Application of Nikiforov-Uvarov Method
for Non-central Potential System Solution

C. Cari and A. Suparmi

Abstract The energy eigenvalues and eigenfunctions of Schrodinger equation for
a 3D harmonic oscillator potential plus Rosen-Morse non-central potential and
Eckart plus trigonometric Poschl-Teller non-central potential are investigated using
NU method. The bound state energy eigenvalues for both systems are given in a
closed form and the corresponding radial wave functions are expressed in associ-
ated Laguerre polynomials for 3D harmonics oscillator while the radial and angular
eigenfunctions are given in terms of Jacobi polynomials. The Rosen-Morse and
Poschl-Teller potentials are considered to be the perturbation factors to the 3D
harmonic oscillator and Eckart potentials that cause the decrease of angular
momentum length but preserve the number of energy degeneracy.

1 Introduction

The Schrodinger equations of physical potentials have been studied intensively in
recent years. Mostly methods used to obtain the exact solution of Schrodinger for
physical potentials which consist of a class of shape invariant potentials are factor-
ization method [1-3], super-symmetric quantum mechanics (SUSY QM) approach
[4-8], Nikiforov-Uvarov (NU) method [9—-13], and Romanovski polynomial [14—17].
Among these methods, there are some methods that interconnect to each other, SUSY
QM with factorization method and WKB approach, NU method and Romanovski
polynomial are developed based on hypergeometric differential equation. Shape
invariant potentials is a class of one dimensional potentials (radial/central and angular
functions potential) that obey to the properties proposed by Gendenshtein [8].

NU method, proposed by Nikiforov and Uvarov [18], has been widely used to
solve second order linier differential equation without direct solution. The energy
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spectrum and the wave function of certain potential system are calculated using
formulas derived from hypergeometric type equation which obtained by simple
mathematical manipulation of the Schrodinger equation of the potential of interest.
By suitable variable substitution, the Schrodinger equation for certain physical
potential reduces to an generalized hypergeometric differential equation (GHDE),
and by parameter and wave function substitutions to GHDE then GHDE reduces to
hypergeometric/confluent hypergeometric differential equation that is called as
hypergeometric type equation. As by product, a set of formulas, which is used to
determine the energy spectrum and wave functions, are produced. Therefore the
heart of NU method is determining the coefficients of the second, first, and zeroth
derivatives from GHDE and plugging it into set of formulas.

In this chapter we analyze the energy spectra and wave functions of non-central
potential: 3D oscillator harmonics plus trigonometric Rosen-Morse and Eckart plus
Poschl-Teller non-central potentials using NU method. These two system potentials
are separable potentials [19-21] therefore its Schrodinger equations solved using
variable separation method. Three dimensional harmonics oscillator is one of exactly
solvable potential that used to describe the nuclei, atomic or molecular vibration. Non-
central potential composed of spherical harmonics oscillator with square of inverse
potential together with ring-shaped non-central potential, or double ring shaped
potential have been investigated intensively by some authors [22-25]. The Rosen-
Morse potential is trigonometric potential which was proposed by Rosen-Morse [26]
in 1935 and was used to describe the quark-gluon dynamics. The approximate bound
state solution for trigonometric Rosen-Morse potential have also been studied for I-
state solution [27-29], and Coulombic Rosen-Morse non-central potential, particu-
larly for cot@ part, has been investigated intensively [27]. For [ # 0 and r < 0, the
centrifugal term is approximated by hyperbolic, trigonometric or exponential func-
tions [ ] and leads to the exact analytical solution of the radial Schrodinger equation.
The exact analytical solutions of Schrodinger equations for some physical potentials
are very essential since the knowledge of wave functions and energy contains all
possible important information of the physical properties of quantum system.

2 Non-central Potential

The Schrodinger equations for central potentials, which are shape invariant
potentials such as three dimensional harmonics oscillator, Kepler problems, Wood
Saxon potential, Kratzer molecular potential, have been solved exactly using SUSY
QM, WKB with Langer correction, and hypergeometric type equations particularly
only for [ = 0. Non-central potentials, which are separable ones, are also exactly
solvable for [ = 0. The separable non-central potential is given as

Vo) Vi)

V(r,0,0) =V ——
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Schrodinger equation for non-central potential expressed in (1) is solved using
variable separation method and is exactly solvable for [ = 0if V(r), V(0), and V(o)
are shape invariants. The Schrodinger equation for non-central potential expressed
in (1) are resolved into three second order linier differential equation: radial, polar
and azimuthal Schrodinger equations. In the case of radial Schrodinger equation,
for I # 0, however, is exactly solvable only if the contribution of centrifugal term,

