
 Industrial and Applied Mathematics

Advances in 
Reliability, Failure 
and Risk Analysis 

Harish Garg Editor



Industrial and Applied Mathematics

Editors-in-Chief

G. D. Veerappa Gowda, TIFR Centre For Applicable Mathematics, Bengaluru,
Karnataka, India

S. Kesavan, Institute of Mathematical Sciences, Chennai, Tamil Nadu, India

Fahima Nekka, Universite de Montreal, Montréal, QC, Canada

Editorial Board

Akhtar A. Khan, Rochester Institute of Technology, Rochester, USA

Govindan Rangarajan, Indian Institute of Science, Bengaluru, India

K. Balachandran, Bharathiar University, Coimbatore, Tamil Nadu, India

K. R. Sreenivasan, NYU Tandon School of Engineering, Brooklyn, USA

Martin Brokate, Technical University, Munich, Germany

M. Zuhair Nashed, University of Central Florida, Orlando, USA

N. K. Gupta, Indian Institute of Technology Delhi, New Delhi, India

Noore Zahra, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Pammy Manchanda, Guru Nanak Dev University, Amritsar, India

René Pierre Lozi, University Côte d’Azur, Nice, France
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Preface

Reliability is a very crucial concept in a multifaceted term used in several fields from
simple product design to complex industrial system such as nuclear power plant and
aerospace engineering. The disseminate operation of every subsystem/component of
an industrial system is ensured by its Reliability, Availability and Maintainability
(RAM) aspects. The ability of equipment to work without failure is the focus of
reliability engineering, a sub-discipline of systems engineering. However, with the
growing complexity in the systems day-by-day, a failure analysis is an important
and challenging aspect of the study of complex systems. A system is defined to be
consisting of components, sub-systems, inputs and outputswithin systemboundaries.
The inputs provide physical resources and information to the sub-systems, which are
interacting among each other to produce some outputs. All interactions are assumed
to take place within the system boundaries. A complex system can be defined as a
system structure that is composed of usually a large number of components that have
complex interactions. Any failure in performing the required interactions among the
system components, or any failure in getting the expected output/result, is considered
to be contributing to the system failure. Thus, analysis of a systemwith its components
is a crucial step in determining the difficulties and complexities that the system will
experience at any stage.

To increase the performance and life of the system, there is also a need to maintain
the schedule of risk analysis at a regular interval of time. Risk and reliability analysis
methods can allow for a systematic assessment of these uncertainties, supporting
decisions integrating associated consequences in case of unexpected events. Risk is
the effect of uncertainty on objectives and the associated likelihood of their occur-
rence. The development of risk estimates or the determination of risks in a given
context is called risk analysis, while risk assessment is the process of evaluating the
risks and determining the best course of action. Since, uncertainty is an intrinsic prop-
erty of risk and is present in all aspects of risk management including risk analysis
and risk assessment.

Generally, risk analysis is a systematic tool that facilitates the identification of the
weak elements of a complex system and the hazards that mainly contribute to the
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vi Preface

risk. One of the significant advantages of a coordinated risk analysis approach is that
safety, operational, and financial execution are frequently connected.

These days to support the plant design and accidental situations in any industrial
plant, a concept of risk tool is considered as a necessity of expertise to tackle any such
complicated and multidisciplinary issues in the systems. This entails the acquisition
of appropriate reliability modelling and risk analysis tools to complement the basic
and specific engineering knowledge for the technological area of application.

The book aims to help the managers and technical specialists with the design and
implementation of reliability and risk programs under the following disciplines:

• System safety and risk informed asset management
• Proper strategy to maintain the mechanical components of the systems
• Schedule the proper actions throughout the product life cycle
• To understand the structure and cost of the complex systems
• Plan a proper schedule to improve the reliability and life of the systems
• Identify some unwanted failure and set up their associated preventive and

correction actions

The book is useful to not only industry professionals but also for academicians,
researchers and scholars. This book publishes the articles dealing with real industrial
problems related to uncertainties and vagueness in the expert domain of knowledge.
Further, this book also provides the knowledge related to applications of various
mathematical and statistical tools in these areas. The results so presented in different
chapters of this book will definitely open the gate for researchers and scientists
in terms of handling complicated projects in the same domain. This will help in
overcoming the various societal problems which the world is facing at presently.

Patiala, Punjab, India Harish Garg
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Chapter 1
Degradation and Failure Mechanisms
of Complex Systems: Principles

Tarannom Parhizkar, Theresa Stewart, Lixian Huang, and Ali Mosleh

Abstract A cyber–physical–human complex system failure prevents the accom-
plishment of the system’s intended function. The failure of a complex system could
be a breakdown of any systemhardware, human-related factors, application software,
or the interaction between these components. Having knowledge about all these
three components would allow us to better understand the behavior, interactions,
and the associated failure mechanisms of the cyber–physical–human systems as a
whole. In this study, degradationmechanisms in these three components are classified
and discussed. The main categories are hardware-related degradation mechanisms
including mechanical, thermal, chemical, electronic and radiation effects degrada-
tion mechanisms. In addition to hardware-related degradation mechanisms, human
failure modes, software errors, and the failures due to cyber–physical–human inter-
actions are presented and discussed. This chapter covers the main types of failure
mechanisms in complex systems and is beneficial for developing conceptual risk and
reliability models for complex systems.

Keywords Degradation mechanisms · Cyber–physical–human complex system ·
Material degradation mechanism · Hardware failure · Electronic failure · Human
error · Software failure · Complex systems · Risk · Reliability
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1.1 Introduction

Complex system components degrade over time due to different degradation mech-
anisms [1]. Degraded components can negatively affect the system performance,
reduce the system lifetime, and even result in a catastrophic failure [2]. In addition,
degradation analysis can be used to assess reliability when few or even no failures
are expected in a life test.

Degradation mechanisms in a complex system depend on many different factors
such as type of the system, components material, system application, operating
and environmental conditions [3–5]. In complex systems, we have cyber–physical–
human interactions [6, 7]. A cyber–physical–human complex system is a system that
is made of interacting components of software, hardware, and human operators. The
three different elements in cyber–physical–human systems are hardware, software
and humans that have different failure behavior characteristics. It is important to
understand the difference between them and their failure modes [8]. However, more
importantly, having knowledge about all these three components would also allow us
to better understand the behavior, interactions, and the associated failuremechanisms
of the cyber–physical–human systems as a whole.

In this chapter, hardware degradation including mechanical, thermal, chem-
ical degradation mechanisms, degradation of electronic devices, radiation effects
degradation mechanisms are introduced and discussed.

In this study, degradation mechanisms are categorized into eight main types. The
main categories are hardware-related degradation mechanisms including mechan-
ical, thermal, chemical, electronic and radiation effects degradation mechanisms,
discussed in Sects. 1.2 to 1.5, respectively. Themechanical, thermal, chemical degra-
dationmechanisms are classified to wear-out and overstress failures.Wear-out mech-
anisms are degradation mechanisms that happen gradually in the component and
result in system aging and performance deterioration. As time passes, the degra-
dation mechanism will cause exceedance of system threshold and system failure.
Overstress mechanisms, on the other hand, are sudden degradation mechanisms. In
this type of mechanism, operating and environmental conditions are out of nominal
range of system operating conditions and results in system failure. This chapter
discusses both wear-out and overstress failure mechanisms of mechanical, thermal,
and chemical natures. Due to the complexity in electronics, the degradation and
failure mechanisms are introduced based on different physics causes.

In addition to hardware-related degradation mechanisms, we could have soft-
ware and human errors resulting in system failure that are discussed in Sects. 1.4
and 1.5, respectively. Finally, failure mechanisms due to components interaction
are introduced. The interactions result in exchange of matter, energy, force, and/or
information, and we can have all the combinations between hardware–software,
hardware–human, and the human–software, but also the intersection between all
three. In Sect. 1.8, different types of interaction failure mechanisms are presented
and discussed. It should be noted that this work is not intended to give the reader a
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thorough understanding of each individual failure mechanism, but rather is intended
to introduce the reader to the types of failure or degradation that may be encountered
in a wide variety of applications and environments.

For the purpose of reliability analysis of complex systems, proper understanding
of cross-filed degradation and failure mechanisms is essential. In this study, different
types of material degradation mechanisms in complex systems are classified and
presented. In addition to material degradation, human errors, software failure,
and cyber–physical–human interaction failure are discussed that is beneficial for
developing conceptual risk and reliability models for complex systems.

1.2 Mechanical Degradation and Failure Mechanisms

1.2.1 Wear-Out Mechanisms

Mechanical wear could be defined as a process of progressive removal of mate-
rial from a solid surface while it is in moving contact with another solid, liquid,
or gaseous substance (e.g., [9]). The main types of wear-out mechanisms are
presented inFig. 1.1. In the following sections, different types ofmechanicalwear-out
mechanisms are presented and discussed.

Fig. 1.1 Four main types of wear-out mechanisms [9]
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1.2.1.1 Abrasion

Abrasion wear is one of the most common types of wear and appears across many
applications accountings for more than 50% of all wear-related failures in industrial
equipment, costing between 1 and 4% of the gross national product of industrialized
nations [10]. As a result, abrasion wear resistance is a major consideration in a
wide variety of industries and there are at least 17 active ASTM standards directly
relating to abrasive wear, and at least 4 relating to erosive wear [11]. The term
“abrasion” comprises all groove-forming mechanisms on the surface of a material
by microchipping and microplowing.

Abrasive wear can be defined as the removal of material from a surface while
it is in relative motion with another contacting surface. This removal can be due to
protuberances on the other surface or the presence of hard particles, which may be
trapped between the two surfaces or embedded in one of them. In the case where
particles are not embedded on either surface, this is called three-body abrasion, while
the other cases are referred to as two-body abrasion. Abrasive erosion, which is a
special case of erosion where hard particles are present in a moving fluid, is a form
of two-body abrasion. Abrasive wear processes are typically classified as:

1. Two-body abrasion: This type of abrasion can be further split into two subcat-
egories. In the first, shown in Fig. 1.2a, protuberances or particles attached to
body 2 scratch the surface of body 1 as the two bodies move past each other. The
second type of two-body abrasion, shown in Fig. 1.2b, describes the scenario
where hard particles are free to move along the surface of body 1.

2. Three-body abrasion: Three-body abrasive particles are free to slide and/or roll
between bodies 1 and 2 and are not attached to either surface (Fig. 1.2c). The
origin of the abrasive particles (dust, dirt, sand, aerosol, debris, etc.) is either
outside the tribological system (contaminants) or they are generated within the
system itself (wear products).

Of these two categories, two-body abrasion results in a much higher rate of mate-
rial removal—as much as an order of magnitude higher than that of three-body
abrasion. This is because loose particles between surfaces mostly roll harmlessly
between the surfaces, and only abraded surfaces about 10% of the time [9].

Fig. 1.2 Two main types of abrasive wear degradation mechanism [9]
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1.2.1.2 Adhesion

Adhesive wear is another common type of wear that occurs in systems. It occurs
whenever two solid surfaces have rubbing contact and even if allwearmitigationplans
have been implemented, this type ofwearwill remain.As twobodies slide across each
other, asperities on each surface may weld together and then either deform or break
off as the relative motion continues. Given the exchange of materials, this process is
called micro (cold) welding. The real contact area between surfaces is very small.
Thus, even with very small loads, there exists pressure between contacted areas that
could result in adhesive wear and plastic formation. If two surfaces confront relative
sliding motion, the contacted area may break. The break could happen at the original
interface or elsewhere, depending on the temperature, material characteristics, and
stress distribution. There are different types of adhesive wear including scoring,
scuffing, galling, and seizing ordered in terms of increasing severity.

• Scoring is the transfer of a small amount of material from one component to
another under sliding contact.

• Scuffing is a more serious form of scoring and refers to localized surface damage
caused by welding of two surfaces.

• Galling is cyclic, severe, and large-scale metal transfer between contacting
surfaces.

• Seizing is a more severe form of galling that becomes so severe that it prevents
two surfaces from moving.

Adhesion includes the chemical interaction between the wear materials.
Depending on the material properties between two surfaces, a local joining or even
welding of both materials may happen. The binding forces may become so high that
chips may be pulled out or chipped off from the work material, e.g., the metal debris
of the work material may adhere to the ceramic cutting tool. This effect, also known
as material transfer, will cause the cutting tool to no longer be in contact with the
work material. Figure 1.3 shows several modes to explain the effect of adhesion on
materials.

1.2.1.3 Surface Fatigue

This type of wear occurs when two surfaces have rolling contact. Wear here is
different from sliding surfaces. As the rolling body rotates, the shear stress ranges
from zero to a maximum value, resulting in cyclic stress in the components. This
type of wear could result in crack formation and eventual crack growth, leading to
fatigue failure. The surface fatigue wear is common in rotatory machines (Fig. 1.4).
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Fig. 1.3 Effects of adhesion wear-out mechanism [12]

Fig. 1.4 Surface fatigues wear-out mechanism [13]

1.2.1.4 Erosive Wear

In this type of wear, some particles slide and roll against the surface. The particles
could have three different speed levels, as presented in Fig. 1.5. At low speed, we
have abrasion wear, and if these particles touch the surface on a cyclic basis, then it
will result in fatigue wear out. At medium speed, plastic deformation or erosion by
brittle fracture will occur. At higher speed, melting will occur.

As can be seen in Fig. 1.5, each particle removes some small parts of the compo-
nent. Over time, this phenomenon could result in serious erosion damage to the
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Fig. 1.5 Different types of erosive wear-out mechanism [14]

component. This type of wear could be used intentionally for some applications. For
instance, in paint removal (sanding), the same concept is used to remove the coating
over a surface.

1.2.1.5 Fretting Wear

Fretting is a type of wear that occurs in systems with two parts in close contact,
vibrating at small amplitudes. During this cyclic contact motion, third body particles
(which may be produced by local adhesion or abrasion) become trapped between
the contacting parts and accumulate. Harder particles cause plastic deformation,
delamination, void formation, and/or cracking damage on the surface of parts which
grows over time due to the cyclic loading nature. During system operation, more
particles are able to accumulate in the damaged area, and over time pits can form
across the surface. Eventually cracks are able to grow deeply enough, or enough
material is removed from the surface that the part will fail [15]. This type of wear-
out mechanism occurs commonly in components that contain parts with relative
motion such as bearings.

1.2.1.6 Creep Deformation

Creep deformation describes the process by which solid materials undergo gradual
plastic (permanent) deformation at stresses below the yield stress. Creep is a time-
dependent process, and the rate of deformation fromcreep increaseswith temperature
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Fig. 1.6 Three stages of
creep deformation process
[17]

and stress. There are multiple mechanisms for creep, namely Nabarro–Herring (bulk
diffusion), Coble (grain boundary diffusion), dislocation climb, and thermally acti-
vated glide, the last of which is exclusive to polymers and viscoelastic materials [16].
Generally, the process of creep deformation can be divided into three-time intervals.

Stage 1, Primary phase: This is a short phase that begins when elastic (reversible)
deformation occurs on initial loading. Following this, there is an initially high rate
of deformation that slows as work hardening occurs [17].

Stage 2, Secondary phase: In the secondary phase, the strain rate stabilizes to an
approximately linear rate that can be characterized by an equation related to the
Arrhenius equation.1 During the secondary phase, the strain rate is at its lowest, and
this phase may last a long time [17].

Stage 3, Tertiary phase: In the final phase, the deformation rate increases as damage
accumulates in the material structure. During this phase, voids begin to appear in the
microstructure and noticeable necking begins to occur leading up to fracture [17]
(Fig. 1.6).

1.2.1.7 Fatigue

Fatigue failure occurs as a result of long-term cyclic loading within the design limits
of a component. Under these loads, initial defects may become crack initiation sites
which grow as the region is loaded and unloaded. Cracks will grow until the stress
intensity factor of the crack exceeds the fracture toughness of the material, at which
point a complete fracture will occur [16] (Fig. 1.7).

1 The Arrhenius equation describes processes with a rate that is exponentially dependent on
temperature [16].
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Fig. 1.7 Stress amplitude versus cycles to failure [18]

Fatigue failure follows three major steps to failure:

1. Stage 1, Initiation process: In this step, a crack begins to form at an origin point
which may be a surface flaw, geometric feature, grain boundary, or any other
form of discontinuity in the material.

2. Stage 2, Propagation: In this phase, cracks grow at varying rates depending on
the material, environment, stress, and crack shape. A sharper crack will grow
faster due to the increased stress concentration at the tip, and crack growth can
even be impeded by blunting crack tips.

3. Stage 3, Failure: Once many microscopic cracks have been expressed and
connected, fracture will occur. When the stress cycle amplitude is low, it gener-
ally takes many cycles for the material to fail and this is called high cycle fatigue
(HCF). Similarly, if the amplitude is high, failure occurs quickly and is referred
to as low cycle fatigue (LCF). Generally, when amaterial fails under HCF, cracks
propagate mostly in an intergranular fashion (along grain boundaries) and allows
for significant plastic deformation before failure, but when under LCF will fail in
a largely transgranular and brittle fashion (through grains) due to the rapid crack
propagation. The differences between the resulting fracture surfaces can be seen
in Fig. 1.8.

1.2.1.8 Cavitation Pitting

Cavitation pitting is a type of pitting fatigue as a result of vibration and movement
of liquids in contact with solids. It occurs mostly at low-pressure regions where
voids can form. Any moving system in liquid will experience cavitation pitting.
Generally, corrosion can aggregate the cavitation pitting. In this diagram, the steps
of cavitation pitting are simplified by showing the mechanism in slow motion. The
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Fig. 1.8 Fracture surfaces of a material after failing in high cycle fatigue (a) and low cycle fatigue
(b) [19]

actual mechanism happens in milliseconds, depending on vibration and rotation
frequency and vapor pressure of the liquid [20] (Fig. 1.9).

• Step A: The solid wall moves to the right, building inertia in the water to move
right.

• Step B: Inertia pushes the water to continue moving to the right.
• Step C: The wall starts to move to the left; pressure is reduced and bubbles form.

These cavities are known as low-pressure bubbles. At this point, the pressure of
bubbles is equal to the vapor pressure of liquid and a phase change from liquid to
gas can occur.

• Step D: The wall stops moving and pressure starts to increase as the inertia of the
water pushes it to move left, compressing the bubbles.

Fig. 1.9 The process of cavitation pitting degradation mechanism
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• Step E: Pressure increases until bubbles collapse as vapor changes to liquid.
Implosion results in local pressures of many thousand pound-force per square
inch (psi).

It should be noted that bubbles nucleate at defect sites, thus no bubbles will form
on a perfectly smooth surface.Motion in the fluid caused by vibration and rotation
of the system allows for cavities to form in many different places around the part
surface, but most will form in low-pressure regions. As time passes, pitting on the
surface will result in fatigue failure.

1.2.1.9 Resonance Disaster

When a structure encounters oscillations from wind, earthquakes, or vibrating
motions that match the structure’s natural frequency of vibration, it is able to pick up
motion very easily and may sway violently or fracture. Resonance as a phenomenon
is one that is often used in clocks to maintain motion of the timekeeping mechanism,
such as a pendulum [21].

1.2.2 Overstress Mechanisms

Overstress failure occurs when a material is subjected to unusually harsh conditions
that aren’t expected in the design of the part. This may come in the form of ground
motions generating high stress near a buried or anchored structural part, damage from
accidents, a damaged connecting part creating high stress, or many other potential
causes. The behavior of various materials under such conditions has been heavily
studied to understand how a material may deform either elastically (reversible) or
plastically (irreversible) before fracturing [22].

The response of a material under increasing loads may be characterized using a
stress–strain curve. These curves are developed by testing a material with a standard-
ized cross section under increasing stress and recording the deformation in response
[23].

Figure 1.10 shows the shape of the stress–strain curves of a typical metal, ceramic,
and polymer, respectively. The exact shape and scale of the stress–strain curve varies
for each material and loading type, but among similar materials in a standard tensile
test, these differences can usually be categorized by the yield and tensile strength.2

The stress–strain curve for most solids can be split into at least two regions, with
the first region corresponding to elastic (reversible) deformation, and the latter region
corresponding to various phases of plastic (permanent) deformation. In linear elastic

2 Yield strength (or stress) is defined as the minimum stress that will cause permanent (plastic)
deformation in a material. Tensile strength reflects the highest point in a stress–strain curve of a
material in tension loading. Additional measures can be given for other loading conditions such as
compression and bending.
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Fig. 1.10 General form of the stress–strain curves for metal, ceramic, and different types of
polymers

materials, such as most ceramics and metals, the elastic region of the curve can be
used to determine the Poisson ratio bymeasuring the strain in the transverse direction
relative to the longitudinal strain.

For metals, the stress–strain curve can be divided into four regions [22].

1. First is the linear portion of the curve (proportional region) which starts at no
deformation and extends until the yield stress is reached at point 3 on the graph
(Fig. 1.10, metal). In this region, the slope corresponds to the Young’s modulus,
which is a measure of the material’s stiffness in tension or compression.

2. The next region is the nonlinear elastic region, which is the final elastic defor-
mation a material can sustain before yielding or fracturing. Point 2 on the graph
represents the elasticity limit.

3. The third region is called the strain hardening region and extends from the point
where material starts deforming plastically until it reaches its ultimate strength
at point 1. As plastic deformation occurs in the metal, deformations accumulate
which restrict motion and increase the strength of the material. Eventually this
process reaches a limit, at which point necking begins.

4. The final region in the curve is called the necking region. As the material is
stretched in one direction, its cross section will thin, and deformation becomes
easier. At first, strain hardening counters this effect and the stress needed to
cause deformation increases as seen in region 3, but as the strain hardening
effect reaches its limit, the cross section starts to rapidly become thinner up until
rupture at point 4.

Ceramics usually are brittle, undergoing little to no plastic deformation before
fracture. This results in a simpler stress–strain curve characterized by a mostly linear
elastic region up to the fracture point, which is nearly equal to the yield point. This is
indicated by both points 1 and 2 on the second plot in Fig. 1.10 showing the ultimate
strength and yield strength in the same location.

The stress–strain curves of polymers need to be further separated into four major
categories of behavior. Flexible plastics have similar mechanical behavior to metals,
with various regions of elastic and plastic deformation leading up to fracture. The
stress–strain behavior of these polymers can be easily differentiated from that of
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Fig. 1.11 Stress–strain curve for materials with very small, small, and large toughness [24]

metals by the much greater capacity for plastic deformation before fracture. Elas-
tomers undergo large amounts of viscoelastic (nonlinear) strain and relatively little
plastic deformation before failure. Additionally, elastomers tend to have very low
ultimate strengths [22].

The behavior of fibers and rigid plastics is almost the same as ceramics. They
have a very short elastic region but are very stiff and may sustain large stresses
before failure [22].

Toughness is one of thematerial properties that can be defined based on the stress–
strain curve of thematerial. Toughness defined as amaterial’s ability to absorb energy
or shock before fracturing. Toughness as a property is measured in terms of energy
per unit volume and can be quantified as the area underneath the stress–strain curve
up to the fracture point [22].

Because of the relation of toughness to the stress–strain curve, the differences in
toughness between different types of materials can be easily seen in comparisons
such as Fig. 1.11. Though the ceramic in the graph presents the highest overall
strength and the polymer presents the greatest amount of strain withstood before
fracture, both of these materials have a low toughness. The toughest materials are
those which have a moderately high strength that does not sacrifice the capacity for
plastic deformation such as metals as presented in Fig. 1.11.

1.2.2.1 Plastic Deformation

Whenever a solid material is subjected to a load, it will deform as a result of that load.
When the load is relatively small, this deformation, referred to as elastic deformation,
is reversible. Elastic deformation involves only the stretching of bonds without any
slipping of atoms, and the structure will return to its former shape once the load is
removed. At higher stress levels, the change in the shape is non-recoverable. This
type is called plastic deformation. When a material is plastically deformed, atoms
slide past each other breaking bonds and causing changes in the material’s structure
(e.g., [26, 27]). Generally speaking, this process cannot occur all at once since a large
amount of energy would be needed to do so. Instead, this deformation occurs via
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Fig. 1.12 Slip bands in
plastic deformation process

paths of least resistance, where an initial defect in the structure moves across crystal
planes (in the case of crystalline materials) or polymer chains slide past each other.
In metals, dislocation motion occurs preferentially along the highest density planes.
A dislocation can easily move throughout a metal structure until a grain boundary
is reached. Using an optical microscope, one can see the paths of these dislocations
since they mostly travel along parallel paths. When many parallel paths are close
together, they can be seen as slip bands such as in Fig. 1.12 [25].

1.2.2.2 Fracture

Fracture is defined by the formation of new surfaces on a formerly intact piece of
material not by growth but by damage from stress. Most often this occurs by the
formation of cracks throughout the surface or body of the part, but in extreme cases
can result in a part breaking into two or more pieces.

The general definition of cracking refers to those formed perpendicularly to the
material surface and can also be called a normal tensile crack. When cracks form
tangential to the surface, this is called a shear crack, slip band, or dislocation. Cracks
and fracture may occur with or without deformation beforehand. If deformation
occurs, this is called a ductile fracture, and a fracture without deformation is likewise
called a brittle fracture. A given failed surface may contain a mix of both ductile and
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Fig. 1.13 Sample examples of fracture for steel at low and high temperature, with brittle and ductile
behaviors, respectively [26]

brittle fracture regions depending on how the break occurred. On the stress–strain
curve, fracture strength is the final point in the curve [16].

In Fig. 1.13, the fracture in a brittle and ductile steels are presented. At lower
temperature, steel is more brittle, under stain, the fracture surface is perpendicular
to tensile stress. However, as temperature increases, steel is more ductile, and the
fracture surface is diagonal.

1.2.2.3 Delamination

Delamination is defined as the separation of layers or plies in a laminate material.
These failures are caused by out-of-plane loads, such as loads from bending, impact
damage, or tearing.

Composite materials, whether man-made or natural (such as woods), have
anisotropic properties and they are more likely to fail in one loading direction over
another. These materials are strongest when loaded in the direction parallel to that
of the load bearing elements (such as fibers) and are weaker in transverse or out-
of-plane loading. These materials are often susceptible to delamination due to their
weakness in out-of-plane load conditions. This type of damage may go unseen in a
composite structure if it lies beneath the surface. Figure 1.14 shows three different
delamination conditions: delamination between two rigid panels,delamination of a
thin flexible film or panel on a rigid panel, and delamination between two flexible
panels.

1.2.2.4 Degradation Due to Residual Mechanical Stress

When a material undergoes plastic deformation (temperature gradients from thermal
cycling, or structural changes from a phase transformation), stress may remain due
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Fig. 1.14 Three different delamination conditions, two rigid panels (a), one flexible panel or film
and one rigid panel (b), two flexible panels (c) [27]

to uneven changes in the dimensions of the part. These stresses are called residual
stresses [31].

Residual stresses can cause early failure in a structure. Generally, a large amount
of energy is required to propagate a crack through the bulk of a material, but residual
stresses may act to reduce the energy needed to do so by adding additional stress.
In the case of thermal residual stresses, it is sometimes possible to relieve some of
this stress by baking, cryogenic methods, or by introducing stress in the opposite
direction to counter the negative stress [25].

Though unwanted residual stress can be detrimental to a material’s performance,
there are cases in which it is desirable. In many cases, it is beneficial to introduce a
residual compressive stress to a surface which acts to close cracks that form under
tension. Laser peening (LP) is an example of introducing a desirable residual stress.
Laser peening and shot peening are examples of surface processes which introduce
compressive stress to the surface to improve its lifetime. The compressive stress
acts to close cracks formed in tension, increasing resistance to damage from fatigue
and other forms of surface wear. The introduction of these residual stresses can be
especially important for brittle materials such as ceramics, which can withstand large
amounts of compressive stress but very little tensile stress [25].
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1.3 Thermal Degradation and Failure Mechanisms

1.3.1 Wear-Out Mechanisms

Long term static or cyclic exposure to thermal loads within normal operating
conditions can degrade material properties and cause micro- and macrostruc-
tural damage.This section describes thermal degradation via the mechanisms of
intermetallic growth and hillocks.

1.3.1.1 Intermetallic Growth

Soldering in electronic components provides a combination of electrical connection
and mechanical support, and thus the properties of these solder joints are very impor-
tant to the performance of the component. During the soldering process of electronic
components, intermetallic compound layers will form. During thermal cycling or
thermal shock, intermetallic compound (IMC) layers will grow, and the character-
istics of the material degrade. If the layers become too thick, this compromises the
mechanical strength of the joint. For instance, the precipitation of a new material
increases brittleness and cracks can form more easily. Additionally, the formation of
IMCs may increase the resistivity of the joint which degrades the electrical perfor-
mance of the component. This type of failure is more common in electronic devices
under extreme temperature environments with large temperature variations, such as
in space conditions [28].

1.3.1.2 Hillocks

An important source of mechanical stress in thin films is the thermal mismatch
between the film and the substrate material. Depending on the sign of the mismatch
and of the temperature change, tensile or compressive stresses can develop in the
film. One mechanism of compressive stress relaxation which is specific to thin films
is the formation of hillocks. Hillocks form during heating and cooling cycles at layer
boundaries with dielectrics [29].

The structure of the hillocks has not been investigated in detail and the exact
mechanism of hillock growth remains unclear, but it is known that hillocks pref-
erentially nucleate at a weakly bonded film/substrate interface where delamination
occurs due to very high compressive stresses in the films which allow the interface
to act as a sort of atom sink. Hillocks tend to be regularly arranged which may be
due to the stress relaxation zones around Hillocks which make the surrounding areas
less likely to become nucleation sites [30].

Hillocks grow under continued compressive stress which encourages diffusion of
atoms from grain boundaries to the hillock sites. Depending on the temperature, the
atoms may diffuse along the film/substrate interface or bulk lattice. As atoms diffuse
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to the hillock site, they may grow in a direction normal to the film surface or grow the
grain along the surface plane. Growth of hillocks in the normal direction displaces
the original film upward, bending it. Once the bending stresses exceed the strength
of the film, it will fracture, and new material is able to penetrate above the film layer
and form a spherical cap which reduces overall surface area [31].

1.3.1.3 Fatigue

Similar to mechanical fatigue, thermal fatigue is the weakening of a material caused
by cyclic thermal loading resulting in crack growth and structural damage. Thermal
fatigue is differentiated frommechanical fatigue in that it may occur by only thermal
cycling,withoutmechanical loads.Akey example of this is in turbines,where temper-
ature differentials from the starting and stopping of the turbine produce temperature
gradients in the material that leads to thermal fatigue [16].

1.3.1.4 Degradation Due to Residual Thermal Stress

Residual thermal stresses are stresses introduced when a material undergoes heating
or cooling and attempts to expand or contract. This can occur in one of two ways
[16]:

• If two dissimilar materials are bonded together and heated, dissimilar thermal
expansion coefficients create surfaces on both materials as one attempts to expand
more than the other.

• A bulk material is heated or cooled unevenly, and one area is at a different temper-
ature or changing temperature at a different rate. Thermal expansion will create
stress as one area is expanding or contracting at a different rate than another.

In the following figure, an example of a residual thermal stress process is
presented. There is an elastic multilayer structural material (Fig. 1.17a). When we
increase the temperature, the thermal strains are generated in the layers (Fig. 1.17b).
To satisfy the displacement compatibility condition at the individual interface,
thermal stresses should be generated (Fig. 1.17c). Finally, the bending of the whole
coating system occurs because of the presence of thermal stresses (Fig. 1.17d).

1.3.2 Overstress Mechanisms

Exposure to temperatures outside of the design limits for a part or system can cause
irreverisible damage to the structure and material properties. This section will go
over some mechanisms by which this damage can occur.
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Fig. 1.15 Crazing [32] (a),
shear yielding [33] (b),
yielding [33] (c)

1.3.2.1 Ductile to Brittle Transition

A ductile-to-brittle transition (DBT) is the point or range at which a material that is
relatively ductile at high temperatures becomes more brittle at low temperatures. It
is known to happen to thermoplastic polymers and some metal alloys, most notably
ferrous alloys such as steel.

In polymers, the DBT represents a change in the main failure mechanism from
yielding as the dominantmechanism at high temperatures to crazing or shear yielding
at lower temperatures as shown in Fig. 1.15. Depending on the nature of the main
chain and side groups, the DBT temperature will coincide with the α-transition
temperature (which is the same as the glass transition temperature), β-transition
temperature, or γ-transition temperature which are listed in order of decreasing
temperature [32].

In materials with an ordered lattice structure, such as those in metals, the ductility
of the structure depends on the energy needed tomove a dislocation along slip planes.
When the energy needed tomove a dislocation is very high, thematerial is considered
“brittle” while also being relatively strong, whereas a structure which requires little
energy to move a dislocation is considered “ductile” but is often not as strong as
the more brittle structures. A face-centered cubic (FCC) lattice, seen in metals like
copper, has many slip planes3 which allows for easy dislocation movement. On the
other hand, a body-centered cubic (BCC) lattice, which is the dominant structure for
iron alloys, has fewer slip planes and dislocation motion requires additional energy
to occur. Figure 1.16 shows the structure of a BCC (a) and FCC (b) lattice. At
high temperatures, energy from heat enables easier motion of dislocations in BCC
structures, making the material more ductile, but weaker. At low temperatures, little
dislocation motion can occur, and the material becomes harder and more brittle.

3 A slip plane for a given crystal lattice is the plane with the highest density of atoms (closest
packed), and on which slip (motion) may occur with the least energy needed to dislocate the atoms.
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Fig. 1.16 Body-centered cubic (a) and face-centered cubic (b) [35]

The presence of alloying elements has a major effect on the DBT in metals,
particularly steel. While pure iron is fairly ductile and has a low DBT—about −
50 °C [34]—the addition of alloying carbon increases the DBT, and even a small
amount of sulfur or phosphorous can greatly decrease the ductility and increase the
DBT. The addition of manganese to a steel alloy has a positive effect, however, and
can increase ductility as well as reduce DBT [34]. Precipitates, grain boundaries,
and other hardening mechanisms all decrease the ductility of the material.

1.3.2.2 Glass Transition Temperature

Glass transition is a second-order transformation which occurs in amorphous mate-
rials, namely polymers [32]. This transition occurs over a range of temperatures and
marks the point at which the polymer chain is able to move with increasing degrees
of freedom without breaking. This change occurs because of the contribution of
intermolecular (secondary) bonding between chains. Though these bonds are not as
strong as the primary covalent bonds which hold the chains together, at low temper-
atures it may be difficult for the chains to slide past each other due to these bonds,
whereas at high temperatures it is relatively easy to overcome the intermolecular
bonds.

The presence of bulky side groups, crosslinking, or polar groups on the chain will
all decrease chain mobility and will therefore make glass transition occur at higher
temperatures. This can be a problem for polymers that are exposed to temperatures
outside of their expected application range and may fracture early or become flimsy.

1.3.2.3 Thermal Shock

Thermal shock is the cracking mechanism as a result of rapid temperature change.
It affects material properties such as toughness, thermal conductivity, and thermal
expansion. In addition, as different parts expand by different amounts—creating a
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Fig. 1.17 An example of a residual thermal stress process [37]

thermal gradient—it results in a differential strainwhich creates stress in thematerial.
If this stress grows large enough, it can cause cracks to form [36].

1.3.2.4 Melting

Melting is the phase change of a substance from solid to liquid. It is a first-order trans-
formation that happens at a constant temperature and results in increased molecular
vibration. The failuremechanisms that generate heat can result in component melting
as a secondary failure. For instance, in electrostatic discharge failure mechanisms
heat is generated that can result in melting of electronic devices [28].

1.4 Chemical Degradation and Failure Mechanisms

1.4.1 Wear-Out Mechanisms

In this section, different types of chemical wear-out mechanisms are explained. One
of the main materials that suffer from chemical degradation is polymer [38]. Poly-
mers are a wide category of materials which includes synthetic thermoplastic and
thermoset polymers, naturally occurring polymers present in organic material, and
natural and synthetic rubbers. These materials undergo various forms of degradation
depending on the environment and polymer chemistry, but the main forms are [38]:

• Depolymerization
• Thermal-oxidative degradation
• Hydrolytic degradation
• Ozone degradation

In the following section, all these degradation mechanisms are explained briefly.
Then, corrosion and outgassing are presented as the other types of chemical wear-out
degradation mechanisms.
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Table 1.1 Ceiling temperature of common organic polymers [41]

Polymer Ceiling temperature (°C) [3] Monomer

Polyethylene 610 CH2=CH2

Polyisobutylene 175 CH2=CMe2

Polyisoprene (natural rubber) 466 CH2=C(Me)CH=CH2

Poly(methyl methacrylate) 198 CH2=C(Me)CO2Me

Polystyrene 395 PhCH=CH2

Polytetrafluoroethylene 1100 CF2=CF2

1.4.1.1 Polymer Degradation-Depolymerization

Depolymerization is a process which occurs at high temperatures and is defined as
the decomposition of a polymer into one or more monomers [38, 39]. It is a very
common process in nature. For example, in the process of food digestion macro-
molecules depolymerize. For polymers formed via addition polymerization such as
polyethylene, there is no chemical reaction involved and the tendency to depoly-
merize or polymerize is dependent on the relative size of the entropy gain times
the temperature to the enthalpy change from the conversion from a single-bond
carbon chain to a double-bond monomer. At low temperatures, polymerization is
thermodynamically favored due to the decrease in enthalpy, but at high temperatures
depolymerization will become favored [40]. In Table 1.1, ceiling temperatures4 of
different organic polymers are presented.

�G = �H − T�S

Condensation polymers, on the other hand, do not have the ability to change
between monomer and polymer forms in this way. The formation of these poly-
mers occurs via the reaction of two or more constituents, for example, an alcohol
reacting with carboxylic acid to form polymers with ester groups. Instead, these
polymers depolymerize via reactions with the environment. For example, hydrol-
ysis is the process by which bonds in functional groups are broken in water causing
depolymerization [40].

1.4.1.2 Polymer Degradation—Thermal-Oxidative Degradation

Polymers can degrade by chain scission in which a long main chain breaks up into
smaller chains of a smaller molecular weight. This type of degradation falls under the
general category of thermal-oxidative degradation and is usually caused by exposure

4 The ceiling temperature of a polymer is the temperature at which polymerization ceases to become
thermodynamically favorable. Above this temperature depolymerization will occur.
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to heat or UV radiation while in the presence of oxygen. The reaction with oxygen
causes the polymer to become brittle, more susceptible to wear, and changes its
optical properties such as color and opacity. Thermal-oxidative degradation can be
slowed down with the use of UV stabilizers and antioxidants [42].

1.4.1.3 Polymer Degradation—Hydrolytic Degradation

Many polymers are not impermeable to liquids and may either swell or dissolve. The
ability for the polymer to take up a liquid depends on the solubility of the polymer and
liquid. For polymers, the solubility is typically much higher with organic solvents
than water.

As the liquid penetrates the polymer, the smaller molecules are able to fit between
the large polymer molecules and gradually increase the distance between polymer
chains. This separation of the chains reduces the strength of intermolecular bonds and
soften the polymer along with reducing its glass transition temperature. Dissolution
is the more extreme form of the same effect, where the polymer is completely soluble
[42].

1.4.1.4 Polymer Degradation—Ozone Degradation

Polymers—especially those with doubly bonded carbon atoms in the main chain—
are susceptible to chain scission caused or accelerated by reactions with ozone, as
well as oxygen, to a lesser extent. If the polymer is unstressed, this reaction will
proceed until a protective layer is formed and stop, but tensile stresses form cracks
in this layer that expose new material to react. This problem is mainly prevalent in
vulcanized rubbers, characterized by the double-bonded carbons [42].

1.4.1.5 Corrosion

Corrosion is the process of metal breakdown by reacting with substances in their
environment. One of the well-known examples is rusting, where iron reacts with
oxygen and water from the environment to form hydrated iron oxides which are
more commonly known as rust.

Corrosion can be divided into several types; themost common of these are general,
pitting, crevice, intergranular, stress corrosion cracks, and galvanic corrosion. These
types of corrosion are described below, but note that this is not a comprehensive list
of all types of corrosion since many environmental, structural, and chemical factors
can impact the rate and nature of corrosion in a metal [42].

The simplest form is general corrosion which occurs over the full body of the
material but is slow relative to other forms. Pitting and crevice corrosion occur at
accelerated rates in small spaces where there is poor circulation, and the local envi-
ronment is allowed to become highly corrosive as the reaction proceeds. Intergranular
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corrosion is accelerated corrosion at metal grain boundaries where thematerial might
be more susceptible to a reaction.

Stress corrosion cracking occurs when a material is subjected to mechanical load
cycles in a corrosive environment. Stress corrosion cracks greatly accelerate the
rate of both corrosion and crack propagation, since the formation of brittle reaction
products reduces the strength andductility of the structure, and the small space created
by the crack allows for rapid corrosion propagation similar to pitting corrosion.

Lastly, galvanic corrosion is characterized by the preferential corrosion of one
metal when it is in contact with another dissimilar metal when moisture and an
electric current are present. Under galvanic corrosion, the two materials form an
electrolytic cell, with the more noble metal acting as a cathode and the less noble
acting as an anode.

1.4.1.6 Outgassing

Outgassing is the process by which a material loses mass in very low-pressure condi-
tions, most commonly in the vacuum of space [43]. Generally, outgassing describes
the process of leachingmaterial out of a part in low-pressure conditions but depending
on the makeup of the material/part, the nature and consequentiality of this process
vary. Polymers are notably susceptible to undergoing phase changes at these low
pressures and may lose mass as material at the surface evaporates. Additionally,
even if the bulk of the material is designed to be resistant to this effect, materials
trapped in pores or cracks may leach out. This can result in damage due to mass
loss, and potential damage to sensors or electronics if some of the leached material
attaches itself to these sensitive parts.

1.4.2 Overstress Mechanisms

Overstress chemical degradation mechanisms are chemical degradation mechanisms
that result in material breakdown. All degradation mechanisms presented in wear-
out chemical degradation mechanisms (Sect. 1.4.1) can occur at varying speeds
depending on what elements the material is exposed to. Extremely reactive mate-
rials—like strong acids or bases—can quickly break down a material structure as it
reacts. These types of degradations are considered as overstress chemical degradation
mechanism.

1.5 Electronics Degradation and Failure Mechanisms

Electronic components can be divided into three categories: active, passive, and elec-
tromechanical. Active components include transistors, diodes, displays, etc. which
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can be used to amplify signal and power, and whose functions depend on external
energy input. Passive components include resistors, capacitors, and inductors, etc.
which cannot inject power into a circuit. Electromechanical components include
switches, cable assemblies, etc. which perform their electrical functionalities by
mechanical movements of their parts. Some of the failure mechanisms in these
electrical components have been introduced in former sections of this chapter. For
example, coefficient of thermal expansion (CTE) mismatch of packaging materials
can cause mechanical stresses inside the components and trigger fatigue. Corrosions
due to humidity and chemicals also degrade the packaging materials and PCBs and
can further fail the electronics. Outgassing and thermal shocks are also failuremecha-
nisms involved in packaging failures. Glass transitions in the PCB failures can soften
the resin matrix and cause contaminant diffusion. In the following sections, more
degradation and failure mechanisms in electrical components are introduced.

Semiconductors are widely used in building up electrical systems. For example,
semiconductors serve as the dielectric layer in the metal–oxide–semiconductor field-
effect transistors (MOSFETs)which are switching and signal amplifying components
and as significant members in memory hierarchy. Semiconductors are also used in
FLASH memory which serves as solid-state memory (SSD). Thus, the following
section starts from the degradation mechanisms commonly seen in the MOSFETs,
moving on to the crosstalk of the neighboring circuits, and the metallic degradation
of interconnections and metallic components.

1.5.1 Dielectric Breakdown

Dielectric breakdown can be divided into five stages as shown in Fig. 1.18. The
schematics of how defect clustering affects the leakage current evolution are shown
in Fig. 1.19. There is amaximum electric field that the dielectricmaterial can tolerate.
When the applied electric field is larger than the maximum tolerable voltage in a
dielectric material, the hard breakdown (HBD) happens (as shown in Fig. 1.18 region
E), and the gate oxide is no longer insulated. HBD is themost destructive phase of the
breakdown. It can also be referred to as thermal runaway. Themetal atoms/ions in the
gate migrate from the gate to the dielectric at this stage, causing “punch-through”.
The transitive characteristics are completely lost in the HBD regime.

Under lower electric fields, the gate oxide can also wear out with time-dependent
dielectric breakdown (TDDB) process. Stress-induced generation of traps can happen
inside the oxide and at the interface. As the dielectric degradation continues, the
breakdown initiates (as shown in Fig. 1.18 region B). The degradation process and
breakdown position can vary greatlywith same size transistors because of the random
behavior of the degradation mechanism. Because of the localized defects in the grain
boundary (GB) regions, TDDB is observed to propagate faster in GBs [44]. TDDB
can be controlled to a certain degree by the external compliance current. Similar to
stress-induced leakage current (SILC), TDDB can be partially recovered, and the
extent of recovery relies on the electrode material oxygen solubility [45].
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Fig. 1.18 Leakage current evolutionwith time for a dielectric stressed at time t= 0. Five regimes of
dielectric breakdown are shown [48]. A: Stress-induced leakage current (SILC); B: time-dependent
dielectric breakdown (TDDB); C: digital breakdown (Di-BD); D: analog breakdown (An-BD); E:
hard breakdown (HBD). Different kinetics of degradation are related with different regimes. A and
B are device area dependent while the rest are location dependent [48]

Fig. 1.19 Correspondence of dielectric defect density and spatial distribution with the five regimes
of breakdown [48]. Yellow and blue dots are active defects in the pre-TDDB and post-TDDB stage.
Black and red dots are the trapped charges. Regimes A–D involve the role of oxygen vacancy
defects, while regime E relates to the metal migration from the gate electrode and/or silicon from
the substrate [48]
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Fig. 1.20 Multiple
breakdown spots at the drain
junction of an nMOS
transistor [49, 50]

The breakdown (BD) modes depend on the thickness of the gate oxide. HBD
marks a complete loss of the oxide dielectric properties. For sub-180 nm complemen-
tarymetal–oxide–semiconductor (CMOS), soft-BD (SBD) happensmore frequently,
resulting in a large increase of gate current noise and small increase of gate current
[46]. For ultra-thin oxides (< 2.5 nm), progressive-BD (PBD) follows SBD till HBD.

There are other types of breakdown. For instance, in digital breakdown (Di-BD),
random telegraph noise (RTN) happens resulting in random jumps in current levels.
The electron captures and emission by the traps cause the current fluctuations. Traps
from GBs and interface can also contribute to this phenomenon besides traps in the
percolation paths.

In analog breakdown (An-BD) (as shown in Fig. 1.18 regionD), additional defects
are created near the percolation path, enhancing Joule heating, and increasing local-
ized temperature. Percolation paths become wider at this stage [47]. The device
is significantly degraded at this An-BD stage and can no longer provide reliable
functional operation.

The continuous clustering of defects can create percolation paths that link the gate
to the substrate, and the TDDB process happens. Figure 1.20 shows the breakdown
spots of an nMOS transistor.

1.5.2 Bias Temperature Instability (BTI)

Bias temperature instability (BTI) is a degradation mechanism of MOSFETs. A
threshold voltage shift may happen due to BTI when the MOS gate is applied a bias
voltage under elevated temperature. The increase or decrease of threshold voltage
changes the sensitivity of the transistor. There are two types of BTI; negative BTI
(NBTI) that occurs in pMOS, and positive BTI (PBTI) that occurs in nMOS. At
present, there is no consensus about the origins of both types of BTI phenomena.
However, many researchers believe that NBTI originates from hole trapping in oxide
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defects [51–53], and PBTI, on the other hand, originates from electron trapping in
oxide traps [54, 55].

1.5.3 Hot Carrier Injection (HCI)

Hot carrier injection is a wear-out mechanism in MOSFETs. Hot carriers refer to the
carriers that are accelerated under high electric fields and build up enough kinetic
energy to inject into “forbidden” regions like the gate oxide. These carriers can be
trapped in those regions or generate interface states, which can lead to threshold
voltage shift and output conductance shift. This type of degradation first came to
attention in mid-eighties as the supply voltage didn’t decrease along with the tran-
sistor scaling [56–58]. As the transistors reduced power consumption and lowered
the operating voltage, HCI became less severe since mid-nineties. Generally, HCI is
more of a problem in nMOS devices [59], but it can also severe the NBTI in pMOS
[60].

There are four commonly encountered hot carrier injectionmechanisms including
[56] (1) channel hot electron injection (CHE); (2) substrate hot electron injection
(SHE); (3) drain avalanche hot carrier injection (DAHC); and (4) secondary generated
hot electron injection (SGHE). In principle, all these four mechanisms work in a
similar manner. Their difference is in the condition that hot carriers are generated.
In the following subsections, these mechanisms are explained briefly.

1.5.3.1 Channel Hot Electron (CHE) Injection

It usually happens when some electrons gain sufficient energy to pass the Si/SiO2

barrier at the drain end of the channel of the transistor without energy loss after
collisions with channel atoms [61]. CHE is worse in higher voltage because larger
electric fields can cause avalanche multiplication and generate hot carriers. Since
holes are heavier than electrons, CHE in nMOS is more significant than in pMOS
[62]. The schematic of CHE is shown in Fig. 1.21.

1.5.3.2 Substrate Hot Electron (SHE) Injection

Thismechanism happenswhen the transistor bulk is appliedwith a very large positive
or negative bias. The carriers in the substrate are driven to the Si/SiO2 interface,
gaining sufficient kinetic energy to by-pass the interface barrier, and injecting to the
oxide [61]. Comparedwith otherHCImechanisms, hot carriers in this type aremostly
uniformly distributed along the channel as shown in Fig. 1.22. The phenomenon
usually happens in stacked devices with nonzero bulk bias.
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Fig. 1.21 Channel hot
electron (CHE) injection
process [61]

Fig. 1.22 Substrate hot
electron injection process
[61]

1.5.3.3 Drain Avalanche Hot Carrier Injection (DAHC)

Under high drain voltage and low gate voltage, impact ionization of the channel
current near the transistor drain can create electron–hole pairs as shown in Fig. 1.23
[61]. It can also be called as avalanche multiplication which leads to drain avalanche
hot carrier generation (DAHC). Bulk current can also be generated in some cases.
The gate oxide can heavily degraded because of this avalanche hot carrier injection.

Fig. 1.23 Drain avalanche
hot carrier injection process
[61]
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Fig. 1.24 Secondary
generated hot electron
injection [61]

1.5.3.4 Secondary Generated Hot Electron Injection (SGHE)

Impact ionization5 generates secondary carriers. These carriers can be generated
under DAHC or bremsstrahlung radiation near the drain, gaining sufficient kinetic
energy and overcoming the surface energy barrier, that results in secondary generated
hot electron injection [61] (Fig. 1.24).

1.5.4 Electromagnetic Interference (EMI)

Electromagnetic interference (EMI) is the disturbance caused by external sources
to the target electrical circuits. External sources can cause disturbance on the target
electrical circuits because of EMI. Such disturbance can be conductive, capacitive,
magnetic, or radiative between the source and the victim circuits. Types of EMI
include on-chip crosstalk, simultaneous switching noise (SSN), energetic particles,
and radiated EMI [61].

On-chip crosstalk happens between two circuits or circuit elements (like intercon-
nect wires). The signal waves from one circuit can be influenced by the other. SSN
is a case of common impedance crosstalk where subcircuits share the same power
distribution bus. Large transient current spikes can be produced with the simulta-
neous switchingofmultiple digital gates. The energetic particles and radiation-related
interference will be introduced in Sect. 1.6.

5 Happens when there is a sufficient large, applied voltage.
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1.5.5 Electrostatic Discharge (ESD)

When two charged objects come close to each other, electrostatic discharge (ESD)
can happen and generate electricity flow suddenly. Triboelectric charging, elec-
trostatic induction, and energetic particles can cause ESD. Triboelectric charging
happens between two different materials which experience contact electrification in
contact and then separate. Electrostatic induction happens when a charged object
is close enough to another uncharged object, resulting in charge redistribution in
the certain object. Energetic particles can be particles from space, like particles in
cosmic rays. Typically, ESD can cause failure in semiconductor chip dialectics or
metal interconnects [63]. Severe ESD can cause junction burn-out.

Electrostatic discharge can generate high voltage and cause damage to the elec-
tronics. Thus, it must be carefully prevented in manufacturing and quality control
processes. Moreover, ESD can be the cause of explosions with just a spark in some
other industries.

1.5.6 Electrical Overstress (EOS)

Electrical overstress (EOS) can be induced by temperature, electric field, and electro-
migration. EOS can cause thermal runaway, which results in local thermal conduc-
tivity loss and producing more heat locally [64]. Current crowding can be caused by
the localized heat, further severe the heat localization and can even burn the device
as shown in Figs. 1.25 and 1.26.

1.5.7 Electromigration (EM)

Electromigration involves the metal ion migration due to momentum transfers under
electrical stresses [61]. Voids and hillocks can be created due to the gradual shift
of metals. Images of voids and hillocks are shown in Fig. 1.27. EM is sensitive
with the current density in the circuit. As integrated circuits scale down these days,
the effect of EM becomes more significant, and some design modifications have
been performed. For instance, in advanced semiconductor manufacturing processes
aluminum is being replaced by copper. Since copper has much higher melting point
so the atomic diffusion is slower than aluminum.
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Fig. 1.25 Plasma arcing in semiconductor manufacturing in 300 mmwafer fabricators causes EOS
failure [65]

Fig. 1.26 EOS failure in packaged semiconductor [66]

1.5.8 Tin Whiskers

Contact resistance in electronics is carefully controlled to ensure the device’s func-
tionalities. The contact degradation can be mechanical-induced, thermal-induced,
and electrical-induced. For example, similar to packaging failure, thermal expansion
mismatch can induce internal mechanical stress and lead to fatigue cracking. Corro-
sion can generate non-conductive oxides and raise the resistance high up. Electri-
cally, electromigration andbrittle intermetallic layer formation canboth cause contact
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Fig. 1.27 Hillock and void formations in wires due to electromigration [67]

degradation and failure. BeyondEMdiscussed in the former section (Sect. 1.5.7), this
section will further introduce the tin whisker formation and its possible mechanisms.

Tin whiskers are the whisker-shaped crystalline structures generally grown from
pure tin or zinc-finished surfaces. Different from dendrites which grow along a
surface (X–Y plane), tin whiskers grow outward from a surface (Z axis). Typically,
tin whiskers have length around 1 mm and diameter around 1 μm [68], but the sizes
can vary depending on the cases. The actual growth mechanism of tin whiskers has
not yet come to a consensus, but this degradation is thought to be related to the diffu-
sion of atoms within the finish surfaces. Several theories have been raised: (1) Tin
whiskers can be a response to the stress relief within the tin plating; (2) the growth of
the tin whiskers may result from the recrystallization and abnormal grain growth in
tin grains [68]. It is shown that neither metal dissolution nor electromagnetic field is
required for the formation of tin whiskers. Figure 1.28 shows TEM image of long tin
whiskers, and Fig. 1.29 is a schematic of probable tin whisker formation mechanism.

Tin whiskers can cause short circuits, metal vapor arc, and contamination. The
whisker can be fused if the current flow exceeds the fusing current of the whisker, and
in this case, the short circuit is transient. Otherwise, the short circuit caused by the
whisker is permanent. Under high levels of current and voltage, the tin whisker can
be vaporized into conductive plasma of metal ions that form destructive metal vapor
arcs. The required initiation and sustaining power for metal vapor arcs is smaller
under lower air pressure. Thus, in space-based applications, this phenomenon needs
to be paid more attention to. Additionally, the presence of whiskers can interfere
with sensitive optics and cause contamination [71].
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Fig. 1.28 Examples of long tin whiskers on a 15 μm thick tin film over Cu alloy (ASTM BB42)
after exposure to room ambient for 222,981 h [69]

Fig. 1.29 Diffusion of Cu into the shaded intermetallic compound to react with Sn generates a
compressive stress in the volume [70]
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1.5.9 Self-healing Accumulation

When overvoltage is applied on non-metallized film capacitors, small localized
dielectric breakdown can occur and short the electrodes. However, in metallized film
capacitors, since the electrode foils are thin, the foils can vaporize under high energy
density in the fault area and avoid breakdown. This is the self-healing phenomenon
[72]. Three factors affect self-healing, which are the working voltage, mechanical
pressure between the winding layers, and the metallization thickness [73]. A thin
layer of Al or Zn coating on the plastic film is used in the metallized film capac-
itor, and the thickness of this coating determines the energy needed for self-healing
process. Typical plastic film dielectrics include polypropylene (PP), polycarbonate,
and polyester, whose self-healing capabilities are different. Certain amount of energy
is required to initiate the vaporization process. However, if the energy exceeds
the tolerance level, weak spots will be created and may further cause avalanche
breakdowns.

The capacitance can also gradually decrease because of the accumulation of
multiple self-healing events. The metal layer vaporization reduces the electrode area
over time. Additionally, self-healing events increase the equivalent series resistance
(ESR) of the capacitor, which also reduces the capacitor’s lifetime.

1.5.10 Self-heating

The self-heating in the metallized film capacitors happens when body generated
power exceeds the surface power dissipation capability. Self-heating raises the
temperature of the capacitor, reduces the breakdown voltage, and even melts the
capacitor [74]. Several factors can affect the self-heating temperature: ESR, current
across the capacitor, and the thermal resistance between the case and the ambient
temperature [74].

1.5.11 Electrochemical Corrosion

Formetallized film capacitors, the electrochemical corrosion of the thin electrode can
be caused by the high ripple current and voltage [75]. The oxygen and/or moisture
of the polymer migrates to the polymer and metallization interface during this corro-
sion process. Factors such as temperature, electrode thickness, stress, and frequency
affect the corrosion process. Also, the material selection of the dielectric layer in
metallized film capacitors can make a difference in the sensitivity of ripple current,
for example, PP is less sensitive to the ripple current than polyethylene terephthalate
(PET). Consequently, metallized film capacitors using PP as the dielectric have better
resistance to the electrochemical corrosion.
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1.5.12 Thermal Overstress Induced Electrolyte Evaporation

Electrolyte evaporation is the primary wear-out mechanism in electrolyte capaci-
tors. This mechanism is caused by high temperatures within the capacitor core. For
electrolytic capacitors under overstress, the electrolyte diffuses as vapor through the
selling material and the diffusion rate can be accelerated by the increasing vapor
pressure due to elevated temperature [75]. The loss of electrolyte decreases the
capacitance and increases ESR.

1.6 Radiation Degradation and Failure Mechanisms

Radiation is defined as emission or transmission of energy through space or amedium
[78]. The word radiation came up from waves radiating that moves outward in every
direction from a source [76]. There are two fundamental damagemechanisms caused
by radiations including lattice displacement and ionization effects [77].

1.6.1 Lattice Displacement

Threshold displacement energy (TDE) is the most common quantity for describing
radiation damage in materials. Thus, displacement energy is defined as the minimum
required energy to create a stable defect in a material [81]. At the higher energy than
the threshold level, a stable displacement will be generated in the structure. TDE
is unique to each direction in a crystal lattice, and a solid crystalline material will
typically have a minimum and an average TDE value separately identified. Lattice
displacement may occur from proton, neutron, heavy ion, or high energy gamma
radiation if the energy of that radiation exceeds the TDE in that crystal direction
[78, 79]. The rearrangement of atoms in the crystal lattice caused by this radiation
can cause lasting damage and increase the number of recombination centers [79].
Additionally, high doses in a short time span can cause partial annealing of the lattice
[80] (Fig. 1.30).

1.6.2 Ionization Effects

Ionization effects result from the emission of energy from a medium through space
or a medium that is sufficient to ionize molecules or atoms. The common sources of
the ionizing radiation are X-rays, Alpha, Beta, Gamma, and Neutron radiations (e.g.,
[85, 86]). The ionizing and nonionizing effects of energy particles are hard to define
since each atom and molecule need different energy to be ionized. For example,
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Fig. 1.30 Lattice
displacement

Fig. 1.31 Alpha, Beta, and
Gamma radiation

if an X-ray photon collides an atom, the atom may absorb the energy and knock
one electron to a higher orbit level. If the photon has enough energy to remove the
electron from the atom, however, ionization will take place [81]. An example of this
effect can be seen in an X-ray machine. Bones and soft tissues absorb different levels
of energies and X-ray machines utilize this fact to see bones and tissues (Fig. 1.31).

A single event effect (SEE) is an ionization process by one single ionizing particle
(ion, electron, or photon) in an electronic device. The ionization process results in
change of state in or close to an important node of a logic element. This process
is known as a soft error. The type of SEE in electronic devices depends on device
type and technology, localization, and amount of radiation. In this section, SEEs are
categorized into non-destructive and destructive single event effects [82].

1.6.2.1 Non-destructive Single Event Effects

Single Event Upsets (SEU)

Single event upsets occur in memories and sequential logic circuits. A single event
upset causes changes of bits on a memory array, i.e., data loss. It can happen at any
time, either at reading, writing, or the idle state of a circuit. A re-write can correct
the error. This effect can show up as multiple bit upsets caused by a single ion [83].
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Single Event Functional Interrupts (SEFI)

A single event upset that leads to temporary loss of device functionality is considered
as a single event functional interrupt (SEFI). This phenomenon occurs in control
registers, e.g., processors. SEFIs can be recovered by soft reset or power cycle, and
this type of failure is usually more challenging than SEU [84, 85].

Single Event Transients (SET)

In single event transients (SETs), an ion hit caused by cosmic rays leads to a voltage
transient in the circuit. It is similar to electrostatic discharge and occurs in logic
circuits. As circuit speed increases, SETs happen more often and become indistin-
guishable from intended signals. This type of failure is recoverable with soft reset
[86].

1.6.2.2 Destructive Single Event Effects

Single Event Latch-Up (SEL)

A single event latch-up (SEL) occurs due to a low-impedance path generated by
heavy ions or protons between two inner-transistor junctions. This results in a latch-
up of the device until it is power-cycled, or the power supply and substrate creates
a parasitic structure that could cause current overflow and device damage [87]. SEL
is a strongly temperature-dependent event [88].

Single Event Gate Rupture (SEGR)

Under a high electric field between gate silicon, heavy ions passing through the
gate oxide will leave a path to discharge the capacitor. This process causes local
overheating and microscopic explosion of the gate dielectric region and leads to
permanent damage to gate dielectric [89].

Single Event Burn-Out (SEB)

A single event burn-out (SEB) occurs when the substrate under the source region gets
forward-biased and the drain-source voltage is higher than the breakdown voltage
of the parasitic structures. This process requires a sufficient magnitude of current to
overheat the device to destruction. It occurs often in bipolar and MOSFET power
transistors and leads to permanent damage [89].
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Single Event Hard Errors (SEHE)

A single event hard error (SEHE) occurs when heavy ions strike on memory arrays,
leading to a large energy transfer. It causes an unchangeable state, called a stuck bit
in memory, and leads to permanent damage [90, 91].

1.7 Human Failure Modes

Human failure modes can be classified into human error and violation. These two
failures are covered in more detail in the following sections [92].

1.7.1 Human Error

Human error is defined as an unintentional decision or action and can be classified
to slips and lapses (skill-based errors), and mistakes. Human errors are possible to
happen to even the well-trained and/or experienced person [92].

1.7.1.1 Skill-Based Errors (Slip and Lapse)

Slips and lapses occur in tasks that we can perform with low conscious attention;
for instance, driving a vehicle. The tasks with low conscious attention requirements
are very vulnerable to slips and lapses when the attention is diverted for a very short
time. Slip refers to a failure to perform a task as intended. It includes but not limited
to cases such as [92]:

• Performing a task at the wrong time; for instance, braking too late in a car
• Missing one or more steps in a task; for instance, forgetting to turn on the oven

before cooking
• Performing an action with too little or too much strength; for instance, breaking

a paperclip from too much bending
• Moving an object in the wrong direction; for instance, changing to the wrong gear

in a car by moving the joystick in the wrong direction
• Performing a correct action on the wrong object; for instance, reading the wrong

value on a thermostat.

Lapse is defined by either forgetting to do a necessary action or losing your place
partway through a task [92]. Some examples of lapse include:

• Forgetting to tighten a screw after placing it
• Forgetting to retrieve a jacket that has been set down
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• Being interrupted in the middle of an action and missing a step upon returning to
it

• Forgetting to protect door and window borders before painting a wall.

1.7.1.2 Mistakes

Mistakes are defined as decision-making failures, i.e., it happens when a person
performs a wrong task, believing it to be right. There are two main types of mistakes,
including knowledge-based and rule-based mistakes [92].

An example of a knowledge-based mistake is poor judgment during a lane change
resulting in an accident or disruption of traffic. The driver used their own assessment
of the situation and unintentionally made a poor decision. A rule-based mistake
may occur if an operator misinterprets procedure, such as pressing a wrong button
in an emergency scenario after misunderstanding the purpose of the controls in an
operation manual [92].

1.7.2 Violation

Violations are intentional failures and deliberately performing the wrong task. The
violation of health and safety principles and rules is one of the biggest causes of
injuries and accidents at workplaces [92]. Some common examples of violations
include:

• Not using protective equipment (such as seatbelts or safety goggles)
• Skipping procedures to check a machine before starting it
• Allowing employees to operate machinery they are not trained on
• Beginning work on a new project or site without receiving permission.

1.8 Software Errors and Failure Mechanisms

Software errors and failure mechanisms can be classified to function failure
mode, value-related and timing failure modes, and interaction failure modes [93].
Figure 1.32 represents the functional decomposition of a software that includes a
generic function with inputs and outputs, with outputs being used as input to other
functions. The elements of the function can each have different failure modes. The
process section is where the functional behavior and computation are executed,
turning input(s) to output(s). Types of failure modes associated with this stage are
called functional failures. A function in principle has at least one output. This may be
a numerical value or a function call to other functions. Input is the output of another
function or is given from an external interface. An output of a function can be an
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Fig. 1.32 Functional decomposition of software [94, 95]

input to several other functions. Each function can have several inputs and outputs
with a specific data type and range [94, 95].

The input, process and output could have different failure modes. The input could
have interaction failure modes, the process can fail because of functional failure
modes, and the output could fail due to value and time-related failure modes. In the
following, some examples of each type of failure modes are presented [93–95].

The function failure modes include, but are not limited to:

• Omission of a function/missing operation
• Incorrect functionality
• Additional functionality
• No voting
• Incorrect voting
• Failure in failure handling.

The interaction failure modes include, but not limited to:

• Diverted/incorrect functional call
• No call of next function
• No priority for concurrent functions
• Incorrect priority for concurrent functions
• Communication protocol-dependent
• Unexpected interaction with input/output (IO) boards

– File/database wrong name
– File/database invalid name/extension
– File/database does not exist
– File/database is open
– Wrong/invalid file format
– File head contains error



42 T. Parhizkar et al.

– File ending contains error
– Wrong file length
– File/database is empty
– Wrong file/database contents.

The time-related failure modes include, but not limited to:

• Output provided: too early
• Output provided: too late
• Output provided: spuriously
• Output provided: out of sequence
• Output provided: not in time
• Output rate

– Too fast
– Too slow
– Inconsistent
– Desynchronized

• Duration

– Too short
– Too long

• Recurrent functions scheduled incorrectly.

The value-related failure modes include, but not limited to:

• No value
• Incorrect value

– Too high
– Too low
– Opposite/inverse value
– Value is zero

• Value out of range

– Datatype allowable range
– Application allowable range

• Noisy value/precision error
• Value with wrong data type
• Elements in a data array/structure

– Too many
– Too few
– Data in wrong order
– Data in reversed order
– Enumerated value incorrect

• Non-numerical value
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– NaN
– Infinite

• Redundant/frozen value
• Correct value is validated as incorrect
• Incorrect value is validated as correct
• Data is not validated.

1.9 Cyber–Physical–Human (CPH) Systems’ Interaction
Failure Mechanisms

A cyber–physical–human complex system is a system that is made of interacting
components of software, hardware, and human operators (Fig. 1.33). In these types
of systems, we have cyber–physical–human interactions [104, 105].

The three different elements in cyber–physical–human systems are hardware,
software, and humans that have different failure behavior characteristics. It is impor-
tant to understand the difference between them and their failure modes, presented
in Sects. 1.2 to 1.8. But more importantly, having knowledge about all these three
components would also allow us to better understand the behavior, interactions, and
the associated failure mechanisms of the cyber–physical–human systems as a whole.
Interaction in CPH systems is mutual or reciprocal action or influence in relation
to certain function(s). The interactions result in exchange of matter, energy, force,
and/or information, and we can have all the combinations as presented as the shaded
area between hardware, software, hardware, human, and the human software, but
also the intersection between all three.

