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Abstract. An ensemble local mean decomposition (ELMD) method has been
recently proposed to reduce mode mixing which arises in local mean decompo-
sition (LMD). However, due to decomposition components’ spectrum aliasing
caused by the introduced residual noise, it is still difficult to detect the vital signs
such as heart and respiration components with neighboring frequency bands by
using ELMD. Therefore, a novel complete ensemble local mean decomposition
(CELMD) approach, in which the obtained product function (PF) is abstracted
from the residue signal for each LMD realization plus different noise, is proposed
to eliminate new ones created by ELMD. To accuracy separate heartbeat and res-
piration components, a CELMD-based blind source separation (CELMD-BSS)
method is introduced. Experimental results show that CELMD-BSS method has
better separation performance for the heartbeat and the respiration component and
lesser time cost due to CELMD’s advantages such as smaller reconstruction error,
better spectral separation of PFs and smaller time complexity.

Keywords: Local mean decomposition · Doppler radar · Vital signs detection ·
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1 Introduction

Using Doppler radar detecting vital life signs such as heart and respiration rate would
have wide application in search and rescue operations, security and health care [1–3],
because detecting vital life signs by using Doppler radar is a detecting mean of non-
contact nature. According to the radar signal, we are able to remotely monitor vital life
signs of a human subject. The research of detecting the vital life signs by using Doppler
radar systems can be dated back to the 1970s [4], where the distinct remote monitor-
ing advantages were demonstrated. Subsequent work in vital life signs detection area
focused on improving and refining the precision of detection, where novel methods were
presented to process the radar signal by using continuous wavelet transform (CWT) and
short time Fourier transform (STFT) [5, 6]. However, these algorithms depend on fixed
basis functions, and have limited resolution in both time and frequency. Recently, an
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automated detection method was demonstrated by using a respiration harmonic cancel-
lationmethod [7]. But, a priori knowledge of the basis frequency of the respiration signal
was required in this method.

Recent research on signal decomposition has resulted in fully data driven time-
frequency algorithms. Such as empirical mode decomposition (EMD) [8], which can
decompose adaptively a signal into a set of components. The components are termed as
intrinsic mode functions (IMFs). Therefore, it is suitable for the analysis of the radar
signal with nonlinear and no stationary property. The analysis method of Doppler radar
signal, based on EMD, has been achieved using the measurement of heartbeat and res-
piration of human subject [9–11]. However, there is a loss of amplitude and frequency
information due to the use of cubic splines andHilbert transform inEMDprocess [12]. To
reduce the loss, a local mean decomposition (LMD) was proposed recently [12], where
LMD is a self-adaptive time-frequency analysis method. Using smooth local means, it
can decompose adaptively a signal into a set of product functions (PFs), and each of
which is a purely frequency-modulated signal. Thus, we can obtain reliable instanta-
neous frequency of the local oscillation signal without Hilbert transform. Therefore,
the undesirable end effect and negative frequency caused by Hilbert transform can be
avoided [12]. LMD’s application to the electroencephalogram (EEG) was illustrated
[12], and its distinct advantages were compared with the EMD in fault diagnosis [13,
14].

However, one of the main defects of the original LMD that arise with the EMD is
mode mixing, which suggested that oscillations of very disparate amplitude exist in a
single PF, or very similar oscillations exist in different PFs. It would lead to the individual
PF components lose exact physical meaning, and it would result in the frequency aliasing
of PFs too. To make up the defects above, the ensemble local mean decomposition
(ELMD) algorithm was proposed [15], where an ensemble of the signal plus white
Gaussian noise was decomposed by LMD. Due to the performance of the dyadic filter
of LMD in white Gaussian noise [15], the mode mixing phenomenon was reduced.
Although ELMD offers distinct advantages, the performance of spectral separation of
PFs is reduced due to the new residual noise introduced in the reconstructed signal.

In this paper, a novel complete ensemble local mean decomposition (CELMD) app-
roach is presented to eliminate the adverse impact of the residual noise in ELDM. A
self-adjust noise coefficient is introduced in CELMD and the first PF component of
an ensemble of the rest signal plus white Gaussian noise for each LMD realization is
abstracted. The procedure continues with the rest PFs until the stopping criterion is
reached. Doppler radar vital life signs such as heart and respiration signal are separated
by using CELMD and the blind sources separation (BSS) algorithm [16, 17]. Experi-
mental results show that the CELMD has a better spectral separation of the PFs, signal
reconstruction precision, and respiration and heartbeat components are obtained by using
the CELMD and BSS (CELMD-BSS) method.
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2 Materials and Methods

2.1 Local Mean Decomposition

Local mean decomposition (LMD) [12] is a new data-driven method that decomposes a
signal into a small set of product functions (PFs, i.e. modes) by using the smooth local
mean. These PFs are the products of frequency modulation signal and time-varying sig-
nal. They contain oscillations of a signal, and the instantaneous frequency and envelope
of the signal can be obtained directly by PFs. The details of LMD algorithm can be
found in [12]. Formally, the original signal x(t) is decomposed into k-products and a
monotonic function uk(t).

x(t) =
k∑

p=1

PFp(t) + uk(t) (1)

where PFp(t) denotes the p-th PF.