1(1%1)’ for very small value of r, r < 1, is approximated by

(+1) J+1) I+

o~

. - . b
r? sinh? r sin® r

(2a)

Approximation expressed in (2a, 2b) was initially proposed by Greene and
Aldrich [L] and newly improved [M], with dy = 1/12, given as

(I+1) 114 1)(1+dy) N I+ 1)(1 4+ dyp)
r sinh? r o sin® r

R

(2b)

The radial parts of non-central potential, V(r), that produce the exact solution
within r approximation either expressed in (2a) or (2b) are including radial Eckart
potential, radial hyperbolic Poschl-Teller potential, radial trigonometric Poschl-
Teller potential, radial hyperbolic Rosen-Morse potential, radial trigonometric
Rosen-Morse potential, radial hyperbolic Scarf potential and radial trigonometric
Scarf potential, as shown in Table 1.

On the other hand, the polar parts of non-central potentials that have exact
solutions are listing in Table 2

By using (1) the non-central potentials are achieved by combining the radial
function potentials listed in Table 1 with polar potential listed in Table 2.

Table 1 Lists of radial potential that are solvable using NU method

No Potential’s name Potential’s equation
1 Eckart 2 ra i/
V(r) = 2[};’47 <V0 (1 ee—/'/:)Z -V iJ_r:fr/a)
2 Poschl-Teller (trigonometric) _ ik ( K—1) + n(n— 1))
2M sin? or cos? or
3 Modified Poschl-Teller/(hyperbolic) _ i2? (k(k=1) _ n(n+1)
T 2M \sinh® ar cochZ or
4 Hyperbolic Rosen-Morse _ Ba? (v0-1)
yp = (;.nh ~- —2ucoth ocr)
5 Trigonometric Rosen-Morse hz’;; ( (1) _ o 1ot W)
Sll"l or
6 Trigonometric scarf 11 _ e (P +afa—1) —1) cosar
M sin ar smz or
7 Hyperbolic scarf II _ 2@ (Pta(at1)  2b(aty)coshar
M sinh? ar sinh? or
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Table 2 Lists of polar function potentials that are solvable using NU method

No Polar potential Potential’s mathematical equation
1 Poschl-Teller V(0) = % (ws(if;z—é) +110(;1822)>

2 Rosen-Morse V(0) = % (% ~ 2ucot 0)

3 Scarf V(0) = % <b2tiz:1(2a0—l) - 2b(i;§l);os 0)

In this chapter we will solve Schrodinger equation for non-central potential with
Vie) =1,

Mo*r? R [(v(v+1)
V(r,0) = —2ucotf 3
0 =25 4 e (Mt - 2ueono) G
and
h2 e—r/a 1+e—r/a
V(r,0) = Vi -V
(r7 ) 2Ma? ( O(I—e_r/a)z 11—67"/“

L P (K(K—l)Jrn(n—l))’ @

2Mr2 \ sin%0 cos? 0

and the one dimensional Schrodinger equations are solved using Nikiforov-Uvarov
method. Special for three dimensional harmonics oscillator we do not need the
approximation value of r.

3 Nikiforov-Uvarov Method

Nikiforov-Uvarov (NU) method was developed based on the hypergeometric di-
ferential equation. In the following section the formulas used in NU method are
derived from hypergeometric differential equation.

The hypergeometric differential equation expressed by Gau f [30] is given as

R oD
z(l—Z)T+{c—(a+b+1)z}——ab<l)20 (5)
0°z 0z

Equation (1) has three regular singular points at z =0, z = 1, z = oo. By using
Frobenius method [30], the general solution at around point z = 0 is given as

D(z) = AyFi(a,b;c;2) + Bz Fla+1—c,b+1—c:2—c¢;2) (6)
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where
2Fi(a,b;e;2) = 2 (azzgf)n:
=1 *%% = J;(i)—l:(lb)+ 1);
N a(a+ 1)C(Elctrzl))lz£b++2;)(b +2) ;_3' L )
(@), =ala+1)(a+2)(a+3)...(a+n—1) (8)

and c is not integer. When c is integer the second part of the solution becomes
complicated and we have only the first part of the solution. For a = —n or b = —n the
solution of (7) becomes finite. By substituting z = 3 and for » — oo then hyper-
geometric differential equation in (5) reduces to confluent hypergeometric equation
given as

i)

o)
0L =0 9
62Z+{c x}az a ()

X

The solution of confluent hypergeometric equation in (9) at around regular
singular point z = 0 is given as

®(z) = AFy(a;¢;2) + (Bz 1 Fla+1—¢; 2 —¢;2) (10)
with
(a),2" az ala+1)z2 ala+1)(a+2)2
1Fi(a;c;z) = Lo =14+-=+ =+ =+..
= (c),n! cll cle+1)2! clc+1)(c+2) 3!
(11)
For a = —n the polynomials in (11) becomes finite.

