
Chapter 10
Reliability Analysis of Process Systems
Using Intuitionistic Fuzzy Set Theory

Mohammad Yazdi, Sohag Kabir, Mohit Kumar, Ibrahim Ghafir,
and Farhana Islam

Abstract In different engineering processes, the reliability of systems is increas-
ingly evaluated to ensure that the safety–critical process systems will operate within
their expected operational boundary for a certain mission time without failure.
Different methodologies used for reliability analysis of process systems include
FailureMode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), and Bayesian
Networks (BN). Although these approaches have their own procedures for evaluating
system reliability, they rely on exact failure data of systems’ components for relia-
bility evaluation. Nevertheless, obtaining exact failure data for complex systems can
be difficult due to the complex behavior of their components, and the unavailability of
precise and adequate information about such components. To tackle the data uncer-
tainty issue, this chapter proposes a framework by combining intuitionistic fuzzy set
theory and expert elicitation that enables the reliability assessment of process systems
using FTA. Moreover, to model the statistical dependencies between events, we use
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the BN for robust probabilistic inference about system reliability under different
uncertainties. The efficiency of the framework is demonstrated through application
to a real-world system and comparison of the results of analysis produced by the
existing approaches.

Keywords Process safety · Intuitionistic fuzzy set · Reliability · Bayesian
networks · Expert elicitation · Decision-making

10.1 Introduction

Chemical process industries are one of themost hazardous sectorswhere the potential
of occurrence of serious undesirable events, rare accidents, mishaps, or near misses
is significant. Such unexpected events can directly or indirectly cause serious injuries
like loss of life, serious and immutable environmental damage, loss of material and
equipment assets, and decrease the forgotten factor as the reputation of the company.
Fire and explosion, the release of toxic, and hazardous materials are common exam-
ples of the abovementioned events [1]. Catastrophic accidents such as the PiperAlpha
fire and explosion in 1988, BP explosion in 2005, and Deepwater Horizon tragedy
in 2010 reveal the tragic effects of major accidents in the chemical process industry
[2]. Thus, the prediction of the occurrence of unexpected events and subsequent
consequences has a high necessity to assure the safe operation of the system and to
prevent the upcoming occurrence of similar events. In this regard, safety and risk
analysis can help to prevent the occurrence of unwanted events and develop opera-
tional mitigation actions [3]. Several qualitative and quantitative methods, including
fault tree analysis (FTA), event tree analysis (ETA), failure mode and effect anal-
ysis (FMEA), hazard and operability study (HAZOP), and risk matrix, have been
widely used in the risk analysis of chemical process industries. Among the available
techniques, FTA is a well-established technique, which can graphically describe the
relationships between the cause and effects of different events in the form of Basic
Events (BEs), Intermediates Events (IEs), and Top Event (TE). FTA can provide
both qualitative and quantitative analysis by presenting undesired events and giving
probabilistic analysis from root causes to the consequence [4].

FTA uses the probabilities of BEs (located at bottom of the tree) as quantitative
input to calculate the probability of the undesired event as TE (located at the top of
the tree). Therefore, the probability of all BEs as crisp values or probability density
functions (PDF) is required for quantitative analysis [5]. However, in the real-world
industry, because of the lack of knowledge and missing data or systematic bias,
the availability of all necessary data cannot be guaranteed. Thus, collecting data
from varieties of sources having different features such as dissimilar operating envi-
ronments, industrial sectors, and experts from diverse backgrounds is an important
solution, which has been widely used to obtain the known probability. In addition,
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even with consideration of exact probabilities or PDFs, intrinsic uncertainties may
remain because of different failuremodes, lack of knowledge of themechanism of the
failure process, and ambiguity of system experiences. Therefore, a robust method is
required for calculating the probability of BEs and addressing the uncertainty among
the data collection and analysis procedure [6, 7].

Experts’ knowledge has been used to obtain the BEs probability when objective
data are limited, incomplete, imprecise, or unknown [8]. The fuzzy set theory (FST)
introduced by Zadeh [9] has been demonstrated to be effective and efficient in data
uncertainty handling and computing the probability of BEs utilizing multi-expert
opinions. The previous studies generally used FST to acquire the probability of BEs
from impression and subjectivity in expert judgment. For example, Yazdi and Kabir
[10] proposed a framework to obtain the known failure rates from the reliability data
handbook and the unknown failure rate according to the experts’ opinions. Due to
the elicitation procedure considering the unavailability of sufficient data, fuzzy set
theory is used to transform linguistic expressions provided by experts into fuzzy
numbers. Subsequently, fuzzy possibility, crisp possibility, and failure probability
of each BEs are calculated. The risk matrix analysis framework proposed by Yan
et al. [11] considered potential risk influences such as controllability, manageability,
criticality, and uncertainty. The likelihood in the risk matrix has been calculated by
obtaining the probability of the TE of a fault tree. In the TE probability computation
process, the probabilities of the BEs of the fault tree have been obtained through
expert elicitation. The analytical hierarchy process (AHP) is utilized to improve the
accuracy of the failure probability data by minimizing the subjective biases of the
experts by quantifying their weightings. Yazdi and Kabir [12] revised Yan et al.’s
methodology as a new framework using fuzzyAHP and similarity aggregation proce-
dure (SAM) in the fuzzy environment to cope with available ambiguities of identified
BEs. All mentioned papers used a combination of FST and multi-expert knowledge
to approximate the BEs’ probabilities. However, the FST suffers from several short-
ages. The one worth mentioning is related to the uncertainty or hesitation about the
degree of membership. The FST cannot include the hesitation in the membership
functions. In this regard, Atanassov [13] extended conventional fuzzy set to propose
the intuitionistic fuzzy set (IFS), in which non-membership degrees and hesitation
margin groups have been included with the membership degrees. The IFS data are
more complete than the conventional fuzzy data that considers membership function
only [14]. In another example, it is demonstrated the use of IFSs to handle uncer-
tainties in FMEA [15]. Yazdi [16] utilized IFS and specifically intuitionistic fuzzy
numbers (IFNs) to develop a conventional risk matrix.

To the best of the authors’ knowledge, limited research has been conducted to
combine IFNs and multi-expert knowledge to address the issues of data uncertainty
in FTA. For instance, Shu et al. [17] utilized IFNs to analyze the failure behavior of
the printed circuit board assembly. A vague FTA approach has been proposed [18]
by integrating experts’ judgment into the analysis to calculate the fault interval of
system components. Afterward, for fuzzy reliability evaluation of a “liquefied natural
gas terminal emergency shutdown system”, Cheng et al. [19] used IFS with FTA.
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The weakest t-norm-based IFS has been used with FTA [20] to evaluate system reli-
ability. Recently, Kabir et al. [21] have utilized IFS for dynamic reliability analysis.

