®

Check for
updates

Design and Research of Multi-user Distributed
Configuration Management Based on Zookeeper

Ming Zhang' ®9, Zhaojian Shen?, Bin Yin', Li Cui?, and Fan Xu'

1 Beijing Spatial Information Transmission Centerion, Beijing 100094, China
2663931027@Qgg.com
2 Beijing Institute of Remote Sensing Information, Beijing 100094, China

Abstract. The aerospace system can be divided into multiple types of users
according to the division of functions. Different users maintain a set of their
own configuration files and store them on different servers. Since there may be
logical crossover between services between users, there are situations where dif-
ferent users maintain the same set of configuration files. For the problem of fast
synchronization of the same configuration file among multiple servers and simul-
taneous modification of the same configuration file by multiple users, using the
Zookeeper distributed synchronization mechanism and the multi-user dismantling
and marking method of configuration files, we propose a multi-user distributed
configuration management scheme based on Zookeeper. Store the content of the
configuration file in Zookeeper according to the node, use the Zookeeper pub-
lish/subscribe mechanism to synchronize the configuration file between the con-
figuration management center and each user application center, realize version
management through Bitkeeper technology, and use B/S architecture to realize
daily configuration file maintenance. The synchronization performance is tested
by synchronizing time, and the test results show that the solution optimizes the con-
figuration file management process and improves the efficiency of configuration
file management and maintenance.

Keywords: Multi-user - Zookeeper - Node - Update synchronization

1 Introduction

With the continuous development of aerospace technology, its benefits in agricultural
disaster prevention, weather forecasting, geological exploration, and military applica-
tions have become more and more significant [1-3]. Space system is a large and complex
system, including spacecraft, space launch system and ground application system [4].
It involves many kinds of users, and the applications of different users are generally
distributed on different servers. When the program starts and runs, it needs to call the
corresponding configuration files. As a common way of aerospace system maintenance,
configuration files are widely used in aerospace systems and play a very important role
in the entire aerospace system software life cycle [5, 6]. There are also the following
two problems in the use of aerospace system configuration files:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Wang et al. (Eds.): ICSINC 2022, LNEE 996, pp. 228-235, 2023.
https://doi.org/10.1007/978-981-19-9968-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9968-0_27&domain=pdf
https://doi.org/10.1007/978-981-19-9968-0_27

Design and Research of Multi-user Distributed Configuration Management 229

1) Because the configuration files are deployed on different servers, if a configuration
file is modified, it needs to be sent to each server by file transfer, and then the
configuration files can be updated synchronously by logging in to different servers,
which leads to long synchronization time, low efficiency and easy errors in the
synchronization process.

2) Thereis a high degree of business coupling among users in the aerospace system, and
different users work together, so different users operate the same configuration file at
the same time. In the existing mode, the same configuration file is usually operated
sequentially by setting restrictions by user rights, and then the configuration file
is synchronously updated by file sending and server login. There are also some
problems in this mode, such as low modification efficiency, long time consumption
and error-prone synchronization process.

Zookeeper is an application service framework with distributed and open source
architecture. It has the functions of version management, distributed synchronization,
configuration maintenance. Its high availability, real-time, atomicity and other charac-
teristics can also ensure the consistency of data and the reliability of the system [7-
10] In order to effectively solve the above two problems, this paper proposes a multi-
user distributed configuration management scheme based on Zookeeper. It realizes the
synchronous update of configuration files and the operation of the same configuration
file by different users at the same time, and improves the management efficiency of
configuration files.

2 Zookeeper Introduction

Zookeeper is a file management system based on distributed storage. It builds the cor-
responding data structure model by establishing a tree-like directory. Each node in the
tree-like structure is called a Znode node, which also has its own child nodes and leaf
nodes [11-13]. Each node will store several KB of data, and maintain a set of its own data
structure, which mainly includes information such as time stamp and version number to
identify the changes of nodes. The atomicity of a node determines that its reading and
writing operations are to read, write and replace all the contents of the node.

Zookeeper operations mainly include node creation, node deletion, node setting, node
viewing, node obtaining, etc. Where create means creating a node, delete means deleting
anode, setdata means setting a node, getdata means getting a node, exists means checking
whether a node already exists, and getChildren means getting a child node. Zookeeper
is generally used with Watcher to monitor nodes. When the node information changes
(such as adding, deleting and modifying), it will be reported in time. Operations such
as getdata ~ exists -~ getChildren can register Watcher on nodes. While create, delete,
setdata and other operations can trigger Watcher set on nodes.