The one-dimensional Schrodinger equation of any shape invariant potential can
be reduced into hypergeometric or confluent hypergeometric type differential
equation, expressed in (5) or (9) by suitable variable transformation [12, 26]. The
hypergeometric type differential equation, which is solved using Nikiforov-Uvarov
method, is presented as

2P (s T(s N a(s

where o(s) and &(s) are polynomials at most in the second order, and 7(s) is first
order polynomial. Equation (12) is obtained from the Schrodinger equation of the
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certain potential by suitable variable substitution. Equation (12) is solved by using
separation of variable method which is expressed as

Y(s) = d(s)y(s) (13)

for appropriate ¢(s) function, and (12) reduces to

) P A, (8 ) B
”s”{z * }<>+{¢<s)+¢(s>a(s)+az(s>}y<5>0 (14)

o) oS
In order (14) is not more complex than (12), then the coefficient of y'(s) in (14)

has to be in the form of % that is

— L= (15)

By rewriting

then we obtain

2(s) = (x(s) — 7(s)) — (s) = #(s) + 2n(s) (17)

N

where the new parameter 7(s) is the first order polynomial. By expressing the (z:(is)

term in (14) as

G- - ke e

and by setting the coefficient of y(s) in (14) to be equal to :2(52) then from (14) and
(18) we have

(19)

and (14) becomes

y'(s) + @y (s) + 205) y(s)=0 (20a)
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Equation (19) is rewritten as
G(s) = 6(s) + () + n(s)(2(s) — 0'(s)) + 7' (s)a(s) (20b)

In order the expression of (20a, 20b) as simple as possible then G(s) in (20a,
20b) should be divisible by a(s) that is

a(s) = Aa(s) (21)
with / is a constant, and thus (20a, 20b) reduces to
a(s)y"(s) + t(s)y'(s) + 2y(s) = 0 (22)

Equation (22) is called as hypergeometric type equation and its solutions as a
functions of hypergeometric type, and (12) is called as generalized hypergeometric
type equation [18]. The new parameter 7(s), which is the first order polynomial, is
determined by using (20a, b) and (21) given as

a(s) + 2 (s) + n(s)(7(s) — o'(s5)) — ka(s) =0 (23)
with
L—T1(s) =k (24)

From (23) we have

(s) — (s 7 (s) — 7(s)\ 2
n(s)za()z ()i\/( ()2 “) —5(s) + kal(s) (25)

Since the parameter n(s) has the form of first order polynomial, then the
expression under square root of (25) has to be a perfectly quadratic expression, that
means the discriminate of the quadratic expression has to be zero, and so we obtain
the value of k.

Before determining the solution of (22) it is necessary to show that the derivative
of hypergeometric type differential equation is also a hypergeometric type differ-

ential equation. By setting vy (s) = y'(s) = a%f) in (22) that have been differentiated
we have

S(5)0(5) + 71 (5)0} (5) + 01 (5) = 0 (26)
with

71(s) = 1(s) + o'(s) and u; = A+ 7'(s) (27)
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Since 7;(s) is the first polynomial and y; is a parameter that s independence
therefore (26) is the hypergeometric type differential equation. By repeating the step
in obtaining (26) by substituting vy (s) = "(s) = <2 in (26) that has been dif-
ferentiated we get

S(SYA(S) + Ta(s)0A(s) + tgvals) =0 28)
with

75(s) = 11(s) + d'(s) = (s) + 20'(s) (29a)

1y = iy + 7. (5) = A+ 22(s) + 0" (s) (29b)

By repeating the differentiation of (22) n times with v,(s) = y (s) such that we
have

()0, () + Ta($)v), () + 0n(s) = 0 (30)

and 7,(s) dan p, yaitu,

() = (s) + na'(s) (31)
o= 242 (5) + D (32)

If u, = 0, then from we obtain,
i:ln:—nr’(s)—@a"(s) n=0,1,2,3,... (33)

The solution of (22) is obtained from condition that y(s) = y,(s), which is the
nth order polynomial given as

(7 5)p(s) (34)

with B, is normalization constant and p(s) is weight function that satisfies the
condition

< [o()p(s)] = ©(s)p(s) (35)

with o(s) and &(s) which are obtained from (12) are polynomials with mostly
second order, and 7(s) is first order polynomial given as
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o(s)=as> +bs+cand 7(s) =fs + h (36)

The useful formulas used to determine the energy spectra and the wave function
of quantum system using NU method have been derived from hypergeometric
differential equation.

