Romanovski Polynomials Method
and Its Application for Non-central
Potential System

A. Suparmi and C. Cari

Abstract The approximate analytical solution of Schrodinger equation for Eckart
potential plus with trigonometric Poschl-Teller noncentral potential and trigono-
metric Rosen-Morse non-central potential systems are investigated using Roma-
novski polynomials. The approximate bound state energy eigenvalue of the first
system is given in the close form and the corresponding approximate radial eigen
functions is formulated in the form of Romanovski polynomials while the angular
wave function is also expressed in Romanovski polynomials. The effect of the
presence of trigonometric Poschl-Teller potential increases the angular wave
function level. The presence of non-central potentials cause the orbital quantum
numbers are mostly not integer.

1 Introduction

Schrodinger equations for a class of shape invariant potentials have been solved by
using some methods such as SUSY WKB (SWKB) [1-4], SUSY operator and fac-
torization method [5-9], NU method [10-14] and Romanovski polynomials [15-18].
Romanovski polynomials, which is a traditional method, consists of reducing
Schrodinger equation by an appropriate change of the variable to the form of
generalized hypergeometric equation [19]. The solution steps of Romaovski poly-
nomials are rather similar to the steps applied in solution of Schrodinger equation by
using NU method [20, 21], which is discussed in Chap. 5, and hypergeometric
differential equation. The polynomial was discovered by Sir Routh [22] and redis-
covered 45 years later by Romanovski [23]. Romanovski polynomial method is also
called as finite Romanovski polynomial. The notion “finite” refers to the observation
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that, for any given set of parameters (i.e. in any potential) only a finite of polynomials
appear orthogonal [24]. However the polynomial will not be finite if the certain
condition is not satisfied and then leads to an infinite of polynomials that show
orthogonal. It seems that NU and Romanovski polynomials methods are very similar
in the way of variable substitution but they solve Schrodinger equation differently.
NU method is applied wider than Romanovski polynomials since Romanovski
polynomials could not be applied for potential solved using confluent hypergeo-
metric differential equation.

In this chapter we discuss the Schrodinger equation solution for a particle which
is in the field of Eckart potential with simultaneously presence of Poschl-Teller non-
central potential and the polar Schrodinger equation for trigonometric Rosen-Morse
potential using Romanovski polynomials. A non-central potential is potential as a
function of radial and angular positions, it could be composed of radial function
potentials and non-central potentials which are shown in Chap. 5. The simple
choice of non-central potential is the separable potential [25-27]. The three
dimensional Schrodinger equations of separable non-central potentials are exactly
solvable as long the centrifugal term is approximated by hyperbolic function,
trigonometric function or exponential function [28-32]. Due to the approximation
of the centrifugal term, the energy spectra and the radial wave functions are
approximately obtained for /-state solution and becomes exact solution for s-wave.

2 Romanovski Polynomials

One dimensional Schrodinger equation of potential of interest reduces to the dif-
ferential equation of Romanovski polynomials by appropriate variable and wave
function substitutions. The one dimensional Schrodinger equation is given as

R 0* ¥ (x)
2M  Ox?

+ V(@) ¥Yx)=EY (x) (1)

where V(x) is an effective potential which is mostly shape invariant potential. By
suitable variable substitution x = f{s) (1) changes into generalized hypergeometric
type equation expressed as

P W(s T(s) OW(s o (s
6s2( ) a((s)) 65 )+ 02((s))lp(s) =0 @)

with ¢(s) and &(s) are mostly polynomials of order two, 7(s) is polynomial of
order one, of s, a(s), 6(s), and 7(s) can have any real or complex values [21].
Equation (2) is solved by variable separation method. By introducing new wave
function in (2) we obtain a hypergeometric type differential equation, which can be
solved using finite Romanovski polynomials [16, 17, 21] which is expressed as
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a(s)y"(s) + (s)y'(s) + Zy(s) = 0 (3a)
with
o(s)=as® +bs+c; t=fs+hand —{n(n—1)+2n(1 —p)} =2=4, (3b)

Equation (3a) is described in the textbook by Nikiforov-Uvarov [21] where it is
cast into self adjoint form and its weight function, w(s), satisfies Pearson differential
equation

— = t(s)w(s) 4)

The weight function, w(s), is obtained by solving the Pearson differential
equation expressed in (4) and by applying condition in (3b), that is

(f —2a)s+ (h— D)
as? +bs+c

w(s) = exp( ds) (5)

