
Chapter 12
Risk and Reliability Analysis in the Era
of Digital Transformation

Fatemeh Afsharnia

Abstract Evolution of Industry 4.0 and the integration of the digital, physical, and
human worlds, reliability and safety engineering must evolve in order to address the
challenges currently and in the future. This chapter aimed to describe the applica-
tion of digital transformation in the reliability engineering and risk analysis. In this
chapter, the principle of digital transformation is introduced as well as some of the
opportunities and challenges in reliability engineering. New directions for research
in system modeling, big data analysis, health management, cyber-physical system,
human–machine interaction, uncertainty, jointly optimization, communication, and
interfaces are proposed. Various topics may be investigated individually, however,
we present here a perspective on safety and reliability analysis in the era of digital
transformation that would be suitable for discussion and consideration by scientists
interested in this topic. The digital transformation combines software and systems
engineering to build and run large-scale,massively distributed, fault-tolerant systems.
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IoT Internet of Things
IT Information technology
ML Machine learning
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FMEA Failure modes and effects analysis
HAZOP Hazard and operability methodology
MBE Model-based engineering
GTST-MLD Goal tree-success tree and master logic diagram
STPA System theoretic process analysis
CIA Confidentiality, integrity, and availability

12.1 Introduction

Global digitization can improve reliability and reduce costs, so maintenance
managers need to be more ambitious in their move toward digital maintenance [1].
With the digitization of maintenance operations and reliability in heavy industries, it
is expected that the availability of company assets will increase by 5–15% and their
repair and maintenance costs will also decrease by 18–25%.

The decision-making processes that support maintenance and reliability opera-
tions may be sped up and standardized with the aid of new digital technologies.
For instance, reliability teams may plan and manage repair or replacement decisions
throughout the lifecycles of individual assets or whole fleets with the use of digital
asset management systems. On the other hand, new digital technologies can assist
teams in selecting the best maintenance strategy (e.g., run-to-fail, scheduled preven-
tative maintenance, or condition-based maintenance) for each equipment, as well as
they can promote reliability-centered maintenance [2].

With the advent of the Internet and the widespread use of information technology,
manufacturing industry has been impacted by digital information technology. As
the digital, physical, and human worlds increasingly integrate, the industry under-
goes deep transformation, and emergence of the Fourth Industrial Revolution called
Industry 4.0. This technology offers opportunities for factories to be used as open
platforms and distributed systems, where they can operate faster, more efficiently,
and with a more flexible and resilient supply chain [3].

Basedon the change in themanufacturing environments and the increasing compe-
tition among companies, we need a new concept to define and build manufacturing
factories. This is because the future industrial factory must work as a flexible,
resilient, and affordable system. To illustrate this new concept more clearly, the
past Industrial Revolutions are examined in this section [4].

First Industrial Revolution used steam power to cause major changes in industries
in the eighteenth century. Second Industrial Revolutionwasmade possible by electric
power and assembly lines. During the Third Industrial Revolution, computers and
information technology became integral parts of manufacturing as well as computer-
aided systems. A major feature of the Fourth Industrial Revolution is the strong
use of automation and data exchange in manufacturing. Cyber-physical systems, the
Internet of Things (IoT), 3D printing, digital twinge, advanced analytics, and cloud
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Fig. 12.1 Overview of industrial revolutions over time [7]

computing, among others are used in the new systems [5]. An illustration of the
transformation takes place is shown in Fig. 12.1.

In order to fully utilize digitalization, cyber-physical system integration and intel-
ligent control, industrial systems must process digitalization and implement cyber-
physical system integration. In addition to efficiency increases, supporting systems
need to be integrated into themain system, such asmaintenance, logistics, and supply
chain.We deal with a smart system that consists ofmany systemswith dynamic struc-
ture. By changing the manufacturing environment, the system speed and flexibility
increase. Therefore, smart manufacturing and Industry 4.0 investment have been
increasing rapidly and several countries have focused on this subject. A variety of
research methods have also been used to introduce and analyze Industry 4.0 and
smart manufacturing systems as well [6].