4 Application of NU Method for Non-central Potential

By using (16), (17), (24), (25), (33), (34), and (35), the energy spectra and the
corresponding wave functions of 3D oscillator harmonics plus trigonometric
Rosen-Morse non-central potential and Eckart plus Poschl-Teller non-central
potentials are calculated.

4.1 Energy Spectrum and Wave Function of 3D Oscillator
Harmonics Plus Trigonometric Rosen-Morse
Non-central Potential

The first part of this section discusses the solution of three dimensional Schrodinger
equation for 3D HO potential with simultaneously the presence of trigonometric
Rosen-Morse non-central potential whose potential is expressed as

R (10/( ,0d 1 2 0 1 o
S S singo) +—— )y
M {,2 or ((r ar) + r2 sin 0 00 (sin 0 @9) + 72 sin? 06(p2> (r, 0, )

Mo*r* B (v(v+1)
+ { 5 + M2 ( i 2,ucot0) }T(r, 0,0)}

=EY(r,0, ) (37)

The non-central potential is separable one then (37) is solved using variable
separation method by setting the wave function in (37) as Y(r,0,¢) =
R(r)P(0)¢(¢p) and we obtain

lg 23 _r_zM2 22+2Mr2E__ 1 3 in()g _;a_z
Ror\" &) @ T T TR BT T Psin000\"" " a0) ~ $sin? 0092
viv+1)
+ —2ucotf
(sin20 ,uco>
— =+ 1)
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The azimuthal part obtained from the wave equation expressed in (38) is given as

19 5
= 39
sz " (39)
therefore the solution of azimuthal part of wave function as usual is

¢ = Ae™? (40)

From (38) we obtain the radial and angular parts of Schrodinger equation given as

10/,0 o o, 2MP
1 o/. 0 m? viv+1)
- = — -2 = 1 42
Pend30 (Sln960)+sin20+( 70 ,ucot@) I(1+1) (42)

From the solution of (41) will be obtained the energy spectrum of 3D HO
potential and the radial part of wave function while from (42) will be obtained the
angular wave function and the value of [, orbital quantum number.

4.1.1 Solution of Radial Schrodinger Equation for 3D Oscillator
Harmonics Plus Trigonometric Rosen-Morse Non-central
Potential

The radial Schrodinger equation in (41) is rewritten as

*R  20R M? L, 2u I(1+1)
—+-= -—— —E |R— R=0 43
6r2+rar ( h2wr+h2 ) r? (43)
By setting
M M?? (
?E & e > and R=1% (44)

and inserting it into (43) we get

62)( 2.2 2 l(l+1)
ar2+<—yr + & — > y=0 (45)
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Making a change variable 7> = x in (42) and change it into equation which is
given as

%y 10 22— Ex+1(1+1
N x+_x_<vx ex+ 101+ DX_O

46
oxz  20x 4x (46)
By comparing (12) and (46) we have

B L I+ 1) + A —

c=x, T=5 0= { 2 (47)
From (25) and (47) we get
1 I I(1+1) + 922 — &2
=gt (4 )+4”‘ X 4 ke (48)

The value of k is obtained from the condition that quadratic expression under the

square root in (48) has to be completely square of first degree of polynomial
therefore (48) is rewritten as

1y k—%

and the discriminate of the quadratic expression under the square root that has to be

Z€ero 1S given as
2\’ 2 (l+l)2
k—=) —4 2
(%) =(5) -0 50

1
(l—|—

Y
§(l+2) (51)

By imposing the condition that 7/ < 0O then from (49) and (51) we get

1y 11+9) x|l 1 é(l—i-)
fOI‘leE—Z—E{X—‘rz '))2 :—?—501’7[21_E X — 2 y
_ w4

2) or ky =

[\)
[\

(52)
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By using (17), (24), (47), (51), and (52) we obtain

(53)

1 o1 1 3
r—§+2(—?—§>——/x—(l—§> fork; or r——yx+(l+§)f0rk2

(54)
From (33), (47) and (54) we obtain the same values of 4, either for k; or k,, that

is
A= tn=—n(=y) =, (55)

The energy eigenvalue obtained by equating equations (53) and (55) is given as
2 =1 2 ]+ 3
% =y (n, — %) fork, or % =y (n, + %) for k, (56)

To have physical meaning, the choice of the values of k, 7,7, A and 4, are all
values for k = k, in (52)—(56) therefore the energy spectrum of 3D HO plus Rosen-
Morse non-central potential is obtained from (44) which is given as

3 3

where n, is radial quantum number, / is orbital quantum number and its values
depend on the parameters of Rosen-Morse non-central potential. The orbital
quantum number obtained from the solution of angular Schrodinger equation is
expressed as

1\? 12 1
I=1= (\/v(v—f—l)—i—mZ—i—n,—i—E) - 175
(\/v(v+1)+m2+n[+%)