In this definition, the interaction is connected to functions. In the designof systems,
interactions are established between two or more components to accomplish some
functions. Essentially, the system functions are realized through interactions among

Fig. 1.33
Cyber–physical–human
system
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Table 1.2 Cyber–physical–human system interactions (P: physical, C: cyber, H: human)

P–P P–C P–H C–C C–H H–H

Form Physical
contact,
signal

Signal Physical
contact,
signal

Statement Signal Physical
contact,
signal

Content Mass,
momentum,
energy,
information

Information Momentum,
energy,
information

Information Information Momentum,
information

Functional
dependency

B is required for A to work, B prevents A, unavailability of A activates B,
coordination, competition

Time
pattern

Continuous processes, discrete events

the system components. Without interaction, the system functions cannot be imple-
mented even when all components can provide their own functions. However, that
does not say that interaction always contributes to the implementation of system
functions. Some interactions may actually prevent system functions from being real-
ized. So having ways of representing, identifying, and recognizing, the interactions
between these elements are very important. Table 1.2 presents a classification for
the cyber–physical–human system interactions. This classification is very important
because it helps us identify failure modes and mechanisms. In general, identifica-
tion of CPH interactions’ failure mechanisms is a very challenging task in complex
systems, and the provided table presents a structure for analyzing and identifying the
potential interaction failure mechanisms in a complex system.

1.10 Discussion and Conclusion

In this study, different types of material degradationmechanisms in complex systems
are classified and presented. In addition to material degradation, human errors,
software failure, and cyber–physical–human interaction failure are presented and
discussed. The mechanism-based reliability studies are capable of facilitating the
engineers to monitor the system health, help decision makers to weigh among reli-
ability factors, and even provide guidance on the selections of materials, system
structures, operation conditions, operating strategies, operators, and software.

For the purpose of reliability analysis of complex systems, proper understanding
of cross-field degradation and failuremechanisms is essential. Inmany cases, various
degradation mechanisms can have certain dependencies and consequently, the initia-
tion of one degradationmechanism can positively or negatively affect the propagation
of others in the same system. In order to have a more realistic reliability analysis,
the interdependencies between failure mechanisms and cascading effects should be
considered. In fact, an accurate reliability estimation of a complex system requires
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engineers not only to investigate the material, human and software reliability factors,
but also to understand the interactions and dependencies among them. The current
reliability analysis methods can consider certain degradation and failuremechanisms
in a complex system. However, the next generation of reliability analysis methods is
likely to be techniques that can consider degradation and failure interdependencies
in a complex system.
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Chapter 2
Simplified Approach to Analyse
the Fuzzy Reliability of a Repairable
System

Komal

Abstract This chapter presents a simplified approach to analysing the fuzzy reliabil-
ity of a reparable system by utilising uncertain data collected from different sources.
This technique uses fault tree to model the system, triangular fuzzy numbers to
quantify uncertain information, and the Lambda-Tau (LT) method to discover func-
tional equations for six distinct system reliability indices, whilst simplified arithmetic
operations are using for calculation. The proposed strategy is utilised to estimate the
efficiency of a paper producing plant’s washing system by determining its fuzzy
reliability for various levels of uncertainty. Results are compared with two existing
techniques, namely conventional LT and fuzzy Lambda-Tau (FLT). To determine
how different operating conditions affect system performance, sensitivity analysis
and long-term reliability evaluation are conducted. The significant system compo-
nents are ranked using the V -index. The results indicate that, in comparison with the
current FLT technique, the proposed approach is straightforward to implement for
assessing the fuzzy reliability of any substantial and intricate repairable industrial
system. The presented approach might be very useful to maintenance professionals
in designing an effective maintenance strategy for enhancing system performance in
a very easy manner.

Keywords Fuzzy reliability · Lambda-Tau · Fuzzy Lambda-Tau · Triangular
fuzzy numbers · Washing system

Abbreviation

Ã Fuzzy set Ã
μ Ã(x) Membership degree of x in Ã
a1, a2 and a3 Left, modal, and right end values of TFN Ã = (a1, a2, a3)
λi System’s i th component’s crisp failure rate
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λs System’s crisp failure rate
μs System’s crisp repair rate
τ̃i System’s i th component’s fuzzy repair time
τ̃s System’s fuzzy repair time
A Defuzzified value of fuzzy set Ã
q̃T System’s fuzzy failure rate
V (q̃T , q̃Ti ) V -index measures the difference between q̃T and q̃Ti
MTTRs Mean time to repair
ENOFs(0, t) Expected number of failures
Rs(t) System reliability at time t
x Element of fuzzy set Ã
X Universal set
+,−,⊗, / Sum, difference, product, and division between two TFNs
τi System’s i th component’s crisp repair time
τs System’s crisp repair time
λ̃i System’s i th component’s fuzzy failure rate
λ̃s System’s fuzzy failure rate
t Time t
R Defuzzified value of any fuzzy reliability index R̃ = (r1, r2, r3) in

TFN form
q̃Ti System’s fuzzy failure rate by taking its i th component λ̃i = 0̃
MTTFs Mean time to failure
MTBFs Mean time between failures
As(t) System availability at time t .

2.1 Introduction

Nowadays, reliability has become a key index for improving the performance of
complex engineering systems such as warships, LNG carrier propulsion systems,
underwater dry repair cabins, waste clean-upmanipulators, and seabed storage tanks.
Experts are expected to develop solutions to issues found during the evaluation pro-
cess, create maintenance strategies to decrease the frequency of system failures, and
even make an effort to lower maintenance costs by identifying vulnerable parts of
these critical systems in order to analyse the reliability of complex engineering sys-
tems [1]. In general, these systems must be very reliable in order to work safely and
without failure. System failure, on the other hand, is a natural occurrence that cannot
be totally prevented, but it can be reduced in frequency by planning and implement-
ing suitable maintenance techniques. To appraise the reliability of such complex
engineering systems, a variety of qualitative and quantitative techniques are avail-
able, such as failure mode and effect analysis (FMEA), root cause analysis (RCA),
fault tree analysis (FTA), reliability block diagram (RBD), Petri-nets (PN), Bayesian
approach, and Markovian approach [2]. FTA is a well-known, straightforward, and
logical strategy that leverages underlying causes of system failure to calculate the
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likelihood of an undesirable occurrence such as system failure [3]. The qualitative
analysis of FTA generates minimal-cut sets, whereas the quantitative analysis uses
the system’s fundamental event failure probabilities to evaluate the system’s top event
failure probability.

The literature review found that various studies have used FTA to evaluate the
reliability of such complicated repairable systems. Mishra [4] specifically empha-
sised the Lambda-Tau (LT) approach, which assesses the reliability of complicated
repairable systems using FTA, crisp data, probability theory, and fundamental arith-
metic operations. Because the LT approach employs crisp data that may include
uncertainty, Knezevic and Odoom [5] recognised this limitation and developed the
fuzzy Lambda-Tau (FLT) technique. To evaluate the fuzzy reliability of any compli-
cated repairable system, the FLT methodology uses Petri-nets, the LT method, trian-
gular fuzzynumbers (TFNs), and relatedα-cut coupledwith interval arithmetic-based
sophisticated fuzzy arithmetic operations defined on TFNs [6]. Since its inception,
several extensions have been developed by several researchers to handle different
kinds of problems. Some researcher designed hybridised techniques by combining
FLT and a range of heuristic techniques such as genetic algorithms, artificial bee
colonies, particle swarm optimisation, and so on [7–11]. Some researchers replaced
TFNs in the FLT technique with triangle intuitionistic fuzzy sets (TIFS) or triangle
vague sets (TVS) and employed associated α-cut based arithmetic operations [12,
13]. Later, in order to limit the accumulating problem of fuzziness and to adopt other
forms of fuzzy environments, some researchers employed Tω-norm [14] and α-cut
linked arithmetic operations [6] and adopted either TFNs [15–18], different types of
fuzzy membership functions [19, 20], TIFS [21, 22], TVS [23], or different types
of vague sets [24] for analysing complicated systems’ fuzzy, intuitionistic fuzzy, or
vague reliability. From the reviewed literature, it is observed that the main goal of
researchers was to quantify uncertainty through different fuzzy environments and
the reduction of accumulating phenomenon of fuzziness either using different types
of soft computing techniques or Tω-norm. However, to the best of our knowledge,
no study has been carried out to simplify the calculation process in the existing
FLT technique by adopting simplified fuzzy arithmetic operations defined on TFN
without employing soft computing-based techniques or Tω-norm.

The objective of this study is to propose a simple and straightforward reliability
analysis technique for repairable systems that can be used to analyse the system’s
current behaviour and, based on its findings, recommend a future course of action
to optimise its performance. As a result, the fundamental contribution of the work is
a simplified fuzzy Lambda-Tau (SFLT) approach to analyse the fuzzy reliability of
any complex engineering systems.

The remaining chapter is organised into five sections. Section2.2 discusses some
fundamental concepts related to the study. A brief summary of the current LT and
FLT approaches is given in Sect. 2.3. The section also develops the SFLT technique
in a very detailed manner. The efficacy of the proposed technique is demonstrated by
evaluating the fuzzy reliability of a critical washing system in a paper manufacturing
plant. The brief description of the washing system is provided in Sect. 2.4 along with
its fuzzy reliability analysis. In Sect. 2.4, a comparison of the proposed approach has
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been investigated with traditional LT and existing FLT techniques, whilst to analyse
its consistency, a sensitivity analysis has been conducted. The V -index approach has
been implemented to rate the system’s key components based on their criticalities.
Finally, Sect. 2.5 concludes the chapter with findings.

2.2 Preliminary Concepts

This section provides some preliminary concepts such as definitions of a fuzzy set and
triangular fuzzy number (TFN). Section also provides the simplified fuzzy arithmetic
operations for TFNs.

2.2.1 Fuzzy Set [25]

A fuzzy set Ã in the universe of discourse X is a collection of elements denoted by
x having varying degrees of membership represented by μ Ã(x) ∈ [0, 1] in the fuzzy
set Ã. The mathematical representation of a fuzzy set Ã is as follows [15, 25]:

Ã = {(x, μ Ã(x)) : x ∈ X}. (2.1)

2.2.2 TFN [26]

A TFN Ã = (a1, a2, a3) is a fuzzy set with a triangle membership function defined
in Eq.2.2 and plotted in Fig. 2.1, where a1, a2, and a3 indicate the left, modal, and
right end values of Ã [26].

μ Ã(x) =
{

x−a1
a2−a1

, a1 ≤ x ≤ a2
a3−x
a3−a2

, a2 ≤ x ≤ a3
(2.2)

2.2.3 Simplified Fuzzy Arithmetic Operations for TFNs [26]

Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) be two TFNs, then simplified fuzzy arith-
metic operations defined for TFNs are provided in Table2.1 [26].
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Fig. 2.1 A TFN
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Table 2.1 Simplified fuzzy arithmetic operations for TFNs [26]

Operation Fuzzy expression for TFNs

Addition Ã + B̃ = (a1 + b1, a2 + b2, a3 + b3)

Subtraction Ã − B̃ = (a1 − b3, a2 − b2, a3 − b1)

Multiplication Ã × B̃ = (a1b1, a2b2, a3b3)

Division Ã/B̃ = (a1/b3, a2/b2, a3/b1)

Compliment 1̃ − Ã = (1 − a3, 1 − a2, 1 − a1)

2.3 The LT, FLT, and Proposed SFLT Techniques

This section gives a quick review of existing LT and FLT approaches, as well as a
full discussion of the proposed SFLT methodology. The conventional LT approach
evaluates system reliability using crisp data without measuring the data uncertainty.
The limitation of data uncertainty in the LT technique has been dealt with in the
FLT technique by assuming data in the form of TFNs. However, the FLT technique
relies on complicated α-cut and interval arithmetic coupled arithmetic operations for
analysing fuzzy reliability of a system. The proposed SFLT technique rectifies the
complexity of the FLT technique by applying simple arithmetic operations defined
on TFNs. The following assumptions are considered to apply these techniques in this
study [4, 5]:

• The failure and repair rates of components are exponentially distributed and sta-
tistically independent;

• Each component has a separate maintenance facility;
• When a unit fails, the repair procedure begins immediately; and
• The restored component is deemed as good as the new following repairs.
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Table 2.2 Expressions used in the LT method [4]

Gate → λAND τAND λOR τOR

Expressions
n∏
j=1

λ j

[
n∑

i=1

n∏
j=1
i �= j

τ j

] ∏n
i=1 τi

∑n
j=1

[∏n
i=1
i �= j

τi

] n∑
i=1

λi

∑n
i=1 λi τi∑n
i=1 λi

Table 2.3 Reliability indices for repairable systems [5]

Reliability indices Expressions

Mean time to failure MTTFs = 1
λs

Mean time to repair MTTRs = 1
μs

= τs

Mean time between failures MTBFs = MTTFs + MTTRs

Expected number of failures ENOFs(0, t) =
λsμs t
λs+μs

+ λ2s
(λs+μs )2

[1 − e−(λs+μs )t ]
Availability As(t) = μs

λs+μs
+ λs

λs+μs
e−(λs+μs )t

Reliability Rs(t) = e−λs t

2.3.1 LT Method [4]

The LT method is a commonly used approach to estimate the reliability of any
repairable system [4]. The technique applies FTA, crisp data, and classical arithmetic
operations to analyse system reliability. FTA’s qualitative analysis yields all of the
minimal-cut sets that reflect probable system failure scenarios, whilst its quantitative
analysis yields an estimate of system failure and repair rates [27]. A minimal-cut set
represents a group of system components, if they fail simultaneously, then the system
fails. Let us suppose that a system contains n repairable components with failure rates
λi and repair times τi , where i = 1, 2, . . . , n. The mathematical formulae to obtain
system failure rate (λs) and system repair time (τs) are provided in Table2.2 by
assuming that all the constituting components are arranged either in parallel(AND-
gate) or series (OR-gate) configuration. Using the system λs and τs , an expert can
evaluate the system’s different reliability indices as mentioned in Table2.3, where
μs is the system repair rate.

2.3.2 FLT Technique [5]

To use the FLT technique, uncertain λi and τi are fuzzified using TFNswith the assis-
tance of systemexperts, and apprised values are represented by λ̃i and τ̃i , respectively.
The FLT technique applies to fault trees, their minimal-cut sets, the LT method, and
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fuzzified data (λ̃i and τ̃i ) in the form of TFNs for estimating different fuzzy relia-
bility indices as provided in Table2.3 by adopting α-cut coupled fuzzy arithmetic
operations [5, 6, 28].

2.3.3 The Proposed SFLT Technique

The step-wise details of the proposed SFLT technique are provided in Fig. 2.2 and
described as follows.
Step 1: The failure rate (λi ) and repair time (τi ) data for the main components of the
system under consideration are obtained from a variety of sources, such as historical
records, logbooks, literature surveys, and so on, and then finalised with the assistance
of system specialists.
Step 2: With the assistance of system experts, uncertainty in λi and τi is quantified
using TFNs, and their fuzzified values are represented by λ̃i and τ̃i , respectively.
However, other kind of fuzzy numbers, such as trapezoidal fuzzy numbers, may also
be used in the SFLT technique to quantify data uncertainty as per the needs of the
problem and the availability of the data type.
Step 3: In this step, evaluation of system minimal-cut sets is performed using the
system’s fault tree and matrix method [27]. A particular minimal-cut set has a list of
the system’s components in which if all the listed components fail at the same time,
then the system fails.
Step 4: Using the minimal-cut sets produced in Step 3 and the results provided in
Table2.2, the mathematical formulae for λs and τs are evaluated in terms of λi and
τi . Assume that the system is comprised of n components with constant failure rates
λi and repair times taui . The fundamental equations for the system’s λs and τs are
given in Eqs. 2.3 and 2.4, respectively.

λs = f (λ1, λ2, . . . , λn, τ1, τ2, . . . , τn) (2.3)

τs = g(λ1, λ2, . . . , λn, τ1, τ2, . . . , τn) (2.4)

Step 5: In this step, Eqs. 2.3 and 2.4 are fuzzified to get the mathematical expression
for fuzzified λ̃s and τ̃s . The fuzzified equations for λ̃s and τ̃s are given in Eqs. 2.5
and 2.6, respectively.

λ̃s = f (λ̃1, λ̃2, . . . , λ̃n, τ̃1, τ̃2, . . . , τ̃n) (2.5)

τ̃s = g(λ̃1, λ̃2, . . . , λ̃n, τ̃1, τ̃2, . . . , τ̃n) (2.6)

Step 6: Using Eqs. 2.5 and 2.6 and fuzzified data obtained in Step 2, some common
fuzzy reliability indices (Table2.3) can be evaluated by adopting simplified fuzzy
arithmetic operations as given in Table2.1.
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Step 1: Extract system components' failure and repair time data from
available resources/logbooks/ historical  records etc. 

Step 2: Convert extracted data in TFN  form with the help of system experts 

Step 3: Find the minimal-cut sets of the system using its fault tree and
matrix method [27]

Step 4: Find the expressions for system failure rate and repair time using
its minimal-cut sets and expressions given in Table- 2

Step 5: Fuzzify  these expressions of system failure rate and repair time 
using input variables as TFNs  and arithmetic operations as given in Table-1 

Step 6:  Compute six fuzzy reliability indices of the system using fuzzified 
expressions of its failure rate and repair time obtained in Step-5,  input TFN  data 

obtained in Step 2 and by applying  arithmetic operations given in Table-1

Step 7:  Compute defuzzified  values of these six fuzzy reliability indices using 
COG method given in Eq-8 for TFN 

Fig. 2.2 Steps of the proposed SFLT technique

Step 7: In this step, defuzzification is executed for each computed fuzzy reliability
index by employing the center of gravity (COG)method [29]. To understand theCOG
method, let Ã be a fuzzy set with a membership function μ Ã(x), then defuzzified
value Ā of Ã can be evaluated using Eq.2.7.

Ā =
∫
xμ Ã(x)dx∫
μ Ã(x)dx

(2.7)

Now, using Eq.2.7, the defuzzified value R of a fuzzy reliability index R̃ =
(r1, r2, r3) in the form of a TFN can be computed by applying the following Eq.2.8.

R =
∫ r2
r1

( x−r1
r2−r1

)
xdx + ∫ r3

r2

( r3−x
r3−r2

)
xdx∫ r2

r1

( x−r1
r2−r1

)
dx + ∫ r3

r2

( r3−x
r3−r2

)
dx

= r1 + r2 + r3
3

(2.8)
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2.4 An Illustration

This section exhibits the application of the presented technique by analysing the
fuzzy reliability of an important system known as a washing system in a typical
manufacturing plant for different levels of uncertainty [9, 21, 24, 28]. Initially, a brief
idea of themain functioning of thewashing system and its constituting components is
provided along with its schematic and fault tree diagrams. Then, using the presented
SFLT technique, a fuzzy reliability analysis of the washing system is conducted for
different levels of uncertainty (± 10%,± 20%,± 30%). The results are compared
with existing LT and FLT techniques. Then, system reliability estimation for the
long-term period and sensitivity analyses has also been conducted to examine the
efficiency of the proposed technique. A V -index-based ranking method has been
applied to rank the system components according to their criticality.

2.4.1 A Brief Overview of the System

In a typical paper manufacturing plant, the washing system is an essential subsystem
that is primarily used to remove any blackness present in the pulp by washing,
which is done in numerous phases. After washing, pulp with fine fibres is obtained.
The system mainly consists of four types of subsystems, namely a filter, cleaners,
screeners, and deckers, arranged in a series configuration. Their working descriptions
are presented herein [9, 21, 24, 28].

• Filter (A): A filter unit segregates the black liquor from the cooked pulp.
• Cleaners (B): The pulp is cleaned by three cleaner units that are connected in
parallel and use rotary action.

• Screeners (C): To filter out oversize, uncooked, and odd-shaped fibres from the
pulp, two screeners are interconnected in series.

• Deckers (D): Two decker units, connected in parallel, are used to reduce the
blackness of the pulp.

Figures2.3a and 2.3b show the system’s schematic and fault tree diagrams, respec-
tively.

2.4.2 System Fuzzy Reliability Assessment Using SFLT
Technique

The following steps are being used to estimate the fuzzy reliability of the washing
system using the suggested SFLT technique.
Step 1: The failure and repair data (λi and τi ) associated with the main components
of the system as shown in Fig. 2.3a are retrieved from different resources and, after
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Fig. 2.3 Washing system a schematic and b fault tree diagrams [9, 21, 24, 28]

consulting with system experts, are provided in Table2.4 against the LT data column
[9, 21, 24, 28].
Step 2: To quantify data uncertainty, fuzzification of the retrieved λi and τi in terms
of TFNs is done with the help of system experts by taking uncertainty levels of
± 10%,± 20%, and ± 30%. The fuzzified values of λi and τi in the form of TFNs
are now represented by λ̃i = (λi1 , λi2 , λi3) and τ̃i = (τi1 , τi2 , τi3), respectively.
Step 3: The washing system has five minimal-cut sets {{1},{2,3,4},{5},{6},{7,8}}
that have been derived using the fault tree (Fig. 2.3b) and matrix method [24, 27].
Step 4: The minimal-cut sets and results in Table2.2 are used to develop the funda-
mental equations for λs and τs , which are given in Eqs. 2.9 and 2.10, respectively.

λs = λ1 + λ5 + λ6 + λ2λ3λ4(τ2τ3 + τ3τ4 + τ2τ4) + λ7λ8(τ7 + τ8) (2.9)

τs = (λ1τ1 + λ5τ5 + λ6τ6 + λ2λ3λ4τ2τ3τ4 + λ7λ8τ7τ8)

λs
(2.10)

Step 5: As λi and τi have uncertainty, so using their fuzzified values λ̃i and τ̃i , the
fuzzified version of Eqs. 2.9 and 2.10 is provided in Eqs. 2.11 and 2.12 for λ̃s and
τ̃s ,respectively.

λ̃s = λ̃1 + λ̃5 + λ̃6 + λ̃2λ̃3λ̃4(τ̃2τ̃3 + τ̃3τ̃4 + τ̃2τ̃4) + λ̃7λ̃8(τ̃7 + τ̃8) (2.11)

τ̃s =
(
λ̃1τ̃1 + λ̃5τ̃5 + λ̃6τ̃6 + λ̃2λ̃3λ̃4τ̃2τ̃3τ̃4 + λ̃7λ̃8τ̃7τ̃8

)
λ̃s

(2.12)

Step 6: Different fuzzy reliability indices of the system are evaluated for mission
time t = 10 (h) at different uncertainty levels (± 10%, ± 20%, and ± 30%) using λ̃s
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Table 2.5 Comparison between crisp and defuzzified values

Reliability
indices

Crisp Defuzzified values

± 10% ± 20% ± 30%

Failure rate 0.011150 FLT: 0.011153
SFLT: 0.011153

0.011159
0.011162

0.011171
0.011178

Repair time 2.979753 3.043123
3.064065

3.240947
3.328544

3.598923
3.812036

MTBF 92.66325 93.18673
93.36001

94.81281
95.53839

97.72529
99.49199

ENOF 0.108919 0.109060
0.109131

0.109545
0.109908

0.110603
0.111794

Availability 0.968846 0.968264
0.968084

0.966603
0.966033

0.964162
0.963426

Reliability 0.894488 0.894498
0.894501

0.894525
0.894537

0.894571
0.894598

and τ̃s (Eqs. 2.11 and 2.12), fuzzified reliability indices given in Table2.3, fuzzified
λ̃i and τ̃i given in Table2.4, and simplified fuzzy arithmetic operations (Table2.1).
The computed results have been plotted in Fig. 2.4.
Step 7: The defuzzified values are evaluated for all the fuzzy reliability indices
at different uncertainty levels (± 10%, ± 20%, and ± 30%) by applying the COG
method, and the results are tabulated in Table2.5.

2.4.3 Comparative Analysis

The results obtained from the SFLT technique have been compared with results
obtained from LT and FLT techniques and are plotted in Fig. 2.4 [24]. Similarly, the
crisp results computed by the LTmethod [4] and the defuzzified values of each fuzzy
reliability index obtained from the FLT technique have been plotted in Table2.5 for
different uncertainty levels. Regardless of the uncertainty levels, the results displayed
in Fig. 2.4 and recorded in Table2.5 clearly show that SFLT produces results that are
extremely close to those obtained using the FLT technique. Thus, the SFLT technique
is simpler than the FLT technique and provides results that are very close to those
of the FLT technique. So, the SFLT technique can be considered as an alternative
approach to analyse the fuzzy reliability of any complex repairable system.
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Fig. 2.4 Fuzzy reliability indices for washing system at ± 10%, ± 20%, and ± 30% uncertainty
levels using LT, FLT, and SFLT techniques
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Fig. 2.5 Reliability curve
for time period 0–50 (h)
obtained from SFLT
technique at different
uncertainty levels
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2.4.4 System Fuzzy Reliability Estimation for Long-Term
Period

To analyse system behaviour for a long-term period, fuzzy reliability analysis for a
time span t = 0–50 (h) has been performed using the SFLT technique at different
uncertainty levels (± 10%, ± 20%, and ± 30%), and the computed results have been
plotted in Fig. 2.5. In this figure, only the left and right end values of the fuzzy
reliability index, that is, in the form of a TFN at any time and uncertainty level,
are plotted. The results show that system reliability continuously declines over a
long-term period. To improve the performance of the system, its reliability needs to
be improved, for which the sensitivity analysis and identification of system critical
components are essential, which is performed in Sects. 2.4.5 and 2.4.6, respectively,
for the washing system.

2.4.5 Sensitivity Analysis

Sensitivity analysis is essential in determining how varied operating circumstances
affect system performance. In this section, the sensitivity of the washing system has
been analysed by taking nine combinations of reliability, failure rate, and availabil-
ity, and their impact on system MTBF has been recorded. For all the combinations,
the ranges of system repair time and ENOF are fixed and taken from SFLT results,
as shown in Figs. 2.4b and d, respectively, for ± 10% uncertainty level. In these
figures, the range of repair time is 2.182966–4.029475, whilst the range of ENOF
is 0.095768–0.122705, respectively. The maximum and minimum values of system
MTBF for all these nine combinations are recorded in Table2.6. Consider the first
scenario, in which the selected values of reliability, availability, and failure rate are
0.875, 0.992, and 2.3 × 10−4, respectively. The computedMTBF range for this com-
bination is 4732–6063h. Similar effects can be seen in the remaining combinations
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Table 2.6 Impact on washing system MTBF by taking different combinations of its reliability
indices

S.No. Reliability, failure rate,
availability

MTBF (h)

1. [0.875, 2.3 × 10−4, 0.992] Min: 4732
Max: 6063

2. [0.875, 2.8 × 10−4, 0.992] 3887
4980

3. [0.875, 3.3 × 10−4, 0.992] 3298
4226

4. [0.895, 2.3 × 10−4, 0.995] 3931
5037

5. [0.895, 2.8 × 10−4, 0.995] 3229
4137

6. [0.895, 3.3 × 10−4, 0.995] 2740
3510

7. [0.915, 2.3 × 10−4, 0.998] 3148
4033

8. [0.915, 2.8 × 10−4, 0.998] 2585
3313

9. [0.915, 3.3 × 10−4, 0.998] 2194
2811

as well. As a consequence of the analysis, one may conclude that a little change in
system failure rate may lead to a significant variation in MTBF, hence altering sys-
tem performance. The analysis also advises that, to increase system performance, the
present operating conditions of equipment and its constituent components be altered
to enable the construction of an effective maintenance programme as needed. As a
result, rating the system’s fundamental components is essential, as indicated in the
next section.

2.4.6 Ranking of System Critical Components

The ranking of key system components is significant for enhancing system per-
formance through the design and implementation of suitable maintenance action
plans. The present study utilises the V -index-based ranking approach as suggested
by Komal [20] for the ranking of the system’s critical components’. The V -index
determines the disparity in q̃T and q̃Ti , where q̃T is the system’s fuzzy failure rate
when its i th component’s fuzzy failure rate is included in the analysis, whilst q̃Ti
is the recomputed value of the system’s fuzzy failure rate when the possibility of
the system’s i th component’s failure is neglected by setting λ̃i = 0̃ = (0, 0, 0). The
expressions for q̃T and q̃Ti are mentioned in Eqs. (2.13) and (2.14), respectively.
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Table 2.7 Ranking results

Component q̃Ti V (q̃T , q̃Ti ) Rank

A: Filter (i = 1) (9.109541 ×
10−3, 1.015032 ×
10−2, 1.120017 ×
10−2)

3.000000 × 10−3 2

B: Cleaners
(i = 2, 3, 4)

(1.000935 ×
10−2, 1.115000 ×
10−2, 1.229965 ×
10−2)

1.037124 × 10−6 4

C: Screeners (i = 5, 6) (1.009541 ×
10−3, 1.150324 ×
10−3, 1.300172 ×
10−3)

3.000000 × 10−2 1

D: Deckers (i = 7, 8) (9.900191 ×
10−3, 1.100032 ×
10−2, 1.210052 ×
10−2)

4.590000 × 10−4 3

q̃T = q̃T (λ̃1, λ̃2, . . . λ̃i . . . , λ̃n, τ̃1, τ̃2, . . . τ̃i . . . , τ̃n) ≡ (aT , bT , cT ) (2.13)

q̃Ti = q̃T (λ̃1, λ̃2, . . . 0̃ . . . , λ̃n, τ̃1, τ̃2, . . . τ̃i . . . , τ̃n) ≡ (aTi , bTi , cTi ) (2.14)

The V -index calculates the extent of any improvement in system performance when
it is presumed that its i th component is in a fully working state. Mathematically,
V -index is explained as follows:

V (q̃T , q̃Ti ) = (aT − aTi ) + (bT − bTi ) + (cT − cTi )

(2.15)

If V (q̃T , q̃Ti ) ≥ V (q̃T , q̃Tj ), then the impact of the i th component failure is greater
than the j th component failure on the system performance. The value of the V -index
has been computed for each component of the system by taking its fuzzy failure rate
as q̃T = (0.007752, 0.011150, 0.014631), computed by the SFLT technique at an
uncertainty level of ± 10% (see Fig. 2.4a). Table2.7 provides the ranking order of
the system’s important components basedon theirV -indexvalues in decreasingorder.
The screener is obviously the most significant component of the washing system,
whereas the cleaner is the least significant component, as shown in Table2.7.

2.5 Conclusion

An SFLT approach has been proposed in the study to analyse the fuzzy reliability
of any repairable system. The SFLT method uses a system fault tree to describe the
problem, TFNs to quantify data uncertainty, the LT method to formulate mathemati-
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cal expressions for six reliability indices, and simplified fuzzy arithmetic operations
defined on TFS to compute the results. The approach has been illustrated by evaluat-
ing the fuzzy reliability of a washing system in a paper plant at different uncertainty
levels (± 10%, ± 20%, and ± 30%). The findings of the SFLT approach have been
compared to the results of the conventional LT method and the existing FLTmethod-
ology. The findings clearly reveal that the SFLT results are incredibly close to the
FLT method outcomes, regardless of the uncertainty level, and require less compu-
tational effort. To make sound and effective maintenance strategies for controlling
system failure and enhancing its performance, the defuzzified values of reliability
indices, reliability estimation for long-term period, sensitivity analysis, and ranking
of critical components using V -index have been performed, and the results are either
plotted or tabulated. The findings generated using the SFLT approach are consistent,
according to the study, and may be utilised to plan future actions to improve system
performance. The ranking results inferred that the screener and cleaner are the most
and least critical components of the system, respectively. Using the results of the
system reliability analysis, the maintenance professionals may develop an efficient
maintenance plan to improve the system’s performance by lowering failure time and
increasing MTBF.
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Chapter 3
Bayesian Reliability Analysis
of Topp-Leone Model Under Different
Loss Functions

Haiping Ren, Hui Zhou, and Bin Yin

Abstract The aim of this work is to study Bayesian reliability analysis of Topp-
Leone distribution, which is an important lifetime distribution. Based on complete
samples, the Bayesian estimation of the parameters of Topp-Leone model based
on three loss functions (i.e., squared error, LINEX and entropy) is investigated
under the prior distribution of the parameter as uninformative quasi-prior distri-
bution. To compare the performances of Bayesian estimators, risk functions are
derived under squared error and LINEX loss, respectively. Based on record values,
the Bayesian estimation problem of Topp-Leone distribution is studied under a new
class of composite LINEX loss function. Statistical simulation is used to discuss the
performances of obtaining Bayesian estimators.

Keywords Topp-Leone distribution · Bayesian estimation · LINEX loss function ·
Quasi-prior distribution

3.1 Topp-Leone Distribution Model

Topp-Leone (briefly, T-L) distribution is a lifetime distribution which can well char-
acterize the failure data of a model. Topp and Leone in the literature [1] introduced
T-L distribution and stated that it is very useful in the field of characterizing life
phenomena and they studied some indicators of T-L distribution such as average
remaining life and random order. Al-Zahrani [2] studied the T-L distribution for
goodness-of-fit testing. Al-Zahrani and Alshomrani [3] discussed the estimation of
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reliability of a stress-strength model when the samples obey the T-L distribution.
Bayoud [4] investigated the estimation of shape parameters of T-L distribution on
the basis of timed truncated samples from both classical and Bayesian statistics.
El-Sayedet al. [5] obtained the classical and Bayesian estimator of the coefficient of
variationof theT-Ldistributionbasedon incremental type-II truncated samples.Deng
[6] not only discussed the maximum likelihood (ML) estimation but also discussed
Bayesian estimation of the parameter of T-L distribution under the squared loss and
precautionary loss, respectively. Feroze et al. [7] also discussed Bayesian estima-
tion under progressively type-II censoring test. They derived the approximation of
Bayesian estimator with the help of Lindley’s approximation algorithm. For more
studies and applications of the T-L distribution, one can see the literature [8–14].

Let the random variable ξ obey the T-L distribution, and the corresponding
distribution function and probability density function (briefly, pdf) are (Deng [6]):

F(ξ ; σ) = (2ξ − ξ 2)
1
σ , 0 < ξ < 1, σ > 0, (3.1)

f (ξ ; σ) = 2

σ
(1 − ξ)(2ξ − ξ 2)

1
σ
−1, 0 < ξ < 1, σ > 0, (3.2)

respectively.
Figure 3.1 gives the graph of the pdf curve of the T-L distribution at taking 0.2,

0.5 and 5.0.

3.2 Bayesian Estimation of Parameters of T-L Distribution
with Complete Sample

Bayesian estimation and risk function comparisonproblemsofT-Ldistributedparam-
eters based on three loss functions will be investigated under the prior distribution
of parameters as uninformative quasi-prior distribution (briefly, QPD), respectively.

3.2.1 Bayesian Estimation Under Quasi-prior Distribution

In Bayesian statistical analysis, the prior distribution and the loss function occupy a
very important position. In the next discussion of this paper, let the prior distribution
of the parameter θ be the uninformative QPD and the corresponding pdf be [15]

π(σ) ∝ σ−d , σ > 0, d > 0. (3.3)

The loss functions are introduced as follows, and the details about the three loss
functions can also be found in [15].
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Fig. 3.1 Graph of pdf of T-L distribution at 0.2, 0.5 and 5.0

(i) Squared error loss (briefly, SEL) function is defined as follows [16]:

L(σ̂ , σ ) = (σ̂ − σ)2 (3.4)

Suppose that X is the history data information about the parameter σ . Under
the SEL function, the Bayesian estimator of σ is

σ̂BS = E[σ |X ] (3.5)

(ii) LINEX loss (briefly, LL) function is defined as follows [17–19]:

L(δ) = ecδ − cδ − 1, c �= 0 (3.6)

where δ = (σ̂ − σ)/σ and c are the shape parameter. Under the LL function
(3.6), the Bayesian estimator, denoted by σ̂BL, is the solution of the following
equation

E

[
σ−1 exp

(
cσ̂BL

σ

)
|X

]
= ecE[σ−1|X ] (3.7)

(iii) Entropy loss (briefly, EL) function is defined as follows [20]:
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L(σ̂ , σ ) = σ̂

σ
− ln

σ̂

σ
− 1 (3.8)

Under the EL function (3.8), the Bayesian estimator, denoted by σ̂BE, of the
parameter σ is

σ̂BE = [E(σ−1|X)]−1 (3.9)

Theorem 1 Let ξ1, ξ2, . . . , ξm be a random sample drawn from the T-L distribution
(3.1), and for convenience, ξ1, ξ2, . . . , ξm is also expressed the corresponding sample
observation. Let V = −∑m

i=1 ln(2ξi − ξ 2
i ). Assume that the prior distribution of σ

is the QPD (3.3), then

(i) ML estimator of σ is

σ̂ML = V

n
, (3.10)

(ii) Under the three loss (SEL, LL and EL) functions, the Bayesian estimator of σ

is

σ̂BS = V

n + d − 2
, (3.11)

σ̂BL = V

c

[
1 − exp

(
− c

n + d

)]
(3.12)

σ̂BE = V

n + d − 1
(3.13)

Proof The likelihood function of the parameter σ is

l(σ ; ξ1, ξ2, . . . , ξm) =
m∏
i=1

f (ξi ; σ)

= σ−m2m
m∏
i=1

1 − ξi

2ξi − ξ 2
i

exp

(
−V

σ

)
(3.14)

where V = −∑m
i=1 ln(2ξi − ξ 2

i ).

By solving the log-likelihood equation with respect to σ and equal to 0, that is

d ln l(σ ; ξ1, ξ2, . . . , ξm)

dσ
= 0,

(i) The ML estimator of σ is solved as
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σ̂ML = V

n
.

Then from (3.2), (3.14) and Bayesian formula, the posterior pdf of the
parameter σ is

h(σ |ξ1, ξ2, . . . , ξm) ∝ l(σ ; ξ1, ξ2, . . . , ξm) · π(σ)

∝ σ−me−V/σ σ−d

∝ σ−(m+d)e−V/σ (3.15)

Thus, the posterior pdf of σ is

h(σ |ξ1, ξ2, . . . , ξm) = Vm+d−1

�(m + d − 1)
σ−(m+d)e−V/σ (3.16)

that is σ |ξ1, ξ2, . . . , ξm ∼ I�(m + d − 1, V ). Then,
(ii) Under the SEL function, the Bayesian estimator of σ is

σ̂BS = E(σ |ξ1, ξ2, . . . , ξm) = V

m + d − 2
.

(iii) From (3.16), we have

E

[
1

σ
exp

(
cσ̂BL

σ

)
|ξ1, ξ2, . . . , ξm

]
=

∞∫
0

1

σ
exp

(
cσ̂BL

σ

)
Vm+d−1

�(m + d − 1)
σ−(m+d)

e− V
σ dσ = (m + d − 1)Vm+d−1

(V − cσ̂BL)m+d

and

E[σ−1|ξ1, ξ2, . . . , ξm] =
∞∫
0

σ−1 Vm+d−1

�(m + d − 1)
σ−(m+d)e− V

σ dσ

= m + d − 1

V

Substituting them into Eq. (3.7) solves the Bayesian estimator of the
parameter σ as

σ̂BL = V

c

[
1 − exp

(
− c

m + d

)]
.

(iv) Under the EL function (3.8), the Bayesian estimator of the parameter σ is
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σ̂BE = [E(σ−1|ξ1, ξ2, . . . , ξm)]−1

=
⎡
⎣

∞∫
0

1

σ

Vm+d−1

�(m + d − 1)
σ−(m+d)e− V

σ dσ

⎤
⎦

−1

= V

m + d − 1

Remark 1 It is easy to prove that V = −∑m
i=1 ln(2ξi − ξ 2

i ) obeys the gamma
distribution �(m, σ−1) and the corresponding pdf is

ρ(V ) = 1

�(m)σm
Vm−1e− V

σ , V > 0. (3.17)

Remark 2 For given time t, the reliability R(t) = P(ξ > t) = 1− (2t − t2)
1
σ . Let σ̂

be an estimator of the parameterσ , then the estimator of R(t) is R̂(t) = 1−(2t−t2)
1
σ̂ .

Thus, according to Theorem 1, we can also get the ML and Bayesian estimators of
R(t).

3.2.2 Comparative Study of Risk Functions for These
Bayesian Estimators

3.2.2.1 Comparative Study Under SEL Functions

Let σ̂ be an estimator of the parameter σ , then the risk function of σ̂ under the SEL
function is defined as

R(σ̂ ) =
∞∫
0

(σ̂ − σ)2ρ(V )dV (3.18)

Then, using Eq. (3.17), a simple calculation leads to the following risk functions
for each of the three Bayesian estimators.

R(σ̂BS) = σ 2

[
m(m + 1)

(m + d − 2)2
− 2m

m + d − 2
+ 1

]
, (3.19)

R(σ̂BL) = σ 2

[
m(m + 1)

c2
(
1 − e−c/(m+d)

)2 − 2m

c

(
1 − e−c/(m+d)

) + 1

]
, (3.20)

and
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R(σ̂BE) = σ 2

[
m(m + 1)

(m + d − 1)2
− 2m

m + d − 1
+ 1

]
. (3.21)

In order to compare each risk function, each risk function is compared with σ 2

and we get the following three ratio risk functions:

R(σ̂BS)

σ 2
= B1,

R(σ̂BL)

σ 2
= B2 and

R(σ̂BE)

σ 2
= B3.

The graphs of the variation of B1, B2, B3 with the a priori parameters are given
below and for the SEL function, taking c = 1.

As shown in Figs. 3.2, 3.3, 3.4 and 3.5, the images of each risk function differ
significantly whenm is small, but asm increases, especially whenm > 50, the various
risk functions tend to be consistent. For small m, if one estimates the risk functions
is smallest among all estimates, then it should be used as alternative estimate of
the parameter, and when m is larger, each Bayesian estimate can be used as an
alternative estimate of the parameter at this time because each Bayesian estimate is
less influenced by the prior parameter d.
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Fig. 3.2 Curves of ratio risk functions at m = 15
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Fig. 3.5 Curves of ratio risk functions at m = 75

3.2.2.2 Comparative Study Under LL Functions

Let σ̂ be an estimator of the parameter σ , then the risk function of σ̂ under the LL
function is defined as

R(σ̂ ) =
∞∫
0

[
e

c(σ̂−σ)

σ − c(σ̂ − σ)

σ
− 1

]
ρ(V )dV (3.22)

Then, using Eq. (3.17), a simple calculation leads to the following risk functions
for each of the three Bayesian estimators.

RL(σ̂BS) = e−c

(
1 − c

m + d − 2

)−m

− mc

m + d − 2
+ c − 1, (3.23)

RL(σ̂BL) = e−cd/(m+d) − m(1 − e−c/(m+d)) + c − 1, (3.24)

and

RL(σ̂BE) = e−c

(
1 − c

m + d − 1

)−n

− cm

m + d − 1
+ c − 1. (3.25)
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In order to compare each risk function, let

RL(σ̂BS) = L1, RL(σ̂BL) = L2 and RL(σ̂BE) = L3.

Plots of L1, L2 and L3 with a priori hyper parameters are given below for LL
function, taking c = 1.5 and − 1.5, respectively.

From Figs. 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13, the LINEX loss function
is affected by the shape parameter c. Therefore, the risk function under the LINEX
loss function and the obtained Bayesian estimates is also affected by it. When m is
small, the images of each risk function differ significantly, but as the sample size m
increases, especially when m > 50, the various risk functions converge. For small m,
if one estimates the risk functions is smallest among all estimates, then it should be
used as alternative estimate of the parameter, and when m is large, each Bayesian
estimate can be used as an alternative estimate of the parameter at this time because
each Bayesian estimate is less influenced by the prior parameter d.

A set of samples from the T-L distribution (3.1) with capacitiesm= 15, 30, 45, 60,
75, 90 is generated using Monte Carlo numerical simulation, where the parameter
σ = 1.0. Let N be the times of calculation. The mean value of each type of estimate
(i.e., σ̂ = 1

N

∑N
i=1 σ̂i ) is used as the estimate of σ , and the mean square error (briefly,

MSE) of each type of estimate (i.e., ER(σ̂ ) = 1
N

∑N
i=1 (σ̂i − σ)2) is used as the

criterion to measure the goodness of each type of estimate, where σ̂i is the estimate
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Fig. 3.6 Curves of risk functions at m = 15 (c = 1.5)
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Fig. 3.7 Curves of risk functions at m = 30 (c = 1.5)
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Fig. 3.8 Curves of risk functions at m = 50 (c = 1.5)
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Fig. 3.9 Curves of risk functions at m = 75 (c = 1.5)
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Fig. 3.10 Curves of risk functions at m = 15 (c = − 1.5)
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Fig. 3.11 Curves of risk functions at m = 30 (c = − 1.5)
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Fig. 3.12 Curves of risk functions at m = 50 (c = − 1.5)
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Fig. 3.13 Curves of risk functions at m = 75 (c = − 1.5)

of the parameter of the ith trial. All estimates of the parameter and the MSEs are
listed in Tables 3.1 and 3.2, where the MSEs are in parentheses.

From Figs. 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13, as well
as Tables 3.1 and 3.2 and a large number of numerical simulations, it is known
that: (i) When m is small, the images of each risk function differ significantly, and
the mean square error of each type of estimation also differs significantly, but as the
sample size n increases, especially when n is larger than 50, the various risk functions
converge and the mean square error of each type of estimation becomes smaller asm
increases. (ii) When m is small, the Bayesian estimators with smaller risk functions
corresponding to the hyper parameters d and c in the image are used as alternative
parameter estimates, and when m is large (especially when n is larger than 50), each
Bayesian estimate can be used as an alternative estimate of the parameter at this time
because each Bayesian estimate is less affected by the prior parameter d.
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Table 3.1 Estimates and MSEs for different sample sizes (d = 0.5)

n σ̂ML σ̂BS σ̂BL σ̂BE

c = − 1 c = − 0.5 c = 0.5 c = 1

15 0.9997 1.1535 1.0338 1.0165 0.9832 0.9671 1.0711

(0.0720) (0.1195) (0.0782) (0.0748) (0.0700) (0.0685) (0.0877)

30 0.9999 1.0713 1.0167 1.0082 0.9916 0.9834 1.0343

(0.0364) (0.0468) (0.0379) (0.0371) (0.0358) (0.0355) (0.0401)

45 0.9973 1.0437 1.0084 1.0028 0.0205 0.9863 1.0199

(0.0206) (0.0245) (0.0212) (0.0209) (0.9918) (0.0204) (0.0220)

60 0.9971 1.0315 1.0055 1.0013 0.9930 0.9888 1.0140

(0.0156) (0.0177) (0.0159) (0.0158) (0.0155) (0.0155) (0.0164)

75 0.9964 1.0237 1.0030 0.9997 0.9930 0.9897 1.0098

(0.0126) (0.0139) (0.0128) (0.0127) (0.0126) (0.0126) (0.0131)

90 0.9994 1.0221 1.0050 1.0022 0.9966 0.9939 1.0106

(0.0101) (0.0111) (0.0103) (0.0102) (0.0101) (0.0100) (0.0105)

Table 3.2 Estimates and MSEs for different sample sizes (d = 1.0)

n σ̂ML σ̂BS σ̂BL σ̂BE

c = − 1 c = − 0.5 c = 0.5 c = 1

15 0.9997 1.0711 0.9671 0.9520 0.9227 0.9085 0.9997

(0.0720) (0.0877) (0.0685) (0.0676) (0.0673) (0.0679) (0.0720)

30 0.9999 1.0343 0.9834 0.9755 0.9599 0.9522 0.9999

(0.0364) (0.0401) (0.0355) (0.0352) (0.0351) (0.0353) (0.0364)

45 0.9973 1.0199 0.9863 0.9809 0.9703 0.9651 0.9973

(0.0206) (0.0220) (0.0204) (0.0203) (0.0204) (0.0205) (0.0206)

60 0.9971 1.0140 0.9888 0.9848 0.9768 0.9728 0.9971

(0.0156) (0.0164) (0.0155) (0.0155) (0.0155) (0.0156) (0.0156)

75 0.9964 1.0098 0.9897 0.9865 0.9800 0.9768 0.9964

(0.0126) (0.0131) (0.0126) (0.0126) (0.0126) (0.0127) (0.0126)

90 0.9994 1.0106 0.9939 0.9911 0.9857 0.9830 0.9994

(0.0101) (0.0105) (0.0100) (0.0100) (0.0100) (0.0101) (0.0101)
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3.3 Bayesian Reliability Analysis of T-L Distribution Based
on Record Values

3.3.1 Record Values and Compound LINEX Loss Function

The record value (briefly, RV), first proposed by Chandler in 1952, is an important
value that delineates the trend of a sequence of random variables, and it was extended
by Dziubdziela and Kopocinski in 1976 to define the k-RV.

RVs have been used in many fields such as climatology, hydrology, earth-
quakes, genetics, actuarial insurance, mechanical engineering and sports events. It
is important to study the trend of RVs and the theory of statistical inference for the
development of national economy.

Zhang [21] introduced the compoundLINEX symmetric loss function and pointed
out some excellent properties of it and the paper also studied the problem of Bayesian
estimation of normally and exponentially distributed parameters. The literature [22–
24] studied the Bayesian estimation problem for the parameters of Poisson, Pareto
and Burr XII distributions under the Zhang’s [21] loss function, respectively. In the
literature [25], another compound LINEX symmetric loss function (briefly, CLL)
was proposed and the Bayesian estimation problem for exponential distributions
was studied.

El-Sayed et al. [26] studied the Bayesian estimation problem of T-L distribu-
tion based on record-valued samples under SEL function. Ali et al. [27] studied the
Bayesian estimation, prediction and correlation properties of Gumbel model param-
eters based on record-valued; Jaheen [28] studied the Bayesian estimation problem
of Gompertz model parameters based on record-valued samples Ahmadi and Doost-
parast [29] studied Bayesian estimation and prediction of several common types
of distribution models based on record-valued samples. Asgharzadeh [30] studied
Bayesian estimation of parameters of exponential distribution based on RVs under
SE function and discussed issues such as estimation tolerability estimation.

Now, we will study the Bayesian estimation of T-L model based on RVs under
CLL function, whose mathematical expression is [25]

L(δ) = Lc(δ) + L−c(δ) = ecδ + e−cδ − 2, (3.26)

where δ = (σ̂ − σ)/σ and c are the shape parameter of this loss function.
Suppose that X is the history data information about the parameter σ . Let η be an

estimator of σ . Under the CLL function (3.26), the Bayesian estimator of σ is the
solution of the following equation [25]:

e−cE(σ−1ec/η|X) = ecE(σ−1e−c/η|X) (3.27)

Figure 3.14 is the image of CLL function under different values of c.
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Fig. 3.14 Graph of CLL function with different c

3.3.2 ML and Minimum Variance Unbiased Estimation

Definition 1 [26] Let ξ1, ξ2, . . . be a sequence of independent identically distributed
(i.i.d.) random variables. Let

L(1) = 1, L(m + 1) = min{k : k > L(m), ξk < ξL(m)},

Then, ξL(m),m = 1, 2, . . . is called a sequence of lower RVs.

Let ξL(i) = γi , i = 1, 2, . . . ,m be a sample of lower RVs from the T-L distri-
bution (3.1) and ϑ = − ln(2γm − γ 2

m) be a sample observation of the statistic
V = − ln[2ξL(m)−ξ 2

L(m)]. Then, given the sample observation γ = (γ1, γ2, . . . , γm),
the likelihood function of the parameters is [26]

l(σ ; γ ) = f (γm; σ)

m−1∏
i=1

f (γi ; σ)

F(γi ; σ)

= 2

σ
(1 − γm)(2γm − γ 2

m)
1
σ
−1 ·

m−1∏
i=1

2
σ
(1 − γi )(2γi − γ 2

i )
1
σ
−1

(2γi − γ 2
i )

1
σ

Then, we have
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l(σ ; γ ) ∝ σ−me− − ln(2γm−γ 2m )

σ = σ−me− ϑ
σ (3.28)

By solving the log-likelihood equation

d ln l(σ ; γ )

dσ
= 0. (3.29)

The ML estimator of the parameter σ is solved as

σ̂ML = V

m
.

The pdf of the statistic γL(m) is [26]

fm(γm; σ) = f (γm; σ)
[− ln(F(γm; σ)]m−1

(m − 1)! .

Then, it is easy to derive

fm(γm; σ) = σ−m

(m − 1)!ϑ
m−1e− ϑ

σ , ϑ > 0 (3.30)

According to Eq. (3.30), the pdf of the statistic T is

fV (ϑ) = σ−m

�(m)
ϑm−1e− ϑ

σ , ϑ > 0 (3.31)

This implies that V obeys a gamma distribution �(m, σ−1), such that there is

EV = mσ.

Further, there are

E(σ̂MLE) = E

(
V

m

)
= σ.

Thus, σ̂MLE is an unbiased estimate of σ . According to Eq. (3.28), V is a sufficient
statistic. Thus, σ̂MLE is also a minimum variance unbiased estimator of σ .

3.3.3 Bayesian Estimation Under CLL Function

Theorem 2 Let ξL(1) = γ1, ξL(2) = γ2, . . . , ξL(n) = γn be a RVs simple from
the T-L distribution (3.1), where ϑ = − ln(2γm − γ 2

m) is a sample observation of
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V = − ln[2ξL(m) −ξ 2
L(m)]. Assume that the prior distribution of σ is QPD (3.3), then

under the CLL function (3.6), the Bayesian estimator of σ is

σ̂BC = 2

c

[
1

1 + exp(−2c/(m + d)
− 1

2

]
· T (3.32)

Proof By (3.28) and Bayes’ theorem, the posterior pdf of σ is

h(σ |γ ) ∝ l(σ ; γ ) · π(σ) ∝ σ−me−ϑ/σ · σ−d

∝ σ−(m+d)e−ϑ/σ

Thus, the posterior pdf of σ is

h(σ |γ ) = ϑm+d−1

�(m + d − 1)
σ−(m+d)e−ϑ/σ (3.33)

Then,

E

[
1

σ
exp

(cη
σ

)
|γ

]
=

∞∫
0

1

σ
exp

(cη
σ

) Vm+d−1

�(m + d − 1)
σ−(m+d)e− V

σ dσ

= m + d − 1

(T − cη)m+d
V m+d−1,

E

[
1

σ
exp

(−cη

σ

)
|γ

]
=

∞∫
0

1

σ
exp

(−cη

σ

)
Vm+d−1

�(m + d − 1)
σ−(m+d)e− V

σ dσ

= m + d − 1

(T + cη)m+d
V m+d−1.

Substituting them into Eq. (3.27) yields the Bayesian estimator of the parameter
σ as

σ̂BC = 2

c

[
1

1 + exp(−2c/(m + d)
− 1

2

]
· V .

The risk function of each estimator under the SEL function is derived below, and
the results of Monte Carlo simulation are compared. Let σ̂ be an estimator of the
parameter σ , then the risk function of σ̂BC under the SEL function is

R(σ̂BC) =
∞∫
0

(σ̂BC − σ)2 fV (ϑ)dϑ
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Fig. 3.15 Risk function’s curve of σ̂BC with different sample sizes (c = 2.5, σ = 1)

=
∞∫
0

(σ̂BC − σ)2
σ−m

�(m)
ϑm−1e− ϑ

σ dϑ

=
∞∫
0

(σ̂ 2
BC − 2σ σ̂BC + σ 2)

σ−m

�(m)
ϑm−1e− ϑ

σ dϑ

= (A2 · EV 2 − 2A · σ EV ) + σ 2

= [(m + m2)A2 − 2mA + 1]σ 2,

where A = 2
c

[
1

1+exp(−2c/(m+d)
− 1

2

]
(Fig. 3.15).

As can be seen from the figure, risk function is a decreasing function of sample
size m, and the effect of c becomes smaller when the sample size increases.

3.4 Conclusions

This chapter investigates the problem of Bayesian statistical inference for the
parameters of the T-L model. The main works and innovations in this chapter are:
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(1) The problemofBayesian estimation and comparison of risk functions for param-
eters of T-L distribution based on SEL, LL and EL functions is studied for a
complete sample with uninformative QPD of parameters, respectively.

(2) The Bayesian estimation is also studied under a new loss function named CLL
function when samples are the RVs.

(3) The performances of different Bayesian estimators are also discussed by
comparing their risk functions under SEL and LL functions, respectively.

In our future study, the Bayesian estimation and hypothesis of T-L distribution
under other loss functions and censored samples will be considered.
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Chapter 4
Reliability Metrics of Textile Confection
Plant Using Copula Linguistic

Abdulkareem Lado Ismail and Ibrahim Yusuf

Abstract The goal behind the current chapter is to examine the performance of a
textile confection plant through measures such as availability, sensitivity of MTTF,
reliability, mean time to failure (MTTF), and expected profit. Traditional perfor-
mance analysis for textile confection plant frequently overestimates the fundamental
dependability of their components, ignoring the importance of the multi-station
textile confection plant. This quandary will be addressed by employing a copula
approach for analyzing the performance of textile confection plant. The plant is
made up of five subsystems: two identical weavers and three identical dry cleaners
that operate under the k-out-of-n: G-policy, a printer, a cross-cut, and a cleaner in
serial arrangement. Failure of units can be lighter or heavy, are distributed exponen-
tially, and are repaired through the distributions of general and copula. The repair
by general distribution restores the unit to the state prior to their failure, while the
repair by copula distribution restores the subsystem to the initial state after installa-
tion of the plant. To derive the general analytical solution of the textile confection
plant, Laplace transforms and technique of supplementary variable to establish the
partial differential equations related to transition diagram are essential to this chapter.
The expressions for the factory’s reliability metrics of availability, reliability, MTTF,
sensitivity, and cost function are obtained using a mathematical tool. Finally, numer-
ical examples are provided to investigate the effects of the parameters used in the
analysis. Tables andfigures revealed that the results obtained indicated that the repairs
used are very good, which would lead to higher system performance and also moti-
vate factory users. This chapter may help textile industries and their maintenance
by alleviating some of the difficulties encountered during the factory’s maintenance
process and increasing income mobilization.
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4.1 Introduction

Today’s manufacturing systems are extremely advanced and consist of a collection
of interlinked machines. These interconnected machines are susceptible to failure,
affecting the system’s reliability and availability, as well as the revenue generated.
Nowadays, consumers expect complete assurance that the goods produced by manu-
facturing systems are of high quality and will continue to function. The stages of
design and manufacturing are critical in ensuring the dependability of the goods
produced. Among all manufacturing sectors, the garment industry, textile, agricul-
tural and chemical fibers, apparel, and waste management, has the most complicated
production process.

Textile manufacturing is one of the manufacturing industries that has grown
tremendously as a result of global population growth, cumulative improvement in
living standards, and the sudden increase of fast fashion. Textile confection plant is
one of the major industries molding fiber into fabric through yarn to other materials.

Reliability is the tendency of a system to perform satisfactorily under specified
working scenario with passage of time. One of the most vital metrics in deriving the
system’s capability is reliability. Where reliability is low, system is weak and hence
cannot deliver all manufacturing tasks or meet production targets.

Several authors have discussed the comprehensive reliability and performance
of manufacturing systems, including Ye et al. [1], who examined the reliability of
a repairable machine while it was subjected to shocks and degradation from low-
quality feedstocks. Ye et al. [2] develop a new model for competing failure to inves-
tigate the relationships among the inspection process, product quality, and machine
failures. Chang et al. [3] investigated the accuracy with which the reliability of a
manufacturing network with finite buffer quantity is assessed in terms of the modi-
fication term. Centered on operations and maintenance accurate information, Chen
et al. [4] suggested mission reliability for multi-state manufacturing technologies.
Zhang et al. [5] capture the development and evaluation of performance of manufac-
turing systems with serial arrangements that account for rework and product poly-
morphism. Pundir et al. [6] investigated the reliability metrics of two non-identical
cold standby unit systems that used different types of priors for unknown param-
eters. Kumar et al. [7, 8] introduced the gray wolf optimization technique for life
support system’s reliability and cost management. Mella and Zio [9] presented an
improved nest cuckoo optimization algorithm for the reliability–redundancy opti-
mization framework. Okafor et al. [10] examine the reliability of amulti-state parallel
system using an Archimedean copula-based technique. Sharifi et al. [11] proposed
the universal generating function technique for assessing and estimating the reli-
ability of a system with weighted-k-out-of-n subsystems. Jia et al. [12] proposed
multi-state warm standby and multi-state performance communicating mechanisms
for power system reliability modeling and assessment. Lin et al. [13] suggested
Bayesian copula-based models for predicting component reliance and interactions.
Jia et al. [14] developed a power system model that includes warm standby and
energy storage in reliability prediction of the system.



4 Reliability Metrics of Textile Confection Plant Using Copula Linguistic 95

Copula can also be used to perform nonparametric analysis on pairs of random
variables. In a variety of real-world scenarios, multiple repairs between nearby tran-
sition states are possible in order to quickly restore a failing system. Copula is
used to repair the system when this occurs. The copula repair method is a powerful
tool for explaining variable dependency that has piqued the interest of researchers
across a wide range of disciplines. Nelson [15] dealt with analysis and applica-
tions of copula. Yusuf et al. [16] suggested performance and reliability models for
assessing and measuring the resilience of network systems with serially connected
devices. Chopra and Ram [17] use copula to explore the performance indicators of
reliability and availability of systems in a parallel network with two distinct units.
Gahlot et al. [18] explore the performance of a serial system with two subsystems
operating in sequence under the 2-out-of-3: G and 1-out-of-2: G-policies. Lado and
Singh [19] investigated the cost of a serial system manned by a human operator.
Sha [20] used Clayton copula functions to investigate working unit dependency,
and Farlie–Gumbel–Morgenstern established models for parallel–series and series–
parallel. Sanusi and Yusuf [21] investigated the resilience of a three-component
dispersed data center network topology. Tyagi et al. [22] studied the behavior of
stochastic parallel system reliability models with major, unit, and human failure
types under copula-coverage, copula, and coverage factor conditions. Yusuf et al.
[16] demonstrated the efficacy of amulti-computer system composed of three subsys-
tems linked in series using the copula repair technique. Singh et al. [23] presented
an improved model for detecting flaws in previously published models and evalu-
ating performance for different types of failure and repair, claiming that the system
outperforms previously evaluated systems.

The aforementioned researcher developed outstanding work on reliability of
repairable systems via copula technique, asserting that their operations enhanced
the repairable systems’ reliability and performance. Nonetheless, a new model with
a substantiated and sufficient assessment is obliged. With the aforementioned facts
in mind, this chapter dealt with the reliability analysis of a textile confection plant,
which consisted of five subsystems in series, namely weaver, dry cleaner, printer,
cross-cut, and cleaner, as shown in Fig. 4.1. To the authors’ little knowledge, no
reliability modeling and performance study has focused on estimating the reliability
optimizing of a textile confectionery plant via copula. As a consequence, the current
study was intended to fill a research gap. The copula repair approach was used in
this chapter to analyze the reliability and performance optimization of the textile
confection plant.

The goals of the chapter are: First is to develop the models of availability, sensi-
tivity, cost function, MTTF, and reliability. Second is to numerically determine the
behavior of availability, reliability, MTTF, sensitivity, and cost function with passage
of time. Third is to predict system performance optimization by employing two repair
strategies. In estimating the reliability and optimizing the performance of a textile
confection plant, the study suggested two different types of repair techniques. The
system is prone to light and heavy of failure. In the event of partial or light failure,
the system is repaired using general repair, whereas copula repair is used to recover
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completely or heavy failure. The interactive study, in our opinion, should focus on
increasing the system’s reliability, availability, and revenue generation.

4.2 Abbreviations, Description, and State of the Confection
Plant

4.2.1 Abbreviations

q Variable of time
lk Weavers, dry cleaners, printer, cross-cut, and cleaner

failure rate k = 1, 2, 3, 4, 5
f (y1)/ f (y2) Weaver and dry cleaner repair rate
b0(y1)/b0(y2)/b0(y5)/

b0(y4)/b0(y3)
Repair rates for; weavers, dry cleaners, printer, cross-cut,

and cleaner that are completely failed
Di (q) For i = 0, 1, …, 11, Si defined the possible states of the

textile confection plant
D(ϑ) Laplace conversion of D(q)

Di (y1, q) For i = 1, 6, 7, defined the states probability with repair
and repair time

Di (y2, q) For i = 2, 3, 4, 5, 8, defined the states probability with
repair and repair time

Di (y5, q) For i = 9, defined the states probability with repair and
repair time

Di (y4, q) For i = 10, defined the states probability with repair and
repair time

Di (y3, q) For i = 11, defined the states probability with repair and
repair time

Ep(q) Profit/revenue expected in the interval [0, q]
A1, A2 The revenue and service costs
ϑ f (q) Function distribution ϑ f (q) = f (y1)e− ∫ x

o f (y1)dy1 nota-
tion

ϑ f (ϑ) Laplace transforms of ϑ f (q) i.e., ϑ f (ϑ) =∫∞
0 e−ϑy1 f (y1)e− ∫ x

0 f (y1)dy1dy1
b0(x) = Cθ (b1(x)b2(x)) Gumbel–Hougaard family copula repair distribution
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defined as:

cθ (b1(y1), b2(y1)) = exp
(
yθ
1 + {logφ(y1)

θ
} 1

θ

)
,

1 ≤ θ ≤ ∞.

where b1 = f (y1) and b2 = ey1 .

4.2.2 The Description of the Confection Plant

The textile confection plant comprises of weavers, dry cleaners, printer, cross-cut,
and cleaner, which are all arranged in a series–parallel configuration. The k-out-
of-n G-policy applies to subsystem 1 and subsystem 2. Originally, one unit from
subsystems works, while others are on standby mode. Immediately, the system was
in a partial operational state due to the failure of first unit from subsystem 1 and
subsystem 2, immediately the standby units switch automatically to the operational
mode, the system continues working, and failed units are assigned for repair. The
system would experience complete failure if second unit from subsystem 1, third
unit from subsystem 2 have failed or at the failure of subsystem 3, subsystem 4,
and subsystem 5. General repair is used to fix partially failed states, while Gumbel–
Hougaard family copula repair is used to repair completely failed states.

4.2.3 Description of the State

S0 Initial state. The subsystems and the plant are in perfect state. The plant is up
and running

S1 One unit has failed in subsystem 1; the plant is up and running
S2 One unit has failed in subsystem 2; the plant is up and running
S3 One unit has failed in subsystem 2; the second and third units are working. The

plant is up and running
S4 One unit has failed in subsystem 1 previously; failure of one in subsystem 2

followed. The plant is up and running
S5 One unit each has failed in subsystems 1 and 2 previously; failure of second in

subsystem 2 followed. The plant is up and running
S6 One unit has failed in subsystem 2 previously; failure of one in subsystem 1

followed. The plant is up and running
S7 One unit each has failed in subsystems 1 and 2 previously; failure of second in

subsystem 1 followed. The plant is down
S8 The plant is down due to last operational unit failure in subsystem 2
S9 The plant is down due to printer failure
S10 The plant is down due to cross-cut failure
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S11 The plant is down due to cleaner failure.

4.3 Formulation of Textile Confection Plant Mathematical
Model

The equations associated with Fig. 4.2 of the textile confection plant are

(
∂

∂q
+ 2l1 + 3l2 + l3 + l4 + l5

)

D0(q) =
∞∫

0

f (y1)D1(y1, q)dy1

+
∞∫

0

f (y2)D2(y2, q)dy2

+
∞∫

0

b0(y1)D7(y1, q)dy1

+
∞∫

0

b0(y2)D8(y2, q)dy2

+
∞∫

0

b0(y5)D9(y5, q)dy5

+
∞∫

0

b0(y4)D10(y4, q)dy4

+
∞∫

0

b0(y3)D11(y3, q)dy3 (4.1)

(
∂

∂q
+ ∂

∂y1
+ l1 + 3l2 + l3 + l4 + l5 + f (y1)

)

D1(y1, q) = 0 (4.2)

(
∂

∂q
+ ∂

∂y2
+ 2l1 + 2l2 + l3 + l4 + l5 + f (y2)

)

D2(y2, q) = 0 (4.3)

(
∂

∂q
+ ∂

∂y2
+ l2 + f (y2)

)

D3(y2, q) = 0 (4.4)

(
∂

∂q
+ ∂

∂y2
+ 2l2 + f (y2)

)

D4(y2, q) = 0 (4.5)
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(
∂

∂q
+ ∂

∂y2
+ l2 + f (y2)

)

D5(y2, q) = 0 (4.6)

(
∂

∂q
+ ∂

∂y1
+ l1 + f (y1)

)

D6(y1, q) = 0 (4.7)

(
∂

∂q
+ ∂

∂y1
+ b0(y1)

)

D7(y1, q) = 0 (4.8)

(
∂

∂q
+ ∂

∂y2
+ b0(y2)

)

D8(y2, q) = 0 (4.9)

(
∂

∂q
+ ∂

∂y4
+ b0(y4)

)

D9(y4, q) = 0 (4.10)

(
∂

∂q
+ ∂

∂y3
+ b0(y3)

)

D10(y3, q) = 0 (4.11)

(
∂

∂q
+ ∂

∂y3
+ b0(y3)

)

D11(y3, q) = 0 (4.12)

Boundary condition

D1(0, q) = 2l1D0(q) (4.13)

D2(0, q) = 3l2D0(q) (4.14)

D3(0, q) = 2l2D2(0, q) (4.15)

D4(0, q) = 3l2D1(0, q) (4.16)

D5(0, q) = 2l2D4(0, q) (4.17)

D6(0, q) = 2l1D2(0, q) (4.18)

D7(0, q) = l1(D1(0, q) + D6(0, q)) (4.19)

D8(0, q) = l2(D3(0, q) + D5(0, q)) (4.20)
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Fig. 4.2 Factory’s plan diagram

D9(0, q) = l3(D0(q) + D1(0, q) + D2(0, q)) (4.21)

D10(0, q) = l4(D0(q) + D1(0, q) + D2(0, q)) (4.22)

D11(0, q) = l5(D0(q) + D1(0, q) + D2(0, q)) (4.23)
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4.3.1 Mathematical Model of Textile Confection Plant
Solution

The subsequent equations are produced as a result of converting Eqs. (4.1) to (4.23)
into Laplace forms with the help of boundary conditions.