The corresponding polynomials are classified according to the weight function,
and are built up from the Rodrigues representation which is presented as

= Bn ﬁ as2 S CnWS
I = Ly @ T b+ ) wls)} (6)

with B, is a normalization constant, and for o(s) > 0 and w(s) > 0, y,(s)’s are

normalized polynomials and are orthogonal with respect to the weight function w
(s) within a given interval (s;, s,), which is expressed as

/ W(S)Yu(8)yw (s)ds = Opw (7)

For Romanovski polynomials, the values of parameters in (3b) are:
a=1,b=0,c=1, f=2(1—p)and h=q withp >0 (8)
By inserting (8) into (5) we obtain the weight function as

(f —2a)s+ (c—b), 2-2p—2)s+gq
as> +bs+c )_exp(/ s24+1 as) 9)

w(s) = (1+ sz)fpeqta“q“)

w(s) = exp(

This weight function first reported by Routh [19] and then by Romanovski [23].
The polynomial associated with (9) are named after Romanovski and will be
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denoted by R,(;"’q) (s). Due to the decrease of the weight function by s~%, integral of
the type

/ w(P 9 RP4) (S)Rff,)"@ (s)ds (10)

will be convergent only if
n+n<2p—1 (11)

This means that only a finite number of Romanovski polynomials are orthog-
onal, and the orthogonality integral of the polynomial is expressed similar to the (7)
where y, = R (s).

The differential equation satisfied by Romanovski Polynomial obtained by
inserting (3b) and (8) into (3a) given as

aZR’gP,Q) R(Pv‘]) (S)

Os (12)
—{n(n — 1) +2n(1 — p)}RP9 (s) =0
where y, = R,O,U 4) (s). The heart of Romanovski polynomials method is in obtaining
(12) from one dimensional Schrodinger equation. The Schrodinger equation of the
potential of interest will be reduced into second order differential equation that is
similar to (12) by an appropriate transformation of variable, for example, r = f(s),
and by introducing a new wave function which is given as

W, (r) = gu(s) = (1 + s2)§e%’tan" D) () (13)

where W, (s) = W, (x) is an eigen function of generalized hypergeometric equation
in (2) which is the solution of Schrodinger equation for potential interest in (1), and

DP9 (5) = RIP9) (s) (14)

From condition in (14) we get the relation between f§ with p, and o with g. The
Romanovski polynomials obtained from Rodrigues formula expressed in (6) for the
corresponding weight function in (9) is expressed as

1 dn n - n71 5
Rr(f"q)(s) = D;(fﬂ)(s) = (1 + sz)*Peqtanfl(S) ds" {<1 + Sz) (1 + s2) Peten | )}

(15)
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If the wave function of the nth level in (13) is rewritten as

(1 + )T WRPA) (5) (16)

n

df(s)
ds

then the orthogonality integral of the wave functions expressed in (16) gives rise to
orthogonality integral of the finite Romanovski polynomials, that is given as

/ W, ()W (r)dr = / WPORPD (5)RED (s)ds (17)
0 —00

In this case the values of p and g are not n-dependence where n is the degree of
polynomials. However, if either (11) or (17) is not fulfilled then the Romanovski
polynomials is infinity [16—18].

3 Application of Romanovski Polynomials for Energy
Spectra and Wave Functions Analysis for Non-central
Potential

Non-central potentials which consist are solvable by Romanovski polynomials. The
non-central potentials that are solved using Romanovski polynomials are Eckart plus
Poschl-Teller non-central potential system and polar Schrodinger equation of 3D
oscillator harmonics plus trigonometric Rosen-Morse non-central potential system.

3.1 Eckart Plus Poschl-Teller Non-central Potential

The non-central potential is a potential of a function radial and angular simulta-
neously. The non-central potential which is constructed from Eckart potential and
trigonometric Poschl-Teller non-cental potential given as

h2 efr/a 1_~_€7r/a
0 Vi -V
V0 =5y ( A e e

L (K(K—1)+n(n—1)> (18)

2Mr2 \ sin? 0 cos? 0

with V, and V; describe the depth of the potential well and are positives, V; > V,,
a is a positive parameter which to control the width of the potential well, M is the
mass of the particle, and 0 < (r/a) <oo, k > 1, n > 1. The non-central potential
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expressed in (18) is separable ones therefore the Schrodinger equation of this
potential is solved using variable separation method.