(58a)

We can see from (58a) that for fixed values of principal quantum number, r;, and
radial quantum number n,, the values of / = [ is not fixed since it depends on the
Rosen-Morse’s parameter. Since the values of I > 0 then from (58a) we obtain the
condition that
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(mm%)“—(W”l“) > (58b)

The radial wave functions are calculated using (13), (16), (34), (35), (47), (52),
and (54). The first part of the wave function obtained using (16), (47) and (52) is
given as

("+1)

$r) = (x) 7 e " (59)

and by using (35), (47), and (54) we get the weight function which is given as
p(x) = A Fre7 (60)
The second part of radial wave function obtained using (34) and (60) is given as

cp, d™ ) cn, d™

_ I'+i4n —yx
X e dt (™) (61)

From (61) we get the un-normalized first four of the second part of radial wave
functions given as

yo(x) =1 (62a)
yi(x) =C(I' + 1.5 — px) (62b)
V2 (x) = Co((I' +2.5)(I' + 1.5) — (21' + 5)yx + y*x?) (62c)

y3(x) = C((I' +3.5) (' +2.5)(I' + 1.5) — (3 +10.5)(I' +2.5))x

+ (3I' + 10.5) (%)) — (x)* (629)

The second part of radial wave function change into associated Laguerre poly-
nomials by setting yx = z in (61), that is

) am
Yn, (x) - m dan

(Fmes) =6, i @) ()
The un-normalized first four radial wave function obtained using (44), (59) and
(62a)—(62d) are given as

2
! por

Ro(x) = C, 1l e (65a)

Ri(x)=Cii e 5(l +1.5—p?) (65b)
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4 '/’2
Ry =Cirte (I +2.5)(I' + 1.5) — (21 +5)pr* 4+ y*r") (65¢)

=Crle T (U +35) 1 +25)( +1.5) — (30 + 10.5)(I' 4 2.5)y7
+ (31 +10.5)*r* — %) (65d)

The effect of the presence of Rosen-Morse non-central potential to radial wave
function is represented by the value of orbital momentum numbers, ', that are not
always be integer but it always be positive number. The normalization factor B, in
(51) can be obtained from the normalization condition of radial wave function
which is expressed as

/ 711/ 7n, dr = 5nrrn, (663)
0

By inserting (51) into (54) we have

o0

l’+l Pyt (r+1) . +1 dz

> e 2L,,%(z)B,7 * e 2L,,r2 =0 66b
0/ Fos, O =dum (66D

The normalization condition for associated Laguerre polynomials is given as

(o)

R 2% ! n—l—l/-l-L'
/Zl 7Lé6 ZLn;LZ(Z)Ln,JrZ(Z)dZ = uén/”r (66C)
0

n,!

From (66a) and (66b) we get the normalization factor of radial wave function
given as

2/,
B, — Ll (66d)
(n +17'+7)!

The radial wave function of 3D HO plus Rosen-Morse non-central potential is
expressed as associated Laguerre polynomials with the values of orbital quantum
numbers are trigonometric Rosen-Morse’s parameters dependence. By the absent of
Rosen-Morse potential the radial wave function becomes the radial wave function
of 3D HO. The effect of the presence of Rosen-Morse potential: the csc? 0 term
causes the increase in wave amplitude and the wavelength as shown in Fig. 1, while
the cot 0 term causes the decrease of the amplitude and the wavelength as shown in
Fig. 2.
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150 4
100 ~

50 4

=50

Fig. 1 The graph of 1st state of radial wave function for 3D HO-Rosen-Morse system for csc?
2 2
Rn/mvwl,r(r) = R21201 (r) = Cl r3A65€7T e Rn,mv;m,(") = R21201 (7’) = Cl 73'65e 2

(6.15 — yr?) (6.15 — yr?)

term s

4.1.2 The Solution of Angular Schrodinger Equation

The polar part of the Schrodinger equation expressed in (40) is rewritten as

o*P(0) oP(0)  [(viv+1)+m?
o0 +cotl 0 ( 20 — 2ucot 0>P(9) +I1(I+1)P(O) =0
(67)
By making a change of variable, cot 0 = is, in (67) we have
d 3 o 3 d
—=i(l—s") = and —5 =i(1 —s*) —{i(l —5*) =
30 i(1—s )as and i(1—s )as{z( s )ﬁs} (68)
By inserting (68) into (67) we achieve
o’p 0P 2uis + 1(1+ 1)
-5 — —s5s— 2 1) —-————— (P =
( s)6s2 sas—l—{m +yv(v+1) = } 0 (69)
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154

054

=05 4

Fig. 2 The graph of 1st state of radial wave function for 3D HO-Rosen-Morse system for
2 2