In order to implement Industry 4.0, several fundamental requirements must be
met [8]:

• Integrated enterprise systems and interoperability
• An organization that is distributed
• A model-based approach to monitoring and controlling
• Environments and systems that are heterogeneous
• A dynamic and open structure
• Teamwork and collaboration
• Human-to-machine integration and interoperability
• The ability to scale, be agile, and be fault-tolerant
• A network of interdependence
• Collaborative manufacturing platforms that are service-oriented
• Decision support systems based on data-driven analysis, modeling, control, and

learning.
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Additionally, different types of technological innovations should be implemented
to establish a smart factory [9–11]. There are several technologies involved, such
as software, advanced collaborative robotics, configurations that are modular and
adaptable, high-speed data transfer systems, and others. As a prerequisite to a fully
smart system, we need a smart supply chain, smart maintenance system, and smart
labor. From a technical standpoint, this type of system presents a number of chal-
lenges. This has prevented some companies from implementing this idea and there
is still a long way to go.

It is well known thatmanufacturing systemsmust be reliable and readily available.
Design, implementation, and utilization processes should include considerations for
security, safety, and maintainability. Therefore, when a smart factory idea is inves-
tigated, these challenges and opportunities must be considered from a reliability
engineering point of view. The rest of the chapter explores smart reliability analysis
and smart safety management based on big data, Internet of Things, cyber-physical
system, and so on.

12.2 Reliability Analysis

12.2.1 Big Data and Data Processing

Intelligent systems incorporate advanced instruments and facilities to collect and
analyze data at different phases in the life cycle of a product, such as raw materials,
machine operations, facility logistics, quality control, product use, and warranty
duration. This data plays a crucial role in smart systems, and big data empowers
companies to developmore flexible and effective strategies to compete on themarket.
It is imperative to store and analyze the data collected from manufacturing systems.
As industrial development progressed and technology was integrated with manufac-
turing, as well as the use of computerized systems, data is collected and stored on
a machine. In recent years, the capabilities of information technology have rapidly
grown up and advanced technologies (e.g., big data analytics, Internet of Things,
cloud computing, and artificial intelligence) are becoming more prevalent in indus-
trial and business systems. By integrating IT with systems, a new paradigm is created
called Industry 4.0. A similar pattern of data evolution can probably also be assumed
for other systems; Fig. 12.2 illustrates how data evolved in manufacturing systems.

The big data collected must be processed and applied in order for system perfor-
mance to improve. Different types of parameters with different quality and forms
are contained in this data due to the use of different sensors and sources. Various
types of data may be collected, including video, voice, electronic signal, image, and
others, and these should be preprocessed, processed, and analyzed before they can
be applied. Data from crude sources is not valuable and may also contain noisy
data, therefore, the data should be converted into specific information content and
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Fig. 12.2 History of data volume variety and complexity in manufacturing systems [12]

context that users can directly understand. In order to achieve this, we need advanced
methods such as cloud computing, neural networks, and deep learning.

In recent decades, cloud-based big data processing technology has been studied
as an interesting topic, and various computer models are planned based on different
platforms and focuses, such as stream-based, batch-based, directed acyclic graphs-
based, graph-based, interactive and visual processing.

Neural networks are a powerful tool in reliability engineering, particularly for
predicting how long equipment will be usable. Although artificial neural networks
(ANN) are beneficial for data processing, deep learning is more effective. Reduced
operating expenses, improved productivity and reduced downtime, keeping up with
changing customer demand, improved visibility, and extracting more value from
operations for worldwide competitiveness are all points of interest in deep learning.

As computing techniques and data processing have advanced, computer-aided
engineering systems and designmethods have improved, for instance, different kinds
of failure in the system are nowmodeled and evaluated by simulations. In the utiliza-
tion stage, this capability provides a greater understanding of failure mechanisms
and how to avoid them. Using these capabilities, a reliability engineer can optimize
the predictability of a new product in the design phase. Conversely, designers apply
artificial intelligence (AI) and deep learning to their own design processes and to
new products. It will be a challenge for engineers to use these tools in their own
designs in order to optimize final designs more quickly [13]. The dynamic behavior
of the system is another challenge in big data processing. System modeling requires
the use of a model that adapts to the age, degradation behavior, and condition of the
system. Because the system can be influenced by the data collected in real time, the
pre-defined model could be changed. The topic of model updating is therefore an
interesting one in this field [3].
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12.2.2 Internet of Things

IoT in maintenance program can help increase safety, reliability, efficiency, connec-
tivity, and communication [14, 15]. Figure 12.3 depicts the increase growth of IoT
devices from 2015 to 2025. The production capacity of a manufacturing plant is
reduced during equipment breakdowns. IoT-based predictive maintenance could:

• Increase the reliability and availability of equipment and machines;
• Reduce costs;
• Improve uptime;
• Reduce the risks of safety, health, environment, and quality; and
• Extend the lifetime of an aging asset [16].