(ϑ + 2l1 + 3l2 + l3 + l4 + l5)D0(ϑ) = 1 +
∞∫

0

f (y1)D1(y1, ϑ)dy1

+
∞∫

0

f (y2)D1(y2, ϑ)dy2

+
∞∫

0

b0(y1)D7(y1, ϑ)dy1

+
∞∫

0

b0(y2)D8(y2, ϑ)dy2

+
∞∫

0

b0(y5)D9(y5, ϑ)dy5

+
∞∫

0

b0(y4)D10(y4, ϑ)dy4

+
∞∫

0

b0(y3)D11(y3, ϑ)dy3 (4.24)

(

ϑ + ∂

∂y1
+ l1 + 3l2 + l3 + l4 + l5 + f (y1)

)

D1(y1, ϑ) = 0 (4.25)

(

ϑ + ∂

∂y2
+ 2l1 + 2l2 + l3 + l4 + l5 + f (y2)

)

D2(y2, ϑ) = 0 (4.26)

(

ϑ + ∂

∂y2
+ l2 + f (y2)

)

D3(y2, ϑ) = 0 (4.27)

(

ϑ + ∂

∂y2
+ 2l2 + f (y2)

)

D4(y2, ϑ) = 0 (4.28)

(

ϑ + ∂

∂y2
+ l2 + f (y2)

)

D5(y2, ϑ) = 0 (4.29)
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(

ϑ + ∂

∂y1
+ l1 + f (y1)

)

D6(y1, ϑ) = 0 (4.30)

(

ϑ + ∂

∂y1
+ b0(y1)

)

D7(y1, ϑ) = 0 (4.31)

(

ϑ + ∂

∂y2
+ b0(y2)

)

D8(y2, ϑ) = 0 (4.32)

(

ϑ + ∂

∂y5
+ b0(y5)

)

D9(y5, ϑ) = 0 (4.33)

(

ϑ + ∂

∂y4
+ b0(y4)

)

D10(y4, ϑ) = 0 (4.34)

(

ϑ + ∂

∂y3
+ b0(y3)

)

D11(y3, ϑ) = 0 (4.35)

Boundary conditions

D1(0, ϑ) = 2l1D0(ϑ) (4.36)

D2(0, ϑ) = 3l2D0(ϑ) (4.37)

D3(0, ϑ) = 2l2D2(0, ϑ) (4.38)

D4(0, ϑ) = 3l2D1(0, ϑ) (4.39)

D5(0, ϑ) = 2l2D4(0, ϑ) (4.40)

D6(0, ϑ) = 2l1D2(0, ϑ) (4.41)

D7(0, ϑ) = l1
(
D1(0, ϑ) + D6(0, ϑ)

)
(4.42)

D8(0, ϑ) = l2
(
D3(0, ϑ) + D5(0, ϑ)

)
(4.43)

D9(0, ϑ) = l3
(
D0(ϑ) + D1(0, ϑ) + D2(0, ϑ)

)
(4.44)

D10(0, ϑ) = l4
(
D0(ϑ) + D1(0, ϑ) + D2(0, ϑ)

)
(4.45)
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D11(0, ϑ) = l5
(
D0(ϑ) + D1(0, ϑ) + D2(0, ϑ)

)
(4.46)

Initial condition

Dk(0) =
{
1, k = 0
0, k �= 0

(4.47)

The subsequent equations are attained by solving Eqs. (4.25) to (4.33) with the
assistance of boundary conditions.

D0(ϑ) = 1

K (ϑ)
(4.48)

D1(ϑ) = 2l1
K (ϑ)

{
1 − ϑ f (ϑ + l1 + 3l2 + l3 + l4 + l5)

ϑ + l1 + 3l2 + l3 + l4 + l5

}

(4.49)

D2(ϑ) = 3l2
K (ϑ)

{
1 − ϑ f (ϑ + 2l1 + 2l2 + l3 + l4 + l5)

ϑ + 2l1 + 2l2 + l3 + l4 + l5

}

(4.50)

D3(ϑ) = 6l22
K (ϑ)

{
1 − ϑ f (ϑ + l2)

ϑ + l2

}

(4.51)

D4(ϑ) = 6l1l2
K (ϑ)

{
1 − ϑ f (ϑ + 2l2)

ϑ + 2l2

}

(4.52)

D5(ϑ) = 12l1l22
K (ϑ)

{
1 − ϑ f (ϑ + l2)

ϑ + l2

}

(4.53)

D6(ϑ) = 6l1l2
K (ϑ)

{
1 − ϑ f (ϑ + l1)

ϑ + l1

}

(4.54)

D7(ϑ) =
(
2l21 + 6l21l2

)

K (ϑ)

{
1 − ϑb0(ϑ)

ϑ

}

(4.55)

D8(ϑ) =
(
6l32 + 12l1l32

)

K (ϑ)

{
1 − ϑb0(ϑ)

ϑ

}

(4.56)

D9(ϑ) = (l3 + 2l1l3 + 3l2l3)

K (ϑ)

{
1 − ϑb0(ϑ)

ϑ

}

(4.57)

D10(ϑ) = (l4 + 2l1l4 + 3l2l4)

K (ϑ)

{
1 − ϑb0(ϑ)

ϑ

}

(4.58)
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D11(s) = (l5 + 2l1l5 + 3l2l5)

K (ϑ)

{
1 − ϑb0(ϑ)

ϑ

}

(4.59)

where K(s) is defined as

K (ϑ) = {ϑ + 2l1 + 3l2 + l3 + l4 + l 5

−

⎛

⎜
⎜
⎜
⎜
⎝

2l1ϑ f (ϑ + l1 + 3l2 + l3 + l4 + l5)
+3l2ϑ f (ϑ + 2l1 + 2l2 + l3 + l4 + l5)

+
⎡

⎣

(
2l21 + 6l21l2

)+ (6l32 + 12l32l1
)

+(l3 + 2l1l3 + 3l2l3) + (l4 + 2l1l4 + 3l2l4)
+(l5 + 2l1l5 + 3l2l5)

⎤

⎦ϑ b0
(ϑ)

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(4.60)

The chance that the system is up and running is

Dup(ϑ) = [D0(ϑ) + D1(ϑ) + D2(ϑ) + D3(ϑ) + D4(ϑ) + D5(ϑ) + D6(ϑ)
]

(4.61)

Dup(ϑ) = 1

K (ϑ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2l1

{
1−ϑ f (ϑ+l1+3l2+l3+l4+l5)

ϑ+l1+3l2+l3+l4+l5

}

+3l2

{
1−ϑ f (ϑ+2l1+2l2+l3+l4+l5)

ϑ+2l1+2l2+l3+l4+l5

}

+6l22

{
1−ϑ f (ϑ+l2)

ϑ+l2

}

+ 6l1l2

{
1−ϑ f (ϑ+2l2)

ϑ+2l2

}

+12l1l22

{
1−ϑ f (ϑ+l2)

ϑ+l2

}

+ 6l1l2

{
1−ϑ f (ϑ+2l1)

ϑ+2l1

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.62)

Ddown(ϑ) = 1 − Dup(ϑ) (4.63)

4.4 Investigation of Textile Confection Plant Model
for Numerous Occurrences

In this section, we present numerical simulations using Maple package with respect
to availability, reliability, MTTF, sensitivity, and cost function for the established
models. The following set of parameter values is fixed for consistency in the
simulations: l1 = 0.011, l2 = 0.022, l3 = 0.033, l4 = 0.044, l5 = 0.055 with
f (y1) = f (y2) = 1.
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4.4.1 Analysis of Availability

Considering l1 = 0.011, l2 = 0.022, l3 = 0.033, l4 = 0.044, l5 = 0.055 and the
repair rate as f (y1) = f (y2) = 1, all in Eq. (4.62) and inverting the transformation
to have the following model of availability:

Dup(q) =

⎡

⎢
⎢
⎣

0.051704e−2.86900q − 0.016253e−1.26790q

−0.000082e−1.20590q + 0.968452e−0.00248q

−0.001945e−1.02200q − 0.000896e−0.04400q

0.000978e−1.01100q

⎤

⎥
⎥
⎦ (4.64)

Letting t = 0, 1, …, 10, in Eq. (4.64), the calculated availability is shown in
Table 4.1.

4.4.2 Analysis of Reliability

In the process of investigating the reliability of the factory, repairs are assumed to
zero and considering l1 = 0.011, l2 = 0.022, l3 = 0.033, l4 = 0.044, l5 = 0.055 in
(4.62), and then inverting the transformed, the reliability expression is obtained as:

R(q) =
[
3e−0.19800q + 2e−0.20900q + 0.014989e−0.02200q + 0.008250e−0.04400q

−4.030186e−0.22000q + 0.006947e−0.01100q

]

(4.65)

Letting t = 0, 1, …, 10, in Eq. (4.65), the computed reliability is presented in the
subsequent table.

4.4.3 Analysis of MTTF

All repairs are assumed to zero and s approaches zero, all in Eq. (4.62), the expression
for MTTF is derived as:

MTTF = lim
ϑ→0

Dup(ϑ) = 1

2l1 + 3l2 + l3 + l4 + l5

⎧
⎪⎨

⎪⎩

1 + 2l1
l1+3l2+l3+l4+l5

+ 3l2
2l1+2l2+l3+l4+l5

+3l1 + 12l1l2 + 12l2

⎫
⎪⎬

⎪⎭

(4.66)
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Letting l1 = 0.011, l2 = 0.022, l3 = 0.033, l4 = 0.044, l5 = 0.055, MTTF of
the required failure rate is varied as 0.001, 0.002, …, 0.009, and other failure rates
are fixed, all in Eq. (4.66). The results are shown in the subsequent table.

4.4.4 Analysis of Sensitivity

MTTF expression is differentiated partially to obtain sensitivity expression. Sensi-
tivity of the required failure rate is varied as 0.001, 0.002,…, 0.009, and other failure
rates are fixed to give

4.4.5 Analysis of Cost

Ep(q) = A1

t∫

0

Dup(q)dq − A2q (4.67)

The factory’s analysis of cost is purposely done to find out financial implications,
in terms of revenue and service cost, over a specific time. As a result, the availability
of the factory is integrated with respect to time, at a specific interval, and other cost
factors are fixed, and expected profit expression is obtained as:

Ep(q) = A1

⎧
⎪⎨

⎪⎩

−0.018021e−2.86900q + 0.012819e−1.26790q + 0.000068e−1.20590q

−389.247206e−0.00248q + 0.001903e−1.02200q + 0.000858e−1.04400q

+0.000967e−1.01100q + 389.2486099

⎫
⎪⎬

⎪⎭

− A2(q) (4.68)

Setting A2 ∈ [0.1, 0.5] in Eq. (4.68). The profit of the factory is calculated as
shown in Table 4.5 when q ∈ [0, 10].

Setting A1 ∈ {2, 4, 6, 8, 10} in Eq. (4.68). The profit of the factory is calculated
as shown in Table 4.6 when q ∈ [0, 10].

4.5 Discussion and Concluding Remark

On the basis of the obtained data, the behavior of several tables and their accompa-
nying figures will be addressed at the conclusion. Starting with those time-dependent
dependability criteria, such as availability, reliability, and cost. Figure 4.3 and Table
4.1 show how the textile confection plant’s availability changes over time. The
system’s availability declines with time, eventually stabilizing at zerowith passage of
time. The findings also reveal that the system’s availability is excellent, constant, and
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long-lasting. The impact, on the other hand, would stimulate the factory’s manage-
ment. Because the reliability of a textile confectionery plant is affected by time, it is
critical to look at how reliability has changed over time. Table 4.2 and its companion
Fig. 4.4 depict information about the system’s dependability. Although the system’s
reliability decreases with time, it does so steadily, indicating that it is quite reliable.
Having such a result, though, is intriguing since it would inspire management. The
textile confection plant’s mean time to failure (MTTF) falls as the failure rate rises;
the result obtained reveals that each failure rate correlates to MTTF. The system’s
MTTF is depicted in Fig. 4.5 and Table 4.3. The importance of MTTF analysis is to
determine how much the system’s MTTF changes with respect to each failure rate,
in the event that a failure could be catastrophic to the system, so that failure of that
subsystem/unit can be avoided. Table 4.4 reveals that the sensitivity model’s perfor-
mance was dictated by the strength of failure rates; this conclusion is also shown
in Fig. 4.6. Where the rate of failure of subsystem/unit rises, sensitivity of the plant
rises also, and the magnitude of each failure entailed the magnitude of sensitivity.
The impact of sensitivity on the textile confection plant’s performance is that if a
failure is serious enough, it will lower the plant’s performance capacity. Table 4.5
depicts the effects of repair and failure rate, which are also shown in Fig. 4.7, and
close examination of the results reveals that Gumbel–Hougaard family copula repair
is very successful for the system’s performance. However, as the tables and figures
show, this would almost certainly result in the management making the most profit
possible. It is interesting to observe that profit margins are better when services are
provided at a low cost.

Table 4.6 and Fig. 4.8 depict the effect of repair on failure rate, and close exam-
ination of the results reveals that Gumbel–Hougaard family copula repair is quite
successful for the system’s performance. However, as sales rises, profit rises in lock-
step, demonstrating that revenue and profit are precisely proportionate. Furthermore,
this corresponds to real-life situations, as industrial users are expected to meet the
needs of society as a whole.

This chapter predicts the effect of repair approach on reliability characteristics.
The adoption of copula repair as a maintenance strategy improves the performance
models of textile confection plants, resulting in maximum availability, reliability,

Fig. 4.3 Availability against
q
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Table 4.3 MTTF variation with respect to failure rate

lk MTTF l1 MTTF l2 MTTF l3 MTTF l4 MTTF l5

0.001 8.2405 7.7391 9.6903 10.4985 11.4468

0.002 8.2039 7.7680 9.6227 10.4197 11.3539

0.003 8.1680 7.7937 9.5561 10.3421 11.2624

0.004 8.1327 7.8164 9.4903 10.2655 11.1723

0.005 8.0981 7.8364 9.4254 10.1901 11.0836

0.006 8.0641 7.8539 9.3613 10.1157 10.9962

0.007 8.0307 7.8689 9.2981 10.0423 10.9101

0.008 7.9978 7.8818 9.2357 9.9699 10.8253

0.009 7.9654 7.8926 9.1741 9.8986 10.7418

Table 4.4 Sensitivity against lk

lk
∂(MTTF)

l1
∂(MTTF)

l2
∂(MTTF)

l3
∂(MTTF)

l4
∂(MTTF)

l5

0.001 − 36.9170 30.5890 − 68.0197 − 79.3448 − 93.6470

0.002 − 36.2274 27.2601 − 67.1094 − 78.2058 − 92.1978

0.003 − 35.5655 24.1775 − 66.2168 − 77.0904 − 90.7810

0.004 − 34.9297 21.3217 − 65.4314 − 75.9981 − 89.3957

0.005 − 34.3185 18.6748 − 64.4828 − 74.9282 − 88.0410

0.006 − 33.7307 16.2206 − 63.6407 − 73.8802 − 86.7161

0.007 − 33.1648 13.9441 − 62.8145 − 72.8534 − 85.4200

0.008 − 32.6198 11.8319 − 62.0040 − 71.8474 − 84.1519

0.009 − 32.0946 9.8715 − 61.2086 − 70.8615 − 82.9111

Table 4.5 Expected revenue with passage of time for different A2

q Ep (t)
A2 = 0.1

Ep (t)
A2 = 0.2

Ep (t)
A2 = 0.3

Ep (t)
A2 = 0.4

Ep (t)
A2 = 0.5

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.8725 0.7725 0.6725 0.5725 0.4725

2 1.7349 1.5349 1.3349 1.1349 0.9349

3 2.5964 2.2964 1.9964 1.6964 1.3964

4 3.4561 3.0561 2.6561 2.2561 1.8561

5 4.3137 3.8137 3.3137 2.8137 2.3137

6 5.1689 4.5689 3.9689 3.3689 2.7689

7 6.0218 5.3218 4.6218 3.9218 3.2218

8 6.8724 6.0724 5.2724 4.4724 3.6724

9 7.7206 6.8206 5.9206 5.0206 4.1206

10 8.5664 7.5664 6.5664 5.5664 4.5664
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Table 4.6 Expected revenue with passage of time for different A1

q Ep (q)
A1 = 2

Ep (q)
A1 = 4

Ep (q)
A1 = 6

Ep (q)
A1 = 8

Ep (q)
A1 = 10

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.9451 2.8903 4.8355 6.7807 8.7259

2 1.8698 5.7397 9.6096 13.4795 17.3494

3 2.7928 8.5856 14.3784 20.1712 25.9640

4 3.7122 11.4245 19.1368 26.8491 34.5614

5 4.6274 14.2548 23.8823 33.5097 43.1371

6 5.5379 17.0759 28.6138 40.1518 51.6897

7 6.4437 19.8875 33.3313 46.7750 60.2188

8 7.3448 22.6897 38.0345 53.3774 68.7242

9 8.2412 25.4824 42.7236 59.9649 77.2061

10 9.1328 28.2657 47.3986 66.5315 85.6644

Fig. 4.8 Revenue with time
for different values of A1
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and high production output, which results in maximum revenue. The chapter may be
useful for engineers and designers in determining the plant reliability in achieving
the required level of efficiency and availability under unavoidable economic and
repair conditions. In order tomore efficiently estimate reliabilitymeasures, additional
accurate estimation of reliability of multi-unit textile confection plant in the presence
of human operation-cum repair man using hybrid genetic algorithm approach may
be a subject of study.
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Chapter 5
An Application of Soft Computing in Oil
Condition Monitoring

Fatemeh Afsharnia, Mehdi Behzad, and Hesam Addin Arghand

Abstract Preventive maintenance strategy can reduce the exorbitant costs of
purchasing spare parts, repairs, and consequently downtime, as well as increase
efficiency and income by reducing downtime. Oil monitoring is one of the most
important policies for preventive maintenance of equipment. This chapter aimed
to develop a fuzzy program based on engine oil analysis to investigate the erosive
behavior of the engine as well as identify the engine condition. Once 1500 engine oil
samples were analyzed, the wear debris was measured in oil including iron, copper,
aluminum, lead, tin, silicon, PQ,water content, viscosity, and alkalinity of oil, and the
suitable information for analysis was obtained. The findings of this chapter indicate
a specific pattern appropriate to the wear debris of oil that can be found by applying
fuzzy logic and creating a series of fuzzy rules. Then, using fuzzy logic, it diagnosed
and predicted the defects, failures, and conditions of the sugarcane harvester engine.

Keywords Engine · Sugarcane harvester · Oil analysis · Fuzzy logic

Abbreviations

OCM Oil condition monitoring
CBM Condition-based maintenance
UOA Used oil analysis
CM Corrective maintenance
PM Preventive maintenance
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Fe Iron
AI Aluminum
Cu Copper
Pb Lead
Sn Tin
Si Silicon
PQ Particle quantifier index is a relative measurement of the total ferrous (iron)

metal content of oil irrespective of the debris size or shape by means of
detection by a magnetic field

TBN Total base number is a measurement of basicity that is expressed in terms
of the number of milligrams of potassium hydroxide per gram of oil sample
(mg KOH/g)

Vis40 Measuring viscosity at 40° centigrade
DSS Decision Support System

5.1 Introduction

Predictive maintenance programs such as oil condition monitoring (OCM) and used
oil analysis (UOA) can track changes in the lubricant quality ofmachinery, preventing
costly equipment failures. This system provides an important “early warning” of
impending problems and ensures that the machinery operates as it should. Lubricant
oil is often an indicator of the condition of machines, engines, and other components.
By regularly monitoring oil conditions or testing used oil, a machine’s efficiency can
be ensured before costly problems develop later [11, 13].

Despite their vital role in lubrication, lubricants are exposed to a variety of dangers,
including water contamination, corrosion, fuel contamination, and air ingested parti-
cles. The presence of high amounts of wear particles provides early warning of
possible machinery malfunctions, enabling early remedial action. If analysis indi-
cates that no unduewear is taking place, the operatormay extend the interval between
services or oil changes. By scheduling periodic lubricant testing and consulting
experts, failures and unscheduled maintenance can be avoided.

Today, intelligent fault diagnosis models are applied for the implementation of
CBM strategy. Soft computing such as fuzzy and neuro-fuzzy systems is the most
widely used methods in this field. Lou and Loparo [10] proposed a wavelet trans-
form and fuzzy inference for bearing fault diagnosis. Alizadeh and Ahmadi [2] and
Ramezani and Memariani [15] used a fuzzy rule-based system for fault diagnosis
of diesel engines. Moreover, Khan et al. [8] presented a combination of fuzzy logic
and ANFIS models to eliminate the limitations of conventional methods of trans-
former fault diagnosis using dissolved gas analysis (DGA). Also, Deng et al. [5]
used integrating empirical wavelet transform and fuzzy entropy for motor bearing
fault diagnosis. Recently, Pan et al. [14] presented a multi-class fuzzy support matrix
machine for classification in fault diagnosis of roller bearing.
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In this chapter, after reviewing and studying the available sources, we collected
data through oil analysis, and then evaluated the data by comparing the obtained
values with the base values, problematic cases were identified, and in addition, they
are divided into two categories according to the difference with the base values and
type of difference: (1) initial warning and (2) warning with suspension. In the first
type, only the initial evaluation is done to obtain assurance. In the second type, amore
complete overhaul is carried out, and the defective part of the machine is repaired if
it was necessary. As a result, with the help of oil analysis, in addition to obtaining
data about oil conditions, we find the presence of erosion particles, which is a sign
of wear in the parts. So, by having suitable information sources, an intelligent fuzzy
model can be presented for the engine’s failure prediction. Also, the condition of the
effective debris in oil analysis with the final condition of the engine is examined to
discover the effective patterns in the engine wear process, and the influencing factors
are recognized based on the state of the engine, and the erosion rules are extracted.

5.2 Importance of Oil Condition Monitoring
in Agro-industries

Effective maintenance is one of the most important parts of increasing the produc-
tivity and effectiveness of the mechanized fleet of agricultural production. A proper
maintenance strategy should be able to ensure timely agricultural operations. Sugar-
cane harvesting as a strategic operation requires the use of mechanization manage-
ment at the regional level. If the crop is harvested too early or too late, the yield
may decrease due to decreasing in the sugar extracted percentage. Depending on the
weather conditions, the duration of sugarcane harvest is between 4 and 6 months
in Khuzestan Province. Due to the coincidence of the harvest season (autumn and
winter) with rainfall and improper field moisture conditions, the harvesting opera-
tions are not often carried out on time and are delayed. So, the degree of purity and
the sugar content of the product decrease. A delay in sugarcane harvest until May
can reduce sugar extraction by around 20–30% [1]. For this reason, reliability, avail-
ability, reduction of downtime, and more repairs of sugarcane harvesting equipment
are of great importance [6]. Failure of devices and systems disrupts various levels of
production and support and can be considered a serious threat to increase produc-
tion costs [18]. Maintenance is a set of activities that are performed specifically
and usually in a planned manner to prevent the sudden breakdown of machinery,
equipment, and facilities to increase their reliability and availability [16]. Two cate-
gories of maintenance policies include preventive maintenance (PM) and corrective
maintenance (CM). In corrective maintenance, repairs are made after breakage or
apparent failure. In PM policy, maintenance is implemented to prevent failures and
breakdowns. PM policy applies time-based maintenance programs for replacement
parts andmaintenance activities [3], which includes lubrication schedule, inspection,
and daily adjustments [19].
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For each type ofmaintenance programming, it should be noted that the breakdown
of machines is not an issue that can be prevented but can be improved by using
planning techniques, reliability, and usability of machines [17]. The subsystems of
the sugarcane harvesting machine are repairable. Therefore, the reliability of the
system will decrease and the failure rate will increase by using the system as well
as decreasing its life. As a result, it is essential to make the necessary investments
in maintenance and repairs using advanced techniques and methods for maximizing
the utilization of the funds spent on the purchase of machines.

An important and noteworthy issue is that every year the engine of some sugarcane
harvesting machines breaks down due to neglect of forecasting and prevention of its
defects and must be replaced, which will lead to high costs for agro-industrial units.
In general, one of the most important issues in agricultural machines and mechanical
equipment is the entry of contaminants such aswater, fuel, silica, debris, soot particles
into the engine.Allmechanical equipment use oil for lubrication or transmission; they
are always affected by the quality of the oil, and because this fluid is in direct contact
with all the mechanical components of the equipment, it must be considered the most
important factor, and its contaminants must be cleaned and separated. Coarse and
hard particles in the oil are responsible formost of the erosion that leads to component
failure. Therefore, in this chapter, the erosive behavior of sugarcane harvester engines
was investigated by performing engine oil analysis experiments.

5.3 Implementation of Oil Condition Monitoring

Correct and accurate condition monitoring and determining the severity of failures in
the engine is one of the serious and challenging issues. By this method, the failures of
the engines are identified in time, and their development process can be tracked. Itwill
enable us to take action to fix the failure before the engines are damaged and major
repairs are caused. In this process, it is often difficult to find a relationship between
the components of the engine, the type of failure, and the causes of the failure. So, the
failures usually remain unknown over time. In this chapter, fuzzy logic has been used
to prevent such problems and monitor the condition of the engine more precisely.

For instance, an experiment was performed on Austaft 7000 sugarcane harvesting
machine with 14 years of operation from the Sugarcane and By-Products Devel-
opment Company of Khuzestan Province in Iran during the sugarcane harvesting
operations of two growing seasons. The main rawmaterials used in the present study
include engine oil samples taken from a sugarcane harvester. For every oil analysis,
a sample is required that truly represents the entire system. Although sampling is
the simplest step of the oil analysis program, it is a very important step. Since, if
the sampling is not correct, the results of oil tests will be invalid. The main items
of oil sampling are: tool selection, determining the sampling frequency for different
components, identifying oil sampling locations in different components, and the
procedure of oil sampling. For sampling, the used accessories include: (1) sampling
pump (manual suction pump), (2) polyethylene tube (hoses with an outer diameter
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Fig. 5.1 Oil sampling tool

of 1/4′′ or 5/16′′), and (3) sample carrying bag (Fig. 5.1). All coded samples were
sent to the company’s laboratory after coding and numbering, along with a sample of
new unused oil as same as the oil that was used in the engine. Erosive elements were
tested for 1500 samples of engine oil including iron (Fe), aluminum (Al), copper
(Cu), lead (Pb), tin (Sn), silicon (Si), water content, PQ index, TBN, and Vis40.
The results of oil analysis include the status of the machine, the status code, status
change code, theory code, recommendation and status of each erosive element, and
oil wear debris and oil status code. It should be noted that the opinions of experts
have been based solely on experience and years of work in oil analysis laboratories.
Metallic and non-metallic elements in oil are detected by spectroscopic testing. The
amount of water in the oil was measured by the Karl Fischer experiment [7]. The
test result reports the exact amount of water in ppm. This test, known as the Crackle
test, is performed to approximate the amount of water contamination in the oil. In
this method, a few drops of oil are poured on a hot plate (approximately 150 °C). If
there is water in the oil, it forms a bubble and comes out of the oil. Most mechanical
equipment manufacturers recommend that the amount of water in the oil should not
be more than 0.1% because too much water can cause oil spoilage and change the
erosion status of the device. Values less than 0.1% are usually not a problem unless
the manufacturer has specified lower values for the device.

5.3.1 Fuzzy Systems

This system is made up of a set of “if → then” conditional rules to create a mapping
from the input setU ⊂ Rh to the output set V ⊂ R. IfU is a reference set whose each
member is represented by x, the fuzzy set A in U is expressed by the ordered pair
A = {(x, μA(x)|xεU )}, inwhich x is a linguistic variable andμA(x) is amembership
function that indicates the degree to which x belongs to set A [4, 9, 12, 20].



122 F. Afsharnia et al.

5.3.1.1 Fuzzy Ranking Scale and Fuzzy Number

To define fuzzy sets, we must have a basic knowledge of the scope of the definition
related to each variable. According to the experience and knowledge of analysis
and the effect of these factors on the engine condition of sugarcane harvesters, iron,
aluminum, copper, lead, tin, silicon, 40 Vis viscosity, water content, and PQ were
considered as the inputs of the fuzzy system. The output also indicates the status of the
engine.According to the information in the oil analysis sheets and available resources
and also after consultingwith sugarcane harvesting oil experts, four classes including
normal (0), boundary (1), boundary unacceptable (2), and critical (3) were coded. For
the output variable, language committees including normal, boundary, emergency,
and critical processing were considered. MATLAB software fuzzy toolbox was used
for calculations [2].

5.4 Analysis of Oil Condition Monitoring

According to 1500 laboratory samples of sugarcane harvester engine oil during two
harvest seasons, the values of baseline indices including upper limit, middle limit,
and lower limit of all states of wear debris related to sugarcane harvester engine oil
are given in Table 5.1. As can be seen from Table 5.1, the range of iron wear debris
was 0–15 ppm in normal conditions, 15–30 ppm in the boundary condition, 30–
60 ppm in boundary unacceptable condition, and 60–100 ppm in critical condition.
Also, the range of iron wear debris was 0–8 ppm in normal conditions, 9–15 ppm
in the boundary condition, 16–28 ppm in boundary unacceptable conditions, and
30–85 ppm in critical conditions.

Using these limits, the attribution functions for each element and output were
plotted (Figs. 5.2 and 5.3). For the inputs, the shape of these functions was selected
as Z shape and S shape at the beginning and end, respectively, and as a triangular in
the rest.

A fuzzy triangular function is determined by three parameters a lower limit a, an
upper limit c, and a value b, where a ≤ b ≤ c. The precise appearance of the function
is determined by the choice of the parameters a, b, and cwhich in turn form a triangle.
In this, a and c locate the feet of the triangle and the parameter b locates the peak. A
fuzzy triangular membership function of A can be calculated by Eq. (5.1):

μA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0; x ≤ a
(
x−a
b−a

) − ε; a < x ≤ b
(
c−x
c−b

) − ε; b ≤ x < c
0; x ≥ c

(5.1)
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Table 5.1 Baseline index values for oil wear debris

Fe (ppm)

State 0 1 2 3

Upper limit 15 30 60 100

Mean limit 8 22 45 75

Lower limit 0 15 30 60

Cu (ppm)

State 0 1 2 3

Upper limit 7 16 30 84

Mean limit 3 10 23 52

Lower limit 0 8 20 30

Sn (ppm)

State 0 1 2 3

Upper limit 7 12 24 65

Mean limit 4 10 20 45

Lower limit 0 8 12 24

PQ (ppm)

State 0 1 2 3

Upper limit 8 18 35 60

Mean limit 5 15 27 45

Lower limit 0 10 20 35

TBN

State 0 1 2 3

Upper limit 14 7 4 2

Mean limit 8 5 3 1

Lower limit 7 4 2 0

Water content

State 0 1 2 3

Upper limit 0.001 0.002 0.005 0.01

Mean limit 0.0005 0.0015 0.0035 0.008

Lower limit 0 0.001 0.002 0.006

Al (ppm)

State 0 1 2 3

Upper limit 8 15 28 85

Mean limit 5 11 20 52

Lower limit 0 9 16 30

(continued)
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Table 5.1 (continued)

Pb (ppm)

State 0 1 2 3

Upper limit 10 17 28 90

Mean limit 5 15 25 58

Lower limit 0 11 19 30

Si (ppm)

State 0 1 2 3

Upper limit 15 22 45 120

Mean limit 5 19 30 60

Lower limit 0 16 22 46

Vis40 (CST)

State 0 1 2 3

Upper limit 170 180 200 250

Mean limit 140 120 145 120

Lower limit 100 85 65 20

The precise appearance of the fuzzy S-shaped function is determined by the choice
of parameters a, b, and the parameters locate the extremes of the sloped portion of
the curve. A fuzzy S-shaped membership function is defined as Eq. (5.2):

μA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0; x ≤ a

2
(
x−a
b−a

)2 − ε; a < x ≤ a+b
2

1 − 2
(
x−b
b−a

)2 − ε; a+b
2 ≤ x < b

1 − ε; x ≥ b

(5.2)

The fuzzy Z-shaped function is given by two parameters, a and b which locate the
extremes of the sloped portion of the curve. A fuzzy Z-shaped membership function
is defined as Eq. (5.3):

μA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − ε; x ≤ a

1 − 2
(
x−a
b−a

)2 − ε; a < x ≤ a+b
2

2
(
x−b
b−a

)2 − ε; a+b
2 ≤ x < b

0; x ≥ b

(5.3)

For the output that indicates the condition of the sugarcane harvester engine, the
fuzzy triangular function was used (Fig. 5.3). The engine condition is then estimated
by considering the fuzzy laws according to the condition of the erosive elements and
oil wear debris (Fig. 5.4) as follows (11, 12):
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Fig. 5.2 Aluminum membership function

1. If (Si is C) and (Cu is N) and (Vis40 is W low), then (Engine is E)
2. If (Si is B) and (Cu is B) and (Vis40 is W low), then (Engine is E)
3. If (Vis40 is W low) and (Si is C), then (Engine is C)
4. If (Pb is C) and (Fe is C) and (Vis40 is N), then (Engine is C)
5. If (Pb is N) and (Fe is C) and (PQ is C) and (Vis40 is N), then (Engine is E)
6. If (Pb is N) and (Fe is N) and (Al is N) and (Cu is N) and (PQ is N) and (Si is N)

and (Vis40 is N) and (TBN is N) and (Cr is N) and (Water is N), then (Engine
is N)

7. If (Al is W) or (Fe is W) or (PQ is W) or (Si is W), then (Engine is B)
8. If (Water is B) or (TBN is W), then (Engine is B)
9. If (Pb is B) and (PQ is C) and (Fe is C) and (Vis40 is N), then (Engine is E)
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Fig. 5.3 Engine output membership function

10. If (Pb is B) or (Al is B) or (Fe is B) or (PQ is B) or (Cu is B) or (Si is B), then
(Engine is N).

In the defuzzification stage, the final state of the engine can be obtained by giving
values to the inputs (Fig. 5.5). In this case, the agro-industrial units will be able
to predict the final condition of the cane harvester engine by performing an oil
analysis test and giving values as input to the developed fuzzy program. By using
this program, the maintenance managers can indicate the condition of the engine
based on oil analysis data. The oil analysis data are the input of fuzzy logic, and

Fig. 5.4 Fuzzy rules for estimating engine condition
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Fig. 5.5 Engine status concerning fuzzy outputs

the output of the fuzzy program is the condition of the engine (normal, boundary,
emergency, and critical). For example, by giving the fuzzy logic input 154, 65.8, 38,
0.005, 32.5, 45, 100, 60, 125, and 7 for iron, aluminum, copper, water content, tin,
lead, PQ, silicon, viscosity, and alkali number of oil, respectively; engine condition
or the output will be 0.771, which indicates the boundary condition (B) for an engine
of the sugarcane harvesting machine.

5.5 Conclusion

This chapter has established a decision support system (DSS) based on oil analysis
results and fuzzy logic to predict the final status to monitor the real condition of
the engine. The results of this research, as a valuable basis and criteria, can be used
by sugarcane harvester machine operators to determine each oil element, detect the
final status of the harvester engine, and create a database for fault diagnosis and wear
behaviors as well. As a result of using this non-traditional modeling approach, the
following benefits can be expected:

• Physics-based modeling and data-driven modeling can be integrated with an
approach based on rule-based knowledge representation.

• Domain expertsmay contribute directly tomodel development because rule-based
models are consistent with human heuristic reasoning.

• The user can see through the rule-based model. The process of making a choice
may be communicated, allowing the system to quickly garner user trust. This is
especially crucial in safety–critical applications involving human life.
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This study’s findings can serve as a useful foundation and criterion for future
researchers. The following are some of the research’s broad benefits and outcomes:

1. In this chapter, determined baselines were used to determine each oil ingredient
for all types of diesel engines.

2. Any linked database may be diagnosed and the eventual engine status predicted.
3. The decision-making processwill be faster andmore precise, allowing specialists

to locate the best answer sooner.
4. The creation of a database for fault scenarios andwear behaviorswill be practical.
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Chapter 6
A Multi-parameter Occupational Safety
Risk Assessment Model for Chemicals
in the University Laboratories
by an MCDM Sorting Method

Muhammet Gul, Melih Yucesan, and Mehmet Kayra Karacahan

Abstract University laboratories are high-risk working environments where many
chemicals coexist to conduct teaching and scientific research. The frequent occur-
rence of such chemical-related occupational accidents in recent times highlights the
importance of ensuring these units’ safety in universities for researchers, students,
workplaces, and institutions. In occupational safety risk assessment, very few studies
have grouped risks. Many of them also ignored some important risk parameters.
Overcoming these disadvantages, this study developed a multi-parameter and multi-
criteria decision-making (MCDM) sorting-based methodology for the occupational
safety risk assessment of chemicals in a university laboratory. First, six different risk
parameters (probability, severity, exposure, detectability, worsening factor, sensi-
tivity to non-usage of personal protective equipment) were determined. The weight
valuewas calculated using the best–worst method (BWM). Then, a risk priority value
and classification for each chemical with TOPSIS-Sort, the MCDM sorting method.
Finally, some control measures are recommended to reduce the safety risk of the
laboratory. The applicability of the proposed methodology has been tested with a
real case study. The methodology is intended to adapt to university laboratories’ risk
assessment and become a primary reference for university safety analysts.
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6.1 Introduction

Laboratories in universities are physical spaces where students and researchers
conduct their scientific experiments and make sacrifices for the advancement of
science. Depending on the work done in chemistry, biology, environment, construc-
tion, mechanical and other engineering, and basic science laboratories, there may be
many hazards and associated risks. Robust and accurate risk analysesmust bemade to
combat these risks encountered when working with chemicals and performing oper-
ations on mechanical devices. The destructiveness of the accidents when adequate
precautions are not taken and not prepared can be very large. Although there are
no robust and comprehensive statistical figures about university laboratory accidents
specifically, the information obtained from the literature and visual media is that
there are very destructive accidents [24]. Risk assessment is a multi-stage process
that includes identifying, numerical analysis, classifying hazards with a proactive
point of view before such accidents occur, and finally, planning control measures.
Most studies on laboratory safety in the literature aim to determine the priority of
emerging risk types. For this purpose, fuzzy logic, probability theory, and stochastic
processes are used to determine the importance weights of the risk parameters and
calculate each risk’s priority score due to the difficulties in obtaining data. In addition,
the existence of multiple risk parameters and the grading of each risk type according
to these parameters show that the structure of the problem is under the concept of
“multi-criteria decision-making—MCDM”.

MCDM-based risk analysis determines the priority order of hazards, assigns risks
to certain classes, and selects appropriate control measures. The laboratory risk anal-
ysis proposed in this study has three important focal points. First, a chemical risk
analysis was performed with five experts. In other words, a priority score calculated
depending on the determined risk parameters for each chemical was obtained. Thus,
each chemical was evaluated in terms of the identified risk factors. Here, chemi-
cals are considered as alternatives in the MCDM perspective. Second, the proposed
approach is a multi-parameters approach. In most risk analysis studies from an occu-
pational health and safety perspective, multiple risk parameters are studied double,
triple, or rarely. In this approach, six different parameters are taken into account.
These are probability, severity, exposure, detectability, worsening factor, and sensi-
tivity to non-usage of personal protective equipment. Third, it aims to determine the
chemical hazard classes by MCDM sorting. Thus, chemicals will be divided into
different clusters as high-risk clusters and relatively less risky clusters. Thus, it will
be possible to reduce the total risk by focusing on the high-risk chemicals group.

In this study, the proposed BWM-TOPSIS-Sort integrated method is used. The
reason for using this combination is briefly explained, and BWM is a very effective
weighting method, using a small number of evaluations and allowing the calcula-
tion of consistency because it contains two vectors (best to others, others to worst).
Classification is needed in the chemistry laboratory to select hazardous chemicals or
to provide necessary precautions before applications are made. For this reason, the
TOPSIS-Sort method, used successfully in many occupational health and safety risk
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assessment problems, has been chosen. Applying the BWM-TOPSIS-Sort integrated
method aims to prioritize the hazards that may arise and consider the results obtained
for hazardous chemicals and related control measures.

6.2 Literature Review

For this research paper, we review the previous literature in two sections. While
the first presents the summary of studies on university laboratory safety, the
second includes an overview of MCDM sorting regarding occupational safety risk
assessment studies.

6.2.1 Past Studies Carried Out for University Laboratory
Safety

Many approaches have been proposed to identify the hazards that arise in university
laboratories to analyze and classify the risks associated with these hazards and plan
control measures [3, 26]. For example, Li et al. [20] proposed a semi-quantitative
approach for a university chemical laboratory risk assessment. The approach consists
of two decision-making methods: matter-element extension theory (MEET) and
combination ordered weighted averaging (C-OWA) operator. C-OWA operator is
applied to compute the weight of assessment indices, and MEET is applied to deter-
mine the correlation degree of assessment indices. After applying both methods, the
comprehensive risk of university chemical laboratories is calculated, and some safety
measures are suggested. Another study by Ma et al. [24] integrated three methods of
human factors analysis and classification system (HFACS), fuzzy set theory (FST),
and Bayesian network (BN) to identify the most critical and highly contributing
human factors exposed in the laboratory fire and explosion accidents. Via this study,
39 laboratory fire and explosion accidents between 2008 and 2020 in China and the
USA were tested. The sensitivity analysis was also conducted to events associated
with human factors, foremost in laboratory fire and explosion accidents. Li et al.
[21] suggested a new approach to assess the risk of unsafe behavior in university
laboratories using the human factor analysis and classification system (HFACS-UL)
fuzzy BN. Ouédraogo et al. performed two iterative studies for risk analysis in the
research environment. The first study [27] modeled the laboratory criticality index
by an improved risk priority number. The second one [28] focused on the laboratory
criticality index by analytic hierarchy process (AHP). Both methodologies proposed
a laboratory assessment and risk analysis (LORA). Shariff and Norazahar [32] devel-
oped a program known as the laboratory at-risk behavior and improvement system
(Lab-ARBAIS) to monitor and control students’ at-risk behaviors. Leggett [18, 19]
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developed a hazard identification and risk analysis for the chemical research labora-
tory (Lab-HIRA) model in two parts. While the first presented a preliminary hazard
evaluation [18], the second focused on risk analysis of laboratory operations [19].
Ozdemir et al. [29] assessed occupational hazards and associated risks for a univer-
sity chemical laboratory using 5S methodology, failure modes and effects analysis
(FMEA), interval type-two fuzzy sets (IT2FSs), AHP, and the VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) methods.

It can be seen from this short literature review that the risks arising in these
environments are analyzed in the context of laboratory safety. However, there is no
study on the risk analysis of the chemicals used in particular. Therefore, the study
will remedy an important gap, and in light of determined and weighted criteria for
each chemical, it will be determined which hazard class.

6.2.2 Past Studies Carried Out on Occupational Safety Risk
Assessment via MCDM Sorting

The second subsection of the literature review section of the article is the compi-
lation of occupational risk assessment studies using MCDM sorting algorithms.
Sorting algorithms of a number of MCDM methods have been developed [7, 12–
14, 16, 17, 30, 35]. A new literature review on Alvarez et al. [1] can be seen for
detailed information. The results obtained from this review study have confirmed
that the area where MCDM sorting algorithms are applied the most is risk assess-
ment. Brito et al. [5] integrated Utility Theory and the ELECTRE TRI method to
assess risk in natural gas pipelines and classify pipeline sections into risk cate-
gories. Gul [10] developed a quantitative occupational risk assessment methodology
based on TOPSIS-Sort and applied it to an aluminum extrusion process. Yu et al.
[37] performed safety risk grading of coal mines based on an AHPSort II method
under fuzzy environment. Qin et al. [30] conducted an ecological risk assessment
study using a context-dependent DEASort based on BWM. Lolli et al. [23] applied
a FlowSort group decision support system to the failure mode and effect analysis
(FMEA). They implemented the approach in a blow molding process. Valipour et al.
[34] proposed a two-step approach to prioritize and identify critical health, safety,
and environment risks. The critical cluster for risks has been determined. Thus, orga-
nizational efforts will not be wasted on non-critical risks. Jahangoshai Rezaee et al.
[15] proposed a unique risk priority number (RPN) calculation to avoid traditional
RPN limitations. They prioritized HSE risks using the fuzzy inference system (FIS)
and DEA integrated model.

Having reviewed the studies regarding the occupational safety risk assessment by
MCDM sorting algorithms, it is considered that very few of them focused on occu-
pational safety risk assessment and classified the emerged risks into some clusters
[5, 10, 23, 34]. However, these limited papers also have some deficiencies regarding
the lack of consideration of all essential risk parameters. To overcome these, the
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current paper aims to eliminate this drawback and consider six risk parameters (prob-
ability, severity, exposure, detectability, worsening factor, sensitivity to non-usage
of personal protective equipment). In the first phase of the approach, the risk param-
eters were determined, and a weight value for each was calculated using the BWM
algorithm. Then, a risk priority value and risk classification were determined for
each chemical in the university laboratory via the TOPSIS-Sort algorithm. Finally,
a control measure suggestion phase is carried out for the laboratory.

6.3 The Proposed Methodology

This section discusses the framework of the proposed multi-parameter risk assess-
ment approach. This study consists of four steps. In the first step, six risk parameters
were determined to be considered in assessing the risks in the chemistry laboratory.
These parameters are probability, severity, exposure, detectability, worsening factor,
and sensitivity to not using personal protective equipment. It is assumed that these
risk factors are not affected by each other. To evaluate these parameters, 7-point
linguistic terms were selected. The second step involves weighting with BWM. In
this section, decision-makers identify the risk factor they consider the most impor-
tant and the risk factors they consider the least important. They then compared these
risk factors with other risk factors. The third step is the TOPSIS-Sort stage. The 60
most frequently used chemicals in the chemistry laboratory were determined and
evaluated within the scope of the risk parameters determined in step 1. Chemicals
were divided into five clusters with the solution: very high risk, high risk, substantial
risk, possible risk, and risk. The fourth step presented preventive measures, starting
with the very high-risk cluster.

6.3.1 Establishing the Multi-parameter Occupational Safety
Risk Assessment

As in all occupational risk assessment studies, some parameters should be consid-
ered to prioritize emerging hazards and associated risks. The literature has mostly
double, triple, and, rarely, multi-parameter risk assessments. In this study, it consid-
ered six risk parameters. (1) Probability: the frequency of occurrence of the hazard,
(2) Severity: the degree of danger that the risk will pose to personnel, machinery
equipment, environment and continuity of production, (3) Exposure: it is considered
as the duration of exposure of a hazardous activity on the respective workers, (4)
Detectability: detectability of the risk with the eye or any digital device, (5) Wors-
ening factor: it is related to hazardous circumstances that could amplify the dire
outcomes of an accident and focuses on the hazardous situations leading up to an
accident [25], and (6) Sensitivity to not using personal protective equipment: to what



136 M. Gul et al.

extent the use of personal protective equipment affects the severity of the risk. The
7-point scale for each parameter mentioned here is given in Table 6.1. The numerical
values determined according to this scale are used in the evaluations made in the
TOPSIS-Sort phase.

Table 6.1 7-point scale for each parameter used in the assessment of hazards and associated risks

Numerical scale Linguistic term Probability (P) Severity (S) Exposure (E)

1 Very low Close to
impossible

Equals to first
aid

Exceptionally rare

2 Low Practically
impossible

Equals minor
injury

Rare

3 Medium low Practicable but
very unlikely

Leads to
temporary
disability

Seldom

4 Medium Only remotely
possible

Equals serious
injury

Occasional

5 Medium high Rare but
possible

Culminates in
permanent
disability

Often

6 High Quite possible Equals fatality Frequent

7 Very high Mostly observed Leads to many
fatalities

Prolonged

Numerical scale Linguistic term Detectability
(D)

Worsening
factor (WF)

Sensitivity to
non-usage of PPE
(PPE)

1 Very low Extremely easy Does not
amplify it

Risk can be avoided
without using PPE

2 Low Highly possible Can negligibly
amplify it

The use of PPE can
slightly reduce the
risk

3 Medium low Slightly possible Can slightly
amplify it

The use of PPE can
reasonably reduce
the risk

4 Medium Can sometimes
be possible

Can moderately
amplify it

The use of PPE
reduces the risk
moderately

5 Medium high To a large extent
difficult to be
noted

Can to a large
extent amplify
it

The use of PPE
reduces the risk
greatly

6 High Highly difficult
to be noted

Can highly
amplify it

It is necessary to
use PPE to reduce
the risk

7 Very high Extremely
difficult to be
noted

Can extremely
amplify it

PPE must be used
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6.3.2 Determining the Weight of Risk Parameters via BWM

There are many methods in the literature on elicitation of the weights of criteria
(called risk parameters) in the field of occupational safety risk assessment, directly
(e.g., AHP; BWM) and indirectly (e.g., robust ordinal regressions) [9, 22]. In this
study, the weights of the risk parameters were determined using the BWM. Initially,
experts familiar with laboratory research and experienced in risk assessment of
chemicals were invited to participate in the study. In this context, communication
was established with experts (two chemical engineers, two food engineers, and one
chemist, whose academic and research activities continue), and their evaluations
were received. The received evaluations were converted into mathematical models
and solved using the BWM algorithm. The following BWM algorithm is given step
by step [31].

Step 1. The criteria to be considered are determined. The criteria to be used in
decision-making are shown with (c1, c2, . . . , cn).

Step 2. Among the evaluated criteria, the best and worst criteria are determined.

Step 3. It uses numbers one-nine for pairwise comparisons. If two criteria are equally
important, one is used, and if there is a huge difference in importance between the two
criteria, nine is used. TheBest to other vector is created as: AB = (aB1, aB2, . . . , aBn)
where aBj shows the predilection of the best criterion B over criterion j Comparison
of the criteria with themselves (aBB = 1).

Step4. Similar to step 3, theOther toworst vector is created.Others-to-Worst vector is
created as: AB = (a1W , a2W , . . . , anW )where a jW shows the predilection of criterion
j over the worst criterion w.

Step 5. Determination of weight (w∗
1, w

∗
2, . . . , w

∗
n). Following the steps in Rezaei

[31]

min ξ
∣
∣
∣
∣

wB

w j
− aBj

∣
∣
∣
∣
≤ ξ for all j

∣
∣
∣
∣

w j

wW
− a jW

∣
∣
∣
∣
≤ ξ for all j

�w j = 1, w j ≥ 0, for all j

By solving the mathematical model, the optimum weights (w∗
1, w

∗
2, . . . , w

∗
n) and ξ ∗

are calculated.
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6.3.3 Calculating the Risk Priority Classes of Chemicals
in the Lab via TOPSIS-Sort

TOPSIS is an MCDM method first proposed by Hwang and Yoon [11]. It is used to
select the best alternative from a set of homogeneous alternatives under number of
decision criteria. TOPSIS considers the shortest distance of the best alternative to the
positive ideal solution and the longest distance to the negative ideal solution. Due to
the diversity and prevalence of the application area, many extensions were proposed
in the first proposed TOPSIS version and successfully hybridized with other MCDM
methods [4]. Since classification is one of the main uses of MCDM problems, a
new method, TOPSIS-Sort, has been developed for classification. TOPSIS-Sort was
first developed by Faraji Sabokbar et al. [8] suggested. Later, it was used by some
scientists and applied to various problems [6, 10, 36]. In this paper, TOPSIS-Sort
determines the final priority value, ranking order, and class of each chemical in the
laboratory. The steps of the TOPSIS-Sort are summarized below.

Step 1. Determine the decision matrix. The decision matrix shows the value obtained
by scoring each chemical according to six risk parameters weighted in the BWM
phase. These scores are assigned by decision-making experts using a 7-point scale
provided in Table 6.1. In this step, the weights determined via BWM should be ready.

Step 2. Define the limit profile set. Limit profiles are determined based on the
predicted number of classes to which chemicals will be assigned. This paper deter-
mines five classes as “very dangerous, dangerous, medium, less dangerous, and
non-hazardous”.

Step 3. Creating the aggregated decision matrix. Each evaluation made by the expert
team is brought together and combined with the help of the weighted average
aggregation operator.

Step 4. Normalization process and creation of the normalized decision matrix.

Step 5. Generating the weighted normalized decisionmatrix. Here, the weight matrix
obtained by BWM is multiplied with the normalized decision matrix obtained in step
4.

Step 6. Determine the positive and negative ideal solutions.

Step 7. Calculate the distances between the positive and negative ideal solutions.

Step 8. Calculate the TOPSIS closeness coefficient (CCi) value for each chemical.
The chemical with a high closeness coefficient value means the highest priority.
According to this value, a priority order is made for all chemicals in the chemical
list.

Step 9. Obtaining the deviation of the upper and lower limit profiles of each chemical
from the ideal solution. In this step, all chemicals are assigned to the appropriate
classes.
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6.3.4 Suggesting Control Measures

Control measures constitute one of the basic components and the most important risk
management stage. The assessed risk class of the chemical indicates the importance
of the risk resulting from exposure to the hazard. Based on the risk assessment results,
the risk score and class found help determine which chemical should be controlled
primarily in laboratory risk management. Some useful control measures can then
be developed to eliminate or reduce the risks to an acceptable level, improving the
safety of university laboratories.

6.4 Case Study

6.4.1 System Environment of the University Chemical
Laboratory and Chemical List

Teaching and academic laboratories are where experimental studies are carried out,
which are calculated theoretically and thought to be applied by making preliminary
preparations. Experimentalwork helps us understand the conceptswe visualize in our
minds, develop problem-solving skills, and improve researchers’ manual dexterity
and observation skills. Teaching and research laboratories are classified according
to their functions: comprehensive laboratories and basic laboratories such as general
chemistry laboratory, analytical chemistry laboratory, physical chemistry labora-
tory, chemical engineering laboratories, and research laboratories. Undergraduate
and graduate students and researchers in these laboratories represent a comprehen-
sive laboratory, laboratories used to conductmultidisciplinary experimental research.
The basic laboratory serves for regular teaching experiments for undergraduates. In
these laboratories, computer-controlled heat exchanger service unit, chemical reac-
tors apparatus, continuous distillation unit, absorption unit, continuous liquid–liquid
extraction unit, tray dryer, head loss in piping and fittings, process control, tubular
flow reactor, atomic absorption spectrophotometer, gas chromatography-mass spec-
trometry, ultraviolet–visible spectroscopy, high-performance liquid chromatography,
magnetic andmechanical stirrers, autoclave, fume hoods, constant temperature circu-
lators, ultra-pure water systems, orbital shakers, etc. devices are available. Some of
the chemicals used in these laboratories are listed in Table 6.2.
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Table 6.2 Chemical list

# Chemicals # Chemicals # Chemicals # Chemicals

1 Acrylonitrile 16 Diethyl ether 31 Hydrogen peroxide 46 Morpholine

2 Ammonia 17 Dimethyl
sulfoxide

32 Hydrochloric acid 47 Naphthalene

3 Aniline 18 Ethyl acetate 33 Iodine 48 Nitric acid

4 Acetaldehyde 19 Ethylene
dichloride

34 Calcium
hypochlorite

49 Perchloric acid

5 Acetic acid 20 Ethylene
glycol

35 Carbon disulfide 50 Potassium
hydroxide

6 Aseton 21 Arsenic
pentafluoride

36 Carbon
tetrachloride

51 Propylene glycol

7 Benzaldehyde 22 Phenol 37 Chloroacetone 52 Cyclohexane

8 Benzene 23 Arsenic
trichloride

38 Chloroform 53 Sodium hydroxide

9 Benzyl chloride 24 Formaldehyde 39 Hydrogen sulfide 54 Sodium
hypochlorite

10 Bromine 25 Formic acid 40 Chromic acid 55 Sulfuric acid

11 Hydrogen
cyanide

26 Phosphoric
acid

41 Methyl ethyl ketone 56 Toluen

12 Butyraldehyde 27 Glycerol 42 Propionic acid 57 Triethanolamine

13 Dibenzyl ether 28 Hexane 43 Methylamine 58 Trichloroethylene

14 Dibutyl
phthalate

29 Hydrobromic
acid

44 Methylene chloride 59 Triphenyl
phosphate

15 Diethanolamine 30 Hydrofluoric
acid

45 Monoethanolamine 60 Pentaborane

6.4.2 The Exploitation of BWM in the Determination of Risk
Parameter Weights

The weight of six risk parameters is calculated using the BWM. By determining the
best andworst risk parameter preferences of five experts, best others and others worst
matrices were created. After that, each created matrix was solved with BWMSolver,
and each expert determined the optimal weights of the risk parameters. Average
optimal weight values were obtained by taking the average of the weights obtained
with the evaluations of these five experts. Figure 6.1 shows these optimal weights.
At the same time, the consistency ratio was calculated for each assessment made by
five experts. These consistency values were obtained as 0.022, 0.016, 0.016, 0.044,
and 0.027, respectively.
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Fig. 6.1 Averaged optimal weight values of risk parameters

6.4.3 The Exploitation of TOPSIS-Sort in Risk Classification
of Chemicals

In this section, TOPSIS-Sort was applied, and the risk level and risk class were
determined for each chemical in the laboratory where the application was carried out.
Here, an evaluation was made with the consensus of the expert team who evaluated
the BWM part using the numerical scale in Table 6.1. The values obtained from
the evaluation were aggregated and inserted into the TOPSIS-Sort algorithm. By
applying the steps from 1 to 7, the distance from the ideal and negative ideal solutions
and final closeness coefficient values are calculated as in Table 6.3. Finally, the risk
class of each chemical was determined by applying the last step of the TOPSIS-Sort
algorithm. Accordingly, if the CCi value is between 0 and 0.192, risk class is defined
as “risk”, between 0.193 and 0.575 as “possible risk”, between 0.576 and 0.763 as
“substantial risk”, between 0.764 and 0.922 as “high risk”, and between 0.923 and
1 as “very high risk”. The risk classification according to the calculations obtained
is given in Fig. 6.2.

6.4.4 Risk Management of the Laboratory

Chemical hazards can be classified as corrosivity, explosivity, flammability, toxicity,
and reactivity [2]. The chemicals in Table 6.3 are dangerous in only one of these
ways, and some are dangerous in more than one way (CCi value is between 0.923
and 1, pentaborane and hydrogen cyanide, and risk class is defined as “very high
risk”). Many chemicals used in chemistry laboratories are dangerous in at least one
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Table 6.3 TOPSIS-Sort outputs: the distances from the ideal and negative ideal and CCi values

Chemicals Distance from the ideal Distance from the
negative ideal

Closeness coefficient

Acrylonitrile 0.035 0.055 0.607

Ammonia 0.055 0.034 0.384

Aniline 0.068 0.021 0.240

Acetaldehyde 0.058 0.032 0.358

Acetic acid 0.061 0.030 0.331

Asheton 0.054 0.035 0.395

Benzaldehyde 0.069 0.020 0.227

Benzene 0.055 0.034 0.377

Benzyl chloride 0.036 0.054 0.596

Bromine 0.060 0.031 0.342

Hydrogen cyanide 0.006 0.086 0.932

Butyraldehyde 0.053 0.037 0.411

Dibenzyl ether 0.069 0.021 0.231

Dibutyl phthalate 0.071 0.018 0.202

Diethanolamine 0.055 0.034 0.384

Diethyl ether 0.061 0.030 0.328

Dimethyl sulfoxide 0.071 0.018 0.202

Ethyl acetate 0.068 0.021 0.237

Ethylene dichloride 0.070 0.019 0.216

Ethylene glycol 0.071 0.018 0.204

Arsenic pentafluoride 0.051 0.038 0.425

Phenol 0.040 0.050 0.553

Arsenic trichloride 0.051 0.038 0.423

Formaldehyde 0.050 0.041 0.446

Formic acid 0.058 0.032 0.358

Phosphoric acid 0.050 0.040 0.444

Glycerol 0.055 0.034 0.384

Hexane 0.068 0.021 0.237

Hydrobromic acid 0.059 0.032 0.352

Hydrofluoric acid 0.025 0.067 0.732

Hydrogen peroxide 0.051 0.039 0.430

Hydrochloric acid 0.055 0.034 0.384

Iodine 0.055 0.034 0.384

Calcium hypochlorite 0.042 0.049 0.534

Carbon disulfide 0.037 0.051 0.579

(continued)
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Table 6.3 (continued)

Chemicals Distance from the ideal Distance from the
negative ideal

Closeness coefficient

Carbon tetrachloride 0.054 0.035 0.391

Chloroacetone 0.037 0.052 0.584

Chloroform 0.054 0.034 0.385

Hydrogen sulfide 0.034 0.055 0.623

Chromic acid 0.038 0.051 0.577

Methyl ethyl ketone 0.060 0.031 0.339

Propionic acid 0.034 0.054 0.615

Methylamine 0.021 0.068 0.763

Methylene chloride 0.051 0.037 0.421

Monoethanolamine 0.055 0.034 0.384

Morpholine 0.017 0.071 0.807

Naphthalene 0.038 0.051 0.575

Nitric acid 0.020 0.069 0.773

Perchloric acid 0.051 0.038 0.423

Potassium hydroxide 0.049 0.040 0.446

Propylene glycol 0.089 0.000 0.000

Cyclohexane 0.071 0.018 0.202

Sodium hydroxide 0.051 0.038 0.423

Sodium hypochlorite 0.055 0.035 0.393

Sulfuric acid 0.034 0.055 0.616

Toluen 0.035 0.054 0.603

Triethanolamine 0.042 0.048 0.531

Trichloroethylene 0.067 0.022 0.249

Triphenyl phosphate 0.089 0.000 0.000

Pentaborane 0.000 0.089 1.000

of these ways. However, the degree of danger can vary from major to minor or in
between (CCi value is between 0.193 and 0.575 as “possible risk”, between 0.576 and
0.763 as “substantial risk”, between 0.764 and 0.922 as “high risk”). Some chemicals
are pretty-safe (CCi value is between 0 and 0.192, propylene glycol and triphenyl
phosphate, and risk class is defined as “risk”).

A total of 60 chemical risk factors were estimated, and “risk”, “possible risk”,
“substantial risk”, “high risk”, and “very high risk” were accepted as risk classes.
The number of chemicals at the “very high” risk level accounted for 3.33% of the
risk classes. In addition, chemicals with a “high” risk level (5%) contributed. “Sub-
stantial risk” was determined by 16.67% of the chemicals identified. In addition,
71.67% of the evaluated chemicals have “possible risk” and 3.33% “risk” ratios.
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Using chemicals in laboratory processes generally produces a wide range of risk
classes.

If the hazards posed by chemicals are not recognized, unexpected events can
result in personal injury or death. Chemical safety in academic laboratories requires
laboratory safety documentation, fume hood maintenance, proper chemical storage,
correct use of the fume hood for chemical processing, and laboratory safety labeling.
Laboratory safety provisions for students and researchers working in laboratories
should include safety training, chemical exposure control, medical consultation, suit-
ability of personal protective equipment, controlmeasures, and specific guidelines for
hazardous chemicals. Chemicals in the “very high risk” group are quite dangerous.
For example, pentaborane is one of the substances harmful to health because it is
flammable and reactive. Therefore, brief exposure to small quantities can cause death
or permanent injury. The legal exposure limit allowed in the air is a very small value
of 0.005 ppm on average in an 8-h work shift, and even this small value can cause
enormous damage to human health [33].

Here are some ways to reduce exposure to “high risk and very high-risk chemi-
cals”: (1) Hazard and warning information should be posted in the work area, and, as
part of an ongoing education and training effort, all information on these chemicals
health and safety hazards should be communicated to potentially exposed persons.
(2) Protective work clothes and equipment should be worn. (3) Appropriate eye
protection should be used to avoid eye contact. (4) Any air-supplied respirator oper-
ated in a continuous flowmodel should be used when working with this type of “very
high-risk chemical”. (5) If possible, shut off processes and electricity and provide
local exhaust ventilation where chemical releases occur. (6) Breathing masks must
be worn if local exhaust ventilation or containment is not used. (7) Wash thoroughly
immediately after exposure to chemicals and at the end of the work shift. (8) Appro-
priate personal protective clothing should be worn to prevent contact with the skin.
Appropriate eye protection should be used to prevent contact with the eyes. The
skin should be washed immediately when contaminated with the skin. It should be
removed immediately due to the risk of ignition when it comes into contact with
work clothes.

The results of the study determine the risky chemicals to be considered and the
associated control measures to be taken. It contributes in terms of knowledge, both
methodologically, and in terms of practice, in light of current literature. Injecting
the methodology allows easy identification of hazards or risks in laboratories. BWM
allows to suggest a method and prioritize it. Evaluation of hazards in a university
chemistry laboratory environment reveals that precautions should be taken for some
hazardous chemicals. It shows that special working environments should be created,
and precautions should be taken to avoid exposure to humanhealth and environmental
effects while working with hazardous chemicals. It reveals that experimental studies
with hazardous chemicals should not be carried out before these precautions are
taken.
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6.5 Conclusion

This chapter presents a multi-parameter occupational safety risk assessment model
for chemicals in university laboratories by an MCDM sorting method. Three param-
eters, which include probability, severity, exposure, detectability, worsening factor,
and sensitivity to non-usage of personal protective equipment issues related to chem-
icals, are included in themodel. Five experts participated in the rating process of rela-
tive importance weight of these parameters via the BWM. Then, the final priority
value, rank, and class of each chemical were determined via the TOPSIS-Sort algo-
rithm. Based on expert opinion, pentaborane and hydrogen cyanide proved to be the
most dangerous chemicals, followed by morpholine, nitric acid, and methylamine.

University chemical laboratories are used extensively in educational and research
and development activities. Chemical-based risk analysis has become mandatory
due to the large number of experiments and the impossibility of predetermining the
experiments to be conducted for future research and development activities. Thanks
to the critical chemical list, technicians, researchers, and executives will be able to
take risk-preventing activities. In addition, an approach can be made regarding the
risk of the research activity to be carried out based on the materials used in the exper-
imental design. The performed study plays a crucial role in deploying occupational
risk management of chemicals based on chemical ranking. It also provides a solid
framework for other researchers, laboratory personnel, and chemical stakeholders to
apply the proposed method to their laboratory safety processes.

Although this risk analysis enriches the literature by addressing the 60 most
commonly used chemicals, including six risk factors, the study has some limitations.
The fact study that was conducted only for the laboratory of a university reduces the
generalizability of the results. Since a process-based evaluation was not made, the
situation of the same chemicals creating different risks in different processes could
not be evaluated. In addition, the study was carried out with information obtained
from analytical chemistry, physical chemistry, instrumental analysis, and R&D labo-
ratories. No privatization has been made on a laboratory basis. The results were
interpreted according to 5 expert evaluations. Specific evaluations can be made in
the future studies in specialized laboratories and research areas for specific subjects.
Considering all these issues in the future studies will inevitably increase the study’s
effectiveness, consistency, and applicability.
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Chapter 7
Smart Failure Mode and Effects Analysis
(FMEA) for Safety–Critical Systems
in the Context of Industry 4.0

Hamzeh Soltanali and Saeed Ramezani

Abstract In digitalized environments, advanced fault diagnosis and prognosis
approaches are widely used for system safety and reliability assessments. As a
proactive diagnosis approach, Failure Mode and Effects Analysis (FMEA) plays
a critical role in identifying system bottlenecks and mitigating the adverse conse-
quences within high-risk industries. Therefore, this chapter deals with the different
types of FMEAs, FMEA in safety–critical systems, current drawbacks, and limi-
tations of classical-FMEA theories, as well as supporting the classical form by
introducing hybrid-FMEA models that performs the uncertainty quantification and
machine learning techniques, MCDM methods, and other complementary failure
analysis approaches. Finally, it discusses about smart-FMEA platform in modern
industries and its improvements in the context of Industry 4.0.