On the other hand, traditional FTA as well as fuzzy FTA are well known to have a
static structure and cannot consider the variation of risk due to the dynamic behavior
of the system. In addition, BEs are assumed to be independent in both methods and
they are considered to have binary states—failed and non-failed, whereas, in practice,
events can be in more than two states. Moreover, the effects of common cause failure
(CCF) in the reliability of systems are usually not considered in traditional FTA. Such
mentioned issues are commonly named as model uncertainty in risk analysis [22].
Thus, model uncertainty is recognized as a considerable limitation of risk analysis
methods. In this regard, a dependency coefficient method is introduced by Ferdous
et al. [23] to evaluate the interdependencies of BEs in static FT. The joint likelihood
function in the hierarchical Bayesian network is developed [24] to consider the
interdependencies among BEs in conventional FT. Besides, Hashemi et al. [25] used
the copula function technique to evaluate and model the interdependencies of BEs
to improve uncertainty analysis.

Bayesian networks (BN) have become a popular method, which has been widely
used to incorporate a variety of information types such as extrapolated data, experts’
judgment, or partially related data in risk analysis of process industries [26, 27]. Kabir
and Papadopoulos [22] provided a review of the applications of BNs in reliability
and risk assessment areas. Examples of such applications include risk analysis of fire
and explosion [28, 29], leakage [30, 31], human error [32–34], maintenance activity
[35, 36], and offshore and drilling operations [37–39] utilized BN as a probabilistic
interface tool for reasoning under uncertainty. BN used a chain rule or d-separation
to represent the causal relationships between a set of variables (in case of FTA is
BEs) considering the dependencies [40]. BN is also able to cope with the limitations
of conventional FTA as well as having a flexible structure. Several scholars have used
BN in parallel with FTA and addressed the shortages of the conventional FTA by
mapping FT into the corresponding BN [41–44]. Because of the modeling flexibility
provided by BN, the interdependencies of BEs can be effortlessly modeled by using
BN. BN can also model multiple states for BEs and common cause failure (CCF)
scenarios. Furthermore, to deal with the model uncertainty, BN can perform the
probability updating mechanism using Bayes’ theorem by adding new information
about the system over time.

The novelty and contribution of this work are utilizing the advantages of IFNs over
traditional FST to evaluate the TE probability of an FT. Besides, this chapter adopts
BN to allow dynamic risk assessment under uncertainty, where the BEs’ probabilities
are calculated based on the combination of subjective opinions and IFNs, and BN is
used to take into account the interdependencies of BEs as well as CCF. The rest of
the chapter is organized as follows. In Sect. 10.2, the uncertainty sources in chemical
process industries are reviewed. A short overview of the IFS theory is presented
in Sect. 10.2. In Sect. 10.3, the proposed methodology is described. Section 10.4
demonstrates the feasibility and efficiency of the proposed approach via a numerical
example with sensitivity analysis. Lastly, the concluding statements are presented in
Sect. 10.5.
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10.2 Background

10.2.1 Uncertainty Sources in Chemical Process Industries

The term uncertainty is widely used with a different meaning in the literature on risk
analysis. Several scholars claimed that uncertainty is equal to risk about the future
and accordingly risk is equal to uncertainty. Others stated that uncertainty and risk are
from two different schools and it has not been complicated to each other [40]. In this
chapter, it is assumed the terms risk and uncertainty are two different concepts. There
exist two distinct concepts of uncertainty in chemical process industries including
(i) uncertainty caused by physical unpredictability (aleatory uncertainty) and (ii)
uncertainty caused by insufficient knowledge (epistemic uncertainty) [45, 46].

The existence of aleatory and epistemic uncertainties in risk analysis of chemical
process industries implies that the probability of numerous risk factors cannot be
measured in an appropriate way when they are ambiguous and unknown. Referring
to aleatory uncertainty, the random behavior of some parameters in a system or its
environment should be stated such as inconsistency in weather conditions and exper-
imental data variability for BEs in FT. In contrast, epistemic uncertainty is related to
fuzziness, vagueness, or imprecision regarding the quality of chemical process safety,
particularly in the accident scenario identification and consequence modeling. In
reality, it is difficult to reduce aleatory uncertainty because of the intrinsic nature of a
system, whereas it is possible to reduce epistemic uncertainty when more knowledge
about the system is available over time. More information about the characteristics
of aleatory and epistemic uncertainties can be found in [47]. This study concentrates
on epistemic uncertainty.

During analysis, a certain explanation or assumption about the models leads to
model uncertainty. Moreover, mathematical and other analytical tools are utilized to
reduce properties of interest, ranging from structural, stochastic, human behavior,
accident, evacuation, dispersion model, etc. This study concentrates on the model
uncertainty caused by the independence assumptions among BEs in FTA. Thus, the
modeling capability of BN is used to assess the dependency among events to address
the abovementioned issue.

Parameter uncertainties are caused by the imprecisions and inaccuracies in the
input data used in the process safety analysis. These uncertainties are intrinsic due
to the imperfect nature of the available data, and the analysis process requires to be
based on partial knowledge. Nonetheless, it is believed that parameter uncertainty
is the easiest one to be quantified [48]. In the literature, to cope with parameter
uncertainty, it is commonly expressed by PDFs and Monte Carlo simulation-based
probability theory [49–51]. However, as mentioned earlier, PDFs are rarely easy to
obtain. In this chapter, IFNs are utilized to deal with parameter uncertainty, where
the probabilities of BEs are treated as IFNs that are derived from multi-experts’
knowledge.
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10.2.2 IFS Theory

The concept of the classical fuzzy sets has been generalized by Atanassov [13] into
IFS through the introduction of a non-membership function v Ã(x) indicating the
evidence against x ∈ X along with the membership valueμ Ã(x) indicating evidence
for x ∈ X and this admits an aspect of indeterminacy.

An IFS Ã in the universe of discourse X is given by

Ã = {〈x, μ Ã(x), v Ã(x)
〉 : x ∈ X

}
(10.1)

where μ Ã : X → [0, 1] and v Ã : X → [0, 1] are membership and non-membership
functions, respectively, where

0 ≤ μ Ãi (x) + v Ãi (x) ≤ 1,∀x ∈ X (10.2)

For every value x ∈ X , the valuesμ Ã(x) and v Ã(x) represent, respectively, the degree
of membership and degree of non-membership to Ã ⊆ X Moreover, the uncertainty
level or hesitation degree of the membership of x in Ã is denoted as:

π Ã(x) = 1 − μ Ã(x) − v Ã(x) (10.3)

If π Ã(x) = 0,∀x ∈ X , then the IFS becomes a classical fuzzy set.
If the membership and non-membership functions of an IFS Ã (i.e., μ Ã(x) and

v
(
Ã(x)
)
satisfy the following conditions given by Eqs. (10.4) and (10.5), then Ã in

X is considered as IF-convex

μ Ã(λx1 + (1 − λ)x2) ≥ min
(
μ Ã(x1), μ Ã(x2)

)∀x1, x2 ∈ X, 0 ≤ λ ≤ 1. (10.4)

v Ã(λx1 + (1 − λ)x2) ≤ max
(
v Ã(x1), v Ã(x2)

)∀x1, x2 ∈ X, 0 ≤ λ ≤ 1. (10.5)

If there exist at least two points x1, x2 ∈ X such that μ Ã(x1) = 1 and v Ã(x2) = 1,
then the IFS Ã in X is considered as IF-normal [52]:

An IFS Ã = {〈x, μ Ã(x), v Ã(x)
〉 : x ∈ R

}
is called an IFN if

(i) Ã is IF-normal and IF-convex.
(ii) μ Ã(x) is an upper and v Ã(x) is a lower semi-continuous.
(iii) Supp Ã = {x ∈ X : v Ã(x) < 1

}
is bounded (see Fig. 10.1).

