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Abstract. Density peak clustering (DPC) algorithm has been cited and further
improved by many researchers since it was put forward. In the aspect of cluster
centers discovery, the locations of these points need manually judged by classical
decision graph or improved decision graph. However, this way of manual partic-
ipation in decision-making significantly reduces the efficiency of the algorithm
and trades the cost of efficiency for accuracy. Although, relevant scholars have
made some improvements on the decision graph to automatically determine the
truncation distance or cluster center. To solve this problem, an improved density
peak algorithm based on gravitational peak named IDPC-GP is proposed. In this
approach, the gravitational dimension is introduced into the data space in order
to better grasp the data distribution, and KNN similarity is used for extended
clustering. Then, the cluster centers can be quickly found and clustered. Experi-
ments verifies the superiority of the algorithm in comprehensive performance of
the IDPC-GP algorithm.
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1 Introduction

As a new generation of high-performance density clustering algorithm, density peak
clustering algorithm provides a new starting point and research direction for unsuper-
vised clustering analysis [1, 2]. DPC algorithm has superior performance in discovering
high-density centers [3], special-shaped clusters and processing unbalanced data. How-
ever, the high-density center ofDPC is determinedmanually based on the decision graph.
And whether the high-density center can be clearly distinguished depends on the setting
of appropriate truncation radius parameters [4]. To solve the above problems, relevant
scholars have made relevant improvements to improve the adaptability and parameter
tolerance of DPC algorithm. Li Tao et al. user γ ranking graph determines the inflection
point and potential cluster center, and then automatically determines the actual cluster
center from the potential cluster center [5]. The effect of self-determination center has
been realized. Jiang P et al. used the improved adaptive method to select the repre-
sentative points of the core grid as the clustering center to solve the problem that the
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center cannot be determined adaptively [6]. Chen Jinyin et al. solved the problem that
the density center is difficult to determine by fitting the density distance product density
distribution with the normal distribution curve [7]. Ruhui Liu et al. proposed a constraint
based fast density peak search clustering algorithm (CCFDP). Automatically generate
multiple potential clustering centers, and make the information best of the structure
in the constraints to determine the high-density centers [8]. In this paper, aiming to the
problems of parameter adaptation and automatic determination of cluster center in DPC,
an improved density peak clustering algorithm based on gravitational peak (IDPC-GP)
is proposed.

2 Related Works

In this paper, the two problems to be solved: 1. The automatic determination of the center
of DPC algorithm; 2. Reduce the definition of manual parameters and the tolerance rate
of necessary parameters. To solve the first problem, two types of decision graphs are
designed in DPC. The one is classical decision graph based on relative density distance
δ and local density ρ [9]; The other is the improved decision diagram obtained by
multiplying and sorting the two parameter values, which is obtained by Eqs. (1), (2), (3)
and (4).

ρi =
∑N

j=1
χ

(
Dij − Dc

)
i, j ∈ [1,N ] (1)

χ(·) =
{
1 �D ≤ 0
0 otherwise

(2)

δi = min
(
Dij

)
ρi < ρj (3)

γi = ρi ∗ δi (4)

where N is the total amount of samples. �D = Dij − Dc. As to the second problem,
the initialization of the algorithm needs to involve the truncation radius and the number
of high-density centers. These two parameters need a priori knowledge on the one side
and manual determination on the other hand. After adjusting the appropriate parameters,
that is, when the high-density center is clearly distinguished from other sample points,
take the high-density center as the starting point, and divide each sample point into the
cluster where the nearest neighbor of high-density is located to complete the division.
Take UCI data set Jain as an example.

It can be seen in Fig. 1 and 2 that when different dc values are taken, two high-density
centers can be clearly seen in the classical and improved decision diagrams. But if the
number is right, the locations of the high-density centers are not expected.

It the Fig. 3, when the dc value is inappropriate, the result is very poor, because the
clustering is based on the center position. If the center position is wrong, it will inevitably
lead to disastrous consequences of subsequent clustering.