The three dimensional time-independent Schrodinger equation for Eckart
potential combined with trigonometric Poschl-Teller non-central potential is

R (10[,0 1 o/. 0 1 o
_W{?@ (r a) * r2sin 000 (Sm 9@) +7’2 sin® 967902}‘#“7 %)

7 e "/a 14e/a

"2 (VO (e T=ea |V0.0) (19)
R (k(c=1)  nln—1) B

+ 2Mr2 ( sin2 0 + 0082 0 l//(ra Oa (P) - EW(": 0a (,0)

By using variable separation method we get radial, polar and azimuthal parts of
Schrodinger equation as following:

10 OR 2 —r/a L+e7/a\  2Mr?
(2 >r<v ¢ i I S )

Ror\" or) @\ Z ey T M) TR
(20)
1 o /. ,oP 1 o0 k(k—1) nlp—1)
{_Psin 000 (sm 0@)  Osin’ Ha—qoz} - ( sin® 0 * cos? 0 ) =4 @y
10*® 5

The azimuthal part of wave function obtained from (22) is given, as usual, as
O =A™ (23)

The radial and polar parts of the Schrodinger equations are solved using
Romanovski Polynomials.

3.1.1 Solution of Radial Part of Schrodinger Equation

By substitution %”E =& and R = @ in (20) we get

2(r e /e e’/a
a){()_1<v _V11+ )X(r)—szx(r)—l(l+l)l(7)_0

o2 a2\’ (1 —er/a)? 1—er/a
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For £ < < <1 the approximation of the centrifugal term in (24) [18, 19] is given

as b= L (do + m) with dy = 1/12. In term of hyperbolic functions, (24) is

rewritten as

d’y(r) _1(I+1) 1

arr 4d? <d0 * sinh?(r/ 2a)) 7(r)
—;12 (451111’1‘2/?}"/261) -Vi coth(r/2a)> 7(r) — 82}{(7')
=0 (25)

and by making an appropriate change of variable, r = f(x) = 2a coth™!(ix) in (25),
we get

d*y . dy

(1+x2)ﬁ+2xaf {Vo+l(l+1)+

4viix U1+ 1)do +4%a®\ 0
(1+x2) (1+x2) N
(26)

To solve (26) in terms of Romanovski polynomial, (13) suggests the substitution
in (26) as [29]

1(f(x) = gu(x) = (1 +x2)gﬁw"”fo’“) (x) (27)

where 1 < ix < oo.
By inserting (27) into (24) we obtain

oD
ox?

o =2+ B+ aViix — (I(14)do + 4e%a
1+ x2

(1+x2) +{2x(p+1) —a}%—?

+Vo+l(l+1)—[32—[3}D

(28)

Equation (28) reduces to differential equation that satisfied by Romanovski

polynomials if the coefficient of 1%2 term in (28) is set to be zero, that are

2

—“Z + B — (I(I+ 1)do + 4e%a®) = 0 and Por + 4Vyi = 0 (29)

and then (28) becomes
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2

(1+x)a +{2(ﬁ+)—oc}%—l;—{V0+l(l+1)—/32—/3}D:0 (30)

62

It is seen that the structure of (30) is similar to (12), and thus we assume that

p* >(x) ~ RY ’q)(x). By comparing the parameters between (12) and (30) we
obtain the following relation:

Vo—|-l(l—|— 1) - (ﬁ =n(n—1)+2n(1 — p); (31)

2+ 1) +1)and o = —

From (31) we have p = —f3, since p > 0 then the value of § obtained from (31)
that has physical meaning is

2
B=p,=- V0+<l+;) —n=3 (32)

From (29) and (32) we obtain

o = =2(I(1+ 1)dy + 4e’a®) + 2\/{1(1 + 1)dy + 462a2}* — 16V? (33)

4vyi
with o0 = o, = ! (34)

Vot (143 +n+1

Finally, the energy spectrum of the system achieved from (33) and (34) is given
as

Vo (148 +n+d)° )
g —_ < ’ S Vi IRICERITY

n 2M 4a? 2 4a?
a2< N (l+%)2+n+%>

The energy spectra of Eckart potential obtained using Romanovski polynomials
in (35) is in agreement with the energy spectra obtained using NU method which is
presented in Chap. 5.