Abbreviations

Notation Main acronyms
FMEA Failure mode and effects analysis
MCDM Multiple-criteria decision-making
FTA Fault tree analysis
HACCP Hazard analysis, critical control points
RCA Root cause analysis deployment
QSR Quality system requirements
IATF International automotive task force
AIAG Automotive industry action group
QMS International quality management system

H. Soltanali (B)
Department of Biosystems Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad,
Iran
e-mail: ha.soltanali@mail.um.ac.ir

H. Soltanali · S. Ramezani
Department of Industrial Engineering, Faculty of Engineering, Imam Hossein University,
1698715461 Tehran, Iran

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Garg (ed.), Advances in Reliability, Failure and Risk Analysis, Industrial and Applied
Mathematics, https://doi.org/10.1007/978-981-19-9909-3_7

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9909-3_7&domain=pdf
http://orcid.org/0000-0002-1972-1030
mailto:ha.soltanali@mail.um.ac.ir
https://doi.org/10.1007/978-981-19-9909-3_7


152 H. Soltanali and S. Ramezani

ETA Event tree analysis
RCM Reliability centered maintenance
BWM Best-worst method
RAMS Reliability, availability, maintainability, and safety
RPN Risk priority number
S Severity
O Occurrence
D Detectability
QFD Quality function deployment
IoT Internet of Things
FM Failure mode
DEA Data envelopment analysis
HAZOP Hazard and operability analysis
QRA Quantitative risk assessment
PSA Probabilistic safety assessment
ANP Analytic network process
BOFM Brake oil filling machine

7.1 Introduction

Ensuring system safety and reliability is increasingly becoming an essential dilemma
in the digital transformation paradigm, also known as Industry 4.0, with the introduc-
tion of new technologies and a growth in system complexity [1–3]. Indeed, concerns
about reliability and safety are developing across a range of industries that play a
significant role in satisfying demand and enhancing productivity and availability
at the lowest possible cost and with the fewest possible unexpected failures [4–
6]. In order to identify and reduce process bottlenecks, proactive approaches for
analyzing the reliability and safety within high-risk sectors are critical. To achieve
this, advanced fault diagnosis and prognostic methods are extensively employed for
safety management activities, with hardware and software solutions being provided
[7–9].

In general, such advanced methods are divided into two categories: knowledge-
based and data-driven approaches to risk and reliability analysis and prediction in
a variety of settings [10–12]. Fault Tree Analysis (FTA), Hazard Analysis, Critical
Control Points (HACCP), Root Cause Analysis (RCA), and other knowledge-based
methodologies can be used for reliability and risk analysis [13–16]. The FailureMode
and Effects Analysis (FMEA) approach is one of them, and it is extensively used in a
variety of sectors to analyze and prevent the effects of unexpected events/failures [17–
19]. FMEA technique was introduced in 1949 by the U.S. Armed Forces (Military
Procedures document MIL-P-1629) to analyze the failures according to their impact
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on mission success and equipment safety. From the Apollo space program in the
1960s through the semiconductor industry, foodservice, software, and the automobile
sector, the application of the FMEA has risen dramatically since then (1980s) [20].

FMEA is one of the most fundamental methods for evaluating the level of risk as
a prelude to risk reduction, according to the Quality System Requirements (QSR)-
9000.1 This approach tries to avoid defects rather than discover them, and compa-
nies should complete FMEA assessment and approval prior to production stages.
For the IATF2 16949:2016 standard, industrial businesses must record methods for
managing product safety-related products and manufacturing processes, including
FMEA. Given the importance of effective product testing andmanufacturing process
controls in product development, FMEA is also used to enhance test plans and process
controls [20]. Furthermore, FMEAhas been awell-established process for improving
production quality and minimizing the severity and occurrence of failure through the
use of corrective actions [21]. In theory, FMEA is a bottom-up risk analysis tech-
nique dominated by expert knowledge, with the following steps: identifying failure
modes, evaluating their causes and consequences, assessing the risk of failuremodes,
and lastly prescribing maintenance tasks for high-risk failures [22]. A Risk Priority
Number (RPN) is widely used in an FMEA to assess a process’s risk level and rank
failures and prioritize maintenance activities [23, 24]. The RPN value is computed
by multiplying three parameters, namely Occurrence (O), Severity (S), and Detec-
tion (D). On a discrete ordinal scale, they are rated from 1 to 10. Finally, the most
significant failures may be found by sorting the RPNs in ascending order [25]. As a
proactive diagnosis approach, FMEAplays a critical role in identifying systembottle-
necks and mitigating the adverse consequences within high-risk industries. With the
growth of digitalization and automation, the major aspects of FMEAs, particularly
for safety–critical systems, have received less attention in previous research. Hence,
the following are the current chapter’s main objectives:

• Defining the primary concept and types of FMEAs
• Investigating the FMEAs in safety–critical systems
• Introducing hybrid-FMEA models to overcome current uncertain issues using

machine learning techniques, Multi-criteria decision-making (MCDM) methods,
etc.

• Proposing a smart-FMEA platform for the needs of Industry 4.0 digital transfor-
mation.

1 International quality management system (QMS) standard for the automotive industry originally
developed by the American auto industry (Daimler Chrysler Corporation, Ford Motor Company,
and General Motors Corporation).
2 IATF 16949 is a global Quality Management System Standard for the Automotive industry. It was
developed by the International Automotive Task Force (IATF) with support from the Automotive
Industry Action Group (AIAG).
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7.1.1 Types of FMEA

FMEA can also be used to establish numerous options (e.g., system, design, process,
and service), provide opportunities for fundamental diversity, improve the company’s
image and competitiveness, and increase customer satisfaction [26]. According to
the most basic and widely used handbooks, FMEA is divided into three categories:
system-FMEA, design-FMEA, and process-FMEA [27–29]. As indicated in Fig. 7.1,
several sorts of FMEAs are utilized to aid in the product development process [26,
30–32]. To analyze a collection of subsystems, system-FMEAs are used. They are
used to identify system flaws such as integration, interactions, and interfaces between
subsystems; interactions with the immediate or adjacent environment; interactions
with workers; and system safety considerations. System functions are in charge of
them. A system is a collection of parts or subsystems that work together to perform
one or more functions.

Besides, design-FMEA, which is typically managed by product/design engineers,
aims to identify and demonstrate engineering solutions that are compliant with
system-FMEA requirements and customer specifications. It is used to improve the
design of a product in order to ensure its reliability. Another goal of a design-FMEA
is to find potential product design failures that could result in product malfunctions,
shortened product life, or safety hazards while using the product. Design-FMEAs
should be used throughout the design process, from the initial concept to the final
product. Furthermore, process-FMEA is concerned with manufacturing processes.
The goal is to define howmanufacturing and assembly processes can be developed to
ensure that products or technologies are built to design specificationswhile alsomaxi-
mizing the quality, reliability, productivity, and efficiency of the various processes

Fig. 7.1 Relationship of system, design, and process FMEAs (Adapted from [20])
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[20]. Process-FMEAs reveal potential failures that may have an impact on product
quality, reduce process reliability, cause customer dissatisfaction, pose a safety or
environmental risk, and so on. Process-FMEAs should ideally be performed prior to
the start-up of a new process, but they can also be performed on existing processes.

7.2 FMEA Methodology

7.2.1 Classical-FMEA

The FMEA methodology is based on presenting data in a systematic configuration.
The results of the analysis are represented in Fig. 7.2. Three main steps should
be considered when implementing the FMEA methodology, which is based on
some well-known industrial handbooks [26–28]: (1) functions, potential failures,
and effects analysis; (2) cause and detection analysis; and (3) improvement actions.

Fig. 7.2 Generic FMEA worksheet [20]
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7.2.1.1 Step 1: Functions, Potential Failures, and Effects Analysis

• Identifying functions: The purpose of this activity is to identify, clarify, and
understand the functions, requirements, and specifications that are relevant to the
specified scope. A functional block diagram for the system- and design-FMEA,
as well as a process flowchart, are advised in this case. The task that the system,
design, or process must fulfill is referred to as a function. When describing a
function, an active verb is generally employed [20].

• Identifying potential failuremodes: The goal of this step is to create a list of every
possible failure mode connected with the specific function. Failure is assumed to
be a possibility but not a requirement. There are four possible failuremodels: (1) no
function (system is completely nonfunctional); (2) partial/over function/degraded
over time (degraded performance); (3) intermittent function (complies but loses
some functionality or becomes inoperative frequently due to external factors);
and (4) unintended function (system is completely nonfunctional) (interaction of
several elements whose independent performance is correct adversely affects the
product or process). Conducting a review of previous things that have gonewrong,
concerns, and reports, as well as using the brainstorming approach, storytelling
method, and cause-and-effect diagram, is one way to begin [20].

• Identifying potential effects of failure: The problem is to list and characterize the
effects/consequences of the failure on the system for each of the failure scenarios.
The investigation of the severity of the consequences is part of determining poten-
tial effects. The outcome and consequence of the failure on the system, design,
and process are referred to as a possible effect. This is what happens when some-
thing goes wrong. Failure’s potential consequences must be examined from two
angles: local and global ramifications. Local effects denote that the failure can be
separated from the rest of the system. The failure can have global effects, which
means it can influence other functions [20].

7.2.1.2 Step 2: Cause and Detection Analysis

• Identifying potential causes: This phase’s goal is to figure out every possible
cause of failure for each failure mode. Each failure mode may have one or more
causes, and by definition, if a cause happens, the corresponding failure mode will
as well. The occurrence ranking, or the likelihood that a certain cause will occur
during the design life, is one factor to consider when determining prospective
causes [20].

• Identifying current controls (prevention and detection): The problem is deter-
mining the design or process controls for each cause. The operations that prevent or
detect the cause of probable failures are referred to as design or process controls.
Controls for prevention define how a cause, failure mode, or effect is avoided
based on present or planned actions. The goal is to lessen the likelihood of the
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problem occurring. Detection controls define how a failure mode or cause is iden-
tified before the product design is put into production. The goal is to maximize
the possibility of detecting an issue before it reaches the end-user [20].

7.2.1.3 Step 3: Improvement Actions

The goal of improvement actions is to provide engineering evaluations that will lower
overall risk and the possibility of a failure mode occurring. This can be accomplished
by estimating the Risk Priority Number (RPN) values based on three parameters:
severity (S), occurrence (O), and detectability (D). These factors are combined to
calculate the RPN, as in the following expression [33]:

RPN = D ∗ O ∗ S ∗ (7.1)

where,

• The possibility of a failure mode occurring is known as occurrence, and it is
closely tied to the equipment’s failure rate. It can take integer values in the range
[1; 10], with 10 being the most likely failure mode. The details of these scenarios
are provided in Table 7.1 [34].

• Severity of a failure’s influence on the system is measured in terms of its impact.
It can take integer values in the range [1; 10], with 10 representing the worst-case
scenario. The details of these scenarios are given in Table 7.2 [34].

• The possibility of identifying the failuremode before its effects show in the system
is indicated by detection. It can take integer values in the range [1; 10], with 10
being the least diagnosable event. The details of these scenarios are illustrated in
Table 7.3 [34].

Table 7.1 Traditional ratings
for occurrence of a failure
mode

Rating Probability of failure Possible failure rate

10 Extremely high: failure almost
inevitable

≥1 in 2

9 Extremely high: failure almost
inevitable

1 in 3

8 Repeated failures 1 in 8

7 High 1 in 20

6 Moderately high 1 in 80

5 Moderate 1 in 400

4 Relatively low 1 in 2000

3 Low 1 in 15,000

2 Remote 1 in 15,000

1 Nearly impossible ≤1 in 1,500,000
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Table 7.2 Traditional ratings for severity of a failure mode

Rating Effect Severity of effect

10 Hazardous without warning Highest severity ranking of a failure mode, occurring
without warning, and consequence is hazardous

9 Hazardous with warning Higher severity ranking of a failure mode, occurring
with warning, and consequence is hazardous

8 Very high Operation of system or product is broken down
without compromising safe

7 High Operation of system or product may be continued, but
performance of system or product is affected

6 Moderate Operation of system or product is continued, and
performance of system or product is degraded

5 Low Performance of system or product is affected seriously,
and the maintenance is needed

4 Very low Performance of system or product is less affected, and
the maintenance may not be needed

3 Minor System performance and satisfaction with minor effect

2 Very minor System performance and satisfaction with slight effect

1 None No effect

Table 7.3 Traditional ratings for detection of a failure mode

Rating Detection Criteria

10 Absolutely impossible Design control does not detect a potential cause of failure or
subsequent failure mode, or there is no design control

9 Very remote Very remote chance the design control will detect a potential
cause of failure or subsequent failure mode

8 Remote Remote chance the design control will detect a potential
cause of failure or subsequent failure mode

7 Very low Very low chance the design control will detect a potential
cause of failure or subsequent failure mode

6 Low Low chance the design control will detect a potential cause of
failure or subsequent failure mode

5 Moderate Moderate chance the design control will detect a potential
cause of failure or subsequent failure mode

4 Moderately high Moderately high chance the design control will detect a
potential cause of failure or subsequent failure mode

3 High High chance the design control will detect a potential cause
of failure or subsequent failure mode

2 Very high Very high chance the design control will detect a potential
cause of failure or subsequent failure mode

1 Almost certain Design control will almost certainly detect a potential cause
of
failure or subsequent failure mode
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Following that, it is necessary to address corrective activities to decrease or elimi-
nate probable failure modes, as well as detective actions to aid in the identification of
a weakness, based on the greatest value of RPN for each failure mode. The first two
steps of an FMEA process (prospective failures and effects analysis (identification
of potential failures and effects) and cause and detection analysis (identification of
potential causes and controls) are critical [20].

7.2.2 Hybrid-FMEA Model

Despite the widespread use of classical-FMEAs (Sect. 7.2.1) in numerous fields, they
are still subject to a variety of uncertainties and variabilities in real-world situations,
limiting their ability to be used in a reliable and accurate manner, particularly in risk
(safety) and assessment applications. According to the literature [19, 20, 34–36], the
following are the key shortcomings and limitations of classical-FMEAs:

(1) The assumption that three failure variables contribute equally to an event’s risk
factor (RPN). In practice, this is unlikely to be the case, at least in the majority
of cases. Because the Severity (S) failure factor is often more critical than
other failure factors, practitioners will often examine the occurrence (O) and
severity (S) columns of the FMEA separately from the overall RPN. Further-
more, the study does not take into consideration the participants’ experience
and competence; they are all presumed to have the same level of experience and
skills.

(2) TheRPNvalues producedbydifferent combinations ofO,S, andD rankingsmay
be identical. This could lead to a false conclusion, claiming that these hazards
have the same priority when, in fact, they may have very different priorities. If
two events have O, S, and D values of 5, 1, and 10 and 5, 10, and 1, respectively,
they will both have an RPN of 50. This suggests that, despite their differences,
both hazards require the same level of attention to be mitigated. This may result
in inefficient use of limited resources and/or the omission of a high-risk failure
mode.

(3) On a discrete ordinal scale, the three risk variables O, S, and D are rated. On
the ordinal scale, however, the multiplication is meaningless. As a result, the
resulting results are not only meaningless, but also misleading.

(4) It is controversial whether the RPN is a product of O, S, and D. Some scholars
dispute why the RPN is calculated by multiplying the numerical numbers of the
failure factors.

(5) The rating transitions for the three failure mode components are distinct.
The probability table for O and O has a nonlinear relationship, whereas the
probability table for D(S) and D(S) has a linear relationship.

(6) It can be difficult to precisely determine the three risk factors. In the absence of
data for a comprehensive quantitative analysis, or when the number of failure
modes is such that a quantitative analysis is impossible, the procedure relies on
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the subjective judgment of the team members. There is no systematic technique
to deal such subjectivity within the analysis at the moment.

(7) In the absence of quantitative data, the existing measure of utilizing numer-
ical rankings to grade failure O, S, and D might be erroneous and difficult to
award. Natural language usage may be desirable for practitioners and opera-
tives, particularly in poor nations where field operating employees are unlikely
to be numerate and would struggle to connect an arbitrary number to the state
of a piece of equipment’s probable failure O, S, or D.

Suchmajor fluctuations in the real worldmay have an impact not only on the accu-
racy of predicted risk and reliability values, but also on the suggested maintenance
and safety functions. These are the primary reasons why hybrid-FMEA has attracted
the most attention from scientists in recent years. To put it another way, a modified
FMEA approach that overcomes some of the limits is required to adapt, regulate,
and reduce the existing uncertainty and variability issues of the process and ensure
that the classical-FMEA remains appropriate for future applications. According to
Fig. 7.3, the hybrid-FMEAs have been applied in four different ways to supplement
the classical models in risk (safety), reliability, and maintenance decisions:

(A) Combination with failure/event analysis approaches: Using classical-FMEA
in conjunctionwith other related failure and event analysis techniques (i.e., Root
Cause Analysis (RCA), Fault Tree Analysis (FTA), Event Tree Analysis (ETA),
Quantitative Risk Assessment (QRA), Probabilistic Safety Assessment (PSA),
Probabilistic Risk Analysis (PRA), Brainstorming, Hazard Analysis Critical
Control Point (HACCP), Hazard and Operability Analysis (HAZOP), Relia-
bility Centered Maintenance (RCM), etc.) would help present the connections
and relationships between various failures more effectively.

Hybrid FMEA 
model

Fuzzy theory, Rough set theory, 
    Dempster-Shafer theory, Petri-nets, Markov, 

Bayesian, GRA, Machine Learning, etc.) 

MCDM techniques
 (TOPSIS, AHP,ANP, BWM, VIKOR, MOORA, 

WASPAS, DEMATEL, etc.)

Other integrated methods 
(DEA, QFD, SWOT,

 Ishikawa Six Sigma, A3 etc.)

     Fault/failure analysis techniques (RCA, FTA, 
ETA, PRA/QRA, Brainstorming, HACCP, HAZOP, 

RCM, etc.)

(A)
(B)

(C)

(D)

Fig. 7.3 Type of hybrid-FMEA models under various uncertainty and variability issues
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(B) Multi-criteria decision-making (MCDM) techniques: The use ofMCDMtech-
niques such as TOPSIS, AHP, ANP, BWM, VIKOR, MOORA, WASPAS,
and DEMATEL in integrated FMEA models is extremely advantageous for
overcoming the uncertain concerns connected to weighting problems of three
elements (S, O, D) for risk and reliability analysis, as well as their discrete
ordinal scale issue, which results in meaningless and misleading results.

(C) Artificial/computational intelligence techniques: The use of uncertainty quan-
tification models (fuzzy theory, rough set theory, Shafer theory, Petri-nets,
Markov,Bayesian) andothermachine learningmodels, amongothers, is another
option for mitigating the uncertainties of classical-FMEA, particularly deter-
mining accurately the risk parameters due to different types of assessment infor-
mation from the same risk factor, time constraints, inexperience, and insufficient
data.

(D) Other integrated models: To support classical-FMEAs in production and
service areas and improve their efficiency while estimating RPN that only
consider safety and ignore other important factors such as quality and cost,
their combinationwith other systematic approaches such asDEA,QFD, SWOT,
Ishikawa Six Sigma, A3, and so on is recommended.

7.3 FMEA for Safety–Critical Systems

7.3.1 Basic Concept and Definition

A safety–critical system, often known as a life-critical system, is one whose failure
or malfunction might result in one (or more) deaths or major injuries to people,
loss or severe damage to equipment/property, economic loss, or environmental harm
[33, 37]. Some failures may have immediate negative repercussions, while others
may increase the risk of damage. The potential consequences of a system’s failure
determine whether it is considered safety–critical. The system is said to be safety–
critical if a malfunction can result in consequences that are deemed unacceptable [37,
38]. A safety-related system consists of hardware, software, and human components
that work together to perform one or more safety functions, and the failure of which
would result in a significant increase in the risk of harm to people or the environment.
However, safety-related systems are those that do not have complete control over risks
such as loss of life, serious injury, or severe environmental damage. A malfunction
of a safety-related system would be dangerous only when combined with the failure
of other systems or human error [38, 39].
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7.3.2 Functional Safety Standards

7.3.2.1 The Generic lEC 61508 Standards

Significant material and financial assets are lost, people are wounded and killed, and
the environment is poisoned as a result of failures of safety–critical systems and a
lack of functional safety. Functional safety is often defined as a situation in which the
risk has been decreased to, and ismaintained at, a level as low as reasonably practical,
and the residual risk is widely accepted. The phrase “functional safety” appears in
the title of the major standard IEC 61508, and it is therefore used to refer to the part
of total system safety that is dependent on the proper operation of active control and
safety systems [37, 40]. IEC 61508 standards aim to guarantee that safety–critical
systems are specified, designed, produced, installed, and operated in such a way that
they fulfill their intended safety duties reliably. The purpose of these standards is to
provide broad criteria and to act as a foundation for the creation of specific standards.
The IEC 61508 standard is divided into five major stages [37, 39]:

1. Risk assessment: The result is the formulation of the needed safety functions as
well as the related reliability objectives.

2. Design and construction: The end result is a safety–critical system made up of
hardware and software components.

3. Planning for integration: The main tasks include validation, operation, and
maintenance.

4. Operation and maintenance: When a modification is proposed, any change to
the safety–critical systems should prompt a return to the most suitable life cycle
phase.

5. Disposal: It represents the end-of-life status of safety–critical systems.

7.3.2.2 Specific Standards

Specific standards have been established and tested using the IEC 61508 standard
in a variety of industries, including process industry, mechanical systems, nuclear
power plants, railway applications, and the automobile industry, among others [37,
39, 41]:

• Process industry: Safety–critical systems in the process industry, including the oil
and gas industry, are covered by IEC 61511, which is based on IEC 61508.When a
safety–critical system is based on proven technology or technology whose design
has been confirmed against the standards of IEC 61508, IEC 61511 is used. IEC
61511 does not cover the development of new technologies.As a result, IEC61511
is often referred to as the end-user and system integrator standard, whereas IEC
61508 is referred to as the manufacturer’s standard. To make the implementation
of IEC 61508 and IEC 61511 easier, guidelines have been prepared. The following
are two important guidelines [37]:
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– Guidelines for Safe and Reliable Instrumented Protective Systems published
by the Center for Chemical Process Safety

– Application of IEC 61508 and IEC61511 in theNorwegian Petroleum Industry
published by the Norwegian Oil and Gas Association.

• Machinery systems: The EU Machinery Directive (EU-2006/42/EC, 2006)
concerns machinery safety in Europe, with the first version being passed in 1989.
The EU Machinery Directive specifies the basic health and safety criteria for
the design and operation of machinery, allowing the particular aspects to be
determined by harmonized standards. More information on various standards for
Machinery systems could be found in Rausand’s book [37].

• Nuclear industry: Based on IEC 61508, the standard [42] was developed as a
sector-specific standard for the nuclear power industry. An instrumentation and
control (I&C) system is described in IEC 61513 as a “system, based on electrical
and/or electronic and/or programmable electronic technology, performing I&C
functions as well as servicing and monitoring activities connected to the system’s
operation.”

• Automotive industry: Under IEC 61508, ISO 26262 [43] was designed for the
safety of road vehicle applications. It was also developed for electric and/or elec-
tronic systems in vehicles with a gross vehiclemass of up to 3500 kg. The standard
consists of nine normative elements and a use guideline for ISO 26262.

• Railway transport: Three European standards, EN 50126, EN 50128, and EN
50129, have been produced for railway transport with a scope equivalent to IEC
61508. Later, the three EN-norms were included in IEC-standards [37]:

– IEC 62278 (EN 50126): Railway applications—The specification and demon-
stration of Reliability, Availability, Maintainability, and Safety (RAMS).

– IEC 62279 (EN 50128): Railway applications—Communications, signaling,
and processing systems—Software for railway control and protection systems.

– IEC 62425 (EN 50129): Railway applications-Communication, signaling, and
processing systems—safety-related electronic systems for signaling.

7.3.3 Safety Barrier and Life Cycle

Most risk studies use the phrase “safety barrier,” which somewhat overlaps with
our description of a safety–critical system. A safety barrier system can be either a
technological technology or a concerted human and organizational effort. As a result,
a safety barrier is not the same as a safety–critical system. A safety barrier, such as an
emergency procedure, is not a safety–critical system. Safety barriers are frequently
referred to as layers of protection or protective layers in the process industry, as
shown in Fig. 7.4 [37]:

(a) Process design: Applying design concepts that are fundamentally safe.
(b) Control: Keeping the system in a normal (stable) condition by employing

fundamental control functions, alerts, and operator reactions.
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(c) Prevention: Using safety-instrumented systems and safety–critical alarms to
react to departures from the usual condition and thereby avoid an unwanted
incident.

(d) Mitigation: The use of safety-instrumented systems or functions provided by
other technologies to lessen the effects of the undesirable event.

(e) Physical protection: To improve mitigation, use permanent safety obstacles.
Examples include the protection provided by dikes and barriers.

(f) Fire and gas detection and distinguishing: As a third technique for mitigating
the consequences of explosive gases and mixtures by preventing ignition and
hence an accident.

(g) Emergency response: Using a variety of methods to lessen the impact of the
disaster, both locally and throughout the community.

In IEC 61508, a safety life cycle model was created, and by the time, various
specialized standards had modified versions of this safety life cycle. There are six
major phases in the safety life cyclemodel: (a) Preparation, (b) Analysis, (c) Planning
and development, (d) Installation, (e) Operation and maintenance, and (f) Decom-
missioning [37]. This chapter focuses on the analysis phase of the safety life cycle
model. IEC 61508 and IEC 61511 include information on further phases. The IEC
61508 describes a risk-based strategy to meeting the following objectives during the
analysis phase [40]:

1. To recognize the undesirable occurrences that may affect the control systems
2. To identify the reasons and event sequences that can result in each undesirable

occurrence
3. To determine the chain of events and the risk associated with each undesirable

outcome
4. To define the requirements for risk reduction
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5. To identify the safety functions required to accomplish the requisite risk reduction
6. To decide which of the safety functions should be used as a safety-instrumented

function.

In addition to the previously described safety standards for risk analysis, numerous
approaches for identifying and controlling hazards and undesirable occurrences can
be applied, such as [40, 44, 45] hazard identification (HAZID), preliminary hazard
analysis (PHA), hazard and operability analysis (HAZOP), structured what-if tech-
nique (SWIFT), failure modes, effects, analysis (FMEA), fault hazard assessment
(FHA), fault tree analysis (FTA), and process hazard analysis (PHA). This chapter
has focused on the FMEA approach for safety–critical systems, with the theory
addressed in Sect. 7.3 and its application for safety–critical systems depicted in the
following section for Automotive safety–critical systems (Sect. 7.3.4).

7.3.4 FMEA Implementation: Automotive Safety–Critical
Systems

FMEA procedures are used by many products and industries for their safety–critical
systems. The systems discussed in this chapter are technical systems that may or may
not require human operator intervention. The concepts and methods in this chapter
can be used to examine the following safety–critical systems:

– Automotive industry: Airbag systems, brakes, steering, electronic stability
program systems.

– Process industry: Emergency systems, fire and gas systems, gas burner manage-
ment systems.

– Machinery systems: Guard interlocking systems, emergency stop systems.
– Railway transport: Signaling systems, automatic train stop systems.
– Nuclear power industry: Turbine control systems, fire prevention systems.
– Medical devices: Heart pacemakers, insulin pumps, electronic equipment used in

surgery.

In order to implement the FMEA methodology, this chapter focuses on Automo-
tive safety–critical systems, specifically BrakeOil FillingMachines (BOFMs)within
assembly lines. The FMEAmodel’s basic information for BOFMswas acquired from
Soltanali et al. [15]. In fact, BOFMs are one of the safety–critical systems with semi-
automatic capabilities. BOFMs ought to be reliable and safe from both operational
and non-operational perspectives. First, because of the importance of speed rates in
various operations, low reliability leads to an increase in operational costs, equipment
breakdown, and, ultimately, assembly line downtime. According to the records, these
systems are responsible for more than 43 percent of assembly line failures, which
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have been trending upward in recent years. Second, effective inspection and mainte-
nance programs can improve the safety of operators and vehicle drivers by reducing
the risk of unexpected events [12, 25]. A BOFM performs leakage tests by producing
pressure and vacuum, as well as filling/charging and leveling various fluids in vehicle
paths and pipes.

The process description (a) and outer and inner views (b) of a BOFM are depicted
in Fig. 7.5. As shown in Fig. 7.5a, the system is comprised of six critical blocks:
initialization, ready, pressure and vacuum, filling, process end, and lubrication [46].
The pressure supplement is handled by the initialization block; if the filling system
tank is under pressure, the process will equalize/release the pressure. After that, the
system is ready to begin the filling process (Ready block). The pressure block is used
to inject air into the system and then check the pressure to make sure there are no
leaks in the filing system. The vacuum block then performs the system’s evacuation
and checks for any vacuum leaks in order to maintain a proper vacuum level in the
filling system. The filling block performs the fillings with various liquids and their
leveling after setting the vacuum and pressure. Lubrication is performed during the
filling process, which is provided through a lubrication tank, for continued operation
of the rotary equipment, particularly pumps. Finally, the operator can unclamp the
filling head and remove it from the vehicle (Process end block).

The results of FMEA for BOFM in automobile assembly line are displayed in
Table 7.4 based on the worksheet in Fig. 7.2 and Tables 7.1, 7.2, and 7.3 and formula
(7.1). According to the Geometric mean of four experts’ judgments (one mechanical
engineer, one electrical engineer, one process engineer, and one safety engineer),
the total values of risk parameters (S, O, D) and RPN for the entire BOFM are
8.51, 6.27, 4.89, and 256.84, respectively, confirming that the Severity (S) parameter
has the most effects on safety analysis in BOFM. As seen, the failure mode (Fm1)
of “Bearing failure affected by corrosive cause” related to filling pump, the failure

Fig. 7.5 Process description (a) and outer and inner views (b) of BOFM in an Iranian automotive
production line [15]



7 Smart Failure Mode and Effects Analysis (FMEA) for Safety–Critical … 167

mode (Fm12) of “Spring fails of pressure control valve” and “Failure and abrasion of
activator” (Fm13) related to breaker pressure set in Hydraulic-pneumatic, the failure
mode (Fm20) of “Leakage of head pipes” (Fm17) related to head pipes and the failure
mode of “Failure and leakage of Couplings” related to couplings in Filling headset,
and the failuremode (Fm21) of “Sensor’s failure affected bymore function and circuit
confusion” related to sensors in Electronic circuit with more than (9 > ) rate have
the highest Severity (S) values. It indicates that the most severe operational and non-
operational consequences are associated with that of other components in BOFM.
According to the RPN column in Table 7.4, the failure mode (Fm19) “Failure of O-
rings & seals affected by more function” associated to seals in filling head set with
RPN = 632.49 has the highest risk potential of all BOFM breakdowns. Following
that, the failuremode (Fm6) of “Rotor fail impacted bymore function” and the failure
mode (Fm9) of “Blade fail affected by more function” relate to vacuum pump circuit
in the Hydraulic-pneumatic circuit with RPNs of 400.89 and 379.47 were assigned
the highest RPN in BOFM. Furthermore, the failure modes (Fm15) of “Valves failure
effected bymore function” and (Fm16) of “Failure and abrasion of activator” related to
valves in Hydraulic-pneumatic circuit, as well as the failure mode (Fm17) of “Failure
and leakage of Couplings” related to couplings in filling headset, had the highest RPN
values. Based on the technical findings, it is possible to deduce that the majority
of failures with the greatest FRPN value are associated with the filling head set
and the hydraulic-pneumatic circuit. According to the filling headset, the operator’s
error might be attributed to maintenance staff’s deficiencies in servicing and daily
checks, as well as a failure to provide enough operator training. As a result, various
training courses for maintenance personnel and fluid filling system operators should
be considered in order to improve their performance and expand their experiences and
skills. Furthermore, enhancing the technical components of the filing headset, such
as employing a lighter head, may reduce personal mistakes and the ergonomic aspect
would be barred from muscle and joint stresses. To decrease personal flaws, the G3

Blue filling headset has been built with ergonomic advancement andweight reduction
of up to 20% inmind. The key activities from the hydraulic-pneumatic circuit, notably
for filling and vacuum pumps owing to high operations, are well-timed inspection
and service.

7.4 Smart-FMEA Applied for Asset Digital Transformation

In the digital transformation era, smart-FMEA concept refers to a platform that
is supported by advanced algorithms and technologies such as cloud computing,
intelligent techniques (e.g., artificial intelligence, machine learning, neural networks,
deep learning, reinforcement learning, etc.), Big data, or Internet of Things (IoT)
platforms to support risk and reliability analysis as well as safety and maintenance
management decisions. Furthermore, most previous studies have focused more on
the current FMEAs’ shortcomings and how to overcome them using uncertainty
qualification methods (refer to Sect. 7.2.2), with less attention paid to the capability
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Fig. 7.6 The concept of smart FMEA model

of FMEA models and how to improve them to meet the needs of modern industries
like automation and digitalization. Figure 7.6 depicts the proposed smart-FMEA
platform, which includes all potential technical, organizational, environmental, and
operational factors to make maintenance and safety decisions more reliable. Some
of these factors are covered in NASA’s risk assessment manual [47]:

• Component type: e.g., motor-operated valve including any special design or
construction

• Characteristics: component size and material, normally running, standby, etc.
• Component use: system isolation, parameter sensing, motive force, etc.
• Component manufacturer
• Component internal conditions: temperature range, normal flow rate, power

requirements

Component boundaries and system interfaces: connections with other compo-
nents, interlocks, etc.

• Component location name and/or location code
• Component external environmental conditions: e.g., temperature, radiation,

vibration
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• Component initial conditions: normally closed, normally open, energized, etc.,
and operating

• Component testing procedures and characteristics: test configuration or lineup,
effect of test on system operation, etc.

• Component maintenance procedures and characteristics: planned, preventive
maintenance frequency, maintenance configuration or lineup, effect of mainte-
nance on system operation, etc.

Figure 7.7a displays a smart-FMEAmodel based on Intelligent approaches, which
consists of three layers: input variables, processing layer, and output (prediction)
layer. Input variables address all relevant technological, organizational, environ-
mental, and operational issues, as well as other uncertain variables. The processing
layer contains intelligent algorithms for pre-processing and evaluating input vari-
ables, as well as transferring them to the output part. Finally, the output layer of the
smart-FMEA model may be utilized to achieve the following goals:

– Classify failure modes/components using critical analysis of risk-based models
– Classify the failure rates of comments/parts from high to low using the reliability

analysis
– Divide the spare components into high, medium, and low levels that should be

scheduled
– Determine the safety or maintenance management techniques, i.e., corrective (re-

design, replacement, or repair) or preventative (time based or condition based).

Furthermore, this structure may be updated/upgraded with an IoT platform
(Fig. 7.7b), which contains a cloudy layer (smart-FMEA platform, smart applica-
tion, and smart database), a connectivity layer (platform/mode connectivity), and a
physical layer (interconnection of software and hardware items).

7.5 Conclusion

Fault diagnosis and prognosis methodologies are critical in assessing system safety
and reliability in digitalized environments. This chapter focuses on FMEA approach
as a proactive diagnosis tool, as well as its advancements in identifying and miti-
gating adverse occurrences in high-risk businesses. It discusses several forms of
FMEAs, including design-FMEA, process-FMEA, and system-FMEA. Furthermore,
the notion of safety–critical systems and the use of FMEAs for risk and hazard anal-
ysis within such systems are presented. The existing disadvantages and limits of
classical-FMEA theories are also surveyed in this chapter, as well as how they might
be overcome by hybrid-FMEA models. Finally, the feasibility of developing smart-
FMEA platforms in modern sectors, as well as their enrichment through advanced
algorithms and technologies, is discussed in the context of Industry 4.0. It is worth
noting that the smart-FMEA platform proposed in this study can be useful for auto-
matically monitoring major risks and mitigating adverse consequences in high-risk
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Fig. 7.7 The proposed smart-FMEA based on a intelligent systems and b IoT platforms [48]

industries. As the current FMEAmodels struggle tomeet the demands of the growing
current digital transformation, more research on our proposed smart-FMEA platform
with the capability of covering all potential operational and environmental issues in
safety–critical systems is recommended.
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Chapter 8
Optimization of Redundancy Allocation
Problem Using Quantum Particle Swarm
Optimization Algorithm Under
Uncertain Environment

Rajesh Paramanik , Sanat Kumar Mahato ,
and Nabaranjan Bhattacharyee

Abstract Reliability optimization of a redundancy allocation problem is an impor-
tant area of research in the literature. The main purpose of this type of problem is to
enhance the reliability of the system. In this paper, our target is to maximize the reli-
ability of a redundancy allocation problem with time-dependent component failure
rates considering the control parameters as trapezoidal fuzzy numbers. To compute
the maximum system reliability of the series–parallel system softly, a novel quantum
particle swarm optimization (QPSO) is used. In this QPSO algorithm, the decision
variables are assigned by the position of the particles and the fitness value of each
particle is evaluated using the reliability function related to this work. All the coding
of QPSO algorithm is done in C++. Finally, a numerical example is solved to clarify
the sensitivity of the proposed algorithm with respect to the crisp as well as the fuzzy
atmospheres.
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8.1 Introduction

The term reliability is very often used in our daily life. From the family of human
beings to the industrial sectors or managements are deeply influenced by reliability.
Reliability is a chance or probability of a system that happens continuously as the
operation time of the system moves. After the Second World War, it becomes a
challenge for the society that how to improve the reliability of a system in addition
to different restrictions. It is seen that the researchers consider the components of a
reliable systemas constant in their corresponding researches.But it is not always good
to take the reliability components as constants because reliability is time dependent
in the existing systems.

Few works in connection with this topic have been done after considering time-
varying components reliability of a system in the literature. Despite, so far, our
knowledge goes, failures per interval of time of the associated components were
not assumed in major part of the related topic in the existing literature. For smooth
conduction of a reliable system, failure rates play an important role. It may be taken
into account that major works related to this topic have been done by the researchers
with good efforts after choosing fixed valued failure rate. Such types of reliability
optimization problems are categorized as redundancy allocation problem (RAP). In
case of time-varying failure rates along with redundant components, the optimiza-
tion problem is termed as time-dependent reliability redundancy allocation problem
(TDRRAP).

Themain objective of redundancy allocation problem is to find the optimal or near-
optimal number of redundant components in each subsystem subject tomaximize the
objective function under some constraints. Several types of reliability optimization
problems with differently structured systems are solved to gain the number of redun-
dant units in each subsystem by the renowned researchers [8, 14, 25, 26, 29, 47, 48].
These NP-hard problems are solved by differently designed evolutionary algorithms
which are heuristic or meta-heuristic in nature [23, 24, 26, 29, 41, 42]. Heuristic
technique by Nakagawa and Nakashima [35], reduced gradient method by Hwang
et al. [18], and surrogate constraints algorithm by Nakagawa and Miyazaki [34]
were implemented to find optimum value of reliability designed problems subject
to different resource constraints. Tillman et al. [48], Sasaki and Shingai [46], Chern
and Jan [9], Misra [31], and Park [38] reported differently coded soft computing
algorithms to find the finer output of the objective function in their respective studies.

Misra and Sharma [30] and Kim and Yum [21] applied heuristic/meta-heuristic
algorithms to obtain the outputs of the reliability allocation problems as well as the
redundancy allocation problems. A multi-objective reliability optimization problem
in which the objective function is defined based on the structure of the system in
series form is solved by Huang [17]. The branch and bound technique worked well
for redundancy allocation problems, according to Sun and Li [47]. To solve reliability
optimization problems,Mahapatra andRoy (2006) adopted the fuzzymulti-objective
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mathematical programming technique.Mahapatra andRoy (2009) investigated trian-
gular intuitionistic fuzzy numbers in the context of reliability optimization. Gupta
et al. [14] employed the penalty technique in an interval setting to solve the redun-
dancy allocation problem. Bhunia et al. [6], Mahato et al. [27], Ruigang et al. [40]
described stochastic reliability optimization in an interval context. Sahoo et al. [43]
offered a GA-based solution to reliability optimization problems. A series–parallel
system’s optimal redundancy is determined using the generalized fuzzy number by
Mahapatra and Roy in 2011. For attaining an optimal solution in their proposed
reliable systems, Sahoo et al. [28], Mahato et al. [41], Garg et al. 2014, Garg [12],
Mahato et al. [26] and Sahoo et al. [45] have examined interval environments.Mahato
et al. [29], Sahoo et al. [44] and Tillman et al. [49] used fuzzy atmospheres to solve
reliability optimizationproblemsutilizingGAandPSOas soft computing techniques.

By employing particle swarm optimization, Khalili-Damghani et al. [20] solved
a multi-objective redundancy allocation problem. Garg and Rani [13] used PSO
and intuitionistic fuzzy environments to find industrial system reliability. To solve a
reliability problem with respect to series system in a fuzzy atmosphere, Sahoo et al.
[42] used a GA. To handle nonlinear optimization problems, Jia et al. [19] created a
unique attractor QPSO technique.

Various scholars as well as researchers [3–5, 10, 11, 36, 37] have recently investi-
gated the uses of fuzzy and intuitionistic fuzzy environments to solve various types
of reliability systems, such as series, series–parallel, and bridge systems.

In the preceding paras, it was observed that the researchers did not consider
the time-dependent reliable components of the reliability optimization problems.
Besides, they have taken the failure rate of the reliable components as constant
values. Very few works are done on time-dependent reliability optimization prob-
lems. Mori and Ellingwood [32] explained the time-dependent system reliability
analysis by adaptive importance sampling. An analysis on the optimization system
reliability with respect to time value of money was drawn by Hamadani and Khor-
shidi [15]. Mori et al. [32] and Hamadani et al. [15] considered time-dependent
reliability components for analyzing their proposed reliability optimization prob-
lems. For analyzing the time-dependent system reliability, Hu et al. [16] and Moure-
latos et al. [33] utilized random field discretization technique and total probability
theorem, respectively. Some reliability optimization problems are solved byArdakan
et al. [2] and Ahmadivala et al. [1] on considering time-dependent reliable compo-
nents. Zafar and Wang [50] have implemented transferring learning for optimizing
time-dependent reliability problem.
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In this paper, we want to find the system reliability considering time-varying
failure rates of the reliable components. The reliability of each component has to be
diminished exponentially with respect to time. Trapezoidal fuzzy number is brought
for making the environment more representative and handling the diverse situation.
Also, as the components assume time-varying failure rates, the problem becomes
more realistic. In this study, a series–parallel system with m stages is taken subject
to some restrictions.

The rest of this study is framed as follows: In Sect. 8.2, the basic assumptions
and symbols that are used throughout this work are kept. The definitions of fuzzy
and trapezoidal fuzzy numbers with graphical representation are kept in Sect. 8.3.
Also, the crispification technique for the considered fuzzy number is included in the
same section. The formulation of the problem in crisp and imprecise environments is
shown in Sect. 8.4. The solutionmethodology and the integration handling technique
are included in Sects. 8.5 and 8.6, respectively. Section 8.7 describes the proposed
soft computing techniques. For the clarification of our proposed environment and
algorithm, numerical example is taken and sensitivities are drawn graphically in
Sect. 8.8. Outcomes associated with this study are analyzed with the inclusion of
Sect. 8.9. Section 8.10 concludes the whole work done in this paper with some
future scopes.

8.2 Assumptions and Notation

8.2.1 Assumptions

In the entire work, we have considered the following assumptions:

• Series–parallel reliability system is taken.
• Redundant components are active and non-repairable.
• Each subsystem is comprised of identical components.
• All the reliability components are time varying.
• The failure rate of each component is linear function of time.
• System reliability is not dependent on the failure of components of the subsystems.
• Reliability components follow exponential distribution which diminishes as time

goes.

8.2.2 Notation

Symbols Meanings

ri (t) Reliability of the i-th component

(continued)
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(continued)

Symbols Meanings

P̃ Trapezoidal fuzzy number

μP̃ (v) Membership function w.r.t.P̃

zi Number of active redundant components in i-th subsystem
(i = 1, 2, . . . ,m)

z = (z1, z2, . . . , zm) Redundancy vector

Ts(z, δ, t) System reliability function in crisp environment

T̃s(z, δ, t) System reliability function in fuzzy environment

a j (z1, z2, . . . , zm) Crisp constraint’s usability function

ã j (z1, z2, . . . , zm) Trapezoidal fuzzy constraint’s usability function

q j , q̃ j Crisp, Trapezoidal fuzzy requirement vectors

li , ui Lower and upper bounds of zi

M Particles’ size in QPSO

pbesti i-th best particle

mbest Mean best position of j-th component at τ -th iteration

8.3 Some Definitions

8.3.1 Fuzzy Number

A fuzzy number
(

Â
)

is a fuzzy set [51] which is both convex and normal. That is, a

fuzzy number is a special case of a fuzzy set. The pictorial representation of a fuzzy
number is given in Fig. 8.1.

Fig. 8.1 Membership
function of Â

O 

1 

x 
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Fig. 8.2 Trapezoidal fuzzy
number

8.3.2 Trapezoidal Fuzzy Number (TrFN)

A trapezoidal fuzzy number [26] Ã is a fuzzy set in R with the membership function
(

μ Ã(x)
)

as given by Eq. (8.1).

μ Ã(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x−a1
a2−a1

, f ora1 ≤ x ≤ a2
1, f ora2 ≤ x ≤ a3

a4−x
a4−a3

, f ora3 ≤ x ≤ a4
0, otherwise

(8.1)

where a1 ≤ a2 ≤ a3 ≤ a4 ∀x ∈ R
This TrFN is denoted by Ã = (a1, a2, a3, a4).
A trapezoidal fuzzy number is shown pictorially in Fig. 8.2.

8.3.3 Beta and Uniform Distribution Method of Crispification

According to Rahmani et al. [7, 39], the defuzzification of the fuzzy number Ã =
(a1, a2, a3, a4) is given by Eq. (8.2).

(Bet) Ã = (2a1 + 7a2 + 7a3 + 2a4)

18
(8.2)

8.3.3.1 Derivation of Defuzzification Formula

First, we partition the interval (a1, a4) into three subintervals M1 = (a1, a2),
M2 = [a2, a3], and M3 = (a3, a4) so that (a1, a4) = M1 ∪ M2 ∪ M3. After that,
we consider two triangular fuzzy numbers (a1, a2, a2) and (a2, a4, a4) denoted by
B̂1 and B̂2, respectively, with respect to the intervals M1 and M2. Now, applying
beta distribution for the fuzzy numbers B̂1 and B̂3, the formulae of defuzzification
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become as (Bet)B̂1
= (a1+a2+a2)

3 and (Bet)B̂2
= (a3+a4+a4)

3 . The crisp value of the

interval M2 is obtained by using the uniform distribution as (Uni)B̂3
= (a2+a3)

2 . Thus,
the combination of beta and uniform distribution yields the crispified value of the
trapezoidal fuzzy number Ã as the mean of (Bet)B̂1

, (Bet)B̂2
, and (Uni)B̂3

.

8.4 Formulation of the Problem

A series–parallel system (Fig. 8.3) with m number of subsystems is considered. The
position of each subsystem is parallel in the series–parallel system. All the compo-
nents connected to the system as well as subsystems are time dependent. Besides,
the failure rates of each component are considered as a linear function of time. The
problem thus formulated represents a reliability redundancy allocation problem. Our
main purpose is to find the maximum value of the system reliability under some
restrictions. The redundant components of the respective subsystems construct the
required solution vector to the reliability redundancy allocation problem.

In crisp environment, the time-dependent RAP for series–parallel system is given
as follows:

Maximize TS(t) =
m

∏

i=1

⎡

⎣1 −
⎛

⎝1 − e
−

t
∫

0
δi (k)·dk

⎞

⎠

zi ⎤

⎦

subject to

a j (z1, z2, . . . , zm) − q j ≤ 0, j = 1, 2, . . . , n

li ≤ zi ≤ ui , i = 1, 2, . . . ,m. (8.3)

where z = (z1, z2, . . . , zm) represents the vector of redundancy and zi (≥ 0) is an
integer and t ∈ (0, 100]. Here, ri (t) = e− ∫ t

0 δi (k).dk is the reliability of the i-th

Fig. 8.3 Series–parallel system with m stages
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component of the reliable system and δi (t) is the time-dependent failure rate of the
same component.

The corresponding fuzzified model using trapezoidal fuzzy number is given by
Eq. (8.4)

Maximize TS(t) =
m

∏

i=1

⎡

⎣1 −
⎛

⎝1 − e
−

t
∫

0
δi (k).dk

⎞

⎠

zi ⎤

⎦

subject to

ã j (z1, z2, . . . , zm) − q̃ j ≤ 0, j = 1, 2, . . . , n

li ≤ zi ≤ ui , i = 1, 2, . . . ,m. (8.4)

where z = (z1, z2, . . . , zm) represents the vector of redundancy and zi (≥ 0) is an
integer and t ∈ (0, 100]. Here, ri (t) = e− ∫ t

0 δi (k).dk is the reliability of the i-th
component of the reliable system and δi (t) is the time-dependent failure rate of the
same component.

8.5 Solution Methodology

The considered reliability optimization problem is an integer nonlinear programing
problem with some restrictions. Our main goal is to find the maximum of the
system reliability Ts(z, δ, t) of the series–parallel system in the time interval (0,
100]. Simpson’s 3/8-th method is employed to find the value of integral

∫ 100
0 TS(t)dt .

Clearly, the maximum of TS(t)will agree with the maximum of the integral. Besides,
Big-Mpenalty technique is implemented as tool for handling the constraints involved
in the optimization problem. This method is very useful in obtaining unconstrained
optimization problem from a given constrained optimization problem. On the other
hand, in eradication of infeasibility of the solutions in addition to reduction of the
region of searching for each iteration, there are very few techniques as good as the
Big-M penalty technique.

8.6 Quantum Particle Swarm Optimization (QPSO)

Particle swarm optimization was first introduced by Eberhart and Kennedy (1995).
Visualizing the activities of the swarms, school of fish, and flocking of birds, they
got the motivation of the study of PSO. In this algorithm, the swarms are assigned as
particles. Tofind the global optimal, a collection of swarms is employed in a searching
space. The position and velocity of the i-th particle are updated by Eqs. (8.5) and
(8.6), respectively.
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X τ
i D = X τ−1

i D + V τ
i D (8.5)

V τ
i D = V τ−1

i D + c1r1
(

pbesti D − X τ−1
i D

) + c2r2
(

gbesti D − X τ−1
i D

)

(8.6)

where i = 1, 2, . . . , M ; c1 and c2 are the learning factors and generally, c1 = c2 = 1;
and r1 and r2 are the random numbers uniformly distributed between 0 and 1.

Later on, an inertial weight (ω) is assigned with velocity in Eq. (8.6) to obtain
better optimal value and it is given by Eq. (8.7).

V τ
i D = ωV τ−1

i D + c1r1
(

pbesti D − X τ−1
i D

) + c2r2
(

gbestgD − X τ−1
i D

)

(8.7)

But this PSOalgorithm is not always suitable in finding the global optimal solution
of differently structured optimization problems in the existing literature. As a result,
a developed version [4, 22] of this algorithm is launched which is called quantum
particle swarm optimization (QPSO). The area of motivation of QPSO is quantum
mechanics. In this algorithm,wave functionψ(X, τ ) is used to specify the state of the
particles. QPSO is able to search the global optimum in an infinite region with high
convergency. On applying Monte Carlo stochastic simulation method, the position
of the particle is defined by Eq. (8.8).

XiD = piD ± L

2
log

(

1/
u

)

, u ∼ U (0, 1) (8.8)

where U (0,1) means a random number uniformly distributed between 0 and 1. piD
is the local attractor, and it can be defined as given by Eq. (8.9)

piD = βPiD + (1 − β)PgD, β ∼ U (0, 1) (8.9)

where Pi = (

Pi1,Pi2, . . . , PiD
)

is the best location of the i-th particle, Pg =
(

Pg1,Pg2, . . . , PgD
)

is the best location of all the particles, and the parameter L
can be evaluated from Eq. (8.10).

L = 2α.|mbestD − XiD| (8.10)

wherembest is the average optimal position of all the particles, and it can be computed
by Eq. (8.11).

mbest = 1

M

M
∑

i

pbesti =
(

1

M

M
∑

i

pbesti,1,
1

M

M
∑

i

pbesti,2, . . . ,
1

M

M
∑

i

pbesti,d

)

(8.11)

Therefore,
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XiD = piD + α|mbestD − XiD| log
(

1/
u

)

, u ∼ U (0, 1) if α > 0.5 (8.12)

and

XiD = piD − α|mbestD − XiD| log
(

1/
u

)

, u ∼ U (0, 1) if α < 0.5 (8.13)

where α is a parameter of the QPSO algorithm called the contraction–expansion
coefficient.

The flowchart of the proposed QPSO algorithm is shown in Fig. 8.4.

8.7 Integration Handling Technique

Due to the complexity of integrands, implementation of traditional analytical method
for finding the integrations associated to the proposed problems becomes a tedious
work. To overcome this situation, we are interested to employ numerical technique.
Simpson’s 3/8-th rule is being used to find the integrations related to our considered
problems. This integration formula is given by Eq. (8.14).

b
∫

a

F(x)dx =3l

8
((v0 + vm) + 2 × (v3 + v6 + . . .) + 3 × (v1 + v4 + . . .)

+3 × (v2 + v5 + . . .)) (8.14)

Here, x0, x1, x2, . . . , xm are the points at which the interval [a, b] is divided into
m equal parts where m is a multiple of three and v0, v1, v2, . . . , vm represents the
corresponding ordinates, and l represents the subintervals’ length. There are 24
subintervals of equal length in the present exertion.

8.8 Numerical Example

To clarify our proposed QPSO algorithm, the following numerical example is
considered with respect to crisp environment (Tables 8.1 and 8.2).

Maximize TS(z, δ, t) =
m

∏

i=1

⎡

⎣1 −
⎛

⎝1 − e
−

t
∫

0
δi (k).dk

⎞

⎠

zi ⎤

⎦

subject to
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Fig. 8.4 Flowchart of QPSO algorithm
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5
∑

i=1

Vi z
2

i
≤ Vs

5
∑

i=1

Ci

[

zi + e
zi
4

]

≤ Cs

5
∑

i=1

Wi

[

zi e
zi
4

]

≤ Ws

where
zi ∈ N, ri (t) = e− ∫ t

0 δi (k).dk, i = 1, 2, 3, 4, 5;
δi (t) = 99999 × 10−10 × t + 2 × 10−7;
Vs = 110, (V1, V2, V3, V4, V5) = (1, 2, 3, 4, 2);
Cs = 175, (C1,C2,C3,C4,C5) = (7, 7, 5, 9, 4);
Ws = 200, (W1,W2,W3,W4,W5) = (7, 8, 8, 6, 9).

Table 8.1 Representation of the parameters as TrFNs

i Ṽi C̃i W̃i

1 (0.8, 1, 1.1, 1.4) (6.8, 7, 7.3, 7.6) (6.8, 7, 7.3, 7.6)

2 (1.7, 2.0, 2.2, 2.3) (7.8, 8, 8.3, 8.6) (7.8, 8, 8.3, 8.6)

3 (2.6, 3, 3.2, 3.5) (5.8, 5, 5.3, 5.6) (7.8, 8, 8.3, 8.6)

4 (2.7, 3, 3.2, 3.7) (8.8, 9, 9.3, 9.6) (5.8, 6, 6.3, 6.6)

5 (1.4, 2, 2.3, 2.7) (3.8, 4, 4.3, 4.6) (8.8, 9, 9.3, 9.6)

˜Vs = (104, 110, 115, 123); ˜Cs = (169, 174, 180, 186); ˜Ws = (194, 200, 210, 221)

Table 8.2 Defuzzified values of TrFNs

i (Bet)Ṽi (Bet)C̃i
(Bet)W̃i

1 1.061111 7.161111 7.161111

2 2.077778 8.161111 8.161111

3 3.088889 5.272222 8.161111

4 3.100000 9.161111 6.161111

5 2.127778 4.161111 9.161111

(Bet)Ṽs = 112.7222; (Bet)C̃s
= 177.1111; (Bet)W̃s

= 205.5556
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8.9 Result Analysis

We offered a numerical example in the preceding section to demonstrate our strategy
for optimizing the system reliability with appropriate redundancy component alloca-
tions.We ran 30 independent runs of theQPSO algorithms inC++ on a notebookwith
an Intel CORE i3 10th generation CPU and 4 GB RAM running in Linux and gath-
ered the results to find the best and worst found system reliability, as well as their
average value, standard deviation, and running time. For the considered example,
the population size and maximum number of generations taken in the QPSO algo-
rithm are 80 and 150, respectively. The other parameters of the QPSO algorithm are
α1, α2, β1 and β2. For the proposedQPSOα1 = 1.5, α2 = 0.5, β1 = 1.2 and β2 = 2
The comparative results have been presented in Tables 8.3 and 8.4. The most impor-
tant thing is that the problem obtains maximum system reliability in case of trape-
zoidal environment. Also, from the above statistical data table for system reliability,
we see that our proposed QPSO algorithm gives better outcomes for the consid-
ered example in trapezoidal fuzzy atmosphere in comparison with crisp environ-
ment. Figures 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11 and 8.12 were drawn to visualize
the behavior of the system reliability with respect to different swarm parameters
in different environments. From these figures, it is clear that the system reliability
increases significantly with the increment of the maximum number of generations
as well as the population size of the swarm.

8.10 Conclusions and Future Scopes

In this paper, we look at a more realistic and practical RAP that takes into account
time-dependent reliabilities for components as an exponential function. The soft
computing technique of QPSO was used to solve the numerical problem in diverse
techniques and forms, including crisp and fuzzy. Our main goal was to obtain the
maximum system reliability subject to different resource limitations in the entire
work. We were able to find significant results on maximizing the system reliability
in comparison with the works done previously. Throughout this work, we have seen
that the fuzzy environment produces a remarkable result for the considered example.

For further study, one may consider other imprecise environments like neutro-
sophic, type-2 fuzzy, and nonlinear intuitionistic fuzzy for finding maximum of
the mission design life in association with differently designed reliability systems.
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Table 8.4 Statistical data of system reliability

Algorithms Environments Best Worst Average SD CPU
(time)

Proposed
QPSO

Crisp 0.9956961704 0.988371979 0.994882371 0.002301771 0.113

Trapezoidal
fuzzy

0.9964736657 0.996473657 0.996473657 0 0.130

[4] Triangular
fuzzy

0.9562648909 Not found Not found Not found 0.071150

Crisp 0.9562601906 Not found Not found Not found 0.068281
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Also, the researchers have a platform to implement different types of heuristic tech-
niques such as ABC, GA, Cuckoo search, and neural network for solving the similar
problems as considered in this work.
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Chapter 9
Resilience: Business Sustainability Based
on Risk Management

Mohsen Imeni and Seyyed Ahmad Edalatpanah

Abstract Businesses must be resilient to withstand many occurrences. Companies
of all sizes can deal with adversity and possible danger in this manner. When things
are unclear, it is critical to have a strong risk management strategy in place. In times
of crisis, risk management enables businesses to remain adaptable and robust while
avoiding any hurried or erroneous action. In the wake of recent crises like COVID-
19, it is clear that risk management must be taken seriously. In the current epidemic,
businesses worldwide have become more vulnerable due to the absence of appro-
priate risk management implementation (not the risk management method itself).
Despite this, there is little knowledge about how resilience is related to risk manage-
ment. Theoretically, it is also crucial to understand how these can impact corporate
performance. Therefore, businesses with sufficient knowledge of resilience and risk
management can be expected to protect their shareholders and customers against an
unplanned disruption. Firms can deal with sustainable development and riskmanage-
ment by using the concepts of resilience, robustness, and antifragility. Therefore, in
this chapter, to help businesses, resilience and risk management concepts were intro-
duced, and the relationship between these two variables was explained. The findings
canhelp enterprises to adopt goodpractices for proper planning and riskmanagement,
given the degree of resilience of that business. Its implications can help enterprises
to adopt appropriate policies and provide valuable insights to help them develop risk
management and resilience capacities to prevent and respond to related disasters.
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9.1 Introduction

Small- and medium-sized enterprises (SMEs) have faced several challenges and
risks over the last decade. One of the most challenging business conditions in recent
decades has been created by intense global competition, economic uncertainty, rapid
technological change, and growing customer demand [18]. In today’s world, risk
management is no longer focused on reducing vulnerability but rather on strength-
ening resilience. An individual, system, or community’s resilience to risk and uncer-
tainty is fundamentally determined by its ability to respond to disturbances, surprises,
and changes [45]. As a result, the application of the concept of resilient societies
and the ways to create and strengthen them have become more widely used [15].
Economic resilience, given its dynamic and forward-looking nature, can be more
effective in increasing the economy’s ability to adapt to risks. Economic resilience
means identifyingways and behaviors that increase the capacity to resilience external
shocks or adverse effects. Alternatively, resilience seeks to reduce the probability of
failure or losses of economic risks, and it is before and after the occurrence of shocks
[77]. Paying attention to ambiguity and uncertainty is essential [33].

One of the critical features mentioned for a resistance economy is the resilience
of the economy. Accordingly, a definition of economic resilience is “the capacity or
ability of the economy to maintain performance and optimal allocation of resources
in the face of economic uncertainty.” Resilience consists of two tangible sources
(such as internal resources) and an intangible source (for instance, strong leadership
and fast decision-making) [11]. Liu et al. [39] believe that internal resources help
companies adapt to external crises and opportunities to improve corporate business
performance potentially. Several recent natural and economic events have demon-
strated the vulnerability of countries of all levels of development to disasters. Like
terrorism and natural disasters, COVID-19 threatenedmanagers’ lives, emotions, and
rationality [25, 28, 72]. From about 350 in 1980 to almost 1000 yearly in 2014, these
high-risk events have steadily increased around the world. Economic losses have
risen from about $50 billion in the 1980s to about $250 billion in the past decade
[72].

Radović-Marković et al. [54] argue that the concept of resilience shows how a
country’s economy can return to its previous level, based on this concept. However,
they say a country’s economic resilience is impossible unless small- and medium-
sizedbusinesses resist the adverse effects. Therefore,many consider it two sides of the
same coin. On the other hand, the risks of "new" forms such as terrorism, the COVID-
19 pandemic, the financial sector’s recent economic collapse, and the ensuing global
economic crisis can all be borderless in nature [65]. A negative economic cycle
characterizes SMEs during COVID-19, which is strongly impacted by the pandemic
[2, 5]. Barbosa [4] believes that due to the need for creating resilient ecosystems,
resilience is a new research opportunity. Building resilience through risk-informed
sustainable development is essential to generating sustainable and resilient communi-
ties [2]. Resilience can correct the structure and tools to function in the face of stress,
change, and uncertainty. Understanding the risk perspective correctly and identifying
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the best place to own and manage those risks are essential. Understanding how inter-
relationships between system components affect the performance of the system and
strengthening the components that address those risks are essential [72].

There aremany similarities and points of convergence between risk and resilience,
according to Mitchell and Harris [45]. In their view, risk assessment and manage-
ment are key to business resilience, and monitoring risks is a necessary condition
for business resilience. Risk management approaches and resilience, however, are
often viewed as independent variables in the literature because “Resilience thinking
challenges the widely held notions about stability and resistance to change in risk
management around the world” [6, 43].

Hence, this study provides a definition and explanation of the concept of resilience
at different levels of the economy and to express risk and risk management. In this
way, the knowledge gap between risk management and resilience will be reduced.
Therefore, businesses with sufficient knowledge of resilience and risk management
can be expected to protect their shareholders and customers against an unplanned
disruption. Meanwhile, understanding concepts such as resilience, robustness, and
antifragility can help firms remain stable in crises and risks.

There are severalways inwhich this study contributes to the literature on resilience
and riskmanagement. First, concepts such as resilience and riskmanagement havenot
yet been poorly addressed empirically. By identifying different types of resilience and
levels of risk, this study increases theoretical and managerial knowledge. Second, in
the present study, other concepts such as antifragility and robustness were introduced
in future research, these three concepts can be used more accurately in management
research, but now the dominant concept is resilience. Third, the findings can help
businesses adopt good practices for proper planning and risk management, given the
degree of resilience of that business. Businesses can benefit from its implications
by adopting appropriate policies and constructing risk management and resilience
capacities in order to prevent and respond to disasters.

9.2 Definition of Resilience, Robustness, and Antifragility

As we examine the definitions of resilience in the planning, environmental,
psychology, engineering, organizational behavior, sociology, and economic fields for
the past forty years, we are able to draw a comparison between them [59]. Holling
first used the term in 1973. The term “resilience” is used to mean “going back in
time,” which is derived from the root “resilio” [16], and the equivalent of the word
resilience means the ability to recover, rapid recovery, change, elasticity, and buffer
and elasticity [47].

The root of resilience (resiliency) is derived from the science of physics and
means jumping backward. Holling [30] defined resilience as the system’s stability
to sudden changes and ability to absorb shocks while maintaining past relationships
between parameters and variables in the same state. Finally, [30] defines “the ability
of systems to absorb change … as well as to survive” as a definition of resilience. In
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addition, he sometimes refers to resilience as “buffer capacity.” Pimm [53] describes
resilience as the speed at which a system returns to equilibrium. In addition, [51]
defined resilience as relative: “the gap between current and critical loads.” In [23],
resilience is defined as the ability of a system to adapt, grow, and survive in changing
conditions.

On the other hand, organizations can face three consequences after disasters:
(1) declining performance and subsequent improvement (i.e., resilience), (2) insen-
sitivity to uncertainty (i.e., robustness), and (3) upside gain (i.e., antifragility). In
exploring these distinct outcomes, [49] transfer knowledge from the uncertainty,
risk, and system theory literature into organizational resilience. Distinguishing the
differences between these different outcomes can clarify our insight of enterprise
answers at all times and in any situation with adversity.

The most crucial area of this concept is robustness. These include “abilities that
aim to stabilize enterprise in the time of the disorders” and “abilities that aim to
reduce the effect of the disorders on performance” [68]. Because if enterprises cannot
maintain their strength in adverse times, they cannot recover from the disruption. In
words, any enterprise that lacks the ability to have some robustness is likely to suffer
from subpar performance and consequent failure [49]. Thus, for example, during the
COVID-19 epidemic, online companies could withstand the crisis (i.e., were robust),
while audit firms were initially damaged and then recovered (i.e., were resilient).

Robustness is the ability to maintain and resist adverse effects [20, 67]. Systems
with the necessary robustness can resist or absorb pressure [20] or withstand and
absorb strain and maintain their performance [19]. Robust systems often change
their states to keep up performance [38]. While uncommon or unforeseen affairs can
reveal vulnerabilities, and as a result, they create situations that they are unable to
handle, and eventually firms fail [9].

The notions of fragility and antifragility were introduced by Taleb [70]. It means
“things that gain from disorder.” The definition of an antifragile system is as follows:

Some systems profit from shock. That is, when volatility and disorder are present,
they grow. In other words, they are interested in adventure, risk, and uncertainty.
It is, however, impossible to find a word to describe the careful inverse of fragile.
So we call it antifragile. There is no such thing as resilience or robustness when
it comes to antifragility. Taleb [70] believes that in times of disorder and shock,
strength and resilience cannot help organizations and individuals, while antifragility
benefits them. Based on the above, it can be said that any disorder or shock is not
necessarily harmful [7]. It should be noted, however, that necessarily is not gainful
for all volatility and disorder [7].

Of course, robustness has a limited capacity to absorb disruptions without subse-
quently disrupting performance [30]. In contrast, resilient systems can return to
their previous acceptable levels after the reduced performance [75], enabling busi-
ness resumption in prior performance levels [63]. It is complicated to differentiate
between robustness and resilience. Hillmann and Guenther [29] argue that there is
an invisible boundary between the two concepts. Because resilient organizations, in
a way, need robustness to be able to withstand pressure [36]. Resilience is about
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performance recovery after it has been reduced. As antifragility is defined as an
increase in performance in the face of adversity [70], as a result, antifragility differs
from resilience [55].

9.2.1 Different Levels of Resilience

Rose and Krausmann [60] expressed the operational criteria of resilience in two
categories: Direct Static Economic Resilience (DSER) and Total Static Economic
Resilience (TSER). Economic resilience on a direct static basis refers to the level of
a business or industry (micro and meso), which is based on the evaluation of “partial
equilibrium” or the performance of an enterprise or household. Basically, total static
economic resilience (TSER) refers to the macro-level of economics. Ideally, it would
encompass all price-quantity interactions in an economy, referred to as “general
equilibrium.” In addition, resilience can be assessed behaviorally. Researchers face
three problems in the area of resilience. Measures of resilience, including those that
violate rational behavior, need to be identified at the conceptual level. This may
cause challenges to the model of individual, group, and community behavior on an
operational level. At the practical level, data collection on resilience, particularly to
determine models, is difficult [58].

