surfaces

are obtained on the lower dimension space under a standard perspective projection,

the key technique of their methods is to estimate the effect of perspective transfor-

mation. By contrast, Zheng and Sederberg’s approach [12] provided a more precise

bound and a larger tessellation interval which is more effective. However, their

results depend on the affine coordinate system. More intuitively, the result is related

to the furthest point on the curve r ¼ supt r tð Þk k with respect to the origin. The

further this point is, the smaller the tessellation interval size is. In their paper, they

found the min-max bounding box of the curve/surface and took the center of the

bounding box as the new origin. This can decrease the value r and improve the

results sometimes. However, when the curve/surface is translated, other items in the

formula are also changed, which makes the final results unpredictable.

In this chapter, we make some improvements to Zheng and Sederberg’s method.

We take the formula as a whole, finding a relatively optimal value of the whole

formula rather than only one item in it. Obviously this is more reasonable than the

original approach. Besides, we subdivide the curve/surface once and use the new

control points to compute r, which is more compact than using the original control

points.

To evaluate a NURBS surface, the general approach would probably be to first

convert it to primitives that are more real-time friendly, such as Bézier patches.

Then a group of Bézier patches can be tessellated in parallel into triangles.

However, since the tessellation intervals for each Bézier patch are determined

independently, gaps may be introduced between patches, as shown in Fig. 5.1. To

solve this problem, in previous literatures, they either used shaded fat lines to fill the

gaps [13, 14] or redesigned the connectivity between patches [15–17]. In this

chapter, we adopt the later one. After estimating the tessellation intervals for all

patches, we create a transition region between adjacent patches with inconsistent

tessellation intervals to stitch them together seamlessly while ensuring that the

approximation error is still under the given tolerance.
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In many applications such as animation and dynamic tessellation, the parametric

surface is often required to be tessellated in real time. In this chapter, we use GPU to

accelerate the computations. In recent years, GPU becomes more powerful and easy

to make use of. CUDA is an API for NVIDIA’s GPUs. Using CUDA, the memory

writes are more flexible. We can first copy the data from CPU to GPU, and each

thread in the GPU can read the data required from the GPU memory accordingly. In

our work, all the main stages are carried out on the GPU in a patch-parallel way.

Since all the patches are handled independently, before creating transition regions,

we need to extract and record their neighbor information first and then redesign the

topology and output triangles.

The rest of the chapter is organized as follows. First the tessellation interval

estimation method for rational Bézier curves is introduced. Then the method is

extended to rational Bézier surface cases. Afterwards, a gap filling algorithm is

proposed for patches with different tessellation intervals. In addition, taking each

rational Bézier patch as a unit, we perform all the main stages of the program on

GPU to accelerate the computations. Finally, the experiment results are presented.

5.2 Estimating the Tessellation Intervals

This section describes how we estimate the tessellation intervals for rational Bézier

surfaces. For simplicity, we explain our idea and approach using rational Bézier

curves first. Then the extension to rational Bézier surfaces becomes

straightforward.

5.2.1 Tessellation Intervals for Rational Bézier Curves

Given a rational curve over the domain [α, β],

Fig. 5.1 Gaps between

adjacent patches with

different tessellation

intervals
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r tð Þ ¼ R tð Þ
w tð Þ , t 2 α; β½ � ð5:1Þ

let L(t) be a fractional-linearly parameterized line segment that connects r(α) and r
(β). Zheng and Sederberg showed that the approximation error (as shown in

Fig. 5.2) can be guaranteed not higher than ε if the step size δ satisfies [12]

δ ¼ β � α �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8inft w tð Þf gε

supt R
00
tð Þ�� ��þ r � εð Þ w00 tð Þj j� � ,

s
ε < rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8inft w tð Þf gε
supt R} tð Þk k ,

s
r � ε < 2r

1, 2r < ε

8>>>>>><
>>>>>>:

ð5:2Þ

where r is defined as the furthest point on the curve r ¼ supt r tð Þk k with respect to

the origin and R00(t) is the second-order derivative of the nonrational curve. Apply-
ing the above results to a rational Bézier curve of degree n

r tð Þ ¼ R tð Þ
w tð Þ ¼

Xn
i¼0

PiwiB
n
i tð Þ

Xn
i¼0

wiB
n
i tð Þ

, t 2 0; 1½ � ð5:3Þ

the bounds of the second-order derivatives of the nonrational Bézier curve can

be estimated by

R
00
tð Þ�� �� � n n� 1ð Þmax

i
Δ2 wiPið Þ�� �� ð5:4Þ

R
00
tð Þ�� ��þ r � εð Þ w00

tð Þ�� �� � n n� 1ð Þmax
i

Δ2 wiPið Þ�� ��þ r � εð Þ Δ2wi

�� ��� � ð5:5Þ

The qualified step size for the Bézier curve can be obtained by substituting the

above results to formula (5.2). In Zheng and Sederberg’s approach, they estimated

the effect of perspective transformation from rational space to nonrational space

Fig. 5.2 Error between

rational curve and its

approximation line segment
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first and then define the approximation line segment L(t) also in a rational form.

After that, the approximation error between r(t) and L(t) can be determined in

nonrational space which is less computational intensive. Theoretically, using this

method, the results are related to the position of the origin of the perspective

projection.

In their work, they improved the results by translating the curve and made r be

minimal with respect to the new origin of the coordinate system. From formula

(5.2), it can be learnt that the smaller formula (5.4) and formula (5.5) are, the larger

the step size is. One disadvantage of this method is that the other parts in the

formula (5.5), kΔ2(wiPi)k, also change with the translation, which makes the final

result unpredictable. Here instead we compute the minimal of the whole

kΔ2(wiPi)k+ (r� ε)|Δ2wi|. Assume O is the new origin, after translation, the right

parts of formula (5.5) becomes

n n� 1ð Þmax
i

Δ2 wi Pi � Oð Þð Þ�� ��þ ro � εð Þ Δ2wi

�� ��� �
¼ n n� 1ð Þmax

i
Δ2wiPi � Δ2wiO
�� ��þ ro � εð Þ Δ2wi

�� ��� �
¼ n n� 1ð Þmax

i
Δ2wi

�� �� Δ2wiPi

Δ2wi

� O

����
����þ ro � εð Þ

� � ð5:6Þ

Moreover, since ε is a constant given by the user and r can be roughly defined as the
distance from the origin to the furthest control point r ¼ maxj Pj

�� �� rather than the

furthest point on the curve, the above formula changes to

n n� 1ð Þmax
i

Δ2wi

�� �� Δ2wiPi

Δ2wi

� O

����
����þ Pj � O

�� ��� �
� Δ2wi

�� ��ε
i ¼ 0 . . . n� 2; j ¼ 0 . . . n

ð5:7Þ

Given a point O and two groups of discrete points, the main part of above formula

Δ2wiPi

Δ2wi
� O

��� ���þ Pj � O
�� �� indicates that the sum of the distance from O to the

furthest point in each group. However, according to formula (5.2), our goal is to

choose aO to make the sum of the distances be minimized. However, one additional

element in the formula |Δ2wi| varying with different points will affect the final

results unpredictably. Therefore, when estimating O, the geometry positions of

these points are not the only determinant factors. For the discrete points with high

weights, there is a high probability that one of them leads to the maximal value of

the distance. Hence, the O should be closer to them, to balance the effects of their

weights. Based on the above analysis, we set the following objective function to

determine O:
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min
O

Xn
j¼0

Pj � O
� �2 þXn�2

i¼0

Δ2wi

�� �� Δ2wiPi

Δ2wi

� O

� �2
 !

ð5:8Þ

Let

F ¼
Xn
j¼0

Pj � O
� �2 þXn�2

i¼0

Δ2wi

�� �� Δ2wiPi

Δ2wi

� O

� �2

ð5:9Þ

Then O can be obtained by letting the first-order derivative of the function equal to

zero:

∂F
∂O

¼ 2
Xn
j¼0

O� Pj

� �þ 2
Xn�2

i¼0

Δ2wi

�� �� O� Δ2wiPi

Δ2wi

� �
¼ 0 ð5:10Þ

O ¼

Xn
j¼0

Pj þ
Xn�2

i¼0

Δ2wi

�� ��Δ2wiPi

Δ2wi

nþ 1þ
Xn�2

i¼0

Δ2wi

�� �� ð5:11Þ

To further improve the results, we subdivide the rational Bézier curve once to

obtain a tighter bounding box of the curve. This will decrease r with a high

probability. We represent the subdivision control points as Ps:

O ¼

Xk
j¼0

Psk þ
Xn�2

i¼0

Δ2wi

�� ��Δ2wiPi

Δ2wi

k þ 1þ
Xn�2

i¼0

Δ2wi

�� �� ð5:12Þ

To summarize, we have the following algorithm:

1. Subdivide the Bézier curve once. Get Ps.
2. Estimate the new origin O using equation (5.12).

3. Find the furthest control point Psk with respect to O. Compute

r ¼ maxk Psk � Ok k.
4. Find the max value of formula (5.4) or (5.5).

5. Compute the step size using formula (5.2).

If |Δ2wi|¼ 0, the discrete point Δ
2wiPi

Δ2wi
becomes infinity; we just ignore this kind of

points and apply the same algorithm to all the left points. Besides, when the user

changes the error tolerance, there is no need to recompute O. New step sizes can be

obtained very quickly by only changing some constant values. We also used
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weighted points to give the curve a tighter convex hull [18]. In this case, all the

forward difference points Δ2wiPi

Δ2wi
except the first and last one will be replaced by

Δ2 wi�1Pi�1ð ÞþΔ2 wiPið Þ
Δ2wi�1þΔ2wi

��� ���. Other procedures of the algorithm remain the same.

5.2.2 Tessellation Intervals for Rational Bézier Surfaces

The approach described in Sect. 5.2.1 can be easily extended to the surface case.

According to Zheng and Sederberg’s method [12], given a C2 rational surface

defined on a domain T, the approximation error between the original surface and

the approximate triangular mesh is smaller than ε if

Dssδ
2
s þ 2Dstδsδt þ Dttδ

2
t � 8ε inf

s;tð Þ
w s; tð Þ ð5:13Þ

where

r � sup
T

r s; tð Þk k

Dss ¼
sup
T

R
00
ss s; tð Þ�� ��þ r � εð Þ w00

ss s; tð Þ�� ��	 

, ε < r

sup
T

R}
ss s; tð Þ�� ��, r � ε � 2r

0, 2r � ε

8>><
>>:

ð5:14Þ

The other two elements Dst, Dtt are defined in the same way as Dss. δs and δt are the
tessellation step sizes. Under a specified error tolerance, according to the formula

(5.13), in order to maximize the step sizes, we should make the three values, Dss,

Dst, and Dtt, as small as possible. For a rational Bézier surface defined as follow:

r s; tð Þ ¼ R s; tð Þ
w s; tð Þ ¼

Xn
i¼0

Xm
j¼0

wi, jPi, jB
n
i sð ÞBm

j tð Þ

Xn
i¼0

Xm
j¼0

wi, jB
n
i sð ÞBm

j tð Þ
s, t 2 0; 1½ �, ð5:15Þ

the bounds of Dss, Dst, Dtt of this rational Bézier surface can be computed

Dss¼n n�1ð Þ max
0� i�n�2

0� j�m
wiþ2,jPiþ2,j�2wiþ1,jPiþ1,jþwi,jPi,j

�� ���

þ r�εð Þ wiþ2,j�2wiþ1,jþwi,j

�� ���
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Dst¼nm max
0� i�n�1

0� j�m�1

wiþ1,jþ1Piþ1,jþ1�wiþ1,jPiþ1,j�wi,jþ1Pi,jþ1þwi,jPi,j

�� ���

þ r�εð Þ wiþ1,jþ1�wiþ1,j�wi,jþ1þwi,j

�� ��� ð5:16Þ
Dtt ¼ m m� 1ð Þ max

0 � j � m� 2

0 � i � n
wi, jþ2Pi, jþ2 � 2wi, jþ1Pi, jþ1 þ wi, jPi, j

�� ���

þ r � εð Þ wi, jþ2 � 2wi, jþ1 þ wi, j

�� ���
Let r ¼ max 0 � i � n

0 � j � m

Pij

�� ��. We can derive the objective function in the same

manner as curve case:

min
O

X
k, h

Pk,h � Oð Þ2 þ
X
i, j

Δ2Wi, j

�� �� Qi, j � O
� �2 ð5:17Þ

In this situation, Qi,j is the combination of

wiþ2, jPiþ2, j � 2wiþ1, jPiþ1, j þwi, jPi, j

wiþ2, j � 2wiþ1, j þwi, j
0� i� n� 2,0� j�m

wiþ1, jþ1Piþ1, jþ1 �wiþ1, jPiþ1, j �wi, jþ1Pi, jþ1 þwi, jPi, j

wiþ1, jþ1 �wiþ1, j �wi, jþ1 þwi, j
0� i� n� 1,0� j�m� 1

wi, jþ2Pi, jþ2 � 2wi, jþ1Pi, jþ1 þwi, jPi, j

wi, jþ2 � 2wi, jþ1 þwi, j
0� i� n, 0� j�m� 2

ð5:18Þ

and their corresponding weights are the denominators. The results can also be

further improved by subdividing the surface once to obtain a smaller r. Besides,

the weighted point method is used to find a smaller convex hull for the surface.

Using these points to compute the discrete forward difference points Qi,j will be

better.

5.3 Creating Transition Regions

5.3.1 Extracting Bézier Patches

Given a NURBS surface, we first convert it to a set of rational Bézier patches. Then

the uniform tessellation intervals for each Bézier patch are determined indepen-

dently. For a NURBS surface with an m by n control grid, only (m�3)*(n�3)
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Bezier patches are extracted. The details of conversion can be found in Piegl and

Tiller’s book [19]. We will not explain it here.

5.3.2 Filling the Gaps

For adjacent patches with different tessellation intervals, gaps unavoidably occur

when rendering. We need to change the boundary connections to stitch them

together. On the coarse patch, we choose the column/row next to the common

boundary to create a transition region using existing vertices, as shown in Fig. 5.3.

This can ensure that the approximation error in this region is still below the given

tolerance after topology is changed. Except this row/column, the topology of other

parts on the patch keeps unchanged.

We reconnect the vertices on the boundary of this region according to some

criteria:

1. For each point on the coarse side, find its nearest point on the opposite edge of

this region and connect them as an edge.

2. For the rest unconnected points on the dense edge, find its nearest point on the

coarse edge and connect them as an edge.

3. If there still are quadrangles in this region, connect its shorter diagonal.

These criteria can guarantee that there is no cross of all edges. Figure 5.4 is a

surface composed of nine rational Bézier patches with different tessellation inter-

vals only in the vertical direction. It is obvious that there are many T-junctions

along their boundaries which will lead to gaps. We can see that there are no

T-junctions anymore and the edges are connected in a very decent manner after

applying the algorithm. Highlights are two inconsistent patches and their

corresponding transition regions.

The criteria can also handle the situation that a patch needs more than one

transition region along its boundaries, as the left-top patch in Fig. 5.5.

5.4 Implementations on GPU

We implement all the main stages in the algorithm: including extraction of rational

Bézier patches, estimation of tessellation intervals, creation of transition regions,

and tessellation on a dual-core NVIDIA graphic card GTX 590 (one core is used)

with memory bandwidth 163 GB/s. Taking a single Bézier patch as a unit, the

program is run in a patch-parallel level. Each patch is assigned a thread to run all the

stages successively. The work flow is shown in Fig. 5.6.

Given a NURBS surface, firstly all the control points are sorted in a row-wise

order and passed to the GPU memory. Then the control points’ indices that are

needed for computing each rational Bézier patch are extracted. In each block, there
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Fig. 5.3 The domain to create transition region between two adjacent patches

Fig. 5.4 (a) Nine Bézier patches with different tessellation intervals in vertical direction, (b)

transition regions, (c) corresponding gap-free surface

Fig. 5.5 (a) Bézier patch with different tessellation intervals in both directions, (b) after creating

transition regions
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are 16 by 16 threads. Each thread deals with a patch. Take degree 3 NURBS, for

example: each patch needs 16 control points to compute rational Bézier control

points. Reading the control points for patches in sequent row/column order is not an

efficient way. Since a control point is needed by four patches, we read a block of

19 by 19 control points for 16 by 16 patches into the shared memory first, as shown

in Fig. 5.7. This reduces the memory transfer greatly.

After estimating tessellation intervals and how many vertices are on each

direction, we evenly distribute the tessellation vertices while keeping their number

unchanged, as shown in Fig. 5.8. This may decrease the approximation error but not

Fig. 5.6 Program workflow

Fig. 5.7 Data read by one block

Fig. 5.8 Adjust tessellation pattern to reduce inconsistency and avoid slender triangles
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reduce the tessellation efficiency. Using this approach, it can reduce the number of

inconsistent patches. For instance, tessellation step sizes between 0.25 and 0.3 are

all considered as consistent factors since they will evenly generate five vertices on

one boundary. Therefore, we just need to search the numbers rather than tessellation

interval to determine inconsistent patches. This also helps to avoid slender triangles

which are caused by dividing step size with small remainder in the parameter

domain.

For each patch, we store the number of vertices in its two parameter directions.

These will be used to search adjacent patch pairs with different tessellation intervals

and determine how many vertices on each boundary of each patch. Here, according

to these tessellation intervals, we evaluate all the vertices on each patch without

considering the transition regions. One benefit of the regular tessellation pattern is

that the blending functions of one parameter direction for all the vertices in one

row/column are the same. These values can be pre-computed only once and stored

for multiple uses in direct evaluation of NURBS surface. All the vertices in a patch

are computed sequentially using direct evaluation method in our implementation.

Then triangles are generated for both interior region and transition region. For

those with more than one inconsistent boundary with neighbors, we create transi-

tion regions first in one parameter direction and then in the other direction. The

patches need transition regions in two directions which cannot run at once since

conflicts may occur at corner using our algorithm. Since the NURBS surface is

tessellated adaptively, each patch may have different numbers of vertices and

triangles. We cannot decide the offset of a certain vertex or triangle in the mesh.

Parallel scan [20] should be applied to obtain these offset once the tessellation

intervals for each patch is obtained. Afterwards, the vertex buffer and index buffer

with corresponding sizes are created on the global memory.

The final data in vertex buffer and index buffer can be directly used for

rendering.

5.5 Experiment Results

5.5.1 Comparisons to Zheng and Sederberg’s Method

To compare the results with Zheng and Sederberg’s method [12], we simply use the

same configuration with their experiments and choose their best results to compare

with our method. First, we estimate the step sizes for some single curves whose

degree is from 1 to 8. They are listed in Table 5.1. All of them are planar curves with

coordinates (x, y, w) which is not homogenous coordinate.

In their paper, they run all the examples using translating control point method,

weighted point method, and the combination of these two methods. We choose their

best results among these methods as shown in Table 5.2.
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From the above results, we can see that in some cases our method is very

effective. However, sometimes the weights of the discrete points negatively affect

the results a little. That is because we did not assign a weight to the control points;

in some cases, the new origin is pulled close to the discrete forward difference

points by their high weights, but it becomes far away from the control point. After

multiplying the weight, |Δ2wi|r increases more than the decrease of Δ2wi

�� �� Δ2wiPi

Δ2wi

��� ���.
To get the statistics of the overall performance, we also ran the algorithm on

300 randomly generated degree 3 rational Bézier curves. The x, y coordinates are

randomly distributed in three intervals, [�10, 10], [�100, 100], [�1000, 1000],

each interval containing 1,000 curves. The weight of each control point is the ratio

of two random numbers between 1 and 10,000. In most cases, the improved method

is better. For all intervals, the average step size increases (Table 5.3).

5.5.2 Run Time on CPU and GPU

We run the three models in Fig. 5.9 both on CPU and GPU. The run time on CPU is

taken as a reference compared to the GPU program. The three models contain

hundreds of or more than ten thousands of patches. We firstly use our method to

estimate the tessellation intervals and then tessellate them on the GPU. We can see

that even generating millions of triangles, it still can achieve real-time performance

(Table 5.4).

Table 5.1 List of Bézier curves

Degree Control points

C1(t) (2. 5, 5.6), (1. 8, 0.7)

C2(t) (�3,�10, 0.96), (6, 8, 2.3), (2, 4, 0.63)

C3(t) (19, 61, 0.08), (�61, 52, 0.5), (17, 55, 1), (49,�20, 0.4)

C4(t) (1, 5, 6.1), (7, 7, 0.39), (�8,�10, 18.4), (�1,�10, 1.1), (�6,�3, 0.03)

C5(t) (53,�6, 0.7), (�7, 66, 1.8), (�64,�46, 147), (�71, 43, 6.6), (97,�68, 4), (�66, 57, 0.7)

C6(t) (36,�23, 1.7), (48, 54, 0.8), (14,�13, 0.2), (64, 13, 1), (�68, 54, 1.4), (43,�1, 0.4),

(34, 92, 0.2)

C7(t) (9, 9, 1.5), (�4, 0, 3.1), (5, 0, 3.3), (�7, 0, 2.7), (10,�10, 2.6), (2,�3, 0.7), (�4, 9, 1.1),

(1,�5, 1.3)

C8(t) (3, 2, 0.2), (�5, 8, 1.6), (1, 4, 0.8), (7, 10, 0.8), (1,�8, 1.1), (�7, 5, 1.3), (0, 10, 0.4),

(4, 1, 0.7), (6,�1, 2.3)

Table 5.2 The step size for some single curves with error tolerance 0.1

δ C1(t) C2(t) C3(t) C4(t) C5(t) C6(t) C7(t) C8(t)

Zheng’s best
results

1.0 0.0551 0.0081 0.0021 0.001 0.0052 0.0132 0.0075

Our method 1.0 0.0551 0.0090 0.0021 0.001 0.0051 0.0135 0.0085
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The run time is not proportional to the number of total vertices/triangles since it

is determined by the most time-consuming thread. It can be seen that the old man

model is most unsmooth. It generates more vertices on each patch compared to the

stegosaurus model. Therefore, though containing less vertices and triangles, its run

time is higher. Besides, the head model generates more vertices on each patch on

average than “old man,” but run time is much less. That is mainly because the run

time on GPU is determined by the most time-consuming thread in each block. Some

of the patches on the “old man” may need more time to process. One solution to this

problem is that firstly rank the patches according to the number of vertices and

number of transition triangles and then let the patches with similar complexity be

processed in the same block.

Since most of the composed Bézier patches are very flat in the three models, the

generated vertices are very few on each patch. We also do a uniform tessellation.

Each Bézier patch is tessellated to 10 by 10 vertices to test the performance of our

program. Compared to adaptive tessellation, there is a sharp growth of the data size

Table 5.3 Average step size of a group of curves with error tolerance 0.1

Zheng and Sederberg’s
method

Our

method

No. of curves (our method is

better)

[�10, 10] 0.02389 0.02810 849

[�100, 100] 0.00705 0.00835 842

[�1000,

1000]

0.00240 0.00278 839

Fig. 5.9 Models after adaptive tessellation

Table 5.4 Run time on CPU and GPU (adaptive tessellation)

Patch no. Triangle no. Vertex no. Run time on CPU Run time on GPU

Head 360 2298 2850 1.76 ms 0.416 ms

Old man face 3828 10216 17775 17.91 ms 1.58 ms

Stegosaurus 12312 25530 50150 41.25 ms 0.66 ms
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but run time only increases a little. That is mainly because all the patches are

tessellated in parallel. The consuming of more time only happens when the vertex

data and index data that need to be computed on each patch increase (Table 5.5).

Conclusions

In this chapter, we improved the tessellation interval estimation algorithm for

rational Bézier curves/surfaces, which makes the tessellation more effective.

Besides, after estimating tessellation intervals, we adjust the vertices to make

them evenly distributed. This effectively reduces the number of inconsistent

patches and slender triangles. We also create transition regions between

inconsistent patches to guarantee a gap-free polygon surface. Using CUDA,

all the programs are executed on GPU in a patch-parallel way. The perfor-

mance is significantly improved compared to CPU. Even very complicated

models still can be rendered in real time.

Our improvement for the tessellation interval estimation is not theoreti-

cally optimized. The weighted method only excels in some cases. The final

result may be further improved by assigning a suitable weight for each control

point.

This method can be applied to T-spline surface, but more complicated.

Since there are T-junctions, there may be more than one tessellation interval

along a patch boundary. We need to develop other methods to handle the

connections between patches while making them suitable for GPU imple-

mentation. The algorithm should be explored at a different level of

parallelism.

Moreover, direct evaluation is not the best way for GPU evaluation. We

can use vertex-parallel manner to compute the vertex data or use forward

differencing method which is more effective than direct evaluation for

sequential vertex evaluation.
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Table 5.5 Run time on CPU and GPU (uniform tessellation)

Patch no. Triangle No. Vertex no. Run time on CPU Run time on GPU

Head 360 29160 29503 14.01 ms 2.83 ms

Old man face 3828 310068 331633 161.3 ms 3.95 ms

Stegosaurus 12312 997272 1039186 500 ms 10.1 ms
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Chapter 6

Graphics Native Approach to Identifying

Surface Atoms of Macromolecules

Huagen Wan, Yunqing Guan, and Yiyu Cai

Abstract Classification of “surface atoms” or “interior atoms” of proteins or

other macromolecules is significant for many biochemical tasks, particularly for

molecular docking. We present a simple and easy-to-implement algorithm for

identifying surface atoms of macromolecules from interior atoms. Unlike existing

methods that are based on geometry computations, our approach takes the advan-

tage of graphics hardware, and most of the computations are fulfilled with graphics

processing unit (GPU). The algorithm can be easily incorporated within visualiza-

tion applications for macromolecules to enable the removal of interior atoms from a

macromolecular structure, thus simplifying the graphics display and manipulation.

Keywords Molecular surface • Solvent accessible surface • Surface atoms • Inte-

rior atoms • Graphics algorithm • Graphics hardware • Rendering

6.1 Introduction

The structure of proteins and other macromolecules is fundamental for the under-

lying biological interactions. As biological molecules interact at their surfaces, an

understanding of the surface characteristics of the participating molecules would be

particularly useful for studying interactions among them. Although the boundary

surface of the electronic density surrounding a molecule is not well defined, the

term of molecular surfaces was first introduced by Richards in 1977 to describe a

molecular envelope accessible, e.g., by a solvent molecule [1]. There are several
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representational schemes to define the molecular surface model. These include the

isovalue electronic density surface, van der Waals surface, Richards’s molecular

surface, and solvent accessible surface (SAS) [2].

The isovalue electronic density surface is described as the molecular envelope

consisting points with the same electronic density values, generally 0.002 au, in a

given volume.

The van der Waals surface is, however, defined as the molecular envelope

containing the atomic spheres with van der Waals radii. It is simply constructed

from overlapping van der Waals spheres of the atoms. Given the spherical repre-

sentation of the atoms with van der Waals radii, the van der Waals surface is

represented as the union of all portions of all atomic sphere surfaces not occluded

by neighboring atomic spheres.

Richards’s molecular surface is composed of two different kinds of surface

patches: the contact surface and the reentrant surface [1]. Imagine the approach

of a small “probe” molecule up to the van der Waals surface of a macromolecule.

Depending on the size of the probe molecule (except for a probe of zero size), there

will be regions of “dead space,” crevices that are not accessible to the probe as it

rolls about on the macromolecule. The molecular surface is traced out by the

inward-facing part of the probe molecule sphere as it rolls on the van der Waals

surface of the macromolecule. The contact surface is formed by the part of the van

der Waals surface of each atom that is accessible to the probe sphere. The reentrant

surface corresponds to the inward-facing part of the probe sphere when it is

simultaneously in contact with two or three atoms forming crevices too narrow

for the probe molecule to penetrate. Richards’s molecular surface is usually defined

using a water molecule as the probe, represented as a sphere with radius 1.4 Å. In
[3], Connolly has proposed an analytical method for calculating Richards’s molec-

ular surface, with which a set of curved regions of spheres and tori, joined together

at circular arcs, are used to describe the molecular surface.

The solvent accessible surface (SAS) corresponds to the molecular envelope of

the surface that is traced by the center of the probe molecule sphere as it rolls on the

van der Waals surface of the macromolecule [4, 5]. The center of the probe

molecule can thus be placed at any point on the accessible surface and not penetrate

the van der Waals spheres of any of the atoms in the macromolecule. Mathemat-

ically, it is equivalent to a van der Waals surface in which the atomic radii have

been extended by the probe radius.

Figure 6.1 illustrates the last three kinds of representational schemes for the

molecular surface model.

Molecular surface modeling has several applications. One direct benefit with

molecular surfaces is the protein or macromolecule visualization [6–8]. Various

physical chemical properties such as electrostatic potential and hydrophobicity [9]

can be mapped onto the molecular surface and color coded [10–14]. Crucial in

protein-protein interaction and interface study [15], molecular surfaces have been

applied to the protein-protein docking problem which is the prediction of a complex

between two proteins given the three-dimensional structures of the individual
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proteins [16–18]. Identifying binding pockets on protein surfaces to help in rational

or structure-based drug design [19–25] is another major purpose of molecular

surface investigation.

For those atoms of a protein or other macromolecules, a significant number of

them lie buried beneath the molecular surface of the protein or macromolecule.

Interactions among these macromolecules are often dominated by interactions with

the “surface atoms,” although interactions with the interior atoms of the macro-

molecule certainly contribute to the total intermolecular interaction energy. There-

fore, a classification with “surface atoms” or “interior atoms” of proteins or other

macromolecules is significant for biochemical tasks, particularly for molecular

docking. For such a classification, several factors should be considered, e.g., the

running time of the classification algorithm, number of surface atoms correctly

identified, and the numbers of surface atoms and interior atoms incorrectly

identified [26].

In this chapter, we present a simple, graphics hardware-based approach to

identifying surface atoms of macromolecules from interior atoms. The chapter is

organized as follows. In Sect. 6.2, we review the related research works. In

Sect. 6.3, we describe the overview of our algorithm as well as its implementation

details. Section 6.4 presents some experimental results and discussions and the final

section concludes our study.

6.2 Prior Work

Deanda et al. [26] propose a definition for surface atoms as follows: “An atom will

be classified as an ‘effective surface atom’ if its SAS area is greater than a user

specified minimum threshold value for the atomic SAS area SAmin
acc .” Accordingly,

they develop an SAS approach to distinguishing the surface atoms of macromole-

cules from the interior atoms. The SAS approach is a computational one that

calculates the atomic contributions to the SAS area and designating beforehand a

constant value as the minimum threshold for the atomic SAS area. They adopt a

Fig. 6.1 Schematic view of van der Waals surface, Richards’s surface, and SAS
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surface area and volume package (SAVOL3) [27, 28] to calculate the atomic SAS

area. In their paper, they also summarize several other methods for surface atom

identification: (1) the NIN (number of intersecting neighbors) approach based on

the intuitive notion that the number of intersecting neighbors (i.e., atomic spheres

intersect one another) would be far greater for interior atoms than for surface atoms,

(2) the SOV (sum of vectors) approach which is a variation of the NIN approach and

uses the norm of the SOV to its neighbors as a criterion for classifying surface

atoms from interior atoms, (3) the UCSF (University of California at San Francisco)

approach that imbeds the macromolecule within a 3D lattice and associates the

atoms with the lattice points for classifying surface atoms [29], and (4) the MDS

(molecular dot surface) approach which uses the molecular cloud point represen-

tation to identify surface atoms [30].

All those algorithms are geometry based. While the NIN, SOV, UCSF, and MDS

approaches suffer from ambiguities for identifying surface atoms (i.e., atoms are

often misclassified) [26], the SAS approach needs geometry computations of

atomic SAS areas which are often performed with specific software packages.

With the rapid development of graphics processing unit (GPU), numerous applica-

tions have been developed based on graphics hardware [31–35, 39–42]. We believe

that techniques developed for graphics hardware rendering will be very useful for

bio-related tasks, such as the identification of surface atoms for proteins or other

macromolecules.

6.3 Algorithm Overview and Implementation

The kernel idea behind the definition of surface atoms in [26] is that if an atom of a

macromolecule contributes to the molecule’s SAS, then the atom will be considered

as a “surface atom” of the molecule. Bearing this in mind, we adjust slightly the

surface atom definition as follows. Let an atom A (with van der Waals radius r) of a
macromolecule M be represented as a hard sphere HS and the counterpart of HS
with the radius being extended by the probe radius pr to (r + pr) be denoted as an

extended hard sphere (EHS), and then atom A will be classified as a “surface atom”

if EHS can be seen from outside of the solvent accessible surface (SAS) of the

molecule M.

6.3.1 Algorithm Overview

Our algorithm is based on the rendering of the EHSs with commercially available

graphics hardware. Therefore, we can exploit the hardware to increase

performance.

Imagine that the solvent accessible surface of a macromoleculeM is surrounded

by a bounding box and that each face of the box is a viewing plane. An image is
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generated for each face by parallel projecting onto it the EHSs of the macromole-

cule M with hidden surfaces removed by depth comparison (Fig. 6.2).

Therefore, if the EHS of an atom appears in one or more of the six images, then

the atom will be classified as a surface atom. Resolutions for the faces are chosen so

that there are enough pixels for classifying the surface atoms.

6.3.2 Implementation

The implementation of the algorithm takes the advantage of graphics hardware

capabilities (e.g., color buffer and depth buffer), OpenGL graphics library as well as

the OpenGL utility toolkit (GLUT) [36, 37]. Apart from the objects positioning and

orientation in the scene, OpenGL offers facilities to define a viewing volume and to

specify the way objects are projected on the screen. There are two kinds of

projection: orthographic and perspective. The orthographic projection draws object

without affecting their relative size. The perspective projection is similar to our

vision mode: the further an object is, the smaller it appears, and two parallel straight

lines seem to converge in the distance. In both cases, viewing volumes are hexa-

hedra: a box or a truncated pyramid respectively (Fig. 6.3).

In our algorithm, the orthographic projection is used and the bounding box of the

macromolecule’s SAS is adopted as the viewing volume. An image is generated for

each of the six faces of the viewing volume by rendering the EHSs of the macro-

molecule with hidden surfaces removed.

For graphics hardware rendering with OpenGL, the color information at each

pixel can be stored either in RGBA mode or in color-index mode. In the first mode,

the R, G, B, and possibly alpha values are kept for each pixel. In the second mode,

however, only a single number (called the color index) is stored for each pixel. Each

color index indicates an entry in a color table that defines a particular set of R, G,

Fig. 6.2 Identifying

surface atoms with color

and depth buffers
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and B values. In either RGBA or color-index mode, a certain amount of color data is

stored at each pixel. This amount is determined by the number of bitplanes in the

frame buffer. A bitplane contains one bit of data for each pixel.

For most commonly available low-end graphics cards, at least 16 bitplanes are

provided for color storage in RGBA mode, and at most 8 bitplanes are available in

color-index mode. Considering there are often several hundreds to thousands of

atoms in a typical macromolecule, we choose the RGBA mode in this implemen-

tation. It would be more straightforward with the color-index implementation, and

high-end graphics workstations can be used to improve its efficiency (e.g., with

12 bitplanes on SGI Octane workstations for color-index buffers).

Each atom is firstly initialized with a unique identity, and a color table (with the

number of atoms of the macromolecule in size) is created with each of its compo-

nents corresponding to an atom identity, and then each atom’s EHS is rendered with
the color (in the color table) corresponding to the atom’s identity. Subsequently, the
color values of the rendered atoms’ EHSs are read from the color buffer and used to

determine the appearance of the EHSs in the images. To do so, a Boolean array is

used as a flag list to indicate which atom is a surface atom and which one is not. The

display list is used for rendering EHSs with a high performance.

It is worth noting that the same viewing matrix is used for a pair of rendering

(e.g., front and back, left and right, and top and bottom). This is done by setting the

depth comparison logic on one of the renderings to save the z-depth values farthest

away instead of closest with glDepthFunc( ) and set the face culling logic on the

same rendering to eliminate the front polygons of EHSs with glCullFace( ). For

instance, when rendering the two images for the front and back pair of the viewing

volume, firstly the viewing matrix for the front view is set, and then the first image

(corresponding with the front view) is generated by culling back polygons (of EHSs
of the molecule) which face away from the front view and setting the depth

comparison logic to GL_LEQUAL to make the depth test satisfied if the incoming

z value is less than or equal to the stored z value and finally the second image

(corresponding to the back view) is rendered by culling front polygons which face

toward the front view and setting the depth comparison logic to GL_GREATER to

make the depth test passed if the incoming z value is greater than the stored z value.

Figure 6.4 lists the pseudo code of our algorithm.

Fig. 6.3 (a) Orthographic and (b) perspective views
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6.3.3 Improvements

The above algorithm can quickly and successfully classify most surface atoms of

any macromolecules. The main limitation of the above approach is that it may miss

concavities. If some EHS of an atom contributes to the molecule’s SAS and is not

visible from any of the six faces of the viewing volume, then this atom will not be

properly classified. The algorithm, however, can be easily improved by adding

more viewing planes. For instance, we can sample from the four diagonals of the

above bounding box to add 8 more viewing directions and construct viewing planes

to render the atoms’ EHSs (Fig. 6.5). Furthermore, we find using higher resolution

of the viewing plane can also improve the classification. We will show with

experiment how they help in the next section.

Fig. 6.4 Pseudo code of our algorithm
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6.4 Experimental Results and Discussions

Several macromolecules from the Protein Data Bank (PDB) [38] were tested under

the resolution of 1792 * 1344 in the true color mode (32-bit mode). Figure 6.6

shows the contents of the color buffer when performing the test with a triose-

phosphate isomerase (1TIM). Table 6.1 lists the testing results with a dihydrofolate

reductase (1RA2), a thermolysin (7TLN), and a triose-phosphate isomerase

(1TIM). The tests were performed under different resolutions of the viewing

plane (e.g., 100 * 100, 400 * 400, 800 * 800, 1000 * 1000, and 1182 * 1182) and

with different configurations of viewing planes (e.g., 6 viewing planes and 14 view-

ing planes). For comparison reason, the experimental data of the SAS approach

selected from [26] were listed in Table 6.2. Their experiments were performed on

an SGI Indigo with an R4400 processor.

From Table 6.1, we can clearly see that the number of classified surface atoms

increases with the increment of both the viewing planes and the rendering resolu-

tion. However, while the accuracy of the classification is nearly constantly

improved with more sampling view planes, the number of classified surface

atoms increases nonlinearly with the increment of the rendering resolution. For

the number of classified surface atoms of the 3 testing macromolecules, there is

only a subtle degree of difference for the resolutions of 1000 * 1000 and 1182

* 1182.

Theoretically, there may be an “accurate” or “exact” number of surface atoms

for a macromolecular structure, and there may exist a “clear” borderline between

surface atoms and interior atoms. However, to our knowledge, there is yet to have a

theoretical solution at present time to calculate the “accurate” or “exact” surface

atom number. It is a challenging job as well to numerically find out this “accurate”

or “exact” number and/or “clear” borderline. In fact, the accuracy of the SAS

approach [26] is dependent upon the user-specified minimum threshold value for

Fig. 6.5 Improving the

algorithm by sampling from

additional 8 viewing

directions
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the atomic SAS area and the precision of the atomic SAS area calculation. On the

other hand, the accuracy of our graphics hardware-based approach depends upon

both the viewing plane setting and the rendering resolution. Still, we think that the

numerical solutions are worth trying when “accurate” theoretical solutions are not

available. Also, we believe that the numbers of classified surface atoms from our

approach show kinds of tendency of convergence when the viewing directions and

resolution are increased. This again turns out as an interesting yet difficult research

topic.

Conclusions

This chapter presents a fast and easy-to-implement algorithm for identifying

surface atoms of macromolecules from interior atoms, which is based on the

color buffer and z-buffer. The algorithm can be easily incorporated within

visualization applications for macromolecules as a preprocessing step to

enable the removal of interior atoms from the macromolecular structure.

Doing so, a simplified macromolecular structure can be generated for

graphics display which can reduce the time required for display and manip-

ulation of macromolecules.