In astrophysics, according to the current theory, gravity is a higher dimension than
four-dimensional space-time, which has more advantages for grasping spatial distribu-
tion. The research based on data gravity comes from universal gravity, Lizhi Peng et al.
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Fig. 1. Two kinds of decision graphs on Jain with dc = 10

Fig. 2. Two kinds of decision graph on Jain with dc = 12

Fig. 3. Clustering results comparison on Jain between with dc = 10 and dc = 12
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used data gravity for classification learning [10]. The gravity formula is shown in the
Eq. (5).

Fi,j = G
Mi ∗ Mj

r2
(5)

whereMi andMj represents the mass of two celestial bodies and r is gap between them.
G is a constant.

3 Method

DPC algorithm consists of two parts: the discovery of gravity center and extended clus-
tering based on local spatial similarity. The algorithm will be designed from these two
aspects.

3.1 Discovery of Gravity Centers

The data gravity center is related to the density of data distribution and local data volume.
The judgment basis of the centers is based on the gravity value of k-nearest neighbor
(KNN) of each sample. The data gravity formula evolved from Eq. (5), as shown in the
Eq. (6).

Fi =
∑k

j=1

1

r2ij
j ∈ [1, k] (6)

Next, the gravity value between each sample and its k-nearest neighbors are com-
pared. Those larger than the gravity value of all k-nearest neighbor samples are regarded
as local gravity centers or potential gravity centers. Still take Jain data set as an example.
When k is 10, the distribution diagram of local gravity center is obtained, as shown in
the Fig. 4:

Fig. 4. Gravity center distribution (Red Star mark).

Obviously, there are two banded clusters in Jain dataset, and the gravity centers
found are far more than 2. Fortunately, their distribution covers two clusters. What we
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need to do next is not to screen the core cluster centers, because the decision graph
has failed before. The first two high-density points obtained according to the γ ranking
graph are not the center points we want. DPC-GP algorithm does not directly consider
the problem of further determining the center. Instead, it adjusts and filters in real time
in the clustering process.

3.2 Clustering Process of IDPC-GP

After the centers are determined, clustermining is started in an extendedway, and classes
are built by KNN similarity. All special cases are handled in the process of expansion,
such as whether it is a cluster center in local high density. KNN similarity is defined
as: suppose the set KNN(xi) represents the k nearest neighbor of sample xi, KNN(xi,k)
represents the k nearest neighbor of sample xi, and KNN similarity is as Eq. (7):

KNN_Sim
(
xi, xj

) = (∣∣KNN (xi) ∩ KNN
(
xj

)∣∣)/k (7)

where |KNN (xi)∩KNN (xj)|means the intersection number of k nearest neighbors of two
samples. Clustering starts from each local high gravity center and uses KNN similarity
as the measurement standard for extended clustering. When KNN similarity is higher
than the similarity threshold s, the two samples will be divided into the same class. In this
process, multiple sub clusters will be merged, because there will be more high gravity
centers than the actual clusters. The flow of the whole algorithm is shown in the Table 1.

Table 1. The flow of IDPC-GP.

IDPC-GP Algorithm
Input: X, k , s;
Output: Array cluster;
1. Establish k nearest neighbor matrix KNN of sample set X ;

2. Calculate the local gravity value of each sample point by Eq.(6);
3. The samples whose gravity value is higher than that of all k nearest neighbors 

are defined as local high-density centers, and the set of high-density centers C={c1,
c2,..., cn} is get, where 1≤n≤N.

4. Calculate KNN similarity between each pair of samples with Eq.(7).
5. Taking each high gravity center as the starting point and KNN similarity as 

the measurement standard, extended clustering is carried out. Tag array cluster rec-
ords clustering.