Finally, [59] expresses resilience on the following levels: microeconomic (house-
holds or businesses),meso-economic (markets or industries), andmacroeconomic (an
economic entity that includes all economic entities and their interactions) (Fig. 9.1).

9.2.1.1 Resilience at the Microeconomic Level

The purpose of this section is to show how economic production theory can be used
to analyze economic resilience at the micro-level. A business’s ability to produce
profits from different inputs is represented by this abstract model. A framework
called Computable General Equilibrium (CGE) is viewed in economics as a set
of integrated (macro-level) supply chains and deals with how businesses interact
in supply chains (meso-level). Businesses’ performance remains the focus of this
approach.

Resilience in business has two aspects. Customer-side resilience creates through
disruption (quantity and timing) in the delivery of inputs and to utilize the resources
available in businesses and households. Also, it has a relationship with static
resilience. For example, resilience is primarily a demand-side issue in a particular
period, meaning the existence of a specific fixed capital or any fundamental disrup-
tion in the supply of input. In contrast, supply-side resilience is related to providing
output to customers. In addition to system redundancy, dynamic resilience usually
involves repairing or constructing critical inputs. Supplier efforts or capital repairs
are entirely separate from customer resilience, which is the responsibility of input
providers [59].
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Fig. 9.1 Business resilience based on different levels [64]

From an economic point of view, economic resilience relates to the ability of the
economy to withstand shocks and return to its original path; however, this ability
also depends on the level of vulnerability of the economy [8]. Economic resilience
means identifying ways and behaviors that increase the capacity to deal with external
shocks or adverse effects. On the other hand, resilience seeks to reduce the likelihood
of failure or loss of economic risks before and after shocks [77]. Due to its dynamic
and forward-looking nature, the economic resilience approach can have been more
effective in adapting to risks.

9.2.1.2 Resilience at the Meso- and Macroeconomic Level

Fromameso-economic perspective, resilience is an option to strengthen themarket or
parts of it. Examples are pricing mechanisms, aggregation of resources and industry
information, and various types of infrastructure. Most researchers in the field of
economic believe that the intrinsic resilience of market prices, which acts as an
“invisible hand” to direct resources to better allocation, should be considered as a
disaster. Rose [59] believes that themarket is likely similar to its buildings, and human
disasters will be damaged. Under normal market failure conditions, two alternatives
to some (or all) economies are presented similarly, public goods, and market power:
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Fig. 9.2 Meso-level
resilience (the business level)
[13]
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(1) It is replacing judgments or scheduling with significant costs and higher than
its implementation.

(2) Both approaches, such as improving information, are considered resilient to
strengthen the market.

Connelly [13] explained resilience at the meso-level (the level of businesses)
shown in Figure 9.2. Connelly [13] believes that a business’s risk and governance
management are the most critical elements.

From a macroeconomic perspective, resilience is affected by sector interactions.
Martin and Sunley [42] reason that the resilience of macroeconomics is not just a
function of resilience measures at the microeconomic level (individual business or
household). All companies and markets have an impact on it (at the meso-economic
level).

After understanding resilience, robustness, and antifragility concepts and getting
familiar with different levels of resilience, the concepts of risk and its manage-
ment will be discussed. In addition, the relationship between resilience and risk
management will be explained.

9.3 Risk, Risk Management, and Business Resilience

Around 1200 in Venice, “risk” was the first word to appear and be used in European
languages to resolve uncertainty. Other terms, such as “uncertainty,” appeared much
later [37]. In general, risk refers to the possibility of loss or unfavorable outcomes
associated with an action. From [31] point of view, risk is a situation in which the
result of activities is accompanied by uncertainty. The Institute of Internal Auditors
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(IIA) describes risk as uncertainty about the occurrence of an event that could influ-
ence the goal achievement. Having uncertainty means not knowing what will happen
in the future—risk increases with uncertainty [14]. The goal of risk management for
a manager is to maximize expected returns subject to the risks and tolerances of the
organization. Crane et al. [14] argue that taking risks allows you to make money.
In other words, there would be no return if there were no risks. Positive or negative
consequences may result from the risk, or simply uncertainty may result. For an
organization, thus, the risks associated with opportunity and loss or the existence of
uncertainty may be taken into account. Each risk has characteristics requiring excep-
tional management or analysis [32]. Therefore, attention to risk and its management
has become more important in businesses.

Pike et al. [52] have divided the risks into two categories with internal and external
drivers. There are two kinds of risks associated with external drivers: financial risks
(risks associated with accounting standards, foreign exchange, interest rates, and
customer credit) and market environment risks (risks associated with competition,
customer demand, economic conditions, technologydevelopments, and legal require-
ments). As well as risks associated with internal incentives, there are risks associ-
ated with controls and control environments, liquidity, investment, fraud, accounting
information systems, and human resources. Moeller [46] also divides the risks
that must be managed into strategic, operational, financial, and information risks.
Therefore, a business must address the various risks in achieving its targets.

The enterprise is a dynamic combination of organized resources to achieve a set
of purposes and missions. Therefore, defining these goals is vital to any enterprise’s
management. In these circumstances, it is clear that the unavailability of all or part of
a particular resource can prevent the organization from achieving its goals. Reasons
for this “lack of access” to resources include the occurrence of risks or unidentified
“accidental” events. In this context, the purpose of the risk management process
can be defined as the availability, under any set of conditions, of resources at a
level consistent with the enterprise’s core objectives. Then, to achieve an operational
definition of the risk management goal, a closer look at the organization’s goals is
necessary [12]. Risk management is the process used by the board of directors and
senior executives to identify events that affect the business [57].Riskmanagement has
become an essential issue for all companies today, so it is used in decision-making in
the categories of CEO andmiddlemanagers [10]. Riskmanagement theory shows the
reduction of various accounting costs that help improve the company’s performance
[76].

The relationship between riskmanagement andperformancehas also beendebated
by researchers for a long time, mainly because the relationship between risk manage-
ment and value in imperfect and inefficient markets has not yet been established [24].
Past studies of corporate risk management have concluded that organizations may be
able to improve their performance by adopting a dependent view of risk management
[22]. Iwedi et al. [35] studies have shown that risk management aims to maximize
shareholder value. Studies by Ashari and Krismiaji Krismiaji [3] and Shad et al. [61]
also show the effect of risk management on performance and return on equity.
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One of the dimensions of risk management is industry competition. An essential
feature of the competition is that there is more than one firm in the market, and this
feature makes firms comparable in terms of performance. Comparability of firms
allows investors to choose firms with optimal performance for investment. In partic-
ular, Shatnawi’s [62] studies have shown that corporate risk management involves
a combination of managing threats and strategic risks based on corporate policies.
In this sense, the risk management process not only becomes a tool for preventing
and managing the impact of destructive events on the business but also becomes
a force for seeing an opportunity [69]. The three stages of risk management are as
follows: (1) identification of risks, (2) risk assessment, and (3) risk reduction [21], and
higher-ability managers can improve performance [34]. Enterprise risk management
is made up of eight parts: control environment, targeting, event identification, risk
assessment, risk response, control activities, communication, and monitoring [57].
Merna and Al-Thani [44] believe the risk management process should be dynamic
and regularly reviewed.

Riskmanagement plays a central role in resilience [41]. Riskmanagement purpose
is to manage all the uncertainties that may interfere with the goals and missions
of the organization and to ensure the survival of the organization in any situation
(environmental and economic) that it may face. Risk analysis is fundamental to
preventing business failure, including risk assessment and management [50]. Park
et al. [50] believe risk analysis is impossible where risks are unknown.

Conversely, the goal of resilience is to build the capacity to overcome disorders
or stress while maintaining the functions needed for survival and possibly progress
[40]. Somers [66] argues that there is more to resilience than just surviving. In the
event of a disaster, this means identifying potential risks and taking precautions to
ensure the organization’s progress.

The main areas of resilience can be categorized as follows: organizational, oper-
ational, financial, technological, and business resilience. Since the objective of busi-
nesses is sustainability, they must understand the risks they will face in the future and
be prepared for those risks. They can achieve this goal through adaptive and miti-
gation measures. Resilience plays a significant role in this case because resilience
demonstrates the ability of businesses to copewith expected andunpredictable events.
To this end, it is imperative for companies to identify, evaluate, and plan for future
risks that they may face.

Torabi et al. [71] argument measures such as risk reduction and process reengi-
neering can help in proper risk control in traditional risk management. The resilience
concept, along with the risk concept, has been considered by researchers in recent
years. Hence, different perspectives have been expressed in this regard [56]: As a
complementary approach to risk management, resilience is viewed from the first
perspective. In this perspective, it is believed that traditional risk management
systems in timesof crisis havenot been able to respondappropriately, so resilience can
be considered a new and appropriate way to manage crises. As seen from the second
perspective, resilience and risk are completely separate concepts. In this perspec-
tive, it is believed that businesses will move toward risk management or increased
resilience in times of crisis. Lastly, both concepts are regarded as unifying elements
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Table 9.1 Perspectives on resilience and risk management [50]

Risk management Resilience

Design principles Maintain the status quo by
avoiding transformative
change; minimize failure risks

Adaptability to change (e.g.,
changing paths, if not destinations)
without permanent loss of
function. Acknowledging unknown
hazards. To reduce the possibility of
a larger system experiencing
permanent loss of function,
intentional failure may be allowed at
the subsystem level

Design objectives Minimizing failure probability,
albeit with rare catastrophic
consequences

Reducing the consequences of
failure, although they may occur
more often and may require a more
rapid recovery

Design strategies Armoring, resistance,
strengthening, redundancy,
oversizing, isolation

Diversity, cohesion, adaptability,
renewability, flexibility, innovation,
regrowth, and transformation

Relation to
sustainability

Security, longevity Recovery, innovation, renewal

Mechanisms of
coordinating response

Coordination of efforts is
facilitated by centrally located,
hierarchically organized
decision structures

Local conditions are responded to by
decentralized, autonomous agents

Modes of analysis Analysis of identified hazards
using quantitative
(probability-based) and
semiquantitative
(scenario-based) techniques in
the context of utility theory
(i.e., costs and benefits)

Analyzing scenarios with unknown
causes and possible consequences

from the third perspective. In terms of logic, resilience and risk are quite different, but
they both aim to increase access to resources for a longer period of time [56]. The
resilience approach requires preparation for the unexpected. Risk analysis, on the
other hand, assumes that risks are identifiable. Table 9.1 compares the perspectives
of risk management and resilience.

9.4 Conclusion and Discussion

The business environment is constantly changing and full of risk [1]. By ignoring
the invisible nexus between business and their environment, businesses miss out on
many new sustainable development opportunities that may prohibit businesses from
collapsing [48]. Moore and Manring [48] argue that business plans should articulate
the opportunities and constraints of changing social and environmental conditions. If
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businesses, tiny and medium-sized businesses, cannot adequately cope with possible
crises and problems, they cannot survive and are doomed [26]. Therefore, compa-
nies must take steps to make themselves more competitive to survive and increase
their competitiveness. Varmazyari and Imani [74] believe that the resilience of the
country’s economy (at themacro-level) and businesses (at themicro- andmeso-level)
can make the economy resistant to external and internal shocks.

This concept increases the ability of businesses to cope with abrupt and unpre-
dictable changes and shocks (internal and external factors). Herbane [27] points out
that businesses mainly suffer from a lack of resources such as liquidity to meet
market and customers’ needs. Van Gils [73] also enumerates factors such as raw
material supply and financial needs in this regard. This school of thought includes
perspectives based on management risk-focused strategies.

Based on the above, if businesses at the micro- and meso-levels want to resilience
possible crises such as sanctions and coronavirus which affect their economic condi-
tions, they must understand their strengths and weaknesses. Analysis of strengths
and weaknesses can affect the future and survival of such businesses because busi-
nesses can increase their competitiveness and resilience through resource and cost
management (liquidity, financing, etc.). In addition, recognizing the risks and proper
coverage of these risks can be very important in the continuity of businesses. Under-
standing threats and opportunities allow businesses to use various financial tools
(using the concept of financial engineering and risk management) to counter these
threats. Dahles and Susilowati [17] argue that companies have been able to survive
(and even grow some) emerging crises by using flexible expertise (in any situation),
diversifying, and combining different sources of revenue within and across sectors.
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Chapter 10
Reliability Analysis of Process Systems
Using Intuitionistic Fuzzy Set Theory

Mohammad Yazdi, Sohag Kabir, Mohit Kumar, Ibrahim Ghafir,
and Farhana Islam

Abstract In different engineering processes, the reliability of systems is increas-
ingly evaluated to ensure that the safety–critical process systems will operate within
their expected operational boundary for a certain mission time without failure.
Different methodologies used for reliability analysis of process systems include
FailureMode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), and Bayesian
Networks (BN). Although these approaches have their own procedures for evaluating
system reliability, they rely on exact failure data of systems’ components for relia-
bility evaluation. Nevertheless, obtaining exact failure data for complex systems can
be difficult due to the complex behavior of their components, and the unavailability of
precise and adequate information about such components. To tackle the data uncer-
tainty issue, this chapter proposes a framework by combining intuitionistic fuzzy set
theory and expert elicitation that enables the reliability assessment of process systems
using FTA. Moreover, to model the statistical dependencies between events, we use
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the BN for robust probabilistic inference about system reliability under different
uncertainties. The efficiency of the framework is demonstrated through application
to a real-world system and comparison of the results of analysis produced by the
existing approaches.

Keywords Process safety · Intuitionistic fuzzy set · Reliability · Bayesian
networks · Expert elicitation · Decision-making

10.1 Introduction

Chemical process industries are one of themost hazardous sectorswhere the potential
of occurrence of serious undesirable events, rare accidents, mishaps, or near misses
is significant. Such unexpected events can directly or indirectly cause serious injuries
like loss of life, serious and immutable environmental damage, loss of material and
equipment assets, and decrease the forgotten factor as the reputation of the company.
Fire and explosion, the release of toxic, and hazardous materials are common exam-
ples of the abovementioned events [1]. Catastrophic accidents such as the PiperAlpha
fire and explosion in 1988, BP explosion in 2005, and Deepwater Horizon tragedy
in 2010 reveal the tragic effects of major accidents in the chemical process industry
[2]. Thus, the prediction of the occurrence of unexpected events and subsequent
consequences has a high necessity to assure the safe operation of the system and to
prevent the upcoming occurrence of similar events. In this regard, safety and risk
analysis can help to prevent the occurrence of unwanted events and develop opera-
tional mitigation actions [3]. Several qualitative and quantitative methods, including
fault tree analysis (FTA), event tree analysis (ETA), failure mode and effect anal-
ysis (FMEA), hazard and operability study (HAZOP), and risk matrix, have been
widely used in the risk analysis of chemical process industries. Among the available
techniques, FTA is a well-established technique, which can graphically describe the
relationships between the cause and effects of different events in the form of Basic
Events (BEs), Intermediates Events (IEs), and Top Event (TE). FTA can provide
both qualitative and quantitative analysis by presenting undesired events and giving
probabilistic analysis from root causes to the consequence [4].

FTA uses the probabilities of BEs (located at bottom of the tree) as quantitative
input to calculate the probability of the undesired event as TE (located at the top of
the tree). Therefore, the probability of all BEs as crisp values or probability density
functions (PDF) is required for quantitative analysis [5]. However, in the real-world
industry, because of the lack of knowledge and missing data or systematic bias,
the availability of all necessary data cannot be guaranteed. Thus, collecting data
from varieties of sources having different features such as dissimilar operating envi-
ronments, industrial sectors, and experts from diverse backgrounds is an important
solution, which has been widely used to obtain the known probability. In addition,
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even with consideration of exact probabilities or PDFs, intrinsic uncertainties may
remain because of different failuremodes, lack of knowledge of themechanism of the
failure process, and ambiguity of system experiences. Therefore, a robust method is
required for calculating the probability of BEs and addressing the uncertainty among
the data collection and analysis procedure [6, 7].

Experts’ knowledge has been used to obtain the BEs probability when objective
data are limited, incomplete, imprecise, or unknown [8]. The fuzzy set theory (FST)
introduced by Zadeh [9] has been demonstrated to be effective and efficient in data
uncertainty handling and computing the probability of BEs utilizing multi-expert
opinions. The previous studies generally used FST to acquire the probability of BEs
from impression and subjectivity in expert judgment. For example, Yazdi and Kabir
[10] proposed a framework to obtain the known failure rates from the reliability data
handbook and the unknown failure rate according to the experts’ opinions. Due to
the elicitation procedure considering the unavailability of sufficient data, fuzzy set
theory is used to transform linguistic expressions provided by experts into fuzzy
numbers. Subsequently, fuzzy possibility, crisp possibility, and failure probability
of each BEs are calculated. The risk matrix analysis framework proposed by Yan
et al. [11] considered potential risk influences such as controllability, manageability,
criticality, and uncertainty. The likelihood in the risk matrix has been calculated by
obtaining the probability of the TE of a fault tree. In the TE probability computation
process, the probabilities of the BEs of the fault tree have been obtained through
expert elicitation. The analytical hierarchy process (AHP) is utilized to improve the
accuracy of the failure probability data by minimizing the subjective biases of the
experts by quantifying their weightings. Yazdi and Kabir [12] revised Yan et al.’s
methodology as a new framework using fuzzyAHP and similarity aggregation proce-
dure (SAM) in the fuzzy environment to cope with available ambiguities of identified
BEs. All mentioned papers used a combination of FST and multi-expert knowledge
to approximate the BEs’ probabilities. However, the FST suffers from several short-
ages. The one worth mentioning is related to the uncertainty or hesitation about the
degree of membership. The FST cannot include the hesitation in the membership
functions. In this regard, Atanassov [13] extended conventional fuzzy set to propose
the intuitionistic fuzzy set (IFS), in which non-membership degrees and hesitation
margin groups have been included with the membership degrees. The IFS data are
more complete than the conventional fuzzy data that considers membership function
only [14]. In another example, it is demonstrated the use of IFSs to handle uncer-
tainties in FMEA [15]. Yazdi [16] utilized IFS and specifically intuitionistic fuzzy
numbers (IFNs) to develop a conventional risk matrix.

To the best of the authors’ knowledge, limited research has been conducted to
combine IFNs and multi-expert knowledge to address the issues of data uncertainty
in FTA. For instance, Shu et al. [17] utilized IFNs to analyze the failure behavior of
the printed circuit board assembly. A vague FTA approach has been proposed [18]
by integrating experts’ judgment into the analysis to calculate the fault interval of
system components. Afterward, for fuzzy reliability evaluation of a “liquefied natural
gas terminal emergency shutdown system”, Cheng et al. [19] used IFS with FTA.
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The weakest t-norm-based IFS has been used with FTA [20] to evaluate system reli-
ability. Recently, Kabir et al. [21] have utilized IFS for dynamic reliability analysis.

On the other hand, traditional FTA as well as fuzzy FTA are well known to have a
static structure and cannot consider the variation of risk due to the dynamic behavior
of the system. In addition, BEs are assumed to be independent in both methods and
they are considered to have binary states—failed and non-failed, whereas, in practice,
events can be in more than two states. Moreover, the effects of common cause failure
(CCF) in the reliability of systems are usually not considered in traditional FTA. Such
mentioned issues are commonly named as model uncertainty in risk analysis [22].
Thus, model uncertainty is recognized as a considerable limitation of risk analysis
methods. In this regard, a dependency coefficient method is introduced by Ferdous
et al. [23] to evaluate the interdependencies of BEs in static FT. The joint likelihood
function in the hierarchical Bayesian network is developed [24] to consider the
interdependencies among BEs in conventional FT. Besides, Hashemi et al. [25] used
the copula function technique to evaluate and model the interdependencies of BEs
to improve uncertainty analysis.

Bayesian networks (BN) have become a popular method, which has been widely
used to incorporate a variety of information types such as extrapolated data, experts’
judgment, or partially related data in risk analysis of process industries [26, 27]. Kabir
and Papadopoulos [22] provided a review of the applications of BNs in reliability
and risk assessment areas. Examples of such applications include risk analysis of fire
and explosion [28, 29], leakage [30, 31], human error [32–34], maintenance activity
[35, 36], and offshore and drilling operations [37–39] utilized BN as a probabilistic
interface tool for reasoning under uncertainty. BN used a chain rule or d-separation
to represent the causal relationships between a set of variables (in case of FTA is
BEs) considering the dependencies [40]. BN is also able to cope with the limitations
of conventional FTA as well as having a flexible structure. Several scholars have used
BN in parallel with FTA and addressed the shortages of the conventional FTA by
mapping FT into the corresponding BN [41–44]. Because of the modeling flexibility
provided by BN, the interdependencies of BEs can be effortlessly modeled by using
BN. BN can also model multiple states for BEs and common cause failure (CCF)
scenarios. Furthermore, to deal with the model uncertainty, BN can perform the
probability updating mechanism using Bayes’ theorem by adding new information
about the system over time.

The novelty and contribution of this work are utilizing the advantages of IFNs over
traditional FST to evaluate the TE probability of an FT. Besides, this chapter adopts
BN to allow dynamic risk assessment under uncertainty, where the BEs’ probabilities
are calculated based on the combination of subjective opinions and IFNs, and BN is
used to take into account the interdependencies of BEs as well as CCF. The rest of
the chapter is organized as follows. In Sect. 10.2, the uncertainty sources in chemical
process industries are reviewed. A short overview of the IFS theory is presented
in Sect. 10.2. In Sect. 10.3, the proposed methodology is described. Section 10.4
demonstrates the feasibility and efficiency of the proposed approach via a numerical
example with sensitivity analysis. Lastly, the concluding statements are presented in
Sect. 10.5.
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10.2 Background

10.2.1 Uncertainty Sources in Chemical Process Industries

The term uncertainty is widely used with a different meaning in the literature on risk
analysis. Several scholars claimed that uncertainty is equal to risk about the future
and accordingly risk is equal to uncertainty. Others stated that uncertainty and risk are
from two different schools and it has not been complicated to each other [40]. In this
chapter, it is assumed the terms risk and uncertainty are two different concepts. There
exist two distinct concepts of uncertainty in chemical process industries including
(i) uncertainty caused by physical unpredictability (aleatory uncertainty) and (ii)
uncertainty caused by insufficient knowledge (epistemic uncertainty) [45, 46].

The existence of aleatory and epistemic uncertainties in risk analysis of chemical
process industries implies that the probability of numerous risk factors cannot be
measured in an appropriate way when they are ambiguous and unknown. Referring
to aleatory uncertainty, the random behavior of some parameters in a system or its
environment should be stated such as inconsistency in weather conditions and exper-
imental data variability for BEs in FT. In contrast, epistemic uncertainty is related to
fuzziness, vagueness, or imprecision regarding the quality of chemical process safety,
particularly in the accident scenario identification and consequence modeling. In
reality, it is difficult to reduce aleatory uncertainty because of the intrinsic nature of a
system, whereas it is possible to reduce epistemic uncertainty when more knowledge
about the system is available over time. More information about the characteristics
of aleatory and epistemic uncertainties can be found in [47]. This study concentrates
on epistemic uncertainty.

During analysis, a certain explanation or assumption about the models leads to
model uncertainty. Moreover, mathematical and other analytical tools are utilized to
reduce properties of interest, ranging from structural, stochastic, human behavior,
accident, evacuation, dispersion model, etc. This study concentrates on the model
uncertainty caused by the independence assumptions among BEs in FTA. Thus, the
modeling capability of BN is used to assess the dependency among events to address
the abovementioned issue.

Parameter uncertainties are caused by the imprecisions and inaccuracies in the
input data used in the process safety analysis. These uncertainties are intrinsic due
to the imperfect nature of the available data, and the analysis process requires to be
based on partial knowledge. Nonetheless, it is believed that parameter uncertainty
is the easiest one to be quantified [48]. In the literature, to cope with parameter
uncertainty, it is commonly expressed by PDFs and Monte Carlo simulation-based
probability theory [49–51]. However, as mentioned earlier, PDFs are rarely easy to
obtain. In this chapter, IFNs are utilized to deal with parameter uncertainty, where
the probabilities of BEs are treated as IFNs that are derived from multi-experts’
knowledge.
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10.2.2 IFS Theory

The concept of the classical fuzzy sets has been generalized by Atanassov [13] into
IFS through the introduction of a non-membership function v Ã(x) indicating the
evidence against x ∈ X along with the membership valueμ Ã(x) indicating evidence
for x ∈ X and this admits an aspect of indeterminacy.

An IFS Ã in the universe of discourse X is given by

Ã = {〈x, μ Ã(x), v Ã(x)
〉 : x ∈ X

}
(10.1)

where μ Ã : X → [0, 1] and v Ã : X → [0, 1] are membership and non-membership
functions, respectively, where

0 ≤ μ Ãi (x) + v Ãi (x) ≤ 1,∀x ∈ X (10.2)

For every value x ∈ X , the valuesμ Ã(x) and v Ã(x) represent, respectively, the degree
of membership and degree of non-membership to Ã ⊆ X Moreover, the uncertainty
level or hesitation degree of the membership of x in Ã is denoted as:

π Ã(x) = 1 − μ Ã(x) − v Ã(x) (10.3)

If π Ã(x) = 0,∀x ∈ X , then the IFS becomes a classical fuzzy set.
If the membership and non-membership functions of an IFS Ã (i.e., μ Ã(x) and

v
(
Ã(x)
)
satisfy the following conditions given by Eqs. (10.4) and (10.5), then Ã in

X is considered as IF-convex

μ Ã(λx1 + (1 − λ)x2) ≥ min
(
μ Ã(x1), μ Ã(x2)

)∀x1, x2 ∈ X, 0 ≤ λ ≤ 1. (10.4)

v Ã(λx1 + (1 − λ)x2) ≤ max
(
v Ã(x1), v Ã(x2)

)∀x1, x2 ∈ X, 0 ≤ λ ≤ 1. (10.5)

If there exist at least two points x1, x2 ∈ X such that μ Ã(x1) = 1 and v Ã(x2) = 1,
then the IFS Ã in X is considered as IF-normal [52]:

An IFS Ã = {〈x, μ Ã(x), v Ã(x)
〉 : x ∈ R

}
is called an IFN if

(i) Ã is IF-normal and IF-convex.
(ii) μ Ã(x) is an upper and v Ã(x) is a lower semi-continuous.
(iii) Supp Ã = {x ∈ X : v Ã(x) < 1

}
is bounded (see Fig. 10.1).

A Triangular-IFN is an IFN given by

μ Ã(x) =

⎧
⎪⎨

⎪⎩

x−a1
a2−a1

, a1 ≤ x ≤ a2
a3−x
a3−a2

, a2 ≤ x ≤ a3
0, otherwise

(10.6)



10 Reliability Analysis of Process Systems Using Intuitionistic Fuzzy Set … 221

Fig. 10.1 Graphical
representation of IFNs
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and

v Ã(x) =

⎧
⎪⎨

⎪⎩

a2−x
a2−a′

1
, a′

1 ≤ x ≤ a2
x−a2
a′
3−a2

, a2 ≤ x ≤ a′
3

1, otherwise

(10.7)

where a′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a′

3. This TIFN is denoted by Ã =(
a1, a2, a3; a′

1, a2, a
′
3

)
.

10.3 Material and Method

To introduce themethodology developed in this chapter, this section briefly describes
the framework as can be seen in Fig. 10.2.

10.3.1 Hazard Analysis

There are numerousmethods available for hazard analysis in different types of indus-
trial sectors. The initial step of all hazard analysis methods is identifying all possible
hazards. Therefore, well understanding of process function has a high necessity for
this purpose. All information about a process system should be collected to under-
stand its functionality appropriately. Then, any hazards which have enough poten-
tial to destroy the industrial equipment, surrounding environment, or harm to the
public should be considered [40]. HAZOP technique is based on the brainstorming
method that has enough capability to recognize hazardous systems and sub-systems
by employing a group of specialists, commonly a third-party company. Thus, this
study considers the outcome of HAZOP as a highly probable and severe event. In
fact, the HAZOP study is commonly in conducted process-based industries to iden-
tify the deviation as a pre-step fault tree analysis. However, considering the inherent
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Fig. 10.2 The structure of the proposed method

features process, FMEA or other types of risk assessment method can also be carried
out.

10.3.2 Developing a Fault Tree and Collecting Data

After identifying an event as the TE of a fault tree, the rest of the tree is developed
from top to bottom in a downward direction. It should be noted that further analysis
of the FT is performed based on the TE. Therefore, the TE of the FT must be chosen
appropriately for further analysis. The TE is commonly specified as an accident
or hazardous event which can potentially be a cause of asset loss or harm to the
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public. After finalizing the development of an FT, the BEs that are put at the bottom
level of the tree (leaves) should be identified to facilitate further analysis. The logic
relationship between BEs, IEs, and TE is defined using Boolean OR and AND gates.

The reliability data such as the ones from OREDA [53] can be used to obtain the
failure rate of known BEs. Nevertheless, when there is a difficulty in using a relia-
bility handbook to obtain failure rates of rare events with unknown or limited failure
data, three popular methods, including expert judgment, extrapolation, and statistical
methods, can be utilized to estimate the failure rates [54]. The statistical method esti-
mates the failure rates by estimating the failure probabilities by performing a short
test on the practical data. In addition, statistical methods can be distinguished with
deterministic methods, which are suitable where observations are precisely repro-
ducible or are expected to be in this manner. The extrapolation method denotes
the utilization of a predicting model, equal condition, or the available reliability
data sources. The expert judgment method directly calculates probabilities based on
experts’ opinions on the occurrence of BEs. This study employs the expert judgment
method to estimate BEs’ occurrence probability. In this regard, a combination of
subjective opinions expressed by experts and IFNs can help assessors to deal with
the uncertainty that may arise during the analysis. In the following subsection, the
procedure of using an expert system is presented.

10.3.3 Use of the Expert System

Expert systems are convenient to use in quantitative analysismodels in circumstances
where the available situations make it difficult or even more impossible to make
enough observation to quantify the models using real data. Thus, expert systems are
commonly used to approximate the model parameter under ambiguous conditions.
Expert systems can also be used to improve the estimation, which is gained from
real data.

An expert provides his/her judgment about a subject based on knowledge and
experience according to his/her background. Thus, an employed expert will require
to respond to a predefined set of questions related to a subject, which can include
personal information, probabilities, rating, weighting factor, uncertainty estimation,
and so on. The experts’ opinions can be collected during an eliciting. An important
issue related to the elicitation process is that experts’ opinions should not be used
instead of rigorous reliability and risk analysis approaches, whereas it can be used
to supplement them where reliability and risk analytical approaches are inconsistent
or inappropriate.

10.3.3.1 Experts’ Opinion Elicitation

Due to the increased complexity of systems and the subjective nature of expert
judgment, no officially renowned approach has been developed for treating expert
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opinion. Once the elicitation process is finished, opinions are analyzed by combining
them to obtain an aggregated result to be used in the reliability analysis. Clemen
and Winkler [55] divided the elicitation and aggregation processes into two cate-
gories—behavioral and mathematical methods. Behavioral methods aim to create
some sort of group agreement between the employed experts. While, in mathemat-
ical methods, the experts expressed their opinion about an uncertain quantity in the
form of subjective probabilities. Afterward, suitable mathematical methods are used
to combine these opinions. The rationale behind using mathematical approaches for
the processing of experts’ opinions was provided in [56, 57]. Hence, in this study,
one of the mathematical methods is used to analyze experts’ opinions.

According to [58], probability can be considered as a numerical representation
of uncertainty because it offers a way to quantify the likelihood of occurrence of an
event. Therefore, it is much easier for the employed experts to use linguistic expres-
sions like high probable, low probable, and so on to express their opinions. Three elic-
itationmethods that have beenwidely used for subjective analysis are Indirect,Direct,
and Delphi. The basis of the Indirect method is to utilize the betting rates of experts
to reach a point of indifference between obtainable choices according to an issue.
The Direct method is the direct estimation of the degree of confidence of an expert
on some subject. The Delphi technique is the first organized tool for methodologi-
cally collecting opinions on a specific subject using a cautiously defined ordered set
of questionnaires mixed with summarized information and feedback resulting from
previously received responses [59, 60]. The selection of each method for a partic-
ular purpose should fulfill the rational consensus principles such as accountability
and fairness. In this study, among the abovementioned methods, Delphi, because of
having enough capacity for expert opinion elicitation, is selected for eliciting process.

10.3.3.2 Experts Weighting Evaluation

Once the experts’ opinion elicitation process is completed, the expert weighting
calculation is started. This step is necessary because, in real life, each employed
expert has a different weight according to his/her experience and background. Thus,
to obtain realistic results for the probability of each BE, the weight (importance of
the judgment outcome) of the employed experts should be identified. There are many
methods such as simple averaging besides many unmethodical techniques that may
be used for giving specific weighting to the experts. However, they cannot diminish
subjective bias and help domain experts to carry out the eliciting procedure in an
effective way.

AHP (analytical hierarchy process) introduced by Saaty [61] is a widely used
process in multi-criteria decision-making. This process breaks large decision prob-
lems into smaller ones and then uses a hierarchy of decision layers to handle the
complexity of the problems. This allows focusing on a smaller set of the decision at
a time. There exist criticism regarding AHP’s use of lopsided judgmental scales and
its inability to appropriately reflect the characteristic uncertainty and imprecision
of pair comparisons [62]. The verbal statements provided by the decision-makers
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in AHP could be unclear. Moreover, they regularly would choose to provide their
preferences as oral expressions instead of numerical quantities and the type of pair
comparisons used cannot properly reflect their decisions about priorities [63–66].
The abovementioned shortages represent that in most cases, the nature of decision-
making is full of ambiguities and complexities, and accordingly it is denoted that
most decisions are made in a fuzzy environment.

Let O = {o1, o2, . . . , on} is a set of objects and W = {w1, w2, . . . , wm} is a set
of goals. Therefore, the extent analysis values for m goals for each object can be
denoted as:

M1
gi , M

2
gi , . . . , M

m
gi i = 1, 2, . . . n (10.8)

where each of Mm
gi is a triangular fuzzy set.

Step 1. The fuzzy synthetic extent concerning the i-th object is denoted as:

m∑

j=1

M j
gi ⊗
⎡

⎣
n∑

i=1

m∑

j=1

M j
gi

⎤

⎦

−1

(10.9)

To get
∑m

j=1 M
j
gi the fuzzy addition operation of m extent analysis values for a

particular matrix is achieved as:

m∑

j=1

M j
gi =
⎛

⎝
m∑

j=1

l j ,
m∑

j=1

m j ,

m∑

j=1

u j

⎞

⎠ (10.10)

and afterward, the inverse of the vector is calculated as follows:

⎡

⎣
n∑

i=1

m∑

j=1

M j
gi

⎤

⎦

−1

=
(

1
∑m

j=1 l j
,

1
∑m

j=1 m j
,

1
∑m

j=1 u j

)

(10.11)

Step 2. The degree of likelihood of M2 = (l2,m2, u2) ≥ M1 = (l1,m1, u1) is
calculated as:

V (M2 ≥ M1) = sup
y≥x

[
min
(
μM1(x), μM2(y)

)]
(10.12)

It can be represented by Eq. (10.13).
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Fig. 10.3 The intersection between M1 and M2

V (M2 ≥ M1) = hgt(M1 ∩ M2) = μM2(d) =

⎧
⎪⎨

⎪⎩

1, if m2 ≥ m1

0, if l2 ≥ u1
l1≥u1

(m2−u2)−(m1−u1)
, otherwise

(10.13)

As seen in Fig. 10.3, d is the highest intersection point between μM1 and μM2 .

Step 3. The degree of likelihood that a convex fuzzy number is greater than k convex
fuzzy Mi (i = 1, 2, . . . , k) numbers can be obtained by:

V (M ≥ M1, M2, . . . , Mk) = V [(M ≥ M2) and (M ≥ M1)and . . . and (M ≥ Mk)]

= minV (M ≥ Mi ), i = 1, 2, 3, . . . k (10.14)

Suppose that d ′(Ai ) = min V (Si ≥ Sk) for k = 1, 2, . . . , n; k �= i . Now, the
given weight vector is denoted by:

W ′ = (d ′(A1), d
′(A2), . . . , d

′(An))
T (10.15)

where Ai (i = 1, 2, . . . , n) are n elements.

Step 4. Using normalization, the normalized weight vectors are:

WFAHP = d(A1), d(A2), . . . , d(An))
T (10.16)

where W is a non-fuzzy number.
The fuzzy linguistic variables are used to allow experts to provide their subjective

opinions reflecting nine-point essential scale. In this chapter, the linguistic variables
and their equivalent fuzzy numbers are used.
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10.3.3.3 Experts’ Opinion Aggregation

The experts’ opinion aggregation process can be completed in three phases including
(i) obtaining linguistic terms from experts describing the likelihood of occurrence
of BEs, (ii) mapping linguistic variables into the corresponding fuzzy numbers, and
(iii) applying an aggregation process under fuzzy environment.

Firstly, the engaged experts provided their judgements about the likelihood of
occurrence of each BE in the fault tree. Their opinions can be obtained in the form
of linguistic variables represented as IFNs.

As experts may have dissimilar opinions about a subject due to having a different
level of experience, background, and expertise, it is essential to aggregate multi-
expert opinions to reach an agreement. Different kinds of aggregation methods like
the arithmetic averaging method and similarity aggregation method (SAM) can be
utilized for this purpose. However, Yazdi and Zarei [56] pointed out the benefits of
such methods in the context of fuzzy FTA. It is concluded that SAM has enough
capability for this purpose. Therefore, an extension of SAM as described in [67]
is used in this chapter for the aggregation of IFNs. The SAM method contains the
following steps.

Step A. Mapping of linguistic variables into equivalent IFNs:

After each expert, Ek(k = 1, 2, . . . , n) provides his/her judgment about the occur-
rence possibility of each BE in the form of linguistic variables; accordingly, it is
transformed into the equivalent IFNs.

Step B. Degree of similarity computation:

The similarity Suv

(
Ãu, Ãv

)
between the opinions Ãu and Ãv of experts Eu and Ev

is evaluated as:

Suv

(
Ãu, Ãv

)
=
{

EVu
EVv

i f EVu ≤ EVv

EVv

EVu
i f EVv ≤ EVu

(10.17)

where Suv

(
Ãu, Ãv

)
∈ [0, 1] is the function to measure similarity, where Ãu and

Ãv are two regular intuitionistic fuzzy numbers, EVu and EVv are the expectancy
evaluation for Ãu and Ãv . The EV of a triangular IFN Ã = (a, b, c; a′, b′, c′) is
calculated as:

EV
(
Ã
)

=
(
a + a′)+ 4b + (c + c′)

8
(10.18)

A similarity matrix (SM) for m experts is defined as:
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SM =

⎡

⎢⎢⎢⎢
⎣

1 s12 s13 · · · s1m
s21 1 s23 · · · s2m
...

sm1

...

sm2

... . . .
...

sm3 ... 1

⎤

⎥⎥⎥⎥
⎦

(10.19)

where Suv = s
(
Ãu, Ãv

)
, if u = v then Suv = 1.

Step C. Degree of agreement computation:

The average agreement degree AA(Em) for each expert is calculated as

AA(Em) = 1

m − 1

m∑

v = 1
v �= 1

Suv (10.20)

where m = 1, 2, . . . , n.

Step D. The relative agreement computation:

The RAD(Em) is the relative agreement degree, which can be calculated as:

RAD(Em) = AA(Em)
∑n

u=1 AA(En)
(10.21)

where m = 1, 2, . . . , n.
Step E. Consensus degree computation:
The aggregation weight (wm) of an expert Em is computed using RAD(Em), and

the weight of each expert (WFAHP) is obtained by FAHP as follows.

wm = α � WFAHP(Em) + (1 − α) � RAD (Em) (10.22)

where α(0 ≤ α ≤ 1) is the weighting factor also known as a relaxation factor that
can be assigned to WFAHP(Em) RAD(Em) to define their relative importance.

Step F. Aggregated result computation:
The aggregated result for each basic event can be computed as:

P̃j =
n∑

i=1

wm ⊗ P̃i j (10.23)

where P̃j is the aggregated possibility of basic event j in the form of IFNs.
So far, the aggregation possibility of each BE based on IFNs is computed. In the

next section, the procedure of TE computation is explained.
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10.3.4 Calculation of Probability of TE

Once the occurrence possibilities of all BEs are obtained, these values are translated
into the equivalent probabilities using the following equation introduced by [68]:

FP =
{
1/10k FPS �= 0
0 FPS = 0

(10.24)

where FP and FPS represent failure probability and failure possibility, respectively,
and

k = 2.301 × [(1 − FPS)/FPS]1/3 (10.25)

Once the intuitionistic fuzzy failure probabilities of the BEs are obtained, they
are used to calculate the IF probability of the TE. Intuitionistic fuzzy arithmetic
operations are adopted to evaluate the probabilities of the minimal cut sets of the FT
and the same for the TE probability.

A set of minimal cut sets of a fault tree can be denoted as:

S = Ci : i = 1, 2, . . . ,m (10.26)

where Ci is the i-th minimal cut set of order k and is denoted as Ci = e1.e2 . . . ek .
Let the probability P̃j of event e j : i = 1, 2, . . . , n be characterized by triangular

IFNs
(
a j , b j , c j ; a′

j , b j , c′
j

)
, then the failure probability of P̃Ci of the minimal cut

set Ci is estimated using the following expressions.

P̃Ci = AND
(
P̃1, P̃2, . . . , P̃k

)
= P̃1 ⊗ P̃2 ⊗ . . . ⊗ P̃k

=
⎛

⎝
n∏

j=1

a j ,

n∏

j=1

b j ,

n∏

j=1

c j ;
n∏

j=1

a′
j

n∏

j=1

b j ,

n∏

j=1

c′
j

⎞

⎠ (10.27)

As the TE of an FT is represented by an OR gate, the failure probability of the
TE can be calculated using the following equation:

P̃Ci =OR
(
P̃c1, P̃c2, . . . , P̃cm

)
= 1
(
1 P̃c1

)
⊗
(
1 P̃c2

)
⊗ . . . ⊗

(
1 P̃cm

)

=
⎛

⎝1 −
n∏

j=1

(
1 − a j

)
, 1 −

n∏

j=1

(
1 − b j

)
, 1 −

n∏

j=1

(
1 − c j

);

1 −
n∏

j=1

(
1 − a′

j

)
, 1 −

n∏

j=1

(
1 − b j

)
, 1 −

n∏

j=1

(
1 − c′

j

)
⎞

⎠ (10.28)
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where P̃C1 , P̃C2 , . . . , P̃Cm denoted the failure probabilities of all MCSs Ci : i =
1, 2, . . . ,m.

Through IF-defuzzification process an IFN can be converted to a single scalar
quantity. The failure probability of the TE obtained as triangular IFN Ã =(
a, b, c; ′

a, b,
′
c
)
can be defuzzified as follows.

X = 1

3

[(
c′ − a′)(b − 2c′ − 2a′)+ (c − a)(a + b + c) + 3

(
c′2 − a′2)

c′ − a′ + c − a

]

(10.29)

10.3.5 Different Approach Comparison

To understand the efficiency of the proposedmodel, the results are comparedwith the
common approaches. Firstly, conventional FFTA based on the FST which is widely
used in different engineering applications is applied. Then, an approach based on the
integration of the BN and FST which was introduced in [12] is utilized.

As mentioned in the literature, the procedure of conventional FFTA is utilizing
triangular or trapezoidal fuzzy numbers for the probability expression of all BEs in
FT. Then, fuzzy arithmetic operations are utilized to compute the TE probability in
terms of a fuzzy number.

In the second approach, after [69] that compared conventional FTA and BN,many
studies have been performed by mapping FT into the corresponding BN for different
applications. A list of such works can be found in literature [70], which makes
use of the advantages of multi-expert opinions and FST for uncertainty handling
in the data and BN for modeling dependency between events. According to their
approach, the probability of each BE is computed in five key steps as collecting
experts’ opinions in qualitative terms, fuzzification, aggregation, defuzzification,
and probability computation. Once the probability of each BEs is obtained, then
FT is mapped into the corresponding BN. According to the Bayes theorem, the TE
probability can be calculated as follows.

In a BN, the joint probability distribution of a set of variables can be denoted
using the conditional dependency of variables and chain rules as follows:

P(U ) =
n∏

i=1

P(Xi |Xi+1, . . . Xn) (10.30)

where U = {X1, X2, . . . , Xn} and Xi+1 is the parent of Xi . Consequently, the
probability of Xi can be calculated as:

P(Xi ) =
∑

U\Xi

P(U ) (10.31)
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Using Bayes theorem as seen in Eq. (10.32), the prior probability of an event (E)
can be updated.

P(U |E) = P(U ∩ E)

P(E)
= P(U ∩ E)
∑

U P(U ∩ E)
(10.32)

To get further details, readers can refer to [71].

10.3.6 Sensitivity Analysis

Once the relative competency of each expert’s opinion is predicted, it is better to
determine the consensus coefficient. Thus, the decision-maker needs to allocate a
proper value for the relaxation factor α in Eq. (10.22); otherwise, sensitivity analysis
(SA) should be performed to evaluate the reliability of the system when α has been
given different values ranging from 0 to 1. In this study, the relaxation factor is
considered as 0.5 to give equal weights to both factors on the right side of the
Eq. (10.22). However, to identify the sensitivity of the BEs, we have performed the
sensitivity analysis by varying the values of α. This helped to understand which of
the BEs are more sensitive to uncertainty.

Using BIM, the criticality of an event is identified as follows:

BIM(BEi ) = P(Top Event|P(BEi ) = 1) − P(Top Event|P(BEi ) = 0) (10.33)

As seen in the above equation, the criticality of the basic event BEi is computed
by taking the difference between the top event probabilities when the BEi is assumed
to have occurred and non-occurred, respectively.

10.4 Application to the Case Study

The developed methodology is applied to the risk analysis of an ethylene oxide (EO)
production plant that is a component of an ethylene transportation line to demon-
strate its effectiveness. The detail of the system is shown in Fig. 10.4. A prior study
performed on the abovementioned system by [72] identified the most hazardous
components of the system, including the ethylene oxide storage and reaction unit,
ethylene oxide distillation column, transportation line, and ethylene re-boiler. It was
recommended that further risk assessment is essential for the declared units. There-
fore, Khan and Haddara [73] found optimal maintenance in the above case study
using a risk-based maintenance method. Additionally, the ethylene transportation
line component was recognized as the third key hazard in the available units. In this
regard, [12] applied their proposed approach to EO Transportation line as a case
study.
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Fig. 10.4 Schematic diagram of the EO plant [72]

10.4.1 Probabilistic Risk Assessment

An ignition of vapor cloud that may lead to a fireball is selected as the TE of the
FT. The developed FT is shown in Fig. 10.5. As seen in the fault tree, there are 25
BEs (represented as circles) and details of these BEs are presented in Table 10.1. To
compute the occurrence probability of each BE, the heterogeneous group of experts
used in [12] has been used in this chapter. Using theDelphimethod, employed experts
were asked to provide their judgements in relevant linguistic terms. The weights of
experts have been computed using the FAHP method, and the calculated weights of
experts 1, 2, 3, and 4 are 0.249, 0.126, 0.495, and 0.128, respectively [12].

To show the aggregation procedure of expert’s judgment; consider the case of
BE24 (Corrosion) as an example. Concerning the characterization of IFNs, the
linguistic variables, obtained from four experts, are categorized as “L”, “M”, “FH”,
and “M”. The detailed computation of aggregation for BE24 is shown in Table 10.2.
The aggregated results for all BEs are presented in Table 10.3.

To calculate the TE of the FT of Fig. 10.5, it was qualitatively analyzed to obtain
102 MCSs. Each of the MCSs is a combination of a number of BEs that can cause
the TE. Using the Eqs. (10.22), (10.23) and the IF-probabilities of the BEs from
Table 10.3, the TE probability as IFN is calculated as: {3.296E-11, 8.270E-10,
1.132E-08, 1.804E-11, 8.270E-10, 1.922E-08}. After defuzzification, the crisp prob-
ability of the TE obtained is 5.715E-09. We have also used the crisp probabilities
of the BEs (see the last column of Table 10.3) to evaluate the TE probability and
the value obtained was 1.620E-09. As can be seen, this value is close to the value
obtained through the defuzzification of the IF-probabilities.
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Fig. 10.5 FT for the ethylene transportation line (reworked and modified from [12])

According to step 11 of the framework shown in Fig. 10.2, the TE probability has
been evaluated using theBN-based approach for comparison of the result. Figure 10.6
shows the BN model of the FT illustrated in Fig. 10.5. In this BN, the prior proba-
bilities of the root nodes are specified based on the crisp probabilities of the BEs as
shown in Table 10.3. Conversely, the conditional probabilities of nodes representing
logic gates are characterized according to the specification of the gates. After running
a query on this BN model, the probability of TE obtained was 1.576E-9, which is
quite close to the value of TE probability calculated by the algebraic formulation.

10.4.2 Sensitivity Analysis

As discussed in Sect. 3.6, a SA can be applied to show the validity of the proposed
method, as well as highlight some features of the method. By varying the value of α

from 0 to 1, the probability of each BE is computed. Accordingly, the TE probability
is estimated using BN. The probabilities of all BEs based on the corresponding value
of α are provided in Table 10.4.
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Table 10.1 Details of the BEs of FT of Fig. 10.5 and experts’ opinions

FT Tag BEs Description Experts’ opinions

E1 E2 E3 E4

BE1 Flammable gas detector failed M FL M FH

BE2 Gas out of run H L L FH

BE3 Inert gas release mechanism failed FH FL FL FH

BE4 Flame arrestor A failed M VL VL FH

BE5 Flame arrestor B failed M VL VL FH

BE6 Ignition source present H VL VL H

BE7 Mechanical failure caused by corrosion FL L L FL

BE8 Leakage in two valves FL FL FL FL

BE9 Leakage from four bends FH FH VH FL

BE10 Leakage from ten joints M VL VL M

BE11 Flow sensor failed H FL H H

BE12 Pressure sensor failed L L VH VH

BE13 Pipeline chocked VL VL H VL

BE14 Valve chocked VL L FH VL

BE15 High inlet flow M L L M

BE16 High inlet pressure M L L M

BE17 Pressure controller/trip failed FL FL FL L

BE18 High inlet temperature FL VL VL FL

BE19 External heat source present M L L H

BE20 Side reaction FL FL FL L

BE21 Temperature controller/trip failed FL L L L

BE22 Phase change VL L L L

BE23 Valves fail open VL FL FL FH

BE24 Corrosion L M FH M

BE25 Mechanical damage L M M L

VL: Very Low
L: Low
FL: Fairly Low
M: Medium
FH: Fairly High
H: High
VH: Very High

It should be added that the sensitivity analysis assists experts to allocate priorities
and make it flexible to perform the risk assessment. Figure 10.7 shows the results of
the sensitivity analysis.

The SA specifies that the estimated probability for all the basic events is not pretty
sensitive to the variations in the value of α. Using different values of α ranging from
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Table 10.2 Aggregation calculations for the BE24

Expert 1 (L) (0.07,0.13,0.19;0.06,0.13,0.20)

Expert 2 (M) (0.35,0.50,0.65;0.32,0.50,0.68)

Expert 3 (FH) (0.62,0.73,0.82;0.61,0.73,0.85)

Expert 4 (M) (0.35,0.50,0.65;0.32,0.50,0.68)

S(E1&E2) 0.260 EV1 = 0.07+0.19+0.06+0.20+4×0.13
8 = 0.13

≥ EV2 = 0.35+0.68+0.65+0.32+4×0.50
8 =

0.50 → EV1
EV2

= 0.260

S(E1&E3) 0.179

S(E1&E4) 0.260

S(E2&E3) 0.687

S(E2&E4) 1.000

S(E3&E4) 0.687

AA(E1) 0.233 AA(Em) = 1
m−1

m∑

v = 1

v �= 1

Suv

1/
(4 − 1)(0.260 + 0.179 + 0.260) = 0.233

AA(E2) 0.649

AA(E3) 0.518

AA(E4) 0.649

RA(E1) 0.114 RAD(Em) = AA(Em )∑m
u=1 AA(Em )

0.233/
(0.649 + 0.233 + 0.518 + 0.649) =

0.114

RA(E2) 0.317

RA(E3) 0.253

RA(E4) 0.317

CC(E1) 0.181 α · WFAHP(Em) + (1 − α) · RAD(Em)

= 0.5 × 0.114 + 0.5 × 0.249 = 0.181CC(E2) 0.221

CC(E3) 0.374

CC(E4) 0.222

Aggregation for BE24 P̃j =∑n
i=1 wm ⊗ P̃i j

= 0.181 ⊗ (0.07, 0.13, 0.19; 0.06, 0.13, 0.20) ⊕ 0.221

⊗ (0.35, 0.50, 0.65; 0.32, 0.50, 0.68) ⊕ 0.374

⊗ (0.62, 0.73, 0.82; 0.61, 0.73, 0.85) ⊕ 0.222

⊗ (0.35, 0.50, 0.65; 0.32, 0.50, 0.68)
= (0.400, 0.518, 0.629; 0.381, 0.518, 0.656)

0 to 1, we can see that the risk probability of only 4 of the 25 basic events (16%)
is quite different and these BEs are BE4, BE9, BE11, and BE20. Therefore, in this
study, the differences between the rankings concerning different α values are low.

In addition, choosing an adequate value of α illustrates an important role in the top
event probability computation. The value of α can have an effect on the probability
of each BE and accordingly top event. Thus, the value of α should be allocated taking
into account the following issues. As an initial subject, decision-makers can consult
any existing historical data from similar operation conditions and risk assessment,
which have received feedback from them earlier. Next, using a questionnaire or
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Table 10.3 The fuzzy and crisp failure data of all BEs

FT tag Intuitionistic fuzzy failure possibilities Intuitionistic
fuzzy failure
probabilities
(FPs)

Defuzzified FPs

BE1 (0.369,0.504,0.635;0.344,0.504,0.664) (1.777E-3,
5.149E-3,
1.225E-2,
1.408E-3,
5.149E-3,
1.465E-2)

6.770E-3

BE2 (0.347,0.416,0.482;0.335,0.416,0.498) (1.448E-3,
2.662E-3,
4.394E-3,
1.283E-3,
2.662E-3,
4.929E-3)

2.903E-3

BE3 (0.367,0.471,0.567;0.352,0.471,0.591) (1.742E-3,
4.070E-3,
7.882E-3,
1.507E-3,
4.070E-3,
9.238E-3)

4.773E-3

BE4 (0.184,0.261,0.335;0.176,0.261,0.347) (1.667E-4,
5.587E-4,
1.286E-3,
1.404E-4,
5.587E-4,
1.446E-3)

6.946E-4

BE5 (0.184,0.261,0.335;0.176,0.261,0.347) (1.667E-4,
5.587E-4,
1.286E-3,
1.404E-4,
5.587E-4,
1.446E-3)

6.946E-4

BE6 (0.355,0.404,0.453;0.346,0.404,0.461) (1.560E-3,
2.400E-3,
3.536E-3,
1.435E-3,
2.400E-3,
3.778E-3)

2.520E-3

BE7 (0.114,0.191,0.269;0.099,0.191,0.283) (2.747E-5,
1.902E-4,
6.132E-4,
1.596E-5,
1.902E-4,
7.307E-4)

2.964E-4

(continued)
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Table 10.3 (continued)

FT tag Intuitionistic fuzzy failure possibilities Intuitionistic
fuzzy failure
probabilities
(FPs)

Defuzzified FPs

BE8 (0.170,0.270,0.370;0.150,0.270,0.390) (1.244E-4,
6.208E-4,
1.782E-3,
7.872E-5,
6.208E-4,
2.126E-3)

8.973E-4

BE9 (0.560,0.669,0.760; 0.549,0.669,0.789) (7.535E-3,
1.511E-2,
2.709E-2,
6.990E-3,
1.511E-2,
3.283E-2)

1.756E-2

BE10 (0.249,0.371,0.492;0.224,0.371,0.517) (4.721E-4,
1.797E-3,
4.738E-3,
3.319E-4,
1.797E-3,
5.622E-3)

2.473E-3

BE11 (0.731,0.796,0.861;0.711,0.796,0.881) (2.244E-2,
3.450E-2,
5.569E-2,
1.975E-2,
3.450E-2,
6.576E-2)

3.897E-2

BE12 (0.499,0.555,0.611;0.487,0.555,0.623) (4.949E-3,
7.275E-3,
1.049E-2,
4.548E-3,
7.275E-3,
1.131E-2)

7.649E-3

BE13 (0.209,0.255,0.300;0.204,0.255,0.305) (2.611E-4,
5.102E-4,
8.837E-4,
2.393E-4,
5.102E-4,
9.357E-4)

5.570E-4

BE14 (0.189,0.252,0.310;0.184,0.252,0.320) (1.812E-4,
4.929E-4,
9.849E-4,
1.662E-4,
4.929E-4,
1.098E-3)

5.706E-4

(continued)
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Table 10.3 (continued)

FT tag Intuitionistic fuzzy failure possibilities Intuitionistic
fuzzy failure
probabilities
(FPs)

Defuzzified FPs

BE15 (0.193,0.292,0.392;0.174,0.292,0.410) (1.953E-4,
8.116E-4,
2.161E-3,
1.356E-4,
8.116E-4,
2.530E-3)

1.113E-3

BE16 (0.193,0.292,0.392;0.174,0.292,0.410) (1.953E-4,
8.116E-4,
2.161E-3,
1.356E-4,
8.116E-4,
2.530E-3)

1.113E-3

BE17 (0.155,0.249,0.343;0.137,0.249,0.362) (8.983E-5,
4.762E-4,
1.394E-3,
5.594E-5,
4.762E-4,
1.662E-3)

6.965E-4

BE18 (0.075,0.141,0.207;0.066,0.141,0.216) (4.699E-3,
6.242E-5,
2.513E-4,
2.676E-6,
6.242E-5,
2.903E-4)

1.128E-4

BE19 (0.252,0.333,0.415;0.235,0.333,0.431) (4.912E-4,
1.259E-3,
2.621E-3,
3.909E-3,
1.259E-3,
2.988E-3)

1.506E-3

BE20 (0.155,0.249,0.343;0.137,0.249,0.362) (8.983E-5,
4.762E-4,
1.394E-3,
5.594E-5,
4.762E-4,
1.662E-3)

6.965E-4

BE21 (0.091,0.159,0.227; 0.078,0.159,0.239) (1.083E-5,
9.719E-5,
3.445E-4,
5.882E-6,
9.719E-5,
4.113E-4)

1.622E-4

(continued)
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Table 10.3 (continued)

FT tag Intuitionistic fuzzy failure possibilities Intuitionistic
fuzzy failure
probabilities
(FPs)

Defuzzified FPs

BE22 (0.057,0.113,0.170;0.049,0.113,0.178) (1.382E-6,
2.708E-5,
1.239E-4,
6.512E-7,
2.708E-5,
1.467E-4)

5.480E-05

BE23 (0.213,0.305,0.393;0.198,0.305,0.411) (2.780E-4,
9.344E-4,
2.189E-3,
2.153E-4,
9.344E-4,
2.551E-3)

1.189E-3

BE24 (0.400,0.518,0.629;0.381,0.518,0.656) (2.319E-3,
5.685E-3,
1.179E-2,
1.971E-3,
5.685E-3,
1.393E-2)

6.932E-3

BE25 (0.227,0.337,0.448;0.206,0.337,0.469) (3.446E-4,
1.312E-3,
3.404E-3,
2.454E-4,
1.312E-3,
3.993E-3)

1.777E-3

other availablemethods, the value ofα can be obtained based on the decision-makers’
opinions. If a decision-maker has a high confidence regarding his/her judgment about
the probability of basic events, the value of α can be set to a higher value, on the
contrary, a smaller value can be assigned to α. Finally, the value of α can be assigned
according to a realistic circumstance, meaning that the value of α should be allocated
a higher value when it is easy to get the consensus of decision-makers’ judgements
on the probability of basic events or when the appropriately selected decision-makers
are present.

The above SA illustrates that the presented model can offer vital data to analysts
and other involved parties in the risk assessment process.Accordingly, the probability
of the top event is computed by varying the value of α.

According to the new estimated probability of BEs, the probability of the TE is
also updated and provided in Table 10.5.
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Fig. 10.6 BN model of the FT of Fig. 10.5

10.4.3 Identification of Critical BEs and Corrective Actions
for the Most Critical BEs

As we all know, one of the important outputs of FTA and correspondingly BN is
recognizing the critical basic events. Based on this recognition, decision-makers can
provide corrective and/or preventive actions to reduce the probability of critical basic
events. As a result, the TE probability will be reduced; subsequently, the probability
reduction will lead to improved performance of the system.

By following the criticality calculation approach shown in Sect. 3.6, the criticality
of the BEs is estimated and conveyed in Table 10.6. As seen in the table, Flame
arrestor A failed (BE4), Flame arrestor B failed (BE5), Ignition source present (BE6),
Flammable gas detector fail (BE1), Flow sensor failed (BE11), and Leak from bends
(four bends) (BE9) are recognized to be the most critical events (in the descending
order of criticality), which are also recognized as top six critical events in [12]. This
chapter provides corrective actions for the first five critical basic events because
in the realistic case, the system cannot apply any interpretative actions to all BEs.
The existing control measures for the aforementioned BEs can fall into the process
safety management system since the construction of the complex plant. However, the
performance of the control measures needs to be upgraded based on all requirements
and changed after a couple of years.

Several control measures as corrective actions are recommended for the critical
basic events. It is believed that any corrective actions need to satisfy the three main
criteria as (i) it should have acceptable efficiency, (ii) it should fall into the accept-
able economic perspective, and (iii) the recommended corrective actions should be
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Fig. 10.7 The probability of basic events based on the variation of α

environmentally friendly. Keeping these criteria in our mind, to control the Flame
arrestors A and B, increasing the number of inspection can effectively reduce the
probability of failure. In addition, cleaning, as an important part of the Flame arrestor
maintenance procedure, is required to be continuously considered. The Ignition
source present event can properly be eliminated by providing natural or in some
specific cases of a fireproof ventilation system. The ventilation system has been
widely used and accepted method in the oil and gas industries. It can prevent smoke
and fire propagation through the air ducts even in case of fire. To reduce the failure
probability of a flammable gas detector, one possible and applicable way is using an
updated version of a gas detector. The flammable gas detector may fail due to some
identical causes. These causes also need to be identified. Thus, the failure can be
eliminated only and only by some simple modifications. According to this, continual
maintenance to preserve the detector in operational conditions is recommended. To
deal with another critical basic event as “Flow sensor failed”, a potential accept-
able solution is by introducing redundancy, i.e., changing the current system into
the parallel one by adding one more sensor. In this case, one sensor is operating
and the second sensor is in a standby mode. In case of the failure of the operating
sensor, the standby sensor can take over the operational responsibility of the failed
sensor, thus preventing the failure. Finally, the “Leak from bends” is controlled by
bare-eye inspection. To cope with this failure, electrical testing such as voltage and
resistance measurement, physical testing like drop test, bending test, and pull test
can be applied. Also, such visual inspection including optical microscope and X-ray
microscope is also possible to be used.

Adding to this, the risk assessment is a continuous procedure to improve the safety
performance of the studied system. Therefore, continuous review and revision must
be taken into account.
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Table 10.6 Criticality ranking of the BEs of the FT of Fig. 10.5

Basic events BIM Rank Basic events BIM Rank

BE4 1.134E-06 1 BE23 1.280E-14 13

BE5 1.134E-06 1 BE22 1.270E-14 14

BE6 6.252E-07 2 BE24 5.600E-15 15

BE1 2.327E-07 3 BE2 5.000E-15 16

BE11 2.301E-08 4 BE3 5.000E-15 16

BE9 2.251E-08 5 BE17 1.900E-15 17

BE12 2.229E-08 6 BE21 1.300E-15 18

BE10 2.217E-08 7 BE14 4.000E-16 19

BE8 2.214E-08 8 BE16 4.000E-16 19

BE7 2.212E-08 9 BE18 1.000E-16 20

BE25 2.190E-14 10 BE19 1.000E-16 20

BE15 1.320E-14 11 BE20 1.000E-16 20

BE13 1.310E-14 12

10.5 Conclusion

This chapter presents a framework for FTA and BN-based reliability analysis of
process systems using IFS theory where there exists uncertainty with the availability
of precise failure data. The proposed approach enables the gathering of uncertain
data by combining IFS theory with expert elicitation. The IFS theory differs from
the traditional fuzzy set theory in the sense that it considers both the membership
and non-membership of an element in the set. Therefore, the utilization of the IFS
theory would allow us to model situations where a varying level of confidence is
associated with the fuzziness of numerical data. Therefore, by using IFS theory
together with expert judgment as presented in this chapter, the analysts would get
increased flexibility while expressing failure data in the form of fuzzy numbers.

The sensitivity analysis performedwithin the proposed framework would help the
analysts to determine the events that are more sensitive to uncertainty, thus allowing
to make informed decision to improve the data quality of the associated events.
Furthermore, the criticality analysis of the events followed by the recommendation
of corrective actions would greatly help to increase the reliability of the studied
system. The efficiency of the proposed framework has been verified by applying
it to a practical system. The experimentations illustrate that the IFS-based method
offers a valuable way of reliability assessment of process systems when the fuzzy
failure data of system components cannot be defined with high confidence. It should
be added that, as a direction for future works, the same approach can be integrated
using much more advanced fuzzy set theory such as but not limited PFS.
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Chapter 11
Smart Systems Risk Management
in IoT-Based Supply Chain

Hamed Nozari and Seyyed Ahmad Edalatpanah

Abstract The Internet of Things (IoT) offers a modern solution in which the bound-
aries between real and digital realms are gradually blurred by the continuous transfor-
mation of each physical device into a smart object. Each of these intelligent objects
plays a role in different realms of life, but at the same time leads to new challenges. In
order to develop industries and make them smarter using transformational technolo-
gies, there are risks that slow down or prevent progress. As the risk increases in the
processes, the task of managing and controlling the project becomes more difficult.
Many of the failures that occur in business processes are due to risk and instability in
the environment and within the supply chain structure. Therefore, a comprehensive
quantitative relationship that can measure supply chain risk and take into account all
dimensions of risk has not yet been proposed. IoT-based intelligent supply chains
have always been studied as one of the high-risk sectors due to the presence of the
Internet and network and huge data flow. This study examines and prioritizes the risk
of implementing smart systems in IoT-based supply chains that have been prioritized
using a nonlinear fuzzy approach. The results show that lack of knowledge and lack
of maintenance of technical infrastructure is one of the most important risk factors
in smart food chains, and for sustainable and efficient development, special attention
should be paid to the risks resulting from these deficiencies.

Keywords Risk management · Smart system risk · Cybersecurity · IoT-based
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11.1 Introduction

Due to the dramatic global changes in today’s world and due to the advances in infor-
mation technology and its applications in various industries and services, companies
have avariety of capabilities such as establishingdiverse communications, combining
capabilities and competencies, fast and diverse transfers, and activities. The supply
chain industry is one of the most complex, and at the same time, the most influen-
tial industries in each country in terms of providing facilities and facilities related
to the production, warehousing, supply, and distribution of goods and services [1].
A successful organization can be effective in maintaining its financial and human
capital by having a targeted riskmanagement program andminimize potential losses.
With risk management, in addition to preventing an accident and incurring damages,
you can also reduce its negative effects in the event of an accident. In fact, to create
a relationship between producers and consumers, there are several processes that,
with the expansion of the scope and volume of activities in this field, the realization
of productivity-related indicators in creating this relationship becomes very complex
[2].

In addition to being a transformative technology in various industries and busi-
nesses, the Internet of Things has shown its ability in the key processes of the supply
chain. Professional tools based on the Internet of Things as well as forecasting and
monitoring tools helpmanagers to improve the operational capability of the organiza-
tion’s professional distribution processes and increase transparency in organizational
decisions. Therefore, in this era, more than ever, the benefits of using the Internet of
Things in the supply chain are evident. The Internet of Things adds many features
and exclusive features to traditional supply chains, which increases the reliability
and activity of the supply chain [3]. Smart objects will have the ability to manage
the supply chain with the help of analyzing the market situation, the situation of
competitors, the interests of customers, etc. However, security and privacy concerns
need to be kept in mind as well. As the number of tools and devices connected to
the Internet increases, the possibility of attacking them will increase, and in such
circumstances, creating a relative balance between providing security and using the
tools and facilities of the Internet of Things will become a necessity [4].