A Triangular-IFN is an IFN given by

μ Ã(x) =

⎧
⎪⎨

⎪⎩

x−a1
a2−a1

, a1 ≤ x ≤ a2
a3−x
a3−a2

, a2 ≤ x ≤ a3
0, otherwise

(10.6)
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Fig. 10.1 Graphical
representation of IFNs
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(10.7)

where a′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a′

3. This TIFN is denoted by Ã =(
a1, a2, a3; a′

1, a2, a
′
3

)
.

10.3 Material and Method

To introduce themethodology developed in this chapter, this section briefly describes
the framework as can be seen in Fig. 10.2.

10.3.1 Hazard Analysis

There are numerousmethods available for hazard analysis in different types of indus-
trial sectors. The initial step of all hazard analysis methods is identifying all possible
hazards. Therefore, well understanding of process function has a high necessity for
this purpose. All information about a process system should be collected to under-
stand its functionality appropriately. Then, any hazards which have enough poten-
tial to destroy the industrial equipment, surrounding environment, or harm to the
public should be considered [40]. HAZOP technique is based on the brainstorming
method that has enough capability to recognize hazardous systems and sub-systems
by employing a group of specialists, commonly a third-party company. Thus, this
study considers the outcome of HAZOP as a highly probable and severe event. In
fact, the HAZOP study is commonly in conducted process-based industries to iden-
tify the deviation as a pre-step fault tree analysis. However, considering the inherent



222 M. Yazdi et al.

4. BEs, IEs, and their logic 
relation identification

1. Process function 
collection  

2. Hazardous event 
selection 

3. FT diagram preparation

Hazard Analysis

9. MCS probability 
computation 

11. Different approach 
comparison 

10. TE probability computation 

Constructing FT 
and collecting data

Calculation 

5. BEs probability computation 

6. Experts opinions 
elicitation

7. Experts weight 
evaluation  

8. Experts opinions 
aggregation 

Expert system

12. Sensitivity analysis 

Fig. 10.2 The structure of the proposed method

features process, FMEA or other types of risk assessment method can also be carried
out.

10.3.2 Developing a Fault Tree and Collecting Data

After identifying an event as the TE of a fault tree, the rest of the tree is developed
from top to bottom in a downward direction. It should be noted that further analysis
of the FT is performed based on the TE. Therefore, the TE of the FT must be chosen
appropriately for further analysis. The TE is commonly specified as an accident
or hazardous event which can potentially be a cause of asset loss or harm to the



10 Reliability Analysis of Process Systems Using Intuitionistic Fuzzy Set … 223

public. After finalizing the development of an FT, the BEs that are put at the bottom
level of the tree (leaves) should be identified to facilitate further analysis. The logic
relationship between BEs, IEs, and TE is defined using Boolean OR and AND gates.

The reliability data such as the ones from OREDA [53] can be used to obtain the
failure rate of known BEs. Nevertheless, when there is a difficulty in using a relia-
bility handbook to obtain failure rates of rare events with unknown or limited failure
data, three popular methods, including expert judgment, extrapolation, and statistical
methods, can be utilized to estimate the failure rates [54]. The statistical method esti-
mates the failure rates by estimating the failure probabilities by performing a short
test on the practical data. In addition, statistical methods can be distinguished with
deterministic methods, which are suitable where observations are precisely repro-
ducible or are expected to be in this manner. The extrapolation method denotes
the utilization of a predicting model, equal condition, or the available reliability
data sources. The expert judgment method directly calculates probabilities based on
experts’ opinions on the occurrence of BEs. This study employs the expert judgment
method to estimate BEs’ occurrence probability. In this regard, a combination of
subjective opinions expressed by experts and IFNs can help assessors to deal with
the uncertainty that may arise during the analysis. In the following subsection, the
procedure of using an expert system is presented.

10.3.3 Use of the Expert System

Expert systems are convenient to use in quantitative analysismodels in circumstances
where the available situations make it difficult or even more impossible to make
enough observation to quantify the models using real data. Thus, expert systems are
commonly used to approximate the model parameter under ambiguous conditions.
Expert systems can also be used to improve the estimation, which is gained from
real data.

An expert provides his/her judgment about a subject based on knowledge and
experience according to his/her background. Thus, an employed expert will require
to respond to a predefined set of questions related to a subject, which can include
personal information, probabilities, rating, weighting factor, uncertainty estimation,
and so on. The experts’ opinions can be collected during an eliciting. An important
issue related to the elicitation process is that experts’ opinions should not be used
instead of rigorous reliability and risk analysis approaches, whereas it can be used
to supplement them where reliability and risk analytical approaches are inconsistent
or inappropriate.

10.3.3.1 Experts’ Opinion Elicitation

Due to the increased complexity of systems and the subjective nature of expert
judgment, no officially renowned approach has been developed for treating expert
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opinion. Once the elicitation process is finished, opinions are analyzed by combining
them to obtain an aggregated result to be used in the reliability analysis. Clemen
and Winkler [55] divided the elicitation and aggregation processes into two cate-
gories—behavioral and mathematical methods. Behavioral methods aim to create
some sort of group agreement between the employed experts. While, in mathemat-
ical methods, the experts expressed their opinion about an uncertain quantity in the
form of subjective probabilities. Afterward, suitable mathematical methods are used
to combine these opinions. The rationale behind using mathematical approaches for
the processing of experts’ opinions was provided in [56, 57]. Hence, in this study,
one of the mathematical methods is used to analyze experts’ opinions.

According to [58], probability can be considered as a numerical representation
of uncertainty because it offers a way to quantify the likelihood of occurrence of an
event. Therefore, it is much easier for the employed experts to use linguistic expres-
sions like high probable, low probable, and so on to express their opinions. Three elic-
itationmethods that have beenwidely used for subjective analysis are Indirect,Direct,
and Delphi. The basis of the Indirect method is to utilize the betting rates of experts
to reach a point of indifference between obtainable choices according to an issue.
The Direct method is the direct estimation of the degree of confidence of an expert
on some subject. The Delphi technique is the first organized tool for methodologi-
cally collecting opinions on a specific subject using a cautiously defined ordered set
of questionnaires mixed with summarized information and feedback resulting from
previously received responses [59, 60]. The selection of each method for a partic-
ular purpose should fulfill the rational consensus principles such as accountability
and fairness. In this study, among the abovementioned methods, Delphi, because of
having enough capacity for expert opinion elicitation, is selected for eliciting process.