6. If high gravity centers are found to belong to the current cluster during clus-
tering, they will be merged together.

7. After all clustering based on high gravity center is completed, the remaining 
points are regarded as outliers.
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4 Experiments

4.1 Datasets

The test datasets utilized in the experiments are four representative graphic datasets
from UCI: Jain, spiral, unbalance, Flame, R15, aggregation, PathBased and 4k2_far. It
contains banded, striped, unbalanced, multi type combination and other data sets, which
can comprehensively test the performance of the approach.

4.2 Parameter Test

The IDPC-GP algorithm involves a core parameter k. The gravity center is determined
by the distribution of KNN, that is, the parameters are related to the value of k. In order
to verify the robustness of the IDPC-GP to the k, the influence of this parameter on the
approach effect is specially tested. Based on the idea of IDPC-GP, as long as the high
gravity center group covers all natural clusters, all cluster structures can be found and
the clustering task can be completed. In the Table 2, we tested the number of high gravity
centers mined under different k values on 8 UCI data sets, and these local centers cover
all natural clusters.

Table 2. Effective coverage test of high gravity center.

k 5 6 7 8 9 10 15 20 25

Jain 36 31 29 25 21 18 14 12 10

Spiral 31 16 10 6 5 4 3 3 3

Unbalance 648 545 462 402 353 315 196 129 89

Flame 23 17 11 10 9 7 5 4 3

R15 46 41 35 32 22 19 16 15 15

Aggregation 90 75 61 55 45 40 22 18 16

PathBased 35 30 22 18 14 12 4 4 2

4k2_far 37 30 28 20 18 11 9 6 6

In Table 2, the first row shows different values of k in [5, 25], and the other rows
show the number of gravity centers on different data sets and at different values of k. All
the high gravity centers in the above are natural clusters of full coverage data sets. The
experimental results show that in a relatively wide range of k, the high gravity centers
can effectively cover all natural clusters, which provides accurate positioning for the
subsequent discovery of clusters.

4.3 Performance Comparison Test

From the above experimental results, we can see that the clustering effect of IDPC-GP
algorithm in unbalanced, non-spherical and banded unbalanced data sets is satisfactory.
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Of course, the DPC algorithm can achieve the same effect on these data sets, but it
has high requirements for parameter combination. While the IDPC-GP algorithm is
insensitive in parameter settings and has stronger parameter tolerance. To prove the
ability of the IDPC-GP to discover clusters after discovering local centers, the clustering
effects of several algorithms are tested and the results are displayed visually as shown
in the Fig. 5. Obviously, in the face of different types of data sets, the clustering effect
is satisfactory.

Fig. 5. Clustering effect of IDPC-GP algorithm on shape data sets.

As shown in Table 3, taking Jain data set as an example, with the change of k value,
the change of s value in Fig. 5 can be achieved. Here, we show the case of making s
value as constant as possible.

Table 3. Collocation value of k and s.

Arguments

k 5−11 12−22 23−25

s 0.15 0.4 0.5

Finally, to test the robustness of the IDPC-GP to parameter s, we take data Jain as an
example. When the results of clustering are optimal, the values range of k and s is shown
in the Table 3. The s value corresponding to each k value is not unique. For example,
when k = 15, the value range of the most s value reached by the IDPC-GP algorithm on
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the Jain dataset is [0.2, 0.45]. Compared with DPC algorithm, the parameter dc value
can only be in [10, 15], and the parameter selection space is larger.

5 Conclusion

Aiming at the problem that DPC algorithm cannot automatically determine the number
of high-density centers and is sensitive to parameters, a clustering algorithm IDPC-GP
based on local data gravity center and KNN similarity extension is proposed. The local
data gravity center can well cover the main clusters in the data space, and can accurately
find the distribution of all clusters. Taking each gravity center as the starting point,
extended clustering based on KNN similarity can complete the automatic clustering
process without human intervention. The value of the important parameter k involved in
the algorithm has a very low impact on the effect of the algorithm, which improves the
universality of the algorithm. Compared with DPC algorithm, it has some advantages in
parameter adaptation and universality.
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