2.2 Ensemble Local Mean Decomposition

Due to signal intermittency, mode mixing might arise in the original LMD process
[15]. Mode mixing would not only make the obtained PFs by LMD devoid of physical
meaning, but also cause spectrum aliasing of PFs, which restricts the application of LMD
method in time-frequency analysis. A similar problem also occurs in EMD [8], and it
has been resolved by the added white noise in EMD process [18, 19].

Base on the noise-assisted concept, white Gaussian noise was introduced into the
process of LMD and the ELMD method was proposed [15]. The added noise uniformly
populates the all-time-frequency space by using the dyadic filter bank behavior of the
LMD to resolve the mode mixing problem. When the signal assisted with noise is
decomposed by LMD, all kinds of disparate frequency scale information in given signal
which would be decomposed into corresponding frequency bands of the filter bank
determined bywhite noise, automatically. So, the frequency aliasing phenomenonwould
be reduced. In addition, white Gaussian noise series are independent of each other. If
the added white Gaussian noise is large enough, the ensemble mean of the noise would
close to zero under ideal conditions. Thus, when the noise components being removed
and the impact of white Gaussian noise is reduced in LMD. In ELMD, the given signal
x(t) is decomposed multiple times with the addition of different white noise w(t), and the
obtained ensemble means of multiple times decomposition is known as the final results.

2.3 Complete Ensemble Local Mean Decomposition

Due to the LMD’s dyadic filter bank behavior in the presence of white Gaussian noise,
the mode mixing phenomena is reduced in ELMD algorithm [15]. Figure 1 shows the
dyadic filter bank behavior of LMD using white Gaussian noise. From Fig. 1, it can be
seen that the value of PSD1 is quite low in the normalized frequency ranges 0–0.2. In this
range, PSD1 overlaps rarely with other PSDi (i = 2, 3, 4, 5). However, PSDi (i = 2, 3,
4, 5) is partial overlap with PSD(i+ 1), and the overlapping range of the corresponding
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PFs’ frequency bands increases with an increase in i step by step. The results indicates
that the different frequency content of a given signal might still be decomposed into the
same frequency bands by ELMD, which suggested that the mode mixing phenomena is
not reduced significantly in ELMD process which only relies on the ensemble means of
corresponding PFs. From ELMD, the extra added noise may lead to new problems such
as the reconstruction error and the different number of PFs for different realizations of
the signal plus noise.

Therefore, considering the spectral separation characteristics of the first compo-
nent (PF1), a novel method that only concerns PF1 for each ELMD realization is here
proposed.

Suppose PFk indicates the decomposed components, after PF1 is obtained by
ELMD, the first unique residue u1(t) can be calculated as

u1(t) = x(t) − PF1 (2)

where x(t) is the original signal. Then, calculate the first PF (mode) over an ensemble of
u1(t) plus different white Gaussian noise by applying LMD multiple times. The first PF
is obtained by averaging and it is regarded as the second product function PF2 of x(t).
The next residue is defined as

u2(t) = u1(t) − PF2

= x(t) − (PF1 + PF2)
(3)
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Fig. 1. The dyadic filter bank behavior of LMD using white noise. The data length is 512 data
points. The vertical axis is the average PSD of each component PF for 100 times LMD with
different white Gaussian noise.

Repeat the above procedurewith the rest of PFs until the stopping criterion is reached.
We define the operator LMDj[·] and std[·] indicate respectively the j-th PF obtained by
LMD and the standard deviation for the analyzed signal. Let w(t) corresponds to a white
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Gaussian noise with N (0, 1) and ε0 denotes the magnitude of the added noise. The
proposed approach is summarized in the following Algorithm 1.