10.3.3.2 Experts Weighting Evaluation

Once the experts’ opinion elicitation process is completed, the expert weighting
calculation is started. This step is necessary because, in real life, each employed
expert has a different weight according to his/her experience and background. Thus,
to obtain realistic results for the probability of each BE, the weight (importance of
the judgment outcome) of the employed experts should be identified. There are many
methods such as simple averaging besides many unmethodical techniques that may
be used for giving specific weighting to the experts. However, they cannot diminish
subjective bias and help domain experts to carry out the eliciting procedure in an
effective way.

AHP (analytical hierarchy process) introduced by Saaty [61] is a widely used
process in multi-criteria decision-making. This process breaks large decision prob-
lems into smaller ones and then uses a hierarchy of decision layers to handle the
complexity of the problems. This allows focusing on a smaller set of the decision at
a time. There exist criticism regarding AHP’s use of lopsided judgmental scales and
its inability to appropriately reflect the characteristic uncertainty and imprecision
of pair comparisons [62]. The verbal statements provided by the decision-makers
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in AHP could be unclear. Moreover, they regularly would choose to provide their
preferences as oral expressions instead of numerical quantities and the type of pair
comparisons used cannot properly reflect their decisions about priorities [63–66].
The abovementioned shortages represent that in most cases, the nature of decision-
making is full of ambiguities and complexities, and accordingly it is denoted that
most decisions are made in a fuzzy environment.

Let O = {o1, o2, . . . , on} is a set of objects and W = {w1, w2, . . . , wm} is a set
of goals. Therefore, the extent analysis values for m goals for each object can be
denoted as:

M1
gi , M

2
gi , . . . , M

m
gi i = 1, 2, . . . n (10.8)

where each of Mm
gi is a triangular fuzzy set.

Step 1. The fuzzy synthetic extent concerning the i-th object is denoted as:

m∑

j=1

M j
gi ⊗
⎡

⎣
n∑

i=1

m∑

j=1

M j
gi

⎤

⎦

−1

(10.9)

To get
∑m

j=1 M
j
gi the fuzzy addition operation of m extent analysis values for a

particular matrix is achieved as:

m∑

j=1

M j
gi =
⎛

⎝
m∑

j=1

l j ,
m∑

j=1

m j ,

m∑

j=1

u j

⎞

⎠ (10.10)

and afterward, the inverse of the vector is calculated as follows:

⎡

⎣
n∑

i=1

m∑

j=1

M j
gi

⎤

⎦

−1

=
(

1
∑m

j=1 l j
,

1
∑m

j=1 m j
,

1
∑m

j=1 u j

)

(10.11)

Step 2. The degree of likelihood of M2 = (l2,m2, u2) ≥ M1 = (l1,m1, u1) is
calculated as:

V (M2 ≥ M1) = sup
y≥x

[
min
(
μM1(x), μM2(y)

)]
(10.12)

It can be represented by Eq. (10.13).
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Fig. 10.3 The intersection between M1 and M2

V (M2 ≥ M1) = hgt(M1 ∩ M2) = μM2(d) =

⎧
⎪⎨

⎪⎩

1, if m2 ≥ m1

0, if l2 ≥ u1
l1≥u1

(m2−u2)−(m1−u1)
, otherwise

(10.13)

As seen in Fig. 10.3, d is the highest intersection point between μM1 and μM2 .

Step 3. The degree of likelihood that a convex fuzzy number is greater than k convex
fuzzy Mi (i = 1, 2, . . . , k) numbers can be obtained by:

V (M ≥ M1, M2, . . . , Mk) = V [(M ≥ M2) and (M ≥ M1)and . . . and (M ≥ Mk)]

= minV (M ≥ Mi ), i = 1, 2, 3, . . . k (10.14)

Suppose that d ′(Ai ) = min V (Si ≥ Sk) for k = 1, 2, . . . , n; k �= i . Now, the
given weight vector is denoted by:

W ′ = (d ′(A1), d
′(A2), . . . , d

′(An))
T (10.15)

where Ai (i = 1, 2, . . . , n) are n elements.

Step 4. Using normalization, the normalized weight vectors are:

WFAHP = d(A1), d(A2), . . . , d(An))
T (10.16)

where W is a non-fuzzy number.
The fuzzy linguistic variables are used to allow experts to provide their subjective

opinions reflecting nine-point essential scale. In this chapter, the linguistic variables
and their equivalent fuzzy numbers are used.
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10.3.3.3 Experts’ Opinion Aggregation

The experts’ opinion aggregation process can be completed in three phases including
(i) obtaining linguistic terms from experts describing the likelihood of occurrence
of BEs, (ii) mapping linguistic variables into the corresponding fuzzy numbers, and
(iii) applying an aggregation process under fuzzy environment.

Firstly, the engaged experts provided their judgements about the likelihood of
occurrence of each BE in the fault tree. Their opinions can be obtained in the form
of linguistic variables represented as IFNs.

As experts may have dissimilar opinions about a subject due to having a different
level of experience, background, and expertise, it is essential to aggregate multi-
expert opinions to reach an agreement. Different kinds of aggregation methods like
the arithmetic averaging method and similarity aggregation method (SAM) can be
utilized for this purpose. However, Yazdi and Zarei [56] pointed out the benefits of
such methods in the context of fuzzy FTA. It is concluded that SAM has enough
capability for this purpose. Therefore, an extension of SAM as described in [67]
is used in this chapter for the aggregation of IFNs. The SAM method contains the
following steps.

Step A. Mapping of linguistic variables into equivalent IFNs:

After each expert, Ek(k = 1, 2, . . . , n) provides his/her judgment about the occur-
rence possibility of each BE in the form of linguistic variables; accordingly, it is
transformed into the equivalent IFNs.

Step B. Degree of similarity computation:

The similarity Suv

(
Ãu, Ãv

)
between the opinions Ãu and Ãv of experts Eu and Ev

is evaluated as:

Suv

(
Ãu, Ãv

)
=
{

EVu
EVv

i f EVu ≤ EVv

EVv

EVu
i f EVv ≤ EVu

(10.17)

where Suv

(
Ãu, Ãv

)
∈ [0, 1] is the function to measure similarity, where Ãu and

Ãv are two regular intuitionistic fuzzy numbers, EVu and EVv are the expectancy
evaluation for Ãu and Ãv . The EV of a triangular IFN Ã = (a, b, c; a′, b′, c′) is
calculated as:

EV
(
Ã
)

=
(
a + a′)+ 4b + (c + c′)

8
(10.18)

A similarity matrix (SM) for m experts is defined as:
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SM =

⎡

⎢⎢⎢⎢
⎣

1 s12 s13 · · · s1m
s21 1 s23 · · · s2m
...

sm1

...

sm2

... . . .
...

sm3 ... 1

⎤

⎥⎥⎥⎥
⎦

(10.19)

where Suv = s
(
Ãu, Ãv

)
, if u = v then Suv = 1.