The high availability of Zookeeper is mainly ensured by the election mechanism
[14, 15]. Its roles mainly include leaders, learners and customers, among which learners
are divided into followers and observers, and leaders are responsible for initiating and
deciding decision-making voting; Followers receive customer requests and vote in the
whole election process; Observers are not responsible for voting, but only for synchro-
nizing the status of leaders. Usually, once a server gets more than half of the votes, it will

230 M. Zhang et al.

become the new leader. We assume that there are 7 identical servers, labeled ID1-1D7,
which will become the new leader only when the number of votes exceeds half, that is,
4 votes. ID1 will vote for itself when it starts first, and ask other servers. Because the
number of votes is less than 4, it is not elected; After ID2 is started, it will vote for itself
first, and then ask other servers. ID1 replies to ID2 with approval because it has been
started. At this time, ID2 won 2 votes and was not elected; By analogy, when ID4 gets 4
votes after it is started, ID4 is elected; Since ID4 has been elected, ID5 ~ ID7 can only be
followers after they are started. Once the leader quits or doesn’t respond, this campaign
mode will be resumed until a new leader is elected.

3 Implementation Scheme

At present, for the generation and management of configuration files based on web,
configuration maintenance personnel usually use B/S mode to maintain their configu-
ration management center, and can add, delete, modify and view the configuration files
accordingly. The configuration center stores the configuration files of n users (userl,
user 2, ..., userN). According to different functions, each user is configured by mul-
tiple application nodes, for configuration application nodes that need to be modified
frequently, join Zookeeper node, which is represented by Znodel, Znode2, ..., ZnodeN,
and these nodes are registered with watcher events in the client. One configuration file
corresponds to one Znode node as for the configuration files managed by users alone.
One configuration file corresponds to multiple Znode child nodes for the configuration
files jointly managed by users.

When the application starts, the configuration file will be called, that is, the config-
uration application node data will be obtained. When the data content of the configu-
ration application node monitored by watch changes, the Zookeeper client will obtain
the change through the watch event. At the same time, for software maintainers, they
want to record and manage the details of different versions and changes during the
development process. Bitkeeper is a commonly used version management tool based
on linux system at present. Compared with SVN technology, Bitkeeper will extract all
the changed configuration files without considering which files have been specifically
modified. In design, it will consider displaying key information such as change times,
change dates and users. The interaction between configuration management center and
each application is shown in the following Fig. 1:

(1) Configure the application node design
Configuration files of different user middleware are stored in each node of
Zookeeper. For the configuration files managed by users alone, the nth user node
is represented as Znodel_userN, Znode2_user2, ...ZnodeN_userN. The design of
configuration file in Zookeeper server is shown in Fig. 2, where < > represents
directory. The directory at the top level is represented as <middle_ware>, and
the directory at the next level represents different user application apps, such as
<userl_name>, <user2_name> , <usern_name>, every user middleware applica-
tion app contains two subdirectories, which are respectively represented as, <conf>

Design and Research of Multi-user Distributed Configuration Management 231

| [Znode? userl]
‘ userl
|

1
|
T
» Bitkeeper | !
! |
%_} user2
! I
| :
! t
Wil e Configuration I }
L management center ! | —
Watch getnode data | !
!]
» : userN
} } node2_user!

Configure application nodes

Fig. 1. Schematic diagram of interaction between configuration management center and various
applications

and <version>. Where <conf> represents the identified frequently modified con-
figuration file content, which is the final node, and its content is only the final value
of user] management configuration, including interface information interfaces, user
id, etc. <version> contains version history history and current version current.

Middle ware>
———————— l
} <{userl_name>
e B
! 1
| I <conf>
I R .
| | .
| | interfaces
| |————————— ——
I
| .
I id
I e
I
| <version>
rocooooog
} I current
o ___
i |
\ history
o
I

Fig. 2. Configuration of application node structure-individual management by users

For the configuration files jointly managed by users, the configuration file multi-user
disassembly marking method is adopted. Assuming that the number of users managed
by the same profile is N, the profile node consists of child nodes of Znodel_userl,
Znodel_user2, ...Znodel_userN. In the design of Zookeeper server, as shown in Fig. 3,
the top-level directory remains unchanged, and the next-level directory is represented
by <common_name>, which means that the configuration file is managed by different

232 M. Zhang et al.

users. Its subdirectories contain different users <user>, which are divided into <label>
according to the configuration content. The coarse granularity of label setting is deter-
mined by the logic of the actual configuration file, which is generally determined when
the configuration file is generated. Each child node of the configuration file is stored in
Zookeeper, and its path is represented as /Middle_ware/common_name/user_n/label_n.