The interface that connects IoT systems and their devices creates a mechanism
for spreading risk and creating danger and damage on physical, social, and economic
scales. Risk assessment methods are a complex process that requires the considera-
tion of various factors. Also, the interpretation and assessment of risk may change
depending on the scope of the work, which should be considered in the new risk
assessment solution as a periodic assessment according to the significant changes in
IoT environments.

Therefore, risk management is about evaluating and selecting strategies for evalu-
ating network-based risks in intelligent systems, such as intelligent supply chains, for
the employer and its shareholders to maximize the return on investment. Applying
risk management in different stages of supply chain activities from purchasing raw
materials to distributing sales can be useful and effective in reducing risks and
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increasing technical knowledge. Increasing the use of risk management means that
employers can add and manage risk management and supply chain uncertainties to
gain technical knowledge about all IoT-based intelligent processes to save time and
money. Risk management can be considered as a process for maintaining assets,
power, and security, and value engineering is value management that is an integral
part of risk management. Integrating value engineering and risk management creates
synergies. This synergy, when implemented in cybersecurity, can affect cyberse-
curity. IoT-based supply chain cyber-risk management includes identifying secu-
rity risks and vulnerabilities, identifying actions, and implementing comprehensive
security solutions to ensure the security of an organization’s assets [5].

Accordingly, someorganizations that use IoTdata in their supply chain, in addition
to business concerns, should also consider legal concerns in their cybersecurity risk
management system. For this reason, cybersecurity, in order to increase its effec-
tiveness, must have a layered approach to further protect the important assets of
organizations such as data about the organization, business partners, and customers.
The reason for this is that the consequences of an intrusion can do more harm to the
organization than the intrusion itself [6].

In this regard, over the years, studies have been conducted regarding risk manage-
ment based on the Internet of Things. Lee [7] investigated cyber-risks based on the
Internet of Things and categorized previous studies in this field. Zakaria et al. [8]
presented a model for analyzing risks based on the Internet of Things in the medical
industry. Rabelo et al. [9] investigated and analyzed the effects of risk management
based on the Internet of Things in order to increase business resilience. Zhou et al.
[10] investigated the effects of reset management based on big data from the Internet
of Things and presented a framework for this management.

This chapter examines risk management in IoT-based intelligent supply chain
systems. Therefore, after identifying the strengths and weaknesses of the two
management techniques, the necessity of combining them has been investigated, and
nonlinear decision-making methods have been performed to analyze risk manage-
ment in the use of intelligent systems in supply chains. This study provides a realistic
insight for supply chain practitioners and activists about the structure of Internet of
Things systems, the use cases of these digital systems and the changes related to
the processes resulting from these technologies. In addition, concepts, benefits, and
limitations related to the factors involved are identified that can be used to redesign
sustainable and secure supply chains. Therefore, a correct understanding of the risks
based on digital technologies can help the organization to act correctly in the face of
them and reduce the number of risks, and this is very necessary for the survival of
the organization.

11.2 IoT-Based Supply Chain

The Internet of Things network is very wide. In various sources, the number of
active devices in the Internet of Things network is estimated up to several billions.
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These objects connected to the network can collect a large amount of information.
If this massive data is properly processed, reliable knowledge can be obtained. This
knowledge can help a lot in supply chain management. The smart objects of the
future have the ability to analyze human behavior using a variety of digital devel-
opments such as artificial intelligence systems, deep learning and with the help of
data from the Internet of Things technology, and with the help of designing a variety
of prediction models, analysis to do detailed processes for complex supply chain
processes [7]. By linking things to information technology through smart devices,
the entire supply chain process from supply to production and distribution can be
optimized, and the entire product life cycle can be controlled. By tagging items and
contents, more information can be obtained about the status of the workshop, the
location of the production machinery. Useful tag information can be used as input
data to generate refined applications and improve logistics. Self-organization and
intelligent production solutions can be identified alongside design items [8].

Applications of the Internet of Things in the supply chain include the following:

• Reduce logistics costs and improve distribution efficiency

Using the Internet of Things, you can monitor all processes from the supply chain
to warehousing, handling, and delivery. This can identify which parts need improve-
ment. On the other hand, unnecessary exchange costs are eliminated due to the effec-
tiveness of information exchange in digital supply chain processes. By improving
the condition of different departments and creating more coordination among them,
you can increase the productivity and profit in addition to reducing the collection
costs [9].

• Improve supply chain information and supply and demand balance

Since the Internet of Things has been added to logistics, the ability to track, review,
monitor, and analyze statistics has greatly increased. The Internet of Things has
improved the work of transporting goods and increased the health of cargoes by
providing proper information to all stakeholders. In the Internet of Things, sensors
can be used for specific products to check different points such as altitude, tempera-
ture, and humidity. The information sharing mechanism across the supply chain can
enable manufacturers, distributors, and retailers to access market supply and demand
information in time. Information flow eventually balances supply and demand and
prevents product price fluctuations [10].

• Ensure product and product security by controlling each part of the supply
chain

Professional and intelligent monitoring and control of the process in the supply
chain and logistics by examining various stages in the supply chain from production
to warehousing and packaging increases the security and speed of processing in the
process and reduces costs. The positive point of using the Internet of Things in the
chain processes is increasing the amount of supervision and control over the processes
and most importantly the supervision over the fleet and drivers. Building an IoT
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infrastructure helps supply chain managers manage and optimize costs intelligently
by providing them with real-time information [11].

• Promote and improve the production of quality products on a large scale and
industrial development

Traditional products are often small in scale; products and goods often go through
a long cycle from production to consumption, and information is exchanged slowly
during this cycle; the supply chain is inefficient, and products often come to market
with many problems. The Internet of Things connects every part of the supply chain,
and information is transmitted in a timely, accurate, and efficient manner. Manufac-
turers, shippers, wholesalers, and retailers of the supply chain can receive and analyze
market information correctly and ultimately make the right decisions. When supply
and demand information is shared in the market, everyone from manufacturers to
retailers will benefit, and logistics companies can consolidate resources, ultimately
reducing operating costs and increasing the scale of the business. In the long run,
this will help build reputable brands and industrial development [12].

• Improve the business of retailers

IoT can offer several benefits in retail and supply chain management. For example,
by equipping shelves with equipment such as RFIDs, a retailer can manage the
needs of their goods properly. Also, if major manufacturers are aware of the needs of
retailers, they can better manage their products and control the market situation. So,
by collecting submitted information from retailers’ needs, they can optimize their
products. IoT can create huge potential for product warehousing in retail. According
to annual statistics, about 0.4% of retailers’ sales are lost due to shortages. Therefore,
this technology is able to play a major role in the production and supply chain of
goods by displaying the moment of inventory and sales of each product [13].

Figure 11.1 schematically shows an IoT-based supply chain.

Fig. 11.1 IoT-based supply chain



256 H. Nozari and S. A. Edalatpanah

11.3 Internet of Things and Risks

The Internet of Things (IoT) in organizations is growing rapidly, paving the way for
new and innovative approaches and services in all industries, including manufac-
turing. As a result, new cybersecurity risks are emerging. IoT devices are vulnerable
to moderate or high-intensity attacks. This provides a good environment for hacking,
and companies will be at risk of stealing personal and confidential information on
the network.

The Internet of Things relies heavily on networks and wireless communications
to provide connectivity for smart devices, yet their openness makes wireless commu-
nications vulnerable to security threats and risks. The risks in the IoT system are crit-
ical, and any interruptions or deviations can lead to costly changes or life-threatening
challenges. Therefore, security and trust in IoT systems are important [14].

The commonway to analyze such challenges is to conduct cyber-risk assessments
that seek to identify critical assets and threats that organizations face. In this method,
after prioritizing the risks identified in the supply chain processes, appropriate solu-
tions are selected to effectively face these risks. Only, the use of pre-existing risk
assessment methods for the Internet of Things may prevent the detection of new risks
in this ecosystem [15].

IoT risk assessment andmanagementmechanisms are needed to identify, evaluate,
and prioritize risks in organizational assets and operations. There are several basic
concepts in risk assessment that include assets, vulnerabilities, threats, the likelihood
of an attack, and cyber-damage. IoT risk assessment and management mechanisms
are needed to identify, evaluate, and prioritize risks in organizational assets and
operations. There are several basic concepts in risk assessment that include assets,
vulnerabilities, threats, the likelihood of an attack, and cyber-damage.

Framework-based mechanisms are based on a set of assumptions, concepts,
values, and actions that make up the method of observing reality. Framework-based
mechanisms are used to analyze, organize, and manage risks with completely new
methods. At its highest level, risk-based modeling is a criterion that requires statis-
tical analysis of many factors in order to assess risks. Risk-based models, which are
based on the analysis of assets, vulnerabilities, and risks, have a view to assessing
their impact on the system in general [16].

Figure 11.2 shows the biggest reasons that cause IoT security vulnerabilities.

11.4 Risk and Cybersecurity Management Process

The first step in deciding what form of risk to expect for a business is to use the
cybersecurity framework implemented for the business area. Once the organization’s
data is provided to the organization in a mapped form, managers can make better
decisions about how to control and manage the data and create strategies to reduce
the risk effects associated with the data. It can be concluded that even with a strong
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Fig. 11.2 Five biggest reasons that cause IoT security vulnerabilities [17]

security training and culture, sensitive organizational information such as data stored
in spreadsheet rows, or notes in employee presentation files, or as topics in a long
email, can easily and randomly from an organization [18].

In most cases, monitoring the organization to find sensitive information in which
no information is exchanged in the organization, as well as deleting any data that
does not belong to its storage location, greatly reduces the risk of accidental loss
of sensitive information. Once the expected risk pattern has been identified, all of
the organization’s technology infrastructure will be tested to determine the baseline
status for the current risk and what the organization needs to do to move from the
current state to the expected risk state. As long as preventive measures are taken in
the organization to find potential dangers and threats, the probability of danger and
victimization at the time of the attack decreases [6].

Small security vulnerabilities can cause major damage to network systems. The
intrusion into a worthless area of the organization’s network can lead to unauthorized
access to important systems and more sensitive information [19].

The only way to create a 100% secure system is to make sure the system is not
accessible. This is impractical at best. Excessive restrictions on network systems and
access to data required by users may make it more difficult for authorized personnel
to do business. On the other hand, if authorized users find that they cannot access
the systems or data they need to do their job, they may seek solutions that could
compromise the organization’s information. The following has been suggested to
enhance the quality characteristics of risk management:
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• Advanced encryption:

Data encryption is not a new feature for databases. But today, encryption must be
implemented according to a specific strategy and systematically to protect the organi-
zation’s data against external and internal threats. This includes access control based
on the organizational role of individuals, standard encryption, advanced keymanage-
ment systems, segregation based on individual tasks, and advanced encryption
algorithms that dramatically reduce information disclosure.

Although data encryption is useful to prevent it from being stolen against external
threats, it is a little weak against internal data theft. Because people who have access
to sensitive information do not necessarily have enough information to decrypt it.
Therefore, organizations must also protect data that is transferred from the organi-
zation’s sensitive systems using portable media such as external drives and other
portable devices [20].

• Correction and review:

Organizations need to balance data protection with the ability to share. Correction
and review enables the organization to share information with minimal hassle and
by hiding sensitive information such as letters and numbers when searching and
updating [21].

• Element-level security

Because correction and review play a very important role in organizations, organiza-
tions need to be able to do this based on the role of employees at the level of specific
characteristics or based on the roles of employees in the organization. Organizations
must be able to implement and enforce custom rules as well as out-of-the-box rules
[22].

• Cybersecurity solutions and risk management services

Ideally, organizations implement a comprehensive security structure including a
combination of different technologies such as firewalls, endpoint security, intrusion
prevention systems, threat intelligence systems, and access control systems in their
network. To reach this point, organizations may want to focus on risk assessment
services to provide a comprehensive assessment and solution to ensure that their
security budgets are optimally spent [23].

The most important criteria were then examined by the Minister of Security
Standards for risk management in the IoT-based supply chain.

11.5 Smart Systems Risk Management in IoT-Based
Supply Chain

In this section, using literature review and published studies, the most important risk
criteria in the smart supply chain were identified and summarized. For this purpose,
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in the first step, the research question was formulated. In this study, the research
questions are as follows: What are the risks affecting the implementation of an IoT-
based digital intelligent supply chain? And what classifications do they have? In
the same step, the statistical population and the search period were determined. To
determine the statistical population, articles indexed in Scopus, Google Scholar, and
ISIWeb of Science indexing databaseswere considered. Also, due to the new concept
of smart supply chain, indexed articles between 2016 and 2022 were considered as
time periods.

Among all the risks that an intelligent supply chain can face, according to experts,
two criteria and seven risks were considered as the most important risks of the
intelligent supply chain, which can be seen in Fig. 11.3, the risk-related decision
tree.

As shown in Fig. 11.3, the risks of an intelligent supply chain are shown in two
sections, design risks, and implementation risks. The following is a description of
these risks:

• Technical knowledge risks

Technical knowledge risks are one of the most important and effective risks in the
development process. Technological risk refers to a company’s inability to fully
understand or accurately predict certain technical aspects of the environment that are
relevant to new product development projects. Therefore, identifying, reducing, and

IoT-based supply chain risks

Design risks(W1)

Technical knowledge(W11)

Implementa�on 
risks(W2)

So�ware risks(W12)

Select the appropriate 
protocol(W13)

Integrity risks(W14)

Material and tool 
risks(W21)

Shelf life of systems(W22)

Human risks(W23)

Fig. 11.3 IoT-based supply chain risks
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managing these riskswill help to increase the success rate of the product development
process in the production sector in the supply chain [24–26].

• Software risks

Software risks refer to errors that occur in software systems related to supply chain
intelligence [25, 26].

• Select the appropriate protocol

Risk management in an organization is a process that is implemented continuously.
To implement this process, a risk management system must be established in the
organization. This system includes risk strategy, risk architecture, and risk manage-
ment protocols. Risk management protocols are the guidelines, methods, standards,
and tools by which the risk management process is implemented in the organization.
Risk management protocols define the step-by-step steps of the risk management
process and provide specific tools for each role for each step [27].

• Integrity risk

The information must be complete, comprehensive, and accurate, and not tampered
with at the time of entry, processing, and storage. The risk of information integration
is associated with the risk of manipulating information, reducing its accuracy and
precision, and removing or adding unrelated parts [28].

• Risk of choosing materials and tools

Supplier selection and supply of technological tools is one of the most important
decision-making issues in this field, in which many qualitative and quantitative
factors are involved to determine the highest capability. As supply chain complexity
increases, so do the level of uncertainty and risk involved. Therefore, supply chain
risk management, especially supply risk assessment, is important [27].

• System shelf life

If risk management is carried out accurately and continuously to identify possible
problems and find solutions, they can easily monitor other processes such as orga-
nizing, planning, budgeting and cost control and find the most optimal system for
the system. It can also largely prevent the occurrence of unexpected events during
the lifetime of activities in the basic processes of the organization [24, 25].

• Human risks

Avariety of human factors can have a profound impact on the results and productivity
of risk management of intelligent systems. This risk is due to the lack of effective
role and share of experts in the organization [29].
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11.6 Quantitative Assessment of IoT-Based Supply Chain
Risks

This research seeks to manage the risks of an intelligent digital supply chain based
on IoT technology with a quantitative approach. In this study, in order to investigate
the risks, first, using the literature on the subject and the opinions of active experts,
7 criteria were extracted as the most important risks. In this study, Cronbach’s alpha
method was used to assess the reliability of the relevant questionnaires using SPSS
software.A nonlinear hierarchical analysismethod has been used to analyze and eval-
uate the risks of the intelligent supply chain. This method is known as the Mikhailov
method [30]. The quantitative analysis method used in this research is described
below. The research method is shown in Fig. 11.4.

Fig. 11.4 Research method Research mo�va�on

Phase 1

Research and knowledge growth in the study area

Literature Review

Phase 2

Apply decision making 
with mul�ple criteria Conduc�ng analysis

• Fuzzy nonlinear 
hierarchical analysis

• Normalize the weights

Refining risk 
factors 

Fuzzy pairwise 
comparison matrix 

forma�on

Apply 
expert 

opinion

Rank Risk factors

Phase 3

Discussion and 
conclusion



262 H. Nozari and S. A. Edalatpanah

11.6.1 Mikhailov Ranking Method

Due to the vague and imprecise nature of data and information in real life and
making decisions based on this inaccurate and uncertain information, the modeling
process of many phenomena may not be done properly and efficiently. In order to
solve the ambiguity and inaccuracy of individual judgments, the theory of fuzzy sets
was proposed to introduce linguistic conditions (phrases) in the decision-making
process. The traditional AHP (early version of AHP), which has been used so far,
requires accurate judgments. But, due to the complexity and uncertainty of real
decision-making issues, it is often unrealistic or even impossible to provide accurate
judgments. Therefore, it is much more realistic and practical if this possibility can be
provided to the decision maker to use inaccurate judgments using fuzzy logic instead
of accurate judgments.

In 2004, Mikhailov presented a new approach to calculating weights in the fuzzy
AHP method, and he called this method fuzzy prioritization. One of the most impor-
tant features of this method is the calculation of the compatibility rate in the fuzzy
state. The weights in this method are obtained from solving a nonlinear optimization
model. The steps for using this method are as follows:

1. The development of the hierarchical structure is as shown in Fig. 11.1.
2. Development of fuzzy pairwise comparison matrix: Fuzzy judgment agreement

matrices are developed by using experts’ opinions. Fuzzy numbers are used
to express experts’ preferences in this research. Linguistic variables and their
associated fuzzy scale are shown in Table 11.1.

3. Modeling and solving: In this method, triangular fuzzy numbers are used to
analyze pairwise comparisons. Certain weight vectors w = (w1, w2, . . . , wn)

are extracted in such a way that the priority rate is approximately within the
range of the initial fuzzy judgments. In other words, the weights are determined
in such a way that the following relationship is established.

li j ≤ wi

w j
≤ ui j (11.1)

Each certain weight vector (w) has a degree in fuzzy inequalities as given above.
These inequalities can be measured by the linear membership function of relation
(11.2):

Table 11.1 Linguistic
variables for pairwise
comparisons

Linguistic variable Triangular fuzzy scale

Very low (1,2,3)

Low (2,3,4)

Medium (3,4,5)

High (4,5,6)

Very high (5,6,7)
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μi j

(
wi

w j

)
=

{
(wi/w j )−li j

mi j−li j
wi
w j

≤ mi j
ui j−(wi/w j )

ui j−mi j

wi
w j

≤ mi j
(11.2)

According to the specific form of the membership functions, the fuzzy ranking
problem is represented as a nonlinear optimization problem as shown in Eq. (11.3).

max λ

Subject to :
(mi j − li j )λw j − wi + li jw j ≤ 0

(ui j − mi j )λw j + wi − ui jw j ≤ 0

i = 1, 2, . . . , n − 1, j = 2, 3, . . . , n, j > i,
n∑

k=1

wk = 1 wk > 0, k = 1, 2, . . . , n (11.3)

Given the nonlinearity of Eq. 11.3, it is obvious that it cannot be solved without
the use of software. Therefore, LINGO software has been used to solve the models
created in this research. Positive optimal values for the index (objective function)
indicate that all weight ratios are completely true in the initial judgment.

11.6.2 Research Findings

The main stages in analyzing and prioritizing and managing supply chain risks based
on the Internet of Things and other transformative technologies in this research have
two parts; these two parts are as follows:

1. Compilation of the matrix of pairwise comparisons based on the integration of
experts’ opinions.

2. Applying the nonlinear model to prioritize the risks of the digital supply chain
based on the Internet of Things and obtain the weight of each of the risks

The pairwise comparison tables obtained from the opinions of the experts are
shown in Tables 11.2, 11.3 and 11.4. These tables have been used for calculations
by the Mikhailov method.

By placing the data from Tables 11.2, 11.3 and 11.4 in the nonlinear model (11.3)
as a model providing weights and rankings based on hierarchical analysis and model

Table 11.2 Matrix of pairwise comparisons for technological challenges of two general categories

W1 W2

W1 – – – – – –

W2 1.5 2.47 3.25 – – –
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Table 11.3 Matrix of pairwise comparisons for design risks

W11 W12 W13 W14

W11 – – – – – – – – – – – –

W12 3.1 4.2 5.1 – – – – – – – – –

W13 2.1 2.8 4.7 2.3 3.1 4.2 – – – – – –

W14 3.1 3.5 5.4 3.1 3.5 4.5 2.1 2.45 3.21 – – –

Table 11.4 Paired comparison matrix for implementation risks

W21 W22 W23

W21 – – – – – – – – –

W22 2.1 2.7 3.8 – – – – – –

W23 1.5 1.75 2.5 3.1 3.95 5.12 – – –

equation using LINGO software, the weight and rank of each of the risks can be
acquired general dimensions as well as in exclusive categories. The computational
results related to the solution of the nonlinear model for general and individual
batches of chrysanthemums are shown in Tables 11.5, 11.6 and 11.7.

A positive value for the compatibility index indicates the acceptable compatibility
of the matrices. After obtaining the weights of the general categories and the weights

Table 11.5 Weight and ranking of the main categories

Category Code Weight Rank Objective function (λ )

Design risks W1 0.678225 1 0.5251

Implementation risks W2 0.323775 2

Table 11.6 Weight and ranking of design risks

Risk Code Weight Rank Objective function (λ )

Technical knowledge W11 0.397849 1 0.4214

Software risks W12 0.241141 2

Select the appropriate protocol W13 0.181998 3

Integrity risks W14 0.180306 4

Table 11.7 Weight and ranking and implementation risks

Risk Code Weight Rank Objective function (λ )

Material and tool risks W21 0.373887 1 0.2374

Shelf life of systems W22 0.281210 3

Human risks W23 0.347111 2
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Table 11.8 Normal weight and IoT-based digital supply chain risk rating

Category Weight Risk Weight Normalized weight Rank

Design risks 0.678225 Technical knowledge 0.397849 0.269831 1

Software risks 0.241141 0.163548 2

Select the
appropriate protocol

0.181998 0.123436 3

Integrity risks 0.180306 0.122288 4

Implementation
risks

0.323775 Material and tool
risks

0.373887 0.121055 5

Shelf life of systems 0.281210 0.091049 7

Human risks 0.347111 0.112386 6
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Technical knowledge

So�ware risks

Select the appropriate
protocol

Integrity risksMaterial and tool risks

Shelf life of systems

Human risks

Fig. 11.5 IoT-based supply chain risk assessment

in the specific categories, we can normalize the weights to obtain the total weight
regardless of the category aswell as their overall rank. The normalized computational
results are shown in Table 11.8.

As shown in Table 11.8, technological risks are one of the most important risks
of implementing an object-based supply chain in the age of evolving technologies.
These results are shown in Fig. 11.5.

11.7 Conclusion

Today, due to the growth of the competitive environment in the supply chain manage-
ment sector, we are witnessing the increasing efforts of organizations to increase
efficiency and increase the performance of the supply chain. The intelligence of the
supply chain under the influence of disruptive technologies such as the Internet of
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Things and artificial intelligence at different levels can have a high impact on the
overall performance of the supply chain and the optimal response of the organization
to continuous changes in the business environment in the wide network of local and
global supply chains. But, the presence of Internet and network technology undoubt-
edly offers many challenges for these intelligent processes. In order to manage these
risks, identifying and analyzing these risks can be very important. Before launching
a riskmanagement system in cybersecurity, organizations should identify their assets
that need protection and prioritize them based on value. The Internet of Thingsmeans
the possibility of communicating all objects with each other, along with their iden-
tification and discovery under a unified network. Its main purpose is to share the
information in each object among other objects related to it. The Internet of Things
environment consists of heterogeneous devices that continuously exchange informa-
tion and are present everywhere, but at the same time, they lead to new challenges.
The interface that connects IoT systems and their devices creates a mechanism to
spread risk and create danger and damage on physical, social, and economic scales.
Risk assessmentmethods are a complex process that requires consideration of various
factors. Also, the interpretation and assessment of risk may change depending on the
scope of the work, which should be considered in the new risk assessment solution
as a periodic assessment according to the significant changes in IoT environments.

Therefore, in this study, an attempt was made to identify and evaluate the most
important risks affecting the IoT-based supply chain. In order to evaluate the risks
of the supply chain based on the Internet of Things, a nonlinear ranking method
called the Mikhailov method has been used. The results show that technological and
technological knowledge-related risks are of the highest importance, and therefore,
creating a technological environment and increasing knowledge of evolving tech-
nologies and raising technology levels can reduce the threatening risks. Software
risks and selection of appropriate protocols in the next degree, they are important
and should be given special attention. The calculation results are in line with previous
researches regarding risk factors in smart supply chains and confirm them.
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Chapter 12
Risk and Reliability Analysis in the Era
of Digital Transformation

Fatemeh Afsharnia

Abstract Evolution of Industry 4.0 and the integration of the digital, physical, and
human worlds, reliability and safety engineering must evolve in order to address the
challenges currently and in the future. This chapter aimed to describe the applica-
tion of digital transformation in the reliability engineering and risk analysis. In this
chapter, the principle of digital transformation is introduced as well as some of the
opportunities and challenges in reliability engineering. New directions for research
in system modeling, big data analysis, health management, cyber-physical system,
human–machine interaction, uncertainty, jointly optimization, communication, and
interfaces are proposed. Various topics may be investigated individually, however,
we present here a perspective on safety and reliability analysis in the era of digital
transformation that would be suitable for discussion and consideration by scientists
interested in this topic. The digital transformation combines software and systems
engineering to build and run large-scale,massively distributed, fault-tolerant systems.
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FMEA Failure modes and effects analysis
HAZOP Hazard and operability methodology
MBE Model-based engineering
GTST-MLD Goal tree-success tree and master logic diagram
STPA System theoretic process analysis
CIA Confidentiality, integrity, and availability

12.1 Introduction

Global digitization can improve reliability and reduce costs, so maintenance
managers need to be more ambitious in their move toward digital maintenance [1].
With the digitization of maintenance operations and reliability in heavy industries, it
is expected that the availability of company assets will increase by 5–15% and their
repair and maintenance costs will also decrease by 18–25%.

The decision-making processes that support maintenance and reliability opera-
tions may be sped up and standardized with the aid of new digital technologies.
For instance, reliability teams may plan and manage repair or replacement decisions
throughout the lifecycles of individual assets or whole fleets with the use of digital
asset management systems. On the other hand, new digital technologies can assist
teams in selecting the best maintenance strategy (e.g., run-to-fail, scheduled preven-
tative maintenance, or condition-based maintenance) for each equipment, as well as
they can promote reliability-centered maintenance [2].

With the advent of the Internet and the widespread use of information technology,
manufacturing industry has been impacted by digital information technology. As
the digital, physical, and human worlds increasingly integrate, the industry under-
goes deep transformation, and emergence of the Fourth Industrial Revolution called
Industry 4.0. This technology offers opportunities for factories to be used as open
platforms and distributed systems, where they can operate faster, more efficiently,
and with a more flexible and resilient supply chain [3].

Basedon the change in themanufacturing environments and the increasing compe-
tition among companies, we need a new concept to define and build manufacturing
factories. This is because the future industrial factory must work as a flexible,
resilient, and affordable system. To illustrate this new concept more clearly, the
past Industrial Revolutions are examined in this section [4].

First Industrial Revolution used steam power to cause major changes in industries
in the eighteenth century. Second Industrial Revolutionwasmade possible by electric
power and assembly lines. During the Third Industrial Revolution, computers and
information technology became integral parts of manufacturing as well as computer-
aided systems. A major feature of the Fourth Industrial Revolution is the strong
use of automation and data exchange in manufacturing. Cyber-physical systems, the
Internet of Things (IoT), 3D printing, digital twinge, advanced analytics, and cloud
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Fig. 12.1 Overview of industrial revolutions over time [7]

computing, among others are used in the new systems [5]. An illustration of the
transformation takes place is shown in Fig. 12.1.

In order to fully utilize digitalization, cyber-physical system integration and intel-
ligent control, industrial systems must process digitalization and implement cyber-
physical system integration. In addition to efficiency increases, supporting systems
need to be integrated into themain system, such asmaintenance, logistics, and supply
chain.We deal with a smart system that consists ofmany systemswith dynamic struc-
ture. By changing the manufacturing environment, the system speed and flexibility
increase. Therefore, smart manufacturing and Industry 4.0 investment have been
increasing rapidly and several countries have focused on this subject. A variety of
research methods have also been used to introduce and analyze Industry 4.0 and
smart manufacturing systems as well [6].

In order to implement Industry 4.0, several fundamental requirements must be
met [8]:

• Integrated enterprise systems and interoperability
• An organization that is distributed
• A model-based approach to monitoring and controlling
• Environments and systems that are heterogeneous
• A dynamic and open structure
• Teamwork and collaboration
• Human-to-machine integration and interoperability
• The ability to scale, be agile, and be fault-tolerant
• A network of interdependence
• Collaborative manufacturing platforms that are service-oriented
• Decision support systems based on data-driven analysis, modeling, control, and

learning.
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Additionally, different types of technological innovations should be implemented
to establish a smart factory [9–11]. There are several technologies involved, such
as software, advanced collaborative robotics, configurations that are modular and
adaptable, high-speed data transfer systems, and others. As a prerequisite to a fully
smart system, we need a smart supply chain, smart maintenance system, and smart
labor. From a technical standpoint, this type of system presents a number of chal-
lenges. This has prevented some companies from implementing this idea and there
is still a long way to go.

It is well known thatmanufacturing systemsmust be reliable and readily available.
Design, implementation, and utilization processes should include considerations for
security, safety, and maintainability. Therefore, when a smart factory idea is inves-
tigated, these challenges and opportunities must be considered from a reliability
engineering point of view. The rest of the chapter explores smart reliability analysis
and smart safety management based on big data, Internet of Things, cyber-physical
system, and so on.

12.2 Reliability Analysis

12.2.1 Big Data and Data Processing

Intelligent systems incorporate advanced instruments and facilities to collect and
analyze data at different phases in the life cycle of a product, such as raw materials,
machine operations, facility logistics, quality control, product use, and warranty
duration. This data plays a crucial role in smart systems, and big data empowers
companies to developmore flexible and effective strategies to compete on themarket.
It is imperative to store and analyze the data collected from manufacturing systems.
As industrial development progressed and technology was integrated with manufac-
turing, as well as the use of computerized systems, data is collected and stored on
a machine. In recent years, the capabilities of information technology have rapidly
grown up and advanced technologies (e.g., big data analytics, Internet of Things,
cloud computing, and artificial intelligence) are becoming more prevalent in indus-
trial and business systems. By integrating IT with systems, a new paradigm is created
called Industry 4.0. A similar pattern of data evolution can probably also be assumed
for other systems; Fig. 12.2 illustrates how data evolved in manufacturing systems.

The big data collected must be processed and applied in order for system perfor-
mance to improve. Different types of parameters with different quality and forms
are contained in this data due to the use of different sensors and sources. Various
types of data may be collected, including video, voice, electronic signal, image, and
others, and these should be preprocessed, processed, and analyzed before they can
be applied. Data from crude sources is not valuable and may also contain noisy
data, therefore, the data should be converted into specific information content and
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Fig. 12.2 History of data volume variety and complexity in manufacturing systems [12]

context that users can directly understand. In order to achieve this, we need advanced
methods such as cloud computing, neural networks, and deep learning.

In recent decades, cloud-based big data processing technology has been studied
as an interesting topic, and various computer models are planned based on different
platforms and focuses, such as stream-based, batch-based, directed acyclic graphs-
based, graph-based, interactive and visual processing.

Neural networks are a powerful tool in reliability engineering, particularly for
predicting how long equipment will be usable. Although artificial neural networks
(ANN) are beneficial for data processing, deep learning is more effective. Reduced
operating expenses, improved productivity and reduced downtime, keeping up with
changing customer demand, improved visibility, and extracting more value from
operations for worldwide competitiveness are all points of interest in deep learning.

As computing techniques and data processing have advanced, computer-aided
engineering systems and designmethods have improved, for instance, different kinds
of failure in the system are nowmodeled and evaluated by simulations. In the utiliza-
tion stage, this capability provides a greater understanding of failure mechanisms
and how to avoid them. Using these capabilities, a reliability engineer can optimize
the predictability of a new product in the design phase. Conversely, designers apply
artificial intelligence (AI) and deep learning to their own design processes and to
new products. It will be a challenge for engineers to use these tools in their own
designs in order to optimize final designs more quickly [13]. The dynamic behavior
of the system is another challenge in big data processing. System modeling requires
the use of a model that adapts to the age, degradation behavior, and condition of the
system. Because the system can be influenced by the data collected in real time, the
pre-defined model could be changed. The topic of model updating is therefore an
interesting one in this field [3].
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12.2.2 Internet of Things

IoT in maintenance program can help increase safety, reliability, efficiency, connec-
tivity, and communication [14, 15]. Figure 12.3 depicts the increase growth of IoT
devices from 2015 to 2025. The production capacity of a manufacturing plant is
reduced during equipment breakdowns. IoT-based predictive maintenance could:

• Increase the reliability and availability of equipment and machines;
• Reduce costs;
• Improve uptime;
• Reduce the risks of safety, health, environment, and quality; and
• Extend the lifetime of an aging asset [16].

By identifying a fault before it occurs, IoT predictive maintenance allows
machines to be maintained in advance. A machine’s condition can be monitored
in real time by Internet of Things maintenance systems. The data is analyzed by
software to create performance reports. The architecture of IoT-based predictive
maintenance is illustrated in Fig. 12.4.

Fig. 12.3 IoT devices growth during 2015–2025 [17]
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Fig. 12.4 IoT-based predictive maintenance architecture

Identifying key factors that determine equipment’s health is necessary before
proceeding to technical details. As soon as these variables are determined, equipment
is outfitted with sensors to collect information about them and send it to the cloud for
processing. Gateways are required to transfer sensor data to the cloud—it cannot pass
directly. In field gateways, the data is filtered and preprocessed. Connecting various
gateways via various protocols is possible with a cloud gateway, which enables data
transmission and ensures secure data transmission. Streaming data processors then
receive the sensor data that was entered into the cloud part. Data lakes are used
to store data streams and to transmit them quickly and efficiently to data storage,
enabling continuous flow of data. The data collected by sensors is stored in a data
lake. Currently, the data is raw, so it may contain inaccurate or erroneous information.
It is displayed as a collection of measurements taken at the corresponding time by a
number of sets of sensor. In order to gain insight into the health of the equipment,
the data is loaded into a big data warehouse. It contains vibration, temperature, and
other parameters measured at a corresponding time and contextual information about
equipment’ locations, types, dates, etc.
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Machine learning (ML) algorithms are used to analyze the data after it has
been prepared. Machine learning algorithms are used to detect abnormal patterns
in datasets and reveal hidden correlations. Predictive models take into account the
patterns in the data. Predictive models are built, trained, and then applied to diag-
nose whether a fault occurs in an equipment, identify the weak points of equipment,
or predict equipment’ remaining useful life. Predictive models which are used for
predictive equipment maintenance may follow two approaches:

• Regression approach: These models indicate how many days/cycles remain
before an equipment will reach the end of its useful life.

• Classification approach: Using this approach, we can predict whether equipment
is likely to fault and determines whether their properties are lower than usual.

The update of predictive models usually occurs once a month, and then they
are tested for accuracy. If the result does not match the expected one, it is changed,
retrained, and tested again until it works properly.A significant amount of exploratory
analytics should be performed before moving on to machine learning. In machine
learning datasets, data analysis is used to detect relationships, trends, and insights.
Furthermore, several technological assumptions are evaluated during the exploratory
analytics stage to aid in the selection of the best-fit machine learning algorithm. An
IoT-based predictive maintenance system can inform users of a likely equipment
failure using user apps.

For instance, Fig. 12.5 illustrates the implementation of IoT-based predictive
maintenance in a production line. Sometimes, physical inspections of production
line equipment require personnel to enter dangerous environments to inspect the
facilities, which may not be possible. Factories may use IoT-based predictive main-
tenance to anticipate possible breakdowns and boost the productivity of highly essen-
tial equipment. The solution measures temperature, vibration levels, and the other
equipment’s properties,with sensors deployed throughout the equipment. The system
collects real-time sensor data and sends it to the cloud for analysis, prediction, and
assessment [18].

12.2.3 Cyber-Physical System

Cyber-physical systems (CPS) are intelligent systems that include engineered
networks with the ability to interact with physical and computational components
(based on algorithms). These systems are highly interconnected and integrated,
providing new functions to improve and enhance the quality of life and leading
to technological advances in critical areas such as personal health care, emer-
gency response, traffic flowmanagement, smart manufacturing, national security and
defense, and produce and consume energy. Currently, in addition to CPS, there are
many other words and phrases that describe similar or related systems and concepts,
such as Industrial Internet, Internet of Things (IoT), Machine-to-Machine (M2M),
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Fig. 12.5 IoT-based predictive maintenance in a production line

smart cities, and so on. There is a lot of overlap between these concepts, espe-
cially between CPS and IoT, as they are sometimes used interchangeably (Fig. 12.6).
In 2013, the International Telecommunication Union (ITU) defined the Internet of
Things in a recommendation as follows:

A global social information infrastructure created by the interconnection (physical and
virtual) of objects, based on existing and evolving information and communication tech-
nologies, with the ability to work with each other and enable the provision of advanced
services.

The true value of the Internet of Things is determined when the data gener-
ated by sensors, devices, machines, and terminals of the Internet of Things can be
received, interpreted, and processed through predicted systems, andfinally, the neces-
sary commands given to the appropriate operators. In other words, the true value of
the Internet of Things for manufacturers lies in the analysis that results from the
cyber-physical models of machines and systems. In the fourth generation industry,
the systems that can add value to the Internet of Things are cyber-physical systems
(CPS). Objects in the IoT include physical world objects (physical assets) and virtual
world objects, i.e., information. When the IoT is integrated with sensors and actu-
ators, the resulting technology becomes an example of more general systems, such
as cyber-physical systems, which include technologies such as smart grids, smart
homes, smart transportation, and smart cities. The cyber-physical system is an inter-
face between the human world and the cyber sphere, enabling the data collected by
the system to be transformed into operational information and, ultimately, to optimize
processes by interacting with physical assets.
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Fig. 12.6 Internet of Things and cyber-physical systems

When data is collected fromphysical assets using sensors embedded in themusing
IoT technology, large volumes of data are generated and made available. Unfortu-
nately, existing technologies are not enough to categorize and manage this huge
amount of data that is generated daily. In addition, analytical methods and algo-
rithms are not mature enough to use this large amount of data and have not grown
enough to be able to intelligently and efficiently process and analyze all generated
data. This is considered as a big data challenge.

From the similarity of IoT and CPS in their use of network, Internet, and sensors,
it can be concluded that they are different definitions of a common concept. Despite
this similarity, IoT and CPS are not the same thing. The conversion of data into
information or tasks has placed a special emphasis on fault detection and prediction.
For instance, the use of nonlinear data analysis methods in robotic applications and
the application of multiple baselines to achieve a health machine model that analyzes
data related to vibration, temperature, and torque and diagnoses the faults of their
axis.

To meet the needs of the cyber surface, it is necessary to use historical records and
algorithms that are learned over time to obtain reliable information of the health and
estimated life of machines. As the machine has several decreases in performance, the
development of health monitoring algorithms based on historical data is important.
Although analytical methods for practical applications in industry are complex, life
predictionmethods need to respond to changes in operating conditions and the impact
of maintenance operations on life estimation. The cyber provides more reliable infor-
mation about the health status of the machines compared to the information obtained
from the traditional method of condition monitoring. In the traditional condition
monitoring, the condition of the machine is compared to the condition at start-up



12 Risk and Reliability Analysis in the Era of Digital Transformation 279

or the ideal condition, which is called the “baseline”, and the health status of the
machine is determined by their differences and the trend of changes.

As a perception-level cascading system, it must include decision-making algo-
rithms and support systems that are able to suggest appropriate maintenance and
production measures through the use of condition-based maintenance and predictive
maintenance in the form of CPS based on the health of monitored machines and
their reliability value. Currently, there is no mature and fully integrated system that
combines machine health with decision-making processes in a way that reflects the
true values of machine health. Therefore, for many industries, achieving the level of
perception is a major challenge. For example, according to studies based on “alter-
natives theory [19]” and by estimating the remaining life of a physical asset (which
is the output of the health monitoring system), the appropriate time for the mainte-
nance and repair operations can be decided. Alternatives theory is an idea that has
been used for many years to buy and sell a fixed asset item at the end of its useful
life or before. At this time, the amount of information that needs to be processed is
so large and beyond the capacity of human decision makers that it is necessary to
first provide decision-making systems with various options to operational staff, engi-
neers, or maintenance staff in order for them to make the final decision. The studies
showed that current technologies in practice cannot adequately give machines the
ability to self-adjust or self-configure, and there are many research opportunities
for the development of this aspect of CPS. For instance, although much work has
been done to control vibrations and unbalance of machines, to neutralize the effect
of chatter on rolling racks, or to control machine tools, there is a long way to go
before automatic rotating machines can be configured. Nevertheless, knowing the
capabilities of cyber-physical systems allows for the development of a promising
design approach for CPS-based maintenance applications. Interconnectivity, which
was covered in the previous section, gives access to awealth of data. However, having
access to data alone does not offer a major benefit. Therefore, managing, classifying,
and processing data so that PHM algorithms may further analyze it requires a robust
and flexible technique. This approach has to be comprehensive enough to fully take
use of cyber-physical systems’ benefits.

Lee and Bagheri [20] suggested the “Time Machine Methodology for Cyber-
Physical Systems” that is a methodical approach and being used to deploy CPS in
maintenance applications. This strategy is in charge of correctly arranging the data
that is already accessible in a big data environment so that it is ready for use in PHM
algorithms and that every single asset in the fleet has a time machine record, which
represents a type of digital. This cyber twin’s approach is to gather and clean up data
in preparation for future use. Other information that is taken from the cyber side
includes sensory data as well as installation history, operating parameters, system
configuration, maintenance events, and others. The stability of the cyber model over
time is its most significant benefit. The actual asset will eventually collapse, but
its digital duplicate will continue to maintain its data indefinitely. The schematic
representation of CPS-based maintenance strategy is depicted in Fig. 12.7.
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Fig. 12.7 CPS-based maintenance strategy [20]

12.3 Assessment of Safety Risks

An assessment and management of risk is focused on identifying assets, analyzing
vulnerabilities, and evaluating and estimating damages that could occur. Generally,
risk assessment can be roughly divided into qualitative and quantitative aspects.
Quantitative assessment is based heavily on expert experience, while qualitative
entails calculating the exact risk value of the system. There have been many methods
of assessing safety risk to date; below are some typical technologies for safety.

12.3.1 Big Data

The big data mainly contains the five aspects in detail which include basic theories of
safety big data, big data-driven safety management, big data-driven risk assessment
and forecasting, big data application platform and design scheme in safety manage-
ment, and big data-related technology developments in safety management [21]. The
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Table 12.1 Security objectives in CPS versus IT systems in order of priority

Priority CPS IT systems

Low Confidentiality Availability

Medium Integrity Integrity

High Availability Confidentiality

application of big data in the field of safety science precedes its theoretical studies
without a doubt [22].

12.3.2 Cyber-Physical System

Cyber-physical system places great importance on risk assessment andmanagement.
When CPS was first developed, system designers gave more consideration to safety
[23]. As a result of interactions between the environment and the control system, the
control system itself, and the control system and authorized users, safety risks may
occur. TheCIA triad, which is commonly known as the three basic security objectives
(confidentiality, integrity, and availability) in CPS and IT systems, represents the
fundamental security objectives [23–25]. In contrast with traditional IT systems, CPS
places the highest priority on availability. According to Table 12.1, these fundamental
objectives are important for both CPS and IT systems, but their priorities are different
[26, 27]. The goal of availability and safety is to keep the system under a pre-defined
and acceptable threshold [28].

CPS safety risk assessment methods have been developed in many ways, some
examples are Fault tree analysis (FTA), Failure modes and effects analysis (FMEA),
Hazard and operability methodology (HAZOP), Model-based engineering (MBE),
Goal tree-success tree and master logic diagram (GTST-MLD), system theoretic
process analysis (STPA), and Temporary Structures Monitoring [29].

From the foregoing, it appears that the application of digital tools will help to:

• Accurately calculate reliability due to online condition monitoring;
• Improved productivity of staff and reduced human labor;
• Efficient maintenance management;
• Better use of equipment and assets;
• Cost-effective operation;
• Improved work safety and reduce risk;
• Reduce the machine stoppage; and
• Reduce the costs related to major repairs.
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12.4 Conclusion

In the fourth generation of industry, big data, the Internet of Things, cyber-physical
system, and quick response to change provide an opportunity for reliability engi-
neering to improve system reliability. Additionally, complexity increases, intercon-
nections and dependencies between components, dynamic behavior, and advanced
components, such as CPSs and sensors, make reliability engineering challenges
for designers. It is necessary to update traditional methods and to develop new
frameworks for reliability, risk, safety, and security.

Besides that, by using IoT-based predictive maintenance, equipment life can be
extended by 30%, time-based maintenance can be eliminated, and equipment down-
time decreased by 50%. However, a well-thought-out architecture with an emphasis
on machine learning is required for a mature and dependable predictive maintenance
system.

In this chapter, the application of newmethods and tools such as big data and data
processing, IoT, and cyber-physical system was described to analyze the reliability
and risk of equipment. For future research, it seems necessary that the advantages and
benefit–cost analysis of digital tools are compared to traditional tools and methods.

Our suggestion is that managers don’t limit themselves to using a specificmode of
digital tools, but think about how advanced digital analytics techniques can transform
their maintenance and reliability system. This means constantly looking for oppor-
tunities to improve the use of data and user-centered design principles, in order to
digitize processes. Sustained efficiency requires a combination of new digital tools,
changes in asset strategy, and improves reliability performance.
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Chapter 13
Qualitative Analysis Method
for Evaluation of Risk and Failures
in Wind Power Plants: A Case Study
of Turkey

İbrahim Yilmaz and Emre Caliskan

Abstract Due to rising worldwide energy demand and growing worries about envi-
ronmental issues such as climate change and global warming, renewable energy
resources have attracted a lot of attention in recent years. Renewable energy is defined
as energy sources that provide energy via natural processes and can regenerate notice-
ably faster than the depletion rate of the resources consumed. Wind energy is being
more widely preferred to satisfy the community’s demand. The increasing growth
of the wind power business necessitates improved equipment sustainability and reli-
ability. As a result, the issue of reliability is critical for large-scale wind turbines
which provide electricity to the national energy system. Wind farms have been built
in numerous regions around Turkey in recent years and are currently being built.
The objective of this study is to provide a decision-making model for ranking the
risk and failures that wind power plants may during electricity production. In the
proposed model, four risk and failure sources are examined under five evaluation
criteria. In order to reflect evaluation criteria more comprehensively, fuzzy MCDM
methodology is used to determine the most and least risk and failure sources that
power plants may face during their operations. In this context, the VIKORmethod is
applied to determine the weights of the criteria and the ratings of the risk according to
each criterionwith qualitative data.VIKORmethod is extendedwith the concept of an
intuitionistic fuzzy set to define accurately the vague and imprecise situations which
are defined qualitatively. This study could be considered as one of the first attempts
to evaluate the integration of emerging risk and failure analysis in wind power plants
with qualitative datasets. The results of this study imply that the most important risk
and failure factors depend on the uncontrollable conditions or stochastic nature of
the events such as unstable weather conditions.
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13.1 Introduction

The demand for energy in Turkey has been steadily increasing over the previous few
decades, and this trend is expected to continue in the future. For example, it can be
seen that consumption has increased by 5.1% per year in the ten years from 2006 to
2015. The percentage change in Turkey’s annual electricity consumption since 1971
compared to previous years is given in Fig. 13.1. As shown in Fig. 13.1, while the
biggest increase in consumption was in 1976 with 18.4%, the biggest decrease was
experienced in 2009 with a decrease of 2%. Since 1971, electricity consumption has
decreased only in 2001 and 2009 compared to the previous year. When the average
is taken from 1971 to 2015, it is seen that consumption increased by 8.0% each year
[1].

Renewable energy is defined as the type of energy that comes from the natural
environment continuously or is obtained from sources that are accessed repeatedly.
Renewable energy sources are accepted as sustainable energies as well as being
obtained from natural sources such as solar, wind, hydraulic, biomass, geothermal,
and wave energy [2].

As one of the renewable energy sources, wind power turbines are preferred
by communities to satisfy the electricity demand of customers. The sun’s heat is
absorbed at varied rates by the earth’s surface, which is made upon various types of

Fig. 13.1 Percentage change in Turkey’s annual electricity consumption from 1971 to 2015
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land and ocean. The daily wind cycle is one example of this inconsistent warmth.
Wind energy is mostly utilized to create power; therefore, all over the world with
the increasing number of wind energy power plants being constructed. Wind energy
accounts for 2% of the world’s electricity production [3].

Wind power facilities are growing in Turkey similar to other countries. It is stated
in the Turkish Ministry of Energy and Natural Resources’ Wind Yearly Report that
wind energy is the secondmost preferred source among the renewable energy sources.
As of December 2020, Turkey’s wind power capacity is calculated as 8832 MW.
Wind energy has a share of 8.09% in the total electricity production, and the change
in installed power over the years is shown in Fig. 13.2 [4].

It is both economically and ecologically unsustainable to meet expanding energy
demand with typical carbon-fueled power plants. Traditional carbon-fueled power
plant technologies are transforming into renewable energy plants when energy effi-
ciency and climate change are taken into consideration. Due to this transformation,
communities are becoming engaged in renewable energy sources. Also, renewable
energy sources are becoming more affordable and plentiful every day.

According to the Turkish Wind Energy Association’s annual report, there are
273 wind power plants in which 3983 wind turbines are already installed in Turkey.
These wind power plants produce 9.84% of produced energy in Turkey. In addition,
20 projects are continuing around Turkey. However, some risk factors affect the
electricity production efficiency in wind power plants. One of the most important
risks that renewable energy riskmanagement seeks to dealwith is the randomness and
uncertainty of the production of these resources.Wind energy is also a resourcewhere
this risk is high due to its variability and unpredictability. In the literature, six main
risks are determined as technical, economic, environmental, social, political, and
supply chain issues. These risks are extended to risk factors as shown in Table 13.2.

Fig. 13.2 Rate of wind power electricity in electricity production
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The risk factors could be collected in four groups (1) delay of production (R1), (2)
downtime (R2), (3) unstable weather conditions (R3), and (4) changes in government
policy (R4). If these risk factors cause the failure of production in wind power plants.
The outcomes of the failure could be an effect (1) life quality of residents (C1),
(2) production sustainability of power plants (C2), (3) operational and maintenance
difficulties in power plants (C3), (4) working conditions of power plant workers (C4),
and (5) environmental issues (C5).

In this chapter, the four risk factors (R1–R4) regarding the efficiency of electricity
production are evaluated under five criteria (C1–C5). Four experts evaluate the deci-
sions to deal with verbal factors from literature and renewable energy experts under
conflicting and unmeasurable 5 criteria. In this context, this research is one of the
first research regarding risk and failure analysis in wind power plants with qualita-
tive datasets. Due to the difficulty of precisely determining the weights of the criteria
and the ratings of the risk factors according to each criterion with qualitative data,
VIKOR method is applied in this chapter.

Due to the existence of conflicting and competing considerations such as quality
and price, decision-makers commonly encounter complicated multiple criteria
decision-making (MCDM) challenges. MCDM has the potential to enhance all engi-
neering decision-making processes, from design to manufacturing in terms of reli-
ability engineering, but it is also advantageous for applications in various sectors,
where product and competition and competitive advantage are frequently attained
by just very small improvements in performance. Opricovic (1998) proposes the
VIKOR method to take care of such issues. VIKOR is a useful tool for dealing
with discrete multi-criteria situations involving incompatible and incommensurable
criteria. VIKOR could be applied to rank a set of alternatives to help decision-makers
to reach a decision [5]. Thus, the VIKOR approach’s distinctive features and capa-
bilities have been successfully utilized in a variety of real-world decision-making
challenges.

However, the crisp numbers do not enable to define accurately the vague and
imprecise situations which are defined qualitatively. Fuzzy logic is used in order
to make more comprehensive evaluations with imprecise and qualitative data. The
degree of importance of the risks is ranked using fuzzy logic for this purpose. In
practice, defining the performance of the alternatives is difficult due to the decision-
makers’ assessments, which can be inaccurate or imprecise under any circumstances.
In many real-world challenges, it is difficult to gain sufficient and precise knowledge
to identify the situation. Therefore, most MCDM problems are suggested under the
fuzzy environment in the literature. To describe a situation more comprehensively in
a fuzzy environment, Atanassov [6] proposes the concept of an intuitionistic fuzzy
set (IFS). IFS covers the membership degree and non-membership degree with a
hesitation degree. IFS extends the concept of type-1 fuzzy sets by introducing the
non-membership value which is the complement of the membership value of every
element. Therefore, IFS provides an additional possibility to express incomplete
information,they may be used to better characterize many real-world issues under
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uncertain and limited information [7]. Therefore, this research aims to fill the gap
in literature by applying IF-VIKOR to evaluate the risk and failures in wind power
plants.

The remainder of this chapter is presented as follows: Section 13.2 provides a
related literature review of risk and failure analysis applications related to renewable
energy power plants and integrated with MCDM. Section 13.3 shows the proposed
methodologywith the intuitionistic fuzzyVIKOR (IF-VIKOR)method. Section 13.4
presents a case study to rank the risk factors in wind power plant. This chapter is
completed with conclusions and future works which are given in Section 13.5.

13.2 Literature Review

This section presents general information on risk management studies related to
renewable energy sources and provides an overview of risk factors and risk manage-
ment studies that have already been conducted for wind energy in particular. The
methodologies used in this area have been also discussed. The issue of risk manage-
ment in the renewable energy sector has been investigated from different viewpoints
in the literature.

13.2.1 Risk Management in the Renewable Energy

Riskmanagement is a process that involves assessing, developing a strategy, andmiti-
gating the effects of uncertainties (risks) through the activities of a project. Related
academic renewable energy studies are mostly risk analyses including risk identifica-
tion and strategy development studies conducted at the initial investment. A compre-
hensive study on the handling of risk factors retrospectively evaluated 11,504 news
reports about renewable energy-based incidents [8]. They used the ontology-based
Bayesian network method to determine the accident risk factors in this news and the
relationship between them. Indicated in that study, riskswere identified from the liter-
ature review as renewable energy systemic risks, ecosystems risks, and social system
risks according to falling, injury, or fatality incidents. Other methods such as FMEA
have been also used as a method for determining risk factors [9]. In their studies,
the researchers considered five alternative renewable resources, namely hydropower,
solar energy, wind energy, geothermal energy, and biomass, and identified the risk
factors associated with them, such as cost risks, political risks, technological risks,
environmental risks, and construction-management risks. Hashemizadeh et al. [10]
applied the TODIM method to determine the risks associated with investments in
renewable resources and grouped these factors into economic, technical, environ-
mental, social, and political. Somi et al. [11] proposed a new framework for identi-
fying risks in renewable energy projects. In this structure, they combined case-based
reasoning and fuzzy logic. They applied the proposed methodology in the case of the
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Table 13.1 Summary of types and definitions of risks

Risk type Definitions

Economic/financial risk Risk relates to cost structures, currency fluctuations, access to credit
sources, national economic conditions

Technical risk Risks arise from design flaws, uncertainties in the use,
implementation and efficiency of renewable energy technologies, the
extent of progress in different countries/industries, replicability of
technologies due to proprietary rights, patents

Social risk Risk arises from difficulties in social/local communication, social
acceptance, well-being of organizations’ stakeholders (including
occupational health and safety)

Environmental risk Risk refers to the impact on environment such as damage to
biodiversity (fatality of animal species), as well as the risk of being
affected by nature (i.e., corrosion) or disasters

Political risk Risk arises from changes in policies related to the environmental or
financial investment, national stability, approach of governments to
project implementation

Regulatory risk Risk refers to the uncertainty that regulatory authorities might
change existing laws and regulations such as incentive or tax laws

Supply chain risk Risk relates to disruptions of supply of materials and information,
transport issues, logistics complexity of components like blades, as
well as delivery issues because of the variation and uncertainty in
power load

onshore wind investment project. While the literature mostly discusses all renew-
able energy sources, some studies focus on a specific energy source. For instance,
Yatim et al. [12] conducted a study that identified key risks to the biomass industry in
Malaysia. They summarized the associated risks as regulatory, financing, technology,
supply chain and feedstock, business, and social and environmental risks. Types of
risks and definitions in the literature are listed in Table 13.1.

Renewable energy investments depend on the geographical location of production
and the market. Therefore, case studies on risk management for geographic regions
can be found in the literature. Abba et al. [13] examined the risks and methodologies
considered in renewable energy risk assessment and mitigation for developed and
emerging economies, focusing on sub-Saharan African countries. The qualitative
methods considered in the study were compared with other methods, and it was
found that these methods can assess technical and economic risks in a similar way
to social, political, and policy risks. In another study addressing the risk relationship
between renewable energy sources and geography, Hansen et al. [14] evaluated the
sustainability risks of forest-based bioenergy in Scandinavian Countries. Ranganath
et al. [15] identified the risks associated with solar power projects in India and
developed a methodology for risk analysis using fuzzy TOPSIS which is an MCDM
technique. Aquila et al. [16] conducted a study to identify the uncertainties and risks
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Table 13.2 Main risk factors
in wind energy facilities
extended from [27]

Risk type Risk factors

Technical Equipment/facility damage

Transportation

Inexperienced engineering teams

Interfaces
Foundation failure
Maintenance issues
Corrosion issues

Economical Finance

Contract

Market

Business interruption
High O/M cost

Environmental Land/sea conditions

Weather (i.e., extreme waves, wind)

Seabed/geological conditions
Biohazards (i.e., bird fatality)

Social Personnel safety (i.e., falls, drowning)
Working at height
Workers’ transportation (i.e., boat, road,
helicopter)

Politics Regulatory changes
Changes in state policy

Supply chain Supply chain bottlenecks
Delay of power generation
Impact of the cost of raw material

affecting wind energy investments in the Brazilian market. They used simulations
to analyze the financial behavior of the investment project under the identified risks.
Value-at-risk (VaR) method was also used for the analysis of risk management. To
predict extreme situations that may occur in the pricing mechanism and manage
risk, Hagfors et al. [17] studied the impact of key players. The impact of renewable
energy sources, solar and wind, on extreme price developments was investigated
taking Germany as an example and found that the probability models identified can
be used in price-based risk management. Guerrero-Liquet et al. [18] consider the
risk assessment and management of renewable energy facilities in the Dominican
Republic as a decision-making problem. The conclusions were drawn using the
cause-effect method and the SWOT method, by using the knowledge of the experts,
and the riskswere prioritized using theAHPmethod. Some studies consider Turkey in
particular. Kul et al. [19] stated that the Turkish government encourages renewable
energy investments, while there are inherent risks in investing in and developing
such projects. Therefore, the authors provided anMCDM-based three-stage decision
framework related to the risk factors of the aforementioned investments in Turkey.
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They also suggested the evaluation of strategies to manage those factors. Apak et al.
[20] examined financial risk management tools that meet the needs of the renewable
energy sector. A comparative analysis was presented by looking at the European
Union and Turkey together.

13.2.2 Risk Management in Wind Power Plants

The risk factors that apply to renewable energy sources are also valid for wind power
generation. There are risks such as costs, lack of capacity, and thus intermittent
power generation at the operational stage in wind power plants. The technical risks
of wind energy also include the cost of materials used in power plants. In their study,
Kanamura et al. [21] performed an econometric analysis for the future markets of
these materials, taking this risk into account. They showed the practical application
of their proposed theoretical economic model in the case of illiquidity. Kumar et al.
[22] stated that risks arising from the technical characteristics of the parts required
for the wind turbine, as well as maintainability and servicing, are a natural risk in
power generation and are related to supply chain risks. The researchers focused on
operational risks and methods to improve wind farm reliability and availability. One
of themost important risks that renewable energy riskmanagement seeks to deal with
is the randomness and uncertainty of the production of these resources. Wind energy
is also a resource where this risk is high due to its variability and unpredictability.
Soroudi et al. [23] proposed a mixed-integer nonlinear multi-objective programming
model. In addition to minimizing risk levels, they considered the minimization of
energy supply costs as a second objective. They used conditional VaR (CVaR) to
estimate uncertainty as a risk management tool.

In the case of wind energy, the risks vary depending on the location of the power
plants, i.e., onshore or offshore. Somi et al. [11] presented the risk breakdown matrix
for the onshore wind farm. Considering each work package level of projects, this
pioneering study identified 169 risk factors affecting the onshore wind farm. Onshore
and offshorewind turbines also pose environmental risks. Considering these environ-
mental risks, Macrander et al. [24] highlighted the impacts of offshore wind farms on
marine creatures in the regions where they are located. Astiaso-Garcia and Bruschi
[25] considered onshore wind farms for their proposed risk assessment tool to prior-
itize occupational health and safety standards. Gatzert and Kosub [26] also high-
lighted the risks and offered risk management solutions by separating investments
in onshore and offshore wind farms in the European market. In contrast, studies that
have taken the risk assessment of offshore wind energy projects into account have
been few in number. Chou et al. [27] analyzed and evaluated the risks associated with
the construction and use of these plants in their study. Accordingly, offshore wind
projects continue to be at the preliminary stage, particularly in Asia. Researchers
conducted a risk assessment study for Taiwan and identified risk factors from the
literature. An extended list of risk factors related to onshore/offshore wind facilities
has been demonstrated in Table 13.2 based on Chou et al. [27].
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13.2.3 Risk Management Methods in Related Literature

Risk analysis, assessment, and mitigation—collectively referred to as risk manage-
ment—use a variety of methods that may be qualitative, quantitative, semi-
quantitative, or a combination of these methods. Figure 13.3 shows the methods
preferred in the literature. Qualitative risk methods are subjective assessments used
when sufficient data are not available. These types of methods include literature
reviews, interviews with experts, etc. Quantitative risk management methods mainly
use statistical data and probabilities to assess the level of risk [13]. Simulation
methods such as Monte Carlo simulation, agent-based modeling, portfolio optimiza-
tion methods, VaR methods, and mathematical programming—especially stochastic
programming—are the most commonly encountered quantitative methods in the
literature. On the other hand, semi-quantitative methods combine the advantages of
both qualitative and quantitative methods. These methods use expert interviews and
quantitative techniques to convert to numerical values. Therefore, suchmethods have
the flexibility to consider statistical and non-statistical risks [28].

As shown in Fig. 13.3, there are many methods to evaluate or analyze the risk and
failures related to renewable energy production. However, there is limited research
focused on the qualitative evolution of risk factors of wind power plants under an
imprecise and vague environment. The application of IF-VIKOR could be one of the
first attempts to evaluate the risk and failures of wind power plants under imprecise
and vague conditions.

Fig. 13.3 Overview of risk management methods in relevant studies
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13.3 Methodology

This research combines IFS concepts and calculations which are shown in Atanassov
[6] and VIKOR method steps which are shown in Opricovic and Tzeng [5]. The risk
factors (Ri) are accepted as (1) delay of production (R1), (2) downtime (R2), (3)
unstable weather conditions (R3), and (4) changes in government policy (R4). These
risk factors are evaluated under possible results when these risk factors cause the
failure ofwind power plants. The evaluation criteria (Cj) are defined as (1) life quality
of residents (C1), (2) production sustainability of power plants (C2), (3) operational
and maintenance difficulties in power plants (C3), (4) working conditions of power
plant workers (C4), and (5) environmental issues (C5). The ratings of Ri and the
subjective weights of the criteria are given in Table 13.3.

It is assumed that there are 4 decision-makers (DMk, k = 1, . . . , 4) and 4 alterna-
tives (Ri , i = 1, . . . , 4) and 5 evaluation criteria

(
C j , j = 1, . . . , 5

)
. During criteria

evaluation, specified a weight λk ∈ (0, 1] and
∑K

k=1 υi = 1 assigned to each DM
show the relative importance of DMs while raking the alternatives. Therefore, the
IF-VIKOR method steps are shown as follows:

Step 1. Collect the evaluation views of all DMs for each alternative under each
criterion as IFN then aggregate all DMs’ opinions.

Assume that rki j = (μk
i j , υ

k
i j ) represents the evaluation of Ri with respect to the C j as

the IFN. Then aggregate IFN rating ri j of alternatives regarding each criterion can
be calculated by SIFWA operator as follows:

ri j = SIFWA
(
r1i j , r

2
i j , . . . , r

K
i j
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K∑
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Table 13.3 Linguistic terms for each alternatives and criteria

Linguistic terms for risk factors IFN Linguistic terms for criteria IFN

Very poor (VP) 0.10 0.90 Very low (VL) 0.15 0.80

Poor (P) 0.20 0.65 Low (L) 0.25 0.65

Moderately poor (MP) 0.35 0.55 Medium low (ML) 0.40 0.50

Fair (F) 0.50 0.50 Medium (M) 0.50 0.50

Moderately good (MG) 0.65 0.25 Medium high (MH) 0.60 0.30

Good (G) 0.80 0.05 High (H) 0.75 0.15

Very good (VG) 0.90 0.10 Very high (VH) 0.90 0.05
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After each Ri evaluated to under C j , a group decision matrix R is created as
follows:

R =
⎡

⎢
⎣

r11 · · · r1n
...

. . .
...

rm1 · · · rmn

⎤

⎥
⎦ (13.2)

Step 2. Assign the subjective weights for each criterion.

The fuzzy weight of each C j is defines as ωk
j = (μk

j , υ
k
j ) by DMk . Then, the

importance weight of the jth criterion ω j = (μ j , υ j ) calculated as follows:

ω j = SIFWA
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After each ω j is calculated, normalized subjective weight of each criterion, ωs
j ,

is calculated as follows:

ωs
j =

⎛

⎝
μ j + π j

μ j

μ j+υ j

∑J
j=1

(
μ j + π j

μ j

μ j+υ j

)

⎞

⎠ (13.4)

where π j denotes the hesitation degree, π j = 1 − μ j − υ j .

Step 3. Determine the IF positive and negative ideal solutions, f ∗
j =

(
μ∗

j ,υ
∗
j

)
and

f −
j =

(
μ−

j , υ
−
j

)
, respectively, according to the following rule

f −
j = {min ri j for benefit criteria,max ri j for cost criteria}

f ∗
j = {maxri j for benefit criteria,min ri j for cost criteria} (13.5)

Step 4. Calculate the normalized intuitionistic fuzzy distances, di j
∧

di j
∧

=
d
(
f ∗
j , ri j

)

d
(
f −
j , ri j

) (13.6)

where
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Step 5. Calculate τi and ϕi values as follow

τi =
J∑

j=1

ω j
s di j
∧

(13.8)

ϕi = max
(
ωs

j , di j
∧)

(13.9)

Step 6. Calculate VIKOR index Qi

Qi = v
τi − τ ∗

τi − τ− − (1 − v)
ϕi − ϕ∗

ϕi − ϕ− (13.10)

where τ ∗ = min τi , τ− = max τi , ϕ∗ = min ϕi , ϕ− = max ϕi and v is introduced as
weight of strategy of the majority of criteria.

Step 7. Rank the alternatives with increasing order regarding Qi, τ i, and, ϕi .

Step 8. Recommend a compromise solution based on the Acceptable Advantage and
Acceptable Stability rules which are defined as follow.

i. Acceptable Advantage: Q
(
A(2)

)−Q
(
A(1)

)− ≥ 1
m−1 where A

(2) show the second
location in the increasing order of Qi

ii. Acceptable Stability: A(1) must be the first location in the increasing order of
ϕiorτi

If the first criterion is not fulfilled, wemay argue that the A(1) and A(2) alternatives
are similar solutions. This situation defines that A(2) does not have an advantage over
A(1). When the second rule is not met, there is no stability in decision-making.
Therefore, the positions of A(1) and A(2) are in the same location in the increasing
order of alternatives.

13.4 Case Scenario: Evaluation of Wind Power Plants
in Turkey

Renewable energy plants are getting the attention of communities to meet residents’
energy demands. However, renewable energy sources are instable and unreliable. For
example, wind or solar energy sources depend on the stochastic nature of weather
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condition. For this reason, renewable energy sources have risks in terms of production
variability and unpredictability. Six main risks are determined in the literature, and
these risks are extended to risk factors as shown in Table 13.2. The risk factors
could be collected in four groups (1) delay of production (R1), (2) downtime (R2),
(3) unstable weather conditions (R3), and (4) changes in government policy (R4). If
these risk factors cause the failure of production in wind power plants, the outcomes
of the failure could be an effect (1) life quality of residents (C1), (2) production
sustainability of power plants (C2), (3) operational and maintenance difficulties in
power plants (C3), (4) working conditions of power plant workers (C4), and (5)
environmental issues (C5).