By identifying a fault before it occurs, IoT predictive maintenance allows
machines to be maintained in advance. A machine’s condition can be monitored
in real time by Internet of Things maintenance systems. The data is analyzed by
software to create performance reports. The architecture of IoT-based predictive
maintenance is illustrated in Fig. 12.4.

Fig. 12.3 IoT devices growth during 2015–2025 [17]
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Fig. 12.4 IoT-based predictive maintenance architecture

Identifying key factors that determine equipment’s health is necessary before
proceeding to technical details. As soon as these variables are determined, equipment
is outfitted with sensors to collect information about them and send it to the cloud for
processing. Gateways are required to transfer sensor data to the cloud—it cannot pass
directly. In field gateways, the data is filtered and preprocessed. Connecting various
gateways via various protocols is possible with a cloud gateway, which enables data
transmission and ensures secure data transmission. Streaming data processors then
receive the sensor data that was entered into the cloud part. Data lakes are used
to store data streams and to transmit them quickly and efficiently to data storage,
enabling continuous flow of data. The data collected by sensors is stored in a data
lake. Currently, the data is raw, so it may contain inaccurate or erroneous information.
It is displayed as a collection of measurements taken at the corresponding time by a
number of sets of sensor. In order to gain insight into the health of the equipment,
the data is loaded into a big data warehouse. It contains vibration, temperature, and
other parameters measured at a corresponding time and contextual information about
equipment’ locations, types, dates, etc.
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Machine learning (ML) algorithms are used to analyze the data after it has
been prepared. Machine learning algorithms are used to detect abnormal patterns
in datasets and reveal hidden correlations. Predictive models take into account the
patterns in the data. Predictive models are built, trained, and then applied to diag-
nose whether a fault occurs in an equipment, identify the weak points of equipment,
or predict equipment’ remaining useful life. Predictive models which are used for
predictive equipment maintenance may follow two approaches:

• Regression approach: These models indicate how many days/cycles remain
before an equipment will reach the end of its useful life.

• Classification approach: Using this approach, we can predict whether equipment
is likely to fault and determines whether their properties are lower than usual.

The update of predictive models usually occurs once a month, and then they
are tested for accuracy. If the result does not match the expected one, it is changed,
retrained, and tested again until it works properly.A significant amount of exploratory
analytics should be performed before moving on to machine learning. In machine
learning datasets, data analysis is used to detect relationships, trends, and insights.
Furthermore, several technological assumptions are evaluated during the exploratory
analytics stage to aid in the selection of the best-fit machine learning algorithm. An
IoT-based predictive maintenance system can inform users of a likely equipment
failure using user apps.

For instance, Fig. 12.5 illustrates the implementation of IoT-based predictive
maintenance in a production line. Sometimes, physical inspections of production
line equipment require personnel to enter dangerous environments to inspect the
facilities, which may not be possible. Factories may use IoT-based predictive main-
tenance to anticipate possible breakdowns and boost the productivity of highly essen-
tial equipment. The solution measures temperature, vibration levels, and the other
equipment’s properties,with sensors deployed throughout the equipment. The system
collects real-time sensor data and sends it to the cloud for analysis, prediction, and
assessment [18].

12.2.3 Cyber-Physical System

Cyber-physical systems (CPS) are intelligent systems that include engineered
networks with the ability to interact with physical and computational components
(based on algorithms). These systems are highly interconnected and integrated,
providing new functions to improve and enhance the quality of life and leading
to technological advances in critical areas such as personal health care, emer-
gency response, traffic flowmanagement, smart manufacturing, national security and
defense, and produce and consume energy. Currently, in addition to CPS, there are
many other words and phrases that describe similar or related systems and concepts,
such as Industrial Internet, Internet of Things (IoT), Machine-to-Machine (M2M),



12 Risk and Reliability Analysis in the Era of Digital Transformation 277

Fig. 12.5 IoT-based predictive maintenance in a production line

smart cities, and so on. There is a lot of overlap between these concepts, espe-
cially between CPS and IoT, as they are sometimes used interchangeably (Fig. 12.6).
In 2013, the International Telecommunication Union (ITU) defined the Internet of
Things in a recommendation as follows:

A global social information infrastructure created by the interconnection (physical and
virtual) of objects, based on existing and evolving information and communication tech-
nologies, with the ability to work with each other and enable the provision of advanced
services.