Unlike existing methods for identifying surface atoms of macromolecules

mainly based on geometry computations performed by general CPU, our

approach takes the advantage of widely available graphics hardware and

most of the computations are fulfilled with the graphics processing unit

(GPU). As our algorithm is based on the color buffer and z-buffer, its

(continued)
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Fig. 6.6 Color buffer contents when testing with triose-phosphate isomerase (1TIM)

6 Graphics Native Approach to Identifying Surface Atoms of Macromolecules 93



T
a
b
le

6
.1

E
x
p
er
im

en
ta
l
re
su
lt
s
w
it
h
se
v
er
al

m
ac
ro
m
o
le
cu
le
s
fr
o
m

P
ro
te
in

D
at
a
B
an
k

M
o
le
cu
le

R
es
o
lu
ti
o
n

1
0
0
�
1
0
0

4
0
0
�
4
0
0

8
0
0
�
8
0
0

1
0
0
0
�
1
0
0

1
1
8
2
�
1
1
8
2

N
u
m
b
er

o
f
sa
m
p
li
n
g
v
ie
w
in
g
p
la
n
es

6
1
4

6
1
4

6
1
4

6
1
4

6
1
4

IR
A
2
T
o
ta
l
at
o
m

n
u
m
b
er
:
1
2
6
8

N
u
m
b
er

o
f
su
rf
ac
e
at
o
m
s

6
8
2

7
0
3

7
2
3

7
5
2

7
3
2

7
5
6

7
3
2

7
6
2

7
3
3

7
6
3

R
u
n
n
in
g
ti
m
e
in

se
co
n
d
s

0
.3
4

0
.8
1

0
.4
8

1
.1
4

0
.9
1

2
.2
0

1
.3
4

3
.0
8

1
.8
3

4
.2
0

7
T
L
N

T
o
ta
l
at
o
m

n
u
m
b
er
:
2
4
3
6

N
u
m
b
er

o
f
su
rf
ac
e
at
o
m
s

1
0
0
6

1
0
4
9

1
1
0
7

1
1
5
5

1
1
2
0

1
1
7
2

1
1
2
5

1
1
7
4

1
1
2
8

1
1
7
5

R
u
n
n
in
g
ti
m
e
in

se
co
n
d
s

0
.6
3

1
.4
8

0
.7
7

1
.8
3

1
.1
6

2
.8
9

1
.4
5

3
.6
9

1
.9
2

4
.6
6

IT
IM

T
o
ta
l
at
o
m

n
u
m
b
er
:
3
7
4
0

N
u
m
b
er

o
f
su
rf
ac
e
at
o
m
s

1
4
6
3

1
5
9
4

1
6
8
0

1
8
6
1

1
7
2
1

1
8
2
9

1
7
3
0

1
8
4
4

1
7
3
0

1
8
5
2

R
u
n
n
in
g
ti
m
e
in

se
co
n
d
s

0
.9
8

2
.2
5

1
.0
8

2
.6
3

1
.3
9

3
.6
9

1
.6
4

4
.4
8

1
.9
2

5
.3
6

94 H. Wan et al.



complexity is independent of the molecule complexity but dependent on the

rendering resolution and its viewing plane setting.

With the computational power of graphics hardware outperforming that of

general CPU by Moore’s law [34], we believe that algorithms based on GPU

for biochemical tasks will be very promising in the future.
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Chapter 7

A Scalable Software Framework for Stateful

Stream Data Processing on Multiple GPUs

and Applications

Farhoosh Alghabi, Ulrich Schipper, and Andreas Kolb

Abstract During the past few years, the increase of computational power has been

realized using more processors with multiple cores and specific processing units

like graphics processing units (GPUs). Also, the introduction of programming

languages such as CUDA and OpenCL makes it easy, even for non-graphics pro-

grammers, to exploit the computational power of massively parallel processors

available in current GPUs. Although CUDA and OpenCL relieve programmers

from considering many low-level details of parallel programming on multiple cores

on a single GPU, the same support at a higher level of parallelization for multiple

GPUs is still under research. In particular, fundamental issues of memory manage-

ment and synchronization must be dealt with directly by the programmer. In this

chapter, we introduce concepts for CUDA-based frameworks which are designed

for stateful stream data processing for graph-like arrangements of processing

modules on two or more GPUs in a single compute node. We evaluate these

concepts and further elaborate on the approach of our choice. Our approach relieves

the programmer from error-prone chores of memory management and synchroni-

zation. The chapter presents detailed evaluation results which demonstrate the

scalability of the proposed framework. To demonstrate the usability of our frame-

work, we utilize it for demanding online processing in the areas of crystallographic

structure detection and video decryption.
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7.1 Introduction

Although the idea of parallel processing has been around for some decades, the

interest to this field and its applications in various scientific and engineering areas

has grown significantly in the past few years. There are two reasons that have

played a major role in this growth. One reason is the advancements in hardware

industry which have enabled processor manufacturers to put more processing cores

on a single die, thereby moving the parallel programming from expensive main-

frames and clusters to desktop computers. This fact is verified by noticing the

widespread use of multi-core CPUs and many-core GPUs in almost any PC around

the world. The second reason is the introduction of languages, libraries, and tools

that ease the task of parallel programming for these processors. Particularly, we can

mention CUDA and OpenCL which both target GPUs and unleash the huge

computational power even to programmers not familiar with computer graphics.

Both OpenCL and CUDA offer general-purpose application programmers with

great support for parallel programming. This is accomplished by providing con-

cepts and features that easily map to real-world problems which are parallel in

nature, thus enabling efficient exploitation of computational power delivered by the

numerous cores of a single GPU with minimal effort. Although these features work

well for cases where there is only one GPU available in the compute node, they are

not so easily extensible to the cases where multiple GPUs exist in a single node.

Thus, it remains the task of programmer to take care of any details in order to

provide the same degree of scalability at this new level of parallelization (multi-
GPU, single-node parallelization) as the one available across the cores on a

single GPU.

This chapter specifically addresses the concept and realization of a CUDA-based

framework for multi-GPU, single-node parallelization problems, where

GPU-scalability is a major concern. The framework has been designed with easy

use by application programmers in mind. As a consequence, transparency is an

important property of the proposed framework, mainly with regard to memory

management and synchronization. Actually the most important programming task

left to the application programmer is writing CUDA kernels responsible for

processing of data as if they would run on a single-GPU node.

We assume the data is provided as sequences of homogeneous data sets Di(tj)
( frames at time tj), where i indicates the last processing module Mi with which the

data has been processed. We address a specific class of stream processing [1]

problems, which can be characterized as follows (see also Fig. 7.1):

Module-based stream processing: We assume data to be loaded to the framework

via one or several source modules and to be processed by one or several

processing modules. The resulting data is exported via one or several sink
modules.

A moduleMi can be seen as a CUDA kernel which processes stream data, i.e.,

transforming input data Di-1(tj) to output data Di(tj) that is fed into subsequent

module(s).
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Graph-based layout: The stream data is transferred between modules, which can be

arranged like a graph, including stream splits and stream merges.

Stateful processing of data: It means that previous data or processing results are

required for processing newly arrived data. This is realized using intra-module
feedback; here, the processing in moduleMi of frame tj also depends on the prior
result of the same module, i.e., on Di(tj-1).

Inter-module feedback (optional): Inter-module feedback improves on the intra-

module feedback by letting two distinct modules be connected via feedback.

As a result, the addressed problem class is more general than standard pipeline

processing, and thus it has a wider range of applications. Stateless problems,

nevertheless, can still be subject to automatic multi-GPU processing.

In order to give an impression of how useful our framework is, we briefly discuss

two applications from different domains here. One application lies within the scope

of information security. To protect against unauthorized access to information,

various cryptographic and steganographic algorithms have been developed. Not

surprisingly, videos form an important subclass of data which are required to be

protected against unauthorized access. The rapid growth in size of videos (due to

increasing resolution, color depth, frame rate, etc.), however, has made the task of

applying complex methods computationally quite expensive. One scenario shows

the online application of cryptographic and steganographic methods.

The second application lies within the field of crystallography. One common

practice in the community is to study the structure of crystals by examining a

sample using x-ray imaging. Here, a crystal sample is illuminated by an x-ray beam

radiation and the scattered radiation pattern is detected by an energy-dispersive

pn-type charge-coupled device (pnCCD) sensor. This camera generates images

with 384 * 384 pixels and 2 bytes of information per pixel at currently 400 frames

per second, yielding an overall data rate of beyond 112 MB/s. The overall goal of

these kinds of experiments is to have near real-time data analysis in order to be able

to directly detect improper adjustments of the setup or wrong experimental param-

eters. Furthermore, in the near future, these experimental setups should be applied

Fig. 7.1 Processing modules and their arrangement, including stream splits (top middle), merges

(top right), intra-module feedback (bottom left), and the optional inter-module feedback (bottom
right)
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for continuous analysis of large sample sets. In a separate section, we show how

successfully our framework is used to address this problem.

The remainder of this chapter is organized as follows: Section 7.2 gives an

overview of works done in the area of multi-GPU as well as stream data processing.

Section 7.3 describes the parallelization concepts and implementation details for

the framework. Section 7.4 presents some experimental evaluations. In Sect. 7.5, as

mentioned, two real-world applications where our framework has been utilized are

elaborated. Finally, a brief discussion is presented as conclusion.

7.2 Related Work

As stated in the introduction, we focus on multi-GPU, single-node parallelization

for stream data processing. Consequently, in the following, we first mention works

mainly characterized by running on multi-GPU systems and then those which deal

with stream data processing.

In [2] Enmyren and Kessler propose a skeleton programming library for systems

with multiple CPU cores and GPUs. This is accomplished by use of CUDA and

OpenCL as the back ends for code running on GPU and OpenMP for CPU code.

The operations supported by their library follow MapReduce model and are in the

form of a C++ template library. [3] proposes an approach for high-performance

scientific computing on single- and multi-GPU systems. An important feature of the

prototype implemented in the paper is the separation of algorithm description from

mapping to the hardware which is achieved through the definition of a domain-

specific language. The language is defined in close collaboration with experts of the

domain for which the framework is intended. In [4] Chen et al. propose a task-based

queue scheme for systems with one or multiple GPUs. The main goal of the scheme

is dynamic load balancing which is achieved by breaking down the computations

into fine-grained tasks and then dynamically assigning them to GPUs. Note that in

the case of single-GPU systems, this reduces to assignment of tasks to CUDA cores

available on a GPU which is reported to outperform the CUDA scheduler in case of

unbalanced workload. Chen et al. further develop on this work to support GPUs on

different nodes in a cluster [5]. They also improve their scheme for dynamic load

balancing on individual nodes with multiple GPUs. As an interesting application,

Stuart et al. [6] have proposed a multi-GPU design for volume rendering. In their

implementation, parallel volume rendering has been fit into MapReduce model and

run on a cluster of nodes equipped with GPUs. As a rather innovative work, [7]

presents a performance prediction model for multi-GPU systems, which gives an

estimate of the expected performance improvement when moving from a single-

GPU to a multi-GPU system, based on the performance results on a single-GPU

system.

In summary, all of the above-mentioned approaches either focus on a problem

domain that does not include the problem domain addressed in this chapter or they
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use a different hardware setup, e.g., CPU clusters, for which the concepts cannot be

directly applied to our hardware setup.

Considering related works mainly characterized by stream data processing, [8]

presents a framework for processing of multiple data streams on heterogeneous

systems where both CPUs and GPUs are used as processors. The paper proposes a

method for assignment of streams to CPUs and GPUs such that hard real-time

constraints of stream data processing are satisfied. Yamagiwa et al. [9] elaborate on

their efforts for porting an already existing framework for stream data processing on

single GPU from previous GPU generations to present ones. To this end, they use

CUDA. This, in addition to the use of OpenGL and DirectX for GPUs of old

generations, leads to the development of a framework capable of running on

different generations of GPUs. Teodoro et al. [10] introduce a stream data

processing framework capable of exploiting the computational power of both

CPUs and GPUs. A significant point with their framework is a mechanism for

determining on which type of processor (CPU or GPU) the processing should be

done (provided that the code for both types of processors is given). The framework

uses CUDA as computational back end on GPUs. Houzet et al. [11] present a

programming model which can be used for stream data processing on multi-GPU

systems. The innovation of this work is its use of system design language SystemC

which is used as a high-level language for description of the desired processing,

thereby hiding many low-level details from users. Zhang and Mueller propose a

scalable stream data processing framework which runs on GPU clusters and is

based on CUDA [12]. It makes extensive use of template-based generic program-

ming techniques in C++ to offer programmability and uses MPI for internode

communication. As the last work in this section, Vogelgesang et al. [13] have

developed a GPU-based image processing framework which supports CPU usage as

well. Similar to [10], their framework chooses between CPU and GPU codes

provided that both codes exist. The framework supports processing on a cluster of

nodes and uses OpenCL as computational back end.

All of the mentioned stream data processing approaches lack support for either

multi-GPU or the problem domain addressed in this chapter (i.e., stateful stream

data processing).

7.3 The Framework

In this section, we first describe possible parallelization concepts for the addressed

problem domain (Sect. 7.3.1). The evaluation of these concepts in Sect. 7.4.1 forms

the basis for final implementation, which is described in Sect. 7.3.3.

Remember that our framework assumes that all or majority of processing is done

on GPUs, thus a processing module can be safely considered as a user-defined

CUDA kernel in most cases. The processing graph is a collection of modules which

describe the flowchart of processing done on data, including stream source and

stream sink modules (see Fig. 7.1).
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7.3.1 Basic Concepts

An important design question while developing the framework is how to distribute

the computational load over several GPUs and, as a consequence, how the syn-

chronization and the data management is organized.

Since in our treatment of the framework the computational load is decomposed

into modules, this question reduces well to that of how to assign different modules

to GPUs. We consider two completely different approaches, i.e.:

Distributed Graph: In this first concept, the processing graph is divided into

N subgraphs, where N is the number of GPUs, and modules within each subgraph

are strictly assigned to a separate GPU.

Multiple Graph Instantiation: In this concept, on the other hand, one instance of

each module or more precisely one instance of the whole processing graph runs

on each GPU.

Table 7.1 summarizes their main characteristics. Note that there are two variants

of the Distributed Graph approach (see Sect. 7.3.2).

In order to select one of the concepts for final implementation, we have

implemented preliminary versions of both concepts. These preliminary versions

are fully functional in terms of data management, synchronization, and process

control. Based on the preliminary implementation, the performance of the concepts

has been evaluated (see Sect. 7.4.1). The essence of the evaluation is that the

Multiple Graph Instantiation approach outperforms the two variants of Distributed

Graph in almost all test cases except when the number of intra-module feedbacks is

large enough. Thus, we made the choice to fully implement the Multiple Graph

Instantiation approach. Consequently, the technical description of the Distributed

Graph concept is less detailed than the one for Multiple Graph Instantiation.

Table 7.1 Characteristics of the different concepts

Multi-threaded

distributed graph

Single-threaded

distributed graph Multiple graph instantiation

Architecture One instance

Modules distributed

over GPUs

One CUDA stream

per module

One instance

Modules distributed

over GPUs

Two CUDA streams

per GPU

Multiple instances

One instance per GPU

One or more CUDA streams

per GPU instance

Synchronization CPU-thread

synchronization

CUDA stream

barrier

CPU-thread synchronization

Memory

transfers

Source, sink, GPU

borders

Source, sink, GPU

borders

Source, sink, feedback

Load

distribution

Module distribution Module distribution Built-in

Inter-module

feedback

Not supported Container modules Main memory
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7.3.2 Distributed Graph

There are two variants of the Distributed Graph approach. The major difference

between these two variants is the number of CPU threads used for controlling the

modules, which strongly influences the synchronization method to be applied. In

multi-threaded variant, each module is controlled by a separate CPU thread (see

Fig. 7.2). The module stores its result in a small output ring buffer. If a module is

idle, it polls the output buffer of the predecessor for new data to process. If this is

the case, new data is copied to an input buffer (DeviceToDevice copy) and

processed. If no new data is available, it yields its time slice. If a module has a

successor that is located on a different GPU, the output ring buffer is mirrored to the

host memory (DeviceToHost copy). On the other hand, if a module has a prede-

cessor that resides on a different GPU, it copies the data from main memory to its

GPU memory (HostToDevice copy). The modules are synchronized via the access

to the output ring buffer. In single-threaded variant, all modules are controlled by

the same CPU thread (see Fig. 7.3), which calls all CUDA functions (kernel

launches and memory transfers) asynchronously. Two CUDA streams are used

for each GPU, one for data transfer and the other for kernel calls, thus partially

hiding data transfer time by overlapping kernel launch and memory transfer. Before

the next frame is processed, the CUDA streams are synchronized by a barrier.

This approach requires a manual decomposition of the complete processing

graph into N subgraphs to be distributed to the N GPUs. The load distribution is a

direct result of this decomposition and thus a difficult task left to the user.

Fig. 7.2 Distributed Graph, multi-threaded variant: Each module runs in a separate CPU thread.

The processing is synchronized via access to the ring buffer. Data transfers across GPU borders are

managed via the main memory
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7.3.3 Multiple Graph Instantiation

At the very heart of the proposed framework lies a simple idea: processing all the

input stream(s) data at a specific time step ti by a single GPU (see Fig. 7.4).

Precisely speaking, for N> 1 GPUs, numbered from 0 to N - 1, the data from all

input streams at time step t� 0 is processed by GPU t mod N. This has an immediate

consequence of nearly perfect load distribution over GPUs in case of data-

independent processing.

Although the basic idea behind the proposed framework is quite simple, there are

still a few other considerations which affect the framework design in a significant

way. The two most important considerations are synchronization and main memory

management which are largely influenced by the stateful processing requirement of

the framework, i.e., the realization of the intra- and inter-module feedback func-

tionalities. For the Multiple Graph Instantiation approach, feedback data is trans-

ferred first from the memory of one GPU to the main memory of the system and

then from there to the memory of another GPU. This leads to two memory transfer

operations between host and device with additional synchronization requirements,

whereas in the Distributed Graph concept, this data remains on the same GPU.

Besides the two aforementioned considerations, there are still a few less impor-

tant ones which are specifically taken care of to exploit useful features of GPUs

offered by CUDA. Notably, GPU memory management and concurrent CUDA

kernel launches and memory copies are among these. These last two points together

with synchronization and main memory management are separately considered in

the following four subsections.

Fig. 7.3 Distributed Graph, single-threaded variant: In this concept, all modules are triggered

within a single CPU thread using asynchronous CUDA calls. Two CUDA streams for each GPU

are used to partially hide data transfer time. A CUDA stream barrier is used to synchronize after

each process iteration
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7.3.3.1 Synchronization

Considering the basic idea of the framework, there should be a mechanism which

ensures us that the GPUs both read the inputs from sources and write the outputs

into the sinks in correct order. In order to realize this behavior, the framework

launches as many CPU threads as GPUs where each CPU thread is in full charge of

a GPU. This, in turn, lets the framework control the order of accesses to input as

well as output streams by different GPUs through the use of synchronization objects

defined at CPU-thread level. The same mechanism is used to let each GPU access

the processing results of input(s) at previous time step, thereby enabling the stateful

processing property of the framework.

7.3.3.2 Main Memory Management

Main memory can be regarded as the major gateway of the framework for com-

munication with the outside world. Actually, it is the place where inputs represented

by sources are read from by GPUs, and also it is the place where outputs represented

by sinks are written into by GPUs. In addition to these two functionalities, the main

memory also serves another important purpose: providing a place for exchange of

data between GPUs. This latter point combined with previously mentioned

Fig. 7.4 Multiple Graph Instantiation: The whole processing graph is executed on each GPU

(here, only 2 GPUs are shown). Data transfers for inter- and intra-module feedbacks are handled

via main memory. The input and output buffers are swapped during stage changes to save GPU

memory (see Sect. 7.3.3)
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synchronization mechanism which is used to synchronize accesses to common

main memory areas between two GPUs realizes the stateful processing capability

of the framework.

7.3.3.3 GPU Memory Management

Although a straightforward way for GPU memory management is to allocate

memory for inputs and outputs of all modules in the processing graph, the frame-

work employs another strategy for this. The motivation for this has been better

utilization of precious GPU memory. To implement this strategy, the framework

introduces the concept of stage. A stage is defined as composed of modules whose

inputs are produced in previous stage(s). Such a definition is a recursive one and the

only requirement is to define the first stage. To complete our definition, the first

stage is considered to be composed of only sources.

Now that we have organized all the modules in the processing graph into stages,

GPU memory management can be described as allocation of two separate areas on

GPUmemory. From one of the GPUmemory areas, the inputs for all modules in the

current stage are read and into the other the outputs of all modules of the current

stage are written. The roles of the two GPU memory areas are swapped when

finishing current stage and starting a new one. This way the output area of current

stage becomes the input area of the new stage, thus ensuring the desired behavior.

This swap process is repeated whenever a stage is complete and a new one begins.

Note that this GPU memory management strategy is done for each GPU separately

and the two GPU memory areas are allocated on global memory of GPUs. This

latter point ensures the data are persistent between two consecutive stages.

7.3.3.4 Concurrent Kernel Launches and Memory Copies

A useful concept introduced in CUDA is that of CUDA streams. An immediate

consequence of this concept is the possibility of concurrent kernel launches as well

as concurrent kernel execution and copies between main and GPU memories. With

the aim of increasing performance, the framework is designed to exploit this

valuable feature as well. For this purpose, the framework provides the user with

some CUDA streams on which to launch kernels.

7.4 Experimental Evaluation

In accordance with how the effort for development of the framework is divided into

two main phases (see Sect. 7.3), the evaluations carried out are well categorized

into two major groups, i.e., those aimed at the selection of a concept for final

implementation (Sect. 7.4.1) and those to depict the scalability of the final
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implementation (Sect. 7.4.2). Note that the system used for running all the exper-

iments in this chapter is equipped with 4 Tesla C2050 GPUs each having

448 CUDA cores and connected via a separate PCI Express 2.0 � 16 interface.

The system also has two Intel Xeon E5630 2.53 GHz Quad-Core CPUs with 24GB

of RAM. Finally the system runs Windows Server 2008 R2 as the operating system.

7.4.1 Comparison of Preliminary Implementations

The evaluation of the preliminary implementations is based on three different

processing graphs. The stream data for all experiments consists of 10.000 data

frames of 384 * 384 2-byte data elements, adding up to some 2.75 GB. Furthermore,

we vary the amount of computation performed in each module. Therefore, we use

two different CUDA kernels, one light kernel, inducing relatively little computa-

tional effort, and one heavy kernel with high computational costs. Then the average

time measurement is reported. As the last point, in Distributed Graph experiments

the distribution of modules among GPUs is done manually in order to get the best

load balance for each processing graph.

The first processing graph examined is a serial processing graph, in which the

processing modules are connected sequentially and their number varies from 1 to

10. Figure 7.5 shows the result for this experiment. This experiment is ideal for

parallelization, since the least amount of data transfer is required, i.e., no feedback,

splitting, or merging. The Multiple Graph Instantiation completely outperforms the

two variants of Distributed Graph in both light and heavy kernels. There is,

however, an interesting observation: for the heavy kernel, the Multiple Graph

Instantiation implementation performs almost linear, whereas this is almost con-

stant in light kernel version. This effect is due to the fact that the computation done

in heavy kernel is large enough to constitute most of the measured time whereas in

light kernel version, other operations such as host (CPU)-to-device (GPU) and

device-to-host memory transfer times dominate the computation time in kernels,

leading to an almost constant performance. Note that these two types of memory

transfer operations are performed exactly the same number of times regardless of

the number of processing modules in the serial processing graph.

The next experiment is conducted using a parallel processing graph, where the
processing modules are arranged in a purely parallel fashion and their count varies

between 1 and 10. The results of experiments are shown in Fig. 7.6. The Multiple

Graph Instantiation concept again outperforms the two variants of Distributed

Graph. Once again, the same effect as the one in Fig. 7.5 can be seen for light

and heavy kernel modules used in the Multiple Graph Instantiation. This can well

be explained by the same line of reasoning as the one stated for serial processing

graph.

In the last processing graph, we use a more complex arrangement consisting of

23 processing modules (see Fig. 7.7). In this processing graph, some of the

processing modules have an intra-module feedback, the number of which ranges

between 0 and 23. As can be seen in Fig. 7.8, the Multiple Graph Instantiation
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Fig. 7.5 Serial processing graph experiment performed with 1–10 processing modules consisting

of either light or heavy kernels for all three concepts

Fig. 7.6 Parallel processing graph experiment performed with 1–10 modules consisting of either

light or heavy kernels for all three concepts
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Fig. 7.7 Complex processing graph used in Sect. 7.4.1

Fig. 7.8 Complex processing graph experiment performed with 0–23 intra-module feedback

(s) using either light or heavy kernels for all three concepts

Fig. 7.9 Processing graph used for examining the effect of feedback on scalability (see

Sect. 7.4.2)
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performs better than multi-threaded Distributed Graph. However, for a large num-

ber of intra-module feedback, the single-threaded Distributed Graph outperforms

the Multiple Graph Instantiation. This effect is a direct result from the data transfer

required for feedback, i.e., the intra-module feedback implementation in the Mul-

tiple Graph Instantiation is more expensive than its single-threaded Distributed

Graph counterpart (see Sect. 7.3.3).

7.4.2 Scalability and Feedback

The Multiple Graph Instantiation approach by default supports the optional func-

tionality of inter-module feedback. To be precise, the implementation does not

make any difference between intra- and inter-module feedbacks. We conducted

some experiments regarding this feature in order to evaluate the effect of feedbacks

on the scalability in terms of the number of GPUs. Therefore, we generated a

processing graph, consisting of a linear sequence of modules with an additional

inter-module feedback (see Fig. 7.9). For the evaluation, we vary the computational

load of modules bridged by the feedback and the ones outside the bridged subgraph.

The results regarding the scalability are shown in Fig. 7.10. As expected, inter-

module feedback reduces the performance of our framework. Naturally, bridging

the whole graph completely, i.e., having no computational load outside the bridged

subgraph, completely destroys the GPU parallelism, since the first processing

Fig. 7.10 Scalability and feedback in terms of the proportion of the computational load inside and

outside the feedback subgraph
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module can process D0(tj+1) only after the last module N has generated its result

DN(tj). The rate of performance degradation is related to the proportion of the time

spent within the feedback subgraph and that spent outside the bridged subgraph.

7.5 Applications

In this section, we present two different applications which have been successfully

addressed by our framework. The first application deals with information security,

whereas the second one is in the field of crystallography.

7.5.1 Information Security Using Crypto-
and Steganography

Cryptography and steganography form two major groups of methods within the

scope of information security. While cryptography is more concerned with hiding

the content of a message, steganographic methods try to hide the message itself. To

better clarify the difference between the two, one can consider the case of a simple

piece of meaningful text communicated between sender and receiver. In case of

cryptography, one would encrypt the meaningful text such that each letter is

replaced by another, thus leading to an unmeaningful text. In steganography,

however, the meaningful text (referred to as cover or cover text) could be written

in such a way that the secret message is formed from the first letter of each word. As

can be seen in this simple case, the advantage of steganography over cryptography

is that it does not attract the attention of those who accidentally access the text,

whereas the encrypted text would raise suspicion that there is a secret message

hidden in the unmeaningful text. Therefore, cryptographic methods only protect the

content of a secret message, while steganography deals with protection of both

secret message and communicating parties.

In this section, our framework is exploited to deal with an application where both

cryptographic and steganographic methods are involved. The goal is to extract a

sequence of secret hidden images from an encrypted cover video. The video is

encrypted based on method of [14]. In our implementation, it is assumed that each

video frame in the memory is divided into chunks of 8 bytes and corresponding

chunks in consecutive frames form a separate sequence of plaintext blocks. Fur-

thermore, in each video frame, a secret image is hidden using least significant bit

which is a steganographic transform whereby secret information is written into least

significant bits of image pixels, thus causing hard-to-perceive degradations in visual

quality of cover image (the interested reader is referred to [15] for a survey of this

and other image steganographic methods). Based on these assumptions, our frame-

work first decrypts a video frame by applying method of [14] to obtain the cover
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image and then extracts the hidden image by applying the reverse steganographic

transform to the cover image (all processing for this experiment is done on GPUs).

Note that in this implementation, the decryption result of each video frame is

affected by that of the previous one, thus requiring feedback as shown in

Fig. 7.11. Note that H and μ are decryption parameters as defined in [14] and the

task of two modules H image and decrypted frame extraction is to separate these

two pieces of data which are combined at the output of frame decryption module

and provide them on their outputs.

The experiment is done using HD videos of size 1920 * 1080, 24 bpp as cover

video. The result would be a video (image sequence) of size 1920 * 135, 24 bpp.

This is because from each byte in the input video, only the least significant bit is

preserved, thus reducing the size to one eighth. The timing results for 2, 3, and

4 GPUs are shown in Fig. 7.12. Also shown in the figure are timing results for CPU

implementation of the same algorithm using 1, 2, 3, and 4 CPU threads to provide

the reader with a ground to compare with. Considering the typical frame rate of

1080p HD videos which is between 24 and 60 frames per second, one can easily see

that the 4-threaded CPU implementation can only handle frame rates near the lower

bound of this range whereas the two-GPU implementation supports frame rates well

beyond its upper bound.

7.5.2 Crystallography Using a pnCCD Camera

Considerable amounts of information about crystals are collected through exami-

nation by x-ray. There are different types of x-ray sensors which record the result of

these examinations. One such sensor is an energy-dispersive CCD with fast readout

called pnCCD camera (see Sect. 7.1). The specifications of this camera were

mentioned in the introduction. Getting familiar with the operation of the camera,

however, needs some basic knowledge of the domain. When x-ray beam is scattered

by crystal sample, scattered x-ray photons hit the camera image plane. Depending

on the position of incident photons onto the image plane, a number of pixels are

Fig. 7.11 Processing graph used to extract hidden image sequence (video) from encrypted cover

video
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illuminated, thus producing nonzero pixel values. Pixels illuminated by a single

photon are collectively called an event. Events can consist of 1, 2, 3, or 4 nonzero

pixels (the so-called single, double, triple, and quadruple events, respectively).

Figure 7.13 shows valid patterns for double, triple, and quadruple events. However,

it may happen that in an image we have invalid patterns. These patterns are caused

by two or more photons whose event patterns interfere and make a cluster of events.

A solution to this problem is to increase the frame rate such that the probability of

occurrence of interfering patterns decreases. That is why, pnCCDs support such

high frame rates as 400 frames per second. Determining valid events in each frame

forms the basis for many other crystallographic experiments which rely on analysis

of events.

We have developed kernels for extraction of valid events from pnCCD frames

[16] which is based on [17]. The whole processing can be split into two major steps

of frame correction and valid event extraction. As Fig. 7.14 shows, first an offset

map is subtracted pixelwise from the raw pnCCD frame. During common mode

correction, the median value for each row of the image is computed and then

subtracted from all pixel values of the corresponding row. The processing continues

by “zero” pixel elimination whereby all pixels whose values are less than

Fig. 7.12 Timing results of hidden video extraction from encrypted HD video using different

numbers of CPU threads and GPUs

Fig. 7.13 Valid double, triple, and quadruple events: red and blue pixels show the highest and

lowest pixel values in an event, respectively
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corresponding pixel values in a noise map image multiplied by a constant factor are

discarded. In gain correction, the pixel values in each column are multiplied by a

gain factor. In CTE correction for each column, the pixel values are multiplied by a

CTE factor raised to the power of the pixel’s row index. Now, we have corrected

frames which are then used to extract valid single, double, triple, and quadruple

events. Figure 7.15 shows the performance and scalability of our framework while

working with different numbers of GPUs (2 to 4) and different frame sizes (note

that all processing modules in the processing graph run on GPU). To better show the

usefulness of GPUs for event extraction, we have implemented a single-threaded

CPU version of the mentioned algorithm. The CPU version processes 92 frames of

size 384 * 384 per second, whereas this number is 1756 when 2 GPUs are used, thus

leaving a lot of computational power for further processing of events (note that

event extraction is only a first processing step in many crystallographic

applications).

Fig. 7.14 Processing done on each raw pnCCD image to extract valid single, double, triple, and

quadruple events

Fig. 7.15 Timing results of valid event extraction for various numbers of GPUs and frame sizes
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Conclusion

In this chapter, we presented a scalable CUDA-based framework for stateful

stream data processing on multiple GPUs in a single node. As described, the

framework is designed to be both easy to use and flexible from the user part.

The ease of use is achieved by transparent implementation of the framework

with regard to synchronization and memory management. This, however,

does not limit the flexibility of the framework in the sense that the user still

has unlimited freedom to define the CUDA kernels for processing modules as

desired.

Still the most important feature of the framework is scalability. For that,

the chapter also presents a number of experiments for stateful processing of

stream data and examines the effect of feedback in processing graphs on the

scalability of the framework with regard to GPUs. Furthermore, the practi-

cality and usefulness of the framework for real-world tasks is demonstrated

by two different application scenarios.
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Chapter 8

The Design of SkyPACS: A High-

Performance Mobile Medical Imaging

Solution

Tananan Pattanangkur, Sikana Tanupabrungson, Katchaguy Areekijseree,

Sarunya Pumma, and Tiranee Achalakul

Abstract Lack of radiologists is a problem that arises in many parts of the world.

Radiologists need to work long hours for multiple hospitals. In order to improve the

quality of healthcare, SkyPACS is designed. It is a mobile solution that allows

radiologists to work more conveniently. SkyPACS is a low-cost and customizable

medical image viewer that can be used for prognosis. The solution is designed to be

an assistive technology with the focus on simplicity, flexibility, and user experi-

ences. The architecture of SkyPACS is designed based on service-oriented Model-

View-Controller. The customers can freely choose the back-end services: cloud

computing and storage on public cloud, private server, or hybrid system. The

compute-intensive modules are deployed on a GPU server taking advantage of

data parallel with CUDA library. The main features include all standard tools for

viewing and diagnosis in 2D and 3D, convenient tools for collaborations, and case

management. In addition, advanced functions such as automatic tumor detection

and reconstruction and bone/skin/muscle segmentation are provided. This paper

describes the details of SkyPACS’s design, as well as its implementation and initial

deployment. We believe that SkyPACS will soon be available to a broad range of

users in Thailand and AEC’s countries and will be able to reduce the cost of the

healthcare platform in the near future.
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8.1 Introduction

In the year 2012, the statistics published by TEH & Associates [1] showed that in

every million death, over 120,000 cases are caused by medical error, which was

almost four times higher than the death caused by road accidents. Prognosis based

on medical imaging is likely to reduce the rate as internal physical anomaly can be

visually studied prior to treatments. Medical imagery, such as ultrasound, comput-

erized tomography (CT), and magnetic resonance imaging (MRI), then becomes

important tool in diagnosis and is embraced across the global healthcare enterprises.

A hospital around the world nowadays scans a large number of patients each day.

For example, a Thailand’s university hospital may produce over 1,000 image series

from more than 40 patients in a single day [2]. These images have to be diagnosed

by the radiologists. However, radiology has not been widely studied in many parts

of the world. There are only 4.2 % of medical doctors majoring in radiology in

Thailand. The percentage is even much lower in Central and South America where

there are less than 1 % in countries like Honduras, El Salvador, Cuba, and

Argentina [3]. This insufficiency in human resources may cause the delay in patient

treatment. Moreover, the backlog can only get worse as the number of medical

cases is growing much faster than the number of radiologists. As a result, it is

necessary to facilitate the radiologists so that they can work for multiple healthcare

institutes more conveniently with more appropriate number of working hours.

In this chapter, we propose a software solution that can alleviate the mentioned

problems. The software is called SkyPACS. SkyPACS is a low-cost and customiz-

able mobile solution for radiologists and medical doctors to view and manipulate

DICOM1 images of any types in both 2D and 3D planes. The solution is an assistive

technology with the focus on anytime-anywhere working concept. SkyPACS can

also be integrated to any existing Picture Archiving and Communication System or

PACS2 [4].

During the design of SkyPACS, some challenges arise. First, in order to produce

a true and natural perception of human anatomy, 3D visualization is needed. 3D

visualization in real time, however, is compute intensive and the use of high-

performance computing machines is not of low cost. Second, seamless integration

to existing systems is difficult since multiple platforms are deployed across hospi-

tals in Thailand. Such integration constrains architecture design choices to client–

server with web-based interface. Third, the amount of image data grow so quickly

that a cost-effective storage space that can grow on demand may become a

necessity. Fourth, different hospitals may have different workflows; creating a

one-size-fits-all product is unlikely. Lastly, security is a big issue in patients’
data; there is the need for the software to leave zero footprint on mobile devices.

1 Digital Imaging and Communications in Medicine or DICOM is a universal medical image used

in the standard PAC system.
2 Picture Archiving and Communication System or PACS is a storage and management system for

medical image in the standard format, namely, DICOM.
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In this work, we have surveyed and selected technologies that are appropriate to

overcome these challenges. For the better understanding of the readers, Sect. 8.2

presents an imagery procedure example of radiology departments in Thailand.

Then, the software features and design framework are discussed in Sects. 8.3 and

8.4, respectively. Section 8.5 briefly describes the software implementation and

deployment. Section 8.6 offers comparisons between our mobile solution and some

existing packages. Concluding remarks are then presented in final section.

8.2 Imagery Procedure

In order to allow the solution to be practical, the flow of the imagery procedure from

the scanner all the way to the doctors’ desktops has been studied extensively with

the collaboration of radiology departments in Thailand.

The information flow of the radiology departments is managed by the Radiology

Information System or RIS [5]. RIS is responsible for all information involving

medical image prognosis, i.e., patient tracking, image case assignments, diagnosis

reports, and case transfers. It directly connects to a central system, called Hospital

Information System or HIS [6]. Master data, such as patient data, registration, and

scheduling, are queried from HIS and stored in RIS using HL73 [7] standard. In

addition to RIS, radiology process includes another important system called Picture

Archiving and Communication System or PACS. PACS can be divided into PACS

server and client. PACS client is basically a medical image viewer that communi-

cates with PACS server.

PACS server, on the other hand, serves as the image scan repository for the

hospital. On the server, all images are stored in the DICOM format with metadata

(image properties, patient and study information, and acquisition information) and

image pixels (in bits). Client and server communicate through Query/Retrieve

image communication protocol in DICOM standard. PACS client has to select an

appropriate image query level which can be arranged in a hierarchical order as

follows: patient, study, series, and images. The relationship between levels is one to

many; for example, one patient can have multiple studies and one study may

contain multiple series. These level definitions are compatible with most PACS.

The workflow of imagery process is shown in Fig. 8.1. Once the patient is

scanned through MR/CT scanners, a set of images in DICOM format will be stored

in PACS. At the same time, the information of irradiation will be automatically

saved in RIS. After the scanning process, the technician will assign the study to a

radiologist via RIS management portal. The radiologist will be notified about the

assigned study when he/she opens the PACS client. Radiologists can choose the

study from the assigned study list for diagnosis. The PACS viewer then fetches

3Health Level Seven or HL7 is the global standard for exchanging information between medical

applications.
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DICOM images from PACS, extracts images and metadata, and displays images

with information on the display device. A set of images from different studies or

series of the same patient can be fetched simultaneously for display. After the

prognosis is completed, the diagnosis report is written and kept in both RIS and

PACS. Every radiologist and medical doctor who has the authority to diagnose or

medicate the same study can view the existing prognosis report. Furthermore, the

image studies are often transferred among radiologists for second opinions.

SkyPACS is designed based on the mentioned workflow. The mobile solution is

introduced as an alternative to the current desktop-based PACS client used at most

hospitals in Thailand. The following sections described SkyPACS features and its

design.

8.3 Features of SkyPACS

SkyPACS can be viewed as a mobile extension to the PACS. The software is

service oriented and can work with any PACS server. The main advantage of the

software is that the users have the flexibility to choose back-end services: cloud

computing and storage on public cloud, private server, or hybrid system. A full

Software-as-a-Service or SaaS option is also possible. On the front-end side,

devices on any type including iPad, Android tab, Windows 8 tablet, and desktop

machines can access SkyPACS through the Internet. Main features of SkyPACS

include:

• Dashboard: The case management module which provides the patient informa-

tion in relations to PACS and RIS. The list of image studies is provided for a

specific user based on RIS access right setting. The module can notify doctors

Fig. 8.1 Imagery workflow
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when new cases enter the workflow. The doctor can produce text-based reports

and email them through the provided UI. Moreover, the module also facilitates

doctors in referring cases when a second opinion is needed.

• 2D Viewer: This module is designed to display medical images retrieved from

the scanners. Several diagnostic tools are provided including distance measure-

ment, area calculation, standard image enhancement, album viewers, comment

authoring, zoom, slice selection, and screen splitting. The screen splitting can be

used for comparing images from different studies or series of the same patient.

• 3D Viewer: In this viewer, screens are split into four parts to display anatomy

images in axial (top to bottom), coronal (front to back), and sagittal (left to right)

planes. Coronal and sagittal images are automatically generated by using the

MPR4 technique when the viewer is loaded and the bottom right window

displays the corresponding 3D object. The module interface also allows users

to segment the anatomy into muscle, skin, and bone before 3D reconstruction for

better visualization. Moreover, the 3D model can be printed directly from the

application.

• SkyLink: This is a simple collaboration tool for the users in near proximity to

share cases. Cases can be passed along with a simple swipe on the tablet screen,

if the receiver has access right to the case file.

• SkySync: This is another tool for collaborative diagnosis. Once the tablets are

synced, the users will see the same screen and can work on the images together

in a similar fashion as the Google Doc service.

• Brain Tumor Detection: With this feature, SkyPACS can automatically investi-

gate image slices in 2D and make suggestions on where the tumors might be

located. Techniques used are a combination of image processing and a rule-

based system. Rules given by doctors and templates of organs are used as parts

of the decision-making process. The inference engine does reason from the

knowledge base like a human would. Once suggestions are made, the doctors

can confirm the tumor location and the tumor can then be reconstructed and

shown in 3D with the calculated volume.

Sample of screenshots from SkyPACS’ features listed above are given in

Appendix A.