Step C. Degree of agreement computation:

The average agreement degree AA(Em) for each expert is calculated as

AA(Em) = 1

m − 1

m∑

v = 1
v �= 1

Suv (10.20)

where m = 1, 2, . . . , n.

Step D. The relative agreement computation:

The RAD(Em) is the relative agreement degree, which can be calculated as:

RAD(Em) = AA(Em)
∑n

u=1 AA(En)
(10.21)

where m = 1, 2, . . . , n.
Step E. Consensus degree computation:
The aggregation weight (wm) of an expert Em is computed using RAD(Em), and

the weight of each expert (WFAHP) is obtained by FAHP as follows.

wm = α � WFAHP(Em) + (1 − α) � RAD (Em) (10.22)

where α(0 ≤ α ≤ 1) is the weighting factor also known as a relaxation factor that
can be assigned to WFAHP(Em) RAD(Em) to define their relative importance.

Step F. Aggregated result computation:
The aggregated result for each basic event can be computed as:

P̃j =
n∑

i=1

wm ⊗ P̃i j (10.23)

where P̃j is the aggregated possibility of basic event j in the form of IFNs.
So far, the aggregation possibility of each BE based on IFNs is computed. In the

next section, the procedure of TE computation is explained.
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10.3.4 Calculation of Probability of TE

Once the occurrence possibilities of all BEs are obtained, these values are translated
into the equivalent probabilities using the following equation introduced by [68]:

FP =
{
1/10k FPS �= 0
0 FPS = 0

(10.24)

where FP and FPS represent failure probability and failure possibility, respectively,
and

k = 2.301 × [(1 − FPS)/FPS]1/3 (10.25)

Once the intuitionistic fuzzy failure probabilities of the BEs are obtained, they
are used to calculate the IF probability of the TE. Intuitionistic fuzzy arithmetic
operations are adopted to evaluate the probabilities of the minimal cut sets of the FT
and the same for the TE probability.

A set of minimal cut sets of a fault tree can be denoted as:

S = Ci : i = 1, 2, . . . ,m (10.26)

where Ci is the i-th minimal cut set of order k and is denoted as Ci = e1.e2 . . . ek .
Let the probability P̃j of event e j : i = 1, 2, . . . , n be characterized by triangular

IFNs
(
a j , b j , c j ; a′

j , b j , c′
j

)
, then the failure probability of P̃Ci of the minimal cut

set Ci is estimated using the following expressions.

P̃Ci = AND
(
P̃1, P̃2, . . . , P̃k

)
= P̃1 ⊗ P̃2 ⊗ . . . ⊗ P̃k

=
⎛

⎝
n∏

j=1

a j ,

n∏

j=1

b j ,

n∏

j=1

c j ;
n∏

j=1

a′
j

n∏

j=1

b j ,

n∏

j=1

c′
j

⎞

⎠ (10.27)

As the TE of an FT is represented by an OR gate, the failure probability of the
TE can be calculated using the following equation:

P̃Ci =OR
(
P̃c1, P̃c2, . . . , P̃cm

)
= 1
(
1 P̃c1

)
⊗
(
1 P̃c2

)
⊗ . . . ⊗

(
1 P̃cm

)

=
⎛

⎝1 −
n∏

j=1

(
1 − a j

)
, 1 −

n∏

j=1

(
1 − b j

)
, 1 −

n∏

j=1

(
1 − c j

);

1 −
n∏

j=1

(
1 − a′

j

)
, 1 −

n∏

j=1

(
1 − b j

)
, 1 −

n∏

j=1

(
1 − c′

j

)
⎞

⎠ (10.28)
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where P̃C1 , P̃C2 , . . . , P̃Cm denoted the failure probabilities of all MCSs Ci : i =
1, 2, . . . ,m.

Through IF-defuzzification process an IFN can be converted to a single scalar
quantity. The failure probability of the TE obtained as triangular IFN Ã =(
a, b, c; ′

a, b,
′
c
)
can be defuzzified as follows.

X = 1

3

[(
c′ − a′)(b − 2c′ − 2a′)+ (c − a)(a + b + c) + 3

(
c′2 − a′2)

c′ − a′ + c − a

]

(10.29)

10.3.5 Different Approach Comparison

To understand the efficiency of the proposedmodel, the results are comparedwith the
common approaches. Firstly, conventional FFTA based on the FST which is widely
used in different engineering applications is applied. Then, an approach based on the
integration of the BN and FST which was introduced in [12] is utilized.

As mentioned in the literature, the procedure of conventional FFTA is utilizing
triangular or trapezoidal fuzzy numbers for the probability expression of all BEs in
FT. Then, fuzzy arithmetic operations are utilized to compute the TE probability in
terms of a fuzzy number.

In the second approach, after [69] that compared conventional FTA and BN,many
studies have been performed by mapping FT into the corresponding BN for different
applications. A list of such works can be found in literature [70], which makes
use of the advantages of multi-expert opinions and FST for uncertainty handling
in the data and BN for modeling dependency between events. According to their
approach, the probability of each BE is computed in five key steps as collecting
experts’ opinions in qualitative terms, fuzzification, aggregation, defuzzification,
and probability computation. Once the probability of each BEs is obtained, then
FT is mapped into the corresponding BN. According to the Bayes theorem, the TE
probability can be calculated as follows.

In a BN, the joint probability distribution of a set of variables can be denoted
using the conditional dependency of variables and chain rules as follows:

P(U ) =
n∏

i=1

P(Xi |Xi+1, . . . Xn) (10.30)

where U = {X1, X2, . . . , Xn} and Xi+1 is the parent of Xi . Consequently, the
probability of Xi can be calculated as:

P(Xi ) =
∑

U\Xi

P(U ) (10.31)
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Using Bayes theorem as seen in Eq. (10.32), the prior probability of an event (E)
can be updated.

P(U |E) = P(U ∩ E)

P(E)
= P(U ∩ E)
∑

U P(U ∩ E)
(10.32)

To get further details, readers can refer to [71].

10.3.6 Sensitivity Analysis

Once the relative competency of each expert’s opinion is predicted, it is better to
determine the consensus coefficient. Thus, the decision-maker needs to allocate a
proper value for the relaxation factor α in Eq. (10.22); otherwise, sensitivity analysis
(SA) should be performed to evaluate the reliability of the system when α has been
given different values ranging from 0 to 1. In this study, the relaxation factor is
considered as 0.5 to give equal weights to both factors on the right side of the
Eq. (10.22). However, to identify the sensitivity of the BEs, we have performed the
sensitivity analysis by varying the values of α. This helped to understand which of
the BEs are more sensitive to uncertainty.