The true value of the Internet of Things is determined when the data gener-
ated by sensors, devices, machines, and terminals of the Internet of Things can be
received, interpreted, and processed through predicted systems, andfinally, the neces-
sary commands given to the appropriate operators. In other words, the true value of
the Internet of Things for manufacturers lies in the analysis that results from the
cyber-physical models of machines and systems. In the fourth generation industry,
the systems that can add value to the Internet of Things are cyber-physical systems
(CPS). Objects in the IoT include physical world objects (physical assets) and virtual
world objects, i.e., information. When the IoT is integrated with sensors and actu-
ators, the resulting technology becomes an example of more general systems, such
as cyber-physical systems, which include technologies such as smart grids, smart
homes, smart transportation, and smart cities. The cyber-physical system is an inter-
face between the human world and the cyber sphere, enabling the data collected by
the system to be transformed into operational information and, ultimately, to optimize
processes by interacting with physical assets.
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Fig. 12.6 Internet of Things and cyber-physical systems

When data is collected fromphysical assets using sensors embedded in themusing
IoT technology, large volumes of data are generated and made available. Unfortu-
nately, existing technologies are not enough to categorize and manage this huge
amount of data that is generated daily. In addition, analytical methods and algo-
rithms are not mature enough to use this large amount of data and have not grown
enough to be able to intelligently and efficiently process and analyze all generated
data. This is considered as a big data challenge.

From the similarity of IoT and CPS in their use of network, Internet, and sensors,
it can be concluded that they are different definitions of a common concept. Despite
this similarity, IoT and CPS are not the same thing. The conversion of data into
information or tasks has placed a special emphasis on fault detection and prediction.
For instance, the use of nonlinear data analysis methods in robotic applications and
the application of multiple baselines to achieve a health machine model that analyzes
data related to vibration, temperature, and torque and diagnoses the faults of their
axis.

To meet the needs of the cyber surface, it is necessary to use historical records and
algorithms that are learned over time to obtain reliable information of the health and
estimated life of machines. As the machine has several decreases in performance, the
development of health monitoring algorithms based on historical data is important.
Although analytical methods for practical applications in industry are complex, life
predictionmethods need to respond to changes in operating conditions and the impact
of maintenance operations on life estimation. The cyber provides more reliable infor-
mation about the health status of the machines compared to the information obtained
from the traditional method of condition monitoring. In the traditional condition
monitoring, the condition of the machine is compared to the condition at start-up
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or the ideal condition, which is called the “baseline”, and the health status of the
machine is determined by their differences and the trend of changes.

As a perception-level cascading system, it must include decision-making algo-
rithms and support systems that are able to suggest appropriate maintenance and
production measures through the use of condition-based maintenance and predictive
maintenance in the form of CPS based on the health of monitored machines and
their reliability value. Currently, there is no mature and fully integrated system that
combines machine health with decision-making processes in a way that reflects the
true values of machine health. Therefore, for many industries, achieving the level of
perception is a major challenge. For example, according to studies based on “alter-
natives theory [19]” and by estimating the remaining life of a physical asset (which
is the output of the health monitoring system), the appropriate time for the mainte-
nance and repair operations can be decided. Alternatives theory is an idea that has
been used for many years to buy and sell a fixed asset item at the end of its useful
life or before. At this time, the amount of information that needs to be processed is
so large and beyond the capacity of human decision makers that it is necessary to
first provide decision-making systems with various options to operational staff, engi-
neers, or maintenance staff in order for them to make the final decision. The studies
showed that current technologies in practice cannot adequately give machines the
ability to self-adjust or self-configure, and there are many research opportunities
for the development of this aspect of CPS. For instance, although much work has
been done to control vibrations and unbalance of machines, to neutralize the effect
of chatter on rolling racks, or to control machine tools, there is a long way to go
before automatic rotating machines can be configured. Nevertheless, knowing the
capabilities of cyber-physical systems allows for the development of a promising
design approach for CPS-based maintenance applications. Interconnectivity, which
was covered in the previous section, gives access to awealth of data. However, having
access to data alone does not offer a major benefit. Therefore, managing, classifying,
and processing data so that PHM algorithms may further analyze it requires a robust
and flexible technique. This approach has to be comprehensive enough to fully take
use of cyber-physical systems’ benefits.