8.4 Software Design

Our design emphasizes the flexibility as SkyPACS must integrate with multiple

PACS servers that run on different operating systems and platforms. The Model-

View-Controller (MVC) [8] software architecture is adopted in order to separate the

4Multiplanar Reconstruction or MPR constructs the volume by stacking images that retrieved

from medical scanner, which is axial slices, together and cuts the volume orthogonally in a

different plane to obtain the coronal and sagittal slices.
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data and logic from the user interface. The change in one must not affect the others.

“Model” represents the medical image data/patient information in the repository. A

layer of model services (SkyPACS’s main business logic) is provided including

functions, such as information retrieval and storing, image extraction, image

manipulations, and 3D reconstructions. These services update states of the model.

“View” is the output representation in the form of image strings, information in text

form, and HTML rendering code. Basically, “View” shows the model states to the

user through the interfaces. “Controller” sends commands to “View” to change the

presentation and also update the model states according to users’ commands. In

other words, “Controller” receives user commands from the interface and initiates

responses by interacting with “Model,” changing its state, and presents the new

“View” to the users. Model services are a collection of programs, while the

controller services are implemented in the form of web services. In our design,

the three components are encapsulated in different layers. Adopting MVC in this

service-oriented manner allows SkyPACS to utilize private server with GPU and

public cloud storage at the same time. Front-end and back-end services can be

selected according to the legacy system already in place at each hospital.

In addition, SkyPACS utilizes the thin client approach, meaning that almost the

entire model, view, and controller logics are placed on the server side. The client

sends HTTP requests to the controller and then receives an updated webpage in

return. Figure 8.2 shows the service layers of SkyPACS along with the service

invocation steps. Notice that some controller services are executed on the client

through HTML5 technology (along with JavaScript and CSS). These services are

related directly to users’ commands given through the UI and are left on the client to
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reduce communications between the client and server. With HTML5, SkyPACS

can be executed on the standard web browser with no plug-in component required.

With the software architecture shown in the figure above, SkyPACS leaves a

zero footprint on the mobile devices. Everything goes through the server, which is

located behind the hospital’s firewall. The client device only caches images when

SkyPACS is in operation. Once the software is closed or left inactive for a period of

time, everything will be wiped clean. If a doctor loses his or her tablet, patient

information cannot be released. The following subsections describe the design of

the two key modules in SkyPACS services, which are 3D reconstruction and PACS

storage management.

(a) 3D Reconstruction with GPU Computing

There are two methods typically used in reconstructing objects, which are

direct and indirect volume rendering. Using indirect technique, such as March-

ing Cube [9], an actual 3D model will be created, but the computation is so

expensive that an interactive, real-time display becomes a challenge. In order

to reduce the time, direct volume rendering, i.e., Ray Casting [10], Shear Warp

[11], and Splatting [12], can be used. These techniques create an illusion of a

3D object from a series of 2D images for visualization purpose only. No model

is generated. However, with these direct techniques, the processing time

required on a typical quad-core server is still in the order of several minutes,

which is not sufficiently fast for a near real-time experience. To overcome

such a problem, SkyPACS provides data-parallel Ray Casting that can be

executed on the graphic processing unit (GPU). NVIDIA’s GPU is an inex-

pensive platform that is highly parallel and is built based on the “many-core”

technology. By exploiting the relatively inexpensive GTX780 GPU card and

CUDA library, SkyPACS is able to deliver the 3D perception of a large image

set in under 5 s. The GPU computing module in SkyPACS can be illustrated in

Fig. 8.3.

From the figure, notice that the GPU is installed on the server side and the

reconstruction service can be called by a web-based client application through

our designed application interfaces (APIs). The host (CPUs) is responsible for

DICOM file fetching and extraction. Once the DICOM file is fetched, it is

extracted into a set of 8-bit grayscale image files. The header information

including image dimension, thickness of 2D slices, pixel spacing5, slice order,

and patient’s orientation6 is extracted into SkyPACS’s database. Slice order

and patient’s information are then used to register images by sequentially

stacking the slices. Distances between slices are determined using the

5 Pixel spacing is an attribute which indicates the physical distance between two pixels. It consists

of two values, row and column spacing in millimeter.
6 Patient’s orientation specifies the position of the patient. When facing the front of the imaging

equipment, Head First is defined as the patient’s head being positioned toward the front of the

imaging equipment, while Feet First is defined as the patient’s feet being positioned toward the

front of the imaging equipment.
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extracted thickness and pixel spacing of each slice. The image slices are then

sent to the device (GPUs) on the same server. The device is responsible for

preprocessing and reconstruction using Ray Casting. The preprocessing step

includes normalization and level-contrast adjustment. Depending on users’
actions, template matching, and more advanced AI-based algorithms may also

be executed for bone/muscle/skin segmentation and brain tumor detection.

Once images of the 3D perception are generated, they are sent back to the host,

which in turn forward these images to the viewer module on the client device.

With this workflow, all the heavy computations are off-loaded from the client

device, allowing inexpensive tablets to smoothly run our software as long as

there is a good broadband connection. In addition, an actual 3D model will

never be generated unless a user chooses to print an object with a 3D printer.

(b) PACS Storage Abstraction

Medical image files are large and patient’s data are needed to be kept for at

least 5 years after a case becomes inactive. The file storage that serves PACS

then needed to be extended frequently causing tremendous overhead to the

hospitals. On average, a hospital in Thailand adds around 8 terabytes of

storage per year. To remedy the problem, SkyPACS adopts storage abstraction

concept where repository layer is abstracted from the software and files can be

transferred back and forth automatically between local storage and the cloud.

The local storage can be any legacy storage of a hospital, and the cloud can be

any public cloud, such as Microsoft Azure or Amazon EC2. These cloud

storages can flexibly be extended or shrunk on demand.
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SkyPACS implements a file scheduler as a service to be called by any PACS

client application or viewer. Figure 8.4 illustrates the scheduling service.

When a scanner or a client system needs to write image files, a file scheduling

service will automatically select appropriate disks to store data according to

the policy defined by a system administrator through a provided GUI.

One example policy is for an administrator to set a threshold value that

specifies when image files should be transferred from a local repository to the

cloud. The file selection is performed based on the Least Recently Used or

LRU algorithm. In other words, the least recently accessed files will be

transferred first, while the most recently accessed files will always be stored

locally. When the read access is required, a file scheduler will locate, retrieve,

and forward automatically the requested files. Thus, PACS server will be able

to use the local storage in combination with the cloud without the knowledge

of the physical location of each file. The abstraction layer allows the repository

management to be flexible. Moreover, the policy can be changed without

affecting file-accessing workflow.

8.5 Implementation and Deployment

SkyPACS is implemented as a 3-tier service-oriented application. The interface

responsible for interacting with end users is web based with no installation required

on the client side. Touch screen input and gestures are carefully developed for the

simplicity and ease of use. We emphasize the use of an open platform with HTML5,

JavaScript, and CSS for the front-end modules. These technologies are compatible

on most browsers and tablets. The core business logic of SkyPACS is implemented

on .NET framework. The web services and service protocol are built based on

Windows Communication Foundation or WCF. On the back-end computing,

File Scheduling Service

PACS Client Application

Policy

PACS server

Cloud storage

Scanner

Private
storage

Fig 8.4 A file scheduler
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CUDA-C and C++ are used for 3D reconstruction and other compute-intensive

services. SkyPACS server runs Windows operating system with Internet Informa-

tion Service or IIS web server as this is the standard platform used in Thai hospitals.

The SkyPACS storage server is implemented with MySQL and open source

DICOM toolkit.

SkyPACS has currently been deployed at one of the MRI centers and is sched-

uled to be deployed at another university hospital in Thailand in the last quarter of

2013. With data security as the main concern, the implementation is done in such a

way that all patient data and case files are streamed through the encrypted channels

on demand. We deployed a SkyPACS server at the customer site and open a series

of connection channels between SkyPACS and PACS server. The number of

channels created depends on the number of concurrent users specified by the

customer. When an end user requests data, SkyPACS queries RIS for patients’
information and PACS for DICOM files. The information is then stored in

SkyPACS data server, which sits behind a firewall. A dedicated communication

channel between PACS and SkyPACS server is then assigned to each user session.

Requests/responses are then carried out using the channel until the user terminates

the application. If the session time is over, the communication channel will also be

reassigned. Figure 8.5 illustrates the network connection.

8.6 Product Comparisons

This section compares SkyPACS with some commercial medical imaging software

packages available in Thailand, namely, RadiAnt [13], Synapse Mobility [14], and

OsiriX HD [15]. Similar to SkyPACS, these mobile solutions were designed to be a

SkyPACS
PACS

RIS

DICOM Files

Patient data

Web serivces

HTTPS

Fig 8.5 Network connection

128 T. Pattanangkur et al.



viewer of DICOM files and offer standard tools such as zooming, panning, marking,

and image manipulation tools.

RadiAnt is a Windows-based solution designed to be a stand-alone viewer.

Connection to any PAC systems will be a challenge. The software requires the

user to manually provide the data through CD/DVDmedia. Image data are stored in

the device’s storage. Without a predefined method to pull data from PACS, RadiAnt

cannot be seamlessly integrated to the hospital IT platforms.

Synapse Mobility is a web-based solution developed to be an extension of

Synapse product suite which is a clinical workstation solution. Once the data are

requested through Hypertext Transfer Protocol or HTTP, they will be sent over the

Internet and cached in the device in a similar fashion as any web application does.

Synapse Mobility requires that a hospital uses Synapse product suite, which is one

of the solutions with a very high cost.

OsiriX HD is an iOS application developed to be both stand-alone and extension

solutions. User can either manually provide the data or connect the application to

any standard PAC system. Once data are presented, they will be stored in the

device’s storage. Moreover, OsiriX HD is restricted to iOS platform.

In our study, we compare the products in four dimensions: data security,

supporting platform, PACS compatibility, and cloud integration. Details are below.

The handheld device presents more risk of data being stolen than the desktop

machine located in the hospital. This is an important issue since the sensitivity of

medical data and patient’s record is very high. Leaving a zero footprint with no

plug-ins or image data on the client device is necessary in many usage scenarios.

From the four packages, only Synapse Mobility and SkyPACS were implemented

based on this concept.

As there are several popular platforms for mobile devices nowadays, portability

across platform is important. RadiAnt and OsiriX HD are restricted to a specific

platform making them less flexible. Synapse Mobility and SkyPACS then have an

advantage.

Most radiology departments have already installed a PAC system; the integra-

tion with the existing PACS is expected for a mobile extension. All packages but

RadiAnt offer an option to connect to PACS through the standard DICOM protocol.

Among the 3 packages, Synapse Mobility restricts the integration to Synapse PACS

only. Unless the hospital deploys the Synapse workstation, this mobile extension is

not available.

In order to effectively manage PACS storage and 3D image computation, cloud

integration has been studied. From the survey, RadiAnt and OsiriX HD are native

applications and are required to operate on the device’s processor; cloud integration is

unlikely. Synapse Mobility also requires the specific PACS and cloud option is not

currently available. SkyPACS is differentiated from the others due to the fact that

SkyPACS’s back-end services can be customized and integrated to any server platform.

To summarize, SkyPACS was designed by compiling benefits from the product

survey and extending some features to maximize the capability of the application.
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Conclusion

SkyPACS is a mobile solution that is designed to be fully service oriented.

Front-end and back-end services are encapsulated and thus independent of

one another. The software emphasizes the ease of use as well as the ease of

integration. The main advantage of SkyPACS is that it can be integrated with

any PAC system at any healthcare institute. Product customization is possible

at a low cost. Virtualization on the cloud and computing on the GPU are also

fully utilized in the design. In summary, SkyPACS has been developed based

on the cutting-edge technology in the field of mobile and cloud computing.

The road map of the development efforts will include the performance

improvement in the 3D domain. More advanced features will also be devel-

oped including blood vessel reconstruction, computation staining, as well as

automatic mobile offloading. With our on-going research works, we believe

that we will be able to continuously fine-tune and improve the user experi-

ences in the future.
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Appendix A: Screenshots

(a) Windows 8 Version
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(b) Web-Based Version
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Chapter 9

Collision Detection Based on Fuzzy Scene

Subdivision

David Mainzer and Gabriel Zachmann

Abstract We present a novel approach to perform collision detection queries

between rigid and/or deformable models. Our method can handle arbitrary defor-

mations and even discontinuous ones. For this, we subdivide the whole scene with

all objects into connected but totally independent parts by a fuzzy clustering

algorithm. Following, for every part, our algorithm performs a Principal Compo-

nent Analyses to achieve the best sweep direction for the sweep-plane step, which

reduces the number of false positives greatly. Our collision detection algorithm

processes all computations without the need of a bounding volume hierarchy or any

other acceleration data structure. One great advantage of this is that our method can

handle the broad phase as well as the narrow phase within one single framework.

Our collision detection algorithm works directly on all primitives of the whole

scene, which results in a simpler implementation and can be integrated much more

easily by other applications. We can compute inter-object and intra-object colli-

sions of rigid and deformable objects consisting of many tens of thousands of

triangles in a few milliseconds on a modern computer. We have evaluated its

performance by common benchmarks.

Keywords Collision detection • Fuzzy clustering • Physics-based animation •

Computer animation • Cloth simulation

9.1 Introduction

Collision detection between rigid and soft bodies is important for many fields of

computer science, e.g., for physically based simulations, medical applications like

virtual surgery, and cloth simulation. The underlying collision detection needs to

check if collisions occur between a pair of objects as well as self-collisions among

deformable objects. In many applications, an additional requirement is that the
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collision detection has to be calculated within milliseconds. Penalty-based physical

simulations, for example, typically perform a number of iterations for a single

rendering frame, requiring collision detection at n� 30 Hz, if the scene is rendered

at 30Hz.

There exist various approaches that propose spatial subdivision for collision

detection or approximate the surface of rigid and soft bodies. These algorithms

employ axis-aligned bounding boxes (AABB) [1], oriented bounding boxes (OBB)

[2], or inner sphere trees (IST) [3] to reduce the computation time.

Most of the earlier efficient collision detection algorithms were sequential ones,

which are perfect for devices that can execute only one instruction at a time. The

current trend in computer architecture focuses on multi-core CPUs and many-core

GPUs, and so many parallel collision detection algorithms have been proposed in

the last years. The collision detection algorithm we present in this chapter is a fast,

fully GPU-based algorithm that can exploit data and thread-level parallelism.

Modern GPUs can be thought of as many-core stream processors, and such

streaming architectures have significant implications on algorithm design, espe-

cially when applied to general-purpose tasks because they were initially designed

for graphics manipulations. Because of this, many prior GPU-based collision

detection algorithms [4–6] or hybrid combinations of CPU and GPU [7–9] have

been developed. A lot of well-known culling methods for collision detection

algorithms exist, which include Sort and Sweep [10], also known as Sweep and
Prune [11], to limit the number of pairs of primitives that need to be checked for

collision. Without using these culling methods, a huge amount of computation time

is wasted and additional memory access is needed, which takes a lot of time

especially when accessing global memory on GPUs.

9.1.1 Our Contributions

Our novel Collision Detection Based on Fuzzy Scene Subdivision algorithm is

designed for interactive and exact collision detection in complex environments

and can handle object movement and deformation at the same time. To achieve

these features, our algorithm subdivides the whole scene, with all objects, into

independent, overlapping parts in the first step. For the segmentation process, we

implemented a GPU-based clustering algorithm called fuzzy C-means (see

Sect. 9.4). For all clusters, we can execute the collision detection steps indepen-

dently, and this offers the possibility to distribute the collision detection computa-

tion for the clusters to different GPUs. To reduce the number of false positives, we

use an adapted version of the Sweep and Prune approach in combination with

Principal Component Analysis (see Sect. 9.3). This has the advantage that our

algorithm does not need to distinguish between a broad and narrow phase.

Our novel approach is as fast as state-of-the-art collision detection algorithms

but with the additional advantage that our collision detection can be distributed

easily to more than only one GPU, because we subdivide the whole scene into
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independent but connected parts; thus, it scales very well with the number of GPUs.

Also, our collision detection algorithm works directly on all primitives (e.g., tri-

angles) of the whole scene, which results in a simpler implementation and can be

implemented much more easily by other applications. In addition to that, working

on all primitives directly avoids approximate errors.

9.2 Previous Work

Since collision detection is a fundamental technique in many simulations, it has

been extensively investigated by researchers over the last decades. As a result, a

large number of different techniques for collision detection queries and handling

exist [12]. In this section, we focus on those approaches only, which can handle

collisions between deformable objects.

9.2.1 Approaches Using Bounding Volume Hierarchies

Using Bounding Volume Hierarchies (BVH) is the most common approach to

speed up collision detection of rigid and deformable objects [13]. Govindaraju

et al. [7] used precomputed chromatic decomposition of a mesh to check for

collisions between nonadjacent primitives. A limitation of this approach is that

the connectivity of the mesh has to be fixed. Consequently, this approach is not

applicable when you want to simulate ripping or cutting a virtual object, which has

main importance in simulations like virtual surgery and advanced cloth animation.

Greß et al. [5] used stenciled geometry images to generate GPU-optimized BVH in

real time. This approach is optimized for collision and self-collision detection for

NURBS models or other types of rigid or deformable parameterized surfaces. This

approach is limited to a few thousand NURBS patches. Kim et al. [8] presented a

hybrid CPU-GPU parallel continuous collision detection (HPCCD) method.

HPCCD is based on a BVH and performs efficient reconstructions for selective

parts of the BVH. Because they do the BVH reconstruction on the CPU, there is a

significant communication between GPU and CPU. A GPU-based linear BVH

approach was presented by Lauterbach et al. [14]. Their approach used thread and

data parallelism to perform fast hierarchy operations. The linear BVH (LBVH) is

used to check for collisions between two disjoint objects as well as self-collisions

for deformable objects. Updating these LBVH over more than one GPU is difficult

and leads to a huge communication overhead. Tang et al. [15] presented a

GPU-based streaming algorithm for collision detection between deformable

models. Their approach used BVH as culling technique and reduces the computa-

tion to generating different streams. This technique cannot be easily extended to use

more than one GPU.
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9.2.2 GPU-Based Collision Detection

Most modern collision detection algorithms using BVH are GPU based. However,

there are some approaches which use distance fields, space subdivision, or image-

space techniques to improve their performance. Teschner et al. [16] presented a new

approach to collision and self-collision detection of dynamically deforming objects

that consist of tetrahedrons. This proposed algorithm employs a hash function for

compressing a potentially infinite regular spatial grid. This hash function maps 3D

cells to a hash table, thus realizing a very efficient spatial subdivision. This

approach is limited to objects that consist of tetrahedrons only. Heidelberger

et al. [17] proposed a simple and efficient algorithm based on Layered Depth

Images (LDI). They use a discrete representation of the intersection volume

which allows for volume-based collision queries. The accuracy of this method

corresponds with the LDI resolution and the depth-buffer resolution. Because the

LDI provides only a discrete representation of the underlying objects, in some

cases, collision may be missed. Morvan et al. [6] presented an algorithm for

proximity queries between a closed rigid object and an arbitrary mesh, for example,

deformable, polygonal mesh. They sampled the distance field of the rigid object

over the arbitrary mesh. One downside of this approach is that one object has to be a

rigid body and so they cannot simulate collisions between two soft bodies, for

example. A hybrid CPU-GPU collision detection technique based on spatial sub-

division was presented by Pabst et al. [9]. They prune away non-colliding parts of

the scene by using an adapted highly parallel spatial subdivision method. Mainzer

and Zachmann [18] presented a new approach to collision and self-collision

detection which is completely GPU based. Therefore, they subdivide the scene

into independent parts by fuzzy clustering. However, the thread and memory

management can be improved which results in a less memory-consuming

implementation.

9.3 Sweep-Plane Technique Using PCA for Collision

Detection

Due to the fact that our collision detection approach treats all objects in a scene at

the same time, we do not differentiate between individual objects in the rest of this

chapter. Furthermore, we tread all primitives, whether from the same or from a

different object, as equals which ensures that our approach detects inter-object and

intra-object collisions. A majority of computer animation and simulation use tri-

angles as their fundamental modeling primitive, and therefore, we choose triangles

as primitive for our collision detection approach too. However, our approach can be

extended to use other primitives easily.

During the collision detection process, we use an adapted version of the standard

Sweep and Prune approach, a 1D version, hereafter referred to as sweep-plane
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technique. We compute the bounding box for every primitive. Each bounding box

spans an interval [Si,Ei] for each primitive Ti on the x-axis. Sorting all intervals

along the x-axis provides information about possible colliding bounding boxes

because two bounding boxes collide if one of the four cases [Sa,Sb,EbEa],

[Sb,Sa,EaEb], [Sa,Sb,EaEb], or [Sb,Sa,EbEa] occurs (see Fig. 9.1).

Figure 9.1a depicts an example of a downside of using bounding volumes, like

AABBs or OBBs. If, for example, primitives are moving, then in a significant

amount of cases, a huge number of false positives may occur, when we choose any

of the fixed world coordinate axes as sweep direction. In our case, the best sweep

direction is the one which allows projection to separate the primitives as much as

possible. In order to achieve the best sweep direction, even if the primitives move

through 3D spaces, we compute the Principal Component Analysis (PCA) [19, 20]
in every frame, because the direction of the first principal component maximizes the

variance of primitives, after projection [20].

The type of covariance analysis we perform is commonly used for dimension

reduction and statistical analysis of data [13]. As data points we use the centroid Ci

of every primitive in the scene. The covariance matrix Cov¼ [hij] for all centroid
points C1, C2, . . .,Cn is given by

hij ¼ 1

n

X n

k¼1
Ck, i � meanið Þ � Ck, j �meanj

� �
; ð9:1Þ

with meani and meanj the mean of the ith and the jth coordinate value of all the

centroid points, respectively.

In Fig. 9.1b, we move the direction of the first principal component on the x-axis.

Now, we compute the bounding box intervals [Si,Ei] and use the x-axis, more

specifically the direction of the first component of the PCA, respectively, as sweep

Fig. 9.1 Improvement of sweep-plane approach via Principal Component Analysis. (a) The initial

scene consisting of a number of triangles with corresponding bounding boxes and the result of the

Principal Component Analysis. As can clearly be seen, the bounding boxes of triangles 1 and 2 and

triangles 3 and 4 intersect. (b) Initial scene from Fig. 9.1a, rotated so that the direction of the first

component of the Principal Component Analysis points along the x-axis. As can clearly be seen, in

this example, the number
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direction. Comparing Fig. 9.1a with Fig. 9.1b depicts the advantages of using the

first principal component as sweep direction. The number of false positives greatly

reduces.

As a consequence, combining sweep-plane and PCA reduces the number of

primitive pairs tested for intersection and thus significantly reduces the

calculation time.

9.3.1 Thread Management

In this section, we depict how we determine the minimal number of working

(CUDA) threads, which are needed for identifying all possible colliding pairs.

Additionally, we compute the worst-case memory usage, i.e., the space needed to

store all possible colliding primitives, at the same time.

In the first step, we sort all start (Si) and end (Ei) points of the bounding box

intervals along the longest principal axis. Additionally, an array “Type” with the

information if at position j is a start (Sj!Type¼¼ 1) or an end (Ej!Type¼¼ 0)

point is created at the same time (see Fig. 9.2 upper part).

On account of the fact that we want to avoid counting overlapping bounding

boxes twice, we only consider the start point (Si) of the bounding box intervals i. If
this is not taken into account, and we consider both the start (Si) and end point (Ei)

of the bounding box interval, for example, in the case of [Sa,Sb,Ea,Eb], we will

receive two intersections. Primitive a intersects with primitive b, and vice versa. So,
when we consider the start point (Si) solely, we will get an intersection between

primitive a and b only, because Sb is in the interval [Sa,Ea], while Sa is not in the

interval [Sb,Eb].

To identify the number of working threads needed to do all intersection tests for

a primitive, we need the amount of bounding box intersections between the

bounding box of a primitive and all other bounding boxes for all primitives.

Therefore, a very suitable solution is the prefix sum algorithm from the Thrust1

library using the “Type” array as input (see Fig. 9.2 upper part).

The resulting array pT can be used to compute the working threads needed for a

primitive to do all possible intersection tests. Therefore, we calculate pT[Ei]� pT
[Si]� 1 for a primitive i which generates the number of threads needed for each

primitive. The total amount of threads is equal to the number of the worst-case

memory usage required to store all possible colliding primitive pairs.

1 http://thrust.github.com
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9.4 Object Subdivision Using Fuzzy C-Means

Using the first principal component as sweep direction only will nevertheless

produce false positives, because of the dimensional reduction in the sweep-plane

step. The sweep-plane technique, used to separate the primitives, projects all 3D

bounding volumes to 1D points. This means, for example, that in some cases,

primitives of the front side and primitives of the backside of an object will be

recognized as potentially colliding pairs, even if there is a large distance between

them. This recognition will result in an amount of unwanted false positives.

To eliminate this kind of false positives, we subdivide the scene (see Fig. 9.3 for

some examples) into connected components using fuzzy C-means (FCM) algorithm

[21, 22]. We use a fuzzy clustering algorithm because the primitives, which are

located on the border between two clusters, have to be in both clusters. If adjoining

clusters are not connected, then in some cases, collisions across the border of the

clusters would not be taken into account (see Fig. 9.4).

The FCM algorithm is a soft, or fuzzy, version of the well-known k-means

clustering algorithm. In the classic k-means clustering algorithm, every data point is

associated with only the nearest cluster center point. In the fuzzy version of the

k-means algorithm, fuzzy C-means, every data point has a membership value in the

range of 0 and 1 for every cluster. The algorithm tries to minimize the total error,

which is the sum of the squared distances of each data point to each cluster center, if

we use the Euclidean distance, weighted by the membership of the data point to

each cluster, for all data points.

Fig. 9.2 Determination of the minimal number of threads needed to identify all possible colliding

primitive pairs and the worst case memory usage to store all these pairs
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Another advantage is that the fuzzy C-means algorithm can be run incrementally

thus exploiting temporal coherence that is inherent in most real scenes. For the next

iteration, the algorithm uses the last computation result as starting point and

iteratively minimizes the total error with the new data points. This approach takes

Fig. 9.3 Examples of some high-detail objects, partitioned by fuzzy C-means into two (top row)
and 16 clusters, respectively. From left to right: cloth on ball (92k triangles), funnel (18k tri-

angles), model of the female pelvis (200k triangles), and dragon (202k triangles)

Fig. 9.4 The figure shows two adjoining clusters with two triangles, one colored in yellow
and one in gray. The yellow triangle is completely assigned to the yellow cluster Cl1, and the

gray triangle is completely assigned to the gray cluster Cl2. On the left side of the figure, we

choose the overlap d m;mCl1ð Þ ¼¼ d m;mCl2ð Þ < f 3k k2 < e3k k2. Accordingly, like you can see in
the figure, it is possible that the yellow triangle intersect with the gray one. In this case this

collision will not be recognized by our collision detection. On the left side of the figure,

we increase the overlap such that d m;mCl1ð Þ ¼¼ d m;mCl2ð Þ > ����f i
����
2, i ¼ 1, 2, 3 and

d m;mCl1ð Þ ¼¼ d m;mCl2ð Þ > ����ei
����
2, i ¼ 1, 2, 3. As a result it is impossible that triangles,

which are completely assigned to a different cluster, can intersect
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advantage of the fact that the scene changes not very much from one frame to the

next one.

Assuming we want to subdivide the scene into c clusters, we compute a sum of

dispersion between the data points xi and a set of prototypes (cluster center points)

v1, v2, . . ., vc

Q ¼
X c

i¼1

Xn

k¼1
ut
ikd xk; við Þ ð9:2Þ

with d(xk, vi) being a given fixed distance function (e.g., Euclidean distance or any lp
-Norm in general) between the data points xk and vi, the center point of cluster i.

Furthermore, Eq. 9.2 contains the fuzziness factor t, t> 1, and a partition matrix

U¼ [uik], i¼ 1, 2, . . ., c, k¼ 1, 2, . . ., n, which allocate the data points to the

clusters. A fuzziness factor t¼ 1 means that the algorithm is doing a hard clustering,

like fuzzy k-means, and if t!1, the membership will be equal in all clusters. The

fuzzy clustering algorithm will iteratively optimize Eq. 9.2. In each iteration, all

elements uik of the partition matrix U are updated using Eq. 9.3:

uik ¼ 1
X c

j¼1

dki
dji

� � 2
t�1

ð9:3Þ

In the next step, the algorithm updates the cluster centers vk:

vk ¼
X n

i¼1
ut
ik � xiX n

i¼1
ut
ik

ð9:4Þ

The algorithm repeats these steps until the center points converge. In the initiali-

zation phase, we choose the stop criterion much smaller than during runtime. We

also limit the number of iterations for the clustering process to a fixed number at

runtime because it is not necessary to get a perfect clustering. These properties

ensure that the time, needed for clustering, will not rise dramatically when the scene

changes drastically.

9.5 GPU-Based Collision Detection

In this section, we show how our method combines all previously introduced

techniques. Algorithm 9.1 provides a short overview of the pipeline of our collision

detection approach with the main procedures, which are mapped to a set of

computation kernels.

First of all, we subdivide the whole scene into independent, overlapping parts by

fuzzy clustering. Thus, we use the centroid of all primitives to decide to what

cluster a primitive belongs to. Using a well-chosen stop criterion and a maximum
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number of iterations for the clustering process limits the time needed for clustering,

even when the scene changes significantly. The stop criterion determines when the

clustering process has reached an almost steady state, which means the movement

of the cluster center point of all clusters is smaller than the predefined criterion.

Now, we can do the following steps for every cluster independently. As

described in Sect. 9.3, we do a PCA using the centroid of the primitives of the

cluster. The result of the PCA is applied to the primitives of the cluster, which

means that the direction of the first component of the PCA points along the x-axis

(step “clustering and PCA” in Figs. 9.6 and 9.7).

We now use the x-axis as sweep-plane direction because this direction maxi-

mizes the variance of primitives after projection. Therefore, we compute the

bounding box of all primitives of this cluster. We calculate the bounding box for

the x-dimension and y-dimension in the same step. In this way, we can exploit the

fact that we can get completely coalesced memory access, which results in a lower

computation time (step “compute AABBs” in Figs. 9.6 and 9.7). We have coalesced

memory access because, for example, primitive k will be adapted by the thread with
tid¼ k, which can read all vertices from position k and write the result to memory at

position k, and consequently, there is no discontinuous read or write access to the

memory. We do not compute the bounding box for the z-dimension because our

approach only uses the x- and y-dimension for the bounding box intersection test.

We explain the fact why we omit the z-dimension bounding box intersection test in

the following section.

After computing the bounding boxes for all primitives of this cluster, we sort

them along the x-axis using a highly tuned radix sort algorithm from the Thrust

library.

The next challenge is to collect all bounding box intervals which intersect in the

x-dimension. In order to avoid counting overlapping bounding boxes twice, which

would increase computation time and memory needed for the collision detection,

we only consider the start point (Si) of a bounding box interval. In order to decide

the required memory and the position of all possible colliding pairs, we use the

prefix sum (or so-called scan) algorithm from the Thrust library. This step (see
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“collect overlapping intervals” in Figs. 9.6 and 9.7) takes up the most computation

time in our collision detection algorithm. The problem is that it is not possible to

access the memory completely coalesced, which slows down the computation

process.

After collecting all possible colliding pairs, whose intervals overlap in

x-dimension, we verify whether the bounding boxes of both primitives overlap in

the y-dimension or not. We omit a bounding box overlap test for the z-dimension,

because it takes more time to read the bounding box information from memory and

to compare the values, than using the primitive vertices, which may potentially be

needed further in case both primitives intersect, to test if the primitives overlap in

the z-dimension. In the case of using a complex polygon as primitive, the algorithm

will not omit the z-dimension bounding box test. If both primitives overlap in all

three dimensions, the algorithm performs a primitive-primitive intersection test.

Our collision detection algorithm computes all colliding primitive pairs and, if

needed, the intersection point or line, respectively.

9.5.1 Accuracy and Limitations

Our collision detection algorithm will recognize all intersections between all

primitives. Therefore, our approach performs bounding box intersection tests with

all primitives of a cluster, to detect all colliding primitive pairs. However, in the

case of significant differences in the size of the primitives, it could happen that a

primitive is completely assigned to one cluster, but collides with a primitive which

is completely assigned to an adjoining cluster. The reason for this is that our

approach uses the centroid, which represents a primitive for the clustering process.

To prevent this, we have to decrease the membership value in the clustering step.

This results in a higher degree of overlap between adjoining clusters (see Fig. 9.4).

The size of the overlap has to be at least as large as the overall maximum distance

from primitive’s centroid to one of its vertices:

maxi¼1,2, ...,n maxk¼0,1, 2 Ci � vertexi,kk k2
� �� � ð9:5Þ

From this follows one small restriction for our approach. The large overlap between

clusters can affect the performance in some scenarios, because of a higher number

of collision computations. This limitation can be avoided by virtually subdividing

huge primitives. The virtual primitives are used for clustering and sorting instead of

the initial primitive.

If the size of all primitives is more or less equal, then our algorithm chooses a

membership value so that the overlap between adjoining clusters consists of exactly

two primitives.
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9.6 Results

We have implemented our collision detection algorithm on an NVIDIA GeForce

GTX 480 using the CUDA toolkit 5.0 as development environment. Because our

collision detection algorithm is purely GPU based, components like CPU and RAM

do not have effect on the running time. However, for the sake of completeness, we

will provide the key data of our system. Our collision detection algorithm is

implemented in C++/CUDA. The platform for benchmarking consists of a PC

running Gentoo Linux with an Intel Core i5-2500K 3.30 GHz CPU and 8 GB of

memory. For sorting and prefix computation steps, we used Thrust, a parallel

algorithm library.

9.6.1 Benchmarking

To evaluate the performance of our collision detection algorithm in different

situations, we choose some often used collision detection benchmarks to compare

our results against other approaches. Experiments have shown that subdividing the

scene into two respectively four clusters, when the objects are far apart from each

other, for a single GPU provides the best performance. Therefore, in the following

benchmarks, we subdivided the scene into two clusters.

In Table 9.1, we show the average collision detection time needed for all

benchmarks compared with state-of-the-art collision detection algorithms. Our

approach is slightly slower than the CStreams [15] technique, but this approach

cannot be easily extended to more than one GPU. Comparing our approach to the

hybrid CPU-GPU collision detection techniques [8, 9] and the multi-core collision

detection approach [23] shows that our technique performs better.

9.6.1.1 Cloth on Ball

In this benchmark, a cloth (92k triangles) drops down on a rotating ball (760 tri-

angles) (see Fig. 9.5 upper row). Thereby, the cloth has a huge number of self-

collisions. This benchmark is subdivided into 93 frames. Our collision detection

algorithm needs for this benchmark 20.24 ms in average (see Table 9.1).

Figure 9.6 shows that the collision detection time needed to compute all colli-

sions from frame 60 onward increases because the number of self-collisions

increases heavily like you can see on Fig. 9.5 (upper row). Our collision detection

algorithm needs more time to collect all possible colliding triangles and has to do

more intersection tests between them. The benchmark, provided by the UNC

Dynamic Scene Benchmarks collection, contains self-intersecting triangles,

which means that real collisions occur, like you can see at frame 93.
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9.6.1.2 Funnel

A cloth (14.4k triangles) falls into a funnel (2k triangles) and passes through it, due

to the force applied by a ball (1.7k triangles). The ball slowly increased in volume

over the time (see Fig. 9.5, lower row). Our collision detection algorithm needs for

this benchmark 6.53 ms in average (see Table 9.1).

Table 9.1 Collision detection computation times in milliseconds. The timings include both

external and self-collision detection. CStreams (CSt.), GPU-based streaming algorithm for colli-

sion detection [15]; Pab., a hybrid CPU-GPU collision detection technique based on spatial

subdivision [9]; HP, a hybrid CPU-GPU parallel continuous collision detection [8]; MC, a

multi-core collision detection algorithm running on a 16 core PC [23]

Bench. Our CSt. Pab HP MC

Cl. on ball 20.24 18.6 36.6 23.2 32.5

Funnel 6.53 4.4 6.7 – –

Fig. 9.5 The upper row shows the frames 0, 10, 40, 60, and 93 of the cloth on ball benchmark. The

lower row shows the frames 0, 125, 200, 375, and 500 of the funnel benchmark

Fig. 9.6 Collision detection time needed for cloth on ball (92k triangles) benchmark
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Figure 9.7 depicts that the collision detection time needed to compute all

collisions increases slightly between frame 150 and frame 345. In these frames,

the cloth hit the funnel and slides a little bit into the funnel. From frame 345 onward,

the ball pushes the cloth through the funnel and produces a huge number of self-

collisions which results in a higher computation time needed for collision detection.

Conclusions and Future Work

We presented a novel, accurate, and fast collision detection algorithm which

is completely GPU based and does not require additional communication

between host (CPU) and device (GPU). Our Collision Detection Based on
Fuzzy Scene Subdivision technique can perform collision queries between

rigid and/or deformable models consisting of many tens of thousands of

triangles in a few milliseconds. One great advantage of this is that our method

can handle the broad phase as well as the narrow phase within one single

framework. Arguably, our method is much easier to implement than many

other GPU-based deformable collision detection approaches, because we do

not need any BV hierarchy or other acceleration data structure. Our results

show that our collision detection algorithm is as fast as state-of-the-art

approaches. However, because of the subdivision process, our collision

detection approach can be distributed easily to more GPUs.

A multi-GPU version of our algorithm is currently being implemented to

evaluate the speed improvement. We believe that we can further improve the

performance of our algorithm by improving the PCA process, to reduce the

number of false positives, even when the objects are deform intensive or

closely intertwined. An interesting extension would certainly be to handle

(continued)

Fig. 9.7 Collision detection time needed for funnel (18.5k triangles) benchmark
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triangles which sizes significantly differ. To realize this, we can use virtual

subdivision for the degenerated triangles. Finally, we will extend the

approach to perform other proximity queries, including distance and penetra-

tion depth or volume queries.

Acknowledgments The cloth on ball and funnel simulation benchmarks are courtesy of the UNC

Dynamic Scene Benchmarks collection and were provided by Naga Govindaraju, Ilknur Kabul,

Stephane Redon, and Simon Pabst.
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Chapter 10

Smoothed Particle Hydrodynamics Applied
to Cartilage Deformation

Philip Boyer, Sean LeBlanc, and Chris Joslin

Abstract Modelling of the cartilage within the acetabulum is necessary for deter-

mination of stresses in preoperative simulation of femoral acetabular impingement

(FAI), a condition that is considered a primary cause of osteoarthritis. Presented is a

previously proven method for elastic solid deformation using smoothed particle

hydrodynamics (SPH). Smoothed particle hydrodynamics is a mesh-free method

that has advantages in computational speed and accuracy over other graphical

methods and as such is attractive for medical simulations that require high degrees

of precision and real-time operability. A complete formulation of the method of

polar decomposition as devised for smoothed particle hydrodynamics is outlined

with the inclusion of a corotational formulation for accurate rotation handling.

Modifications to the existing method include boundary and collision handling

using an adapted virtual particle method, as well as an algorithm for parallel

implementation on the GPU using NVIDIA’s CUDA framework. The method is

verified through testing with a range of material parameters within the provided

elastic solid framework. Employing CUDA for calculations is found to dramatically

increase the computational speed of the simulation. The results of an indenter

analysis of cartilage modelled as a purely elastic solid are presented and evaluated,

with the conclusion that with further refinement the presented method is promising

for use in cartilage simulations.

Keywords SPH (smoothed particle hydrodynamics) • FAI (femoral acetabular

impingement) • Cartilage • CUDA

10.1 Introduction and Background

Femoroacetabular impingement (FAI) is a condition in which abnormal bony

alterations in the form of osseous growths on the femoral head or overcoverage

of the proximal femur result in supraphysiological motion or high impact within the

acetabulum. Stresses induced in an FAI state occurring during contact between the

femur and the anatomical hip have been recognized as a possible progenitor to
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osteoarthritis [1, 2]. Hip impingement is of particular interest in total hip

arthroplasty where treatment includes identifying areas of potential conflict

between the remaining structure and the implant to reduce the accumulation of

wear and restore normal range of motion. For this reason, abnormal physiology

resulting in increased stresses should be identified preoperatively.

A commonly proposed methodology to accomplish this is to create a computer

simulation based upon the real anatomy of an FAI patient, and these investigations

have for the most part been based on computed tomography (CT) scans in a

non-interactive simulated environment [3, 4]. One primary concern with these

simulations is that the cartilage between the femoral head and the acetabulum is a

soft tissue that does not appear in CT images, and despite being an essential

component in the accurate determination of stresses within the joint, it has been

largely ignored. Magnetic resonance imaging (MRI), on the other hand, can provide

detailed imagery of the cartilage and other soft tissues within the acetabulum that

can be used to create a more robust computer model. This is important since

osteoarthritis, as the greatest cause for concern in impingement cases, is attributed

to the degradation and breakdown of cartilage, and it is ultimately the treatment and

prevention of this result that should be pursued.