Ryioe1 (r) = C 17! Pe™ T Ryymvn, (1) = Ra1021(r) = Cr'%e™ T

(4.05 — ) (4.45 — 32)

Roioio1 (r) = Cr"%e™F

(3.02 — y?)

cot term:

o=1-st=—s5,6={m +v(v+1)}(1—s*) — {2uis+ I+ 1)} (70)

By using (25) and (70) we get

52

n:—%i T P (0 1) = 104+ 1) = K]+ 2uis + [+ v(v+ 1) = K]s?
(71a)

_ s 2 1o s 2ui
= 2i\/[ +(v+2) k} +2{m2+(v+%)2_k} (71b)

The value of k in (71a) is obtained from the condition that quadratic expression
under the square root in (71a) has to be perfectly square of first degree of poly-
nomial therefore (71a) reduces to (71b), and the discriminate of the quadratic
expression under the square root in (71a) has to be zero given as
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R R CURCO
s (o) Yoo (1))

-0 (72)

The values of k obtained from (72)

2 4
1\? (I4+3)+y ([ +35) +4? 12
k1=m2+< )—( ) é 2 =m2+(v+—) -pi (73a)

v+§

2

2 4
1N (43— (1 +3) +42 12
k2=m2+<v+ ) ) § 2 =m2+(v+—> -p; (73b)
with

1+ -0+ 4
2

ey e
Py = ) and p; =

(74)

By inserting (73a, 73b) into (71b) we obtain the value of 7 that satisfies the
condition 7’ <0 given as

s 1) 1 ui
n:—i—p(s—l—ﬁ):—s(p-i-E)—; (75)
By inserting (70) and (75) into (17) we have
ui 2ui
T=-s—s—2p|s+> :—2s(1+p)—7 (76)
p

The eigen values of the system are obtained by manipulating (24), (33), (70),
(73a, 73b), (74), and (76) as follows. By using (24), (73a, 73b) and (74) we have

im2+<v+%>2P2(P+%) (77

and by using (33), (70), and (76) we obtain

In=—n(=2p—2)+nn—1)=2np+n+n? (78)
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By equating equation (77) and (78) we have

12 1 1
m2+<v+_> ' = () =2mptntnd Sy 1) = (p+nty)

2 2
(79)
By inserting (74) into (79) we get
| (L4124 (14 1) a2
+ m2+v(v+1)—(n+§)=p=i 3 (80)
To have physical meaning, from (80) we choose
1 1+ 124/ 1+ 1) a2
—m4+v(v+1)—(n+=)=p=-—
2 2
12
- { m? 4+ v(v+ 1)+(n+5)}
L+ 5744/ (1 + ) 42
- : (81)
that gives
1 1\ 2 12
l+E = mz+v(v+1)+n+E - 5 (82)
( m? +v(v + 1)+n+%)

Equation (82) shows that /, disturbed orbital momentum number, as a function of
m, u, v, and n = n; which is angular quantum number.

The first part of the polar wave function obtained from (16), (70) and (75) as
follows:

0] 1—s2 1—s? 2(1—s) 2(1+s)
0 g—?)  Hd(—s — M g ) i P
@: 2 d( S)+p ( )+ p —>¢:(1—S)Tz+§_”(l+s) 22_2&[7 (84)

0] 1—s2 21—s) 2(1+s)
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The weight function of the second part of wave function is obtained from (35),
(70), and (76) given as

S —ctryptr) ~ 250+ (1= = (<240 -2y 69)

2ui 2ui
P2 P et
L =(1- 1 ’
i 1—s2 1—s2+2(1—s)+2(1—|—s)—>'0 (1=5) ( o)

(86)

The second angular part obtained using (34), (70), and (86) is given as

B, d" I M
yn(s) = — _Md - ((1 _ S)[’+;;+ (1 +S)P raa ) (87)
(1—s) l’(l—i—s)p §
The polar wave function obtained from (13), (84) and (87) is
Y i o))

P(s) = (1=5) = H(145) = Fy,(s) (88)

The total wave function of the system obtained from (40), (44), and (88) is

Y i ed)

- . I+l _ W) i .
V(r,s,9) = By e L, () (1~ 5) 2 (14T e (90)

with s = —icot 0, and the energy spectrum is expressed in (57) and (58a).