To determine the wave function, (31), (32) and (34) are inserted into (9) and (15)
so that we obtain the weight function w(x) and the Romanovski polynomials

RS[I’;‘]) — Rg_ﬁv_@ (X) as

_ J4-1 2 7 l) 4
W(f/j_fx) _ (1 +x2) ( Vo+( +z) +nts exp| — iV tal’lil(x) (363)
Vot (1+4* +n+1
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and

DI () = BP9 (x) = RSP0

_ 1 a 2\ Butn o, tan! (x)
(14 x2) et dxn {(l ) } (36b)

where f3, and o, are expressed in (32) and (34). As a result, the wave function of the
nth level is given by

1(f(x)) = galx) = (1 +x )2 e R () (37)

By using trigonometric-hyperbolic functions relation
e*%lan 'x _ e*%lanfl(ficolh(r/Za)) _ l—i—Lh(r/za) = (38)
1 — coth(r/2a)
then (37) becomes
Xn(r) = gn(r)
= (1 — coth(r/2a))* (1 + coth(r/2a)) * R (_i coth(r/2a)) (39)
in
(1 = coth(r/2a))" (1 + coth<r/za>>ﬁ~*'“7”

d(cothc(i:/2a))"{(1 coth(r/2a)) (1 + coth(r/2a))/’n+ +n}

R(=B—2) (r) =

n

(40)

The radial wave functions for Eckart plus Poschl-Teller non-central potential in
(39) and (40) are in agreement with the result achieved by using NU method.

Since the 5, and o, parameters, expressed in (32) and (34), are n-dependence
then the orthogonality of the wave functions may not produce to the orthogonality
integral of the polynomials [29], as shown in (41),

oo

/yn /Cn’ dr— 6nn’ 7é / w' 7’3’7“)(x)R,(1,7ﬂ’7“)dx (41)
0

1

By carrying out the differentiations of (36b), we find the lowest four unnor-
malized Romanovski polynomials given as
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R =0 2
RO () = (B, + 1)2x — 2 (#)
RUP ) () = 2(By +2) (2B, + 3)0% — 200(2B, + 3)x + 2 + 2B, + 4 (44)

RSP () = 4 (B 4 3) (25 4 5) (B +2) — 6asx® (285 + 5)(Bs +2) (45)
+ 2x(6% + 302 f + 285 + 602 + 34) — 203(2f; + 5) — a(o® + 23 + 6)

where f, and o, are expressed in (32) and (34). The lowest four degrees of
un-normalized radial wave functions for arbitrary values of / are calculated by using
(41) and (42)—(45).

3.1.2 The Solution of Polar Schrodinger Equation for Eckart Potential
Combined with Non Central Poschl-Teller Potential

To solve the polar Schrodinger equation expressed in (19), we set the polar wave
function as

Q(0) orP % 1 cos 00

Vsin 0700 \/sin 9_51/(sin0)3

where Q(0) is the new polar wave function. By inserting (46) into (19) we obtain
one dimensional polar Schrodinger equation as

P= (46)

Q[ 1) +m = (1/4) n(n—1)
do? sin® 0 cos? 0

}Q +(I(I+1)+(1/4)Q0=0
(47)

Equation (47) to be solved using Romanovski polynomials, therefore we sub-
stitute the variable 0 and introduce a new wave function such that (47) reduces to
generalized hypergemetric type equation expressed in (2) or into second order
differential equation of Romanovski polynomials expressed in (10). By making a
change of variable in (47), cos 20 = is then (47) becomes

0 20 st 1) tm—ttuln—1) ste—1)+m -l 1)
A o 4 4 Po
) +9% * 2(1+9) * 2(1+ ) BTG

(48)

Equation (48) will be reduced into differential equation of Romanovski
polynomial by setting
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Q(Q) = g(s) = (1 + sz)ge%’tanflsD'(loc,/)’) (S)
By inserting (49) into (48) we get

¥D

a2 +{s@2p+1)—a} 2—?

(1+ %)

201+ 5) +

_{Zﬁsa—xaf%JJrZﬁZ —2B— {i(c— 1) +m? =L —n(n— D }is — {x(c— ) +m> =t +9(n—- 1)} (+

>2_ﬂz}D:0

(50a)

Equation (50a) reduces to the differential equation satisfied by Romanovski

polynomials given as

2 1\2
(1+s2)%+s(2ﬁ+1)—a}%—f— {(122) —ﬁz}Dzo

when the coefficient of ﬁ is set to be zero, that are

—{K(K—1)+m2—i+n(n—l)}—(122+2ﬁ2—2[3—0

1
—{K(K— l)+m2—Z—n(n— 1)}i+2/3a—oc:O
By comparing (50b) and (10) we obtain
2B+1)=2(-p+1);a=—q
1+1)?
and #—/32 =n(n—1)+2n(l —p)