In order for a computer simulation of FAI to be practical in a clinical environ-

ment, it should provide a level of interactivity that allows for fast or even real-time

response to changes in preoperative planning. Inclusion of soft tissues such as

cartilage in a simulation introduces a level of complication that is difficult to

implement in an interactive environment due to performance constraints in modern

computing. Therefore it is necessary to identify a method for simulating soft tissues

that provides high performance and simultaneously gives reasonable response to

deformation in the physiological range.

Deformable models have undergone a renaissance since the introduction of what

are considered the first physically based models grounded on mathematical princi-

ples by Terzopoulos [5]. A variety of methods are now available for this purpose,

including but not restricted to point-based mass-spring [6–8], the boundary element

method (BEM) [9], the mass tensor model (MTM) [10, 11] and the finite element

method (FEM) [12–14]. Unfortunately, none of these procedures come without

limitations. Mass-spring models are non-volumetric and must undergo a situation-

specific parameterization procedure to arrive at only a rough approximation of solid

behaviour. BEM draws the calculations of the interior of a solid model to its

surface, so that only a surface discretization is required; however this means that

internal behaviour, anisotropy and other non-homogeneities cannot be simulated.

MTM is able to incorporate some non-linear behaviours that are essential to soft

tissue simulation by combining FEM and mass-spring, but are slower and less

stable than mass-spring and less accurate than pure FEM [15]. FEM, considered the

gold standard for accuracy in solid simulation for most engineering disciplines, is

noted for its slow computational performance, especially with the incorporation of

the non-linearities associated with soft tissues into a simulation. However, without

non-linearity, large deformations (i.e. >10 %) cannot be represented in a realistic

manner.
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Meshless, particle-based simulations such as smoothed particle hydrodynamics

(SPH) offer an attractive alternative to the more conventional deformable models

used in soft tissue simulation due to their speed and ability to represent complex

physical phenomena, including large deformations [16–18]. SPH was originally

developed by Gingold and Monaghan in 1977 to simulate stellar formation [19], but

has since found most frequent use in fluid dynamics simulations incorporating

precise implementations of the Navier–Stokes equations [20–22], as well as solid

fracture mechanics and plasticity [23, 24]. A specific advantage of SPH is that

because each particle carries its own parameters in a Lagrangian formulation, the

functions as applied to each individual particle can be computed completely in

parallel using NVIDIA’s GPU platform CUDA, resulting in a significant increase in

computational speed and bringing us closer to the goal of a real-time environment

for soft tissue simulation in FAI. Although using CUDA to perform SPH calcula-

tions in parallel is not new, rarely in the available literature has it been applied to

elastic solid deformation.

Previous research into soft biological tissue using SPH has been relatively

limited. The work by Qin used fluid SPH to represent blood flow through arterial

walls composed of mass-springs, and Mesit and Guha created a similar system for

an unidentified soft body composed of a mass-spring shell with internal gaseous

pressure [25, 26]. It is only with the recent implementations of stable solid models

based on elasticity theory that SPH has become feasible for realistic representation

of soft tissues without requiring the use of a mass-spring mesh to constrain an SPH

fluid. Hieber et al. used the elasticity theory of SPH to represent a virtual liver;

however their simulations were limited to small deformations in two dimensions

[27]. Solenthaler devised an SPH approach to approximate the Jacobian of the

deformation field, but the model was unable to separate rotation of the particle

positions from their original configuration and the true strain, resulting in

non-physical forces that restrained objects from rotating [28]. The model employed

in this chapter to simulate cartilage is based on the work by Becker, which extended

the work of Solenthaler by using a corotational approach to enforce accurate

rotations, in addition to the handling of large deformations [29].

Cartilage, like most soft tissues, has a long history of the introduction of ever

more complex and accurate constitutive models that incorporate such features as

poroviscoelasticity, permeability and collagen networks [30–32]. In this chapter,

cartilage is treated as a simple elastic solid with the near future goal of incorporat-

ing the more complex physiological phenomena known to be active during cartilage

deformation.

The first section to follow provides an overview of the calculations required

during the elastic solid deformation procedure as well as a brief outline of the

method used to enforce boundaries and collision handling. A high-level algorithm

details the associated implementation. Results of the procedure are given in the

form of tests of the capacity of the model to handle a wide range of deformations

and rotations, followed by an investigation of its application to cartilage modelling

with a simple indenter test.
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10.2 Materials and Methods

The foundation of SPH as defined by Gingold and Monaghan [19] is the smoothing

function, which in its generalized form is

A1 rð Þ ¼
ð
A r

0
� �

W r � r
0
, h

� �
dr

0 ð10:1Þ

where A is a function of the spatial coordinates,W is the smoothing kernel and dr is
a differential volume element. The integral is calculated by a summation over all of

the particles in a neighbourhood, which is predefined by h, the kernel smoothing

length.

The kernel used in this chapter was developed by Solenthaler [28] for the

specific case of elastic deformations

W r; hð Þ ¼ c
2h

0
cos

r þ hð Þπ
2h

� �
þ c

2h

π
0 � r � h ð10:2Þ

c ¼ π

8h4 π
3
þ 8

π þ 16
π2

� �0

ð10:3Þ

where c is a constant that can be pre-calculated and W is equal to 0 for all other

values of r, which is the magnitude of the difference in positions of a particle and its

neighbour. The neighbourhood of each particle is pre-calculated and remains

constant throughout the simulation. These equations form the basis of the elastic

solid deformation procedure to follow.

10.2.1 Elastic Solid Forces

In contrast to the approach used in most fluid SPH simulations, forces in the elastic

case are determined not from virtual pressure but by deviation of particle

neighbourhoods from their initial configuration. The gradient of the displacement

of the particles from their initial position by an external force is interpreted as a

change in energy through calculation of strain, followed by calculation of the

Cauchy stress. In a perfectly elastic case, the resultant forces cause the

neighbourhood to return to its initial configuration once external forces are

removed.

The density and the volume of the particle neighbourhood are pre-calculated,

since the neighbourhood remains constant throughout the simulation, with the

density computed in the SPH form
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pi ¼
X
j

mjW x0i � x0j
0
,h

� �0

ð10:4Þ

0evi ¼ mi

pi
ð10:5Þ

where p is the particle density, ev is the particle volume, x0 is the position of the

particle in its initial configuration and m is the particle mass, which is the same for

all particles. The subscripts i and j refer to the current particle and its neighbour,

respectively.

Because the strain energy is calculated based on any change in positions of the

particles in a neighbourhood, local rotations will be misinterpreted as strain and

mistakenly cause forces that prevent realistic rotation. This problem can be rectified

by accounting for rotations during force calculations by rotating particle

neighbourhoods back to their original orientation so that the “true strain” can be

determined, performed in this case via a corotational approach.

The first step in the corotational approach used here is to determine the trans-

formation matrix in an SPH form as proposed by Becker [29], which only considers

particles within the neighbourhood. Their degree of influence is dependent on the

smoothing kernel W

Ai ¼
X
j

mjW x0i � x0j
0, h

� �
xj � xi
� �

x0j � x0j

� �T
� �0

ð10:6Þ

where the superscript T represents a matrix transpose.

The corotational approach requires the extraction of the rotation matrix of the

deformation gradient of the particle and its neighbourhood from its initial state. In

the majority of cases, polar decomposition is used, but in the case of inverted or

degenerated neighbourhoods where the determinant of the deformation gradient is

�0, which is likely to occur in collinear cases, then the always stable singular value

decomposition (SVD) must be used [33]. Degenerated neighbourhoods can be

verified by checking the matrix of the deformation gradient for 0 values in the

diagonal. For brevity only the polar decomposition method is shown here.

In polar decomposition, the square root of a matrix multiplication must be found

by computing the diagonalization of the symmetric matrix AT
i Ai. This can be

accomplished through approximately 5–10 sweeps of Jacobi rotations, yielding a

diagonal matrix Di and an orthonormal matrix Viwhich contains the eigenvectors of

AT
i Ai in its columns. The square root of AT

i Ai is then trivial as it is simply a matrix

multiplications of the orthonormal matrix Vi and its transpose with the square root

of Di, which is computed as the square root of each element on the diagonal:

ffiffiffiffiffiffiffiffiffiffi
AT
i Ai

q
¼ Vi

ffiffiffiffiffi
Di

p
Vi ð10:7Þ
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If Si ¼
ffiffiffiffiffiffiffiffiffiffi
AT
i Ai

q
, then the rotation matrix of particle i is determined by the equation

Ri ¼ AiS
�1
i ð10:8Þ

where the inverse S� 1
i is again trivially calculated as

S�1
i ¼ Vi

ffiffiffiffiffi
Di

p �1
Vi ð10:9Þ

noting that the inverse of a diagonal matrix is just the inverse of each individual

element.

Now that the rotational matrix has been found, it can be used to back-rotate the

local deformation uji so that the “true strain” can be determined:

uji ¼ R�1
i xj � xi
� �� x0j � x0i

� �
ð10:10Þ

noting that the inverse of an orthonormal matrix R is simply its transpose, thereby

avoiding the computational overhead and notorious pitfalls inherent in matrix

inversion. The gradient of the displacement field ∇ui is similarly given an SPH

approximation:

∇ui ¼
X
j

evjuji∇W x0i � x0j ,h
� �T

ð10:11Þ

The calculation of strain E requires an appropriate choice of strain tensor, and in

this case the non-linear Green-Saint-Venant tensor is used since it allows for more

accurate handling of the large deformations one would expect with soft tissue:

E ¼ ∇ui þ∇ui
T þ∇ui

T∇ui
2

ð10:12Þ

The Cauchy stress σ in this simple linear elastic case is defined as

σ ¼ CE ð10:13Þ

C ¼

λþ 2μ λ λ 0 0 0

λ λþ 2μ λ 0 0 0

λ λ λþ 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

ð10:14Þ
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λ ¼ εν

1þ νð Þ 1� 2νð Þ ð10:15Þ

μ ¼ ε

2 1þ νð Þ ð10:16Þ

The Lamé constants ν and ε, respectively, are the Poisson ratio and Young modulus

of the material. The Poisson ratio controls the volume conversation of the material

with a value of 0.5 representing a perfectly incompressible object. The Poisson ratio

for cartilage was chosen as 0.46, noting that the Poisson ratio of cartilage is likely to

vary significantly from this value in a more rigorous formulation of the constitutive

model. The Young modulus is varied throughout the simulation for testing, but

cartilage is assumed to be in the range of 0.5 to 1.8 MPa for the current

implementation [34].

The force exerted by particle j on particle i can now be determined as

f ji ¼ evj I þ∇uT
i

� �
σidij ð10:17Þ

dij ¼ evj∇W x0i � x0j , h
� �

ð10:18Þ

where I is the identity matrix. For detailed derivations of eqs. 10.17 and 10.18, refer

to the paper by Müller [35]. The force on particle i is then calculated in a symmetric

way in accordance with Newton’s 2nd law by using the respective particle rotation

matrices to orient the forces in the correct directions

f i ¼
X
j

�Ri f ji þ Rj f ij
2

ð10:19Þ

10.2.2 Rigid Boundary Collision Handling

Boundaries are treated using a modified virtual particle method [36]. Boundary

particles are placed along the edges of any rigid boundary or non-penetrating object

and are supported by two layers of virtual particles to reinforce the boundary

particle neighbourhoods. The result is that any particle from the deformable solid

that approaches within the smoothing length of a boundary will experience a

repulsive force. The pressure enforces incompressibility so that penetration into

the smoothing length of a boundary is insignificant and so acts like a rigid surface.

Penetration is prevented through a simple implementation of Desbrun’s spiky

kernel using standard fluid SPH pressure force calculations [37]:

10 Smoothed Particle Hydrodynamics Applied to Cartilage Deformation 157



Wspkyi r; hð Þ ¼ 15

πh6
h2 � r2
� �

0 � r � h ð10:20Þ

which is equal to 0 for all other values of r.

10.2.3 Implementation

The simulation was programmed in C++ and, with the exception of the initialization

stage, is run entirely in the CUDA framework on an Intel Core I7 PC with 3.1 GHz,

8 GB of RAM and an NVIDIA GeForce 670 m with 3GB of onboard memory.

Visualization is accomplished by importing particle positions and stress values into

Maya 2013.

Figure 10.1 outlines the algorithm followed during the simulation. During the

initialization phase, particles are assigned initial positions and velocities by the host

before cudamemcpy is invoked on each of the separate particle variables to transfer
them to the GPU for use in CUDA kernels. Each particle variable (e.g. its stress

tensor matrix) is assigned its own object of an array so that only the required data

for each operation is sent to the GPU rather than being stored in a larger class. This

reduces the amount of data sent to the GPU for each kernel and thereby raises the

simulation limit on particle numbers. Particle variables are organized according to

an index so that objects relevant to each particle correspond to that particle’s index.
Using the CUDA kernel for constructing the reference neighbourhood as an exam-

ple, each particle index is assigned a thread, and calculations are performed for each

object corresponding to that index for all particles. Data is operated on in blocks of

256 threads until all particle calculations are complete. All calculations outlined in

the materials and methods section above are performed in this fashion. Functions

were created that performed all necessary memory copy operations to and from the

host and GPU, as well as all related allocation and memory freeing operations, to

expedite their use and reduce the volume of code required. Error checking was

performed after every CUDA kernel function using a custom macro.

The neighbour search is performed using a modified cell indexing method

adapted to CUDA to run in parallel for each particle. For the majority of particles,

it is only necessary to run the neighbour search algorithm once to determine their

initial neighbourhood. Rigid boundary and collision detection requires a neighbour

search in each frame for only the outer surface particles. The main program loop is

separated into four distinct parts, each of which corresponds to a separate CUDA

kernel. In the first kernel, the current neighbourhoods of the boundary particles are

updated. In the second kernel, the particle rotation matrices are extracted from their

deformations. The third kernel computes deforming particle strains, stresses and

forces based on their deformations, and then a solution of the boundary forces is

obtained. In the last kernel, symmetric forces are calculated followed by integration

to obtain the new particle positions and velocities.
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10.3 Results

Three tests were performed using the provided SPH procedure. Two of the tests—

the solid rod and falling wedge—were similar to those shown in the work by Becker

[29] and were designed to be rigorous validations of the formulation outlined in this

chapter. The third scenario was a simple indenter test of a block of perfectly elastic

solid intended to represent cartilage.

10.3.1 Solid Rod and Falling Wedge Tests

Poisson’s ratio was held constant at 0.46 throughout both the solid rod and falling

wedge tests, while Young’s modulus was varied between 1,000 Pa and 1.5 MPa, the

latter value representing the high range of what is to be used to represent cartilage in

the acetabulum. The smoothing length was set to 0.1 m, and particles were arranged

Fig 10.1 Elastic solid SPH algorithm
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at 1/2 smoothing length interval spacing. It was found necessary to decrease the size

of the time step with increasing Young’s modulus to maintain stability, similar to

the requirements of increasing stiffness in a fluid SPH simulation.

The first test was a model of a solid rod of SPH particles that were initialized in a

box-like configuration parallel to a lower boundary (Fig. 10.2). A vertical boundary

was erected, and the deformable particles alongside it were fixed in place. Gravity

was applied to the model, and the particles reacted in a realistic manner by falling to

rest on the lower boundary. At low Young’s modulus values, the particles continued

to oscillate in a jelly-like manner for some time afterwards, whereas at high

Young’s modulus values, the material was much stiffer and oscillations were

significantly restrained, as would be expected.

The falling wedge test was a verification of the capacity of the formulation to

accurately handle rotations. When the corotational method by Becker was

employed, the wedge of particles fell a short distance under gravity to a lower

horizontal boundary before tipping on to its side where it came to rest (Fig. 10.3).

Without the corotational method, the wedge would not tip, but would instead

bounce on its lower edge while remaining upright. This proved that the corotational

method was allowing for proper rotation handling instead of introducing a false

strain force that prevented the wedge from tipping over.

The results of tests with simulations of particle numbers from 1,000 to 60,000

from a computational speed perspective are shown in Fig. 10.4. As would be

expected, frame rate decreased significantly with increasing number of particles

Fig 10.2 Solid rod elasticity test: t¼ 0 s and t¼ 0.5 s

Fig 10.3 Falling wedge test: t¼ 0 s and t¼ 0.5 s
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simulated. Interestingly, the computational speed gain of CUDA over pure CPU

implementation was more prominent at higher particle numbers. With 1,000 parti-

cles, CUDA performed at 257 fps versus 167 fps for the CPU, 1.54 times as fast.

With 60,000 particles, CUDA performed at 6.3 fps versus 2.6 fps for the CPU, 2.4

times as fast. This discrepancy is likely explained by the computational overhead

required in memory transfer to the GPU in CUDA. At higher particle numbers, this

overhead becomes a much smaller fraction of the total computational work

performed during the simulation.

60,000 particles were determined to be the upper limit that could be simulated

using the current framework. From a 2GB GPU to a 3GB GPU, there was found to

be a linear increase in the number of particles that could be simulated, indicating

that it was the onboard memory of the GPU that was the primary factor in this

restriction. Reducing the data size of the particles and associated functions sent to

the GPU was found to increase the particle limit. Should it be necessary to run a

simulation using more than 60,000 particles, either the onboard memory would

need to be increased, the size of the transferred data would need to be reduced, or a

method of transferring from the host and operating on the data in “chunks” on the

GPU would need to be investigated.

At first glance, it would appear in comparison to most fluid SPH formulations

that the method presented in this chapter is not competitive in terms of computa-

tional speed, but that is not the case. The calculations required in an elastic

simulation are much more complex and extensive than those required in a fluid

simulation, and as such it is expected that the simulation would require greater

lengths of time to perform a main program loop with similar particle numbers. It is

this computational intensity rather than a fault in programming efficiency or in the

method itself that prevents it from approaching the speeds of a typical SPH fluid

program.

Fig 10.4 Frame rates of

elastic solid tests with

varying particle number
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10.3.2 Cartilage Simulation

An indenter test was created to determine the viability of the method introduced in

this chapter in its application to cartilage loading. The cartilage was simulated as a

block composed of 6,800 particles resting upon a surface comprised of boundary

particles (Fig. 10.5a). A cylindrical indenter similarly composed of boundary

particles was incrementally lowered into the top surface of the cartilage at 0.3 m/s

over a period of 0.065 s to induce a deformation of 4 %. The indenter position was

maintained for 0.05 s before receding at the same rate.

For visual clarity, colourization of particles during the simulation was chosen as

the average of the magnitudes of the three principle stresses. At peak deformation

(Fig. 10.5b) the area of highest stress occurs directly beneath the indenter and is

surrounded by a region of lower stress. It is possible that this lower stress region

corresponds to negative strain, as is evident in the paper by Lu [38], but further

research will need to be performed to verify this hypothesis. If the number of SPH

particles used to simulate the block of cartilage were too low, stress concentrations

would appear at the edges of the block rather than being distributed to the volume

surrounding the indenter, so larger volumes are a necessity to obtain reasonable

results.

In the case of the previous tests and those presented in the paper by Becker, high

Young’s modulus values in the MPa range tended to restrict any deformation in the

simulated solid so that internal forces did not exceed a certain limit. By contrast, the

current indentation test induces deformation on a solid with high Young’s modulus

values. The result is extremely high internal forces that tend to affect the stability of

the test. For this reason, it was found necessary to restrict the Young’s modulus

value in this simulation to 0.5 MPa and to deformations of less than 5 %. The time

step used was 0.00001 s, which was set to this low value because of stability

requirements, since as in the case of most SPH simulations, higher stiffness requires

a reduction in the time step size.

Fig 10.5 Cartilage indentation test: (a) initial condition (b) peak deformation. Brighter areas

correspond to higher stress values
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The second major obstacle found with the current method is the lack of stability

for solids composed of highly dense particles. This is the case with cartilage, where

1–2 mm thickness is the norm. Because of this, it was found necessary to scale up

the simulation by 100� and maintain the 0.05 m particle spacing used in the

previous tests so that the cartilage block was in fact 1.5 m� 0.8 m� 0.5 m.

Conclusions and Future Work
Although the results presented in the cartilage test above are promising, more

work needs to be done before SPH can be considered a viable alternative to

finite element analysis of cartilage deformation. Stability presents the greatest

challenge. The large scale of the simulation and the restricted maximum

Young’s modulus value imposed by the stability issues are unacceptable

requirements for any simulation that strives for physical realism. More

research is needed to arrive at a solution, but it is thought that an implicit

solver or a position-based solver such as that presented by Macklin and

Müller [39] may be worth considering instead of the leapfrog integration

that is currently implemented. An implicit solver would presumably also

allow for a larger time step.

While the simulation appeared to behave reasonably at the scale used in

the indentation test, the resulting reaction forces on the applied indenter were

several orders of magnitude higher than would be expected at the cartilage

scale, and so were not presented here. However, considering the cartilage was

modelled as purely elastic, the overall reaction force trend exhibited the

expected rise, plateau and decline during the course of the simulation.

Of course, a perfectly elastic solid does not approach a realistic represen-

tation of cartilage behaviour under applied loads, so it will be necessary to

include more complex constitutive models that attempt to reproduce physi-

cally accurate cartilage deformation. When this is accomplished, the next step

would be to verify results obtained from the simulation against experimental

testing or a similar finite element analysis, of which many such simulations

exist. It is feasible that once the limitations in the current method are resolved,

it could be applied towards the ultimate goal of a real-time, preoperative

simulation of patient-specific acetabulum models derived from MRI data of

FAI cases.
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Chapter 11

A GPU-Based Real-Time Algorithm

for Virtual Viewpoint Rendering

from Multi-video

Kyrylo Shegeda and Pierre Boulanger

Abstract In this chapter, we propose a novel GPU-based algorithm capable of

generating free viewpoints from a network of fixed HD video cameras. This free

viewpoint TV system consists of two main subsystems: a real-time depth estimation

subsystem, which extracts a disparity map from a network of cameras, and a

synthetic viewpoint generation subsystem that uses the disparity map to interpolate

new views between the cameras. In this system, we use a space-sweep algorithm to

estimate depth information, which is amiable to parallel implementation. The

viewpoint generation subsystem generates new synthetic images from 3D vertices

and renders them from an arbitrary viewpoint specified by the user. Both steps are

computationally extensive, but the computations can be easily divided from each

other and thus can be efficiently implemented in parallel using CUDA. The

framework is tested using publicly available image sequences published by

Microsoft. Experimental results are presented.

Keywords Real-time free viewpoint television • GPU-accelerated algorithms

• CUDA

11.1 Introduction

Traditional videos are passive and two-dimensional in nature. Viewers can only

observe video images from only one camera viewpoint. Recent technologies in

video cameras, computer vision, and graphics have recently been used to create a

new type of video delivery system called free viewpoint TV (FTV) [1]. Using FTV

users can choose their viewpoints interactively from a network of cameras located

at a remote site. By allowing people to choose arbitrary viewpoints, one can create a

better immersive experience. To build such a system, there is a need for algorithms

that can render arbitrary viewpoints from a discrete number of cameras in real time,

which is not an easy task.
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Numerous systems geared towards solving this challenge can be found in the

scientific literature. Roughly, most systems can be classified into two main catego-

ries: model-based rendering (MBR) and image-based rendering (IBR) techniques.

The first category includes methods that estimate the geometry of the scene by

solving the correspondence problem and then use this information to generate new

views using simple computer graphics techniques. Examples of such systems

include shape-from-silhouette techniques where the scene is represented by a visual

hull [2, 3], global multi-view stereo reconstruction techniques which use both

photo-consistency and some additional information such as silhouette constraints

or shape priors [4], surface-growing approaches that perform reconstruction from a

set of reliable seed points and surface-growing algorithm that reconstructs a 3D

map from the seed points [5], and view-dependent multi-view stereo reconstruction

which obtains a separate reconstruction of a scene for each of the cameras and then

merge them together [6]. In [7], the authors use the segmentation to extract the

foreground and subsequently apply shape-from-silhouette methods to obtain a

voxelized model that is then rendered and textured. The important aspect of this

chapter is the fact that by utilizing the GLSL (OpenGL Shader Language), authors

were able to speed up the rendering by a factor of 100. These types of methods have

two main disadvantages: the computational cost of scene reconstruction is huge,

and the virtual images produced are usually not photo-realistic.

The second category is based on techniques where a large number of images are

used to keep light ray information. Three closely related methods were presented at

approximately the same time: lumigraph [8], light field rendering [9], and ray space

method [10]. These methods are based on describing how light rays travel through

space. A good example of the quality of images generated by IBR approach is

presented by Mori in [11]. In Mori’s paper, the images are generated through

warping precomputed depth maps for each camera and then post-processing

(smoothing, boundary matting, and painting) the results to create an image without

artifacts. Numerous versions of these methods were proposed, and some real-time

implementation was developed, particularly, in [12] where new images are ren-

dered in real time, but the algorithms assume that prior off-line depth-map estima-

tion is performed beforehand. In [13] a plane sweeping algorithm together with

shader programming techniques is used to create an algorithm that can process in

real-time images of a size 320� 240. The disadvantage of this method is that it is

not able to handle occlusions properly. In [14], a new algorithm is proposed to

generate new views using ray interpolation in parallel using 16 “client” processors

under the command of a server machine. The system is able to generate new views

at 16 fps rate for images of 640� 480 pixels with a 4 cm baseline. In [15], the

authors propose a method for free viewpoint generation in real time using the plane-

sweep-based approach, where the scoring is based on a color variance between the

cameras for each of the fragments of depth planes. The speed is achieved by

utilizing the capabilities of GLSL. In [16], an algorithm that is based on a

precomputed 3D proxy of a scene together with camera images is used. Shaders

allow the method to generate realistic new views in real time for 1,024� 768

images.
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One can see that most of the previous papers were focused either on videos of

small size or on some kind of precomputed off-line information, such as depth maps

or scene geometry. Such an approach makes it impossible to use it when covering

events online.

In this chapter, we address the problem of arbitrary view generation in real time.

The goal is to develop a system that can generate arbitrary views from a network of

cameras with known extrinsic and intrinsic parameters. Since the process of view

generation is always computationally expensive, but in essence parallel, we decided

to utilize general-purpose graphic processing units (GPUs) to achieve real-time

performance. In the next sections, we will describe the proposed algorithms and the

peculiarities of its implementation on a GPU. We will then present experimental

results using standard image sequences from Microsoft and then conclude on the

pros and cons of these algorithms.

11.2 Common Plane Sweeping Algorithm

The proposed algorithm is based on a relatively old idea presented by Collins in

[17] called the common plane sweeping algorithm. Originally, the method was

proposed to work as a way to match features that were obtained from images from

multiple viewpoints. The general idea is to discretize the space in front of the

camera using planes parallel to the plane of the camera and then project each of the

features on all of the depth planes calculating the number of features from different

cameras that happen to fall within a region of a specific size. Based on that

processing, a decision is made whether those features correspond to each other.

We adapted this algorithm to work in real time for estimating depth information

from a set of synchronized HD cameras. Let’s assume that we have synchronized

color images I1, I2,. . ., IN obtained from cameras 1,. . ., N with their corresponding

intrinsic calibration projective matrices A1, A2,. . .,AN and extrinsic parameters

defined by the rotation matrices R1, R2,. . ., RN and translation matrices T1,

T2,. . ., TN. The algorithm consists of two independent steps:

1. Estimation of depth maps for the cameras

2. Rendering a new viewpoint for a virtual camera IV with given intrinsic and

extrinsic matrices AV, RV, and TV

11.2.1 Depth-Map Estimation Algorithm

Let us assume that one wants to estimate the depth map for camera j. If one takes
only the image of neighboring camera Ij+1 and try to estimate j’s depth map Dj,

there will be conditions where some of the points will be occluded. To resolve this

problem, we propose to look at two neighboring cameras Ij-1 and Ij+1 to estimate the
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depth map Dj for Ij. Of course, it is possible that some of the points in Ij will be

occluded in both Ij-1 and Ij+1, but one can assume that in most cases this will not

happen if the baseline is small enough.

Let us sweep a single plane through space along the Z axis which is perpendic-

ular to the camera sensor plane. As a result the plane always has equation Z¼ zi,
i¼ 1. . .k where k is a specified number of depth levels that one wants to sweep

through. Then the algorithm to compute the depth map from the two cameras is the

following:

1. Cast rays from the center of the jth camera through every pixel of image Ij, and

record the intersection with the plane zj, i.e., the ray that goes through pixel (uj,
vj) intersects the plane zj in the point with coordinates (xi,yi).

2. Re-project the point (xi,yi,zi) back to the image planes of the neighboring

cameras Ij-1 and Ij+1, with coordinates (uj
i
-1,vj

i
-1) as being the coordinates in

an image plane of camera j-1 and (uij+1,v
i
j+1) of camera j + 1 (see Fig. 11.1).

3. Quantify the similarity between pixels Ij(uj,vj) and Ij-1(uj-1,vj-1) and Ij(uj,vj) and
Ij+1(uj+1,vj+1) using some similarity function F(It(ut,vt),Is(us,vs)). Add the two

values obtained from the similarity function. This value is defined as the

in-between camera consistency for the depth level zi.

4. Repeat steps 1–3 for all the depth levels zi where i¼ 1,. . .,k.
5. Set the depth value of the pixel (uj,vj), Dj(uj,vj), to be the zi corresponding the

optimal in-between camera consistency.

The result of this algorithm is Dj—the matrix of depth values for each of the

pixels of jth camera. Note that the first and second steps of the algorithm can be

done because the intrinsic and extrinsic parameters of all the cameras are known.

Using the calibration information, one can easily calculate the camera projection

matrix for any camera j using Cj¼Aj[Rj;Tj] which links a point in the 3D world

coordinates to its counterpart in the sensor 2D coordinates. One can project a point

(ui,vi) from virtual camera i to its 3D coordinates value with Z¼ zi where the xi and
yi coordinates are determined by a simple line to plane intersection algorithm. Then

one can re-project the 3D point back to camera j with 2D coordinates (uj,vj) using

Fig. 11.1 Ray

re-projection
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The depth values obtained, using this algorithm, are actually in the coordinate

system of the scene and not in the coordinate system of the camera j. The

motivation for this unusual transformation will be explained in the view synthesis

part of the chapter.

11.2.2 Pixel Similarity Function

One of the most simple and popular functions for quantifying pixel similarity is the

sum of absolute differences (SADs). Smaller SAD values mean that pixels in

neighboring cameras are similar. Because of its computational simplicity, we

decided to use it for the GPU implementation except that in our implementation,

we compare rectangular blocks of pixels that are located around the target pixel

(block matching) in order to reduce noise.

The standard block-matching SAD algorithm is quite simple: for each pixel that

has to be compared, the block is placed exactly in a rectangle, and the sum of the

absolute difference of the corresponding pixels in blocks is calculated. This

approach works great for rectified images. However, because cameras in our system

are not rectified and they might be far from being parallel to each other, instead of

re-projecting pixel in the center of SAD block and putting a rectangular block

around them, we propose to use a modification of the block-matching algorithm

called projective block matching.

11.2.3 Projective Block Matching

In projective block matching, we use a rectangular (2M+ 1)*(2L + 1) pixel grid
around the pixel (uj,vj) to compute SAD. Most pixels in this grid should have the

depth values close to each other. That is why in this scheme, the whole grid is

projected to a given depth zi and then re-projected back to neighboring cameras j-1
and j+ 1 (Fig. 11.2). Then the similarity function between neighboring Ij-1 and

reference Ij images is defined as F(Ij-1(αj,βj),Ij(uj,vj)) where (αj,βj) is the

re-projected 2D coordinate of the grid centered at (uj,vj) and can be found using
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SAD ¼
XM
k¼�M

XL
p¼�L

Ij�1 αjþk; βjþp

� �� Ij ujþk; vjþp

� ��� ��: ð11:2Þ

The advantage of projective block matching over conventional orthographic pro-

jection technique is due to the fact that shapes of objects in different cameras are

different depending on the angle that the camera makes with the scene. The method

has two main disadvantages:

1. The closer the angle between the cameras is equal to 90 degrees, the worse the

results get. This can be explained by the fact that in such cases the rectangular

block of pixels will be strongly distorted by perspective transform.

2. For large SAD blocks, the pixels closer to the edge of the block have a higher

probability of having different depth than the central pixel.

11.2.4 Virtual Viewpoint Rendering

The next step is to generate an arbitrary viewpoint specified by the user. We

propose to generate the new virtual viewpoint Im from the two neighboring real

cameras Ij and Ij-1 in three steps:

1. Project the pixels from the neighboring cameras into 3D spaces using the depth-

map information.

2. Re-project the 3D points onto the image plane of the virtual camera using one of

the available 3D rendering APIs, e.g., DirectX/OpenGL.

3. Post-process the rendered image by filling void pixels created by occlusions,

sampling, and low-textured regions using an interpolation technique.

The first step consists of creating 3D vertices that can be used by a rendering

API. The number of vertices equals to the number of pixels in each of the cameras

multiplied by the number of neighboring cameras used for the interpolation, which

Fig. 11.2 Projective block matching
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in our case is equal to two. In this scheme, there is 3D vertex associated with each

pixel of the real camera. The coordinates of the vertices are calculated based on the

computed depth map, with color being the color of a projected pixel. One could also

project the pixels from all available cameras, which would allow us to represent the

scene more accurately as it will reduce occlusions and increase image quality.

However, the amount of computations would be prohibitive for a real-time imple-

mentation with current GPU. For this reason, we decided to use only two neigh-

boring cameras.

Note that since one needs to recreate a scene from 3D vertices in order to be

compatible with graphic cards, all depth maps must be in the same global coordi-

nate system. The rendering API for the viewpoint rendering is using OpenGL. At

this step, the data obtained from the previous step is transformed using OpenGL

with the virtual rotation, translation, and projection matrices. As a result, we get a

rendered picture of the 3D world, as if it was viewed from a camera located at a

virtual viewpoint. Because of sampling and occlusions problems, the image will

have unrendered pixels that will deteriorate the image quality. In order to solve this

problem, a post-processing step is necessary where all unrendered pixels are filled

using a linear interpolation technique.

The final step is done by interpolating each void pixel from the nearest valid

pixels that have color information in four directions: left, right, top, and bottom (see

Fig. 11.3). So if a pixel that needs to be interpolated is Im(uh,vh) and the four nearest

Fig. 11.3 (a) Generated view with void pixels (one of the pixels to be interpolated is in yellow,
and the directions of search for pixels to be used in bilinear interpolation are in red) and (b)

interpolated void pixels using the proposed algorithm
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pixels are Im(ul,vh), Im(ur,vh), Im(uh,vt), and Im(uh,vb) in each direction, the void

pixel will be filled using

Im uh; vhð Þ ¼ vb � vt
ur � utð Þ þ vb � vtð Þ�

ur � uhð ÞIm ul; vhð Þ
ur � ul

þ uh � ulð ÞIm ur; vhð Þ
ur � ul

� �
þ

ur � ul
ur � utð Þ þ vb � vtð Þ�

vb � vhð ÞIm uh; vtð Þ
vb � vt

þ vh � vtð ÞIm uh; vbð Þ
vb � vt

� �
:

ð11:3Þ

11.2.5 GPU-Accelerated Algorithm and Its Implementation

Unlike CPU that works at really high frequency to achieve high speed, GPUs have a

parallel architecture composed of numerous streaming multiprocessors that work at

a lower frequency allowing for lower power consumption and faster speed if the

algorithm is parallelizable. In February 2007, NVIDIA introduced CUDA which

made it possible to write general-purpose algorithms that run on GPUs in an

efficient manner. From the programmers’ viewpoint, CUDA looks like an extension

of the C language. The code that is written in CUDA is running in threads that are

grouped together in blocks of code. Threads in the same block share a fast memory

region called shared memory. For the full CUDA specification, please refer to [18].

The algorithms presented in the chapter can be easily made parallel using

CUDA. Thanks to CUDA graphics interoperability, one can do both depth estima-

tion and viewpoint rendering without the need to process data on the CPU which

reduces significantly the processing speed as CPU to GPU transfers are known to be

very slow. Since getting a maximum performance on a GPU depends on many

small things, we will go into the smallest details of the implementation.

Stam in [19] presented an efficient way of computing disparity maps of rectified

images using CUDA. We modified his algorithm to deal with our context where

rectification is not possible. The design specifications for our algorithm implemen-

tation are:

1. Avoid obscenely redundant computations—many computations performed for

one pixel can also be used by neighbors.

2. Keep global memory coalesced.

3. Minimize global memory reads/writes.

4. Exploit texture hardware—textures in CUDA have the interpolation

implemented on a hardware level.

5. Create enough threads and thread blocks to keep the streaming processors busy.
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During the step of SAD calculations, it is hard to keep the global memory access

coalesced since after the re-projection of a 3D point to left and right cameras the

access pattern to the memory storing information about the values of the pixels of

the respective cameras is completely random. Hopefully texturing from CUDA

arrays helps us to circumvent the requirement of coalesced memory access, as well

as providing boundary clamping and hardware interpolation. This is really impor-

tant considering the fact that after the re-projection step, the coordinates of the

pixels in left/right image aren’t going to be integers. That is why the images

obtained from the cameras are stored in CUDA texture memory.

In the first part of the algorithm, each thread is dedicated to process part of a

column of pixels of the camera for which the depth map is being estimated. Unlike

most of the algorithms for depth estimation on a GPU, each thread computes SAD

of column of pixels with a block size of (2M+ 1) instead of individual pixel. It

accumulates the SAD function between pixels in the reference image and its

corresponding re-projected pixels in the neighboring images. The SAD functions

for each column are stored in shared memory arrays. To illustrate thread cooper-

ation for a 5 x 5 kernel, a 16-thread block size is shown in Fig. 11.4. Thus, we have
one shared memory array that contains the sum of SAD functions between the

Fig. 11.4 Thread cooperation when calculating SAD by using shared memory [19]
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reference and the left cameras and the reference and the right cameras. After the

calculations for a column are done, each thread sums up neighboring column values

within the block width (2L + 1). Once the first row of pixels has been processed by a

thread block, a rolling window is used to speed up the calculations. Instead of

repeating the SAD calculation and summation for each of the columns, the SAD

function for the pixels in the first row is subtracted from the corresponding one in

the accumulation arrays, and then the SAD value of the pixels in a new row is

added. This reduces the amount of calculations that has to be done and more

importantly reduces the need for reads and writes into memory. The whole process

is repeated for every possible zi. The trade-off between parallelization and sequen-

tial update of the column SAD functions depends on the number of stream pro-

cessors that GPU has and can only be determined empirically.

Because the SAD blocks on the far left side and far right side of the block of

threads require extra 2(L+ 1)/2 SAD calculations, some threads will have to make

extra calculations, while others will stay idle. In Fig. 11.4, these are threads 0–3 on

the far right side.

Let’s analyze the number of operations that this approach saves for us. Assuming

that the height of the block is 2M+ 1, to calculate the whole column of pixels each

thread needs to make 2M+ 1 reads from texture memory. It is actually 3*(2M+ 1)

reads since we need to make an extra read for left and right cameras as well and the

same number of writes to shared memory. At the same time, we need to re-project

each pixel to global coordinate system and then back to the left camera and right

camera, which takes at least 3*(2M+ 1) reads. In reality, it is going to be a bit bigger

because re-projection consists of several arithmetic operations. Using the algorithm

described previously, each thread for each new row of pixels will only need to make

three reads from texture memory - to subtract the SAD of the top row of pixels and

to add the new one and write to the shared memory, the number of operations that

will be done at this step will be three as well. That gives a significant reduction in

number of operations performed by GPU especially for block matching with large

SAD blocks.

One thing regarding the use of shared memory has to be mentioned. Since the

order of execution of the threads in a block of code is random, some of the threads

may be far behind in number of performed instructions than others. That means that

for the threads in the same block, before performing SAD accumulation step, we

have to synchronize all the threads in order to get correct results. Hopefully, CUDA

provides an easy barrier synchronization mechanism using __syncthreads( ) com-

mand. This allows waiting until the shared data is filled for the current row of blocks

of pixels.

One can further improve performance by using a trick that shows how even

smallest changes to the code on a GPU can lead to a completely different behavior.

The local variables defined inside the GPU code are stored in registers, which is the

fastest memory type on GPUs. However, developers are not able to allocate the
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arrays of arbitrary size in CUDA registers; they have to use global memory instead.

Interestingly if the size of the array is known in advance, then the allocation can be

performed in a register memory. We decided to utilize this fact and store the height

of the blocks of pixels that has to be processed by one thread using a preprocessor

definition (#define directive in C/C++). This allows us to allocate an array respon-

sible for handling the SAD of the whole column in a register memory, as the size of

the array is known during the compilation time. As a result, we have a higher

memory access speed and a reduced the number of operations. We do not need to

recalculate the SAD for the top row of pixels now, as one can look it up in a

corresponding row of an array. The test results have shown that this approach

allows to increase the speed of the depth-map calculation twofold by adding the use

of only one extra register per thread. This also shows how important the details of

the implementation can be when it comes to general-purpose GPU programming.