4.2 Energy Spectrum and Wave Function of Eckart Plus
Poschl-Teller Non-central Potential

The Schrodinger equation for for Eckart plus Poschl-Teller non-central potential is
given as

(13, ,0 1 2 0 19
— (P = — | ¥
2M{r26r ((r ar)—i_r2 sm@@H(smgae) rzsinzeaqﬂ) (r,0, )
n’ Voer  Vi(l+e7)
- — | ¥ (r, 0,
+2Ma2 <(1 _ e—jr)z (1 _ 67) (r QD)}
i -1 -1
n (K(K )+n(n2 )>q,(r’9’q))

2Mr2 \ sin? 0 sin® 6

=EY(r,0,¢) (91)
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The three dimensional Schrodinger equation expressed in (12) is solved using
variable separation method by setting y/(r, 0, @) = R(r)P(0)¢p(¢p) so we get

10 v 6R> P Veed  Vi(l4e@)) | 2MEP
Ror™ or" @ \(1-¢7) (1—e) "

| G oP 1 0 wk(k—1) nn-1)
" (sin0—=) — °=
Psin 000 (sin 60) ® sin? 0 0¢? + sin® 0 sin® 0

—i=11+1)
(92)

From (92) we get three differential equations with single variable as following:

=2=1l+1) (93a)

la( 6R)_r2 Voer  Vi(l+ev))  2MEr?
Ror> or’ a?

@\(1—et) (1—e7) I

1 o,  , OP m* k(k—1) nn—-1)
~ 5930 (sin 0@) + 0 n? 0 Gl A=1(1+1) (93b)
and
1 0*® 5 ,
7 O = Am imo 4
B3g? m- — e (94)

The radial part of Schrodinger equation is given as

By setting < MmE = ¢, R="~ (r , applying an approximation for centrifugal term

[14, 15], r2_4a2 (do—ﬂ—smhz,) for - << <1 and dyp = iz and changing the

exponential term into hyperbolic functlon in (93a) we get

(I 4+ 1)d, 4a22
Vlcothi—i—(—i_ )do + 4a“e

4 ginh? > 2a 4

dy(r) 1 | Vo4+1(1+1)
ar &

}X(r) =0 (9)

By making a coordinate transformation, r = f(s) = 2acoth™'(1 — 2s), in (95)
we obtain

62 )ay
Os
1(1+1)d,
(Vo +1(1+1))s(1 —s) V1(1—2s)7<(+)0+) ﬂ
1 —s) s(1—s) s(1—1s) “



Application of Nikiforov-Uvarov Method for Non-central ... 87
From (96) we get
T=1-2s, 0 =s(1—25) (97a)
4a?

6= Vo+1(I+1))s(1 —s)4+ Vi(l —2s5)— <M+32)a2 (97b)

Inserting (18) and (19) into (5) we have

m= i\/(Vo FUI+1) — k)2 — (Vo +1(I+ 1) — 2V; — k)s — ((v1 _ (l(l Iai)do N 52))a2)

(98)

Due to the condition that the expression under the square root of (98) must be
square of first degree polynomial, then (98) is rewritten as

(99)

“:i\/(Vo-l-l(H—l)—k)s2<s—vo+l(l+1)2V1 k)

2(Vo+ I+ 1) — k)

and the discriminate of the quadratic expression under the square root has to be
zero, that is

(WHJU+D—2%—kf+MWHJU+U—H(%—(
=0

I+ Ddy 5, ,
74-8 )a

(100)

From (100) we get

B 10+ Ddy | 5, 5 ¢W+U% 24 un
k—(Vo+l(l+l)—2(4—a2+a)a)j:2 ( 12 +&)at -V
—A-C

(101)

with

(14 1)d, (I + 1)d,
A:wﬁ4a+nmmc:2@{%}2+&ma¢2¢é{%}£+ﬁfw—vf

(102)
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By imposing 7’ < 0 we have

B C-2v, B C-2v,
n——\/5<s— 5C >andr—1—2s—2\/6<s—T> (103)

Using (6) and (7) together with the values of k, 7, 7, and o we get
i=k+n =A-C—-+C (104)

and
/ n(n — 1) "
Iy = —n1T — =0 = —n(-2-2VC) +n(n—1) (105)
By equating equations (104) and (105) we have

1 1
A—C—\/E:n+n2+2n\/6—>\/()+(l+§)2:(n+\/6+§)2 (106a)

4/ Vo+ (I

I(1 I(1+ 1)dy 2
— [N 2 2\/4 02— V2 (1
\/ WDy 20 [(EEDD 4 o vz (1060)

The proper choice in (106b) that has physical meaning is

-1/ Vo +(
\/2’ 2)a) +z\/(%+82>2a4 Vi (o7

and the energy spectrum produced is

o [Tty

Vi I(1+ 1)do
2 4a2
a2< Vo+ (I+1)*+ (nr+%)>
(108)

+

The energy spectrum of Eckart potential with the absent of Poschl-Teller
potential is produced from (108).
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The first part of the wave function is obtained by using (97a) and (103)