Using BIM, the criticality of an event is identified as follows:

BIM(BEi ) = P(Top Event|P(BEi ) = 1) − P(Top Event|P(BEi ) = 0) (10.33)

As seen in the above equation, the criticality of the basic event BEi is computed
by taking the difference between the top event probabilities when the BEi is assumed
to have occurred and non-occurred, respectively.

10.4 Application to the Case Study

The developed methodology is applied to the risk analysis of an ethylene oxide (EO)
production plant that is a component of an ethylene transportation line to demon-
strate its effectiveness. The detail of the system is shown in Fig. 10.4. A prior study
performed on the abovementioned system by [72] identified the most hazardous
components of the system, including the ethylene oxide storage and reaction unit,
ethylene oxide distillation column, transportation line, and ethylene re-boiler. It was
recommended that further risk assessment is essential for the declared units. There-
fore, Khan and Haddara [73] found optimal maintenance in the above case study
using a risk-based maintenance method. Additionally, the ethylene transportation
line component was recognized as the third key hazard in the available units. In this
regard, [12] applied their proposed approach to EO Transportation line as a case
study.
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Fig. 10.4 Schematic diagram of the EO plant [72]

10.4.1 Probabilistic Risk Assessment

An ignition of vapor cloud that may lead to a fireball is selected as the TE of the
FT. The developed FT is shown in Fig. 10.5. As seen in the fault tree, there are 25
BEs (represented as circles) and details of these BEs are presented in Table 10.1. To
compute the occurrence probability of each BE, the heterogeneous group of experts
used in [12] has been used in this chapter. Using theDelphimethod, employed experts
were asked to provide their judgements in relevant linguistic terms. The weights of
experts have been computed using the FAHP method, and the calculated weights of
experts 1, 2, 3, and 4 are 0.249, 0.126, 0.495, and 0.128, respectively [12].

To show the aggregation procedure of expert’s judgment; consider the case of
BE24 (Corrosion) as an example. Concerning the characterization of IFNs, the
linguistic variables, obtained from four experts, are categorized as “L”, “M”, “FH”,
and “M”. The detailed computation of aggregation for BE24 is shown in Table 10.2.
The aggregated results for all BEs are presented in Table 10.3.

To calculate the TE of the FT of Fig. 10.5, it was qualitatively analyzed to obtain
102 MCSs. Each of the MCSs is a combination of a number of BEs that can cause
the TE. Using the Eqs. (10.22), (10.23) and the IF-probabilities of the BEs from
Table 10.3, the TE probability as IFN is calculated as: {3.296E-11, 8.270E-10,
1.132E-08, 1.804E-11, 8.270E-10, 1.922E-08}. After defuzzification, the crisp prob-
ability of the TE obtained is 5.715E-09. We have also used the crisp probabilities
of the BEs (see the last column of Table 10.3) to evaluate the TE probability and
the value obtained was 1.620E-09. As can be seen, this value is close to the value
obtained through the defuzzification of the IF-probabilities.
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Fig. 10.5 FT for the ethylene transportation line (reworked and modified from [12])

According to step 11 of the framework shown in Fig. 10.2, the TE probability has
been evaluated using theBN-based approach for comparison of the result. Figure 10.6
shows the BN model of the FT illustrated in Fig. 10.5. In this BN, the prior proba-
bilities of the root nodes are specified based on the crisp probabilities of the BEs as
shown in Table 10.3. Conversely, the conditional probabilities of nodes representing
logic gates are characterized according to the specification of the gates. After running
a query on this BN model, the probability of TE obtained was 1.576E-9, which is
quite close to the value of TE probability calculated by the algebraic formulation.

10.4.2 Sensitivity Analysis

As discussed in Sect. 3.6, a SA can be applied to show the validity of the proposed
method, as well as highlight some features of the method. By varying the value of α

from 0 to 1, the probability of each BE is computed. Accordingly, the TE probability
is estimated using BN. The probabilities of all BEs based on the corresponding value
of α are provided in Table 10.4.
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Table 10.1 Details of the BEs of FT of Fig. 10.5 and experts’ opinions

FT Tag BEs Description Experts’ opinions

E1 E2 E3 E4

BE1 Flammable gas detector failed M FL M FH

BE2 Gas out of run H L L FH

BE3 Inert gas release mechanism failed FH FL FL FH

BE4 Flame arrestor A failed M VL VL FH

BE5 Flame arrestor B failed M VL VL FH

BE6 Ignition source present H VL VL H

BE7 Mechanical failure caused by corrosion FL L L FL

BE8 Leakage in two valves FL FL FL FL

BE9 Leakage from four bends FH FH VH FL

BE10 Leakage from ten joints M VL VL M

BE11 Flow sensor failed H FL H H

BE12 Pressure sensor failed L L VH VH

BE13 Pipeline chocked VL VL H VL

BE14 Valve chocked VL L FH VL

BE15 High inlet flow M L L M

BE16 High inlet pressure M L L M

BE17 Pressure controller/trip failed FL FL FL L

BE18 High inlet temperature FL VL VL FL

BE19 External heat source present M L L H

BE20 Side reaction FL FL FL L

BE21 Temperature controller/trip failed FL L L L

BE22 Phase change VL L L L

BE23 Valves fail open VL FL FL FH

BE24 Corrosion L M FH M

BE25 Mechanical damage L M M L

VL: Very Low
L: Low
FL: Fairly Low
M: Medium
FH: Fairly High
H: High
VH: Very High

It should be added that the sensitivity analysis assists experts to allocate priorities
and make it flexible to perform the risk assessment. Figure 10.7 shows the results of
the sensitivity analysis.

The SA specifies that the estimated probability for all the basic events is not pretty
sensitive to the variations in the value of α. Using different values of α ranging from
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Table 10.2 Aggregation calculations for the BE24

Expert 1 (L) (0.07,0.13,0.19;0.06,0.13,0.20)

Expert 2 (M) (0.35,0.50,0.65;0.32,0.50,0.68)

Expert 3 (FH) (0.62,0.73,0.82;0.61,0.73,0.85)

Expert 4 (M) (0.35,0.50,0.65;0.32,0.50,0.68)

S(E1&E2) 0.260 EV1 = 0.07+0.19+0.06+0.20+4×0.13
8 = 0.13

≥ EV2 = 0.35+0.68+0.65+0.32+4×0.50
8 =

0.50 → EV1
EV2

= 0.260

S(E1&E3) 0.179

S(E1&E4) 0.260

S(E2&E3) 0.687

S(E2&E4) 1.000

S(E3&E4) 0.687

AA(E1) 0.233 AA(Em) = 1
m−1

m∑

v = 1

v �= 1

Suv

1/
(4 − 1)(0.260 + 0.179 + 0.260) = 0.233

AA(E2) 0.649

AA(E3) 0.518

AA(E4) 0.649

RA(E1) 0.114 RAD(Em) = AA(Em )∑m
u=1 AA(Em )