Another interesting capability of the CUDA compiler is that it is able to unroll

the loops of a known size. That is why, we decided to store the number of depth

levels that are sweeping through in a preprocessor definition. That might seem to be

impractical, since if one wants to use a different number of depth levels, then one

would have to recompile the software, but if you consider the application domain of

real-time FTV (concerts, sports events), then one will probably notice that these

settings are known ahead of time, and they should not change during the event. We

believe that this approach is a reasonable trade-off between having flexibility in the

software and having a higher speed of computations.

Cameras’ projection matrices are stored in constant memory, which provides

cache for faster access. In order to further increase efficiency, we used CUDA

intrinsic functions for multiplication and division. All calculations are performed in

single precision.

For the image viewpoint interpolation, the processing is performed both using

CUDA and OpenGL. The projection and post-processing steps are done using

CUDA, whereas re-projection to a virtual plane is done using OpenGL. CUDA

allows to use graphics interoperability which means that some of the OpenGL

resources can be mapped into the address space of CUDA and vice versa. Partic-

ularly, vertex buffers and render buffer objects can be accessed from CUDA.

Using this scheme, the projection step is done by starting a single thread for each

pixel that has to be projected into 3D with the following information: 3D coordi-

nates (can easily be derived from the depth map), color of the pixel, and alpha

value. The values are stored on the OpenGL 3D vertex buffer packed as three floats

for coordinates and one integer representing color and alpha in base-256 system

(since each of the color components is represented by the number between 0 and

255). As mentioned previously, each pixel has a separate 3D vertex. This allows us

to avoid collisions when we are writing information to the depth buffer, making the

projection step fast and simple. To generate the view in the virtual plane, we simply

feed the view and projection matrices to OpenGL (see the next section for more

details on how to do it) and render the virtual image into a frame buffer. The CUDA
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thread accesses this frame buffer once again during the post-processing step. If the

pixel’s alpha channel is not zero, then it does not need to be interpolated, and the

thread is killed; otherwise, we perform the steps described in the previous section to

write a new value into the frame buffer. The sequential search for the nonzero

values is not the fastest operation, but since most hole sizes are small, it can be

performed faster. Following hole filling, the resulting image is displayed to the user.

Note that because calculations of the depth map and view generation are

independent across pixels, the approach is easily scalable by adding more GPUs.

When scaling, each CPU thread is responsible for working with one GPU. Unfor-

tunately, it does not scale linearly because often GPUs reside on the same bus and

data transfer in parallel is currently impossible.

The overview of the whole pipeline is shown in Fig. 11.5. Note that all the

computations are performed completely without the CPU being involved.

Fig. 11.5 The pipeline of

the proposed system
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11.2.6 Constructing OpenGL Model-View and Projection
Matrices

To transform the 3D coordinates of objects to 2D coordinates on the screen,

OpenGL uses two types of matrices: model-view matrix and projection matrix. In

all the resources of OpenGL that we encountered, the construction of these matrices

is performed through the OpenGL functions: gluLookAt, glTranslatef, glRotatef,

and glScalef for the model-view matrix and gluPespective for the projection

matrix. Since OpenGL does not provide a way to set up all the needed parameters

of the matrices (e.g., coordinates of the principal point or the skew coefficient

between the axis of the viewport), we decided to give more details on how to build

these matrices by programming the intrinsic and extrinsic parameters of the virtual

camera.

The model–view matrix, which is the combination of model and view matrices,

transforms the coordinates from object space to eye space. Internally, it is

represented as a 4� 4 matrix (Fig. 11.6). Keeping in mind that in OpenGL the

camera always faces Z eye coordinates, this matrix (MV) can easily be built from

rotation (R) and translation (T) matrices of a virtual camera using

MV ¼

R 0½ � 0½ � R 0½ � 1½ � �R 0½ � 2½ � T 0½ �
R 1½ � 0½ � R 1½ � 1½ � �R 1½ � 2½ � T 1½ �
�R 2½ � 0½ � �R 2½ � 1½ � R 2½ � 2½ � �T 2½ �

0 0 0 1

0
BBBBB@

1
CCCCCA
: ð11:4Þ

Projection matrix defines the viewing frustum as well as the projection of 3D scene

onto the screen. It is also a 4x4 matrix. One can construct this matrix from the near

and far Z clipping planes, the intrinsic parameters of the virtual camera (A), as well

as the height (h) and the width (w) of the viewport using

Fig. 11.6 The model–view

matrix structure
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P ¼

2 � A 0½ � 0½ �
w

2 � A 0½ � 1½ �
w

� 2 � A 0½ � 2½ �
w

� 1

� �
0

0
2 � A 1½ � 1½ �

h
� 2 � A 1½ � 2½ �

h
� 1

� �
0

0 0
farþ near

near-far

2 � far� near

near-far

0 0 �1 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð11:5Þ

These matrices can be passed successfully to OpenGL using glLoadMatrixd

function. The only thing you have to remember is that in OpenGL all the matrices

are in column-major order, so the matrices have to be transposed.

11.3 Experimental Results

To test our framework, we decided to use the sequence “Breakdancing” published

by Zitnick et al. [12] from Microsoft research. The sequence is 100 frame long with

a camera resolution of 1,024� 768 pixels to simulate HD format. In the original

paper, the depth map was pre-calculated off-line: for each camera, the depth map

spans 256 depth levels. In order to speed up the calculation process, we decided to

sweep through every eighth depth plane. Thus, we sacrifice some of the quality to

get the algorithm working in real time. OpenCV used the same approach in their

calculations on a GPU of disparity for rectified views.

To get the full cycle of image rendering in real time, we used two Quadro FX

5800 GPUs. Each of them was dedicated to compute depth maps allowing us to

achieve real-time speed for two cameras. Following this calculation, all depth

information is flushed to one of the cards where the viewpoint interpolation steps

are performed.

Quadro FX 5800 has 30 streaming multiprocessors (SM). That is why the

number of SADs calculated by one thread is chosen to be 52, so that the total

number of blocks of code that are spawned on a GPU is dividable by 30. The

Table 11.1 The output of the CUDA profiler on Quadro FX 5800

Grid size [8 15 1]

Block size [128 1 1]

Register ratio 1 (16,384/16,384) [32 registers per thread]

Shared memory ratio 0.25 (4,096/16,384) [648 bytes per block]

Active blocks per SM 4 (max active blocks per SM: 8)

Active threads per SM 512(max active threads per SM: 1,024)

Potential occupancy 0.5(16/32)

Achieved occupancy 0.5 (on 30 SMs)

Occupancy limiting factor Registers
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maximum number of active blocks of code per SM for this particular video card is

equal to 8, whereas the maximum number of threads is equal to 1,024. Based on

that, the number of threads in one block of code is chosen to be 128. When we ran a

performance profiler, one can see that the maximum occupancy achieved was 0.5,

with number of registers being the bottleneck (see Table 11.1). The problem is that

the maximum number of registers across all the active threads on SM cannot be

higher than 16,384. Therefore, to get a higher occupancy, we need to lower the

number of registers in use (to get a 1.0 occupancy factor, the number of registers has

to be no more than 16 per thread). However, a number of experiments have shown

that lowering the number of registers by either limiting it during the compilation

time or by physically removing some register variables from the code gives the

maximum occupancy factor, but lowers the performance. This can be explained by

the fact that using registers reduces the number of reads to global memory, which is

slow, despite the fact that it limits the number of threads that are being executed

concurrently on a multiprocessor.

The time breakdown spent to generate a virtual viewpoint is shown in Table 11.2.

As mentioned previously, the processing speed does not scale linearly with addi-

tional GPUs. In our case by using two Quadro FX 5800, we were only able to

achieve a 1.3 speedup compared to one GPU. This is due to the data transfer on the

PCIe 2.0 (16 GBps) which is much slower than the internal bus of a GPU (~150

GBps). Newer version of the system will allow us to accelerate the transfer rate by a

factor of two, as it will have a PCIe3 bus with a transfer rate of 32 GBps. In addition

new GPU card like the Kepler has 3072 CUDA cores compared to the Quadro FX

5800 with 240 CUDA cores. Another thing is that the number of registers per thread

in the new architecture is higher, so we expect to have a higher occupancy factor.

Nevertheless, the overall frame rate we achieved was 29.7 frames per second,

which is very promising.

An example of generated viewpoint is shown in Fig. 11.7c without missing pixel

filling and in Fig. 11.7(d). The image was generated from two images shown in

Fig. 11.7a, b for cameras 4 and 5. We also compared the reconstruction of a virtual

camera 4 with the real one by generating a virtual view from cameras 3 and 5. To do

that, we first calculated the weighted luminance channel L of both images. Then the

peak signal-to-noise ratio (PSNR) value is computed between the real camera L and

virtual camera L̂ .

Table 11.2 GPU time

breakdown to generate a

virtual viewpoint

Framework step Elapsed time (ms)

Depth estimation 16

Projection to 3D 1.15

OpenGL rendering 1.10

Hole filling 2.4

Total 20.65
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Fig. 11.7 (continued)
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To determine the effect of using a higher resolution depth map, we also tested

our view generation algorithm with depth maps provided by Zitnick. The calculated

PSNRs are presented in Table 11.3. Results show that a gain of 4 db in PSNR can be

achieved by employing better depth resolution.

Conclusion

In this chapter, we proposed a novel GPU-based algorithm capable of gener-

ating arbitrary viewpoints from a network of HD video cameras in real time.

The algorithms for depth estimation and view generation are independent

from each other allowing them to be computed on different GPUs. The

algorithm does not need view rectification and is capable of generating

depth map from any virtual viewpoint if needed. The computation can also

easily be scaled by adding more GPUs or more powerful GPU like the Kepler

from NVIDIA. Since all computationally intensive operations are performed

on a graphics processor, the CPU is free to do other tasks. The approach is

directed towards utilization when covering events that need real-time com-

putation such as football game or concert.

Future work will include the improvement of GPU code by using the

features of the newly introduced Kepler architecture and CUDA 5, as well

as the DMA access between the GPUs. We are also planning to test other

(continued)

Fig. 11.7 (a) Camera 3 image, (b) camera 5 image, (c) virtual image rendered from cameras 3 and

5 without pixel filling, and (d) virtual image generated from cameras 3 and 5 with pixel filling

Table 11.3 PSNR average

over 100 frames
Depth map PSNR

Our algorithm 29

Zitnick et al. 33
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similarity functions than SAD, which assumed that the cameras have exactly

the same gain, that the surface is Lambertian, and that the illumination is

uniform. To address this illumination invariance problem, we are planning to

implement in the GPU the relative gradient functions proposed in [20]. We

are also in the process of integrating into our video processing computer a

new camera technology from Herodion Inc. This revolutionary technology is

capable of streaming 12 pixel synchronized HD cameras on a single com-

puter. Our main challenge will be the data transfer of this large video stream

to the GPU memory using the DMA access mechanism.
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Chapter 12

A Middleware Framework

for Programmable Multi-GPU-Based Big

Data Applications

Ettikan K. Karuppiah, Yong Keh Kok, and Keeratpal Singh

Abstract Current application of GPU processors for parallel computing tasks

shows excellent results in terms of speedups compared to CPU processors. How-

ever, there is no existing middleware framework that enables automatic distribution

of data and processing across heterogeneous computing resources for structured and

unstructured Big Data applications. Thus, we propose a middleware framework for

“Big Data” analytics that provides mechanisms for automatic data segmentation,

distribution, execution, information retrieval across multiple cards (CPU and GPU)

and machines, a modular design for easy addition of new GPU kernels at both

analytic and processing layer, and information presentation. The architecture and

components of the framework such as multi-card data distribution and execution,

data structures for efficient memory access, algorithms for parallel GPU computa-

tion, and results for various test configurations are shown. Our results show

proposed middleware framework, providing alternative and cheaper HPC solution

to users. Data cleansing algorithms on GPU show a speedup of over two orders of

magnitude compared to the same operation done in MySQL on a multi-core

machine. Our framework is also capable of processing more than 120 million of

health data within 11 s.

Keywords GPGPU • CUDA • GPU • Architecture • Big Data • High-performance

computing • Middleware framework

12.1 Introduction

NVIDIA CUDA-enabled GPGPU (general purpose graphic processing unit) has

made its name by being part of world super computers to enable high-performance

computation. Thus, GPGPUs are widely accepted and becoming common for many

high-performance computing applications. GPGPUs are used for both specific and

general purpose applications either running in large-scale system or desktop PCs.
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The design of PC pluggable GPGPU cards provides new programmable computing

paradigm as the cost-effective solution. High-performance parallel applications and

algorithms can be designed and developed, utilizing both CPU and GPU processors

capabilities. However, the environment including middleware, framework, appli-

cations, and supporting tools must be capable of supporting parallel computing and

execution, otherwise serial performance will be the outcome.

Big Data processing certainly has become imminent for enterprises that wish to

process large amount of data which mainly comes from the social network, seman-

tic web, sensor networks, geo-based service information, patient information, and

employee or transaction-based applications. These areas observe quick growth of

large data which needs either timely analytics or batched processing. Thus, the

challenge is to analyze and mine these big data in order to effectively exploit the

information to improve efficiency and quality of service for consumers and pro-

ducers alike. However, the computing capabilities of current multi-core micropro-

cessors are unable to meet the data mining requirements to effectively mine the data

on time, thus needing parallel acceleration hardware such as GPUs [1] to accelerate

the data mining. Even though high-performance computing solutions are available

today for the above processing usage, the cost is still relatively high for general

deployment and usage. For example, Netezza-, Teradata-, and Vertica-based sys-

tems are computationally fast and cater for terabytes of data processing in milli-

seconds but not affordable for small and medium enterprises. On the other hand,

MapReduce framework-based applications such as Apache Hadoop and Drill which

are free and stable are suitable for large-scale data processing. GPU-based Big Data

processing system complements the above MapReduce-based solution. In our

proposed Big Data and BI (business intelligence) solution framework, we have

positioned GPU in two different layers, namely, analytics and processing, as

illustrated in Fig. 12.1. These positioning provides flexibility to application-specific

analytics algorithm coupled with data processing algorithms. For example, edit

distance algorithms (analytics component) which are written in CUDA/GPU are

tightly coupled with other generic data processing (processing component) compo-

nent such as sorting, searching, etc., providing high-performance solutions. Thus,

we believe GPU-based solution will coexist with other MapReduce systems as a

complementing solution. The implementation section will demonstrate an example

of this combination.

GPUs are massively parallel multi-threaded multi-core processors that allow

large amounts of data to be processed in parallel to speed up computation time. The

single instruction multiple threads (SIMT) architecture of the NVIDIA GPU places

it between the single instruction multiple data (SIMD) architecture for vector

processing and the simultaneous multithreading (SMT) architecture for hardware

multithreading in terms of flexibility and efficiency. Current benchmarking shows

that GPUs can execute up to a few orders of magnitude faster than CPUs for certain

types of algorithms [2] and a large set of work has been done in order to leverage on

the GPU computing capabilities [3, 4].

Since GPUs are treated as a coprocessor with its own architecture, applications

must be designed to reflect the two-processor nature of the system. As such, data
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Fig. 12.1 Architecture of

middleware framework
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needs to be transferred from host (PC) processor to GPUs (device) for processing.

Even though there are performance gains by using GPUs, functional-specific

algorithms and application-specific algorithms exploiting GPU architecture need

to be designed for optimum data processing. Thus, we have designed a set of library

suites named as “MIMOS Accelerator Libraries” (Mi-AccLib) for various domain-

specific (analytics component) and generic applications (processing component).

These algorithms are categorized into different groups, namely, “Common

Mi-AccLib,” “Finance Mi-AccLib,” “Text/String Mi-AccLib,” “DB Mi-AccLib,”

etc. These libraries are designed and developed using Mi-AccLib framework such

that the code can run seamlessly on different processor (GPU and multi-core for

now) architectures exploiting underlying parallelization capabilities. The processed

information in turn is fetched and displayed at presentation layer facilitated by

interface layer (refer to Fig. 12.1).

In order to exploit current GPU computing capabilities for Mi-AccLib, we have

to take into consideration the characteristics of the GPU and how it can cooperate

with the CPU. One such consideration is the disparity of the computation capabil-

ities between versions of the NVIDIA GPU cards. As such, a chunking and load

balancing mechanism that splits and distributes data to different GPU cards in the

system based on their computing capability has to be developed. Secondly, the I/O

delays due to moving data to and from the hard disk, RAM, and GPU cards need to

be considered when designing the framework in order to ensure that the overall

system performance (multi-core CPU and GPU) is actually better by at least an

order of magnitude compared to a multi-core CPU alone. Otherwise, there is no

justification for multi-architecture development.

To meet these requirements, we designed the Mi-AccLib framework for multiple

GPU support along with CPU synchronization. Our initial goal was to exploit GPUs

for text-based processing and analytics work. In order to evaluate our middleware

framework, we implemented one search and one sort algorithm for text processing

on our framework and demonstrate how we can utilize these algorithms for data

cleansing application. We then evaluate these algorithms against multi-core GPU

versions.

Section 12.2 describes related works, while Sect. 12.3 details our Big Data

framework and system architecture embracing our Mi-AccLib libraries via analytic

and processing components. We outline our implementation in Sect. 12.4 and show

the results of our algorithms on various different GPU cards in Sect. 12.5. Finally,

we conclude in the last section.

12.2 Related Work

The MapReduce [5, 6] framework for distributed computing has been widely

adopted in large-scale data processing. Mars [4] applies a flexible parallel program-

ming in managing tasks partitioning and data distribution by using a GPU, which is

an accelerated run-time system. However, Mars only works by distributing the data
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set over streaming processors on a single GPU card. MapCG [7] provides source

code level portability between CPU and GPU for a high-level programming model.

Nevertheless, this implementation has scarified the usage of shared memory and

constant memory in GPUs due to the compiler support issues. There are more

MapReduce on GPUs implementation [8–10], yet, these systems have faced the

overhead issues on data transfer and kernel launching issues. The proposed Big

Data middleware framework using Mi-AccLib has a more macro-level data distri-

bution orientation that works by chunking data into multiple GPU cards.

GPUMiner [1] is a parallel data mining framework for using GPUs for data

mining work. It is composed of three parts – a storage and buffer management

module, a visualization module, and a mining module. GPUMiner utilizes DirectX

for visualization and CUDA for the data mining module. Chidchanok [11] works on

an experimental framework for searching large Resource Description Framework

(RDF) and performing the semantic query using JCUDA.1 It takes advantage of

GPUs parallel thread and block for retrieving, joining, and finding operations to the

corresponding RDF graph. While the focus of these systems are on data mining,

Mi-AccLib components utilize the GPU for a wide range of string processing

functions including, but not limited to, data mining, analytics, and in-memory

database like operations.

OpenAcc is a standard for the directives and programming model which has

been developed by CAPS, Cray, The Portland Group, and NVIDIA [12]. There are

two commercialized directive compilers integrating with NVIDIA NVCC com-

pilers, which are CAPS (HMPP) and PGI (PGCC) [13] compilers. Directive-based

high-level programming model is a simple and portable method to parallelize loops

in C code. This intermediate high-level code is compiled by the NVCC compiler.

Subsequently, it converts to a CUDA assembler source (PTX2) and optimizes the

defined code. Then, it generates the final CUDA binary (a .cubin file). Ghosh, Liao,

Calandra, and Chapman [14] evaluated the GPU directive compilers, which

resulted 1.5� to 1.8� improvement in performance for both ISO and TTI kernels

in single GPU against multi-core CPU by using OpenMP. In addition, they con-

cluded this reduce efforts in code optimization with pragmas. Directive approach is

complementary to Mi-AccLib rather than a competitor since it works on a different

level of parallelization.

OpenCL [15] is a platform-independent standard for programming heteroge-

neous systems. OpenCL programs are compiled just in time for execution and can

be used together with Mi-AccLib or other run-time libraries. These works [16–18]

experienced a performance penalty on the NVIDIA GPU, due to the OpenCL

abstraction layer. Thus, we have disabled OpenCL support as it is not optimized

1 It is a CUDA binding for the Java language, which exploiting the features of NVIDIA GPU

computing from Java-based applications.
2 Parallel Thread Execution (PTX) is a pseudo-assembly language used in NVIDIA CUDA

programming environment.
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for GPUs at the moment, and real gains on GPUs can only be seen through

optimized code as there are additional overheads from data movement.

CUDA [19, 20] or Compute Unified Device Architecture is NVIDIA’s parallel
computing architecture for their GPU cards. It is an intuitive and scalable program-

ming model which is an extension of C [21]. Additionally, it provides the entire

GPU platform accessing for developers. This architecture unifies the devices of

CPU and GPU by performing a heterogeneous computation system [22]. It has

rapidly evolved and scaling parallel performance since 2007. There are sets of

libraries that are mostly for non-graphics-related processing. Mi-AccLib is built on

CUDA for the GPU computation parts.

12.3 Middleware Framework Design

The proposed Big Data application framework in this chapter comprises of presen-

tation layer, interface layer, middleware layer, and storage component. Middleware

layer is further decomposed to analytics component, processing component, and

orchestration engine. Mi-AccLib libraries are positioned at both analytics compo-

nent and processing component. The presentation layer includes business intelli-

gence (BI) dashboard and the interface layer includes MIMOS business

intelligence suite (Mi-BIS 1.x API). Meanwhile, off-the-shelf technology will be

used for the storage layer.

The following subsection describes these frame layers and middleware compo-

nents in details, followed by specifically focusing on GPU-based solutions.

12.3.1 Big Data Needs

Digital data explosion has exceeded the petabytes and entered into the zettabyte era,

based on IDC Digital Universe Study 2011 [23] as shown in Fig. 12.2. As of year

2011, as a society, we have generated and consumed ~1.8 zettabytes of data. But the

question is, was the data analyzed for useful information in a timely manner for

instantaneous usage? The ultimate value of a big data implementation will be

judged based on one or more of these three criterions:

• Able to provide more useful information

• Able to improve the reliability of the information

• Able to improve the timeliness of the response

Thus, a Big Data application framework which meets the above three criteria is

inevitable to provide reliable, useful, and timely information, enabling quick

response by the data owner. Otherwise, Big Data is worthless.

Meeting the growing demand for Big Data processing, large-scale parallel

processing for data mining and analytics has sparked innovative solutions both in
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commercial and scientific domain. Some of the commercial applications (e.g.,

Netezza, Teradata, Vertica) are computationally fast and cater for terabytes of

data processing in milliseconds, however, relatively expensive to be used by

small and medium enterprises. On the other hand, generally scientific communities

rely on the MapReduce framework like applications such as Apache Hadoop which

is free and stable for large-scale data processing. Following this open-source

success, many applications are designed and developed in a parallel manner.

Usage of parallel computing hardware such as GPGPU and Intel MIC (Many

Integrated Core) coupled with parallel computing capability aware middleware/

application can provide another less expensive approach of Big Data processing.

Companies like Intel and NVIDIA are on track to realize many-core and multi-

core parallel computing hardware with increasing number of parallel cores. Intel

MIC equips with 60 cores and 244 threads for hyper-threading. NVidia Tesla K20c

offers 14 SMX (streaming multiprocessor extension) with 2496 CUDA cores. Both

Intel and NVIDIA claim their processor is much faster compared to the others. The

fact is that this competition is important for total paradigm shift in hardware enables

parallel computing.

For example, Kepler architecture of Tesla series of NVIDIA GPU promises

higher 1.3 teraflops (double precision), while Intel MIC Xeon Phi provides 1.2

teraflops with both having 6 GB memory for big data analytics. Streaming func-

tionality enables seamless data movement between CPU and GPGPU for ultrahigh

speed data processing. Leveraging the hardware technological capabilities,

MIMOS is building various solutions including Mi-AccLib to enable ultra-speed

big data processing with data and process parallelism. MIMOSMi-AccLib libraries

reside at both analytics component and processing component of the middleware,

being part of the overall building block of the MIMOS Big Data (Mi-BD)

processing solution.

Fig. 12.2 Digital data

growth in terms of storage

size with forecasted data
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12.3.2 Presentation Layer

The presentation layer is responsible to provide precise, concise, and simple

visualization capability for the processed big data, enabling the user to make

sense of the data in an informative manner. MIMOS business intelligence and

Big Data framework provides client, web, dashboard, and native mobile solutions

for easy representation of data for various audiences with visually comprehensible

format. Usually the information is presented in chart and graph forms. It also allows

easy integration of other 3rd-party software tools.

12.3.3 Interface Layer

This layer provides the interfacing between the middleware layer and the presen-

tation layer. It caters for various types of application programming interface (API)

toward presenting on various types of user interfaces, such as through business

intelligence dashboards, where the orchestration engine interacts with Mi-BIS 1.x

to output results through tabular, graphical, and charts display. At the same time,

portlet, web service, ESB (enterprise service bus), and Mi-Mobile BIS outputs

result on third-party Web sites, third-party cloud, and MIMOS web EKMS

(MIMOS interactive dashboard) and also on native Windows applications and

native Android/IOS applications for smartphones and tablets. GIS API is responsi-

ble for producing mapping results on web, MIMOS web, native client, and mobile

display.

12.3.4 Middleware Layer

Middleware layer consists of orchestration engine, analytic component, and

processing component. The orchestration engine is responsible to orchestrate the

entire process from acquiring/ingesting data contained in the storage; processing

data; providing the required analytic library requested by the user interface, in order

to produce the desired results, which are mapped via API of the interface layer; and

finally presenting results through web, mobile, native client, and cloud connections.

The analytics component, which would be utilized to handle selected types of

analytics, algorithm, statistical analysis, and prediction depending on the required

user needs, currently, consists of:

• Mi-Acclib (GPGPU libraries)

• Reporting and OLAP (online analytical processing) for business intelligence

(BI)

• Data mining libraries

• Machine learning and predictive analytics
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• Semantic engine

• Image BI for video/image analytics

• Predictive algorithm suites

The processing component, which handles data processing such as extracting,

transforming, and loading (ETL) data from databases, before passing to analytics

components or passing data directly to the API layer as per instructions from the

orchestration engine, consists of:

• Mi-Morphe (MIMOS ETL tool)

• Mi-Acclib for fast processing

• Parallel in memory DB

• Pig and Hive for big data ETL

• Portal subscription

• Batch (Hadoop) and real-time (Storm [24] and Impala [25]) big data processing

Processed data before analysis and after analysis are stored in the storage

components in the form of data warehouse for BI API to utilize. The orchestration

engine will determine, based on user selection from the presentation layer or

predefined configuration, which analytics model and processing model to be uti-

lized. The orchestration engine will ingest incoming data (structured or unstruc-

tured) and pass the result to interface layer which will be mapped to the display

channels, such as MIMOS dashboard (EKMS), BI dashboard, or native mobile

application.

12.3.5 Orchestration Engine (with Example of Use Case)

As mentioned above, the orchestration engine plays a significant part to process,

analyze, and send the processed data to the respective display channels via the

appropriate interface API layers. Through the API on the interface layer, the

orchestration engine could also call hybrid technologies. For example, orchestra-

tion engine may access libraries with various algorithms for preconfigured purposes

such as utilizing GPGPU libraries to edit distance algorithm and using Pig with

Hadoop to perform MapReduce function and processing structured data from

RDBMS (relational data bases management system) data while grouping the

unstructured result within the same system to achieve the aggregated task.

The orchestration engine could very well be used for different scenarios. The

following paragraph explains the implementation of Mi-BIS for video analytics

(or image analytics) as an example, where the purpose is to identify the various

types of events such as “event detected,” “face detected,” and “motion detected”

per given camera location for given time stamp information as reported by the video

analytics system. This data when analyzed on real time requires real-time

processing speed, volume, and complexity of aggregating from other structured

database tables such as listing the names of guards in charge during the occurrence

12 A Middleware Framework for Programmable Multi-GPU-Based Big Data. . . 195



of certain type of events for a period of 1 year pertaining to the camera locations.

This would help the security companies or public safety organization to place their

staff at strategic locations within their planned coverage area for patrolling, based

on predictive analytics. Thus, probability of similar occurrence could be observed

within certain time frame. In terms of implementation, the sources of video files

from all the cameras being monitored are stored in HDFS of Hadoop nodes. Mi-BD

(MIMOS Big Data) will sqoop in the files based on schedule time with the various

types of events detected and performs ETL using Pig/Hive. Hadoop is used here for

batch MapReduce processing, where the results would be stored in the storage

component for later date. When a business user logs in through the display channel

of Mi-BIS dashboard, the user could construct the required dimensions to view the

report chart such as events, day, month, year, personnel names, and camera

locations from the various data sources (structured or unstructured as stored in

the storage components). Mi-BIS presentation/display layer will communicate with

Mi-BD via the interface layer; Mi-BIS 1.x. Mi-BD will determine if this request is

for real time or could utilize any previously stored preprocessed data. If real-time

big data (from large video files of many camera sources) is required, then Storm

would be used. In this example, the batch Hadoop ETL data that was pre-produced

earlier is utilized by the BI dashboard in order to view the relationship in a bar chart

(or tabular format) between time of year, type of events, camera locations, and

guards in charge. The user can view an image and an 8-s video clip of the event (6 s

before and 2 s after the event) when each individual event is clicked. If the user

decides to open any statistical analysis tools, then Mi-BD, the orchestration engine,

would be responsible to call machine learning/predictive analysis libraries or

Mi-Acclib to drill down on the statistics of occurrences and pass the result back

to the presentation layer via API from the interface layer.

12.3.6 Storage

The storage component consists of storage for structured and unstructured data.

RDBMS such as SQL, MySQL, and Postgres supports the storage of structured

data, while HDFS (Hadoop Distributed File System) and NonSQL such as Mongo

DB or Cassandra could support unstructured data such as live feed from Twitter,

Facebook, and log files. The storage component also store processed and analyzed

data in the storage or as data warehouse in order to be used by API to display results

in the various display channels and devices. In the next section, Mi-Acclib as an

analytics component with GPGPU libraries is further elaborated.
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12.3.7 Mi-AccLib and Analytics Component

We designed the Mi-AccLib framework to be modular in order for it to be

extensible. Mi-AccLib is divided into two layers, which are an application-specific

layer (analytic component) and a functional algorithm layer (processing compo-

nent) as shown in Fig. 12.3. The Mi-AccLib framework is built to run on top of

different processor architectures. One of the challenges of such a system is the need

to support libraries written on different languages for different architectures. How-

ever, we focus on our work with GPU in this chapter.

The library interface wrapper layer provides a common interface for users to

utilize functions that have been implemented for various hardware processors and

coprocessors. For example, a search function can be used on either a GPU card or a

multi-core CPU card or on both as the user requires. The functions exposed to the

users at this layer share a common format as shown in Fig. 12.4.

The function takes in a variable number of parameters. All these parameters

provide users with a fine-grained level of control when executing tasks. However,

they can also leave the parameters to the default value for the framework to

determine the best parameters for performance based on the available resources,

function profiling, and data size.

The application-specific libraries (analytic component) are a set of basic func-

tions that have been linked together to perform a certain task. An example of such a
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Fig. 12.3 Mi-AccLib framework architecture
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task is a financial calculation of value at risk (VAR) [26]. The VAR application-

specific library (finance Mi-AccLib) takes in a set of data and first preprocesses the

data for sorting using a preprocessing kernel (processing component) (e.g., chang-

ing floating point numbers to unsigned integers), sorts the preprocessed data using a

sorting kernel, sends the sorted data to a percentile kernel to obtain the result, and

converts the final result back into a floating point value.

The functional algorithm libraries (processing component) are a collection of

kernels that perform tasks in similar areas and are the basic building blocks for the

library framework. For example, the string processing library contains a set of

different search algorithms that are exposed through the library wrapper interface.

Each search algorithm gives a different set of performance that users can try to use

for different application purposes. Sets of kernels from different functional algo-

rithm libraries can also be integrated to perform a larger task by the application-

specific libraries (analytic component).

In order to achieve an overall improvement of the whole system rather than

emphasizing just faster execution of parts of the workflow, a holistic view needs to

be taken during system architecture design. This is especially true when considering

latency for I/O and load balancing for data distribution to GPUs of varying

capabilities.

The first step is to decide which parts of the workflow are more suitable to be

executed on the CPU or GPU. Typically, functions that require a lot of calculations

that can be parallelized or have a lot of uncorrelated data to be processed are

suitable for execution on the GPU. For example, matching data from columns of

two different tables is very suitable for GPU processing as each entry of a column

can be compared independently from any other entry. This allows the system to

leverage on the parallel nature of the GPUs.

The second step is to determine how to order the data transfer and processing so

that latency can be hidden. Mi-AccLib provides methods to split data into chunks

that are readily transferrable to multiple GPU cards based on their available

Fig. 12.4 Format of function

198 E.K. Karuppiah et al.



memory and computing power profiles. This ensures the data is distributed and

processed optimally so that delays are kept to a minimum. Data chunking also needs

to be done in a manner that allows the data structure to be preserved so that each

chunk can be processed individually. The data in the chunks will normally need to

be converted into a structure of arrays for faster processing. This is identical to the

normal column format in databases, so data will need to be transposed when copied

to the GPU.

12.4 Implementation

We have currently implemented a few different functional algorithm libraries into

our framework. We will discuss some of the implementation details and challenges

in this section.

One of the biggest limitations to using GPU cards for text processing is the large

amounts of data that must be moved through the PCI-e bus to and from the GPU and

also the reading and writing of data from the hard disk, which is five times or more

slower than the PCI-e bus. Streaming is the method commonly used to hide or

minimize the data transfer latency, where data is sent and received in small chunks

using direct memory access (DMA) methods in the background, while data

processing is performed on the chunks already received by the GPU.

To enhance the parallel processing of data and memory transfer, profiling of

kernels needs to be performed beforehand to determine the duration of the kernel

execution time. Based on the kernel execution time, the size of the data chunks used

can be determined using the PCI-e data transfer speed as well as the kernel

execution time. On initial observation, it may seem that chunking data to the

minimum size chunk would seem like the logical choice to minimize overall

delay as that will give the most overlap between data transfer and data processing.

However, the transfers of many small chunks give rise to additional overhead time

between data transfers. For example, the transfer of a single chunk size of 64 MB

gives the highest data transfer throughput, but multiple transfers of 64 MB chunks

incur a 33 % overhead on that of a single chunk transfer as we observed.

Getting outputs from kernel execution on the GPU is another trade-off issue that

has to be considered during implementation. For example, an algorithm returning

multiple search results in an array needs to ensure that the global variable that

serves as the index of the array is not accessed simultaneously by multiple threads.

Since there is no concept of critical sections in CUDA, a mutex must be

implemented using the “atomicCAS” instruction to allow CUDA cores to lock

the variable for reading and incrementing before releasing it for other cores.

While this works well if there are only a few results to be returned, searches with

many results will cause many threads to be executed serially for this section.

Besides this, atomic instructions in CUDA are slower than other instructions

since they need to access global memory every time a read and write is performed,
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and a timeout may occur if too many threads in the same warp try to lock the same

global variable.

A trade-off using additional memory can be done by allocating an array of bytes

or bits equivalent to the size of search data. Each thread can mark the equivalent

byte or bit in the result array without the need for a mutex. However, this requires a

much larger memory allocation for the output and a larger delay when moving the

results back to the CPU.

As an alternative HPC solution to GPU, we have implemented Big Data appli-

cations using the proposed middleware framework. In this experiment, we have

incorporated a sample scenario using the presentation layer (Mi-BI dashboard), via

Mi-BiS 1.x (API and connectors), middleware, storage, and the orchestration

engine with the MapReduce functions managing the nodes. We have configured

seven virtual machines with one master node (8 cores) and six worker nodes

(4 cores each) running on a few of HP DL380p G8 servers installed with Apache

Hadoop, Cloudera’s Hadoop, and Impala. We have also installed Postgres on

another same model of HP server with 8 GB RAM with 4 cores and another

high-end HP machine with 96 GB RAM and 48 cores. At the same time, we have

installed a GPU card, NVIDIA Tesla K20c, on a DELL Precision T5500 worksta-

tion withWindows Server 2008 R2 Enterprise SP1 64-bit operating system, running

on Intel Xeon E5630@2.53 GHz processor, with 12GB RAM, 1 TB SATA hard

drive (7,200 rpm). The Kepler GK110 GPU card provides 2496 CUDA cores. Next,

we have written scripts within the orchestration engine to import ~120 million

records from four significant tables of inpatient record table, state code names table,

disease code names, and age groups from the hospital database, originally residing

in Postgres database of our high-end physical server, into the storage of the Hadoop

clusters which is in HDFS (Hadoop distributed file storage) format. Through our

libraries in the middleware framework, our ETL processing component uses Hive

to extract, cleanse, transform, and load the dataset to be accessed for the new data

warehouse. Mi-BiS 1.x uses the cleansed data from the warehouse using connectors

(API that had been developed for the interface), given by the business user, when

logged on through BI dashboard. For example, the user could request for informa-

tion such as the type of disease and age group distribution on a pie chart or view the

trend of the selected disease for the duration of several years. Mi-BIS dashboard

creates the reports for the types of query (or SQL select statements) for the different

API/connectors. The processing time has been recorded with at least five trials for

each of the different setup. The results of the average processing time are shown in

Table 12.1.

The orchestration engine is responsible to interlink the storage layer toward

the self-service report creation from the Mi-BIS dashboard or running the real-

time analytics via the dashboard. Upon identification of large data request, the

predefined orchestration engine will use HDFS and run the search either in Impala,

GPU, or by combining the queries as hybrid parallel process and presenting the

output to the Mi-BIS dashboard.

200 E.K. Karuppiah et al.



12.5 Results

Two of the most important features of text processing sorting and matching of

processing component and edit distance of analytics component are explored. In

this section, we discuss the results from our implementations of the string matching

in our Mi-AccLib framework, while results of edit distance operations are illus-

trated for various configurations. Finally, we present the results of experiment based

on the different setups using the middleware framework.

We implemented a string matching algorithm, which matches all the characters

in a keyword to a string from a large text file. This search is O(n) in complexity,

Table 12.1 Comparison of processing time for types of search query using RDBMS, Big Data

Hadoop/Impala nodes, and GPU parallel DB

No

Description of search query

vs. average processing time

(seconds)

SQL

(8GB/

4Core)

SQL

(96GB/

48Core)

Hadoop-

Hive

Impala-

Hive

GPU-

parallel

DB

1 Selecting sum from one column of

120 million records

1,466.7 s 218.7 s 347.6 s 3.7 s 0.3 s

2 Selecting a name column,

counting the name and ordering by

top 10 names

7,901 s 1612s 505 s 64.2 s NA

3 Selecting state code, years from

hospital patient records with one

disease code selected, group by

years and state code, order by

years and state code

1,464.7 s 103.6 s 383.5 s 3.5 s 3 s

4 Selecting state, years, disease

name from hospital patient records

where one disease name type is

selected and joining disease code

with disease name and state code

with state names; grouping by

years, states, and disease names;

ordering by years and state code

1,688.7 s 102.7 s N/A 2.9 s 1.6 s

5 Inserting the results of selecting

state code, years from hospital

patient records with ALL disease

type, group by years and state

code, order by years and state code

Failed 7,878 s 557.3 s 10.1 s N/A

6 Selecting state, years, disease

name from hospital patient records

where three disease name types

are selected and joining disease

type with disease name and state

code with state names; grouping

by years, states, and disease

names; ordering by years, states,

and disease names

1,893s 704 s N/A 3.7 s 6.3 s
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where n is the number of characters to be searched. To speed up matching, we copy

chunks of the text into the shared memory of the GPU, which is much faster than

accessing global memory. Then, each thread in a warp searches for the keyword at

different points of the text. The same search is repeated for other chunks of memory

at other streaming multiprocessors throughout the GPU. The results of the search

are returned either in array size of the search text or in arrays of integers pointing to

the positions of the characters in the search text, as detailed in the previous section.

From our results in Fig. 12.5, we can see that the algorithm scales well according

to the number of CUDA cores and shading processor speeds of the GPUs. For

example, the Tesla C2075 GPU is three times as fast as the Quadro 2000 due to

having almost three times as many CUDA cores as well as having a much higher

memory bandwidth between the global memory and the shared memory. This

allows it to complete memory-intensive jobs, such as matching and sorting, much

faster than the Quadro 2000.

When we distribute the matching load between two cards, the throughput for the

searches is slightly lower than the sum of the throughput of each card individually.

The reason for this is mainly due to the overhead of distributing data to two separate

cards on the same PCI-e bus. For example, performing a search for a 4-byte

keyword from two million characters takes an average of 275.85 ms on a C2075

and 545.84 ms on a Quadro 4000, but distributed matching on a Quadro 4000 and

C2075 takes only 198.80 ms. This gives us a throughput of 7.25 MB/s and 3.66 MB/

s for the C2075 and Quadro 4000, respectively, and a combined throughput of

10.91 MB/s. However, the distributed matching on both cards gives a throughput of

10.06 MB/s.

We also implemented Levenshtein distance (edit distance) matching on CPU

and GPU. This parallel version of edit distance feature is part of the analytic

component in Mi-AccLib. The following explanation describes how application-

specific analytic component and functional-specific processing components are

Fig. 12.5 Performance of single and dual GPU cards for string matching
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used for data cleansing example using the middleware framework. It is certain these

results prove GPU-based solution is an alternative to existing MapReduce-like

application for Big Data processing.