—VC(s-5F) —vC Cc-2vi  C-2V

¢ _m_ s b(s
Eféq s(1 —s) T 52¢/C +(1—s)2\/6 o)
=2 (1 - s)C;Jzgl (109)

The weight function of the radial part of the system is obtained using (35), (97a),
and (103)

6( p) p(s) = (1 =2s)p+s(1 —s)p'

e

that gives

c-2vy cr2vy

pls) =5 (1 —s) T (110)

The second part of the wave function is derived from Rodrigues relation
expressed in (34). By inserting (97a) and (110) into (34) and by setting VC = p,C
is (107) we get

B, d"

2y V1
a — . £ - 1— p+ +n 111
3n(s) sp_%(l _ S)IH-% ds" { ( ) } (111)

We finally obtain the complete wave functions from (16), (109) and (111) and
with coth(r/2a) =1 — 2s as

1(s) = 53 (1 = )27y, (s), (112)
4.2.1 The Polar Schrodinger Equation Solution
By making a variable transformation cos20 = s in (93b) we get
1- TP o*p 1. 3ep
Y os 2 2 os
(2 k(i —1)+m?)(1+s) 2n(n—1)(1+5) l(l+1)(152))P
4(1 — s2)

41-52) 41 -s2)
=0 (114)

The form of (114) is similar to the (12). The orbital momentum number and the
polar wave function are achieved from (114) by applying (12), (13), (16), (17), (22),
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(24), (25), (33)—(35), with the solution steps similar to steps in Sect. 4.1.2 or 4.2.1.
From (114) we have

1
azl—sz%:—<§+%s> (115a)

0=

4 4 4
(115b)

_{[Z(K(K — 1) +m?) +2n(n—1) =11+ 1)] N R2(k(x — 1) +m?) —2n(n — )]s N 1+ 1)52}

By imposing that t' <0 and applying the condition of (25), then from (25) and
(115a, 115b) we obtain

R(x(k=D)4+m*)=2n(n—=1) _ 1

1— (l+1 1 — 2
"= 4s—\/((1)—k+ﬁ)(” TR ) (116)

21 g)

and

2(k(k — 1) +m?) —2p(n—1) 1

{ 7 -

I(1+1) L) [R2(k(x = 1) +m?)+2n(n—1) = I(I+1)] 1
e ; )
=0

(117)

The value of k obtained from (117) is

. <l+1/2)2_< Kk — 1)+ & (5 — 1/2))2

2 4
2 5 2
_ <l+21/2) _(fi\/f) (118)

with

2(k(k — 1) +m?) 2
_ = — = 11
0 2 and ¢ 1 + 3 > (119)
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By inserting (118) into (116) we have

_ (Voxvi 1\ Joxyi 1
TE_S(T+Z>_T+Z (120)
By using (17), (115a) and (120) we get
NS )-2ves Vi
T= 25< NG +1 2 7 (121)
By using (24), (33), (115a), (118), (120), and (121) we obtain
A(l+1/2)2<\/5ﬂ:ﬁ)2(\/5i\/2 1) i
S 2 vz ta 2
and
I zzn(\/a\;t_z\/i-F 1) +nn+1) (123)

By equating (122) and (123) and also together with (119) we get [ and the proper
choice of [ given as

I=vrk(k=—1D)+m?+n—1/2)+2n+1-1/2=/k(k — 1) +m?> +n+2n

(124)
The values of m and t corresponding to the proper choice of [ are

t 1 -t 1
ES(W+>”+ (120a)

V2 o4 V2 o4

— /1
‘E=—2s<M—|—l> _2\/57\[ (121a)

V2 V2

The first part of the wave function obtained by using (16), (115a) and (120) is

d(s) = (1 — )V3(1 4 5)Vot (125)
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The weight function for the second part of the wave function obtained by using

(35) (115a) and (121a) is

p(s) = (1—5)>VA(1 + 5V (126)

By using (34), (115a) and (126) we obtain the second part of the polar wave

function which is expressed in term of Jacobi polynomials given as

yn(s):(l )zng )2\/;%{(1@2\/%%(1“)2\/%%} (127)

The total polar wave function achieved from (13), (125) and (127) is given as
¥(s) = B,(1 — cos 20)7\/%
7.1 dﬂ o i
(1 +cos 29)7\/%101(0%729)” {(1 — cos 26)2\/7+"(1 + cos 29)2\/%+”}
(128)

The total wave function of Eckart plus Poschl-Teller non-central potential found

from (112) and (128) and the corresponding energy spectrum is expressed in (108).

The NU method is method developed based on hypergeometric differential

equation but the application is wider since NU method is also applicable for
problems that usually solved by confluent hypergeometric differential equation as
for 3D harmonics oscillation.
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