The data used in the case scenario is collected from four DMs. DM1 and DM2 are
reliability engineers; on the other hand,DM3 andDM4 are expert reliability engineers
who are at least 10 years of experience in wind power plants. All DMs are working
for the same company in Turkey, and their opinions are taken simultaneously and
independently by applying a survey. The survey is prepared based on the literature
review that is shown in Sect. 13.2. However, the data does not reflect a private
institution’s or organization’s official opinion. The DMs’ weights are assumed as
λ1 = 0.20, λ2 = 0.20, λ3 = 0.30, and λ4 = 0.30. DMs have applied the linguistic
terms shown in Table 13.3 to evaluate the risk factor under the defined criteria. The
DMs’ opinions on risk factors and the criteria weights are shown in Tables 13.4 and
13.5, respectively.

The proposed IF-VIKOR method is applied to evaluate risk factors in the wind
power plants as follows:

Step 1. The decision matrix is created by using Eq. (13.1), and the criteria weights
(ω j ) are calculated by Eq. (13.3), which are shown in Table 13.6.

Step2: Normalized fuzzy decision matrix and weight of criteria are calculated by
using Eq. (13.4), which are shown in Table 13.7.

Step 3. The positive and negative ideal solutions are calculated by using Eq. (13.5)
regarding cost criteria (C1–C5) (Table 13.8).

Step 4. Calculate the normalized intuitionistic fuzzy differences di j
∧

(Table 13.9).
Step 5. τi andψi are calculated by usingEqs. (13.8)–(13.9), respectively, as shown

in Table 13.10.
Step 6. VIKOR index Qi is calculated by using Eq. (13.10) as shown in Table

13.11.
Step 7: The rank of risk factors in wind power plants with increasing order based

on τi , ψi , and Qi (Table 13.12).
In this research, the failure factors of wind power plants are evaluated based on

the defined criteria. The components of each failure components assumed as risk
factors. The results IF-VIKOR method which is derived from τi , ψi , and Qi are
analyzed based on the acceptable advantage and acceptable stability rules; the most
important barrier is defined as the unstable weather conditions (R3). Also, the other
risk factors are ordered based on the importance level as downtime (R2), changes in
government policy (R4), and delay of production (R1). Thus, the risk factors in wind
power plants are ranked as R3 > R2 > R4 > R1 under the five criteria (C1–C5).
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Table 13.4 DMs’ opinions on the four alternatives

Criteria Decision-makers Risk factors

R1 R2 R3 R4

C1 DM1 MG VG MP MG

DM2 VG VG MP MP

DM3 VG MG MP MP

DM4 MG VG MP MG

C2 DM1 MG MP MP MG

DM2 MP MG MG VG

DM3 MG MP MF MG

DM4 MP MG MF VG

C3 DM1 MG MP MP MG

DM2 MP MG MP VG

DM3 MG MG MP VG

DM4 MP MP MP MG

C4 DM1 MP VG MG MG

DM2 MP VG MP VG

DM3 MG MP MP MP

DM4 MP VG MP MG

C5 DM1 MG MP VG VG

DM2 MG MP VG MG

DM3 MP VG MG VG

DM4 MP MG MG VG

Table 13.5 DMs opinion on the weights of criteria

Criteria Decision-makers

DM1 DM2 DM3 DM4

C1 M MH MH M

C2 M VH M M

C3 MH H MH M

C4 M VH VH VH

C5 M MH ML ML

As a managerial implication of the results, it is recommended to give more focus
on the most important risk factor unstable weather conditions. However, it is known
that the weather conditions are very stochastic and hard to predict and prevent from
them. Therefore, managers should focus on both the specific risk factors they can
control and the overall risk potential in wind power plants. [5, 8, 13]. On the other
hand, from the practical implications, determining the risk factors under the fuzzy
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Table 13.6 Fuzzy decision matrix and assessment of criteria weight

C1 C2 C3 C4 C5

R1 (0.3500 0.5500) (0.4082 0.4852) (0.3933 0.5351) (0.4082 0.4852) (0.7774 0.1768)

R2 (0.8486 0.1338) (0.5000 0.3896) (0.5000 0.3896) (0.7945 0.1858) (0.6450 0.2873)

R3 (0.5000 0.3896) (0.8035 0.1614) (0.8035 0.1614) (0.6372 0.2832) (0.8678 0.1216)

R4 (0.7622 0.1333) (0.5000 0.3896) (0.5000 0.3896) (0.4384 0.4529) (0.4691 0.4209)

ω j (0.5505 0.3956) (0.6591 0.2925) (0.8529 0.0866) (0.5605 0.3756) (0.4495 0.5000)

Table 13.7 Normalized fuzzy decision matrix and weight of criteria

C1 C2 C3 C4 C5

R1 0.0000 0.0000 0.0000 0.0000 0.7816

R2 0.9997 0.2508 0.3385 1.0000 0.4423

R3 0.3300 1.0000 1.0000 0.6096 1.0000

R4 0.8692 0.2508 0.3385 0.0873 0.0000

ω j 0.1759 0.2094 0.2745 0.1810 0.1592

Table 13.8 Positive and negative ideal solutions

Min Min Min Min Min

C1 C2 C3 C4 C5

f j* (0.3500 0.5500) (0.4082 0.4852) (0.3933 0.5351) (0.4082 0.4852) (0.4691 0.4209)

f j− (0.8486 0.1333) (0.8035 0.1614) (0.8035 0.1614) (0.7945 0.1858) (0.8678 0.1216)

Table 13.9 Normalized intuitionistic fuzzy differences

C1 C2 C3 C4 C5

R1 0.0000 0.0000 0.0000 0.0000 0.1244

R2 0.1759 0.0525 0.0929 0.1810 0.0704

R3 0.0581 0.2094 0.2745 0.1104 0.1592

R4 0.1529 0.0525 0.0929 0.0158 0.0000

Table 13.10 τi and ψi values

R1 R2 R3 R4

τi 0.1244 0.5727 0.8115 0.3141

ψi 0.1244 0.1810 0.2745 0.1529

Table 13.11 VIKOR index Qi values

R1 R2 R3 R4

Qi 0.0000 0.5699 1.0000 0.2502
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Table 13.12 Rank of risk factors in wind power plants based on Qi values

R1 R2 R3 R4

τi 4 2 1 3

ψi 4 2 1 3

Qi 4 2 1 3

environment could the research one step ahead. Since the presence of failure could
cause more cost, the IF-VIKOR captures a board frame to define vague decisions
[16, 19]. Therefore, fuzzy logic and multi-criteria decision-making offer different
research topics with various managerial and practical implications.

13.5 Conclusion and Future Research

This chapter addresses a qualitative IF-VIKORmethod to evaluate the risk factors of
wind power plants. The increasing demand for energy needs sustainable and reliable
energy production. While satisfying the resident’s energy demands, environmental
issues are getting the attention of the communities. For these reasons, communities try
to increase their renewable energy production rate in overall energy production. The
communities are turning to renewable energy sources such as solar and wind power.
However, the reliability and sustainability issues could not eliminate in renewable
energy sources due to the stochastic nature of theweather conditions. Such a situation
causes an increase in the possibility of risk and failure during energy production.
Therefore, the objective of this chapter is to provide a decision-making model for
ranking the risk and failures thatwind power plantsmayduring electricity production.
Four risk and failure causes are investigated in the proposed model using numerical
andverbal components andfive assessment criteria. To reflect evaluation criteriamore
comprehensively, IF-VIKORmethodology is applied to define the highest and lowest
risk and failure sources that power plantsmay face during their operations. IF-VIKOR
approach is proposed to evaluate themost and least risk and failure sources that power
plants may experience throughout their operations. The proposed approach is applied
to a case scenario in which there are 4 risk factors and 5 criteria. In the case scenario,
four decision-makers evaluated the risk factor under the determined criteria. The
results imply that the most important risk factor is unstable weather conditions. The
remaining risk factors are ranked in importance as follows downtime of the power
plant, changes in government policy, and delay in production.According to the results
of this chapter, it is clear that risk factors in wind power plants cannot be eliminated;
therefore, policymakers should take into consideration the weather conditions as the
first priority.
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Future research could focus on implementing various weights of criteria to examine the
suggested model’s sensitivity. To decide the limitations for the weight of the criteria in the
best way possible, an optimization model could be used. To determine the subjective weight
of criterion, the proposed IF-VIKORmethod could be combinedwith otherMCDMmethods.
In addition, Intuitionistic, Pythagorean, Neutrosophic, or different fuzzy logic types can be
used to increase the functionality of the suggested IF-VIKOR model. The suggested model
should be compared to other MCDM methods as TOPSIS, ELECTRE, TODIM, etc., under
various types of fuzzy logic concepts, in order to assess its efficacy.
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Chapter 14
Some Discrete Parametric
Markov–Chain System Models
to Analyze Reliability

Rakesh Gupta, Shubham Gupta, and Irfan Ali

Abstract The chapter deals with the development of various reliability character-
istics and the inter-relations between them when the random variable denoting the
lifetime of a device follows a discrete distribution. It analyzes the reliability char-
acteristics for an n-unit series, parallel and standby system models when the failure
times of the units are discrete random variables. The results are also drawn in the
case when the lifetimes of the units follow geometric distributions. Many important
conclusions are drawn regarding the lower/upper bounds of the number of units in
the system and the failure rate of a unit. This chapter also presents the cost–benefit
analysis of two identical unit warm standby repairable system models, assuming
the geometric distributions of failure and repair times. A single repairman is always
considered with the system to repair a failed unit. The results may also be obtained
for the following two particular cases—(i) Two identical unit cold standby systems
with geometric failure and repair time distributions and (ii) Two identical unit parallel
systems with geometric failure and repair time distributions. The curves for MTSF
and net-expected profit per unit of time in steady state are drawn to study the system
behavior in respect of different parameters, and various important conclusions from
the curves of these characteristics are drawn.
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14.1 Introduction

The ever-developing technology and the increasing needs of society in the scenario
of present-day cause many problems concerning the effectiveness of various arti-
cles/systems sound in industries, health services and day-to-day life. A fault or inter-
ruption in the operation of a system deteriorates its quality, and the system is declared
as failed either partially or totally. Thus, the failures usually happening in the ways
of life, and the penalties paid by the user in terms of money, time and security are
becomingmore andmore severe due to the increasing application of complexities and
automation. A better understanding of the causes of failure, the latest manufacturing
techniques, designing of new systems with proper selection as well as an optimum
network of components of high quality and the consideration of appropriate methods
for reliability improvement are some of the basic techniques which can be applied
to minimize the degree of failure of the system.

The reliability of a system can be improved in several ways. We can use tech-
niques to improve the system’s reliability that best suits the operating conditions and
cost constraints. We know that a unit/system is composed of several components
or elements, and to make the system more reliable, we have to use highly reliable
components. Since highly reliable components, or the cost of producing such compo-
nents is very high. In that case, we can improve the system’s reliability by introducing
redundancies. In a redundant system, either one of the components/units is sufficient
for the system’s successful operation; we deliberately use more components/units
to increase the probability of success. The extra components or units used in the
system are known as redundancies. There are two types of redundancies—active and
passive or standby. The standby redundanciesmay be classified as hot, warm and cold
according to how they are loaded in the standby state. The other methods to improve
the system’s reliability are preventive maintenance (p.m.) and repair maintenance
(r.m.).

The p.m. is a repair done before the unit fails—for example, servicing an automo-
bile, oiling a machine, etc. Usually, a periodic policy for p.m. is adopted. However,
it is not always possible to perform this maintenance action exactly when desired,
so one would expect the time at which the p.m. is made to be a random variable
(r.v.) having small dispersion about the desired time. Repair maintenance (r.m.)
is concerned with increasing system reliability by implementing major changes in
the failed unit/system. In order to increase reliability, the failed components of the
unit/system are repaired or replaced by new ones. When a system is intended for
use over a long period or when the cost of a new unit/system is considered too high,
introducing a repair facility is worth considering to improve system effectiveness.

Reliability characteristics, such as the probability of survival, the system’s failure
rate, mean time to failure, mean operative time of the system during a finite interval
and expected frequency of failures, are some measures of system effectiveness.
These measures provide necessary criteria by which alternate design policies can
be compared and judged to help the system planner select one that best satisfies the
objectives under certain techno-economic constraints.
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14.2 Concepts Used in Analyzing System Models

Several research articles in the field of reliabilitymodeling have been analyzed during
the past four decades by many authors on the system models of continuous para-
metric Markov–Chain using various real existing important concepts. A few of them
are listed with related references as: Priority Unit [1–9], Partial Failure [5, 10–14],
Imperfect and Slow Switching Device [2, 15–19], Administrative Delay in Repair
[4, 20, 21], Preparation for Repair of a Failed Unit [22–24], Common Cause Failure
[25–27], Preventive Maintenance [28–30].

Random Shocks [3, 6, 29], Repair Machine Failure [31–33], Rest to Oper-
ator/Repairman [34, 35], RandomAppearance andDisappearance of Repairman [14,
36–38], Two Types of Failure and Repair [11, 39, 40], Man–Machine System /Phys-
ical Conditions [36, 41, 42], Abnormal Weather Condition [41, 43, 44], Repair and
Replacement Policies [45, 46], Repair and Post-Repair Policies [47, 48], Two-Phase
Repair [28, 49], Correlated Failure and Repair [10, 22, 23, 37, 48], Correlated Life
Times [33, 46, 49, 50] andCorrelatedWorking andRest Time ofRepairman/Operator
[51, 52].

14.3 Concept of Discrete Failure and Repair Time Models

In practice, the situations exist when the failure and repair of a unit occur at discrete
random epochs so that the lifetime and repair time of a unit follow discrete distri-
butions like geometric, negative binomial, Poisson, etc. Discrete failure data arise in
several common situations. For example:

(a) A device is monitored only once per period (i.e., an hour, a day, a minute), and
the observation is the number of periods completed before the failure.

(b) A piece of equipment operates in cycles, and the experimenter observes the
number of completed cycles before failure.

Some examples of discrete lifetimes are as follows

1. In a photocopy machine, the bulb is lightened whenever the machine takes paper
for Xerox purposes. Thus, the lifetime of the bulb is a discrete random variable.

2. In an on/off switching device, the lifetime of the switch is a discrete random
variable.

3. A spring may break down, completing a certain number of cycles of ‘to and fro’
movements, and then, the lifetime of the spring is a discrete random variable.

4. The bulb is lightened whenever the door is opened in a refrigerator. Thus, the
lifetime of the bulb is a discrete random variable.

5. The strength in terms of the number of shocks that a product can withstand a
discrete random variable.

More so, let the continuous time period (0,∞) is divided as 0, 1, 2, …, n,
of equal distance on the real line, and the probability of failure of a unit during
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time (i, i + 1); i = 0, 1, 2 . . . is p. Then, the probability that the unit will fail
during (t, t + 1), i.e., after passing successfully t intervals of time, is given by
p(1 − p)t ; t = 0, 1, 2, . . .. This is the probability mass function (p.m.f.) of the
geometric distribution. Similarly, if r denotes a failed unit’s probability of being
repaired (i, i + 1); i = 0, 1, 2 . . .. Then, the probability that the unit will be repaired
(t, t + 1) is given by r(1 − r)t ; t = 0, 1, 2 . . ..

14.4 Development of Some Important Results

Let the discrete r.v. T be the lifetime of a device having p.m.f.

P(T = t) = g(t); t = 0, 1, 2, . . . ∞ (14.4.1)

Then, the reliability or survival function of the device is the probability that the
system has completed for at least t epochs (cycles) and is defined as

R(t) = P(T > t − 1) = P(T ≥ t) =
∞∑

j=t

g( j) (14.4.2)

and the failure rate function of the discrete distribution is given by

r(t) = g(t)∑∞
j=t p j

= g(t)

R(t)
(14.4.3)

Clearly, R(0) = 1 and r(t) ≤ 1.
The unreliability of the system is equal to the C.d.f. of time to system failure and

is defined as

F(t) = P(T < t) =
t−1∑

j=0

g( j)

Obviously,

F(t) + R(t) =
t−1∑

j=0

g( j) +
∞∑

j=t

g( j) = 1

By the definition of expectation, the mean life of the device is

E(T ) =
∞∑

t=0

tg(t) =
∞∑

t=0

t[R(t) − R(t + 1)]
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=
∞∑

t=1

R(t) (14.4.4)

To establish the inter-relations between failure rate, reliability function and failure
time p.m.f., let us consider

r(t) = g(t)

R(t)
= R(t) − R(t + 1)

R(t)

= 1 − R(t + 1)

R(t)

Therefore,

R(t + 1)

R(t)
= 1 − r(t) (14.4.5)

Now writing R(t) as

R(t) = R(t)

R(t − 1)
.
R(t − 1)

R(t − 2)
· · · R(1)

R(0)
.R(0)

= [1 − r(t − 1)][1 − r(t − 2)] . . . [1 − r(0)].R(0), using (4.5)

=
t−1∏

i=0

[1 − r(i)], as R(0) = 1 (14.4.6)

Now, using (14.4.3) and (14.4.6),weget an interesting relationship between failure
rate and failure time p.m.f. as follows:

g(t) = r(t)
t−1∏

i=0

[1 − r(i)] (14.4.7)

when the lifetime T of the device (system) follows a geometric distribution with
p.m.f.

g(t) = pqt ; q = 1 − p, t = 0, 1, 2 . . .

Then, reliability function is given by

R(t) = p[T > t − 1]

=
∞∑

j=t

pq j = qt (14.4.8)

and the hazard rate is
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Table 14.1 Inter-relations among g(t), F(t), R(t) and r(t)

Function Expressed by

g(t) F(t) R(t) r(t)

g(t) – F(t + 1) − F(t) R(t) − R(t + 1) r(t)
∏t−1

i=0 {1 − r(i)}
F(t)

∑t−1
j=0 g( j) – 1 − R(t) 1 − ∏t−1

i=0 {1 − r(i)}
R(t)

∑∞
j=t g( j) 1 − F(t) –

∏t−1
i=0 {1 − r(i)}

r(t) g(t)∑∞
j=t g( j)

F(t+1)−F(t)
1−F(t)

R(t)−R(t+1)
R(t) –

r(t) = g(t)

R(t)
= p(probability of failure of the device in each cycle) (14.4.9)

Also, the expected life of the device is (Table 14.1)

E(T ) =
∞∑

t=1

R(t)

=
∞∑

t=1

qt = q

1 − q
= q

p
(14.4.10)

A large number of discrete parametric Markov–Chain models pertaining to the
two-unit reparable redundant systems have been analyzed in respect of reliability and
cost-benefit measures of system effectiveness during the last fifteen years, including
[32, 53–57].

14.5 Analysis of n-Unit Series System

Let us suppose thatwe have n independent functioning unitsU1,U2, . . . ,Un arranged
in a series configuration with lifetime Ti and reliability function Ri of the ith unit.
Then, the reliability of the series system is

R(t) = P(T > t − 1)

= P[min . (T1, T2, . . . Tn) > t − 1]

= P[T1 > t − 1, T2 > t − 1, . . . Tn > t − 1]

=
n∏

i=1

P[Ti > t − 1] =
n∏

i=1

Ri (t) (14.5.1)

To obtain system failure rate r(t) in terms of unit failure rates r1(t).r2(t) . . . rn(t),
we apply result (14.4.6) on both sides of (14.5.1) so that
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t−1∏

j=0

[1 − r( j)] =
n∏

i=1

⎡

⎣
t−1∏

j=0

{1 − ri ( j)}
⎤

⎦

=
t−1∏

j=0

n∏

i=1

{1 − ri ( j)}

⇒ 1 − r(t) =
n∏

i=1

{1 − ri (t)}

⇒ r(t) = 1 −
n∏

i=1

{1 − ri (t)} (14.5.2)

When the lifetime Ti (i = 1, 2, . . . , n) of ith unit Ui follows a geometric
distribution with parameter pi , i.e.,

P(Ti = t) = piq
t
i ; t = 0, 1, 2, . . . ; qi = 1 − pi

Then, using (14.5.1), the system reliability is

R(t) =
n∏

i=1

Ri (t) =
n∏

i=1

qt
i

=
(

n∏

i=1

qi

)t

(14.5.3)

Now using (14.5.2), the failure rate of the system is given by

r(t) = 1 −
n∏

i=1

[1 − pi ] = 1 −
n∏

i=1

qi (14.5.4)

Therefore, by result (14.4.7), the system lifetime p.m.f. is

g(t) =
[
1 −

n∏

i=1

qi

][
n∏

i=1

qi

]t

(14.5.5)

which is the p.m.f. of geometric distribution with parameter
[
1 − ∏n

i=1 qi
]
.

The expected life of the system is

E(T ) =
∞∑

t=1

R(t) =
∞∑

t=1

[
n∏

i=1

qi

]t
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=
∏n

i=1 qi
1 − ∏n

i=1 qi
(14.5.6)

In the case of identical units, we consider

p1 = p2 = · · · = pn = p(= 1 − q)

Then, the results (14.5.3) to (14.5.6) become

R(t) = qnt

r(t) = 1 − qn

g(t) = (
1 − qn

)(
qn

)t

and

E(T ) = qn

1 − qn
(14.5.7–14.5.10)

The curves for R(t) and r(t) with respect to n for different values of q when t =
200 h are sketched, respectively, in Figs. 14.1 and 14.2.

Similarly, the curves for R(t) and r(t) with respect to p for different values of n
when t = 50 h are sketched, respectively, in Figs. 14.3 and 14.4.

In case, if one is to achieve system reliability, at least K1 units, i.e.,

Fig. 14.1 Reliability curves for series system with respect to ‘n’ for different values of ‘q’ (t =
200 h)
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Fig. 14.2 Failure rate curves for series system with respect to ‘n’ for different values of ‘q’ (t =
200 h)

Fig. 14.3 Reliability curves for series system with respect to ‘p’ for different values of ‘n’ (t =
50 h)
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Fig. 14.4 Failure rate curves for series system with respect to ‘p’ for different values of ‘n’ (t =
50 h)

R(t) = qnt ≥ K1

Then,

n ≤ log K1

t log q
(14.5.11)

which provides the upper limit of the number of units in series to obtain the system’s
reliability of at least K1 units.

Further, for R(t) = qnt ≥ K2

We have

p ≤ 1 − K 1/nt
2 (14.5.12)

i.e., the failure rate of each unit should not exceed the value
(
1 − K 1/nt

2

)
to achieve

reliability of the system at least K2 units.
Now, if one decides the upper limit of the system failure rate as

r(t) = (
1 − qn

) ≤ K3

then

n ≤ log(1 − K3)

log(q)
(14.5.13)
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which provides the upper limit of the number of units in series to obtain the system
failure rate, not more than K3.

Also, for

r(t) = (
1 − qn

) ≤ K4

we have

p ≤ 1 − (1 − K4)
1/n (14.5.14)

i.e., the failure rate of each unit should not exceed the value
{
1 − (1 − K4)

1/n
}
.

Concluding Remarks

As an illustration, to achieve at least reliability 0.50 units when t = 200 h, the result
(14.5.11) provides that the number of components in series system should not exceed
3.46 (= 3), 2.89 (= 2) and 2.47 (= 2), respectively, for q= 0.9990, 0.9988 and 0.9986
which are verified from Fig. 14.1. Similarly, to achieve failure rate at the most 0.006,
when t = 200, we find from result (14.5.13) that the number of components in series
system should not exceed 6.03 (= 6), 5.01 (= 5) and 4.30 (= 4), respectively, for q
= 0.990, 0.9988 and 0.9986 which are verified from Fig. 14.2. Similarly, to achieve
reliability of 0.30 units when t = 50, the result (14.5.12) provides that the failure
rate of each unit should not exceed 0.0048, 0.0024 and 0.0016, respectively, for n
= 5, 10 and 15. It is also verified from Fig. 14.3. Finally, to achieve the failure rate
of the series system at the most 0.03 when t = 50, the result (14.5.14) reveals that
the failure rate of each unit should not exceed the values 0.0061, 0.0030 and 0.0019,
respectively, for n = 5, 10 and 15, which are verified from Fig. 14.4.

14.6 Analysis of n-Unit Parallel System

We know that in the parallel configuration of the units, U1,U2, . . . ,Un the system
reliability is given by

R(t) = 1 −
n∏

i=1

[1 − Ri (t)] (14.6.1)

In case the lifetimes of the units U1,U2, . . . ,Un follow geometric distributions
with parameters p1, p2, . . . , pn , respectively.

Then,

R(t) = 1 −
n∏

i=1

[
1 − qt

i

]
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=
n∑

i=1

qt
i −

n∑

i< j=1

(
qiq j

)t+
n∑

i< j<k=1

(
qiq jqk

)t + · · · + (−1)n−1

(
n∏

i=1

qi

)t

(14.6.2)

and the system lifetime p.m.f. is

g(t) = R(t) − R(t + 1)

=
n∑

i=1

qt
i (1 − qi )−

n∑

i< j=1

(
qiq j

)t(
1 − qiq j

)

+ · · · + (−1)n−1

(
n∏

i=1

qi

)t(
1 −

n∏

i=1

qi

)
(14.6.3)

Therefore, the failure rate of the system is

r(t) = g(t)

R(t)
=

∏n
i=1

(
1 − qt+1

i

) − ∏n
i=1

(
1 − qt

i

)

1 − ∏n
i=1

(
1 − qt

i

) (14.6.4)

Now, the mean lifetime of the system is

E(T ) =
∞∑

t=1

R(t)

=
n∑

i=1

qi
(1 − qi )

−
n∑

i< j

qiq j

1 − qiq j
+ · · · + (−1)n−1

∏n
i=1 qi

1 − ∏n
i=1 qi

(14.6.5)

When the units are identical, i.e., pi = p ∀ i = 1, 2, . . . , n; then the result (14.6.2)
to (14.6.5) become

R(t) = 1 − (
1 − qt

)n

g(t) = (
1 − qt+1)n − (

1 − qt
)n

r(t) =
(
1 − qt+1

)n − (
1 − qt

)n

1 − (1 − qt )n

and

E(T ) =
∞∑

t=1

[
1 − (

1 − qt
)n]
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=
n∑

j=1

(
n

j

)
(−1) j−1 q j

1 − q j
(14.6.6–14.6.9)

The curves for R(t)with respect to n for three different values of q= 0.990, 0.998
and 0.996 for fixed t = 200 h are sketched in Fig. 14.5, and the curves for R(t) with
respect to p for n = 5, 10 and 15 for fixed t = 50 h are sketched in Fig. 14.6.

In a parallel system, it is evident that the system’s reliability increases as we
increase the number of units in the system. So, in order to get the reliability of the
system, at least K5 units, i.e.,

R(t) = 1 − (
1 − qt

)n ≥ K5

The minimum number of units required in the system is given by

n ≥ log(1 − K5)

log(1 − qt )
(14.6.10)

Further, to achieve R(t) = 1 − (
1 − qt

)n ≥ K6, we get

p(= 1 − q) ≤ 1 − [
1 − (1 − K6)

1/n
]1/t

(14.6.11)

i.e., the failure rate of each unit should not exceed the value

Fig. 14.5 Reliability curves for parallel system with respect to ‘n’ for different values of ‘q’ (t =
200 h)
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Fig. 14.6 Reliability curves for parallel system with respect to ‘p’ for different values of ‘n’ (t =
50 h)

1 − [
1 − (1 − K6)

1/n
]1/t

Concluding Remark

As an illustration, to achieve at least a system reliability of 0.60 when t = 200 h,
the result (14.6.10) provides that the minimum number of units to be considered in
parallel must be 6.4 (= 7), 9.10 (= 10) and 14.9 (= 15), respectively, for q = 0.990,
0.988 and 0.986 (verified from Fig. 14.5). Similarly, from the result (14.6.11), we
find that the failure rate of each system unit should not exceed the values 0.028, 0.040
and 0.047, respectively, for n = 5, 10 and 15 to achieve at least system reliability of
0.75 at t = 50 h (verified from Fig. 14.6).

14.7 Analysis of n-Unit Standby System

In an n-unit standby system, if Ti is the lifetime of ith unit, then the system lifetime
T is given by

T =
n∑

i=1

Ti (14.7.1)

So, the expected lifetime of the system is
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E(T ) =
n∑

i=1

E(Ti ) (14.7.2)

If gi (t) denotes the p.m.f. of Ti and g(t) denotes the p.m.f. of T. Then n = 2, we
get

g(t) =
t∑

u = 0

g1(u) g2(t − u) = g1(t)© g2(t) (14.7.3)

When Ti follows a geometric distribution with parameter pi

g(t) =
t∑

u=0

p1q
u
1 p2q

t−u
2

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1 p2
(
qt+1
2 − qt+1

1

)

q2 − q1
; if p1 �= p2

p2(t + 1)qt =
(
t + 1

1

)
p2qt ; if p1 = p2 = p

= Negative binomial(2, p) (14.7.4)

In general, for n-unit standby system

g(t) = g1(t)© g2(t)© . . . © gn(t) (14.7.5)

where

gi (t) = piq
t
i ; i = 1, 2, . . . , n

and for p1 = p2 = · · · = pn = p

g(t) =
(
t + n − 1

n − 1

)
pnqt

= Negative binomial(n, p) (14.7.6)

The reliability of the system n = 2 is given by

R(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
j=1

p1 p2(qt+1
2 −qt+1

1 )
q2−q1

= p1q
t+1
2 −p2q

t+1
1

q2−q1
; if p1 �= p2

p2
∞∑
j=t

( j + 1)q j = (1 + pt)qt ; if p1 = p2 = p
(14.7.7)
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Alternatively, the reliability of a two-unit standby system can be obtained as
follows:

R(t) = P[T > t − 1] = P[T ≥ t]

= P[Unit 1st survives up to time(t − 1)] + P[Unit 1st fails at epoch u,

u < t − 1; 2nd unit switched on, and it survives up to (t − 1 − u)]

= qt
1 +

t−1∑

u=0

p1q
u
1 q

t−u
2

=

⎧
⎪⎨

⎪⎩

p1q
t+1
2 − p2q

t+1
1

q2 − q1
; when p1 �= p2

(1 + pt)qt ; when p1 = p2 = p

(14.7.8)

In general, the reliability of the n-unit standby system is given by

R(t) = R1(t) + g1(t − 1)© R2(t − 1) + g1(t − 1)© g2(t − 1)© R3(t − 1) + · · ·
+ g1(t − 1)© g2(t − 1)© . . . gn−1(t − 1)© Rn(t − 1) (14.7.9)

To find the expected lifetime of the n-unit standby system, we have

E(Ti ) =
∞∑

t=0

tpiq
t
i = qi

pi

Therefore,

E(T ) =
⎧
⎨

⎩

n∑
i=1

qi
pi

; for non-identical units
nq
p ; for identical units

(14.7.10)

If one wants to achieve the system’s expected life at least K7 with n0 identical
units, then the result (14.7.10) implies that he must consider each unit in the system
such that the failure rate of each unit should not exceed the value n0/(n0 + K7).

14.8 A Two Identical Unit Warm Standby System Model
with Geometric Failure and Repair Time Distributions

Here, we have considered two identical units. Each unit has two modes—normal (N)
and total failure (F). Initially, the system starts functioning from a state S0 where both
the units are in N-mode, with one unit operative and the other as a warm standby.
The system reaches state S1 if in state S0 either the operating unit fails with rate ‘p’
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Fig. 14.7 The transition diagram of the system model

or the warm standby unit fails with rate p′. The system also reaches state S2 from S1
if both the units (operative and warm standby) in state S0 fail simultaneously at the
same epoch. As soon as the system transits from state S0 to S1, the failed unit goes
into repair, and other units operate in N-mode. Further, as the system reaches state
S2 from S0, one of the failed units goes into repair, and the other waits for repair as
we assume a single repairer with the system to repair a failed unit.

Similarly, we have three possible transitions from S1 and one from S2 where ‘r’
represents the repair rate of a failed unit. A repaired unit is also assumed always
to work as well as new. The transition diagram of the system model is shown in
Fig. 14.7.

We define,

pqx (p + q = 1): p.m.f. of failure time of a operative unit; x = 0, 1, . . .

p′q ′x(p′ + q ′ = 1
): p.m.f. of failure time of a warm standby unit; x = 0, 1, . . .

rsx(r + s = 1): p.m.f. of repair time of a failed unit; x = 0, 1, . . .

qi j (t); i, j = 0, 1, 2: p.m.f. of transition time Ti j from state Si to Sj .

14.8.1 Transition Probabilities

Let

Qi j (t) = P
[
System transits from Si to Sj at any epoch ≤ t

]

Therefore,

Q01(t) =
t∑

u=0

P
[
Either operative or warm standby unit fails at epoch u

]
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=
t∑

u=0

pqu
(
q ′)u+1+

t∑

u=0

p′(q ′)uqu+1

= pq ′

1 − qq ′
[
1 − (

qq ′)t+1
]

+ p′q
1 − qq ′

[
1 − (

qq ′)t+1
]

Similarly,

Q02(t) =
t∑

u=0

P[Operating unit as well as warm standby unit in

S0 fail at same epoch u]

=
t∑

u=0

pqu p′(q ′)u = pp′

1 − qq ′
[
1 − (

qq ′)t+1
]

Q10(t) =
t∑

u=0

rsuqu+1 = rq

1 − qs

[
1 − (qs)t+1]

Q11(t) =
t∑

u=0

pqursu = pr

1 − qs

[
1 − (qs)t+1

]

Q12(t) =
t∑

u=0

pqusu+1 = ps

1 − qs

[
1 − (qs)t+1

]

Q21(t) =
t∑

u=0

rsu = (
1 − st+1

)

The steady-state transition probability from state Si to Sj is given by

pi j = lim
t→∞ Qi j (t)

So that

p01 = pq ′

1 − qq ′ + p′q
1 − qq ′ , p02 = pp′

1 − qq ′ , p10 = rq

1 − qs
,

p11 = pr

1 − qs
, p12 = ps

1 − qs
, p21 = 1 (14.8.1.1–14.8.1.6)

Obviously,

p01 + p02 = 1, p10 + p11 + p12 = 1 (14.8.1.7, 14.8.1.8)



14 Some Discrete Parametric Markov–Chain System Models to Analyze … 321

14.8.2 Mean Sojourn Time in the Various States

Let Ti be the sojourn time in the state Si ; i = 0, 1, 2, then the mean sojourn time in
the state Si is

ψi =
∞∑

t=1

P(Ti > t − 1) =
∞∑

t=1

P(Ti ≥ t]

So that

ψ0 =
∞∑

t=1

qt
(
q ′)t = q q ′

1 − q q ′

Similarly,

ψ1 =
∞∑

t=1

qt st = qs

1 − qs

ψ2 =
∞∑

t=1

st = s

r
(14.8.2.1–14.8.2.3)

14.8.3 Analysis of Reliability and MTSF

We define Ri (t) it as the probability that the system does not fail during the first ‘t’
cycles, i.e., up to the epoch (t − 1) when the system initially starts from upstate Si
(i = 0, 1). To determine it, we regard the failed state S2 as absorbing. In particular,

R0(t) = P[System sojourns in S0 up to epoch (t − 1)]
+ P[System transits from S0 to S1 at epoch u ≤ t − 1

and then starting from S1 system remains up during

the remaining epochs (t − 1 − u)]

= qt
(
q ′)t +

t−1∑

u=0

q01(u)R1(t − 1 − u)

= Z0(t) + q01(t − 1)© R1(t − 1) (14.8.3.1)

Similarly,

R1(t) = Z1(t) + q10(t − 1)© R0(t − 1) + q11(t − 1)© R1(t − 1) (14.8.3.2)
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where Z1(t) = (qs)t .
Taking geometric transforms defined as R∗(h) = ∑∞

t=0 h
t R(t), of relations

(14.8.3.1) and (14.8.3.2), we get

R∗
0(h) = Z∗

0(h) + hq∗
01(h)R∗

1(h)

R∗
1(h) = Z∗

1(h) + hq∗
10(h)R∗

0(h) + hq∗
11(h)R∗

1(h)

Solving the above equations for R∗
0(h), we get

R∗
0(h) =

[
1 − hq∗

11(h)
]
Z∗
0(h) + hq∗

01(h)Z∗
1(h)

1 − hq∗
11(h) − h2q∗

01(h)q∗
10(h)

(14.8.3.3)

The value R0(t) is obtained by collecting the coefficient of ht in (14.8.3.3).
The MTSF is

E(T ) =
∞∑

t=1

R0(t) = lim
h→1

∞∑

t=1

ht R0(t)

= lim
h→1

R∗
0(h) − 1

Observing that

lim
h→1

Z∗
i (h) =

∞∑

t=0

Zi (t) = Zi (0) +
∞∑

t=1

Zi (t) = (1 + ψi )

and

lim
h→1

q∗
i j (h) = pi j

we get

E(T ) = (1 − p11)(1 + ψ0) + p01(1 + ψ1)

1 − p11 − p01 p10
(14.8.3.4)

14.8.4 Availability Analysis

We define

Ai (t) = P[System is up (operative) during the t th cycle (t − 1, t)

when system initially starts from Si ; i = 0, 1, 2]
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In particular,

A0(t) = qt
(
q ′)t +

t−1∑

u=0

q01(u)A1(t − 1 − u) +
t−1∑

u=0

q02(u)A2(t − 1 − u)

= Z0(t) + q01(t − 1)© A1(t − 1) + q02(t − 1)© A2(t − 1)

Similarly,

A1(t) = Z1(t) + q10(t − 1)© A0(t − 1) + q11(t − 1)© A1(t − 1)

+ q12(t − 1)© A2(t − 1)

A2(t) = q21(t − 1)© A1(t − 1) (14.8.4.1–14.8.4.3)

Taking geometric transforms of the above relations and solving the resulting set
of algebraic equations A∗

0(h), we get

A∗
0(h) = N1(h)

D(h)
(14.8.4.4)

where

N1(h) = [
1 − hq∗

11(h) − h2q∗
12(h)q∗

21(h)
]
Z∗
0(h)

+ [
hq∗

01(h) + h2q∗
02(h)q∗

21(h)
]
Z∗
1(h)

and

D(h) = [
1 − hq∗

11(h) − h2q∗
12(h)q∗

21(h)
]

− hq∗
10(h)

[
hq∗

01(h) + h2q∗
02(h)q∗

21(h)
]

The steady-state availability of the system is given by

A0 = lim
t→∞ A0(t) = lim

h→1
(1 − h)A∗

0(h)

Observing that q∗
i j (1) = pi j and D(1) = 0, we get

A0 = p10(1 + ψ0) + (1 + ψ1)

p10(1 + ψ0) + (1 + ψ1) + (p12 + p10 p02)(1 + ψ2)
(14.8.4.5)

The expected uptime of the system up to the cycles (t − 1, t) is

μup(t) =
t∑

u=0

A0(u) so that μ∗
up(h) = A∗

0(h)

(1 − h)
(14.8.4.6)



324 R. Gupta et al.

14.8.5 Busy Period Analysis

Let Bi (t) be the probability that the repairman is busy repairing a failed unit during
the tth cycle (t − 1, t) when initially system starts from Si ; i= 0, 1, 2. Using the same
probabilistic arguments as in the case of availability analysis, we have the following
recurrence relations for Bi (t)

B0(t) = q01(t − 1)© B1(t − 1) + q02(t − 1)© B2(t − 1)

B1(t) = Z1(t) + q10(t − 1)© B0(t − 1) + q11(t − 1)© B1(t − 1)

+ q12(t − 1)© B2(t − 1)

B2(t) = Z2(t) + q21(t − 1)© B1(t − 1) (14.8.5.1–14.8.5.3)

where Z2(t) = st .
Taking geometric transforms of the above relations and solving the resulting set

of equations B∗
0 (h), we get

B∗
0 (h) = N2(h)

D(h)
(14.8.5.4)

where

N2(h) = [
hq∗

01(h) + h2q∗
02(h)q∗

21(h)
]
Z∗
1(h)

+ [
h2q∗

01(h)q∗
12(h) + hq∗

02(h)
{
1 − hq∗

11(h)
}]
Z∗
2(h)

In the long run, the probability that the repairman will be busy is given by

B0 = lim
t→∞ B0(t) = lim

h→1
(1 − h)B∗

0 (h)

= (1 + ψ1) + (p12 + p10 p02)(1 + ψ2)

p10(1 + ψ0) + (1 + ψ1) + (p12 + p10 p02)(1 + ψ2)
(14.8.5.5)

The expected busy period of the repairman up to the tth cycle (t − 1, t) is

μb(t) =
t∑

u=0

B0(u) so that μ∗
b(h) = B∗

0 (h)

1 − h
(14.8.5.6)

14.8.6 Profit Function Analysis

Let C0 be the revenue per cycle by the system when it is operative and C1 be the
repair cost per cycle when the system is under repair. Then, the net-expected profit
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earned by the system when it is observed in ‘t’ cycles is given by

P(t) = Total expected revenue up to t th cycle − Total cost of repair up to t th cycle

= C0μup(t) − C1μb(t) (14.8.6.1)

The expected profit per epoch in steady state is

P = lim
t→∞

P(t)

t
= C0A0 − C1B0 (14.8.6.2)

The results can be obtained for two identical unit cold standby and parallel system
model, respectively, when p′ = 0 and p′ = p.

14.8.7 Graphical Conclusions

For a more detailed view of the behavior of system characteristics with respect to
the various parameter involved, we plot curves for MTSF and profit function in
Figs. 14.8 and 14.9 with respect to the failure parameter ‘p’ for three different values
of repair parameter ‘r’ and two different values of failure parameter ‘p′’. From the
curves of Fig. 14.8, we observe that MTSF increases uniformly as the values of ‘r’
increase and ‘p′’ decrease and decrease with the increase in ‘p’. Further, we also
observe from the smooth curves of Fig. 14.8 that the values of ‘p’ must be less than
0.167, 0.179 and 0.190 corresponding to r = 0.20, 0.25 and 0.30 to achieve at least
15 units of MTSF when p′ = 0.1. From the dotted curves, we observe that the values
of ‘p’ must be less than 0.21, 0.229 and 0.249 corresponding to r = 0.20, 0.25 and
0.30 to achieve at least 15 units of MTSF when p′ = 0.

Similarly, Fig. 14.9 reveals the variations in profit with respect to ‘p’ for varying
values of ‘r’ and ‘p′’, when the values of other parameters are kept fixed as C0 = 200
and C1 = 100. From this figure, it is clearly observed from the smooth curves that
the system is profitable if the value of parameter ‘p’ is less than 0.178, 0.278 and
0.380, respectively, for r = 0.10, 0.15 and 0.20 when p′ = 0.1. From dotted curves,
we conclude that system is profitable if the value of parameter ‘p’ is less than 0.2,
0.3 and 0.4, respectively, for r = 0.10, 0.15 and 0.20 for fixed value of p′ = 0.
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Fig. 14.8 Behavior of MTSF with respect to ‘p’, ‘r’ and ‘p′’

Fig. 14.9 Behavior of profit with respect to ‘p’, ‘r’ and ‘p′’
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Chapter 15
Distributed System Reliability Analysis
with Two Coverage Factors: A Copula
Approach

Ibrahim Yusuf and Ismail Tukur

Abstract Traditional performance and reliability analysis for distributed systems
frequently overestimates the fundamental dependability of their components. To
address this quandary, a copula approach for analyzing the performance of distributed
system situated to two separate regions employing fault coverage factor in each
region is proposed at first. Copula technique is a powerful tool for describing vari-
able dependence and has received much attention in a variety of fields of study.
Regions I and II consist of two client and one directory server each. In this chapter,
we also introduce coverage factors for each region, such that the failure of each client
and directory server for each region is detected by the coverage factor. Each area
designed for this systemhas a constant failure rate. This is prone to two sorts of failure:
lower failure and higher failure. When a lower failure occurs, the system is repaired
using the general repaired rate; however, a higher failure can be rectified using the
copula family of Gumbel-Hougaard distribution. The goal is to obtain explicitly
expressed expressions for the dependability, availability, sensitivity, and cost func-
tion. As a result of this, in this chapter, we aim at examining the reliability strength of
a distributed system in relation to availability, expected profit and reliability. For the
sake of generality, we use the Laplace transforms and technique of supplementary
variable to establish the partial differential equations related to transition diagram
essential to this chapter. The numerical validation of explicit expressions for system
availability, reliability, and profit function is performed. Computations for reliability
characteristics are evaluated as a specific example by analyzing availability, relia-
bility, and cost in order to reflect the impacts of coverage factor and both failure and
repair rates on reliability characteristics. Tables and graphs highlight the computation
of the result base on assume numerical values.
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15.1 Introduction

A network is made up of two or more systems of computers that communicate assets
and communicate in some way. This discussion occurs over a common channel
of communication. A network, on the other hand, is an accumulation of machines
that have been mechanically and electronically linked in order to facilitate and share
data. Each computer network has applications that run on numerous machines linked
via a network that has become exceedingly sophisticated and difficult to rely on.
Failures in computer networking systems can be classified as hardware, software,
or both. Various techniques for improving distributed computer networking system
performance have been proposed. Backup is one of the approaches used to improve
and forecast system strength and effectiveness, which results in increased system
safety, quality, production, and income mobilization.

Definition 1.1

Reliability function
The chance that a system/machine will be up and running throughout a period of

time t is defined as reliability. Thus, reliability R(t) = Pr {T > t}, where T is the
time when the system is down and not running with R(t) ≥ 0, R(t) = 1 (For a full
description, see Ebeling [10]). Thus,

R(t) =
∞∫

t

f (t0)dt0 (15.1)

and

R(t) = e−λt (15.2)

for exponentially distributed rate of failure.

Definition 1.2

Availability function
Availability is the likelihood that a system or piece of equipment will be

operational at any time t. A system’s availability is a merged proportion of its
maintainability and dependability.

A(∞) = lim
T→0

A(t) = lim
T→0

1

T

T∫

0

A(t)dt (15.3)
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15.2 Literature Review

Numerous researchers have looked into various aspects of the durability of sophis-
ticated repairable systems, commencing with [28], who investigated the reliability
of a production system using a combination of copula and coverage approaches
and discovered that the blended copula coverage procedure enhances system relia-
bility. Tyagi et al. [36] used copula, coverage, and copula plus coverage statistical
approaches to study the probabilistic performance of a parallel system subjected
to human, unit, and major failure. Chopra and Ram [8] presented dependability
measurements for two distinct units in parallel using the Gumbel-Hougaard copula
distribution. Jain andMeena [20] designed fault-tolerant system performancemodels
that include actual aspects like server vacation, reboot, and incomplete coverage.
Pourhassan et al. [26] examined the operation of a sugar factory subjected to
stochastic and random shocks. Pourhassan et al. [25] created models to assess multi-
state system dependability in the presence of nonfatal and fatal shocks in a capacitor
bank. Singh et al. [31] examined the copula repair strategy on the probabilistic eval-
uation of a CBT system that included clients, a load balancer, a database server, and
a centralized database server. Niwas and Garg [24] examined the profitability and
dependability of a cost-free warranty policy-based industrial system. Yusuf et al. [38]
createdmodels for a serial system that disclose the ideal level of profit that the system
can achieve aswell as the impact of themost crucial subsystem that leads tominimum
profit and system failure. Kabiru et al. [16] evaluated the impact of copula repair on
the availability and cost evaluation of a multi-server tree topology network. Ismail
et al. [17] evaluated the impact of copula and general repair policies on dual-server
computer network performance. Jain and Gupta [19] created performance models
of machining systems including corrective maintenance failures employing various
vacations and imperfect coverage. Jain et al. [21] created models for evaluating the
effectiveness of a machining system composed of main units and warm standby units
under the supervision of an unpredictable single server.

Several researchers used different approach to investigate the performance of
distributed systems and have proclaimed improved performance in terms of their
operations. We can cite few of them; Teslyuk et al. [35] developed models for
reliability modeling of metrics of testing the performance of local area networks.
Rotar et al. [29] presented mathematical approach to reliability determination of
solar tracking system using fault coverage aware metrics. Bisht et al. [7] developed
an algorithm for computing reliability metrics, component measures, and critical
measures for communication network. Song [34] dealt with reliability optimiza-
tion of communication network using genetic algorithm. Ram and Goyal [28] dealt
with reliability analysis of fault-tolerant system exhibiting two types of repair. He
et al. [14] discussed reliability optimization of computer communication network
via genetic algorithm. Arora et al. [3] developed models for determining the relia-
bility metrics of parallel system with fault coverage. Abdulwahab et al. [1] presented
Markov availability improvement of distributed hardware and systems. Ahmed and
Ramalashmi [2] investigated the performance distributed and centralize controllers



334 I. Yusuf and I. Tukur

throughweighted round robin, randomand round robin algorithm.Handoko et al. [13]
analyzed the availability of load balancer, database cluster and virtual router protocol.
Yusuf et al. [37] analyzed the measures of reliability of server-client system. Dhulav-
vagol et al. [9] analyzed the performance enhancement of distributed processing
through partitioning and efficient shard selection technique. Muñoz-Esco and Juan-
Marn [23] analyzed the synchrony level in dynamic distributed systems. Raghav
et al. [27] presented prediction of reliability of distributed homogeneous software
system. Bisht and Singh [4] analyzed some reliability metrics of complex network
using universal generating function. Huang et al. [15] developed models for relia-
bility analysis of distributed network. Bisht and Singh [4] used Markov processes
to analyze the reliability measures of transmission network system enhancement.
Bisht and Singh [6] analyzed the profit and reliability of transmission network using
artificial neural network and Markov process.

The aforementioned researchers provided excellent work on reliability analysis
of complicated repairable systems using a copula technique, claiming that their oper-
ations improved the performance of the distributed systems. Keeping the above facts
in view, this chapter dealt with reliability and performance analysis of distributed
network systems stationed in two different regions. Each region has two clients and
a directory server with replication of another in a separate region. To the author’s
knowledge, no maintainability modeling and effectiveness study has focused on
estimating the reliability, strength, effectiveness, and performance using Gumbel-
Hougaard family copula based on distributed systems stationed in two separate
regions with coverage factors. As a result, the current study was conducted to address
this research gap. In this chapter, a novel technique, namely the copula repair tech-
nique, was used to analyze the performance of the distributed systems with coverage
factors. According to the literature review, no research has been carried out on the
distributed system reliability analysis with two coverage factors copula approach.
Motivated by this fact, we are interested in the reliability analysis of two coverage
factors distributed system operators in this present work. The impact of two coverage
factors, in conjunction with the copula, on the distributed system reliability analysis
has been captured. The objective of this work is to find out how two coverage factors
will improve the reliability measure of the system under consideration.

The chapter is arranged with Sect. 15.1 serving as an introduction. Section 15.2
Literature review. Nomenclatures, assumptions, and model description are covered
in Sect. 15.3. Section 15.4 is concerned with model formulation and solution, while
Sect. 15.4 provides numerical simulations in specific cases. Section 15.5 highlights
the finding of the results, while the chapter is concluded in Sect. 15.6 followed by
references.
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15.3 Nomenclatures and Model Description

15.3.1 Nomenclatures

q: Scale of time
s: Variables’ Laplace transform
Si : Transitional states, 0 ≤ i ≤ 9
δ1: Rate of failure of clients in region I
δ2: Rate of failure of clients in region II
δ3: Rate of failure of directory server in region I
δ4: Rate of failure of directory server in region II
δ5: Rate of failure of replica server
C1,C2: Coverage factor of region I and coverage factor of region II
β(y1): Rate of repair for the higher failed state
h(y1): Rate of repair for the degraded state
Mi (t): Chance of the system sojourning in Si state at instants for 0 ≤ i ≤ 9
Mi (s): Laplace transformation of state transition probability P(t)
Mi (y1, q): Chance of the system sojourning in Si with y1 variable of repair and
variable time q

β(y1) = exp
[
yθ
1 + (log h(y1))

θ
] 1

θ , where β(y1) is the joint chance of repair from
higher failed state to perfect state by copula

S(s) =
∞∫

0

β(y1)e
−sy1−

∫ ∞
0 h(y1)dy1dy1

Ep(q)Ep(t): Expected profit during the time interval [0, q)
v1, v2: Revenue and service cost per unit time, respectively.

15.3.2 Model Description

In this current study, we analyze a distributed system composed of two region and
shared one replica server with the following specifications: Regions I and II consist
of two client and one directory server each.We have also introduced coverage factors
for each region in this work (c1 for region I and c2 for region II), so that the failure of
each clients and directory server for each region will be detected by coverage factor
(Table 15.1).

Model Formulation and Solutions

As in Gahlot et al. [11, 12], Lado et al. [22], Singh and Ayagi, [32, 33], the following
equations are obtained via Fig. 15.1 (Fig. 15.2):
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Table 15.1 Description of states

States Description

S0 In initial state, the subsystems and the system are in perfect state, the system is up and
running

S1 In this state, in region I, the first client fails, the second client is working, the system is
up and running

S2 In this state, in region II, the first client fails, the second client is working, the system is
up and running

S3 In region II, one client fails, the other client is working, the system is up and running

S4 In region I, one client fails, the other client is working, the system is up and running

S5 The system is down due to failure of clients in region I

S6 The system is down due to failure of clients in region II

S7 The system is down due to replica server failure

S8 The system is down due to directory server failure in region I

S9 The system is down due to directory server failure in region II

(
∂

∂t
+ 4c1δ1 + 2c2δ2 + δ3 + c1δ4 + c2δ5

)
M0(q)

=
∞∫

0

h(y1)M1(y1, q)dx

+
∞∫

0

h(y2)M2(y2, q)dy2 +
∞∫

0

β0(y1)M5(y1, q)dy1

+
∞∫

0

β0(y2)M6(y2, q)dy2 +
∞∫

0

β0(x0)M7(x0, q)dx0

+
∞∫

0

β0(x1)M1(x1, q)dx1 +
∞∫

0

β0(x2)M8(x2, q)dx2 (15.4)

(
∂

∂q
+ ∂

∂y1
+ c1δ1 + 2c2δ2 + h(y1)

)
M1(y1, q) = 0 (15.5)

(
∂

∂q
+ ∂

∂y2
+ c2δ2 + 2c1δ1 + h(y2)

)
M2(y2, q) = 0 (15.6)

(
∂

∂q
+ ∂

∂y2
+ c2δ2 + h(y2)

)
M3(y2, q) = 0 (15.7)

(
∂

∂q
+ ∂

∂y1
+ c1δ + h(y1)

)
M4(y1, q) = 0 (15.8)
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(
∂

∂q
+ ∂

∂y1
+ β0(y1)

)
M5(y1, q) = 0 (15.9)

(
∂

∂q
+ ∂

∂y2
+ β0(y2)

)
M6(y2, q) = 0 (15.10)

(
∂

∂q
+ ∂

∂x0
+ β0(x0)

)
M7(x0, q) = 0 (15.11)

(
∂

∂q
+ ∂

∂x1
+ β0(x1)

)
M8(x1, q) = 0 (15.12)

(
∂

∂q
+ ∂

∂x2
+ β0(x2)

)
M9(x2, q) = 0 (15.13)

Conditions of Boundary

M1(0, q) = 2c1δ1M0(q) (15.14)

M2(0, q) = 2c2δ2M0(q) (15.15)

Fig. 15.1 Schematic diagram of the network
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Β0(x1) 3

Β0(y) β0(x0) c2 5 β0(x1) c1 4 β0(x)

C2 2 2c2 2 P0(t) 2c1 1 c1 1

H0(y) h0(x)

C2 2 2c1 1 h0(x) 2c2 2 h0(y)
c1 1    

Perfect

state

Partial

failure

Complete

failure

Fig. 15.2 Transition diagram of the system

M3(0, q) = 4c1c2δ1δ2M0(q) (15.16)

M4(0, q) = 4δ1δ2M0(q) (15.17)

M5(0, q) = 2c21δ
2
1(1 + 2c2δ2)M0(q) (15.18)
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M6(0, q) = 2c22δ
2
2(1 + 2c1δ1)M0(q) (15.19)

M7(0, q) = δ3M0(q) (15.20)

M8(0, q) = c1δ4M0(q) (15.21)

M9(0, q) = c2δ5M0(q) (15.22)

15.3.3 Solution of the Model

By taking the Laplace transformation of Eqs. (15.1) to (15.19), we obtain the
following results

(s + 2c1δ1 + 2c2δ2 + δ3 + c1δ4 + c2δ5)M0(s)

= 1 +
∫ ∞

0
h(y1)M1(x, s)dy1

+
∫ ∞

0
h(y2)M2(y2, s)dy2 +

∫ ∞

0
β0(y1)M5(y1, s)dy1

+
∫ ∞

0
β0(y2)M6(y2, s)dy2 +

∫ ∞

0
β0(x0)M7(x0, s)dx0

+
∫ ∞

0
β0(x1)M8(x1, s)dx1 +

∫ ∞

0
β0(x2)M9(x2, s)dx2 (15.23)

(
s + ∂

∂y1
+ c1δ1 + 2c2δ2 + h(y1)

)
M1(y1, s) = 0 (15.24)

(
s + ∂

∂y2
+ c2δ2 + 2c1δ1 + h(y2)

)
M2(y2, s) = 0 (15.25)

(
s + ∂

∂y2
+ c2δ2 + h(y2)

)
M3(y2, s) = 0 (15.26)

(
s + ∂

∂y1
+ c1δ1 + h(y1)

)
M4(y1, s) = 0 (15.27)

(
s + ∂

∂y1
+ β0(y1)

)
M5(y1, s) = 0 (15.28)

(
s + ∂

∂y2
+ β0(y2)

)
M6(y2, s) = 0 (15.29)
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(
s + ∂

∂x0
+ β0(x0)

)
M7(x0, s) = 0 (15.30)

(
s + ∂

∂x1
+ β0(x1)

)
M8(x1, s) = 0 (15.31)

(
s + ∂

∂x2
+ β0(x2)

)
M9(x2, s) = 0 (15.32)

Conditions of boundary of Laplace transform are as follows:

M1(0, s) = 2c1δ1M0(s) (15.33)

M2(0, s) = 2c2δ2M0(s) (15.34)

M3(0, s) = 4c1c2δ1δ2M0(s) (15.35)

M4(0, s) = 4c1c2δ1δ2M0(s) (15.36)

M5(0, s) = 2c21δ
2
1(1 + 2c2δ2)M0(s) (15.37)

M6(0, s) = 2c22δ
2
2(1 + 2c1δ1)M0(s) (15.38)

M7(0, s) = δ3M0(s) (15.39)

M8(0, s) = c1δ4M0(s) (15.40)

M9(0, s) = c2δ5M0(s) (15.41)

we get Eqs. (15.39)–(15.48) by solving Eqs. (15.20)–(15.29) with the help of
boundary conditions (15.30)–(15.38).

M0(s) = 1

D(s)
(15.42)

M1(s) = 1

D(s)

{
1 − Sh(s + c1δ1 + 2c2δ2)

(s + c1δ1 + 2c2δ2)

}
2c1δ1 (15.43)

M2(s) = 1

D(s)

{
1 − Sh(s + c2δ2 + 2c1δ1)

(s + c2δ2 + 2c1δ1)

}
2c2δ2 (15.44)
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M3(s) = 1

D(s)

{
1 − Sh(s + c2δ2)

(s + c2δ2)

}
4c1c2δ1δ2 (15.45)

M4(s) = 1

D(s)

{
1 − Sh(s + c1δ1)

(s + c1δ1)

}
4c1c2δ1δ2 (15.46)

M5(s) = 1

D(s)

{
1 − Sβ0

s

}
2c21δ

2
1(1 + 2c2δ2) (15.47)

M6(s) = 1

D(s)

{
1 − Sβ0(s)

s

}
2c22δ

2
2(1 + 2c1δ1) (15.48)

M7(s) = 1

D(s)

{
1 − Sβ0(s)

s

}
δ3 (15.49)

M8(s) = 1

D(s)

{
1 − Sβ0(s)

s

}
c1δ4 (15.50)

M9(s) = 1

D(s)

{
1 − Sβ0(s)

s

}
c2δ5 (15.51)

where:

D(s) =

⎧⎪⎪⎨
⎪⎪⎩

(s + 2c1δ1 + 2c2δ2 + δ3 + c1δ4 + c2δ5) − 2c1δ1Sh(s + c1δ1 + 2c2δ2)

−δ3Sβ0 (s) − c1δ4Sβ0 (s) − 2c22δ
2
2(1 + 2c1δ1)Sβ0 (s)

−2c2δ2Sh(s + c2δ2 + 2c1δ1) − 2c21δ
2
1(1 + 2c2δ2)Sβ0 (s) − c2δ5Sβ0 (s)

⎫⎪⎪⎬
⎪⎪⎭

(15.52)

The chance that the system is up and running is,

MUP(s) = M0(s) + M1(s) + M2(s) + M3(s) + M4(s) (15.53)

15.4 Analytical Analysis of the Model for Particular Cases

In order to acquire a thorough knowledge of this study, the simulation results of the
models are shown in this section.
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15.4.1 Availability Analysis

Taking the values of different parameter as: δ1 = 0.01, δ2 = 0.02, δ3 = 0.03 and
δ4 = 0.04, δ5 = 0.05, θ(x) = 1 and β = 1 and h(x) = 1, c1 = 1, c2 = 1
in Eq. (15.50) and inverting the transformation to have the following models of
availability:

(a) Availability Analysis without copula and coverage factors

Av(q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.0003143994970e−1.02q + 0.08783207682e−1.195240242q

+0.0007707542438e−1.047232186q

+0.01079981008e−1.026280643q + 0.9001982052e−0.001246929198q

+0.00008475414236e−1.01q

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15.54)

(b) Availability Analysis with copula only

Av(q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−0.0002161941437e−1.02q + 0.04381069018e−2.843384795q

−0.006290102932e−1.097329896q

−0.00004720059867e−1.046251477q + 0.9630229281e−0.001333811830q

−0.0002801208251e−1.01q

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15.55)

(c) Availability with one coverage factor only (i.e., c1 = 0.3 and c2 = 1, β = 1)

Av(q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−0.00007574896238e−1.02q + 0.07254375879e−1.148259926q

+0.0008324322965e−1.041469619q

+0.006951222584e−1.016885473q + 0.9197398205e−0.0003849812264q

+0.00008514550493e−1.003q

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15.56)

(d) Availability Analysis without copula and one coverage factor (i.e., c1 = 1, c2
= 0.3)

Av(q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.00002091751179e−1.006q + 0.06958795524e−1.123921410q

+0.0003283496763e−1.024769912q

+0.005438041030e−1.015897536q + 0.9245787411e−0.0004111424846q

+0.00004599536265e−1.01q

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15.57)

(e) Availability Analysis without copula but using both coverage factors (i.e., c1 =
0.3, c2 = 0.3)
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Table 15.2 Availability with passage time for different cases

q Availability

(a) (b) (c) (d) (e) (f)

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.8890 0.9503 0.9162 0.9208 0.9460 0.9788

20 0.8780 0.9377 0.9127 0.9170 0.9447 0.9775

30 0.8671 0.9252 0.9092 0.9132 0.9435 0.9762

40 0.8564 0.9130 0.9057 0.9095 0.9423 0.9749

50 0.8458 0.9009 0.9022 0.9058 0.9410 0.9735

60 0.8353 0.8890 0.8987 0.9021 0.9398 0.9722

70 0.8250 0.8772 0.8953 0.8983 0.9386 0.9709

80 0.8147 0.8656 0.8918 0.8947 0.9374 0.9696

90 0.8046 0.8541 0.8884 0.8910 0.9361 0.9683

100 0.7947 0.8428 0.8850 0.8873 0.9350 0.9670

Av(q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.00001216742101e−1.006q + 0.04984838801e−1.078410838q

+0.0002860038336e−1.014279187q

+0.002644243252e−1.009179407q + 0.9472047723e−0.000130568120q

+0.000004425626607e−1.003q

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(15.58)

(f) Availability Analysis with present of copula and both coverage factors (i.e., c1
= 0.3, c2 = 0.3, β = 2.7183).

Av(q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.00001952119465e−1.006q + 0.02076610302e−2.775974868q

−0.0008463236303e−1.030310526q

−0.000005587200069e−1.013879499q + 0.9801305761e−0.0001351065033q

−0.0000252471517e−1.003q

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15.59)

For t ∈ [0, 100] in the above equation, i.e., Eqs. (15.47)–(15.51), the result of
the above availability models is given in Table 15.2 and Fig. 15.3.

15.4.2 Reliability Analysis

Vanishing repairs to zero and considering δ1 = 0.01, δ2 = 0.02, δ3 = 0.03, δ4 =
0.04 and δ5 = 0.05 and applying Laplace transformation in (15.50) to have
expression for reliability for system as follows:

(i) Reliability analysis without two coverage factors (i.e., c1 = 1, c2 = 1)
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Fig. 15.3 Availability against time for different cases

R(q) =
{
0.28571428557e−0.04q + 0.1538461538e−0.05q+0.005e−0.02q

+0.004705882353e−0.01q + 0.5507336781e−0.18q

}

(15.60)

(ii) Reliability analysis with one coverage factor (i.e., c1 = 0.3, c2 = 1)

R(q) =

⎧⎪⎨
⎪⎩
0.3571428571e−0.026q + 0.00177777778e−0.003q

+0.002033896305e−0.02q + 0.5758875720e−0.138q

+0.06315789474e−0.043q

⎫⎪⎬
⎪⎭ (15.61)

(iii) Reliability analysis with one coverage factor (i.e., c1 = 1, c2 = 0.3)

R(q) =

⎧⎪⎨
⎪⎩
0.6532003995e−0.17q + 0.002162162162e−0.006q

+0.2105263158e−0.022q + 0.1318681319e−0.26q

+0.002242990654e−0.01q

⎫⎪⎬
⎪⎭ (15.62)

(iv) Reliability analysis with both coverage factors (i.e., c1 = 0.3, c2 = 0.3)

R(q) =
{
0.1904761905e−0.12q + 0.7074803313e−0.075q + 0.001e−0.003q

+0.001e−0.015q + 0.001043478261e−0.006q

}

(15.63)

15.4.3 Cost Analysis

The anticipated profit in [0, q) is
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Ep(q) = v1

q∫

0

MUP(q)dq − v2q (15.64)

Assuming v1 = 1 and v2 = 0.6, 0.5, 0.4, 0.3, 0.2, v1 = 1, v2 ∈ [0.1, 0.6] and
t ∈ [0, 100] in (15.50), respectively, to have

(a) Cost Benefit Analysis without copula and both coverage factors (i.e., c1
= 1, c2 = 1, β = 1)

EP(q) = v1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.073487252e−1,195240242q

−0.0007359917448e−1.447232186q

−0.01052325224e−1.026280643q

−721.9320926e−0.001246929198q

−0.0008391499244e−1.01q

−0.0003082348010e−1.02q

+722.0172288

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− v2q (15.65)

(b) Cost Benefit Analysis with copula and no two coverage factors (i.e., c1 =
1, c2 = 1, β = 2.7813)

EP(q) = v1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.001540793573e−2.843384995q

+0.00573489522e−1.097329896q

+0.00004511400825e−1.046251497q

−721.0080872e−0.001333811830q

+0.0002773516e−1.01q

+0.0002119550428e−1.02q

+722.0172288

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− v2q (15.66)

Case (c) Cost Benefit Analysis with two coverage factor and no copula (i.e., c1 =
0.3, c2 = 0.3, β = 1)

EP(q) = v1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.0462239086e−1.078410838q

−0.0002819774252e−1.014279187q

+0.002620191448e−1.009179407q

−7254.459995e−0.0013025686120q

−0.0000441238943e−1.003q

−0.00001209485190e−1.006q

+7254.509137

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− v2q (15.67)
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(d) Cost Benefit Analysis with one coverage factor and no copula (i.e., c1 =
0.3, c2 = 1, β = 1)

EP(q) = v1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.00002079275526e−1.06q

−0.061915321332e−1.0123921410q

−0.0003204130727e−1.024769912q

−0.005352942435e−0.0158975369q

−2248.803701e−0.0004111424846q

−0.00004553996302e−1.01q

+2248.871356

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− v2q (15.68)

Case (e) Cost Benefit Analysis with one coverage factor and copula (i.e., c1 = 1,
c2 = 0.3, β = 2.7183)

EP(q) = v1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.0000829983761e−1.006q

+0.002188178547e−1.053380418q

+0.000008928235032e−1.024374038q

−0.01101737634e−2.805113352q

+0.00006896920683e−1.01q

−2248.862738e−0.0004320238303q

+2248.871406

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− v2q (15.69)

Case (f) Cost Benefit Analysis with one coverage factor and copula (i.e., c1 = 0.3,
c2 = 1, β = 2.7183)

EP(q) = v1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.00002956658416e−1.02q

+0.00008247606823e−1.01003q

−0.01200288992e−2.813524595q

+0.003204811886e−1.071605575q

+0.00008667258287e−1.0397633878q

−2389.113211e−0.000405926624q

+2389.121810

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− v2q (15.70)

15.5 Results Discussion

The decision-making process for performance evaluation of the model under consid-
eration is carried out based on Tables 15.2, 15.3, 15.4, 15.5, 15.6, 15.7, 15.8, 15.9
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and Figs. 15.3, 15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 15.10. First and foremost, failure
rates must be determined, preferably ones with the lowest risk of error.