It is defined to be the smallest number of edit operation (insertions, deletions,

and substitutions) required to change one string into another [27]. Figure 12.6

shows one-to-many matching of execution time versus total records for the edit

distance algorithm by utilizing CPU cores and GPUs (C2075). Single GPU and dual

GPUs outperform the CPU multiple cores for processing much larger size. The

speedup (CPU time/GPU time) on single CPU cores is 13.9�, and the 8 cores CPU

is 1.78� for processing 75 million of records (3.14 GB). There is more speedup by

utilizing dual GPUs, as utilizing the single CPU core is as high as 38.34�, and the

8 cores CPU is 4.92�. By comparing the speedup of single and dual GPUs

processing, there is ~2.7� for the size of records from 14 to 75 million of records.

An application that we put together using sort and search was a data cleansing

application project. In this project, we compared the national registration identifi-

cation (NRIC) numbers from a database of 14 million records, which we call

database A, against a clean set with 13 million records, which we call database

B. Once the number matches, the kernel compares the names associated with the

identification numbers at each table to confirm the match.

For this application, we first extracted the data from the two databases. Then we

developed a kernel that first performs a sort on database B using the identification

numbers as keywords. The identification numbers vary in length based on whether

they are old, new, or army identification numbers. Then, for each record in

database A, we search through database B for a match. We use a binary search

algorithm to perform the search, and the brute force algorithm to perform the match.

The binary search algorithm takes an average of O(logN� 1) to find if there is a

match. After all the records from database A have been iterated through, we use the

results to perform a brute force name matching from database A to database B. The

total time taken using the GPU kernel for sorting and matching alone is below 15 s

Fig. 12.6 Edit distance result for CPU and GPUs
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compared to the time of over 12 h on an Intel Xeon Quad Core E5620 running

MySQL. The total time including data extraction from the databases and

preprocessing was below 5 min for the GPU processing.

The results are shown as in Table 12.1 for six types of searches for the different

environment setups using our middleware framework including the Mi-BIS pre-

sentation layer.

The average time for each query type was analyzed for Postgres database with

8 GB server and 96 GB server, Hadoop with Hive (7 nodes), Impala with Hive

(7 nodes), and GPU server processing in order to compare the processing time

(in seconds). The result shows the performance comparison of various setups for

real-time analytics processing of Big Data in the health sector, using Mi-BIS

presentation dashboard to analyze ~120 millions of records in HDFS and Postgres

(RDBMS) servers. Some of the results are reported as NA (not available) because

the work is still in progress.

GPU parallel DB processing takes the shortest time to process ~120 million of

records and the cost is also cheaper than implementing 7 nodes of Hadoop or SQL

on Postgres (medium and high-performance fully tuned Postgres database server).

SQL was not able to compute on big data especially for real-time analytics. It even

failed for insertion of output data in the same database. Hadoop with Hive is not

suitable for real-time processing and would only be useful for batch processing of

big data. Impala-Hive is as beneficial as GPU for general queries and could be used

to complement in the hybrid parallel processing approach especially led by the

orchestration engine with predefined rules within the scripts, developed for the

middleware layer. Impala-Hive is faster compared to GPU parallel DB when there

are multiple tables to be joined and with huge strings operations to be performed.

Conclusion

We have presented a middleware framework for big data processing using

data cleansing as an example application. It is certain the above results prove

GPU-based solution is an alternative to existing MapReduce-like application

for Big Data processing. Our layered middleware framework approach with

GPU capable analytic and processing components has facilitated seamless

integration of our Mi-AccLib. It allows users to exploit the powers of the

GPU by providing the ability for efficient work distribution across multiple

GPUs with regard to I/O access and load balancing. Using the Mi-AccLib

framework, we implemented and tested radix sort and string matching algo-

rithms on single and multiple GPU cards as part of processing component. On

the other hand, the edit distance algorithm as part of analytic component used

underlying processing component functionalities for application-specific

needs. Our results show a significant improvement by using two GPU cards

over single GPU cards and single GPU cards over multi-core CPUs for text

data sorting, matching, and cleansing. The performance of the GPU

(continued)
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implementation for data cleansing shows a speedup of over two orders of

magnitude over the same operation done in MySQL on a multi-core machine.

The proposed middleware framework can perform real-time analytical

queries using the hybrid Impala and GPU libraries of ~120 million records

for the selected hospital database, within less than 11 s.

Acknowledgement This research was done under joint lab of “NVIDIA-HP-MIMOS GPU R&D

and Solution Center.” This is the first GPU solution center in Southeast Asia established in October

2012. Funding for the work came from MOSTI, Malaysia. The authors would like to thank Prof.

Simon See and Pradeep Gupta from NVIDIA for their support.

References

1. Fang, W., et al.: Parallel data mining on graphics processors. Technical Report (2008)

2. Gregg, C., Hazelwood, K.: Where is the data? Why you cannot debate CPU vs. GPU perfor-

mance without the answer. In: IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pp. 134–144 (2011). doi:10.1109/ISPASS.2011.5762730

3. Bakkum, P., Skadron, K.: Accelerating SQL database operations on a GPU with CUD. In:

Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing

Units, pp. 94–103. New York, NY: ACM (2010). ISBN: 978-1-60558-935-0, doi:10.1145/

1735688.1735706

4. He, B., et al.: Mars: a MapReduce framework on graphics processors. In: Proceedings of the

17th international conference on Parallel architectures and compilation techniques, pp. 260–

269. New York, NY: ACM (2008). ISBN: 978-1-60558-282-5, doi:10.1145/1454115.

1454152.

5. Dean, J., Ghemawat, S. MapReduce: simplified data processing on large clusters. Communi-

cations of the ACM, vol. 51, pp. 107–113. New York, NY: ACM (2008). ISSN: 0001-0782,

doi:10.1145/1327452.1327492

6. Wolfe Gordon, A., Lu, P.: Elastic phoenix: Malleable MapReduce for shared-memory sys-

tems. In: Altman, E., Shi, W. (eds.) Network and Parallel Computing, vol. 6985, pp. 1–16.

Springer, Heidelberg (2011)

7. Hong, C., et al.: MapCG: writing parallel program portable between CPU and GPU. In:

Proceedings of the 19th international conference on Parallel architectures and compilation

techniques, pp. 217–226. New York, NY: ACM (2010). ISBN: 978-1-4503-0178-7,

doi:10.1145/1854273.1854303

8. Shirahata, K., Sato, H., Matsuoka, S.: Hybrid map task scheduling for GPU-based heteroge-

neous clusters. In: IEEE Second International Conference on Cloud Computing Technology

and Science (CloudCom), pp. 733–740 (2010). doi:10.1109/CloudCom.2010.55

9. Stuart, J. A., Owens, J. D.: Multi-GPU MapReduce on GPU clusters. IEEE Computer Society.

In: Proceedings of the 2011 I.E. International Parallel & Distributed Processing Symposium,

pp. 1068–1079. Washington, DC. (2011). ISBN: 978-0-7695-4385-7, doi:10.1109/IPDPS.

2011.102

10. Catanzaro, B., Sundaram, N., Keutzer, K.: A map reduce framework for programming

graphics processors. In: Third Workshop on Software Tools for MultiCore Systems

(STMCS) (2008)

12 A Middleware Framework for Programmable Multi-GPU-Based Big Data. . . 205

http://dx.doi.org/10.1109/ISPASS.2011.5762730
http://dx.doi.org/10.1145/1735688.1735706
http://dx.doi.org/10.1145/1735688.1735706
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1854273.1854303
http://dx.doi.org/10.1109/CloudCom.2010.55
http://dx.doi.org/10.1109/IPDPS.2011.102
http://dx.doi.org/10.1109/IPDPS.2011.102


11. Choksuchat, C., Chantrapornchai, C.: Experimental framework for searching large RDF on

GPUs based on key-value storage. In: 10th International Joint Conference on Computer

Science and Software Engineering (JCSSE), pp. 171–176 (2013). doi:10.1109/JCSSE.2013.

6567340

12. NVIDIA Corporation. OpenACC. https://developer.nvidia.com/openacc (2011). Accessed

4 Aug 2013

13. Wolfe, M.: Implementing the PGI accelerator model. New York, NY: ACM. In: Proceedings

of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, pp. 43–

50 (2010). ISBN: 978-1-60558-935-0, doi:10.1145/1735688.1735697

14. Ghosh, S., et al.: Experiences with OpenMP, PGI, HMPP and OpenACC directives on ISO/TTI

Kernels. In: High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC

Companion, pp. 691–700 (2012). doi:10.1109/SC.Companion.2012.95

15. Munshi, A.: The OpenCL specification. Khronos OpenCL Working Group. Technical Report

(2009)

16. Torres, Y., Gonzalez-Escribano, A., Llanos, D.R.: Using fermi architecture knowledge to

speed up CUDA and OpenCL programs. In: IEEE 10th International Symposium on Parallel

and Distributed Processing with Applications (ISPA), pp. 617–624 (2012). doi:10.1109/ISPA.

2012.92

17. Wezowicz, M., Taufer, M.: On the cost of a general GPU framework: the strange case of

CUDA 4.0 vs. CUDA 5.0. In: High Performance Computing, Networking, Storage and

Analysis (SCC), SC Companion, pp. 1535–1536 (2012). doi:10.1109/SC.Companion.2012.

310

18. Shen, J., et al.: Performance traps in OpenCL for CPUs. In: 21st Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 38–45 (2013).

ISSN: 1066-6192, doi:10.1109/PDP.2013.16

19. NVIDIA Corporation.: CUDA C Programming Guide. s.l. NVIDIA Corporation (2012)

20. Sanders, J., Kandrot, E.: CUDA by example: an introduction to general-purpose GPU pro-

gramming. Addison-Wesley Professional. (2010). ISBN: 0131387685

21. Wilt, N.: CUDA handbook: a comprehensive guide to GPU programming. Addison-Wesley

Professional, (2013). ISBN: 0321809467

22. Kirk, D.B., Hwu, W-m.W.: Programming massively parallel processors, second edition: a

hands-on approach. Morgan Kaufmann, Burlington, MA (2012). ISBN: 0124159923

23. Hollis, C.: IDC digital universe study: Big data is here, now what? http://chucksblog.emc.com/

chucks_blog/2011/06/2011-idc-digital-universe-study-big-data-is-here-now-what.html (2011).

Accessed 18 July 2013

24. Storm—Distributed and fault-tolerant realtime computation. http://storm-project.net/ (2011).

Accessed 10 Aug 2013

25. Impala—The platform for big data. http://www.cloudera.com/ (2013). Accessed 10 Aug 2013

26. Holton, G.A.: Value at risk: theory and practice. Academic Press, Amsterdam (2003). ISBN:

0123540100

27. Navarro, G. A guided tour to approximate string matching. ACM computing surveys,

vol. 33, pp. 31–88. New York, NY: ACM. (2001). ISSN: 0360-0300, doi:10.1145/375360.

375365

206 E.K. Karuppiah et al.

http://dx.doi.org/10.1109/JCSSE.2013.6567340
http://dx.doi.org/10.1109/JCSSE.2013.6567340
https://developer.nvidia.com/openacc
http://dx.doi.org/10.1145/1735688.1735697
http://dx.doi.org/10.1109/SC.Companion.2012.95
http://dx.doi.org/10.1109/ISPA.2012.92
http://dx.doi.org/10.1109/ISPA.2012.92
http://dx.doi.org/10.1109/SC.Companion.2012.310
http://dx.doi.org/10.1109/SC.Companion.2012.310
http://dx.doi.org/10.1109/PDP.2013.16
http://chucksblog.emc.com/chucks_blog/2011/06/2011-idc-digital-universe-study-big-data-is-here-now-what.html
http://chucksblog.emc.com/chucks_blog/2011/06/2011-idc-digital-universe-study-big-data-is-here-now-what.html
http://storm-project.net/
http://www.cloudera.com/
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1145/375360.375365


Chapter 13

On the Efficient Implementation of a Real-

Time Kd-Tree Construction Algorithm

Byungjoon Chang, Woong Seo, and Insung Ihm

Abstract The kd tree is one of the most commonly used spatial data structures for

a variety of graphics applications because of its reliably high-acceleration perfor-

mance. Several years ago, Zhou et al. devised an effective kd-tree construction

algorithm that runs entirely on a GPU. In this chapter, we present improved GPU

programming techniques for implementing the algorithm more efficiently on cur-

rent GPUs. One of the major ideas is to reduce the number of necessary kernel

functions by replacing the essential, segmented-scan, and reduction computations

by simpler per-block atomic operations, thereby alleviating the overheads from

multiple synchronous kernel calls. Combined with the efficient implementation of

intrablock scan and reduction, using recently introduced intrinsic functions, these

changes achieve remarkable performance enhancement to the kd-tree construction

process. Through an example of real-time ray tracing for dynamic scenes of

nontrivial complexity, we demonstrate that the proposed GPU techniques can be

exploited effectively for various real-time applications.

Keywords Real-time ray tracing • Kd-tree construction • GPU computing •

CUDA • Scan and reduction operations

13.1 Background and Our Contribution

For many important applications in computer graphics, such as ray tracing and

those relying on particle-based computations, adopting a proper acceleration struc-

ture will affect their run-time performance greatly. Among the variety of spatial

data structures, the kd tree is frequently used because of its reliably high-

acceleration performance. Compared to other techniques such as grids and

bounding volume hierarchies, its relatively higher construction cost has been
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regarded as a drawback, despite efforts to develop an optimized algorithm (e.g.,

[1]), which has often restricted the use of the kd tree for real-time applications.

Recently, much effort has gone into accelerating kd-tree construction, particu-

larly by developing effective parallel algorithms on modern CPUs and GPUs.

Shevtsov et al. [2] and Zhou et al. [3] presented parallel construction algorithms

for the CPU and GPU, respectively, in which, instead of applying a precise surface

area heuristic (SAH) metric, median-splitting schemes were used to build the upper

levels of the trees to enable effective parallelization on the respective processors.

To alleviate memory usage issues, Hou et al. improved Zhou et al.’s method by

modifying the kd-tree construction order [4]. In another approach, Choi et al. [5]

and Wu et al. [6] attempted to build better kd trees for the CPU and GPU,

respectively, by applying the accurate SAH metric to the entire tree structure. As

pointed out in [5], the approximate approaches taken in [2,3] may often lead to kd

trees of somewhat degraded quality, which would influence the kd-tree perfor-

mance adversely. However, for interactive applications such as the real-time ray

tracing of dynamic scenes, where the kd tree must be rebuilt for every frame after

ray tracing the scene, it is important to adopt an effective kd-tree construction

scheme that achieves a balance between tree-construction efficiency and run-time

acceleration performance.

In this chapter, we present enhanced CUDA programming techniques for

implementing the GPU method of Zhou et al. [3]. While their detailed algorithm,

proposed several years ago, is still effective, current GPU designs enable it to be

implemented more efficiently. In developing this CUDA implementation, we aim to

enhance the GPU performance, particularly by minimizing the overheads caused by

multiple synchronous kernel calls. For this, the essential, segmented-scan, and

reduction computations are replaced by simpler per-block atomic operations.

Coupled with an efficient implementation of intrablock scan and reduction, based

on recently introduced intrinsic functions of the CUDA API, our methods achieve

significant performance improvements in the kd-tree construction process. Via

experiments on ray tracing for dynamic scenes of nontrivial complexity, we dem-

onstrate that the proposed GPU techniques can be applied effectively to various

real-time applications.

13.2 Optimizations for the Large-Node Stage

In Zhou et al.’s method, the upper levels of the kd tree were constructed using a

node-splitting scheme that comprised spatial median splitting and empty space

maximizing. In particular, based on the observation that the assumptions made in

the SAH may often be inaccurate for large nodes, this stage of computation, called

the large-node stage, simply selects the spatial median of the longest axis of the

axis-aligned bounding box (AABB) of a node as its split position. For efficient

parallel implementation on a GPU, all triangles in each large node are grouped into

chunks of fixed size (i.e., 256), parallelizing the computation over the triangles in
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the chunks. (Note that the triangles and chunks are mapped to the threads and

blocks, respectively, in the CUDA implementation.)

13.2.1 Triangle Sorting with Respect to Splitting Planes

The large-node stage iterates the node-splitting process until no large node is left. In

Algorithm 2 [3], the most time-consuming parts of each iteration are the fourth and

fifth steps, corresponding to lines 24–34 and 35–40, respectively, where the tri-

angles for each large node are first sorted with respect to the splitting plane, and the

triangle numbers of the resulting two child nodes are then counted. In this subsec-

tion, we present two different approaches to implementing these two steps on a

GPU. We then analyze their performance in the section on experimental results.

13.2.1.1 Implementation Using Standard Data-Parallel Primitives

As was done in [3], the first implementation relies on standard data-parallel

primitives such as (segmented) scan and reduction but uses a slightly different

algorithm, which is computationally as efficient as the original one. The topmost

part of Fig. 13.1 shows a situation where triangles in each large node are sorted into

two child nodes. Here, we allocate two lists statically, active list and next list, to the
global memory of the GPU to buffer the triangle indices. (Note that the triangle

indices are grouped into chunks of size 256, as shown in the dashed boxes, which

are then packed into the triangle index lists.)

For each triangle in a large node, mapped to a CUDA thread, the key issue is how

to efficiently calculate its address(es) in parallel in the new triangle index list next
list, whose production is complicated because of the simultaneous subdivisions of

the large nodes in the current list active list. For this, a kernel is first executed over

every thread block corresponding to a chunk of triangles, classifying each triangle

against the respective splitting plane and generating two bit-flag sequences of size

256 per chunk triangle bit flags. Then, for each of these, an exclusive scan is

performed using the shared memory of the GPU, resulting in the local triangle
offset sequences. In addition, the kernel counts the number of triangles in each

bit-flag sequence by simple addition and places this number in an array in the global

memory. (Note that, for the example in Fig. 13.1, the two triangle counts of 201 and

75 are written to the array marked [A] as a result of execution over the first chunk of

node 0.)
The next kernel then starts performing an inclusive segmented scan over this

array, storing the scanned result in another array, marked [B] in the example figure,

where each child node now comprises a segment in the sequence. After this scan, a

per-element subtraction is carried out in parallel between these two arrays to build

another chunk offset sequence that stores the displacement of the first triangle in

each chunk within a new child node. In the subsequent third kernel, an exclusive
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segmented scan is carried out over the sequence of numbers formed by the last

element of each child node in the scanned array [B], whose resulting node offsets
indicate the offsets of the first triangles of the new nodes within the new triangle

index list. Finally, a fourth kernel is executed over the thread blocks of triangles in

the triangle bit flags array, where, for a triangle whose bit flag is on, its triangle

index is stored in the appropriate place in the new triangle index list, whose address

can be calculated using the node offsets, chunk offsets, and triangle offsets.

13.2.1.2 Implementation Using Atomic Operations

The triangle-sorting technique described in the previous subsection requires a

segmented scan to be carried out twice on the data sequences stored in the global

memory and can easily be implemented using the data-parallel primitive functions
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Fig. 13.1 Parallel triangle sorting over splitting planes: using standard segmented-scan primitives
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provided by the CUDPP library [7], for example. Although very effective, such an

approach forces the run-time execution to be split into a sequence of synchronous

kernel calls, whose overheads will impact the run-time performance adversely.

To address this, observe that a side effect of using a standard segmented-scan

method is that the relative order of triangle indices within a large node made of

multiple chunks is retained in the respective child nodes. Such a property is

important when the order of elements is essential, as in a radix sort algorithm, for

example. However, retaining the strict order is unnecessary in the kd-tree construc-

tion algorithm because the order of triangles within a kd tree’s leaf node is not

critical in the later ray-tracing stage. This observation allows us to implement the

triangle-sorting computation by using a single faster-running kernel and replacing

the segmented-scan operations with simpler per-chunk atomic operations that are

supported by the CUDA API.

In the new implementation, the memory configuration for the triangle index lists

is slightly different, as shown in Fig. 13.2. For the ith large node with ni triangles in
the current active list, 2ni elements, ni per child node, are consecutively allocated to
the next list. In addition, an array of integer-valued chunk offset counts, all initially
set to zero, is allocated in the global memory, each of whose elements corresponds

to a child node, i.e., a new node in the next list. As before, these atomic variables are
intended to hold the displacements of the first triangles in the chunks within a new

child node, although the order between chunks may no longer be preserved because

of the use of the atomic operation.

For each chunk of triangle indices in the current list, the new kernel repeats the

same computation until the triangle numbers are calculated in the array [A]. A

representative thread then carries out two atomic additions, respectively fetching

the local offsets, one for each child node, from the corresponding atomic variables

and simultaneously adding the triangle counts to them, through which we will know

where to start storing the sorted triangle indices in the child nodes. Then, once per

child node, each thread checks the corresponding bit flag in the triangle bit flag
array, and, if set to on, puts its triangle index in the proper place in the next triangle
index list, whose location can easily be deduced from the fetched offset and the

offset in the triangle offset array.
In this implementation, the two segmented scans over the arrays in the global

memory have been replaced by two atomic add operations per thread block. While

the computation time is already reduced markedly by this change, two per-block

scans, one for each child, must still be carried out per chunk to compute the triangle

offsets. While such scans can be performed effectively in the shared memory by

using a standard scan method [8], recent GPUs offer useful intrinsic operations,

such as __ballot() for warp voting, __popc() for bit counting, and __shfl() for warp

shuffling, that can enable an efficient implementation of the per-block scan

[9]. Therefore, to achieve a further performance enhancement, our implementation

uses the __ballot() and __popc() functions for an intra-warp scan [10] and the

__shfl_up() function for an inter-warp scan. (Details of our CUDA implementation

of the kernel function are described in the Appendix.)
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13.2.2 AABB Computations for Active Large Nodes

Another time-consuming part of the large-node stage is the second step (lines 9–14

of Algorithm 2), in which the AABB of all triangles in each node is calculated. The

optimization techniques described in the previous subsection can also be applied to

this AABB computation. The standard reduction in the shared memory for com-

puting per-chunk bounding boxes can be implemented more efficiently on the GPU

by a simple modification of the scan implementation using the intrinsic shuffle

function __shfl_up(). Then, via three pairs of atomic min and max operations, the

result of each chunk reduction is written in parallel to the location in the global

memory that corresponds to the large node to which the chunk belongs. Although

such atomic operations are still regarded as expensive on current GPUs, we observe

that our single-kernel implementation based on atomic operations runs significantly

faster on the GPU than the original implementation, which needed to perform

segmented reductions six times.
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Fig. 13.2 Parallel triangle sorting over splitting planes: using atomic add operations
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13.3 Optimizations for the Small-Node Stage

After all large nodes are split into nodes whose triangle numbers do not exceed

64, the small-node stage starts. Because sufficient nodes are available, the compu-

tation in this stage is parallelized over nodes instead of triangles, evaluating the

precise SAH metric to find the best splitting plane for each small node. The key to

the efficient implementation of this stage is exploiting a preprocessed data structure

that facilitates the iterative node-splitting process. For each initial small node,

called the small root node, up to 384 (¼64 (triangles) * 3 (x-, y-, z-axes) *

2 (min/max)) splitting-plane candidates are first collected from triangles in the

node. Then, for each candidate, two 8-byte bit masks are generated to represent the

triangle sets contained in both sides. To represent this information, 20 bytes of

memory per node is necessary, including the 4 bytes used to store the location of the

splitting plane, implying that up to 7,680 (¼20 * 384) bytes of memory may be

necessary for each small root node. It is important to choose an appropriate memory

layout for the representation because the nontrivial amount of data will be accessed

in parallel during the small-node stage. Although several different configurations

are possible, we observed that the combination of a 4-byte access from the global

memory for the splitting plane location and another 16-byte access from the texture

memory for the triangle sets incurred the lowest memory latency on the GPU tested.

(Our analysis of the generated PTX code showed that 16 bytes of data were fetched

from texture memory even for a 4-byte access command.)

With this representation, the SAH cost evaluation and triangle sorting in the

subsequent node-splitting step can be performed efficiently using simple bitwise

operations. In this process, a parallel bit-counting operation is carried out very

frequently to obtain the numbers of triangles in the child nodes. Whereas the

method presented in [11] was used in the original description of Zhou et al.’s
algorithm, we find that the __popc() intrinsic function accelerates the counting

process significantly, as will be shown in the next section. Furthermore, we can also

accelerate the intrablock scan, using the same intrinsic functions as for the triangle-

sorting computation, which improves the performance slightly.

13.4 Experimental Results

To measure the performance improvement achieved by the optimization techniques

presented here, we first implemented the kd-tree construction algorithm of Zhou

et al. on an NVIDIA GeForce GTX 680 GPU, effectively as described in the

original paper. In doing this, we used the scan and reduction techniques described

in [8] for both intra-chunk and segmented scan and reduction. Here, the CUDPP

primitive functions [7] were utilized for the segmented data. Furthermore, the

parallel bit-counting operation needed in the small-node stage was implemented

as proposed in [11]. Starting with this original implementation, we applied the
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optimization techniques described above one at a time, in the order given in

Table 13.1, and measured their impact on the timing performance. Note that the

order of triangle indices in the leaf nodes of the produced kd trees may be different

because of the simultaneous atomic operations performed in our method. To check

for any effects on rendering performance, we also measured the time to render a

1024 * 1024 image by full ray tracing with shading, textures, reflection, and

shadows. To experiment with dynamic scenes of nontrivial complexity, we synthe-

sized some test scenes from commonly used scenes, made available by the Utah 3D

Animation Repository, Joachim Helenklaken, and Marko Dabrovic: “Sponza with

i Runners” (SRi) and “Kitchen with i Runners” (KRi), for i¼ 1, 2, 3. These scenes

comprise 66,454 + i * 78,029 triangles and 101,015 + i * 78,029 triangles, respec-

tively. (See Fig. 13.3.)

For seven representative scenes, Table 13.2 gives the stage-by-stage reduction in

the kd-tree construction time, achieved as a result of the application of the series of

optimization techniques described above. It is clear that the replacement of seg-

mented scan and reduction by per-block atomic operations produced significant

improvements despite atomic operations still being regarded as costly in the current

CUDA architecture. (See the changes from “Original” to “[A]” and “[A]–[B]” to

“[A]–[C]”.) A major reason is that the operations explained in Sects. 13.2.1 and

13.2.2, respectively, were able to be executed more efficiently on the GPU using

fewer numbers of kernels, as clearly indicated in the “Kernel calls” row, which

markedly reduced the overheads from multiple synchronous kernel calls. (Note that

a single kernel was sufficient for the triangle-sorting process, while four plus those

necessary for the two segmented-scan calls were needed, which was repeated per

each iteration.) Also, by exploiting the intrinsic functions offered by the more

recent CUDA compute capability, we could reduce the computation cost for the

intrablock scan and reduction further.

As can be verified from the ray-tracing time “R” in Table 13.3, the modifications

to the original kd-tree construction algorithm did not incur any noticeable degra-

dation in the quality of generated trees except a few cases, despite the different

Table 13.1 Applied optimization techniques

Stage Operations Our implementation

[A] LNS1 Two segmented scans Two atomic operations per block

[B] LNS1 Intrablock scans __ballot()/__popc()a

__shfl_up()b

[C] LNS2 Six seg. reductions Six atomic operations per block

[D] LNS2 Intrablock reductions __shfl_up()

[E] SNS Intrablock scans __popc()

Same as [B]

LNS1 and LNS2 denote the computation for triangle sorting (Sect. 13.2.1) and AABB computation

(Sec. 13.2.2), respectively, in the large-node stage, while SNS denotes the small-node stage
aIntra-warp scan of binary numbers
bInter-warp scan
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orders of triangle indices stored in the leaf nodes. As a result, we were able to

accelerate the process of interactive ray tracing of nontrivial dynamic scenes on the

GPU effectively. (This is shown by the “T” values in Table 13.3.)

SR1

a b c

d e

g

f

SR2 SR3

KR1 KR2 KR3

FF

Fig. 13.3 Test scenes. The numbers of triangles in these scenes are 144,483(SR1), 222,512(SR2),

300,541(SR3), 179,044(KR1), 257,073(KR2), 335,102(KR3), and 174,117(FF)
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Concluding Remarks

In this chapter, we have presented efficient GPU programming techniques for

implementing the well-known kd-tree construction algorithm [3] and demon-

strated its effectiveness through several examples. With current GPUs, executing

a CUDA kernel is still a relatively expensive operation, and thus it is important to

make an effort to minimize the number of kernel calls made. As shown in the

result section, our method was shown to be very successive in building kd trees

usingmuch fewer numbers of kernels,which resulted in amarkedlymore efficient

GPU implementation.We believe that the ideas presented are also relevant to the

development of applications that use other hierarchical spatial data structures.

Acknowledgments This work was supported by the National Research Foundation of Korea

(NRF) grant funded by the Korean government (MOE) (No. 2012R1A1A2008958).

Table 13.2 Performance of the kd-tree construction (Rendering time (in ms)) and the numbers of

kernel calls)

SR1 SR2 SR3 KR1 KR2 KR3 FF

Original 120.9

(46.3)

146.2

(59.1)

181.8

(77.7)

130.9

(47.1)

149.7

(60.0)

185.5

(77.8)

107.4

(42.1)

[A] 88.6

(34.8)

93.0

(49.9)

109.7

(64.2)

91.8

(35.1)

109.1

(50.0)

118.9

(64.9)

76.2

(36.8)

[A]–[B] 76.3

(34.1)

89.2

(49.0)

107.4

(62.8)

85.7

(34.3)

94.7

(48.6)

104.4

(62.6)

67.1

(36.2)

[A]–[C] 52.3

(29.9)

67.5

(44.7)

79.8

(59.0)

62.3

(31.1)

67.6

(44.9)

90.6

(59.3)

58.5

(34.0)

[A]–[D] 51.6

(29.2)

66.4

(43.3)

78.1

(56.9)

60.1

(29.8)

67.1

(43.6)

88.6

(57.4)

54.5

(32.8)

Ours(all) 48.5

(26.7)

64.3

(39.1)

74.1

(52.4)

48.8

(27.4)

64.0

(40.6)

72.5

(52.8)

48.1

(30.4)

Kernel calls 1,031

/221

1,041

/229

1,069

/232

977

/214

995

/219

1,034

/223

681

/153

In this table we provide the total time spent on the kd-tree construction, averaged for the given

animation sequences, where the number in parentheses represents the timing obtained by summing

each kernel’s execution time. Also, the averaged numbers of CUDA kernel calls made by the

original and our implementations are compared, in which the extra calls within the CUDPP

functions for the original implementation were not counted here

Table 13.3 Performance of the kd-tree construction (Rendering time (in ms))

SR1 SR2 SR3 KR1 KR2 KR3 FF

Orig. R 92.5 83.9 95.4 90.0 83.5 88.7 92.1

T 213.4 230.1 277.2 220.9 233.2 274.2 199.5

Ours R 90.1 92.7 93.5 88.2 94.3 100.5 103.3

T 138.6 157.0 167.6 137.0 158.3 173.0 157.8

In this table the average ray-tracing time (R) and the average total time (T), which includes both

construction and ray tracing, are given. FF denotes the “Fairy Forest” scene comprising 174,117 triangles
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Appendix: A Single-Kernel Implementation

for the Triangle-Sorting Process (Sect. 13.2.1.2)

 /* This kernel corresponds to the fourth and fifth steps of the large node stage 
described in [11]. */ 

 
__global__ void MedianSplitChunk (float *TriAABB, int *ChunkNodeIDs, 

int *NodeTriOffsets, int *NodeTriNums,  
int *ChunkStartIndices, int *ActiveNodeList, 
char *NodeSplitAxes, float *NodeSplitPoss,  
int *ChunkOffsets, int*NextNodeList ) {  

__shared__ volatile int LChildTriOffsets2[9], RChildTriOffsets2[9];
__shared__ int LChildNodesID, RChildNodesID, LOffset, ROffset;
 
int LaneID = threadIdx.x & 0x0000001f; 
int NodeID = ChunkNodeIDs[CurBlockIndex];  
int CurBlockIndex = blockIdx.x 
int TriNum = NodeTriNums[NodeID], TriOffset = NodeTriOffsets[NodeID]; 
int LChildTriOffsets, RChildTriOffsets; 
 
if (threadIdx.x < 9) 

LChildTriOffsets2[threadIdx.x] = RChildTriOffsets2[threadIdx.x] = 0; 
 

int TriIndex, StartPos = ChunkStartIndices[CurBlockIndex]; 
int CurPos = StartPos + threadIdx.x; 
 
/* Classify the current triangle w.r.t. splitting plane. */
unsigned int LChildTriBitFlag = 0, RChildTriBitFlag = 0;

 
 

 
if (CurPos < TriNum) {  

/* The last chunk may have fewer than 256 triangles. */ 
int SplitAxis = NodeSplitAxes[NodeID]; 
float SplitPos = NodeSplitPoss[NodeID]; 
 
TriIndex = ActiveNodeList[TriOffset+ CurID]; 
float MinPos = TriAABB[TriIndex + SplitAxis * TRI OFFSET]; 
float MaxPos = TriAABB[TriIndex + (SplitAxis + 3) * TRI OFFSET]; 
LChildTriBitFlag = (MinPos < SplitPos); 
RChildTriBitFlag = (MinPos >= SplitPos); 
if (LChildTriBitFlag)  

RChildTriBitFlag = (SplitPos < MaxPos); 
} 
 
/* Perform intra-warp scan. */
unsigned int LeftMask = ballot(LChildTriBitFlag), LaneMaskLT = 0;
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unsigned int RightMask = ballot(RChildTriBitFlag), LaneMaskLE = 0;

asm("mov.u32 %0, %%lanemask lt;" : "=r"(LaneMaskLT));
asm("mov.u32 %0, %%lanemask le;" : "=r"(LaneMaskLE));

LChildTriOffsets = popc(LeftMask & LaneMaskLT);
RChildTriOffsets = popc(RightMask & LaneMaskLT);

if (LaneID == 31) {
LChildTriOffsets2[(threadIdx.x >> 5) + 1] = popc(LeftMask & LaneMaskLE);
RChildTriOffsets2[(threadIdx.x >> 5) + 1] = popc(RightMask & LaneMaskLE);

}
syncthreads();

/* Perform inter-warp scan. */
float Scan8[2];
if (threadIdx.x < 8) {

Scan8[0] = LChildTriOffsets2[threadIdx.x + 1];
Scan8[1] = RChildTriOffsets2[threadIdx.x + 1];

for (int i = 1; i <= 4; i *= 2) {
float n0 = shfl up(Scan8[0], i, 8);
float n1 = shfl up(Scan8[1], i, 8);

if (LaneID >= i) { 
Scan8[0] += n0;
Scan8[1] += n1; 

}
}

}

if (threadIdx.x < 8) {
LChildTriOffsets2[threadIdx.x + 1] = Scan8[0];
RChildTriOffsets2[threadIdx.x + 1] = Scan8[1];

}

/* Fetch start positions for the current chunk. */
if (threadIdx.x == 0) {

LChildNodesID = 2*NodeID; RChildNodesID = 2*NodeID + 1;

LOffset = atomicAdd (&ChunkOffsets[LChildNodesID], LChildTriOffsets2[8]); 
ROffset = atomicAdd (&ChunkOffsets[RChildNodesID], RChildTriOffsets2[8]); 

}
syncthreads();

LChildTriOffsets += LChildTriOffsets2[(threadIdx.x >> 5)];
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RChildTriOffsets += RChildTriOffsets2[(threadIdx.x >> 5)]; 

if (LChildTriBitFlag != 0) 
NextNodeList[LOffset + LChildTriOffsets] = TriIndex; 

if (RChildTriBitFlag != 0) 
NextNodeList[ROffset + RChildTriOffsets] = TriIndex; 

}
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Chapter 14

Fast Approximate k-Nearest Neighbours
Search Using GPGPU

Niko Lukač and Borut Žalik

Abstract The k-nearest neighbours (k-NN) search is one of the most critical

non-parametric methods used in data retrieval and similarity tasks. Over recent

years, fast k-NN processing for large amount of high-dimensional data is increas-

ingly demanded. Locality-sensitive hashing is a viable solution for computing fast

approximate nearest neighbours (ANN) with reasonable accuracy. This chapter

presents a novel parallelisation of the locality-sensitive hashing method using

GPGPU, where the multi-probe variant is considered. The method was

implemented using CUDA platform for constructing a k-ANN graph. It was

compared to the state-of-the-art CPU-based k-ANN and two GPU-based k-NN

methods on large and multidimensional data set. The experimental results showed

that the proposed method has a speed-up of 30� or higher, in comparison to the

CPU-based approximate method, whilst retaining a high recall rate.

14.1 Introduction

Nearest neighbour search (NNS) is one of the oldest and most widely applied

algorithms in computer science. In terms of computational geometry, it is defined

as a problem of finding the closest point p to a query point q within the set of points
S E RD and is defined as [1]

p ¼ argmin
x2S

d q; xð Þ; x 6¼ q; ð14:1Þ

where d is a distance function. The k-nearest neighbour (k-NN) problem is an

extension of NNS, where the k-nearest neighbours p1,p2,. . .,pk are considered for q,
where d(p1, q)� d(p2, q) �,. . ., d(pk, q). Obviously, the problem has in the worst

case quadratic computational complexity when considering all points for query.

Namely, the brute-force algorithm calculates the distances between all points and
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sorts them in ascending order. k-NN is widely applied in a broad range of applica-

tions in data retrieval and similarity assessment, where performance and accuracy

play an important role. Hence, various methods have been developed to speed up

the k-NN search by data partitioning using spatial indexing structures [2]. These

approaches have an expected time complexity of O(n log(n)) when considering

n points. Unfortunately, they are inefficient for high-dimensional data, due to the

curse of dimensionality phenomena [3], where the time complexity of spatial

indexing methods increases significantly as the dimensionality increases. Addition-

ally, high-dimensional data (i.e. D> 20) is very sparse, and the Euclidean distance

between the furthest and nearest points can be considerably small.

One possible solution is based on dimension reduction over data, which can be

performed by the prior application of data-partitioning k-NN search in order to

retain high performance. Such approaches perform approximate nearest neighbour

search (ANN), where the exact k-NN is not always guaranteed. This compromise is

feasible when considering large multidimensional data (e.g. image and audio

features) [4]. During the last decade, one of the more popular choices for ANN is

the use of hashing functions that retain spatial locality: if two points are close in RD,

then there is a high chance they are close within the hashed domain, which

generally consists of buckets. Various hashing methods have been developed,

such as: cosine similarity [5], spectral hashing [6] and locality-sensitive hashing

(LSH) [4, 7, 8].

Another way to solve this problem is by parallelisation of the time-consuming

brute-force k-NN method. This substantially decreases the runtime and is even

faster than any CPU-based approximate method. However, as the data sets become

even larger in size and dimensionality, a parallel k-ANN method would perform

reasonably better than parallel exact k-NN methods. This chapter proposes a novel

parallel version of LSH-based k-ANN using general-purpose computing on a

graphics processor unit (GPGPU). The LSH family that is based on p-stable

distributions is considered for parallel hashing, since the hash calculation is easily

parallelisable as no synchronisation between the points is required. Then the multi-

probe LSH query algorithm is used in parallel over all points in order to speed up

the query process. The query is by default less parallelizable, since there is no

coalesced memory access. Therefore, an efficient approach has been developed by

using fast parallel sorting of buckets’ indices prior k-ANN query. The multi-probe

query was efficiently parallelized by using new approximate scoring criteria.

Furthermore, the method takes advantage of the skip-list data structure for faster

update of the k-ANN results.

This chapter is organised as follows: Sect. 14.2 discusses the related works on

parallel k-NN computation, GPGPU-based k-NN methods, and LSH-based

methods on GPU. A brief theoretical overview of LSH and MLSH is provided in

the Sect. 14.3, followed by the description of the proposed GPGPU-based method.

Section 14.4 presents the results from the experiments, where the proposed method

was implemented using NVIDIA’s Compute Unified Device Architecture (CUDA)

[9] and compared to the CPU-based LSH approach, as well as two GPU-based

k-NN methods. Final section concludes this chapter.
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14.2 Related Work

Fast k-NN computation has been a long studied problem in computer science,

where several parallelisations have been proposed over the past decade [10–

12]. With the increasing technological advancements of the GPUs, new methods

based on GPGPU have been developed for fast k-NN computation. Garcia

et al. [13] proposed one of the first GPU-based parallelisation of the brute-force

k-NN approach, where they reported a 120� speed-up in comparison to the

CPU-based implementation. Qiu et al. [13] proposed a parallel NNS for calculating

the iterative closest point when solving the 3D registration problem. They used an

array-based kd-tree for accelerating the k-NN search on GPU. Liang et al. [14]

proposed CUKNN, a parallel k-NN implementation on CUDA. Their approach is

based on a local k-NN calculation for each block of threads, then merging them in

order to obtain a global k-NN. They also took advantage of CUDA’s streaming

capabilities. Leite et al. [15] proposed an efficient parallel scheme for nearest

neighbour search in 3D point clouds on GPU. Their approach subdivides the data

into cells in order to gain spatial locality and efficient parallelisation. Yeh et al. [16]

developed an efficient GPU-based k-NN search using kd-tree, where they

performed fast parallel radix sort for calculating the median values in kd-tree

construction. Garcia et al. [17] proposed a newer GPU-based k-NN approach, by

using the cuBLAS (CUDA Basic Linear Algebra Subroutines) library in order to

efficiently calculate a parallel distance matrix for faster brute-force k-NN

parallelisation. Barrientos et al. [18] improved nearest neighbour computation on

GPU by using parallel lists of clusters (LC) and SS-index strategies in order to

perform fast range search and k-NN, respectively. Arefin et al. [19] have recently

proposed fast and scalable k-NN computation using GPUs, where the distance

matrix is divided into smaller chunks in order to parallelise distance calculations

and k-NN search over these sub-matrices. Sismanis et al. [20] have recently

proposed a parallel k-NN implementation by using truncated bitonic sort in order

to speed up the query computation.