<Middle_ware>
7777777 1
} <{common_name>
T T |
| |
| } {userl>
| F-————— ‘
! I
! I <labell>
| 1
| |
! } {conf>
} | interfaces
| bocoooosoo
|
I I .
| | id
1. beeo oo
| <version>
I Bl
| | current
I Fo———————
|
} history
p———————=
<Middle_ware>
_______ 1
| <common_name>
|
T T T T |
| |
| I <user_n>
I } ,,,,,, T
\ | <label n>
|
| |
| |
! } <conf n>
} | interfaces_n
| bocoooosoo
|
I I .
I | id n
0 L S
| <version_n>'
| Bl
| | current_n
I Fo———————
|
} history n
P———————=

Fig. 3. Configuration Application Node Structure-User Common Management

(2) Implementation of profile update synchronization
Each user application needs to load the local configuration file before starting, and
the configuration file can be started normally only after the initialization parameter
verification, and each time the configuration file is updated, it needs to be synchro-
nized on each user server. In order to automatically obtain configuration files from
Zookeeper, the design takes into account the need to read the data of Znode nodes

Design and Research of Multi-user Distributed Configuration Management 233

before the application starts. The watch option is set in all reading operations of
Zookeeper, such as getdata, exists and getchildren, and registered on the Znode
node. As long as the data content of the node changes, the Zookeeper client will
sense the event change at the first time, thus realizing the automatic acquisition of
configuration files.

When the data content of Zookeeper node changes, the callback function of
watch this Znode node will be triggered. This function re-parses the contents of the
configuration file and refreshes the data values stored in the memory, thus realizing
the real-time update of the configuration file. In order to prevent abnormal events
such as downtime of Zookeeper server, the updated configuration file is generally
permanently written into the local storage file.

Using Zookeeper publish/subscribe mechanism to realize the synchronization of
configuration files between configuration management center and user application
centers. The publisher publishes the data on the nodes or sub-nodes of Zookeeper,
and each user application center acts as a subscriber to view and subscribe the
published data. Subscribers register the node they need with the server, and if the
data of this node changes, they will send the watch event to the client. After receiving
the event change notification message, subscribers will get the latest data from the
server. To ensure the consistency of configuration, Zookeeper needs to support real-
time synchronization of distributed configuration application nodes on each server.
At the same time, because of the single view feature of Zookeeper, that is, no
matter which server subscribers connect from, they will get the same configuration
information, thus solving the single point failure problem of Zookeeper server. Once
a server fails, other servers in the cluster can still guarantee the reliability of the
system through the campaign mode.

4 Test

In order to verify the reliability and synchronization time of the scheme, the test environ-
ment deployed the same Zookeeper service on 8 servers with the same performance in a
cluster mode, selected 8 users, established a connection with Zookeeper instance through
user middleware, and then created a configuration application node in the service cluster,
and set the node as listening state. When the maintainer needs to modify the content of
the application file configured by the user, he only needs to select the corresponding
configuration file through the Web page and modify the content of the configuration file
accordingly. It can be seen that the content of the corresponding configuration appli-
cation node in Zookeeper has been modified, while the latest modification time of the
configuration file of this user node has been updated to the current time, and the content
is consistent with the modified one.

(1) User-managed profile separately
Assuming that users manage their own configuration files separately, and each
user manages three configuration files, the new synchronization method is almost
completed in seconds, while the traditional file transfer to each server takes nearly
5 min to complete a synchronization.

234 M. Zhang et al.

(2) Users jointly manage the same profile

In this mode, eight users log on the Web page at the same time to operate the same
configuration file. It can be seen that the content of the corresponding configuration
application node in Zookeeper has been modified at the same time, and the latest
modification time of monitoring this node is the time when the last user finished
the configuration, and the content is consistent with that after modification. The
synchronization time is also seconds, while in the traditional mode, each user needs
to operate the same file in turn, and then transmit it to each server through the file.
It takes nearly 20 min to complete a synchronization.