By using (51) and (52) and setting

we obtain

L 1 (F-G) .
o = i(vVF ¥ VG) and <[3 2)_—i2i(\/l?¥\/§)

(50b)

(55)

(56)

To have physical meaning, the proper choice of the values of  and /5 in (56) are
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a:%ﬁ—ﬂﬂ=<%@iﬂ?ﬁ—@—9)md

(WVF+VG)+1  \/k(k—1)+m?+ (n+3)
2 B 2

(57)
B =

From (54) and (57) we have

lz(\/(;c—;)2+m2—i+n+2n> (58)

Equation (58) shows that the values of [ depend on the potential parameters, x
and 7, and the degree of the Romanovski polynomial, n = n;. The weight function
obtained from (7), (54) and (57) is given as

W(Pa‘l) — W(—ﬁ-!—%,—ot) — (1 +S2)\/F42r\/5€—i(\/i—\/0‘)lan*ls (59)

The Romanovski polynomials are obtained by using (13) and (61) as

J T R 1 dl’l ﬁA\/EJr” —i(vVF—VG)tan—L 5
R G )
(1 + S2) 2 e—z(\/f—\/a) tan~! s AS

(60)
and the polar wave functions obtained from (11) and (60) is given as

VF+VG)+1 o (=l g
0(0) = guls) = (1+57) + e HVIVO g IR (1)

The polar eigen function obtained from (46) and (61) is given as

Q . 1 VF+V/G+1 | B (=p+t—a)
Pen(0) = e — 1+ s2 2 e*l(\/f*\/@)tan lsRn b s
) ﬁHéV@WV( ) (s
(62a)
1 VE Nl gl g
or Py (0) = \/m(l — cos 20)TF+i(1 + cos 20)TG+%R,(1, o )(—icos 20)

(62b)

The orthogonality integral of the angular wave function obtained from (62a),
(62b) is given as
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/ 0,(0)0,(0)d0 = / (1 4+ 2 T AP B sl BHh) st g D0 )

o(is)
; =
-3 / (1 4 2) 7 VPV s gt (o A=) ()
-1

(63a)

)1/2

where =2 a(“) = 2<m S5 3 (I+s = sin 20 and from (63a) we have

1

2
1 gl g gl g
[ @000 =3 [ IR ORI st (630)
0 ~1
Equation (63b) shows that the orthogonality of Romanovski polynomials is

produced from the orthogonality of wave function but (63a), (63b) is not conver-
gent [29, 30] since

V= m L+

n+n<2p—lorn< — 5

(64)

and the interval of the variable is not in —oo <s < oo interval.
The first four unnormalized Romanovski polynomials obtained from (60) are
given as:

RVP () =1 (65)

RUP(5) = (VF + VG +2)s — i(VF — V/G) (66)
R () = [(ﬁ+ VG -+ 4) (VF+ VG +3)5 ~2is(VF - VG) (VF + VG +3) — (VF - VG) +(VF + @+4)]
(67)

(~pihn) (\/"+\/“+6)(f+\/'+i)(\/"+ﬁ)+4)s ~3is?(VF - \/6)(\/"+\/"+s)(\/F+\/(';+4)
K= [{ 35(VF 4 VG + ) (VF ~ V)~ (VF+ VG + 6) i (VF  VG) '~ (3V/F + 3G+ 16) } (VF -~ V)

(68)

The solution of the first four of un-normalized polar wave functions are obtained
from (57), (62a), (62b) and (65)—(68). The polar wave function (62b) is in agree-
ment to the wave function obtained using NU method [31], but only for even
numbers of polynomial degrees (1;).

If there is no the presence of trigonometric Poschl-Teller potential, where k = 0
and n = 0 then the polar wave function reduces to associated Legendre polynomials
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and the orbital quantum number expressed in (36a), (36b) becomes [ = m + 2n;, with
n;is the degree of polynomial. However the associated Legendre polynomial obtained
from this non-central potential are only those polynomials whose values of / and m are
differed by even numbers since / = m + 2n;. The effect of the presence of Poschl-
Teller non-central potential to spherical harmonics is illustrated by using the three
dimensional representation and the polar diagram of the absolute value of
un-normalized angular wave functions obtained from (55), (62a), (62b), and (68) for
n = n; = 3. The 3D representations and polar diagram of Y,’”| visualized using Mat
Lab 7 are shown in Fig. 1 forn; =3,k =0, =0,l = 6, m = 0, Fig. 2 for n; = 3,
k=2n=0,l=74m=0 and Fig. 3 forn; =3,k =0,y =2,l=8,m=0. By
comparing Figs. 2 and 3 with Fig. 1, it is concluded that there is a state change in
angular wave function caused to the presence of Poschl-Teller potentials. Therefore it
may be concluded that the number of the degeneracy of the system changes. By
comparing Fig. 3 with Figs. 1 and 2 is concluded that the sec? 0 causes the change of
the angular wave function state, while the effect of cosec” 0 term causes the absolute
values of the angular wave function shifted to larger values of 6. Therefore the