Since the emerging of LSH a few years ago, only a few parallel k-ANN methods

using LSH have been developed. Haghani et al. [21, 22] proposed a distributed

version of LSH based on p-stable distributions for large-scale structured peer-to-

peer networks. Their approach uses dual-level mapping from D-dimensional space

to peer identifier space. Pan et al. [23] presented one of the first known GPU-based

implementation of LSH for the motion planning application. Their method is based

on parallel radix sort, difference, and prefix-sum operations over created buckets, in

order to speed up the parallel query by knowing the size and starting position of

each bucket. The authors used the parallel cuckoo hashing approach in order to

quickly find the location of a bucket for a given query point. The more recent

GPGPU-based approach by Pan and Manocha [24] is a novel k-NN parallelisation,

where the bi-level LSH is used coupled with a parallel RP-tree indexing structure.

Their hash tables are based on parallel cuckoo hashing and Morton curves. They

accelerate the query process by using the clustered-sorting of output buckets.
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14.3 Parallel Multi-probe LSH

The first subsection briefly introduces LSH and MLSH k-ANN approaches, whilst

in the second subsection, the proposed GPGPU-based method for parallelisation of

MLSH for constructing k-ANN graph is presented by using CUDA platform.

14.3.1 Locality-Sensitive Hashing

LSH as introduced by Indyk and Motwani [7] is an efficient randomised method for

finding the ANN by performing probabilistic dimensional reduction. It has been

successfully used in various applications, see [4] for an overview. The basic idea is

that close neighbours within the RD Euclidean space have a high probability of

being close within the LSH-hashed space U. Therefore, for any two points q1,q2 E
RD within distance r, the following two premises hold for a locality-sensitive hash

function h: RD!U [7]:

• If d(q1,q2)� r, then there is a greater probability than P1 that their hashed values

are also close [h(q1) ¼¼ h(q2)]�P1.

• If d(q1,q2)> cr, then there is a lower probability than P2 that their hashed values

are also close [h(q1) ¼¼ h(q2)]�P2.

Generally, the constant c is considered greater than 1; hence, nearby points have
a higher probability of being close in U than the far apart points (i.e. P1>P2). LSH

works in two steps, namely, initialisation and query. In the initialisation, the points

are hashed into locality-sensitive buckets. The query step is then used to search the

k-ANN of a given query point q by calculating the distances d(q, x) " [h(q) ¼¼ h
(x)]. The LSH-based k-ANN query is considerably faster than the brute-force k-NN

query, due to smaller search space, where only the distances between the points are

calculated that are within the same buckets.

The popular LSH family based on the p-stable distributions proposed by Datar

et al. [25] is considered throughout this chapter. The basic idea is as follows: if the

points within RD that are near by using the lp distance are projected onto a

one-dimensional line, there is a high chance that they are also near on that given

line. The hash function they proposed is defined as:

ha,b qð Þ ¼ a � qþ b

w

� �
; ð14:2Þ

where a is a random vector in RD that belongs to p-stable distribution (e.g. if p¼ 2,

then Gaussian distribution is considered), whilst b is a uniformly chosen random

value in the [0, w] range. w is the bucket width that defines the resolution of the

quantisation. If w is too large, too many points fall into the same bucket, whilst the

opposite happens if w is too small. The former considerably reduces the method’s
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efficiency, whilst the later affects the accuracy. Hence, LSH is sensitive to the

choice of the hash function’s parameters, which can be calculated using statistical

knowledge derived from the data (see Slaney et al. [8]). After the points are hashed

into buckets by using ha,b(q), a linear search is performed between the points within

the same buckets in order to find the ANN. In practice, one hashing function does

not suffice (i.e. unfortunate projection error), as shown in Fig. 14.1.

Therefore, K hash functions are considered [26] in order to increase the recall of

the true nearest neighbours. Moreover, L hash tables are constructed in order to

decrease the collision probability of false neighbours. Hence, the accuracy of LSH

is significantly improved as the amount of hash tables increases. However, this also

increases the algorithm’s runtime. This represents the time-quality trade-off of

LSH. In this chapter, the E2LSH [27] approach for hash tables’ construction is

considered, where the buckets obtained with per-table hash functions are quantised

into a single bucket. They defined the hash-table function as [27]

Hr,K qð Þ ¼
XK
j¼1

hj qð Þ�� ��r mod M
� �$ %

mod c; ð14:3Þ

where M is a large prime close to the maximum number supported on a given

architecture in order to avoid integer overflow and r is a smoothing parameter—a

uniformly randomly chosen value between [0, c], where c denotes the maximum

number of buckets (i.e. compressed hashing). The given hash-table construction

approach and the reduced domain space of the buckets are highly suitable for

parallelisation on GPU, due to memory constraints.

Lv et al. [28] proposed MLSH, which nowadays is one of the most popular

improvements to the standard LSH. Given the nature of the LSH, there is a certain

probability that the true k-NN can be located within the neighbouring buckets of a

given bucket where the query point is hashed to (see Fig. 14.2).

Fig. 14.1 Illustration of the

LSH in R3, where the

points’ projections are
shown for three hash

functions
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The hashing of q by using L hash tables can be denoted by the L-dimensional

vector v¼ (H1(q),. . .,HL(q)). MLSH is based on the perturbation vector

Δ¼ (δ1(q),. . ., δL(q)) that defines which neighbouring buckets need to be probed

by considering v+Δ¼ (H1(q) + δ1(q),..,HL(q) + δL(q)). In this chapter, the set

δ¼ {�1, 0, +1} is considered, as these buckets are most probable candidates

when w is large enough. In order to determine the best Δ, the probability of each

bucket hj(q) + δi containing k-NN of q has to be taken into account. Therefore, the

distances from q to neighbouring buckets hj(q) + δi for δi¼ {�1, +1} are calculated

(see Fig. 14.2):

f j q, � 1ð Þ ¼ aj � qþ bj
� �� hj qð Þw; ð14:4Þ

f j q, þ 1ð Þ ¼ w� f j q, � 1ð Þ: ð14:5Þ

Since the hash-table construction is based on E2LSH [27], it is necessary to

calculate the distances to neighbouring buckets for each hash table Hi(q) + δi.
Although these distances may be less accurate, due to the quantised nature of

Hi(q), a viable approximation is proposed:

gi q; δið Þ ¼ 1

K

XK
j¼1

f j q; δið Þ: ð14:6Þ

This is based on the premise that if q tends to be close to hj(q) + δi for all K hashing

functions withinHi(q), then q is also close toHi(q) + δi. After the calculation of gi(q,
δi) for each Hi(q), the best Δ can be estimated. MLSH uses query-directed probing

in order to reduce the dimension of Δ by not probing neighbouring buckets of each

hash function. This chapter proposes a simplified probing, due to the quantised

nature of Hi(q). The threshold τ E [0, 5] is defined as an input parameter, where only

the neighbouring buckets that satisfy the following approximate scoring criteria are

used:

Ψ q; δið Þ ¼ 1 τ � gi q; δið Þ > 0

0 else

�
: ð14:7Þ

Although these scoring criteria are less accurate than the probing that is origi-

nally used with MLSH, the increase of hash tables should improve the accuracy. In

comparison to the standard LSH, the number of hash functions and tables is still

Fig. 14.2 Illustration of the

probability density function

p(q) of a hashed point q,
where there is a chance that

the neighbouring buckets of

h(q) contain true k-NN
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lower, which significantly improves the initialisation speed and decreases the

memory consumption.

14.3.2 Parallel MLSH Using CUDA

In the initial phase, the D-dimensional data is copied into 1D global memory

residing on the GPU, and the L hash tables are constructed on the CPU. They are

transferred to GPU’s read-only constant memory, in order to allow fast parallel

hash-table retrieval in a broadcast fashion. Then the parallel kernel of the proposed

GPU-based MLSH method is executed on the given data in order to compute

k-ANN graph. Since the LSH hashing can be performed independently for each

point for the amount of L hash tables, the parallelisation of the initialisation

(i.e. hashing) is highly suitable. As mentioned earlier, the output consists of

L buckets’ indices for each hashed point. This would require 4Ln bytes of additional
memory, since it is considered that 232-1 suffices as the maximum amount of unique

buckets per hash table. This is unacceptable in practice, due to the limited amount

of memory available on the GPU. Hence, the proposed approach performs parallel

hashing per one hash table at a time, whilst also executing the parallel k-ANN

query. As shown in Sect. 14.4, the total LSH construction time is only a fraction of

the total runtime. The total amount of memory for storing the output buckets indices

for all points then remains at 4n bytes through the entire runtime. Other additional

required memory is at 2(4kn) bytes, in order to store the output indices and

distances of k-ANN for each point. Both of these reside in the GPU global memory.

The host mapped pinned memory can be used, in case there is insufficient global

memory.

After all the points have been hashed by i-th hashing table, the proposed k-ANN
parallel query is executed, as shown in the Fig. 14.3. In order to execute a fast

LSH-based query, given point distances are calculated to other points that were

hashed into the same buckets. Since the point ordering is different than the resulting

per-point bucket indices, this would introduce non-coalesced memory access and

would significantly slow down the query process. Therefore, the buckets’ indices
are sorted in ascending order by using fast parallel radix sort proposed by Merrill

and Grimshaw [29]. This is performed on the key-value (Hi(qj), qj) basis for each
point qj. Therefore, the points are also sorted depending on the order of the buckets.
Thus, a point-bucket locality is established, where close points within the same

buckets are also close in memory. This allows coalesced memory access, whilst

additional 4n bytes of memory are required for storing the points’ indices. Of

course, sorting the data can be quite demanding. However, since only buckets’
integer indices need to be compared, this is performed very fast. As shown in the

results within Sect. 14.4, the number of buckets is only a fraction of n. The parallel
k-ANN query is then performed, where the distance computations are done between

the points within the same bucket. As shown in the example in Fig. 14.3, the

resulting output memory for storing k-ANN results is also coalesced, where
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k slots are reserved for each point in order to store the indices of its k-ANN. Before
the results are transferred back to host memory, they are sorted based on original

placements of the points indices.

Considering CUDA’s logical parallel execution model, the threads are grouped

into blocks, and these are grouped into grids. CUDA is generally considered as

STMD (Single Thread Multiple Data), since all threads execute the same parallel

kernel code over different data. CUDA-supported GPUs have hardware consisting

of stream multiprocessors (SMs) that are further composed of stream processors.

The block size is set as a multiple of the size of a warp (e.g. 16 or 32 threads)—the

SMs’ core scheduling unit. When a given warp is delayed by a memory IO, several

cycles of computation can be used in the meantime for executing workload from

Fig. 14.3 Flow diagram of

the proposed parallel

LSH-based method, whilst

also illustrating an example

of 2-ANN
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another warp. Therefore a block size that is a multiple of a warp size is the best

choice. In order to hide latency, and maximise occupancy, each thread handles one

point from the sorted points’ data set by their corresponding bucket keys.

Figure 14.4 shows the pseudocode of the proposed GPGPU method. A given

thread is responsible for calculating the distances of the assigned point to other

points within the same bucket. Since the buckets are not memory-parallel with the

blocks, the thread needs to probe neighbouring points within the 1D memory (left

and right) in order to check whether they have the same bucket index. In order to

speed up this initial probing, the buckets’ sizes and positions within the sorted data

set are calculated prior the k-ANN query is being performed (see Fig. 14.4 lines 12–

13). The sizes are calculated by using a parallel histogram method [30], whilst the

positions are calculated using a simple parallel check if the next point in the

memory has a different bucket index, which corresponds to the beginning of the

new bucket. Both of these operations require minute computing time, as shown in

the next section. The calculated buckets’ sizes and positions are then copied from

the device’s global memory to its constant memory (line 14). This requires in total

2c entries (8c bytes) in constant memory, which is feasible due to the expected low

value of c (number of buckets). During the k-ANN query (line 15), for each thread,

it is then known which points reside in the same bucket. The distances to these

neighbouring points are computed sequentially per each thread. When a given

thread responsible for point q computes the distance to point p, the stored distance

of the k-th neighbour of q is compared to d(q, p). If the distance is higher, then the

k-ANN result has to be updated, where the index and the distance of p are stored as
an appropriate k-th neighbour of q. Such checking of the k-th neighbour is feasible,
since the k-ANN results are always ordered in ascending order.

In order to speed up the k-ANN update (i.e. finding the k for p), a deterministic

skip-list (DSL) [31] data structure is used to efficiently store the k-ANN in a sorted

list. The DSL has an expected time complexity of log(k) for the insertion of the new

element into the sorted set of k-ANN. By deterministically comparing d(q, p) with
the stored distance of the z0-th neighbour, where z0 E [0, k], then consequently it is

known whether the given point p is located within the interval α0¼ [0, z0] or

β0¼ [z0, k]. z0 is located at the 0-th level of the DSL, where multiple levels can

be defined (e.g. z1 neighbour that splits the parent interval α0 or β0), as shown in

Fig. 14.5. DSL does not require any additional memory for storing the results, as the

levels are defined deterministically a priori, and allows very fast updating of

k-ANN. This is desired especially in cases where k is large, since multiple calcu-

lated distances within k-ANN are unrequired for checking. This provides a flexible

and fast alternative than sorting the k-ANN or by using a binary or heap-tree array-

based structure [31]. Once the new neighbour is inserted into the DSL, the distances

are compared in linear order at the last level, until d(q, p) is larger than a given

already calculated distance of a u-th neighbour or d(q, p) is the new closest

neighbour. The new point is stored as the (u + 1)-th or 1st neighbour, and the

remaining [(u + 2), k] or [1, k] neighbours are repositioned for one place forward,

where the old k-th neighbour is erased.
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The proposed parallel MLSH is a straightforward upgrade of the previously

proposed parallel LSH method. Each point contains two calculated scores Ψ (q, δi)
for the left and right buckets, respectively. These are calculated on the fly during the

hashing phase (see Fig. 14.4 line 10) and additionally require 2n bytes of memory.

During the k-ANN query phase, the thread probes additional points from the

neighbouring buckets based on the MLSH score of the assigned point. In order to

speed up this process, the left bucket’s starting position and the right bucket’s size
are used.

14.4 Results

For the input data, the TEXMEX repository was used (see http://corpus-texmex.

irisa.fr/) [32]. It consists of 1,000,000 128-dimensional points representing SIFT

(Scale-invariant feature transform) descriptors for images. The NVIDIA TESLA

C2050 GPU that uses the compute capability 2.0 was used for the experiments. At

first, the timing of each main step in the proposed method was extensively analysed

by using NVIDIA’s visual profiler [33], as shown in Fig. 14.6. As can be seen, the

Fig. 14.4 Pseudocode of the proposed GPGPU method

Fig. 14.5 Illustration of the DSL data structure for efficient storage of the sorted k-ANN result for

a given query point. In this example, z0¼ k6 and z1¼ k4
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hash computation occupies only a fraction of the total time, whilst the k-ANN query

is the most computationally intensive task. The radix sorting of data by bucket

indices is the second most expensive operation. However, without this sorting, the

query would have non-coalesced memory access, which would substantially

decrease the search performance. The CUDA cache configuration was set to

emphasise L1 caching over shared memory. The visual profiler reported of over

90 % L1 cache hit-rate during the k-ANN query, which is one of the most important

performance factors. When measuring the total runtime, the data transfer from the

host memory to the GPU, and vice versa, was also considered.

The method was not directly implemented on CPU, since several operations

would be redundant due to architectural differences. Therefore, the proposed

method was compared with the state-of-the-art CPU-optimised MLSH method

(namely, LSHKIT; see http://lshkit.sourceforge.net/) [34] using Intel i7-950 3.07

Ghz CPU, in terms of runtime and speed-up, as shown in Fig. 14.7. Furthermore, the

method was compared with the state-of-the-art GPGPU-based exact k-NN methods

by Garcia et al. [13] (see http://vincentfpgarcia.github.io/kNN-CUDA/) and

Sismanis et al. [20] (see http://autogpu.ee.auth.gr/doku.php?id¼software). This

was done whilst increasing the size of the input data (see Fig. 14.7a) with

k¼ 100, or by increasing the number of nearest neighbours (see Fig. 14.7b),

where the number of points was constantly at 100,000. The number of query points

was set to the same as the number of input points (i.e. constructing a k-NN graph).

The method proposed by Garcia et al. [17] was only tested on data with sizes lower

than 50,000, since the method in its current version does not support bigger data

sets. As expected, all the GPU-based methods are faster than the CPU-based

k-ANN method, when the data set is reasonably high enough (i.e. n� 1,000).

However, the proposed GPU-based k-ANN method is faster than the exact k-NN

methods on GPU when the data sets become large enough. Moreover, the exact

k-NN methods use matrices multiplications for calculating the distance matrix,

which consumes considerably more memory than the proposed method.

The speed-up in comparison to the state-of-the-art CPU-based k-ANN when

considering increasing input was up to 30� and increasing with the amount of input

Fig. 14.6 Analysis of the timings for the main steps within parallel MLSH runtime, where the

MLSH parameters were set at L¼ 5 and K¼ 10. The query was performed over the entire data set

of n¼ 1,000,000 points, where k¼ 100
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data. When considering the increase of k, the speed-up was converging towards

30�. The MLSH parameters were initialised at L¼ 2 and K¼ 10. The number of

buckets was initialized to c¼ 100, which then increased for 250 after each increase

of n. The number of used hash tables L was gradually increased by 2 as n and

k increased during the experiments. This resulted in average recall of above 90 %.

In the proposed parallel MLSH, the additional parameter for scoring was set as

τ¼ 0.25. The number of threads per block was set at 256, in order to achieve full

occupancy.

Conclusion
This chapter proposed a new GPGPU-based method for fast parallel k-ANN

computation over multidimensional data sets. The nature of the considered

LSH method allows adequate parallelisation on the GPU, where points are

independently hashed into buckets, whilst simple scoring criteria are used in

multi-probe LSH in order to speed up the calculation. The k-ANN is updated

in parallel for each query point, where a deterministic skip-list data structure

is used to hold the k-ANN neighbours’ indices and the distances for each

query point. The experimental results have shown that the proposed method is

(continued)

Fig. 14.7 Comparison between proposed GPU-based MLSH with CPU-based MLSH and two

GPU-based k-NN methods, in terms of (a) timing and (b) speed-up, as the input data increases

(left-hand side) or the amount of nearest neighbours increases (right-hand side)
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substantially faster than the CPU-based multi-probe LSH. For future work,

the method could be extended to store the hashing results (i.e. construction

phase), in order to be viable for fast incremental and streaming applications.
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Chapter 15

Soft Computing Methods for Big Data

Problems

Shafaatunnur Hasan, Siti Mariyam Shamsuddin, and Noel Lopes

Abstract Generally, big data computing deals with massive and high-dimensional

data such as DNA microarray data, financial data, medical imagery, satellite

imagery, and hyperspectral imagery. Therefore, big data computing needs

advanced technologies or methods to solve the issues of computational time to

extract valuable information without information loss. In this context, generally,

machine learning (ML) algorithms have been considered to learn and find useful

and valuable information from large value of data. However, ML algorithms such

as neural networks are computationally expensive, and typically, the central

processing unit (CPU) is unable to cope with these requirements. Thus, we need a

high-performance computer to execute faster solutions such graphics processing

unit (GPU). GPUs provide remarkable performance gains compared to CPUs. The

GPU is relatively inexpensive with affordable price, availability, and scalability.

Since 2006, NVIDIA provides simplification of the GPU programming model with

the Compute Unified Device Architecture (CUDA), which supports for accessible

programming interfaces and industry-standard languages, such as C and C++. Since

then, general-purpose graphics processing unit (GPGPU) using ML algorithms are

applied on various applications, including signal and image pattern classification in

biomedical area. The importance of fast analysis of detecting cancer or non-cancer

becomes the motivation of this study. Accordingly, we proposed soft computing

methods, self-organizing map (SOM) and multiple back-propagation (MBP) for big

data, particularly on biomedical classification problems. Big data such as gene

expression datasets are executed on high-performance computer and Fermi archi-

tecture graphics hardware. Based on the experiment, MBP and SOM with
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GPU-Tesla generate faster computing times than high-performance computer with

feasible results in terms of speed and classification performance.

Keywords GPGPU • Big data • Soft computing • SOM • MBP • Biomedical

classification problems

15.1 Introduction

The volume of data being produced is increasing at an exponential rate due to our

unprecedented capacity to generate, capture, and share vast amounts of data. In this

context, machine learning (ML) algorithms can be used to extract information from

these large volumes of data. However, these algorithms are computationally expen-

sive. Their computational requirements are usually proportional to the amount of

data being processed. Hence, ML algorithms often demand prohibitive computa-

tional resources when facing large volumes of data. As problems become increas-

ingly challenging and demanding (in some cases intractable by traditional CPU

architectures), often tool kits supporting ML software development fail to meet the

expectations in terms of computational performance. Therefore, the scientific

breakthroughs of the future will undoubtedly be powered by advanced computing

capabilities that will allow researchers to manipulate and explore massive datasets

[1]. Somehow, the pressure is to shift development toward high-throughput parallel

architectures, crucial for real-world applications. In this context, highly parallel and

programmable devices such as GPU can be used for general-purpose computing

applications [2]. GPUs can provide remarkable performance gains compared to

CPUs. Moreover, they are relatively inexpensive with affordable prices, availabil-

ity, and scalability. Over the last few years, the number of GPU implementations of

ML algorithms has increased substantially [3]. However, most of the

implementations are not openly shared. The lack of openly available

implementations is a serious obstacle to algorithm replication and application to

new tasks and therefore poses a barrier to the progress of the ML field [4]. By using

CUDA architecture, an open-source GPU Machine Learning Library (GPUMLib)

was developed by Lopes and Ribeiro [3]. The aim is to provide the building blocks

for the development of efficient GPU ML software. GPUMLib offers several

advantages such as being useful in adoption of soft computing methods particularly

on the neural network algorithms and fast detection of errors. Moreover, most of the

previous studies are focused on using artificial neural networks (ANNs) for pattern

recognition [5–7]. Hence, we proposed soft computing algorithms for big data

problems, particularly in biomedical area. The aim is to provide fast analysis in

detecting the cancer from non-cancer based on the extraction of useful information

in gene expression, protein profiling, and genomic sequence data. This study is also

significant to women who have a high risk of ovarian cancer due to family or

personal history of cancer [8]. The remainder of this paper is organized as follows:

Sect. 15.2 discusses the previous studies on the development of soft computing
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methods such as ANN algorithms on graphics hardware. Section 15.3 provides

explanation on GPUMLib implementation, particularly on SOM and MBP. Sec-

tion 15.4 presents the experimental setup, followed by experimental results and

discussion in Sect. 15.5. Finally, a conclusion of the study will be discussed in final

section.

15.2 Related Work

Early studies of soft computing algorithm with graphics hardware implementation

have been proposed in game console application and supervised and unsupervised

artificial neural network (ANN) algorithms [6]. In 1998, Bohn started to implement

SOM on computer graphics interface (CGI) workstation for computer graphic

applications [9]. Later, Zhongwen et al. started to apply SOM algorithm with

multipass method on commodity GPUs (ATI 9550 and NVIDIA 5700) and

INTEL P4 2.4G for CPU computing [10]. Campbell et al. proposed a parameter-

less SOM which eliminates the parameter of learning rate and neighborhood size

[11]. Furthermore, SOM is also evaluated on GPU cluster to compute the scalability

[12]. On the other hand, parallel implementation of SOM to observe the suitability

for high-dimensional problem has been implemented by [13, 14]. In pattern clas-

sification, Kyoung-Su Oh and Keechul Jung applied multilayer perceptron (MLP)

for text detection [5]. Prabhu proposed unsupervised SOM for pattern classifier

[15]. Meanwhile, Gadjos et al. applied unsupervised SOM for outage database

[16]. Subsequently, combination of supervised and unsupervised SOM for image

segmentation was introduced by Faro et al. [7]. Moreover, Takatsuka et al. applied

the Geodesic SOM on standard machine learning dataset [17]. Their experimental

results suggested that the GPU speed performance is not significant for small

datasets such as iris, but is considerable on larger datasets (ionosphere and torus).

In medical area, preliminary studies focused mainly on detecting the cancer nodule

and non-nodule based on medical imagery [18]. In addition, Lopes and Ribeiro

proposed parallel BP and MBP for ventricular arrhythmias (VAs) in biomedical

applications [19]. The aim of parallel MBP and BP is to equip fast detection of

diseases which highly potential to sudden death.

Based on the previous study, there is still a lack of SOM-GPU implementation

for high-dimensional pattern analysis particularly on biomedical area. This is due to

most of the studies that proposed feature selection process to cater the nature of

dataset problems. Furthermore, high-dimensional features and imbalance dataset

have a great influence to the classification accuracy [20]. SOM is an algorithm for

exploratory data analysis which provides mapping from high-dimensional features

to low-dimensional features [21]. However, the distance calculation and searching

for the best matching unit (BMU) generally increase greatly the computational cost.

Hence, we proposed parallel implementation of SOM and MBP to speed up the

computation time. Moreover, the SOM and MBP with GPUMLib implementation

will be discussed in the next section.
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15.3 GPU Machine Learning Library Implementation

In this study, we implement parallelism on soft computing approaches based on

neural network (NN) algorithms, multiple back-propagation (MBP), and self-

organizing map (SOM) using GPUMLib. MBP is an open-source algorithm built-

in in GPUMLib [22]. Meanwhile, SOM algorithm is proposed in this study for the

parallel implementation on the distance computation and BMU searching process.

In the meantime, the parallelism on SOM algorithm uses the GPUMLib memory

access and reduction frameworks. The GPUMLib memory access framework

contains HostArray, HostMatrix, DeviceArray, DeviceMatrix, and CudaArray clas-
ses. The framework manages to allocate the memory on the host and device,

transfer data between host to device and vice versa. In the reduction framework,

the MinIndex kernel is designed to compute the minimum of an array and its

corresponding index within the array. Both algorithms use batch training for

parallel implementation and will be explained in Sects. 15.3.1 and 15.3.2

respectively.

15.3.1 Parallel Multiple Back-Propagation

MBP networks are designed based on multiple feed-forward architecture. They

differ from standard BP networks as they integrate two networks designated by

main and space networks. The main network contains selective activation neurons

which determine their importance for the actual stimuli from the space network.

Therefore, the selective activation neurons choose and respond to specific group of

patterns based on the input presented to the main network. Consequently, the

network response is fine-tuned according to the actual space localization features.

The main network only calculates its outputs after space network outputs are

evaluated. The implementation relies in five kernels: FireLayer, FireOutputLayer,
CalculateLocalGradient, CorrectWeights, and CorrectOutputWeights which exe-

cute in each epoch [22]. Initially, FireLayer and FireOutputLayer kernels are

launched by the host in order to determine the space and main network output.

Consequently, the main network weights are adjusted using the parallelism of

CalculateLocalGradient, CorrectWeights, and CorrectOutputWeights kernels.
Finally, the space network weights are adjusted with CorrectOutputWeights kernel.
In addition, an autonomous training system (ATS) is implemented to improve MBP

result. The ATS train several MBPs to select an appropriate MBP network topol-

ogy. As new MBP networks are trained, its performance is compared with the best

MBP found so far. These results are then used to determine the number of hidden

neurons of a new MBP and adjusted accordingly until the termination criterion is

satisfied [23].
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15.3.2 Parallel Self-Organizing Map

The SOM implementation, developed in this study, using the GPUMLib is executed

on GPU (host and device) and CPU (host only). For better representation, the

implementation is depicted in Fig. 15.1. Basically, the input data and the weights

are initialized randomly on the host side. Meanwhile, the Best Matching Unit

(BMU) searching is implemented on the device side. In this process, the memory

is allocated for both sides (host and device) and also transfers from the host to the

device (vice versa). For instance, the weights and input data function variables are

defined in a HostMatrix (host side) and in a DeviceMatrix (device side). Next, the
ComputeDistanceskernel <<< � � �>>>, depicted in Fig. 15.2 is launched. This

function is designed purposely to calculate the sum squared distance between the

input data and weights, i.e., the Euclidean distance. Subsequently, the reduction

framework, MinIndex Kernel is launched (See Fig 15.3). The reduction process

synchronizes the threads, in order to find the minimum value of BMU (x, y).
Consequently, the result of each block is written to global memory. The minimum

values are copied back to the host for updating the weights. Hence, the looping

process continues until the termination criterion is satisfied and finally displays the

result. On the other hand, all the processes from read the input data to display output

are fully executed on the host (CPU) implementation. The distance and BMU are

computed on BestMatchingUnit()function, without transfer to the device (see

Fig 15.1).

15.4 Experimental Setup

The dataset preparation and performance measurement for biomedical area are

presented in Sects. 15.4.1 and 15.4.2, respectively.

15.4.1 Dataset Preparation

In this study, high-dimensional biomedical dataset including gene expression data,

protein profiling data, and genomic sequence data that are related to classification is

shown in Table 15.1. The leukemia training dataset consists of 38 bone marrow

samples which categorize as 27 acute myeloid leukemia (ALL) and 11 acute

lymphoblastic leukemia (AML), over 7,129 probes from 6,817 human genes.

Also, 34 sample-testing data are provided, with 20 ALL and 14 AML [24]. The

prostate cancer training set contains 52 prostate tumor samples and 50 non-tumors

which are labeled as normal with 12,600 genes. While testing set that consist of

25 tumor and 9 normal samples [25], the proteomic patterns for ovarian cancer were

generated by mass spectroscopy, which consists of 91 normal and 162 ovarian
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cancers. The raw spectral data of each sample contains 15,154 identities and

253 samples [8]. All datasets are normalized within the range of 0 to 1.

15.4.2 Performance Measurement

The performance measurement for classification task is shown in Table 15.3. The

performance index is based on confusion matrix in Table 15.2, which TP, TN, FP,

and FN correspond to true positive, true negative, false positive, and false negative,

respectively. Generally, sensitivity is used to identify the portion of negative cases

that are categorized as positive. Meanwhile, specificity determines portion of the

Fig 15.1 SOM with GPUMLib implementation on training the host (CPU) and device (GPU)
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positive data that belong to negative cases. PPV and NPV are employed to calculate

the average of positive (TP) and negative (TN) cases, respectively. High sensitivity,

specificity, PPV, and NPV means the result is accurate with perfect scores 1, else

the lowest score is 0. Furthermore, an average site performance (ASP) and

__global__ void ComputeDistancesKernel(float * inputData, float * weights, int 
vector, int numberFeatures, float * distances) {
extern __shared__ float sdist [];

int i = blockIdx.x;
int j = blockIdx.y;

int w = i * gridDim.y + j; // weights have two dimensions

float distance = 0.0;

for (int feature = threadIdx.x; feature < numberFeatures; feature += blockDim.x) {
float fdist = inputData[vector * numberFeatures + feature] –

weights[w * numberFeatures + feature];
distance += fdist * fdist;

}
sdist[threadIdx.x] = distance;

// reduction
__syncthreads();

for (int dist = blockDim.x; dist >= 2;) {
dist /= 2;
if (threadIdx.x < dist) {
sdist[threadIdx.x] += sdist[threadIdx.x + dist];

}
__syncthreads ();

}

if (threadIdx.x == 0) {
distances[w] = sqrt(sdist[0]);

}
}

Fig 15.2 Launching a kernel to compute distances

void KernelMinIndexes(cudaStream_t stream, int blocks, int blockSize, cudafloat * 
inputs, cudafloat * output, int * minIndexes, int numInputs, int * indexes) {
MinSmallArrayIndex< blockSize ><<< blocks, blockSize, blockSize * 
(sizeof(cudafloat) + sizeof(int)), stream>>>(inputs, output, minIndexes, numInputs, 
indexes);

}

Fig 15.3 Launching a kernel to search the minimum value (http://gpumlib.sourceforge.net)

Table 15.1 Biomedical dataset (http://datam.i2r.a-star.edu.sg/datasets/krbd/)

No Dataset No. of samples No. of features Class name

1 Leukemia 72 7,129 ALL

AML

2 Prostate cancer 136 12,600 Tumor

Normal

3 Ovarian cancer 253 15,154 Tumor

Normal
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performance coefficient (PC) are being used to analyze the average of precision and

recall performance in classification problems.

15.5 Experimental Result and Analysis

In this study, the SOM and MBP algorithms are executed on NVIDIA Tesla C2075

graphic hardware and Intel Xeon high-performance computer. Both algorithms are

tested on high-dimensional biomedical datasets (leukemia, prostate cancer, and

ovarian cancer). The SOM algorithm is set up for 1,000 iterations in three different

sizes of mapping. While the MBP algorithm executes for 10,000 iterations using the

autonomous training system (ATS), initially, the MBP generates 100 networks with

one and two hidden layers. The biomedical datasets such as prostate cancer, ovarian

cancer, and leukemia dataset are indicated as large, medium, and small feature

dimensions. Meanwhile, the SOMmapping sizes (5� 10, 10� 10, and 10� 15) are

labeled as small, medium, and large, respectively. There are two sections of

analyses, which are speed and classification analysis. In Sect. 15.5.1, the speed

performance will be analyzed in terms of CPU and GPU elapsed time. For classi-

fication analysis in Sect. 15.5.2, the result will be based on the performance

measurement index which was previously described in Table 15.3.

Table 15.2 Confusion

matrix
Actual class Predicted class

+(ve) �(ve)

+(ve) TP FN

�(ve) FP TN

Table 15.3 Classification performance measurement

Performance measurement index Abbreviation Formula

Sensitivity Sn TP
TPþFNð Þ

Positive predictive value PPV TP
TPþFPð Þ

Specificity Sp TN
TNþFPð Þ

Negative predictive value NPV TN
TNþFNð Þ

Accuracy ACC TPþTNð Þ
TPþTNþFPþFNð Þ

Average site performance ASP SnþPPV
2

Performance coefficient PC TP
TPþFNþFPð Þ
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15.5.1 Speed Analysis

In this study, the aim of the analysis is to observe the capability of MBP and SOM

algorithm using graphics hardware (GPU) on high-performance computer (CPU).

In this experiment, the size of SOM mapping dimension is categorized as mapping

1¼ 5�10, mapping 2¼ 10�10, and mapping 3¼ 10�15. While the number of

hidden nodes is set to 100 for the first hidden layer, a total of 15 nodes are set for the

second hidden layer (see Tables 15.4 and 15.5). Hence, large proportion size of

mapping dimension, number of hidden nodes, iterations, and feature dimensions of

the dataset generate slow computation times for both algorithms. Since the com-

putational time depends on certain parameters, we evaluate both algorithms with

similar datasets, number of nodes, and number of iterations. The SOM speed on

GPU generates approximately three times faster than CPU for all datasets as

depicted in Fig 15.4. Subsequently, MBP leukemia dataset produces significant

performance with 27 times speed for 10,000 iterations on GPU (see Table 15.5 and

Table 15.6). Meanwhile, MBP (100 nodes) generates 12 times more than SOM (size

of mapping¼ 10� 10) for 1,000 iterations on CPU (see Table 15.4 and Table 15.6).

Table 15.4 SOM speed performance

Dataset Performance evaluation SOM result

Leukemia Max epoch 1,000

Size of mapping Mapping 1 Mapping 2 Mapping 3

5� 10 10� 10 10� 15

CPU time 356.436 s 533.726 s 974.418 s

GPU time 115.441 s 207.574 s 301.79 s

Speed 3.087603 x 2.57126 x 3.228795 x

Prostate cancer Max epoch 1,000

Size of mapping Mapping 1 Mapping 2 Mapping 3

5� 10 10� 10 10� 15

CPU time 1,621.65 s 2,618.41 s 4,081.941 s

GPU time 660.474 s 1,118.06 s 1,565.038 s

Speed 2.455275 x 2.34192 x 2.608206 x

Ovarian cancer Max epoch 1,000

Size of mapping Mapping 1 Mapping 2 Mapping 3

5� 10 10� 10 10� 15

CPU time 3,455.925 s 6,354.214 s 9,116.06 s

GPU time 1,086.895 s 2,061.42 s 3,166.077 s

Speed 3.179631 x 3.082445 x 2.879292 x

The bold values represent the best performance in terms of speed and classification analysis
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Table 15.5 MBP-GPU (device) speed performance

Dataset Performance evaluation MBP result

Leukemia Max iteration 10,000

MBP network 7129-100-1 7129-5-10-1

Min Max Min Max

Iteration 146 163 230 10,000

GPU time 8.892 s 9.928 s 0.702 s 30.654 s

Prostate cancer Max iteration 10,000

MBP network 12600-100-1 12600-5-10-1

Min Max Min Max

Iteration 181 225 2,996 10,000

GPU time 36.042 s 44.805 s 23.678 s 79.119 s

Ovarian cancer Max iteration 10,000

MBP network 15154-100-1 15154-4-10-1

Min Max Min Max

Iteration 152 191 155 10,000

GPU time 77.173 s 96.955 s 2.075 s 134.134 s

The bold values represent the best performance in terms of speed and classification analysis

Fig 15.4 SOM speed analysis
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15.5.2 Classification Analysis

The classification analysis for SOM and MBP is shown in Table 15.7. The results

are evaluated based on the percentage of best, average, and worst performance.

MBP outperforms SOM in best result of all datasets. Otherwise, SOM generates

significant result in average performance of prostate cancer dataset.

Table 15.6 MBP-CPU (Host) speed performance in leukemia dataset

Performance evaluation MBP result

Iteration 1,000 10,000 1,000 10,000

MBP network 7129-100-1 7129-5-10-1

CPU time 6,612 s 48,668 s 109 s 838 s

Table 15.7 Classification analysis

Dataset Abbreviations

SOM MBP

Average

(%)

Worst

(%)

Best

(%)

Average

(%)

Worst

(%)

Best

(%)

Leukemia Sn 74.43 65.83 84.29 78.95 47.76 91.18

PPV 72.73 66.67 78.79 78.79 48.49 90.91

Sp 76.09 64.67 89.79 79.32 42.72 89.27

NPV 62.53 56.80 67.37 72.75 42.28 91.40

ACC 72.73 66.67 78.79 78.79 48.49 90.91

ASP 73.58 66.25 81.54 78.87 48.12 91.05

PC 56.12 49.10 63.08 64.65 32.58 83.46

Prostate

cancer

Sn 85.61 75.78 91.64 74.20 17.83 97.35

PPV 79.41 64.71 91.18 76.47 65.36 97.06

Sp 69.47 53.63 84.19 65.11 6.42 92.65

NPV 85.48 73.07 93.65 48.86 23.53 98.94

ACC 79.41 64.71 91.18 76.47 23.53 97.06

ASP 82.51 70.24 91.41 75.34 41.59 97.21

PC 68.89 50.60 84.30 61.77 17.30 94.41

Ovarian

cancer

Sn 83.23 81.26 86.42 94.96 90.90 100

PPV 82.02 81.58 82.90 94.74 90.79 100

Sp 83.07 79.93 92.94 92.24 88.16 100

NPV 73.42 67.10 79.34 95.42 89.67 100

ACC 82.02 81.58 82.90 94.74 90.79 100

ASP 82.62 81.42 84.66 94.85 90.85 100

PC 69.24 68.94 69.47 90.12 83.33 100

The bold values represent the best performance in terms of speed and classification analysis
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Conclusion

In this study, we found that the results are proportionate to the mapping size

of the SOM architecture and feature dimensions of the datasets. In other

words, the larger the mapping size and feature dimensions, the slower the

computation time for both CPU and GPU. This is due to ANNs’ (SOM and

MBP) parameters that depend on size of mapping (number of nodes), dataset

feature dimensions, number of input samples, and termination criterion

(number of iterations or convergence rate). Our findings are conformed to

the findings conducted by [12, 14], i.e., larger mapping size will increase the

memory transfer, thus, lower the computational time [14]. The current GPU

parallel implement of the SOM algorithm performs three times (3�) faster

than the CPU, while the MBP is 27 times faster than the CPU. However, the

SOM’s speed could be improved with the parallelism on updating the

weights. It is important for larger (big data) datasets that do not fit on the

GPU memory, consists of devising methods, to choose a representative subset

of the data. Alternatively, we can also create several maps for different data

that could afterwards be merged together latter in a bigger map. Furthermore,

the aim of SOM-GPUMLib implementation will be openly shared in the

future.
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14. Gajdoš, P., Platoš, J. (2013) GPU based parallelism for self-organizing map. In: Kudělka,
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Chapter 16

Numerical Solution of BVP on GPU
with Application to Path Planning

Lumı́r Janošek, Martin Němec, and Radoslav Fasuga

Abstract The problem of path planning in a virtual environment is a widely

researched area, which finds application in fields such as robotics, simulations,

and computer games. This article focuses on a comparison of numerical methods

for solving partial differential equations with BVP on the GPU with NVIDIA

CUDA, used in the path planning of virtual characters using the potential fields.