5 Summary

With the rapid increase of the number of servers, in complex aerospace system appli-
cations, the traditional way of logging in different servers by maintenance personnel
to update configuration files synchronously is inefficient and prone to errors. At the
same time, the coupling degree between the services of each user is getting higher and
higher, so it is difficult to ensure that each user configures and manages a configuration
file separately. This paper presents a distributed configuration management scheme for
multi-users based on Zookeeper, the content of configuration files are stored in Zookeeper
according to nodes, and the publishing/subscribing mechanism of Zookeeper is used.
The synchronization of configuration files between configuration management center and
each user application center is realized, version management is realized by Bitkeeper
technology, and daily configuration file maintenance is realized by B/S architecture.
Its server campaign mode improves the usability of the system. This scheme not only
ensures the consistency of user profiles, but also ensures that there is no need to restart
the service during operation. Under the condition that the configuration files managed by
users alone and the same configuration files managed by users together, the second-level
synchronous update can be realized, which greatly improves the efficiency of operation
and maintenance.

References

1. Zhang, K.: Space technology changes life. Sino-Foreign Exch. 5, 350 (2019)

2. Xie, Y., Qin, Z., Huang, H.: Review and prospect of military aerospace technology. Flight
Missile 15-19 (2002). 10.3969/J. ISSN.1009-1319.2002.11.009

3. Chen,J.,etal.: Inventory of foreign aerospace technology developmentin 2019. Natl. Defense
Sci. Technol. Ind. 12, 19-21 (2019)

4. Feng, K., Huang, J., Huang, Z.: Development and application of space system safety risk
analysis technology. Sci. Technol. Inform. 22, 393-395 (2010). https://doi.org/10.3969/1J.
ISSN.1001-9960.2010.22.344

5. Meng, R.: Reliability and security of aerospace system software. Qual. Reliab. 4, 10-13 (1992)

6. Xing, Z., et al.: Architecture design of software defined spacecraft system. Spacecraft Eng.
30(5), 1-8 (2021). https://doi.org/10.3969/].ISSN.1673-8748.2021.05.001

7. Chen, D., Chang, G.: Development and application of ZooKeeper. Comput. Programm. Skills
Maintenance 2017(21), 35-36, 42. https://doi.org/10.3969/J.1SSN.1006-4052.2017.21.014

https://doi.org/10.3969/J.ISSN.1001-9960.2010.22.344
https://doi.org/10.3969/J.ISSN.1673-8748.2021.05.001
https://doi.org/10.3969/J.ISSN.1006-4052.2017.21.014

10.

11.

12.

13.

14.

Design and Research of Multi-user Distributed Configuration Management 235

. Wang, Z.: Talk about zookeeper. Comput. Nerd 15, 76 (2018). https://doi.org/10.3969/j.issn.

1672-528X.2018.15.075

. Ren, A., Feng, J., Zhu, Y.: Research and implementation of database synchronization based

on Zookeeper service. Inform. Syst. Eng. 7, 116-117 (2020). https://doi.org/10.3969/J ISSN.
1001-2362.2020.07.053

Feng, S., et al.: Research on distributed ICE middleware based on Zookeeper. Comput. Syst.
Appl. 27(12), 222-226 (2018). https://doi.org/10.15888/j.cnki.CsA.006693

Miao, F.,, Yan, Z., Dai, L.: Design and implementation of configuration management center
based on Zookeeper. Railway Comput. Appl. 27(10), 26-29 (2018). https://doi.org/10.3969/
j-1ssn.1005-8451.2018.10.006

Li, R., Ben, Y.: High availability of services through tomcat manager and Zookeeper.
Commun. Power Technol. 35(9), 177-178 (2018). https://doi.org/10.19399/j.cnki.tpt.2018.
09.070

He, H., Wang, Y., Shi, L.: Research on data synchronization based on ZooKeeper service in
distributed environment. Inform. Netw. Secur. 9, 227-230 (2015). https://doi.org/10.3969/;.
issn.1671-1122.2015.09.050

Deng, C.: Research and Application of Distributed Framework Based on ZooKeeper. Three
Gorges University, Hubei (2017). https://doi.org/10.7666/D.D01233894

. Nanjing Linghua Microelectronics Technology Co., Ltd.: Distributed data exchange method

based on ZooKeeper: CN202210232173.0. 6 May 2022

https://doi.org/10.3969/j.issn.1672-528X.2018.15.075
https://doi.org/10.3969/J.ISSN.1001-2362.2020.07.053
https://doi.org/10.15888/j.cnki.CsA.006693
https://doi.org/10.3969/j.issn.1005-8451.2018.10.006
https://doi.org/10.19399/j.cnki.tpt.2018.09.070
https://doi.org/10.3969/j.issn.1671-1122.2015.09.050
https://doi.org/10.7666/D.D01233894

	Design and Research of Multi-user Distributed Configuration Management Based on Zookeeper
	1 Introduction
	2 Zookeeper Introduction
	3 Implementation Scheme
	4 Test
	5 Summary
	References