0.233/
(0.649 + 0.233 + 0.518 + 0.649) =

0.114

RA(E2) 0.317

RA(E3) 0.253

RA(E4) 0.317

CC(E1) 0.181 α · WFAHP(Em) + (1 − α) · RAD(Em)

= 0.5 × 0.114 + 0.5 × 0.249 = 0.181CC(E2) 0.221

CC(E3) 0.374

CC(E4) 0.222

Aggregation for BE24 P̃j =∑n
i=1 wm ⊗ P̃i j

= 0.181 ⊗ (0.07, 0.13, 0.19; 0.06, 0.13, 0.20) ⊕ 0.221

⊗ (0.35, 0.50, 0.65; 0.32, 0.50, 0.68) ⊕ 0.374

⊗ (0.62, 0.73, 0.82; 0.61, 0.73, 0.85) ⊕ 0.222

⊗ (0.35, 0.50, 0.65; 0.32, 0.50, 0.68)
= (0.400, 0.518, 0.629; 0.381, 0.518, 0.656)

0 to 1, we can see that the risk probability of only 4 of the 25 basic events (16%)
is quite different and these BEs are BE4, BE9, BE11, and BE20. Therefore, in this
study, the differences between the rankings concerning different α values are low.

In addition, choosing an adequate value of α illustrates an important role in the top
event probability computation. The value of α can have an effect on the probability
of each BE and accordingly top event. Thus, the value of α should be allocated taking
into account the following issues. As an initial subject, decision-makers can consult
any existing historical data from similar operation conditions and risk assessment,
which have received feedback from them earlier. Next, using a questionnaire or
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Table 10.3 The fuzzy and crisp failure data of all BEs

FT tag Intuitionistic fuzzy failure possibilities Intuitionistic
fuzzy failure
probabilities
(FPs)

Defuzzified FPs

BE1 (0.369,0.504,0.635;0.344,0.504,0.664) (1.777E-3,
5.149E-3,
1.225E-2,
1.408E-3,
5.149E-3,
1.465E-2)

6.770E-3

BE2 (0.347,0.416,0.482;0.335,0.416,0.498) (1.448E-3,
2.662E-3,
4.394E-3,
1.283E-3,
2.662E-3,
4.929E-3)

2.903E-3

BE3 (0.367,0.471,0.567;0.352,0.471,0.591) (1.742E-3,
4.070E-3,
7.882E-3,
1.507E-3,
4.070E-3,
9.238E-3)

4.773E-3

BE4 (0.184,0.261,0.335;0.176,0.261,0.347) (1.667E-4,
5.587E-4,
1.286E-3,
1.404E-4,
5.587E-4,
1.446E-3)

6.946E-4

BE5 (0.184,0.261,0.335;0.176,0.261,0.347) (1.667E-4,
5.587E-4,
1.286E-3,
1.404E-4,
5.587E-4,
1.446E-3)

6.946E-4

BE6 (0.355,0.404,0.453;0.346,0.404,0.461) (1.560E-3,
2.400E-3,
3.536E-3,
1.435E-3,
2.400E-3,
3.778E-3)

2.520E-3

BE7 (0.114,0.191,0.269;0.099,0.191,0.283) (2.747E-5,
1.902E-4,
6.132E-4,
1.596E-5,
1.902E-4,
7.307E-4)

2.964E-4

(continued)
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Table 10.3 (continued)

FT tag Intuitionistic fuzzy failure possibilities Intuitionistic
fuzzy failure
probabilities
(FPs)

Defuzzified FPs

BE8 (0.170,0.270,0.370;0.150,0.270,0.390) (1.244E-4,
6.208E-4,
1.782E-3,
7.872E-5,
6.208E-4,
2.126E-3)

8.973E-4

BE9 (0.560,0.669,0.760; 0.549,0.669,0.789) (7.535E-3,
1.511E-2,
2.709E-2,
6.990E-3,
1.511E-2,
3.283E-2)

1.756E-2

BE10 (0.249,0.371,0.492;0.224,0.371,0.517) (4.721E-4,
1.797E-3,
4.738E-3,
3.319E-4,
1.797E-3,
5.622E-3)

2.473E-3

BE11 (0.731,0.796,0.861;0.711,0.796,0.881) (2.244E-2,
3.450E-2,
5.569E-2,
1.975E-2,
3.450E-2,
6.576E-2)

3.897E-2

BE12 (0.499,0.555,0.611;0.487,0.555,0.623) (4.949E-3,
7.275E-3,
1.049E-2,
4.548E-3,
7.275E-3,
1.131E-2)

7.649E-3

BE13 (0.209,0.255,0.300;0.204,0.255,0.305) (2.611E-4,
5.102E-4,
8.837E-4,
2.393E-4,
5.102E-4,
9.357E-4)

5.570E-4

BE14 (0.189,0.252,0.310;0.184,0.252,0.320) (1.812E-4,
4.929E-4,
9.849E-4,
1.662E-4,
4.929E-4,
1.098E-3)

5.706E-4

(continued)



238 M. Yazdi et al.

Table 10.3 (continued)

FT tag Intuitionistic fuzzy failure possibilities Intuitionistic
fuzzy failure
probabilities
(FPs)

Defuzzified FPs

BE15 (0.193,0.292,0.392;0.174,0.292,0.410) (1.953E-4,
8.116E-4,
2.161E-3,
1.356E-4,
8.116E-4,
2.530E-3)

1.113E-3

BE16 (0.193,0.292,0.392;0.174,0.292,0.410) (1.953E-4,
8.116E-4,
2.161E-3,
1.356E-4,
8.116E-4,
2.530E-3)

1.113E-3

BE17 (0.155,0.249,0.343;0.137,0.249,0.362) (8.983E-5,
4.762E-4,
1.394E-3,
5.594E-5,
4.762E-4,
1.662E-3)

6.965E-4

BE18 (0.075,0.141,0.207;0.066,0.141,0.216) (4.699E-3,
6.242E-5,
2.513E-4,
2.676E-6,
6.242E-5,
2.903E-4)

1.128E-4

BE19 (0.252,0.333,0.415;0.235,0.333,0.431) (4.912E-4,
1.259E-3,
2.621E-3,
3.909E-3,
1.259E-3,
2.988E-3)

1.506E-3

BE20 (0.155,0.249,0.343;0.137,0.249,0.362) (8.983E-5,
4.762E-4,
1.394E-3,
5.594E-5,
4.762E-4,
1.662E-3)

6.965E-4

BE21 (0.091,0.159,0.227; 0.078,0.159,0.239) (1.083E-5,
9.719E-5,
3.445E-4,
5.882E-6,
9.719E-5,
4.113E-4)

1.622E-4

(continued)
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Table 10.3 (continued)

FT tag Intuitionistic fuzzy failure possibilities Intuitionistic
fuzzy failure
probabilities
(FPs)