The most commonly used methods for computing the potential fields on the GPU

are compared in this article in terms of time consumption.

Keywords Path-planning • Agent • Iteration methods • Potential fields

16.1 Introduction

The original purpose of a graphic processing unit (GPU) was primarily for image

data processing. Programming of graphical chips was not a simple matter. It was

necessary to use an application programming interface (API) to access the graphic

processor such as Direct3D® or OpenGL®. The release of NVIDIA CUDA in 2007

changed the approach to the programming of graphic processors [1].

This article focuses on a comparison of the implementation of iterative methods

for solving partial differential equations on a GPU in the agent path-planning

domain. This article is not intended to present new approaches, but only to show

the differences in iterative methods implemented on the GPU, which are used in

potential field-based path planning. In this article the most widely used methods for

the generation of potential fields used for agent navigation are compared in terms of

time consumption.

The problem of path planning is widely applied in areas such as robotics and

computer games. Path finding can generally be understood as finding the optimal

path from an arbitrary position in a virtual world to a goal. In practical applications,

there is often the requirement that the methods must be able to find paths in real

time. Currently, the A* algorithm is still widely used for path planning [2], falling

among graph-oriented algorithms. An alternative to graph-oriented algorithms are
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methods for path planning using the potential fields. These methods are tradition-

ally used in robotics. The application of potential field-based path planning can also

be found in computer games [3]. Application of the BVP path planning may not be

limited just to 2D. In [4] a method for the new application of BVP path planning on

the surface of a 3D object is presented.

The idea of BVP path planning is using the interplay between repulsion from

obstacles and attraction to a target position to create the expected behavior.

Potential fields are obtained from the class of partial differential equations (PDE)

called the boundary value problem (BVP) [5]. BVP-based path planning can create

realistic-looking complex humanlike behavior similar during the agent’s movement

toward to the goal. Implementation of the numerical solution of the BVP on the

GPU then enables the application of these methods in multi-agent real-time

applications [6].

This chapter is structured as follows: Sect. 16.2 summarizes the problems of

BVP in the path-planning domain, Sect. 16.3 describes the iterative methods used

for solving the partial differential equations, Sect. 16.4 presents the implementation

of the listed methods on the GPU, Sect. 16.5 summarizes the achieved results

during the implementation, and the final section presents our conclusion and

future work.

16.2 Harmonic Potential Field

One of the most widely used methods for generating a potential field for agent

navigation in a virtual environment is the numerical solution of a partial differential

equation based on the boundary value problem (BVP). One of the first steps in this

area was undertaken by Connolly and Grupen [7]. In their work they presented a

method for the generation of potential fields, which do not have local minima. Such

a local minimum may be the reason why the agent can end up trapped in local

minima. In their work, Connolly and Grupen proposed a method for generating a

potential field through a solution to the Laplace equation:

∇2u ¼ 0, g x; yð Þ ¼ 1,obstacle
0,goal , x; yð Þ 2 ∂Ω

n
ð16:1Þ

called harmonic function. The property of the Laplace equation is that it does not

present local minima. This property is based on the so-called maximum principle,

which the Laplace equation satisfies [8].

Equation (16.1) is solved with preset values on the boundaries. This type of

boundary condition is called the Dirichlet boundary condition in the terminology of

the BVP given by g(x,y). In the case of obstacle space, the potential values at the

obstacles are preset to a higher value, while in the goal area the values are preset to

zero. The resulting potential field is used to find the agent’s path to the goal by

gradient descent. Higher values of the obstacles repel the agent to prevent collision.
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On the other hand, zero values of the goal create an attraction force. Because there

is only one minimum defined in the goal area, there exists exactly one path from any

point on the map to the goal [9].

16.3 Iterative Methods

In general, there exist two methods for solving the boundary value problem,

classified as direct methods and iterative methods. Direct methods lead to an

exact solution to the problem with the use of a finite sequence of operations. In

contrast to direct methods are iterative methods, in which the solution is obtained

by a number of iterations [10]. A typical procedure is to determine the initial

solution, on the basis of which the new values are calculated. This procedure is

repeated until the convergence reaches the desired solution. This is usually deter-

mined by some criterion of convergence.

The iterative solution of elliptic equations most commonly uses the following

methods: Jacobi, Gauss-Seidel, or Successive Overrelaxation (SOR).

In the Jacobi method, the dependent variable at each grid point is solved using

the initial values of the neighboring points or previously computed values [10]:

u
kþ1ð Þ
i, j ¼ 1

4
u

kð Þ
i�1, j þ u

kð Þ
iþ1, j þ u

kð Þ
i, j�1 þ u

kð Þ
i, jþ1

h i

where k denotes the values computed in the previous iteration and i, j denotes the
grid point.

The Gauss-Seidel method is a modification of the Jacobi method. To compute

the value of a dependent variable in the current iteration, the values from the

previous and current iteration are used. This will certainly increase the convergence

rate dramatically over the Jacobi method [10]. The iteration formula for the Gauss-

Seidel method has the following form:

u
kþ1ð Þ
i, j ¼ 1

4
u

kþ1ð Þ
i�1, j þ u

kð Þ
iþ1, j þ u

kþ1ð Þ
i, j�1 þ u

kð Þ
i, jþ1

h i

where k denotes the values computed in the previous iteration, k +1 denotes the

values computed in the current iteration, and i, j denotes the grid point.

Better convergence can be achieved with the Successive Overrelaxation (SOR)

method. The main idea behind the SOR algorithm is to compute a better approx-

imation to the true solution by forming a linear combination of the current updated

solution k +1 and solution k from the previous iteration [11]. The iteration formula

for SOR method is defined as:
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u
kþ1ð Þ
i, j ¼ 1� ωð Þu kð Þ

i, j þ
ω

4
u

kþ1ð Þ
i�1, j þ u

kð Þ
iþ1, j þ u

kþ1ð Þ
i, j�1 þ u

kð Þ
i, jþ1

h i
ð16:2Þ

where ω denotes the relaxation parameter and i, j denotes the grid point. The

optimal value of ω should be in the range 1<ω< 2. If 0<ω< 1, this is so-called

under-relaxation [12]. In the case of ω¼ 1, the SOR algorithm is reduced to Gauss-

Seidel.

16.4 Implementation

With access to today’s NVIDIA CUDA-enabled GPU, it is possible to significantly

accelerate the methods of numerical solution of elliptic equations using parallel

implementation. With the parallel performance of the GPU, which is provided by

the CUDA interface, it is possible to solve many complex computational problems

with more efficiency than on the CPU. GPU is suitable for solving problems which

require the parallel processing of large amounts of data.

Not all iterative methods for solving elliptic equations are suitable for imple-

mentation on the GPU. For parallel implementation and performance comparison

of the numerical solution of elliptic equations on the GPU, the Jacobi, Jacobi

Red-Black, and SOR Red-Black methods were chosen. The sequential implemen-

tation of the Gauss-Seidel uses two values from the current iteration and two values

from the previous iteration to calculate the current cell. In the implementation of

this method on the GPU, it is necessary to have some synchronization, which can

lead to performance degradation [13]. Gauss-Seidel is an effective method for

implementation on the CPU. Due to the need for synchronization, the Gauss-

Seidel method is not best suited for parallel implementation on the GPU, and

therefore was not taken into account for the implementation of iterative methods

on the GPU.

As mentioned in the introduction, the methods presented in this article are

focused on agent navigation in a virtual world. A virtual environment contains a

number of obstacles, which the agent tries to avoid on the way to the goal. Before

the start of the potential field calculation, it is necessary to discretize the virtual

environment into a fixed homogeneous grid representation. Each grid cell (i,j) is
associated with a small region of the real environment and maintains the potential

value ui,j, which holds information about whether the given cell is an obstacle or

free space. Cells defined in place of the obstacles have the initial potential set to

1, while cells containing a goal have the potential value set to 0. Such a manner of

setting the initial values corresponds to the Dirichlet boundary conditions [14].

With such a defined initial boundary condition, the values of all other cells are

computed using a certain number of iterations. In order for the method to converge

to the correct solution, a sufficient number of iterations must be specified. The

number of iterations varies depending on the used method. One option of how to

control the number of iterations is assessment of some convergence criteria based
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on which the calculation is terminated. Such criteria could be check of the error that

occurred during the iterations, for instance. The iteration is terminated once the

error is less than the given tolerance [11]. An alternative way is to specify a fixed

number of iterations at the beginning of the algorithm. [12] shows that the required

number of iterations can be determined by an analytical formula. The number of

iterations r required to reduce the error by a factor 10� p , for the Jacobi method, is

defined as:

r � 1

2
pJ2 ð16:3Þ

J2 denotes the number of grid points.

Using the Red-Black method in conjunction with the Jacobi method, it is

possible to achieve certain optimization [11]. The Red-Black method divides grid

points into odd and even, symbolically expressed by red-black coloring. The

coloring of the grid points is done so that no point is directly adjacent to a point

of the same color. The red point values from the previous iteration are utilized

during the calculation of the values of the black points. This step is identical to the

Jacobi iteration, applied to all black points. Updated black point values are used in

the next step in the computation of the red points, which is identical to the Gauss-

Seidel iteration. The Red-Black method is thus composed of one Jacobi iteration

and one Gauss-Seidel iteration. As mentioned in the previous Sect. 16.3, the Gauss-

Seidel method uses values computed in the previous iteration to compute the

current values, thus significantly contributing to speeding up the convergence

rate. The number of iterations for the Jacobi Red-Black method can then be defined

practically as well as for the Gauss-Seidel method, for which it is defined as [12]:

r � 1

4
pJ2 ð16:4Þ

J2 denotes the number of discrete grid points. The GPU implementation of the

Red-Black methods uses two kernels, one for computation of the red points and one

for computation of the black points. The number of black or red points on the y-axis

of the grid is half. This can reduce the number of threads in each kernel on the

y-axis by half. Reducing the number of threads leads to a certain optimization of the

iterative process.

Compared to the Jacobi or Jacobi Red-Black, the SOR method leads to much

faster convergence. As already stated, the SOR method uses the values from the

previous iteration and the values from the current iteration to compute the current

point, similarly as the Gauss-Seidel method, see (16.2). The parallel GPU imple-

mentation of the SOR method is enabled using the Red-Black ordering

[15]. Updated values of the black points, i.e., values of the current iteration, are

used to compute the red points. Updated values of the red points, i.e., values of the

previous iteration, are used to compute the black points. The number of required

iterations needed in order to reduce error by factor 10� p is given by [12]:
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r � 1

3
pJ ð16:5Þ

Comparing the number of iterations of the SOR method with the number of

iterations of the Jacobi method (16.3) and Jacobi Red-Black (16.4), it is obvious

that the optimal number of iterations of the SOR method is in the order of J,
compared with J2 of the Jacobi and Jacobi Red-Black method. The weak point of

the SOR may be the choice of overrelaxation parameter ω. In [12] the following

equation is stated, which can be used to estimate the overrelaxation parameter:

ω � 2

1þ π
J

In general, finding the correct value of ω is not an easy task. In many cases

experimentation is the only possible way to determine the correct value of param-

eter ω.

16.5 Results

Implementation of the Jacobi, Jacobi Red-Black, and SOR Red-Black methods was

compared in terms of time performance. These methods were tested on GeForce

GTX 560 and GeForce GTX 670 graphics cards.

A map of static obstacles is copied into the device memory before the start of the

actual iterative procedure. Since the obstacle map is read only, it is copied into the

texture memory of the GPU before the calculation. The texture memory is opti-

mized for a 2D spatial locality, so threads of the same warp that read texture

addresses that are close together will achieve the best performance [16]. The map

of obstacles only holds information about the position of the obstacles and walkable

spaces. For this reason, the 8-bit data format was chosen for maximum reduction of

the memory requirements.

In practical applications of these numerical methods in the field of path finding

and agent navigation in a virtual environment, such as in [17], it is necessary to

change the global obstacle map only in case of adding new obstacles or removing

existing ones. Due to the individual approach to the implementation of the global

obstacle map, the data transfers from the host to the device were not taken into

account during the speed comparison of the methods.

Maps of different sizes were used to compare the speed of these methods. The

resulting time difference of the method is shown in Fig. 16.1. The most optimal

performance was achieved with SOR Red-Black when compared with the Jacobi

and Jacobi Red-Black. For each method the number of iterations was determined

based on equations (16.3) for Jacobi, (16.4) for Jacobi Red-Black, and (16.5) for

SOR Red-Black.
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Implementation of the tested methods was performed in the double-precision

floating-point format. Potential field computation was tested in such obstacle

configurations which simulated the cramped spaces. These configurations were

often the cause of the loss of the potential value in locations too far from goal,

because of insufficient accuracy of the real number. One such situation is illustrated

in Fig. 16.2b. Values in this potential field were rounded to 1 due to insufficient

accuracy of the real number. Final computation of the gradient cannot then be

achieved in these cases. The potential field gradient illustrated on Fig. 16.2a and

Fig. 16.1 Speed differences (in milliseconds) of the GPU computation of the Jacobi, Jacobi

Red-Black, and SOR Red-Black methods. The comparison was made for input grid size

322� 10242

Fig. 16.2 Picture 1.2a shows the resulting gradient of the potential field. Picture 1.2b illustrates

the failure of the calculation in confined space due to a lack of real number precision
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fig. 16.2b with size of 642 was computed using the Jacobi Red-Black method. The

number of iterations required to obtain a valid solution was determined using

equation (16.4).

Conclusion
In this chapter the implementations of the numerical methods for solving

elliptic equations using CUDA with application on BVP path planning were

compared. The Jacobi, Jacobi Red-Black, and SOR Red-Black methods were

compared in terms of time complexity. Using the SOR Red-Black, we

reached the fastest convergence, in comparison with Jacobi and Jacobi

Red-Black. These methods were applied to the obstacle configuration simu-

lating a real environment. It was shown that the configuration of obstacles

simulating cramped spaces, such as underground caves, does not provide

sufficient freedom for the convergence of methods. The information is lost

due to insufficient accuracy of the real number during the convergence to the

final potential field.

In [18] the methods of BVP path planning were combined with the Full

Multigrid method, which solves elliptic equations using a hierarchical strat-

egy. The hierarchical approach overwhelms the speed of convergence of the

original SOR method.

In the previous section, an error caused by insufficient accuracy of the real

number, leading to early rounding to 1, was described. One option of solving

this problem is described in [19]. Future development of this work will focus

on finding an alternative way to solving the problem with insufficient accu-

racy of the real number and to optimizing the convergence in cramped spaces.

This would then allow the application of BVP path planning for space-limited

interiors.
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Chapter 17

Fast Multi-Keyword Range Search Using
GPGPU

Amirul Abdullah, Amril Nazir, Mohanavelu Senapan, Soo Saw Meng,
and Ettikan Karuppiah

Abstract Large organisations are constantly challenged by the need to handle big

data. Big data sizes are a constantly moving target, as of 2013 ranging from a few

dozen terabytes to many petabytes of data. The data is usually stored in very large

databases that are often indexed off-line to enable the acceleration of on-line

searches. More recently, the p-ary algorithm has been proposed to exploit the

massively parallel architecture of graphics processors (GPUs) to substantially

accelerate the search operations on such large databases. In this chapter we present

a multi-keyword range search technique that efficiently exploits index data struc-

tures to search multiple text keywords in large databases. The multi-keyword range

search is an extension of the p-ary algorithm which was originally developed by

Kaldewey et al. We enhanced the p-ary algorithm to support multi-keyword search

on GPGPU. We compare the performance in terms of response time, throughput

and speed-ups between CPU and GPGPU implementations. The performance

benchmarks demonstrated that our algorithm achieves up to 25� and 6� perfor-

mance in terms of speed-up on Tesla K20c GPU card when compared to a single

and multicore CPU implementations, respectively.

Keywords GPGPU • CUDA • GPU • P-ary • Multi-keyword search • Binary

search

17.1 Introduction

Digital data explosion has exceeded petabytes and entered to zettabyte era. A large

organisation has dire needs to analyse and interpret large data in meeting their

business objectives. Such data are normally collected and stored in databases, and

these may be either structured or unstructured. It is common that large volumes of

data are indexed in order to facilitate searching and retrieval. For example, Google

search engine constantly builds index of keywords to facilitate search of keywords

on growing collection of compound and hyperlinked documents in the World Wide
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Web. Such search engine typically contains an index, for instance, comprising text

from a large number of uniform resource locators (URLs). However, database

search typically involves long latency for the main memory access followed by

small number of arithmetic operations, leading to ineffective utilisation of large

number of cores and memory. This main memory access latency is difficult to be

hidden due to irregular and unpredictable data accesses during information search

and retrieval.

Recent approaches exploiting the massively parallel architecture of graphics

processors (GPUs) to parallelize and accelerate search operations have achieved

intriguing results. [1] has presented a novel parallel search (p-ary) algorithm for

large-scale database index operations that scales with the number of processors and

outperforms traditional thread-level parallel GPU and CPU implementations. The

algorithm exploits the GPU by applying a “divide-and-conquer” strategy to speed

up individual searches. The algorithm has shown to outperform conventional binary

search on the GPU in terms of response time and throughput.

However, the original p-ary algorithm has several limitations. First, the resulting

output of the matched value from the p-ary algorithm is returned in a

non-predictable manner. The algorithm selects the matched value in a random

fashion within a given range of characters from an index. As such, the returned

value from a search operation is a non-deterministic. This poses a challenge when

there is a need to find all possible matched values from a given range of matched

values. For example, users may wish to determine all matched values resulting from

a search operation to perform reduction operation, e.g. summation of a set of

numbers. Hence, there is a need for multi-keyword range search to facilitate

searching multi-keyword in index database.

Second, the p-ary algorithm is unable to identify the first occurrence and/or the

last occurrence of matched values from the index database due to its

non-deterministic characteristic. This can be a major limiting factor as it is often

the case that the user needs to determine the index value of the first and the last

occurrence from the resulting search operation to perform maximum and/or min-

imum arithmetic calculations or to count the total number of occurrences of the

keywords from the database. Most real-life applications rely on this feature for

operations like filtering documents by tags, counting words in documents and

extracting links to related data.

In this chapter, we present multi-keyword range search algorithm that extends

the original p-ary algorithm to address the limitations of the previously mentioned

issues. The contributions of this chapter are as follows:

• We enhanced the original p-ary algorithm to capture the offset of the first and the

last occurrence of the repetitive keyword matches.

• Our enhanced algorithm is able to search for multiple different keywords and

return multiple ranges of search results.

• We present various optimisation techniques, which include data packing, mem-

ory coalescing and shared-memory optimisation techniques. Our experimental

results show that enhanced algorithm achieves a notable 25� speed-up over a

260 A. Abdullah et al.



single-core CPU implementation (1-thread CPU implementation). Similarly, our

enhanced algorithm achieves 6� speed-up compared to 8-CPU-thread

implementation.

The remaining of this chapter is organised as follows: Sect. 17.2 gives some

background on keyword, binary and multi-keyword search and summarises some

previous related work. Section 17.3 describes the implementations of multi-

keyword range search methodologies on GPU architecture. Subsequently,

Sect. 17.4 presents the results analysis on single-core and multicore systems of

our GPU implementation. Final section summarises the future work and main

conclusions of this work.

17.2 Background

Before we discuss the proposed algorithm in detail, we provide a review of selected

search algorithms, namely exact match, binary search and P-ary, which play crucial

role in understanding our proposed algorithm.

Searching for information is an indispensable component of our lives. Rapid

growth of available text in unstructured data (e.g. docx, txt files, etc.) and structured

data (i.e. relational databases) increases the need for ordinary users to search such

information. The size of these data can be very large at the scale or terabytes and

petabytes. For example, it was reported that Facebook performs text searches on

250 petabytes of data on regular basis [2]. Hence, having the ability to quickly

analyse petabytes of data at an affordable cost is indispensable.

Traditionally, major RDBMS (e.g. MySQL, Oracle, etc.) provided full-text

search capabilities that enable string searches on structured data on a database.

However, as the number of user increases and the size of database increases, the

speed of the searching is important where it may cost time or money to organisa-

tions and end users. Furthermore, large database solutions (e.g. K data, Vertica,

Netezza) are very expensive. On the other hand, GPU-based solution provides a

scalable and affordable solution.

17.2.1 Keyword Search

We define keyword search as the string searching problem which looks for all

occurrences of a string str of length strlen in another text of length textlen. The goal
is to search for one or more occurrences of a string or pattern in large text databases.

The earliest fast exact string search algorithms include [ [3], [4], [5]], etc. Tradi-

tionally, these algorithms were implemented on CPU architecture. Recently, there

has been great attention paid to GPU acceleration of string matching using GPU

CUDA. [6] present an overview of CUDA implementation of the Boyer-Moore,
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Knuth-Morris-Pratt, Horspool and Quick-Search string search implementations on

the GPU architecture. They have shown that these algorithms in average achieved

up to 18� speed-up on the GPU architectures. [7] also reported some other search

algorithms such as FASTA and BLAST that were implemented on the GPU

architecture achieving similar speed-ups.

17.2.2 Binary Search

Binary search is one of the fast search algorithms which perform searching in a

sorted list of data and based on divide-and-conquer strategy [8, 9]. However, the

main disadvantage of the binary search is that it imposes the requirement that the

list be sorted. Binary search works by storing the starting value (index 0) and the

end value (index N-1). Next, it compares values of the keyword with the intended

data at index N/2. If the value of the keyword is same as the value of the data, then it

will return the value. Otherwise, if the value of the keyword is less than the value of

the data, a new ending value is provided. On the other hand, if the value of the

keyword is larger than the value of the data, a new starting value will be provided. A

comparison will be made between keyword and the middle value of these two new

points. This process will be repeated until a match is found. Figure 17.1 illustrates

an example of binary search. However, the time taken to perform the binary search

depends on the way the data is sorted. For example, if the keyword to be searched is

of the largest value, the search operation is more efficient if it traverses out in

descending order (best-case performance). However, in this particular scenario, if

the searching is traversed in an ascending order list, the algorithm gives a worst-

case performance [10].

Kaldewey et al. [1] presented a binary search implementation in GPU where

multiple thread blocks are created and spawned to perform search on multiple

keywords simultaneously. However, the algorithm employs a blocking approach

where a thread needs to wait for the other running thread within same block to finish

its search before a new search can be spawned. This is somewhat inefficient

resulting in low resource utilisation especially when the number of keywords is

less than the number of used threads. Moreover, the algorithm has a limiting factor

whereby when the same pivots are being used for all running threads, these threads

are quickly diverging as each thread is assigned a different key search [11]. As a

result, it is not amenable to caching or coalescing. Moreover, contention may likely

occur due to large amount of small memory access.

17.2.3 Multi-keyword Search (P-ary Search)

Multi-keyword or p-ary searching algorithm uses divide-and-conquer strategy with

a complexity of logp(n), where p is the number of parallel threads. Similar to binary

262 A. Abdullah et al.



search, it requires input data in sorted format [8]. The algorithm takes advantage of

SIMD architecture in GPU by dividing the keywords amongst many blocks and

performs searching in parallel manner using threads and/or processing elements

(PEs) in shared memory. The p-ary is different from binary search where each

thread block is used to search for the same keyword [1]. Each thread will have

certain range to search within the data, with its own starting and ending points. The

threads will compare both points to determine either the search keyword is within

that range or not. A new range will be assigned to the thread if there is a possibility

that a keyword match can be found in any one of the given ranges. These processes

will continue until the keyword is found. The advantages of this algorithm are due

to its ability to spawn multiple threads to leverage the GPU gather operations while

having data in the memory to be coalesced [11]. The method also scales with

increasing number of threads.

Figure 17.2 shows the example of p-ary implementation using 4 threads that are

spawned to search same keywords. Each thread (PE) is spawned to search for the

same keyword “11”. As it can be observed, the algorithm takes fewer steps to

complete the search in comparison to binary search, which would require additional

steps. In the next section, we will describe the implementation of our p-ary

enhancement and techniques that we employ to support fast multi-keyword range

search.

4 7 10 13 1465 8 11 159 12

4 7 10 13 1465 8 11 159 12

4 7 10 13 1465 8 11 159 12

4 7 10 13 1465 8 11 159 12

PE0:4, PE1:5 ,PE2:13 ,PE3:15

PE0:4, PE1:5 PE2:13 ,PE3:15

PE0:4, PE1:5
PE2:13

PE1:5

1)

2)

3)

4)

Fig. 17.1 Binary search example
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17.3 Implementation

In this section, we describe our implementations of multi-keyword range search

methodologies on GPU architecture. Our aim is to provide the capacity for

searching a keyword in an array of strings where it could have repeated data in

the array. The output should return the start and the end of the keyword in the input

array when a match is found. To achieve this, we leverage both the brute force

search and binary search to obtain the index of repeated data element that is found.

First, we must ensure that the datasets are sorted before the p-ary search can be

applied. Example of the scenario is illustrated in Fig. 17.3 where the keyword

“eeee” is searched in an array of sorted input data where the keyword occurs at

index 5 to 7.

Contrast with the implementation of [1], we serialise the p-ary algorithm to

ensure that the output from p-ary algorithm always returns the index of the first and

the last occurrence of the keyword in the dataset. In this way, we eliminate the race

condition problem which could occur in the original p-ary implementation. In our

implementation we assign each thread to handle one keyword. In the original p-ary

implementation, four or more threads are assigned for each keyword. Instead, we

only employ one thread per keyword in order to return the first and last occurrence

of keywords. Issuing more threads to search the same keyword has the effect of

increasing memory synchronisation, which we aim to avoid. Furthermore, by

assigning only one thread per keyword, we can achieve higher load utilisation

since more tasks can be assigned to one thread while reducing the communication

between many different threads. Moreover, employing one thread to handle one

keyword consumes less shared memory in the GPU. This gives more room for the

GPU shared memory to store large number of keywords.

Figure 17.4 shows the kernel pseudocode of our implementation in GPU. Lines

1 to 12 search within the input array for specific keyword. We make use of two

offset variables, namely, offset and offset_rev in which these two variables are used
to store the offset of the first occurrence and last occurrence separately. Next, lines

13 to 14 perform exact match of the keywords against the datasets and store

matched data index as result.

4 7 10 13 1465 8 11 159 12

4 7 10 13 1465 8 11 159 12

PE0:11

1)

2)

PE1:11 PE2:11 PE3:11

PE0:11 PE1:11 PE2:11 PE3:11

Fig. 17.2 P-ary search algorithm
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Wemade few additional optimisations to the original p-ary algorithm to increase

speed-up and throughput significantly. These optimisation techniques include data

packing, memory coalescing, shared-memory optimisation and CUDA occupancy

optimisation. In the next subsection, we will discuss each of these techniques in

detail.

17.3.1 Data Packing

Reading data from device memory is costly and incurs large overhead due to large

number of GPU cycles before data being received by GPU threads. Even if GPU

provides wide memory bus, loading small data such as single char (1 byte) each

time will underutilise the capability of the GPU memory bus and may lead to

overhead to the application. CUDA provides availability to load different sizes of

data from global memory such as 1 byte, 4 bytes or 8 bytes. Since our implemen-

tation involves text string which has long array of char, it is much efficient to read

eeee

bbbb cccc dddd eeee eeee eeee ffff gggg

Keyword

Data

Index 1 2 3 4 8 95 6 7

aaaa

Fig. 17.3 Searching for the range of repeated data

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

while (range > granuality){
old_offset  = offset
old_range = range
range = range/granuality

for(i=0; i<granuality)
temp = temp + ((cache_key-data) >0)
temp_rev = temp_rev + ((cache_key-data) <0)

offset = old_offset + temp*range
offset_rev = old_offset_rev + temp*range

} 
for(i=0;i<Gran){
if(!(cache_key-(data+offset+i))

result = offset +i
if(!(cache_key-(data+offset+i))

result = offset +i
}

Fig. 17.4 P-ary search pseudocode
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multiple char at once to increase the memory bandwidth efficiency. In achieving

this, we present some optimisation techniques.

First, we combine multiple small data structures to form a larger data structure,

in which it can be fitted into one instruction call. The idea is to fill in as much data in

one instruction call so that more data can be fetched with less overhead. In

achieving this, we pack text data into common size of bits such as 4 bytes or

8 bytes. This method can significantly reduce the waiting time for the GPU to fetch

instruction when compared to the original method of accessing 1 byte at one time.

Second, the text data is compressed in the form of integers rather than characters

and/or strings. This is because transferring data in the form of integers is more

efficient compared to transferring strings of characters. Moreover transferring raw

text data to the GPU will result in low memory throughput within a given cycle. To

avoid the low throughputs, we therefore convert text data into a series of integers.

For example, converting four characters into one integer will significantly increase

the amount of data read within given cycle. In this case, the GPU can fetch 32 bits at

one time from the global memory while text data will occupy 8 bits of memory at

a time.

Figure 17.5a illustrates how packing one character into an integer incurs less

space and will not fully occupy the extra bits available in one integer. Figure 17.5b

further shows an example of packing four characters into one integer. Packing four

characters into one integer can significantly reduce the memory calling time by

25 % compared to calling one character at a time. One point to take into account is

that converting a character into an integer incurs the big-endian little-endian effects.

Hence, the integer needs to imitate as a text string.

17.3.2 Memory Coalescing

Uncoalesced memory accessing can become a bottleneck for GPU implementation

due to overhead of uneven pattern of reading data from the global memory, which

takes considerable amount of cycles. To maximise the usage of global memory

bandwidth, we aim to minimise the number of bus transactions in the GPU so that

GPU will be busy spending more time for computations rather than reading data. In

achieving this, we have to coalesce the memory accesses so that each thread can

M 0000 0000 0000 0000 0000 0000To 32 bits Integer

M 0100 1101 0100 1010 0100 1101 0100 1101To 32 bits IntegerJ F E

77

1,296,715,085

Binary representa�on Decimal representa�on

Unused bits

a

b

0100 1101

Fig. 17.5 Data packing technique
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fetch the data within the same block of memory that is being read. Bingsheng He

et al. [12] have implemented similar technique to gain speed-up by aligning the data

to be coalesced in order to increase memory locality for database operations.

Since p-ary algorithm is built upon on B-tree data structure search, it is very

likely that it will access data in non-coalesce pattern. To make the data more

coalesced, we advocate that the datasets are to be allocated in an array of structure

manner. This will increase chances the likelihood that any thread that reads the data

from the global memory being stored in the L2 cache of the GPU. This approach

will significantly reduce the overhead of miss caching.

Figure 17.6 shows an example of how an array of text is rearranged in the GPU

to reduce cache miss. As it can be observed, the datasets are firstly arranged where

each character in a single element of the datasets is placed next to each other. After

the rearrangement, each of the first character from each element of the datasets is

positioned continuously one by one. In this way, there is more likeliness for

memory that needs to be fetched by threads is within the cache.

17.3.3 Shared Memory

Accessing shared memory in the GPU uses less cycle when compared to accessing

global memory. To achieve maximum performance, it is important to minimise

redundant accesses to global memory whenever possible. Whenever possible, one

should store data in the shared memory, especially when we need frequent access to

the data for specific operations. Hence, our approach for optimisation is to store the

keyword into shared memory since the algorithm requires frequent access to the

keyword when doing comparison against the datasets. This method will substan-

tially reduce cycles needed to read the keyword. However, using too much shared

memory will also decrease the total occupancy level. Hence, determining the right

amount of shared memory to be allocated is equally important. From our observa-

tions, in achieving at least 50 % occupancy, best performance can be obtained by

using 128 bytes of shared memory with each block comprising of 128 threads.

Furthermore, each thread is allocated with 4 bytes of shared memory.

A1 A2 A3 C1B1 B2 B3 C2 C3

A1 A2 A3C1B1 B2 B3C2 C3

Before :

After :

Fig. 17.6 Example of the text data rearrangement to increase coalescing
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17.4 Experimental Evaluation

In our research, we have implemented the algorithm in GPU and CPU. Experimen-

tal evaluation was conducted to evaluate performance between CPU and GPU

implementations in terms of response time, speed-up and throughput. We will

compare the performance of the algorithms between GPU and CPU by using two

Quad-Core Intel® Xeon E5506 (2.13 GHz) with a total of 8 cores and 12 GB of

RAM for CPU and Tesla K20c for GPU. The API we use to parallelise CPU

implementation is OpenMP, and for GPU we use CUDA 5.0. All the experiments

is carried out in Windows environment and using Visual Studio 2010 Premium as

our IDE. The data generated for all the experiments are randomly distributed but

sorted in alphabetical order. We measure the execution time as the total time for

task to run on the GPU which includes the data transfer and communication time

between CPU and GPU. Each experiment is repeated three times and an average is

obtained. We define “datasets” as the list of input text data where it is structured in a

way that each row has the same length and in sorted order. The word “query” is

defined as list of text keywords to be searched in given datasets. The “text length” is

defined as length of each row on both the query and datasets. A sample of datasets

or query is shown in Fig. 17.7. In this figure, each row has 32 characters and the data

is completely random. Both query and datasets used in this experiment will look

similar as these.

17.4.1 Response Time

We have identified three different experiment parameters to demonstrate the influ-

ence of these parameters on performance. For each experiment, we vary the

variable of the text length, the number of queries and the number on datasets. It

is to be expected that these three parameters will have significant effect on the

performance. This experiment also will show the performance scalability for GPU

compared to CPU when we increase the value for some of these parameters. First,

we vary the number of queries with 5 million, 10 million and subsequently

1
2
3
4
.
.
.

n-1
n

AACBRMWOLDKMSMOTFKDOSLAMSIWEKDIF
ABHSDKFMTKGLCVRIQPDNFNVOZPXMDKSA
ACDKMEMFEPQPZVEYRTPWMBHCKDLSPWMK
BAITPWYPERWAKZORTKMDMSSLFORPWLLV

.

.

.
ZAROPHPREKWLSWOEIRMAXMZPDMRMFITK
ZZAPDKLFDKGOTIRTKTMHJKSQIUEYTRPZ

index Data

Fig. 17.7 Sample of input

data or query

268 A. Abdullah et al.



15 million queries whereby each element comprises 32 characters and a query has

datasets totalling 15 million rows. The result is shown in Fig. 17.8.

As it can be observed, as the number of queries increases, the execution time also

increases for both GPU and CPU. However, we can observe that the execution time

for multicore CPU implementation with 8 threads incurs higher execution time

when compared to GPU implementation. This indicates that GPU implementation

is suitable for large queries as more threads are spawned to do multiple search

operations at the same time. As the number of query size increases, we can observe

a steady increase in execution time due to the overhead of traversing large data for

both CPU and GPU implementations. As expected, GPU implementation incurs

less execution time when compared to the CPU implementation.

Interestingly, we can see that performance gap between CPU and GPU widens as

we increase query size. This shows the GPU implementation scales well when

compared to the CPU implementation, which has a problem of scaling as the query

size increases. The CPU implementation cannot scale simply because only a

maximum of eight threads can be deployed at any time, and since each query is

handled by one thread, we can see this as a limiting factor for the CPU to scale.

Nevertheless, we conjecture that accessibility to more CPU cores will most likely

result in better performance since more threads will be spawned to handle addi-

tional queries.

Next, we examine the impact of performance on the dataset size. We fix the

query size to be 15 million where each element comprises 32 characters. By fixing

the query size and the number of characters, we can observe the effects of increas-

ing datasets. Fig. 17.9 presents our result. Interestingly, we can observe that

execution time for CPU increases almost exponentially. The CPU implementation

clearly cannot scale when dataset size is increased. The best plausible explanation

for the poor performance is most likely due to low memory throughput in CPU

while the GPU has high memory throughput. Hence, more threads in warps can

fetch from L2 cache at a given time which allows higher throughput and efficiency.

Finally, we investigated the performance between the CPU and GPU for differ-

ent text lengths of 8, 16 and 32 characters long. The result is shown in Fig. 17.10.

From the graph, we can observe that increasing text length will also increase the

Fig. 17.8 Execution of

GPU and CPU for 5 million,

10 million and 15 million

queries
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computation time for both CPU and GPU. It can be seen that the execution time of

the CPU and GPU increases almost at the same rate as the number of characters

increases. In fact, we observe a linear increase for both CPU and GPU as the

number of characters increases. Nonetheless, GPU implementation is still showing

faster performance when compared to the CPU implementations for different text

length.

Based on our previous experiment results, we have examined the performance

difference between CPU and GPU implementations when increasing dataset size,

query size and text length. For all cases, we have observed that the GPU imple-

mentation provides tremendous improvement of execution under all parameters and

workloads. This is due to the parallelism nature of search algorithm that effectively

utilises all GPU cores for accelerating search operations. Each query is executed

independently from one another, and this enables the GPU to spawn more threads to

handle many queries simultaneously without compromising performance.

Fig. 17.9 Execution of

GPU and CPU for 5 million,

10 million and 15 million

queries

Fig. 17.10 Execution of

GPU and CPU for 8, 16 and

32 characters of text length
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17.4.2 Speed-Ups

Next, we will look at the speed-up gain between GPU and CPU. Figure 17.11 shows

the speed-ups achieved by different configurations of CPU and GPU

implementations. We first compare the differences of speed-up between 1-thread

CPU, 8-thread CPU and GPU Nvidia K20c implementations. To examine the

speed-up, we tested the GPU and CPU with 15 million queries against 15 million

rows of datasets where each dataset consists of 32 characters.

Since we are running the experiments on 2-quad-core machine, we spawned

8 threads to fully utilise the 8-core machine (spawn 1 thread per CPU core). As can

be observed, the 8-thread CPU implementation achieves approximately 4� speed-

up in comparison to a single-core implementation (1-thread CPU). We can observe

reasonable gains from exploiting the maximum number of physical CPU cores.

However, the GPU implementation achieves far greater speed-up to 25� than a

single-core implementation (1-thread CPU). When comparing to 8-core CPU

implementation, the GPU implementation achieves a notable 6� speed-up. This

is due to the highly parallel structure of GPU that effectively enables up to 2,048

maximum threads per SM to be deployed on our Kepler GK110 card. One inter-

esting observation is that accessing data is deemed to be a major bottleneck due to

small local memory and caches in the GPU. However, the ability for the GPU to

execute 32 threads in a single warp at any one time makes it possible for the GPU to

effectively hide memory latency by executing other warps while current warps are

in idle.

Fig. 17.11 Speed-up

average for GPU and CPU

implementation
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17.4.3 Throughput

Throughput is defined as the amount of keywords searched at a given response time

of the kernel execution. Figure 17.12 shows the throughput we calculated for GPU

Kepler K20c and 8-thread CPU for 5, 10 and 15 million queries with each query

comprising 32 characters. We can observe that the GPU throughput is relatively

very high when compared to CPU implementation, which is almost up to 4 times

higher. Besides that, we can see that the throughput of GPU increases as query size

increases. This shows that the throughput is not yet saturated for this amount of

query size. This is due to the fact that our latest Kepler K20c GPU card is able to

process huge amount of threads; hence it is possible to achieve even higher

throughput. For the CPU implementation, we can see that the throughput is

relatively low in comparison to GPU, and as we increase the query size, the

throughput is maintained. This is because the CPU has limited number of pro-

cessors to process the query; thus throughput is saturated when it reaches to a

certain amount of query size.

Conclusion and Future Work
In this chapter, we present multi-keyword range search algorithm that extends

the p-ary algorithm to address some of the limitations of the original p-ary

algorithm. The aim is to further optimise the performance for large-scale

index search operations. Our multi-keyword range search algorithm is able to

capture the offset of the first and the last occurrence of the repetitive keyword

matches, while maintaining its fast performance by employing some of the

optimisation techniques which include data packing, memory coalescing and

shared-memory optimisation techniques. As a result, our enhanced algorithm

is able to search multiple keywords and return multiple range search results.

From our experimental results, our enhanced algorithm achieves a notable

(continued)

Fig. 17.12 Throughput

vs. query size for GPU

and CPU
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25 times speed-ups over a single-core CPU implementation, whereas it

achieves six times speed-up over 8-thread multicore CPU implementation.

In future work, we aim to further optimise our implementation by

minimising the non-coalesced memory accesses on the GPU. In achieving

this, we seek to rearrange the datasets based on the B-tree data structure. The

B-tree data structure will help enforcing next data sequence to reside closer

within the GPU memory, which in turn provides efficient reading and writing

large blocks of data. This allows more datasets to be fetched in the cache at

any one time, which can substantially increase the performance. Besides that,

we plan to implement our algorithms on Many Integrated Core (MIC)/Intel®
Xeon Phi™ Coprocessor that has 60 CPU cores and compare these against

GPGPU performance.
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