() ®
40 40
30 30
20
20
10 <
0 10
é 0
N R
410 4. & 0
N
-20 -10
-30
-20
-40
-30
-50
10 -40
y-aXiS -10 10 :
x-axis &6

X-axis

Fig. 1 a Three dimensional representation of |Yg| and b its polar diagram of }Yg| = {86.63
cos® 20 + 23.63 cos? 20 — 55.13 cos 20 — 7.13}
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(a) (b)

30 T T T

Z-axis

Z-axis

y-axis -10 =10

X-axis

230 L L L

X-axis

Fig. 2 a Three dimensional representation of }Y? 4| and b its polar diagram of |Y$.4‘ = {199.48
cos’ 20 4 164.79 cos® 20 — 48.36 cos 20 — 28.67} sin'* 0

dominant effect of the presence of Poschl-Teller potential is coming from the sec? 0
term. The un-normalized angular wave functions illustrated in Figs. 1, 2 and 3 is in
agreement with the result calculated using NU method [31]. By putting the new value
of the orbital quantum number expressed in the energy of Eckart potential combined
with trigonometric Poschl-Teller non-central potential is rewritten as

v
_|_
_ _h_z a [\/Vﬁ v (k= 1) +m?)+n+2n+3) +n,+§]z (69)
M [\/V,,+ (v/ (rc(k—1)+m?)+n+2nm+1) +n,+ﬂ2 _(+1)dy

4a? 4a?

n,

where n; is a new polar quantum number and its values are non-negative integer,
while n, is radial quantum number and is nonnegative integer. From (69) we can
calculate the energy for special case, for Eckart potential, we set Kk =y =
m = n; = 0, therefore the energy spectrum of Eckart potential is



138 A. Suparmi and C. Cari

(a) (b)
T S I S 50 — , ,

40f 1
30} 1

20+ E

Z-axis

Z-axis
o

s 10 xanis 50 L l s
0 o 10

X-axis

Fig. 3 a Three dimensional representation of {Yg | and b its polar diagram of |Y§)| = {268.13 cos®
20 — 160.88 cos? 20 — 86.63 cos 20 + 27.38} cos® 0

? 14

a2{ Vo + (%)2+nr+%}

The total un-normalized wave function of the system obtained from (39) and
(63a), (63b) is given as

Bur iy Bur y ionr
24

V(r,0,p) = (1 — coth(r/2a)) (1 + coth(r/2a))> 4 Rf,:ﬂ’"‘"*“"')(ficoth(r/Za))

VE VGt (_pad :
X (1 —cos 29)7F+%(1 + cos 20)TC+%R£,, s [x)(—icos 20)e™?

s

(71)
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The wave function of the system in (68) reduces to the wave function of three
dimensional Eckart potential by the absent of Poschl-Teller potential.

3.2 The Solution of Polar Schrodinger Equation for 3D
Trigonometric Rosen Morse Non-central Potential

The polar part of the Schrodinger equation for trigonometric Rosen-Morse non-
central potential is given as

orP(0) (v(v +1) +m?
00 sin® 0

2
P
660(20) + cot 0

— 2pucot 9>P(0) +I1(I+1)P(O) =0

(72)

By setting P = \/—— in (72) then (72) becomes

dZQ(( 1)+m

1
T e — 2pucot 9>Q+ ((l+1)+4)Q0 (73)

To solve (73) we introduce a new variable cot 0 = s and (73) change into

(1+s)62Q+2 % {(v(v+1)+m2—%)—(2“x _lia D+ }Q 0 (74)

0s? ds 1 +s2) (1+52)

Equation (74) is solved in terms of Romanovski polynomial by setting

0(0) = gu(s) = (1 + ) et DF (5) (75)

for 0<s<oo
By inserting (75) into (74) we obtain

2

0 0
(I+s )612)+{2 (B+1 )—oc}a—?
SO — 7 s — i
{ﬁoc 12J'L:S2 (l(l+1)+4)+v(v+l)—i—mz—%—ﬁz—B}D