According to Algorithm 1, the final residue can be calculated as

u(t) = x(t) −
∑K

k=1
PFk (5)

according to the Eq. (5), the given signal x(t) can be expressed by the Eq. (6).

x(t) =
∑K

k=1
PFk(t) + u(t) (6)

the Eq. (6) indicates that the proposed approach can provide an exact reconstruction
of the original signal. The finite amplitude ε0 need be selected by the given signal.
Concerning the amplitude ε0 of the added noise, high frequency signals are added to
noise of small amplitude value [19] and vice versa. The obtained PFs set consists of

PF1
i
(t)(i = 0, 1, · · · ,K) which are obtained as

PF
i
1(t) =

1

M

∑M

m=1
LMD1[Um

i−1(t)]
The frequency characteristics and the corresponding filter bank property of CELMD

are illustrated by applying a single delta signal δ(t) which was used to analyze the filter
bank property of complete ensemble empirical mode decomposition (CEEMD) [18].
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3 Application to Doppler Radar Data

In Doppler radar vital life signs monitoring system, the received radar signal contains a
frequency shift proportional to the speed of the monitored-target due to Doppler Effect.
If the monitored-target is human thorax, the received Doppler echo radar signal includes
possible the heartbeat and respiration information due to the chest motion resulted in
heartbeat and respiration. In order to separate heartbeat and respiration signals from
Doppler echo signal, a time-frequency analysis method which has good frequency res-
olution is required. According to the LMD theory and the analysis in Sect. 2, the pro-
posed CELMD algorithm has a good time-frequency resolution and robust property, and
it suitable for nonlinear and non-stationary Doppler radar data analysis. Accordingly,
CELMD-based blind source separation (CELMD-BSS) method consists of three parts:
decomposing the radar signal with CELMD, reducing noise and estimating the num-
ber of components with PCA, and estimating heart and respiration components with a
joint diagonalization method.

The Doppler radar vital life signs data used in this study was obtained from a low
cost Doppler radar. Signal acquisition was carried out using a USB audio interface with
a camera frequency of fc = 10.587 GHz. The radar to human chest distance was 30cm,
the data sampling rate was 44.1 kHz. Figure 2(a) shows the Doppler radar signal and its’
FFT spectrum. In the FFT spectrum, the received radar signal includes apparently two
components respiration (0.5 Hz) and heartbeat (1.4 Hz). ECG signals corresponding to
Fig. 2 (a) is plotted in Fig. 2 (b).
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Fig. 2. The radar signal and ECG reference. (a) the received radar (top) and its FFT spectrum
(bottom), (b) ECG reference(top: respiration, bottom: heart)

In order to reconstruct respiration and heartbeat signals, the CELMD method is
applied. For comparison, replacing CELMDwith ELMDandCEEMD, signal separation
results are shown in Fig. 3. It can be clear seen that the reconstruction result of CELMD
is better than that of ELMD, and got pretty much the exact same results with CEEMD.
However, in ELMD, the heartbeat component cannot be reconstructed due to spectral
separation performance decreased in ELMD.
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In Fig. 4, it shows separation results of heart and respiration by using two decom-
position methods (CELMD, and CEEMD) and BSS. As the reconstruction result of the
heart component is not obtained, the separation result of ELMD is not plotted in Fig. 4.
Compared with the results shown in Fig. 3, the estimation performance of heart and res-
piration components are improved by using BSS. In Fig. 4, separation results obtained by
CELMD-BSS and CEEMD-BSS are approach to the ECG references, and that the FFT
spectrums shown in Fig. 5 corresponding to the signals obtained by using CELMD-BSS
and CEEMD-BSS in Fig. 4 are also close to the spectrum of the ECG reference, which
suggested that a similar separation result can be obtained by using the two methods.
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Fig. 3. Reconstruction results of heart and respiration by using the energy frequency filter where
three decomposition methods CELMD (blue line), ELMD (dotted black line) and CEEMD (red
line) are used.
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Fig. 4. Separation results of heart and respiration by using two decomposition methods (CELMD
(blue line) and CEEMD (red line)) and BSS (ECG reference: black line).
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Fig. 5. Spectrums of heart and respiration corresponding to signals of the ones in Fig. 4.

4 Conclusions

In this paper, we proposed a novel CELMD-BSS approach to extract the heart and res-
piration from the Doppler radar vital sign monitoring system. The new reside noise
component introduced in ELMD is reduced by using the presented CELMD method.
Compared ELMD, CELMDhas better spectral separation of PFs and smaller reconstruc-
tion error; compared CEEMD, CELMD has lesser time cost. Therefore, the presented
CELMDis suited to processing nonlinear and non-stationary data. Based onCELMD,we
introduced the BSSmethod to separate the heart and respiration components. The exper-
imental results proved that heart and respiration components can be accuracy separated
by the proposed CELMD-BSS. The CELMD-BSS method here proposed is suitable for
underdetermined and over-determined blind source separation of the vital signs signal
without prior know.
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