Defuzzified FPs

BE22 (0.057,0.113,0.170;0.049,0.113,0.178) (1.382E-6,
2.708E-5,
1.239E-4,
6.512E-7,
2.708E-5,
1.467E-4)

5.480E-05

BE23 (0.213,0.305,0.393;0.198,0.305,0.411) (2.780E-4,
9.344E-4,
2.189E-3,
2.153E-4,
9.344E-4,
2.551E-3)

1.189E-3

BE24 (0.400,0.518,0.629;0.381,0.518,0.656) (2.319E-3,
5.685E-3,
1.179E-2,
1.971E-3,
5.685E-3,
1.393E-2)

6.932E-3

BE25 (0.227,0.337,0.448;0.206,0.337,0.469) (3.446E-4,
1.312E-3,
3.404E-3,
2.454E-4,
1.312E-3,
3.993E-3)

1.777E-3

other availablemethods, the value ofα can be obtained based on the decision-makers’
opinions. If a decision-maker has a high confidence regarding his/her judgment about
the probability of basic events, the value of α can be set to a higher value, on the
contrary, a smaller value can be assigned to α. Finally, the value of α can be assigned
according to a realistic circumstance, meaning that the value of α should be allocated
a higher value when it is easy to get the consensus of decision-makers’ judgements
on the probability of basic events or when the appropriately selected decision-makers
are present.

The above SA illustrates that the presented model can offer vital data to analysts
and other involved parties in the risk assessment process.Accordingly, the probability
of the top event is computed by varying the value of α.

According to the new estimated probability of BEs, the probability of the TE is
also updated and provided in Table 10.5.
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Fig. 10.6 BN model of the FT of Fig. 10.5

10.4.3 Identification of Critical BEs and Corrective Actions
for the Most Critical BEs

As we all know, one of the important outputs of FTA and correspondingly BN is
recognizing the critical basic events. Based on this recognition, decision-makers can
provide corrective and/or preventive actions to reduce the probability of critical basic
events. As a result, the TE probability will be reduced; subsequently, the probability
reduction will lead to improved performance of the system.

By following the criticality calculation approach shown in Sect. 3.6, the criticality
of the BEs is estimated and conveyed in Table 10.6. As seen in the table, Flame
arrestor A failed (BE4), Flame arrestor B failed (BE5), Ignition source present (BE6),
Flammable gas detector fail (BE1), Flow sensor failed (BE11), and Leak from bends
(four bends) (BE9) are recognized to be the most critical events (in the descending
order of criticality), which are also recognized as top six critical events in [12]. This
chapter provides corrective actions for the first five critical basic events because
in the realistic case, the system cannot apply any interpretative actions to all BEs.
The existing control measures for the aforementioned BEs can fall into the process
safety management system since the construction of the complex plant. However, the
performance of the control measures needs to be upgraded based on all requirements
and changed after a couple of years.

Several control measures as corrective actions are recommended for the critical
basic events. It is believed that any corrective actions need to satisfy the three main
criteria as (i) it should have acceptable efficiency, (ii) it should fall into the accept-
able economic perspective, and (iii) the recommended corrective actions should be
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Fig. 10.7 The probability of basic events based on the variation of α

environmentally friendly. Keeping these criteria in our mind, to control the Flame
arrestors A and B, increasing the number of inspection can effectively reduce the
probability of failure. In addition, cleaning, as an important part of the Flame arrestor
maintenance procedure, is required to be continuously considered. The Ignition
source present event can properly be eliminated by providing natural or in some
specific cases of a fireproof ventilation system. The ventilation system has been
widely used and accepted method in the oil and gas industries. It can prevent smoke
and fire propagation through the air ducts even in case of fire. To reduce the failure
probability of a flammable gas detector, one possible and applicable way is using an
updated version of a gas detector. The flammable gas detector may fail due to some
identical causes. These causes also need to be identified. Thus, the failure can be
eliminated only and only by some simple modifications. According to this, continual
maintenance to preserve the detector in operational conditions is recommended. To
deal with another critical basic event as “Flow sensor failed”, a potential accept-
able solution is by introducing redundancy, i.e., changing the current system into
the parallel one by adding one more sensor. In this case, one sensor is operating
and the second sensor is in a standby mode. In case of the failure of the operating
sensor, the standby sensor can take over the operational responsibility of the failed
sensor, thus preventing the failure. Finally, the “Leak from bends” is controlled by
bare-eye inspection. To cope with this failure, electrical testing such as voltage and
resistance measurement, physical testing like drop test, bending test, and pull test
can be applied. Also, such visual inspection including optical microscope and X-ray
microscope is also possible to be used.

Adding to this, the risk assessment is a continuous procedure to improve the safety
performance of the studied system. Therefore, continuous review and revision must
be taken into account.
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Table 10.6 Criticality ranking of the BEs of the FT of Fig. 10.5

Basic events BIM Rank Basic events BIM Rank

BE4 1.134E-06 1 BE23 1.280E-14 13

BE5 1.134E-06 1 BE22 1.270E-14 14

BE6 6.252E-07 2 BE24 5.600E-15 15

BE1 2.327E-07 3 BE2 5.000E-15 16

BE11 2.301E-08 4 BE3 5.000E-15 16

BE9 2.251E-08 5 BE17 1.900E-15 17

BE12 2.229E-08 6 BE21 1.300E-15 18

BE10 2.217E-08 7 BE14 4.000E-16 19

BE8 2.214E-08 8 BE16 4.000E-16 19

BE7 2.212E-08 9 BE18 1.000E-16 20

BE25 2.190E-14 10 BE19 1.000E-16 20

BE15 1.320E-14 11 BE20 1.000E-16 20

BE13 1.310E-14 12

10.5 Conclusion

This chapter presents a framework for FTA and BN-based reliability analysis of
process systems using IFS theory where there exists uncertainty with the availability
of precise failure data. The proposed approach enables the gathering of uncertain
data by combining IFS theory with expert elicitation. The IFS theory differs from
the traditional fuzzy set theory in the sense that it considers both the membership
and non-membership of an element in the set. Therefore, the utilization of the IFS
theory would allow us to model situations where a varying level of confidence is
associated with the fuzziness of numerical data. Therefore, by using IFS theory
together with expert judgment as presented in this chapter, the analysts would get
increased flexibility while expressing failure data in the form of fuzzy numbers.

The sensitivity analysis performedwithin the proposed framework would help the
analysts to determine the events that are more sensitive to uncertainty, thus allowing
to make informed decision to improve the data quality of the associated events.
Furthermore, the criticality analysis of the events followed by the recommendation
of corrective actions would greatly help to increase the reliability of the studied
system. The efficiency of the proposed framework has been verified by applying
it to a practical system. The experimentations illustrate that the IFS-based method
offers a valuable way of reliability assessment of process systems when the fuzzy
failure data of system components cannot be defined with high confidence. It should
be added that, as a direction for future works, the same approach can be integrated
using much more advanced fuzzy set theory such as but not limited PFS.
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