=0
(76)
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Equation (76) reduces to differential equation satisfied by Romanovski
polynomials

oD

(1+7) %%

+{2s([)’+1)—oc}aa—?—{v(v—i—l)—i—mz—%—ﬁz—ﬂ}D:O (77)
for

ﬁsoc—%z—&-ﬁz—lus—{l(l-i-l)—&-%}:0 (78)

By comparing (10) and (77) we obtain

(ﬂ—i—l):(—p+1);0(:—qandv(v+1)+m2—%—ﬁ2—ﬁ
=n(n—1)+2n(1 —p) (79)

From (78) we have

2 1
O;+32{1(1+1)+4}0; fo—21=0 (80)
that give
[+1)%4/(1+ 1) 42
o D/ s
2
and
8 2
[+ (1 +3) +42
Using (79) we obtain
p=-Piqg=—u (83)
and
1\ 2
v(v+1)+m2=(/3+n+§) (84)

Then from (84) we get
1

B= v(v+1)+m27n75 (85)
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or

ﬁ:—\/v(v—i—l)—i—mz—n—% (86)

By using (80) with (85) or with (86) we obtain

2
oy = s (87)
VYo + 1) +m?—n—3
or
2
oy = — a (88)

VY4 1) +m?+n+3

From (85), (86), and (81) we obtain

(412 /(1 +Y) +a2

(ViGF T %)2_ . (59)

1+ 4y

2 (112
(—m—n_%):(”) . (90)

By imposing the condition that p > 0 then from (83) we have —(f —1) > 0 or
([3 — %) <0, therefore the values of § and o that satisfy that condition are expressed
in (86) and (88). The value of [ that satisfies the system is obtained from (90), that is

1\? 12 1
I=1= ( v(v+1)+m2+n+§> - 175
( v(v—i—l)—&—mz—&—n—i—%)
(o1)

The weight function obtained from (7), (83), (86) and (88) is given as

1

W(*ﬁ-,*ot) — (1 —|—S2)p"’€7“"l tan~' s (92)
Using (13) and (92) we obtain the Romanovski polynomials given as

R(=B—%) (s) = 1 ﬂ{(l + Sz)ﬁnﬂr"z[zn, tan"s} (93)
" (1+ sz)ﬁn,efan, tan~ls g
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The polar wave function obtained from (11) and (93) is given as

[ —o,

B
in (0 - C0t71 S) = 8n (S) = (1 + 52)T€ 2"’““1

-1

R (s) (94)

np

The polar wave function obtained from (94) is given as

m in(e) 2 ﬁ%*% M tan~L s p(—B,—)
Pl(e):\/S]—n_Bz(l‘i’S) e ? Rn, ! (S) (95)

Due to the condition that f§, and o, are n-dependence, thus the Romanovski
polynomials is infinity [16, 17] and the orthogonality of polynomials is not pro-
duced from orthogonality integral of the wave function, that is

Qn, On, . / 2\Bu, ,— o, tan~1(s) p(—B,—a) (=p,—a)
0 l 0) sin 0d0 = 5n1n]/ 1+ n @ Oy AN (S Rn , RUP d
T (O (0)sin # [ (s PR s)ds
(96)
Construction of Romanovski polynomial
The first four Romanovski polynomial are constructed using (93) are
Jy N
R =1 (97)
—p+h—a

R () = 2(py + 15— (98)

R () = (48, + D)8+ 15)5° — daa(y + 1.5)s + 93 + 2(8, +2)}

(99)

RUPHT) () — 8(By 4 3) (B +2.5)(Bs + 2)5° — 123 (s + 2.5)s2
+6{o5 +2(B; +3)}(Bs +2)s — a3{e3 +6B5 + 16}  (100)

The Romanovski polynomials expressed in (97-100) can be constructed man-
ually or using computer programming with Mat Lab software. If Rosen-Morse
noncentral potential is absent then

B, =-—m—mn;o, =0;l=n+m (101)

and the polar wave functions reduce to associated Legendre polynomials. The polar
wave functions for n; = 3 with different values of v and u are shown in Table 1.