Lee and Bagheri [20] suggested the “Time Machine Methodology for Cyber-
Physical Systems” that is a methodical approach and being used to deploy CPS in
maintenance applications. This strategy is in charge of correctly arranging the data
that is already accessible in a big data environment so that it is ready for use in PHM
algorithms and that every single asset in the fleet has a time machine record, which
represents a type of digital. This cyber twin’s approach is to gather and clean up data
in preparation for future use. Other information that is taken from the cyber side
includes sensory data as well as installation history, operating parameters, system
configuration, maintenance events, and others. The stability of the cyber model over
time is its most significant benefit. The actual asset will eventually collapse, but
its digital duplicate will continue to maintain its data indefinitely. The schematic
representation of CPS-based maintenance strategy is depicted in Fig. 12.7.
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Fig. 12.7 CPS-based maintenance strategy [20]

12.3 Assessment of Safety Risks

An assessment and management of risk is focused on identifying assets, analyzing
vulnerabilities, and evaluating and estimating damages that could occur. Generally,
risk assessment can be roughly divided into qualitative and quantitative aspects.
Quantitative assessment is based heavily on expert experience, while qualitative
entails calculating the exact risk value of the system. There have been many methods
of assessing safety risk to date; below are some typical technologies for safety.

12.3.1 Big Data

The big data mainly contains the five aspects in detail which include basic theories of
safety big data, big data-driven safety management, big data-driven risk assessment
and forecasting, big data application platform and design scheme in safety manage-
ment, and big data-related technology developments in safety management [21]. The
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Table 12.1 Security objectives in CPS versus IT systems in order of priority

Priority CPS IT systems

Low Confidentiality Availability

Medium Integrity Integrity

High Availability Confidentiality

application of big data in the field of safety science precedes its theoretical studies
without a doubt [22].

12.3.2 Cyber-Physical System

Cyber-physical system places great importance on risk assessment andmanagement.
When CPS was first developed, system designers gave more consideration to safety
[23]. As a result of interactions between the environment and the control system, the
control system itself, and the control system and authorized users, safety risks may
occur. TheCIA triad, which is commonly known as the three basic security objectives
(confidentiality, integrity, and availability) in CPS and IT systems, represents the
fundamental security objectives [23–25]. In contrast with traditional IT systems, CPS
places the highest priority on availability. According to Table 12.1, these fundamental
objectives are important for both CPS and IT systems, but their priorities are different
[26, 27]. The goal of availability and safety is to keep the system under a pre-defined
and acceptable threshold [28].

CPS safety risk assessment methods have been developed in many ways, some
examples are Fault tree analysis (FTA), Failure modes and effects analysis (FMEA),
Hazard and operability methodology (HAZOP), Model-based engineering (MBE),
Goal tree-success tree and master logic diagram (GTST-MLD), system theoretic
process analysis (STPA), and Temporary Structures Monitoring [29].

From the foregoing, it appears that the application of digital tools will help to:

• Accurately calculate reliability due to online condition monitoring;
• Improved productivity of staff and reduced human labor;
• Efficient maintenance management;
• Better use of equipment and assets;
• Cost-effective operation;
• Improved work safety and reduce risk;
• Reduce the machine stoppage; and
• Reduce the costs related to major repairs.
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12.4 Conclusion

In the fourth generation of industry, big data, the Internet of Things, cyber-physical
system, and quick response to change provide an opportunity for reliability engi-
neering to improve system reliability. Additionally, complexity increases, intercon-
nections and dependencies between components, dynamic behavior, and advanced
components, such as CPSs and sensors, make reliability engineering challenges
for designers. It is necessary to update traditional methods and to develop new
frameworks for reliability, risk, safety, and security.

Besides that, by using IoT-based predictive maintenance, equipment life can be
extended by 30%, time-based maintenance can be eliminated, and equipment down-
time decreased by 50%. However, a well-thought-out architecture with an emphasis
on machine learning is required for a mature and dependable predictive maintenance
system.

In this chapter, the application of newmethods and tools such as big data and data
processing, IoT, and cyber-physical system was described to analyze the reliability
and risk of equipment. For future research, it seems necessary that the advantages and
benefit–cost analysis of digital tools are compared to traditional tools and methods.

Our suggestion is that managers don’t limit themselves to using a specificmode of
digital tools, but think about how advanced digital analytics techniques can transform
their maintenance and reliability system. This means constantly looking for oppor-
tunities to improve the use of data and user-centered design principles, in order to
digitize processes. Sustained efficiency requires a combination of new digital tools,
changes in asset strategy, and improves reliability performance.
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