The third degree of Romanovski polynomials and the corresponding polar wave
functions for n; =3, m = 1, v=0.2 and u = 0.2 are calculated using (93), (95),
(100) are listed in Table 1. The angular wave functions, Yz'/"” are obtained by
multiplying the polar wave function listed in the last column at Table 1. with the
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Yml*sin(theta)*sin(phi)

Fig. 4 a Three dimensional polar representation of absolute value of eigen function, n;=3, m =1,
v=0and u=07Y) = 15(—4 cos® 0'sin 0 4 3sin® 0 cos 0). b Polar diagram of angular wave

function ¥} = 15(—4cos® 0sin 0 + 3sin® 0 cos 0)
(b) 20 ———— —

15 1

10 1
5 ]
0 ]
-5 4

-10 |

15 ]

20l S

25-20-15-10-5 0 5 10 15 20 25
Yml*sin(theta)*sin(phi)

Yml*(cos(theta))

Fig. 5 a Three dimensional polar representation of absolute value of eigenfunction, n; =3, m =1,
v=2 pu=0 |V28| = (sin0)>*(-381.17cot’ 0 + 156.87 cot0). b Polar diagram of angular

wavefunction |Y285| = (sin0)>* x (~381.17 cot® 0 + 156.87 cot 0)

azimuthal wave function in (28). The polar diagram of orbital angular momentum
eigen function, Yl',”/ and three dimensional polar representation of the absolute value
of the angular wave functions listed in Table 1 for all m = I are graphed using Math
Lab software shown in Figs. 4, 5, 6 and 7. By comparing Fig. (6a) and (7a) it can be
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(a) . (b) ©
= 2
©
©
£ 0
2
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£ .
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8 6 4 -2 0 2 4 6 8
Yml*sin(theta)*sin(phi)

Fig. 6 a Three dimensional polar representation of absolute value of eigenfunction n; =3, m =1,
—60cos’ 0 sin 0
+54cos? 0 sin® 0

.4 .
432.85c0s 0 sin® 0 | 5" 0. b Polar diagram

v=0and u=2 |Y31.9s| = 2(sin 9)460.45 tan~! cot 0

-9.17
—60cos® Osin 0
. L A 045an-l ot g | +54cos? Osin® 0 .y
of angular wavefunction |Y gg| = 2(sin 0)*e 132,85 cos Osin® 0 | 1 0
-9.17

(@) ¥ (b) *°
5 P "t 15
10

Yml*(cos(theta))
o

-20 n n . . . . n s
25 -20 -15 -10 -5 0 5 10 15 20 25
Yml*sin(theta)*sin(phi)

Fig. 7 a Three dimensional polar representation of absolute value of eigenfunction n; = 3,

m=1,y=2and u=2 Y28 = (sin 0)F 03 "ot 0(_381.71 cot® 0+ 118.15cot® 0 + 146.35

64 =
cot 0 —17.21). b Polar diagram of angular wavefunction YZ& = (sin ()65 033 tan”" cot 0

(—381.71cot® 0+ 118.15cot? 0 + 146.35 cot) — 17.21)
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shown that the effect of cot 0 is larger for lower level polar wave function. From
Figs. (4a) and (5a) can be seen that csc® 0 causes the increase of the absolute value
of the angular wave function, while cot 6 term causes the decrease of the absolute
value of the angular wave function in the interval of 0<0 <7 but causes the
increase in the 5 <0< as shown in Figs. (6a) and (7a).

The total u-normalized wave function for the n level is given as

22 d™

W(r,0,9) = e"”‘”{Cn,.r*"'*”%)e‘Td ; (r”““""e‘””z)}
r T

(102)
{(CSCZ 0),5,1[ +n/efacn, tan~! (cot 0) }:|

2 J};”ﬁ 1 tan~! (cot 0) ar
{(csc 0) e Tool O

By the absent of Rosen-Morse potential the wave function in (102) reduces to
the three dimensional spherical harmonics oscillator wave function.

The three dimensional Schrodinger equation for separable shape-invariant non-
central potentials are solved using variable separation method. The 3D Schrodinger
equation is separated into three one dimensional equations, radial and polar equa-
tions are solved using Romanovski polynomial while the azimuthal part is simple
differential equation. The generalized hypergeometric type equation and so the
Romanovski differential equations fall into two groups, first group, such as (26) and
(74) have the same form, and so the (28) and (77). while the second group, such as
(48) which is different to the form of (26) and (74) and so (50b) is different to the
form of (28) and (77). Therefore by recognizing the form of the generalized
hypergeometric type equation we can determine the form of differential equation of
Romanovski polynomials. Even for complex variable, Romanovski polynomials
method working very well in determining the energy spectra of the system but there
is a limitation in producing the wave function, as in Poschl-Teller potential.
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