Table 15.2 depicts availability with passage of time for six different cases consid-
ered. From the table, it is evident that availability decreases with passage of time for
each case. Nonetheless, availability is better in case (f) when compared with the other
five cases. This implies that employing copula at complete failure which restored the
system to the initial state and applying both coverage factors will produce better
availability that the other cases.

Table 15.3 displayed the result of reliability appreciate in time for the four different
cases considered in the chapter. From the table, it is clear that reliability decreases
drastically with increase in time for each case. From the table, system without two
coverage factors in case (a) has the least reliability than the rest. However, reliability
is better when the two coverage factors are as seen in case (f). This reveals the
importance of coverage factors in enhancing the performance of the system. From
the table, it is clear that applying both coverage factors will produce better reliability
that the other cases.

Tables 15.4, 15.5, 15.6, 15.7, 15.8 and 15.9 depict the cost with passage of time
for six different cases considered for different values of service cost K2. From the
tables, it is evident that the cost appreciates with passage of time and service cost
K2 in each case. However, the cost is better in each case when the service cost K2

reduces to 0.1 in each case. It can be seen from Tables 15.4, 15.5, 15.6, 15.7, 15.8
and 15.9 that the optimal cost is case (f) when employing copula and applying both
coverage factors.

Figure 15.3 and Table 15.2 depict the system’s availability for case (a) to (f) with
passage of time. From the figure and table, it is evident that availability decreases
with passage of time for each case. From the results, it is clear that case (f) in both

Table 15.3 Reliability with passage of time for different cases

q Reliability

(i) (ii) (iii) (iv)

0 1.0000 1.0000 1.0000 1.0000

10 0.3842 0.4647 0.4774 0.5912

20 0.2072 0.2785 0.2807 0.3836

30 0.1291 0.1930 0.1923 0.2730

40 0.0843 0.1423 0.1423 0.2096

50 0.0561 0.1075 0.1109 0.1700

60 0.0377 0.0821 0.0873 0.1428

70 0.0256 0.0630 0.0692 0.1224

80 0.0176 0.0485 0.0551 0.1062

90 0.0123 0.0374 0.0440 0.0928

100 0.0087 0.0290 0.0351 0.0814
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Table 15.4 Cost with passage of time for (a)

q EP(q):
v2 = 0.6

EP(q):
v2 = 0.5

EP(q):
v2 = 0.4

EP(q):
v2 = 0.3

EP(q):
v2 = 0.2

EP(q):
v2 = 0.1

0 0 0 0 0 0 0

10 3.0312 4.0312 5.0312 6.0312 7.0312 8.0312

20 5.8665 7.8665 9.8665 11.8665 13.8665 15.8665

30 8.5922 11.5922 14.5922 17.5922 20.5922 23.5922

40 11.2098 15.2098 19.2098 23.2098 27.2098 31.2098

50 13.7207 18.7206 23.7207 28.7207 33.7207 38.7265

60 16.126 22.126 28.126 34.126 40.126 46.126

70 18.4272 25.4272 32.4272 39.4272 46.4272 53.4272

80 20.6256 28.6256 36.6256 44.6256 52.6256 60.6256

90 22.7223 31.7223 40.7223 49.7223 58.7223 67.7223

100 24.7187 34.7187 44.7187 54.7187 64.7189 74.7187

Table 15.5 Cost with passage of time for (b)

q EP(q):
v2 = 0.6

EP(q):
v2 = 0.5

EP(q):
v2 = 0.4

EP(q):
v2 = 0.3

EP(q):
v2 = 0.2

EP(q):
v2 = 0.1

0 0 0 0 0 0 0

10 3.5754 4.5754 5.5754 6.5754 7.5754 8.5754

20 7.015 9.015 11.015 13.015 15.015 17.015

30 10.3294 13.3294 16.3294 19.3294 22.3294 25.3294

40 13.5205 17.5205 21.5205 25.5205 29.5205 33.5205

50 16.5898 21.5898 26.5898 31.5898 36.5898 41.5898

60 19.5389 25.5389 31.5389 37.5389 43.5389 49.5389

70 22.3694 29.3694 36.3694 43.3694 50.3694 57.3694

80 25.083 33.083 41.083 49.083 57.083 65.083

90 27.6811 36.6811 45.6811 54.6811 63.6811 72.6811

100 30.1652 40.1652 50.1652 60.1652 70.1652 80.1652

Table 15.2 and Fig. 15.3 is the optimal having the highest availability with passage
of time compare to different cases.

Thus,

( f ) > (e) > (d) > (c) > (b) > (a)

Figure 15.4 and Table 15.3 depict the system’s reliability for case (a) to (d) with
passage of time. From the figure and table, it is observed that reliability decreases
with passage of time for each case. From the results, it is clear that case (d) in both
Table 15.3 and Fig. 15.4 is the optimal having the highest reliability with passage of
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Table 15.6 Cost with passage of time for (c)

q EP(q):
v2 = 0.6

EP(q):
v2 = 0.5

EP(q):
v2 = 0.4

EP(q):
v2 = 0.3

EP(q):
v2 = 0.2

EP(q):
v2 = 0.1

0 0 0 0 0 0 0

10 3.515 4.515 5.515 6.515 7.515 8.515

20 6.9685 8.9685 10.9685 12.9685 14.9685 16.9685

30 10.4097 13.4097 16.4097 19.4097 22.4097 25.4097

40 13.8386 17.8386 21.8386 25.8386 29.8386 33.8386

50 17.2551 22.2551 27.2551 32.2551 37.2551 42.2551

60 20.6594 26.6594 32.6594 38.6595 44.6594 50.6594

70 24.0514 31.0514 38.0514 45.0514 52.0514 59.0514

80 27.4311 35.4311 43.4311 51.4311 59.4311 67.4311

90 30.7986 39.7986 48.7986 57.7986 66.7986 75.7986

100 34.1539 44.1539 54.1539 64.1539 74.1539 84.1539

Table 15.7 Cost with passage of time for (d)

q EP(q):
v2 = 0.6

EP(q):
v2 = 0.5

EP(q):
v2 = 0.4

EP(q):
v2 = 0.3

EP(q):
v2 = 0.2

EP(q):
v2 = 0.1

0 0 0 0 0 0 0

10 3.2945 4.2945 5.2945 6.2945 7.2945 8.2945

20 6.4834 8.4834 10.4834 12.4834 14.4834 16.4834

30 9.6347 12.6347 15.6347 18.6347 21.6347 24.6347

40 12.7483 16.7483 20.7483 25.7483 28.7483 32.7483

50 15.8246 20.8246 25.8246 30.8246 35.8247 40.8247

60 18.8637 24.8637 30.8637 36.8637 42.8637 48.8637

70 21.8657 28.8657 35.8657 42.8657 49.8657 56.8657

80 24.8341 32.8341 40.8341 48.8341 56.8341 64.8341

90 27.759 36.759 45.759 54.759 63.759 72.759

100 30.6506 40.6506 50.6506 60.6506 70.6506 80.6506

time compare to different cases.

(d) > (c) > (b) > (a)

This analysis illustrates the consequences of failing to restore the system. It is
widely held belief that the higher maintenance and the greater the reliability.

The change in the profit with passage of time t for k2 ∈ [0.1, 0.6] when k1 = 1
is fixed at 1 for repair policy of copula is given in Tables 15.4, 15.5, 15.6, 15.7,
15.8, 15.9 and Figs. 15.5, 15.6, 15.7, 15.8, 15.9, 15.10 for case (a) to (f). From the
Tables and Figures, it is clear that increasing the duration (time) and decreasing the
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Table 15.8 Cost with passage of time for (e)

q EP(q):
v2 = 0.6

EP(q):
v2 = 0.5

EP(q):
v2 = 0.4

EP(q):
v2 = 0.3

EP(q):
v2 = 0.2

EP(q):
v2 = 0.1

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 3.7033 4.7033 5.7033 6.7033 7.7033 8.7033

20 7.3562 9.3562 11.3562 13.3562 15.3562 17.3562

30 10.9675 13.9675 16.9675 19.9675 22.9675 25.9675

40 14.5373 18.5373 22.5373 26.5377 30.5373 34.5373

50 18.0659 23.0659 28.0659 33.0131 38.0659 43.0659

60 21.5534 27.5534 33.5534 39.5534 45.5534 51.5534

70 24.9999 31.9999 38.9999 45.9999 52.9999 59.9999

80 28.4058 36.4058 44.4058 52.4058 60.4058 68.4058

90 31.7712 40.7712 49.7712 58.7712 67.7712 76.7712

100 35.0961 45.0961 55.0961 65.0961 75.0961 85.0961

Table 15.9 Cost with passage of time for (f)

q EP(q):
v2 = 0.6

EP(q):
v2 = 0.5

EP(q):
v2 = 0.4

EP(q):
v2 = 0.3

EP(q):
v2 = 0.2

EP(q):
v2 = 0.1

0 0 0 0 0 0 0

10 3.6876 4.6876 5.6876 6.6876 7.6876 8.6876

20 7.3274 9.3274 11.3274 13.3274 15.3274 17.3274

30 10.9282 13.9282 16.9282 19.9282 22.9282 25.9282

40 14.4899 18.4899 22.4899 26.4399 30.4399 34.4399

50 18.0131 23.0131 28.0131 33.0131 38.0131 43.0131

60 21.4977 27.4977 33.4977 39.4977 45.4977 51.4977

70 24.9437 31.9437 38.9437 45.9437 52.9437 59.9437

80 28.3516 36.3516 44.3516 52.3516 60.3516 68.3516

90 31.7213 40.7213 49.7213 58.7213 67.7213 76.7213

100 35.0531 45.0531 55.0531 65.0531 75.0531 85.0531
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Fig. 15.4 Reliability with passage of time for different cases
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Fig. 15.6 Cost with passage of time for different v2 for Case (b)

service rate/cost will likely raise the estimated service cost for case (a) to (f). When
comparing the cases, it appears that the predicted profit is larger for case (f) where
the repair policy is followed by copula distribution and both coverage factors are
present. In both circumstances, the predicted profit in each case is higher when the
service cost is low and lowest when the service cost is highest. This analysis will
assist the analyst to set the budget for the system’s smooth operation in advance
based on the system’s usability.
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Fig. 15.7 Cost with passage of time for different v2 for (c)
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Fig. 15.8 Cost with passage of time for different v2 for Case (d)

15.6 Conclusion

The availability, reliability, maintenance strategy/technique, and revenue generated
are some of the factors that influence the development of any process sector. So, in
order to get the most out of operating production systems, they must be meticulously
maintained so that the rate of failure and repair is kept to a minimum. In this manner,
various maintenance policies or tactics can be planned to improve system strength
and performance. As a result of the preceding, this chapter presents evaluation of
performance of a distributed system through copula characteristics and coverage
factors. The inclusion of copula characteristics has increased the application of the



15 Distributed System Reliability Analysis with Two Coverage … 353

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

CO
ST

Q

v2=0.6 v2=0.5 v2=0.4 v2=0.3 v2=0.2 v2=0.1

Fig. 15.9 Cost with passage of time for different v2 for (e)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

CO
ST

Q

v2=0.6 v2=0.5 v2=0.4 v2=0.3 v2=0.2 v2=0.1

Fig. 15.10 Cost with passage of time for different v2 for (f)

developed model to a wider range of performance analysis of repairable systems
operating under repair policy of copula and coverage factors. Availability, cost func-
tion, and reliability explicit expressions are established and statistically validated.
Based on the availability analysis, the failure rates priority for each subsystem are
identified. Through the cost function analysis, it has been discovered that higher cost
of services entailed lower system profit and vice versa. On the basis of availability
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and cost analysis, repair policy of copula distribution enhanced system profit and
availability than repair policy of general distribution. These are the contributions of
this study. In future studies, different types of probability continuous distributions
can be applied for distributed hardware-software to analyze the reliability measures
for better system performance and optimization.
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Chapter 16
Repair and Maintenance Management
System of Food Processing Equipment

Fatemeh Afsharnia and Abbas Rohani

Abstract The major goal of this chapter is to present the reader with concepts and
examples from several food sectors thatwill help to reinforce his or her understanding
of food processing equipment maintenance strategies. In addition, case studies will
be used to illustrate the similarities and differences between the foods processing line
reliability, availability, and maintainability (RAM) analysis such as juice bottling,
canned products, dairy products, andmilling process. Food production lines aremade
up of multiple equipment and machines connected by a common transfer mechanism
and control system that can fail in a variety of modes. Line reliability and production
rate are negatively affected by failures. Therefore, RAM analysis is an accurate and
efficient method that enables managers to minimize system downtime and costs and
maximize production rate and profits.

Keywords Processing equipment · Perishable food · Maintenance · Availability ·
Reliability
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RAM Reliability, availability, and maintainability
RBD Reliability block diagram
RCM Reliability centered maintenance
TBF Time between failures
TQM Total quality management
TTR Time to repair

16.1 Introduction

Food processing is one of the most important parts of industries and a significant
contributor to food security. Food security is one of the criteria of human develop-
ment and the main goal of every country. In developing countries, population and
economic growth will lead to increasing demand for food. According to the FAO, in
these countries, about 43.5% of basic agricultural products for human consumption
are annually lost by pests, diseases, weeds, and drought in the post-harvest stage.
So, despite the increased production of crops, achieving food self-sufficiency and
the export possibility of many products are prevented by factors such as popula-
tion growth and non-reduction of agricultural waste, which includes 30% of total
production. Conversion industries can be considered a key step that uses agricultural
products as raw materials. These industries can maintain the products by changing
and processing them to be consumed throughout the year. The creation and expan-
sion of conversion industries have some economic effects, including value-added
creation, job creation, foreign exchange earnings as well as more use of agricultural
products and subsequently prevent the loss and waste of the crop.

Recently, technology is being initiated at a continually quickening rate,which is an
all-time high in the food processing industry [1]. Industrial maintenance as a service
replaces traditional reactive approaches with proactive maintenance methods [2].
The processing production lines consist of n equipment in a series configuration. In a
series system, if a failure occurred, the entire production line will stop. Furthermore,
the raw material needed for conversion industries is severely perishable including
crop, livestock, and garden products. Most crop and garden products such as apple,
cabbage, pomegranates, potatoes, lemons and limes, carrots, onions, and oranges
are the slowest perishable vegetables and fruits and require a dry, ventilated place
with little light. In dairy filling and packing lines, raw milk as the source of most
dairy products is a fresh and highly perishable food. Keeping the milk at ambient
temperature (35 ± 2 °C), it significantly influenced the pH and lactose content of
milk that it gives soured milk and reduces its shelf life. In developing countries, raw
milk has a shelf life of three days when refrigerated.

The foregoing reveals that the use of reliable equipment contributes to signifi-
cantly reducing processing costs and risks. The yearly cost of unreliability borne by
the facility is used to assess plant and equipment dependability. This puts reliability
into a business context. Higher equipment’s processing line reliability lowers the cost



16 Repair and Maintenance Management System of Food Processing … 359

of equipment failure. Failure reduces output and lowers gross profitability. Because
of competitive environments and overall operating production costs, Barabady and
Kumar [3] reported that system reliability, availability, and maintainability (RAM)
have become increasingly important in recent years, an unplanned failure can result
in significantly higher repair costs than plannedmaintenance or repair. Moreover, the
implementation of a new maintenance strategy leads to an increase in the reliability
of equipment, improving the quality of products, and managing the risk regarding
health, safety, and environmental impacts. Yavuz et al. [4] proposed the RCM prac-
tices in the packaging machine of the food industry and explained the effect of
RCM on OEE. First, the OEE is fast improved for one month, and then, the process
response phase started. Bahrudin et al. [5] compared the effect of preventive mainte-
nance and breakdownmaintenance on production achievement in the food seasoning
industry. The findings indicated that production success was somewhat significantly
impacted by preventative maintenance. Besides that, the attainment of output is not
significantly impacted by breakdown maintenance.

Cárcel-Carrasco and Gómez-Gómez [6] used qualitative techniques to investigate
the application of knowledge management techniques in the maintenance activity in
the era of industry 4.0. They found that the introduction of knowledge management
techniques addresses topics related to daily performance, such as the company’s relia-
bility, energy efficiency, andmaintainability processes, which leads to a lower failure
rate, a shorter service or availability replacement time, an improvement in the use of
energy, and a lowering of the maintenance processes. Maintenance activity processes
are characterized by a high human factor and a high degree of tacit knowledge.

The objective of this chapter is to present the critical points of food processing
lines aimed at enhancing operational efficiency and maintenance effectiveness.

16.2 RAM Theory

One of the quality management approaches used to improve efficiency and produc-
tivity in food production lines is reliability, availability, andmaintainability. It may be
used in conjunction with other TQM methods such as failure mode and effect anal-
ysis (FMEA), Pareto analysis, statistical process control, and so on. Nonetheless,
there is a paucity of research on RAM analysis in food processing lines.

16.2.1 Reliability

The probability that a machine or system will perform a needed function under
specified conditions over a certain amount of time t is known as reliability (Eq. 16.1).

Reliability = 1 − Probability of Failure (16.1)
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Fig. 16.1 Measurement of
MTBF and MTTF

In general, we have two approaches as follows:

• More components and/or more complicated systems reduce reliability
• Simpler systems with few components increase reliability.

Reliability is calculated by Eq. 16.2 at a given time.

R = e−λt (16.2)

where R is reliability that its value is between 0 and 1 that 1 indicates 100% live
components and 0 indicates 0% live components. λ is the proportional failure rate,
and t is the time of mission (hours).

The failure rate equals the reverse of the mean time between failures (MTBF),
which can be calculated by Eq. 16.3 as follows:

MTBF = T

n
, λ = 1

MTBF
(16.3)

where n is the number of failures, and T is defined as total time in terms of the
hour. For correct measurements of T, the difference between MTTF and MTBF is
illustrated in Fig. 16.1.

An accuracy reliability block diagram (RBD) can be constructed once a compo-
nent’s reliability-wise configuration has been determined. The system’s relia-
bility will also be affected by the component’s or subsystem’s reliability. Simple
configurations can involve units arranged in parallel or series.

16.2.1.1 Series Systems

With a series configuration, any failure in one component can fail the entire system
(Fig. 16.2). It is usually found that at the basic subsystem level, complete systems are
arranged in a series configuration, in terms of reliability. For instance, the mother-
board, hard drive, power supply, and processor are the four essential subsystems that
make up a personal computer. These are connected in a series system, and a failure
of any of these subsystems will result in a system failure. In other words, for a series
system to work, all of the units in the system must succeed. When unit 1, unit 2…
and unit n succeed, and all of the other units in the system succeed, the system is
said to be reliable. For the system to succeed, all n units must succeed. The system’s
reliability is then determined by Eq. 16.4:
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Fig. 16.2 Series system

RS = P(U1 ∩U2 ∩ . . . ∩Un)P(U1)P(U2|U1)P(U3|U1U2) · · · P(Un |U1U2 . . .Un−1)

(16.4)

where Rs is the system’s reliability, Ui is the event of unit i being operational, P(Ui)
is the probability that unit i is operational.

When a component’s failure impacts the failure rates of other components (i.e.,
when one component fails, the life distribution features of the other components
change), the conditional probabilities in the equation above must be addressed. In
the case of independent components, however, Eq. 16.4 becomes Eq. 16.5:

Rs = P(U1)P(U2) . . . P(Un) (16.5)

Or:

Rs =
n∏

i=1

P(Ui ) (16.6)

Alternatively, in terms of component reliability:

Rs =
n∏

i=1

Ri (16.7)

In other words, the system reliability of a pure series system is the product of the
reliability of its constituent components.

Example 1 Four subsystems are reliability-wise in series and make up a system.
Reliability of subsystem 1, 2, 3, and 4 is 95.5%, 99.1%, 98.7%, and 97.3% for a
mission of 50 h, respectively. What is the overall system’s reliability for a 50-h
mission?

Because the subsystem reliabilities are stated for 50 h, the system’s reliability for
a 50-h mission is simply:

Rs = R1 · R2 · R3

Rs = 0.955 . 0.991 . 0.987 . 0.973

Rs = 0.90888

Rs = 90.88
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Fig. 16.3 Parallel system

16.2.1.2 Parallel Systems

As illustrated in Fig. 16.3, in a simple parallel system, the system can only succeed
if at least one of the parts is successful. Units that run in parallel are often known as
redundant units. Redundancy is a critical feature of systemdesign and reliability since
it is one of the strategies for increasing system reliability. It is commonly utilized in
mission-critical systems in the aerospace sector. RAID computer hard disk systems,
braking systems, and bridge support cables are examples of other uses.

For a system with n statistically independent parallel components, the probability
of failure, or unreliability, is the chance that unit 1 fails, unit 2 fails, and all other
units in the system fail. Therefore, a parallel system must collapse if all n units fail.
To put it another way, if unit 1 or unit 2 or any of the remaining n units succeeds, the
system succeeds. The system’s unreliability is then determined by Eq. 16.8:

Qs = P(U1 ∩U2 ∩ . . . ∩Un)P(U1)P(U2|U1)P(U3|U1U2) . . . P(Un |U1U2 . . .Un−1)

(16.8)

where Qs, Ui, and P(Ui) are the unreliability of the system, the event of failure of
unit i, and the probability of failure of unit i, respectively.

When a component’s failure influences the failure rates of other components, the
conditional probabilities in the equation above must be taken into account. In the
case of independent components, however, the equation becomes

Qs = P(U1)P(U2) . . . P(Un) (16.9)

Or:

Qs =
n∏

i=1

P(Ui ) (16.10)

Or, in terms of component unreliability:

Qs =
n∏

i=1

Qi (16.11)
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Consider the difference between the series and parallel systems: The series
system’s system reliability was the product of component reliabilities, but the parallel
system’s overall system unreliability was the result of component unreliabilities. The
parallel system’s dependability is then determined by:

Rs = 1 − Qs = 1 − (Q1 · Q2 · . . . · Qn)

= 1 − [(1 − R1) · (1 − R2) · . . . · (1 − Rn)]

= 1 −
n∏

i=1

1(1 − Ri ) (16.12)

Example 2 Consider a system with three subsystems organized in parallel in terms
of reliability. Reliability’s subsystem 1, 2, and 3 were 95.1%, 99.7%, and 94.3% for
a 50-h mission. What is the overall system’s reliability for a 50-h mission?

Because the subsystem reliabilities are stated for 50 h, the system’s dependability
for a 50-h mission is as follows:

Rs = 1 − (1 − 0.951) · (1 − 0.997) · (1 − 0.943)

= 1 − 0.000008379

= 0.999

= 99.9%

16.2.2 Availability

Availability is described as an item’s ability to fulfill its needed function at a certain
moment or over a specified length of time based on its reliability, maintainability,
and maintenance support [7]. Because availability is the likelihood that a component
is now in a non-failure condition, even if it has previously failed and been restored
to its operational state, system availability can never be less than system reliability
[8]. Consider a repairable system that is operational at time t = 0: When the system
fails, a repair action is performed to bring the system back online. A binary variable
can be used to represent the status of the system [9]:

X(t) =
{
1 If the system is operating at time t
0 Otherwise

(16.13)

Once the MTBF and MTTR are determined, the component’s availability may be
computed using Eq. 16.14:

A = MTBF

MTBF + MTTR
(16.14)
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The availability in series and parallel systems is calculated by Eqs. 16.15 and
16.16, respectively.

A = Ax . . . An (16.15)

A =
{
1 − (1 − Ax )

n If all i = 1, . . . , n components are identical
1 − (

1 − Ax1
)
.
(
1 − Ax2

)
. . .

(
1 − Axn

)
If the component reliabilities differ

(16.16)

Consider a system with N components that are deemed operational when at least
N-M components are present (i.e., no more than M components can fail). AN,M

denotes the availability of such a system, which is expressed as follows (Eq. 16.17):

AN ,M =
M∑

i=0

N !
i ! × (N − i)! × A(N−i) × (1 − A)i (16.17)

16.2.3 Maintainability

The possibility that a failed machine or system will be returned to operational effec-
tiveness within a specific time t if the repair activity is completed according to the
defined protocols is known as maintainability. The possibility of performing the
repair within a particular time frame is known as maintainability.

The following criteria must be addressed to achieve good maintainability [10]:

(a) The equipment or machine may fail at any time.
(b) The location of maintenance displays, checkpoints, gages, and meters, as well

as the relative position of one assembly to others.
(c) The constraints imposed by the human body.
(d) The setting in which maintenance or repairs will take place.
(e) The development of testing equipment.
(f) How information is presented in the maintenance and repair handbook.

Product design, the technical level of repair staff, repair method, and repair facili-
ties all affect maintainability. Maintainability is a probability measure of a product’s
ability to be maintained or restored to its original function for a given amount of time
under any given set of repair conditions.

Assume Tm is the repair time, and m(t) is the repair density function. After that,
the product’s maintainability may be stated as Eq. 16.18 [11]:

M(t) =
{
P(0 ≤ Tm ≤ t = ∫ t

0 m(t)dt (t ≥ 0)
0 (t < 0)

(16.18)



16 Repair and Maintenance Management System of Food Processing … 365

IfM(t) is differentiated, then:

m(t) = dM(t)

dt
(t ≥ 0) (16.19)

As a result, the repair density function m(t) represents the likelihood that the
defective product will be fixed to its original state in time t.

16.3 Application of RAM Analysis in the Food Processing
Lines

16.3.1 Juice Bottling

The automated juice bottling line is made up of several workstations linked together
by a series system. There are seven workstations on the juice bottling manufacturing
line (Fig. 16.4): washer, juice extractor, centrifuge, filter, pasteurizer, blender, and
packer. Each workstation is made up of one or more machines, each of which is
prone to distinct failure modes.

Fig. 16.4 Fruit juice processing
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Tsarouhas and Arvanitoyannis [12] carried out a reliability and maintainability
analysis for the limoncello production industry to improve the operation. The produc-
tion process of the limoncello production linewasmade up of eight separatemachines
includingwashing and peeling, peel tank,mixing, filtration and centrifugation filling,
injection, and labeler and palletizer that all were connected by a single transfer mech-
anism and control system. Line maintenance takes place throughout the weekend.
The present maintenance program includes corrective as well as preventative. When
a failure occurs, the maintenance team in charge of the line’s correct functioning
performs the necessary breakdown maintenance to rectify the problem. Once the
descriptive statistics were calculated, the best theoretical distributionswere identified
for TBF and TTR. They pointed out that the TBF at line level follows the Weibull
distribution, whereas the TTR has a lognormal distribution. Then, the models for
reliability, maintainability, hazard rate, and repair rate were developed.

Over 9 months, a reliability investigation for beer packaging was conducted
Tsarouhas and Arvanitoyannis [13]. Beer production consists of sixteen stages
including raw materials receipt, malting milling, mashing, lautering, boiling, clar-
ification, cooling, fermentation, maturation, filtration, packing and sealing, bottle
pasteurization, bottle inspection, bottle labeling and standardization, bottle pack-
aging, and storage. In this study, the most common failure modes were identified,
and descriptive statistics were computed at the failure and machine levels. The best
match of failure datawas determined usingmany theoretical distributions. The failure
data’s reliability and hazard rate models were established to predict current opera-
tion management (i.e., training, maintenance policy, spare parts) and increase line
efficiency. In addition to the previous studies, Niu et al. [14] applied the AHP and
EIE methods to analyze the health index of beer filling production lines systems.
The results of the calculations for this production line reveal that the combined
weighting approach is an effective way of calculating the health index and can
correctly reflect the real production status. The health index is predicted using a
support vector machine (SVM) improved by multi-parameters; simulations demon-
strate that least squares support vector machine (LSSVM) based on radial basis
function (RBF) has a strong prediction impact.

The following conclusions may be drawn from the features of certain juice
production lines listed in Table 16.1:

Table 16.1 Characteristics of the juice production lines

Production line Number of failures TBF TTR Availability (%) Refs.

Limoncello 315 75,053 8947 89.34 Tsarouhas and
Arvanitoyannis
[12]

Beer packaging 77 5688.5 311.5 94.8 Tsarouhas and
Arvanitoyannis
[13]

Juice bottling 1261 23,197 3882 85.66 Tsarouhas et al.
[15]
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• The availability is between 85.66% and 94.8%, and the maximum availability is
observed in the beer packaging line.

• The maximum value of TBF and TTR occurs in a limoncello production line with
75,053 and 7947 min, respectively, whereas the minimum value of TBF and TTR
is observed in the beer packaging line.

16.3.2 Canned Products

There are two production lines at the canned food factory. One line is dedicated
to can-making (Fig. 16.5). Can production includes the process of seven stages as
follows [16]:

1. Slitting: Producing blanks of desired dimensions from tin sheets,
2. Welding: Forming a cylindrical shape from two rectangular blanks welded

together,
3. Lacquering: Applying a varnish layer to the welded blanks’ inside face,
4. Curing: While moving to the flanging machine, the varnish is curing and drying,
5. Flanging: Before seaming, the can require flanging both ends,
6. Seaming: Cans are seamed at one end by seamer,
7. Palletizing: Approximately 2500 cans are placed on pallets andmoved by forklift

to the area where empty cans are stored.

Another production line or can filling line includes the process of sixteen stages
as follows,

1. Soaking: Depending on the type of food, it is soaked in a hopper for 8–14 h
(peas, kidney, beans, mushrooms, etc.). The plant contains five hoppers, each
with a 3000-kg capacity (meat and corn do not go into the process).

Fig. 16.5 Can-making process
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2. Reel washing: Showering cleans the food, and the extra water is drained. A
bucket elevator transports the food to the blancher.

3. Blanching: To release gases and enzymes, the food is blanched for 5–30 min.
4. De-strong: To remove stones, the meal is transported to the de-stoner.
5. Inspection belt: The food is thoroughly sifted to eliminate any dark or broken

bits. In the filling hopper, the food is kept.
6. Solid filling: The solid food is placed in empty cans.
7. Liquid filling: The container is filled with a liquid solution and sucked by a

shower filler machine at 75–85 °C. This method extends the shelf life of canned
foods while also protecting customers.

8. Seaming: Double seaming is used to attach the opposite lid to the can.
9. Coding: The coding machine prints a code on the lid of the can display the

product’s manufacture and expiration dates.
10. Crate loading: More than 500 cans are placed on a crate, and a cart transports

seven layers of crates to sterilize the stage.
11. Sterilizing: The can in the cartons is sterilized at 121 °C. Depending on

the product and the liquid used, this procedure might take anywhere from
10 to 70 min. The water is then rapidly chilled to destroy any lingering
microorganisms. After that, the cans are dried.

12. Crate unload: The cans are removed from the container and transported to the
labeler.

13. Labeling: The labeling machine applies labels to the cans.
14. Label inspect: Labels are examined to see if they have been applied appropri-

ately.
15. Packaging: A tray contains 12 cans. The shrink wrapper is used to join two

trays together. Two people and one forklift place every 20 boxes on a pallet.
16. Storing: The completed goods are kept for four days before a sample is obtained

to conduct three types of testing (chemical, physical, and biological) to ensure
that they fulfill specifications and are ready for distribution.

Given Fig. 16.6, the comparison of MTBF, failure rate, and repair time showed
that the filler and seamer machine had the maximum failure rate and the filler and
seamer, labeler, and shrink wrapper machines had the maximum repair time, while
crate loader and crate unloader machines had the minimum failure rate and repair
time [16].

16.3.3 Dairy Products

An outline process flow diagram of the milk bottling plant is illustrated in Fig. 16.7.
Because of the line imbalance in dairy filling and packing lines, extra time is needed
for the upstream filling station, which has a low output rate, to work in advance to
construct work-in-process. As a result, the downstream packing station can reach the
target output volume by operating at greater productivity during a shift. Production
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Fig. 16.6 MTBF, failure rate, and repair time for all machines of a canned production line

lines in the food industry strive to attain a stable condition in a short amount of time.
Because dairy products are perishable, they cannot be properly kept in buffers after
a shift, causing systems to start the following shift with empty buffers, resulting in
production loss until a steady state is attained [9].

The link between factorymanagement and the operation of a typical Italian cheese
production line is investigated in Tsarouhas’s research [17]. For 26 months, failure
and repair data from the linewere analyzed.Descriptive statisticswere obtained at the
machine and line levels. The OEE’s factors of availability, performance efficiency,
and quality rate were also determined. The results demonstrate that the line’s OEE
performance is poor (76.47%) as compared to the aim of 85%. For all equipment
and the full line level, a reliability analysis of an automated yogurt manufacturing
line was also performed by Tsarouhas and Arvanitoyannis [18]. The assumption of
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Fig. 16.7 Milk processing flow diagram

independence was confirmed using trend and serial correlation tests, and the failure
data were distributed in the sameway. The best match to the failure data was found by
determining the theoretical distribution parameters. In addition, models for thewhole
manufacturing line’s dependability and failure rate were created. The models might
be a beneficial tool for assessing present conditions and predicting the reliability of
improving the yogurt line’s operations management rules. The Weibull distribution
was determined to be the best fit for the yogurt manufacturing line in terms of
describing the time between failures.

Moreover, Tsarouhas [19] carried out the analysis of the RAM of a milk produc-
tion line using statistical techniques of failure data. The best fitness indices were
developed using descriptive statistics of the failure and repair data. Some idealized
probability distributions, such as the Weibull, exponential, lognormal, and normal
distributions, have their parameters determined. At various mission periods, the reli-
ability and maintainability (R&M) of workstations and the full line have been calcu-
lated using their best-fit distribution. Both R&M proved to be valuable instruments
for assessing the existing condition and predicting reliability, especially in the short
term, for enhancing the milk production line’s operation management.
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• The availability of the milk production line was 96.13%, and the line was down
or under repair for 3.9%;

• Both the heat exchanger/pasteurizer machine and the bottling machine had 57.5%
of all failures on the production line; and

• Both failure and repair data had no-trend and serial correlation. Failure and
repair records might be a helpful resource for milk industry manufacturers when
designing new safe and reliable equipment.

In another study, the RAM analysis of ice cream analysis was created using
historical data collected over 12 months. The data were subjected to a Pareto anal-
ysis, descriptive statistics, trend, and serial correlation test. For each equipment
and the whole ice cream manufacturing system, failure and repair parameters were
calculated. The RAM study evaluates existing operations management and makes
improvements to the line’s quality, productivity, and performance. It was discovered
that:

• Preventative maintenance intervals for each machine and finished system were
computed for various reliability periods.

• The packing machine and the freezer tunnel are the two machines with the lowest
reliabilities. The importance of this equipment is critical, and it must be well-
maintained to avoid quality and production losses.

• The exogenous machine, as well as the ice cream machine and the entire
manufacturing system, have the poorest maintainability.

Furthermore, because the RAM indices were created to measure and improve
machine performance, production managers and engineers can quickly assess the
next steps and decisions they make in terms of the system’s function [20].

Based on Table 16.2, the following conclusions may be derived from the features
of the dairy production lines:

• The availability is between 50% and 91.2%, and the maximum availability is
observed in the cheese (feta) production line.

• The maximum value of TBF and TTR occurs in the mozzarella cheese production
line with 968,980 and 126,860 min, respectively, whereas the minimum value of
TBF and TTR is observed in the ice cream and cheese (feta) production lines,
respectively.

Table 16.2 Characteristics of the dairy production lines

Production line No. of failures TBF TTR Availability (%) Refs.

Ice cream 468 469 468 50 Tsarouhas [20]

Traditional Italian
cheese

– 1622 67 88.41 Tsarouhas [17]

Mozzarella cheese 1889 968,980 126,860 88.42 Tsarouhas [21]

Cheese (feta) 292 748.8 66.15 91.2 Tsarouhas et al.
[15]
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16.3.4 Milling Process

The economic importance of cereals and their contribution to the diets of humans and
livestock cannot be disputed. Cereals are grown inmost parts of the world, from near-
arctic to near-equatorial latitudes.Wheat is themost important crop among the cereals
by area planted and is followed in importance by corn, barley, and sorghum. The
amount of wheat traded internationally exceeds that of all other grains. Furthermore,
the protein and caloric content of wheat are greater than that of any other food crop.
Most wheat is consumed in the form of baked goods, mainly bread; therefore, wheat
grains must be milled to produce flour before consumption. Wheat is also used as an
ingredient in compound feedstuffs, starch production, and as a feedstock in ethanol
production. Thewheat flour is produced during themechanized process at the factory.
Therefore, increasing the productivity of this mechanized process is most important.
The maintenance unit is one of the best opportunities to increase the productivity
of a mechanized system. For many systems, the category of human resources is
considered to be the most important system capital, which has a significant impact
on system performance. The manpower productivity of a factory during the ten years
was evaluated taking into account the reliability of the system. The results indicated
that the winnower and mill of flour factory included 44.59% and 55.41% of total
failures, respectively. The results indicated that the spiral (22.7%), feeder (16.8%),
and elevator (11.2%) caused the majority of recorded failures in winnower parts.
Furthermore, the roller mill (21.9%), spiral (11.8%), and sieve (9.8%) parts of the
mill were more prone to failure than the rest. The manpower efficiency and factory
equipment failure rate showed a positive relationship as well as there is a positive
relationship between manpower effectiveness and factory equipment reliability [22].

Maduekwe and Oke [2] proposed a novel Taguchi scheme-based on DEMATEL
methods and DEMATEL method for the principal performance indicators of main-
tenance in a wheat processing plant. They calculated the direct-relationship matrix
for FF, DT, MTTR, MTBF, MTTF, and availability by both Taguchi scheme–based
DEMATEL and DEMATEL methods. When the DEMATEL and T-DEMATEL
methodologies were applied to the issue, the results showed that downtime and
availability had the greatest causal influence on other criteria. Additionally, addi-
tional variables in the selection of the key performance indicators utilizing the two
methodologies have the greatest impact on the frequency of failure. To optimize and
identify the causal linkages between components, the Taguchi scheme paired with
the DEMATEL approach is ideal.

As illustrated in Figs. 16.8 and 16.9, grain storage drying and grain logistics
contain several machines and equipment that the stoppage of each one can harm the
grain supply chain. So, it is essential to investigate the failures in several sectors of
this process for future research.

From the foregoing, it appears that the canned product lines had the minimum
TBF and TTR as compared to the rest. Among the production lines under study, the
maximum TBF and TTR occurred in dairy production lines and juice production
lines, respectively. The maximum was related to the Mozzarella cheese production
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Fig. 16.8 Grain storage drying

Fig. 16.9 Grain logistics

line. The maximum availability was observed in the beer packaging line, and the
minimum was related to the ice cream production line. The failure rate trend of
equipment is related tomanufacturing defects, age of equipment, components quality,
dimensioning, load rate, maintenance strategy, environment conditions, stress, etc.
[23]. Moreover, the type of raw materials (such as corrosive and acidic substances)
strongly affects equipment failure. Also, the compatibility of raw materials with
the material of equipment is very important. For instance, acidic raw materials will
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cause corrosion in steel equipment and subsequently operation-stopping breakdowns.
Corrosion rates of steel are higher than that of high carbon steel in all the acidicmedia.
So, the material of equipment should be high carbon steel to decrease corrosion. The
acidic raw materials include milk, yogurt, sauce, tomato, citrus, carbonated drinks,
etc. Therefore, it is essential that the managers of the production line of these foods
considered the equipment suitable for acidic foods.

16.4 Conclusions

In the food business, reliability, availability, and maintainability analysis is a method
that may improve line performance and production rates, as well as assess the impact
of failures and suggestedmodifications to present operationsmanagement.Machines
with a high risk of failure can be recognized, extending the production system’s useful
life. Furthermore, the reliability and hazard ratemodelsmaybe beneficial in assessing
present circumstances and predicting reliability to improve the food production line’s
maintenance strategy. As a result, quantifying losses and advantages might help a
corporation make better decisions.
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Chapter 17
Reliability, Availability, Maintainability,
and Dependability of a Serial Rice Mill
Plant (RMP) with the Incorporation
of Coverage Factor

Nafisatu Muhammad Usman and Ibrahim Yusuf

Abstract Due to growing consumer demand, a number of businesses, including
the plastics and food industries, are struggling to improve efficiency and customer
satisfaction. The coverage factor “c” is extremely important in this direction for
the manufacturing sectors’ day-to-day operations. One parameter that can increase
system efficiency without significantly increasing maintenance costs is the coverage
factor because when a covered defect occurs, the system will automatically recover.
The chance of the system recovering from the malfunction that caused it is how
Arnold (1973) defined coverage factor. A serial rice mill plant with three subsys-
tems, the cleaning and destoning section, the husking and paddy separation section,
and the polishing and bagging section is the subject of this article’s analysis of relia-
bility, availability, maintainability, and dependability (RAMD). The system can be in
one of three operational states while it is in use: full capacity, decreased capacity, or
failed status. The Chapman-Kolmogorov differential equations are constructed using
the Markov birth–death process and the transition diagrams of all subsystems that
integrate the coverage factor. Each subsystem is designed to have independent failure
and repair rates that follow an exponential distribution. The system’s reliability, avail-
ability, maintainability, and dependability all factors crucial to system performance
have been quantified for various subsystems and are shown in tables. There are also
estimated values for dependability ratio, mean time to failure (MTTF), and mean
time between failures (MTBF). The machine’s performance has been assessed on
the basis of the numerical results attained.
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17.1 Introduction

A crucial step in ensuring successful operations and production is dependability,
maintainability, availability, and reliability (RAMD) analysis, which also aims to
pinpoint the system’s weaker parts. RAMD evaluates the system using a variety
of performance modeling techniques at different stages. RAMD evaluation can
be used to derive the important performance measures. The following metrics are
among them: MTBR, MTTR, availability, maintenance-ability, dependency ratio,
reliability, and dependency minimum. Planning maintenance strategies to improve
system performance frequently use these performance indicators.

A rice mill plant is made up of various parts or subsystems. The overall effective-
ness of the entire system is dependent on the availability of particular components or
subsystems. High levels of availability and reliability are required for RMPs. These
two are frequently used to gage how well any RMPs provide their services. The
features of each component or subsystem of the rice mill plant must be examined
in order to identify the factors that have the greatest influence on how the quality
is perceived. In order to ensure trustworthy and dependable system performance,
components are designed to be highly durable in the sense that they rarely suffer
from abrupt breakdowns. Even now, abrupt disruptions are impossible to completely
prevent, according to system operators. As a result, this article proposes adding a
coverage factor to each component or subsystem.

Because the probability of a fault tolerance system’s successful reconfiguration
operation is characterized as a coverage factor, according to Kumar and Kumar
(2011), it offers a more realistic picture of system behavior and more support for
reliability estimations. According to Ram (2013), the conditional chance of recovery
after a problem has occurred is the coverage factor. Copula-based fault coverage
metrics for repairable parallel systems were discussed by Tyagi et al. [1]. Incor-
porating the idea of coverage factor and two different types of repair facilities, they
present a stochastic model for analyzing the behavior of multi-state systems made up
of two non-identical units. They came to the conclusion, based on their findings, that
the use of copula and coverage techniques together tends to increase system avail-
ability and reliability. A copula-coverage approach was used in Ram and Goyal’s
presentation of a bi-directional system analysis. In this paper, the legion stochastic
model for repairable systems has been developed by assuming different types of time
trends, failure modes, and repair effects. This study illustrates a fresh idea for two
different types of repairable three state fault tolerant systems. TheGumbel-Hougaard
family of copula method is used in this study to forecast how the coverage factor
will affect the planned system’s dependability properties. This demonstrates that
a covered problem can cause the system to automatically recover. The RAMD or
coverage techniques have been employed by many engineers to guarantee system
availability and dependability as well as to enhance system features.
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Numerous techniques have been employed by researchers to evaluate depend-
ability metrics in the literature. Reliability, maintainability, and availability study
on reciprocating compressors were covered by Corvaro et al. [2]. The engineering
approaches, tools, andmethodologies used in this written up are mean time to failure,
equipment downtime, and system availability numbers, which are used to identify
and quantify equipment and system failures that obstruct the accomplishment of
productive goals. The study, which was carried out in collaboration with a private
company we will call RC company for privacy reasons, was based on the analysis
of the behavior of states defined for each individual part and component of a recip-
rocating compressor. It also sought to identify and evaluate the effects of RAM-type
factors. The dependability, reliability, maintainability, and availability of a computer-
based test (CBT) network system were examined by Sunusi et al. (2021). CBT is
software that allows for the online administration of exams to local or remote candi-
dates. The Chapman-Kolmogorov differential equations are then created using the
Markov birth–death process, leading to the construction of all subsystem/component
transition diagrams and the eventual acquisition of the dependability metrics. In a
steam turbine power plant, the generator’s dependability and maintainability were
examined byGupta et al. (2021). This study is designed to explore different generator
reliability metrics used in STP using a RAMD technique at the component level. For
this reason, all of the generator’s subsystems’ mathematical models for the Marko-
vian birth–death process have been created and examined. Goyal et al. [3] looked into
the physical processing unit of a sewage treatment plant’s reliability, maintainability,
and sensitivity analysis. Five components make up this system, which is configured
in series. The subsystems’ failure and repair rates have been assumed to be exponen-
tially distributed. The Markovian birth–death process is used to develop Chapman-
Kolmogorov differential equations, and many metrics, including dependability ratio,
mean time between failures, and mean time to repair, are also obtained. The raw
sewage sumpwas discovered to be the plant’s most sensitive subsystem by numerical
simulations, with a dependability of 0.382893. Reena and Basotia (2020) conducted
research on the cement production patil’s reliability and maintainability. The system
breakdown technique described above was used to model each subsystem mathe-
matically utilizing the Marcovian birth–death process. Copula-based measurements
of repairable parallel systems with fault coverage were discussed by Tiyagi et al. [1].
Saini et al. (2019) used the RAMD technique to examine microprocessor systems.
State transition diagrams have been created for each subsystem in their investigation,
and differential equations have been constructed utilizing the Markov birth–death
process. The performance analysis of the small and medium-sized enterprises’ tire
production systems was studied by Velmurugan et al. [4]. This study’s primary goal
is to put the novel method to use in identifying the most important subsystems in the
rubber industry’s tire production system. The Chapman-Kolmogorov method is used
in this study to construct the equations for the subsystems and measure the impact of
variation in maintenance indices, or RAMD, to determine which component of the
tire production system is crucial. Additionally, each subsystem of the tire production
system’s dependability ratio and mean time between failures (MTBF), mean time to
repair (MTTR), and other maintenance characteristics are calculated. Finally, using
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MATLAB software to change the rates of failure and repair of various subsystems,
RAMD analysis of tire production systems has been carried out in order to estimate
the most crucial subsystem. Aggarwal et al. [5] used the RAMD technique to build a
performance model of a dairy plant’s system for producing skim milk powder. The
goal of this research is to present a technique for computing RAMD indices to assess
and enhance the performance of a dairy plant’s system for producing skim milk
powder under actual operating circumstances. The work being done now involves
creating a performance model based on the Markov birth–death process. Six units
make up the production system for skim milk powder. The mnemonic rule is used to
derive the first order governing differential equations, which are then solved to calcu-
late RAMD indices. From a maintenance standpoint, subsystem SS1, which consists
of the chiller and cream separator, is the most crucial. In order to evaluate the effec-
tiveness of the A-pan crystallization technology used by the sugar industry, Dahiya
et al. [6] used the RAMDapproach. In this paper, a fuzzy dependability technique has
been used to attempt to develop a mathematical model of the A-pan crystallization
system of a sugar factory. Four subsystems are arranged in a succession in the A-pan
crystallization system. While the third and fourth subsystems are configured as a
single unit, the first and second subsystems are configured as a 2-out-of-2: G with
two cold standby. Consideration of the exponential distribution of failure and repair
rates has led to the proposal of a mathematical model. Differential equations have
been constructed by taking into account the fuzzy reliability approach and Markov
birth–death model. The fuzzy availability is then obtained by solving these equations
using the fourth order Runge–Kutta method inMATLAB. Tsarouhas and Arvanitoy-
annis [7] studied and analyzed the reliability of the yogurt manufacturing process. A
reliability analysis of an automated yogurt production line was conducted at the line
level and for all machines. It was determined which theoretical distribution parame-
ters suited the failure data the best. The whole production line’s reliability and failure
rate models were also established. The models might prove to be a helpful tool for
updating the operationsmanagement practices of the yogurt production line aswell as
for evaluating the current situation and predicting reliability. The following conclu-
sions were reached: (a) the Weibull distribution best described the time between
failures for the yogurt production line, (b) the failure rate of the production line
increased, indicating that the current maintenance strategy is insufficient and needs
to be upgraded soon; and (c) in order to prevent losses related to quality and produc-
tivity, the reliability must be improved first on the pasteurizing boiler and then on
the filling machine. The TBF, TTR, and data accessibility have all been statistically
examined. Aggarwal et al. [8] developed a mathematical model for assessing the
effectiveness of serial processes in the sugar plant’s refining system using RAMD
analysis. The important component of the system is determined by computing the reli-
ability, availability, maintainability, and dependability (RAMD) factors or indices in
this study. Chapman-Kolmogorov differential equations are derived through math-
ematical modeling of the system using the Markov birth–death process. With the
help of the mean time between failures (MTBF), mean time to repair (MTTR), and
dependability ratio parameters for each component of the system, these equations
are further solved, and RAMD parameters are derived. By altering the failure and
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repair rates of each subsystem of the system, sensitivity analysis has been done to
identify the most crucial component of the system. Niwas and Garg [9] developed
a method for gaging the profitability and reliability of an industrial system based
on the cost-free warranty policy. In this study, the system enters a rest phase after
operating for an arbitrary length of time in order to improve operational efficiency
and lower the failure rate both during and after the warranty term. The mechanism
resets once you have had a full night’s sleep. Additionally, a negative exponential
distribution is assumed for the failure and repair rates of the system’s components
during formulation. The many metrics for a system, including reliability, mean time
to system failure, availability, and predicted profit, are generated using a mathemat-
ical model of the system based on the Markov process. A reliability and availability
study of the skim industrial powder business was put up by Aggarwal et al. [10]. In
this research, a numerical technique is put forth to determine the skim milk powder
system’s mean time between failures (MTBF) and long-term availability and relia-
bility. It is a complicated system made up of six repairable subsystems, including
the chiller, cream separator, pasteurizer, evaporator, drying chamber, and packaging
subsystems. These subsystems are arranged in series or parallel configurations. The
failure and repair rates of each subsystem are assumed to follow an exponential distri-
bution in this analysis, which is based on theMarkov birth–death process. The system
is mathematically formulated, and Chapman-Kolmogorov differential equations are
produced. The Runge–Kutta fourth order method is then utilized to numerically
solve these differential equations. In order to determine the profit of an engineering
system with several subsystems in a series structure, Kumar et al. [11] employed
reliability and availability analysis. De Sanctis et al. [12] provided engineers with
several maintenance techniques for addressing problems including excessive costs,
safety, and environmental protection. They also recommended a methodology for
enhancing industry performance. To do this, equipment from the oil and gas industry
was used as a case study object in a RAMD analysis. A sewage treatment plant phys-
ical processing unit reliability, maintainability, and sensitivity analysis was given by
Goyal et al. in [3]. The three components of a sewage treatment plant are physical
processing, chemical processing, and biological process. The most crucial compo-
nent is the physical process, which consists of five parts set up in a series format. The
subsystems’ failure and repair rates are thought to follow an exponential distribu-
tion. Several metrics, including mean time between failures, mean time to repair, and
dependability ratio, are obtained from Chapman-Kolmogorov differential equations
utilizing the Markovian birth–death process. The plant’s dependability sensitivity
analysis has also been carried out. The RAMD investigation reveals that the raw
sewage sump, with a reliability of 0.382893, is the most vulnerable component of
the plant. To model the performance of significant engineering systems, Sharma
and Kumar [13] used the RAM technique. The use of RAM analysis in a process
industry is discussed in this research. The behavior of the system is modeled using
the Markovian technique. Transition diagrams are created for various subsystems to
be analyzed, and differential equations related to them are created. Following the
discovery of the steady-state solution, reliability and maintainability values are esti-
mated for various mission times. The computed findings are made available to plant
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personnel for active review. They were able to analyze the system behavior using the
data,which significantly improved the system’s performancewhen appropriatemain-
tenance policies and methods were adopted. Saini and Kumar [14] employed RAMD
analysis to examine an evaporation system’s performance in the sugar industry. The
primary goal of this study is to examine how reliability, availability, maintainability,
anddependability are applied in order to identify the sugar plant’smost sensitive evap-
oration system component. All of the subsystems’ transition diagrams are generated
for this study, and the corresponding Chapman-Kolmogorov differential equations
are derivedusing theMarkovbirth–death process. Each subsystem’s failure and repair
rates are all exponentially distributed. For all three subsystems, dependability ratios,
mean times between failures, and mean times to repair are all computed as additional
systemeffectivenessmetrics. System reliability sensitivity analysis is also carried out.
At various time instants, themaintainability and reliability are estimated. From a reli-
ability standpoint, analysis of all the subsystems reveals that sulfite syrup is extremely
sensitive. Garg et al. [15] used an artificial bee colony and fuzzy approach to analyze
the performance of repairable industrial systems. In this research, an unique method
for computing these parameters using readily accessible or collected data has been
introduced. Its name is an artificial bee colony based Lambda-Tau. In this method,
the Lambda-Tau methodology is used to generate the expression of RAM param-
eters, and the related membership functions are computed by creating a nonlinear
programming problem. To increase system productivity, a generalized RAM-Index
has been utilized to rank the system’s components according to their performance.
A case study of a paper industry washing unit was used to test the proposed strategy,
and the calculated results are then contrasted with those of existing Lambda-Tau and
evolutionary algorithm techniques. Tsarouhas et al. [16] examined the dependability,
availability, and maintainability of a cheese (feta) production line at a medium-sized
Greek company. A 17-month reliability, maintainability, and availability analysis of
the cheese production line were conducted. The failure and repair data were fitted as
closely as possible to the common theoretical distributions, and the corresponding
parameters were determined. Additionally, the full production line’s reliability and
danger rate modes were calculated. It was discovered that (a) the cheese manufac-
turing line’s availability was 91.20% and dropped to 87.03%, (b) the dominant four
failure mechanisms accounted for 62.2% of all failures, and (c) an average failure
occurs every 12.5 operation hours with a mean repair time of 66 min. In addition to
providing certain maintenance priorities, Malik and Tewari [17] established a math-
ematical model for evaluating the performance of a water flow system. Condenser,
condensate extraction pump (CEP), low pressure heater (LPH), deaerator, and boiler
feed pump are the five subsystems that make up the system (BFP). With the use
of a normalizing condition and the Markov technique, the Chapman-Kolmogorov
equations are created based on the transition diagram and then solved recursively
to produce performance modeling. With the use of various combinations of failure
rates and repair rates for all subsystems, availability matrices are created. Plots repre-
senting the failure rates and repair rates of various subsystems are used to evaluate
the performance of each subsystem in terms of the availability level attained. Based
on the repair rate, the variousWFS subsystems’maintenance priorities are set.Mehta
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et al. (2018) used the additional variable technique to analyze the availability of an
industrial system.The development of amathematicalmodel for evaluating the acces-
sibility of a butter oil producing system is the goal of this study. The heater, clarifier,
filler, and granulation subsystems make up the industrial system. The Chapman-
Kolmogorov differential equations have been constructed from the system’s state
transition diagramusing themnemonic rule, under the assumptions of constant failure
rates and variable repair rates. La-grange’s methodwas used to solve these equations,
and the Runge–Kutta fourth order method was used to calculate the system’s avail-
ability for various failure and repair rates. The mean time between failures has been
mathematically calculated. In order to help the plant management, choose the main-
tenance priorities for the best use of the resources, criticality analysis has also been
done to help with maintenance priority ideas. The research of reliability modeling
of a parallel system with a supporting unit and two types of preventive management
was presented by Yusuf [18]. Both online and offline preventive maintenance are
being performed on the system. Before units or systems fail, online preventive main-
tenance (PM) is performed, whereas offline preventive maintenance is performed on
the external supporting equipment after units or systems fail. Explicit expressions for
system effectiveness that are crucial to reliability engineers, maintenance managers,
system designers, etc., have been produced using the Kolmogorov forward equations
method. Graphical representations are provided to highlight significant results based
on presumptive numerical values provided to system parameters. To demonstrate the
impact of online and offline preventative maintenance, comparisons are made. Using
PSO and IFS approaches, Garg and Rani [19] suggested a novel method for exam-
ining the dependability of industrial systems. This paper’s major goal is to offer
a method for computing the intuitionistic fuzzy set’s (IFS) membership functions
using shaky, uncertain, and ambiguous data. As a result, instead of using fuzzy oper-
ations to formulate a nonlinear optimization problem, these spreads were optimized.
Their membership functions have been created using particle swarm optimization
(PSO). Finding the crucial system component has involved doing sensitivity and
performance analyzes. The computed results are then contrasted with earlier find-
ings. Themajority of the equipment used in themining industry is reliant on operating
procedures,maintenance procedures, andworking conditions, according toBarabady
and Kumar [20]. And they got to the conclusion that component reliability largely
determines the plant’s performance. As a result, a case study-based methodology has
been developed to pinpoint the parts that are less reliable. In order to examine system
performance in repairable industrial systems utilizing the genetic algorithm (GA) and
the Markovian technique, Komal et al. (2010) created parametric calculations and
indices of RAM. This research offers a method for estimating the RAM character-
istics of these systems using both available knowledge and speculative data. This is
accomplished using the genetic algorithms-based Lambda-Tau (GABLT) approach.
In thismethod, formulas for theRAMparameters of the systemare producedusing the
conventional Lambda-Tau methodology, and these parameters are computed using a
genetic algorithm using quantified data in the form of triangular fuzzy numbers. In
order to rank the system’s component parts according to their performance, a general
RAM-Index is employed for post RAM analysis. Garg [21] examined an industrial
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system’s performance using a hybridized approach based on soft computing. This
study quantified the data uncertainties as fuzzy numbers and applied them to the
various dependability characteristics of the industrial system, which represents the
behavior of the system. The system’s parameters’ associated membership functions
are calculated by creating and solving a nonlinear optimization model. The obtained
results were contrasted with the traditional and existing methodologies and results,
and it was discovered that there were fewer levels of uncertainty throughout the
investigation. The most important system component has also been the subject of a
sensitivity and performance investigation. Finally, a method has been demonstrated
using a case study of a repairable industrial system, a cattle feed facility. Sharma and
Sharma [22] made an effort to incorporate a framework to optimize RAM and cost
choices in a processing facility. The principles of fuzzy mathematics are used in the
quantitative analysis to quantify the imprecise and vague information regarding the
system failure behavior in terms of fuzzy and crisp values. A resource optimization
approach based on multi-stage decision making (MSDM) has also been suggested
to control the system reliability for the optimal economic performance. The model
uses precise output values for unit dependability in addition to pertinent system data
(number of components, manpower, cost ranges). Root cause analysis (RCA) and
failure mode and effects investigation are used in the qualitative analysis to conduct
an in-depth analysis of the system (FMEA). Gray relation analysis (GRA) and the
fuzzy decision-making system (FDMS) are used to address the ambiguities in the
conventional FMEA (GRA). A case has been used to illustrate the suggested frame-
work. In order to analyze the availability of an ice cream production unit, Kumar
and Mudgil [23] developed a methodology that included three possible states for
each subsystem with constant failure and repair rates. The three states of various
components considered in the paper are good, reduced, and failed. Each subsystem’s
failure and repair rates are considered constant and statistically independent. The
system’s mathematical formulation uses the Markov birth–death process. State tran-
sition diagramswere used to derive the various differential equations. Following that,
steady-state probabilities are calculated by combining different failure and repair
rates. Decision matrices are generated based on various performance levels in terms
of availability. Following an analysis of each subsystem’s performance, all subsys-
tems’ maintenance plans are implemented. Using PSO and fuzzy approaches, Garg
[24] assesses the industrial reliability, availability, and maintainability. This paper’s
goal is to propose a method for evaluating an industrial system’s system performance
using unknown data. In this essay, fuzzy set theory has been employed for analysis,
and particle swarm optimization has been used to solve a nonlinear optimization
problem to produce the relevant membership functions. A composite measure of
reliability, maintainability, and availability (RAM) known as the RAM-index has
been introduced to help identify the system’s critical component, which has the
greatest impact on the performance of the system. It influences how the failure and
repair rate parameters affect the system’s performance. In the analysis, time-varying
failure and repair rate parameters are used rather than constant rate models. The
computed findings are then finally compared to established procedures. With the aid
of a case, the proposed framework has been demonstrated. Availability modeling
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and evaluation of repairable systems exposed to slight degradation under imper-
fect fixes were examined by Yusuf [25]. The modeling and availability assessment
of a system subject to slight deterioration and unsatisfactory repair are the topics
of this research. In this study, we developed a probabilistic explicit formulation of
system availability and examined how failure, repair rate, and the number of states
affected system availability. The system’s maximum practicable availability level is
also established. Tewari et al. [26] discussed employing genetic algorithm technique
to improve the performance of a sugar plant’s crystallization unit. Three primary
subsystems are arranged in series in the sugar industry’s crystallization unit. The
mathematical formulation of the problem is done using a probabilistic approach,
and differential equations are built on the basis of the Markov birth–death process.
The exponential distribution for the likely failures and repairs is taken into consid-
eration. The steady-state availability of the crystallization unit is then determined
by solving these equations under normalizing conditions. Using evolutionary algo-
rithms, the performance of each crystallization subsystem in a sugar factory has
also been improved. The authors of Choudhary et al. [27] proposed a strategy for
improving cement plant dependability. Over a two-year period, the system’s MTBF
and MTTR were determined, and RAMD indicators were examined. Reliability,
availability, and maintainability (RAM) analysis of a cement plant’s subsystems
helps increase availability by preventing failures and cutting down on maintenance
time. According to a reliable two-stage failure process that includes the defect initial-
ization stage and the defect development stage, both of which have competing fail-
ures, Qiu and Cui [28] certified a system reliability performance. The fact that these
two stages share a shock mechanism that is characterized by a non-homogeneous
Poisson process illustrates the dependence between them. The two stages of the
random hazard rate are what define the effect of shock damage on system failure
behavior. We take into consideration two common and competitive failure mecha-
nisms, defect-based failure, and duration-based failure, based on the actual failure
behavior of industrial systems. We derive several system reliability findings and
demonstrate how, with various parameter values, our model reduces to a number of
traditional competing risk models. A study on the dependability analysis of a robotic
system using a hybridized technique was presented by Kumar et al. (2018). The
current study makes use of a hybridized methodology. With this method, uncertain-
ties are quantified using fuzzy set theory, the system is modeled using fault trees,
mathematical expressions for the system’s failure and repair rates are created using
the Lambda-Tau method, and the problem of nonlinear programming is solved using
genetic algorithms. Different robotic system dependability metrics are estimated,
and the outcomes are compared to the current method. The robotic system’s parts are
constant and follow an exponential distribution. Additionally, sensitivity analysis is
carried out, and the impact on themean timebetween failures (MTBF) of the system is
addressed by changing other reliability factors. In the forming industry, Velmurugan
et al. [29] presented a RAM analyzes. This study’s primary objective is to analyze
maintenance activities in the small and medium-sized enterprise (SME) sector and
recommend the optimummaintenancemanagement strategy for the existingworking
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environment. Because the Markov model is a potent tool for reliability, maintain-
ability, and safety (RMS) engineering, and because it is a straightforward modeling
approach for reliability measurement with respect to value of reliability availability,
Markov analysis is used in this study to predict future sequence maintenance activity
models. These three functions were selected for this research analysis because they
directly affect the system’s maintainability (RAM). MATLAB software is used to
solve all mathematical functions. The proposed model’s output offers a new check
sheet for planned maintenance of the specified manufacturing environment together
with a new maintenance model sequence with an optimal cost structure. A brand-
new method for reliability analysis with time-variant performance characteristics
was put forth by Wang and Wang [30] and is known as nested extreme response
surface. To create a nested response surface of time corresponding to the extreme
value of the limit state function, this method makes use of the cringing model. The
NERS strategy and the efficient global optimization (EGO) technique are combined
to extract the limit state function’s extreme time responses for any given system
design. Based on the mean square error (MSE), an adaptive response prediction
and model maturation (ARPMM) mechanism are created to simultaneously increase
the proposed approach’s accuracy and computing efficiency. The time-dependent
reliability analysis can be transformed into the time-independent reliability analysis
using the nested response surface of time, and existing advanced reliability anal-
ysis and design methodologies can be employed. For engineered system design with
time-dependent probabilistic constraints, the NERS technique is compared to other
time-dependent reliability analysis approaches and linked with RBDO. The effec-
tiveness of the suggestedNERS strategy is shown through the use of two case studies.
A series–parallel industrial system’s performance evaluation was recently covered
by Sanusi et al. [31]. Systems of first order differential equations of the developed
model were created through the transition diagram to derive the steady-state prob-
ability. Recursively, these equations were solved. Analyzes and investigations were
done on the availability at steady-state. In the form of availabilitymatrices, the conse-
quences of failure and repair rates for each subsystem were shown. The availability
tends to decrease/increase when failure/repair rates rise, according to the availability
metrics.

They were able to concentrate on the many viewpoints on reliability engineering
provided by a number of researchers by doing a literature survey. The numerous
factors that affect system reliability have all been carefully evaluated. Studies on the
accessibility of various procedures in various industries have also been conducted.
However, as little to no research has been done on RAMD coverage technique, there
is still a great need for further study in this area (analyzing each subsystem with the
incorporation of coverage factor). According to the aforementioned literature, RAM
analysis is a well-known technique for predicting a system’s production availability
by examining the causes, modes, and consequences of failure while also considering
how these factors might affect output.



17 Reliability, Availability, Maintainability, and Dependability of a Serial … 387

This study’s objective is to give the findings of a thorough evaluation of the
reliability, availability, maintainability, and dependability (RAMD) of a rice mill
plant system, which includes a study of coverage factors under the assumption that
a failure rate will occur. When the overall system failure rate is as low as possible,
the system reliability can be as reliable as possible.

There are 7 sections in this article. An introduction and a few quick reviews that
are necessary for this subject are included in the first Section. Section 17.2 discusses
the resources and procedures. The system description is covered in Sect. 17.3.
Section 17.4 provides an overview of the system’s RAMD analysis findings. In
Sect. 17.5, numerical simulation is discussed. Section 17.6 provided the discussion
of the results, and Sect. 17.7 wrapped up the chapter.

17.2 Materials and Method

This section discusses the resources available for computing RAMD measure-
ments for the model in question. Since all failure and repair rates are exponentially
distributed and statistically independent during a steady-state period, all data utilized
in this study are only accurate during that period.

17.2.1 Reliability Function

The probability that a system/machine will function throughout a period of time
t is defined as reliability. Reliability can be expressed mathematically as R(t) =
Pr {T > t}, where T is a continuous random variable that denotes the time of failure
of system with R(t) ≥ 0, R(t) = 1. (For a full description, see Ebeling 2000). In
terms of failure rate, a component’s reliability can be represented as follows:

R(t) =
∞∫

t

f (t0)dt0. (17.1)

For a component with an exponentially distributed failure rate, Eq. (17.1) is reduced
to:

R(t) = e−λt . (17.2)
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17.2.2 Availability Function

According to Ebeling (2000), availability is the likelihood that a component will
perform its required function at a specific moment when used under a set of opera-
tional circumstances. There are three types of availability: steady-state, interval, and
point availability. It is written as follows mathematically:

(t) = lim A(T ) = MTBF

MTBF + MTTR
(17.3)

17.2.3 Maintainability

Ebeling (2000) defined system maintainability as the likelihood that a failing
component will be repaired or returned to a specific condition within a predeter-
mined amount of time depending on the necessary method. Mathematically, system
maintainability is stated as follows:

M(t) = P(T ≤ t) = 1 − e(
−t

MTTR ) = 1 − e−μt . (17.4)

where μ is the constant system’s repair rate.

17.2.4 Dependability

Dependability is a metric that measures how consistently a system performs, and
it is practically synonymous with operational availability (View Aggarwal 2007).
Dependability was first highlighted by Wohl as a design requirement in 1966.
Dependability has the benefit of making it possible to compare costs, reliability, and
maintainability. The following is the dependability ratio for randomly distributed
variables with exponential distribution:

d = μ

θ
= MTBF

MTTR
(17.5)

The high dependability ratio score reflects the significance of maintenance. The
value of dependability increases when availability exceeds 0.9 and decreases when
availability is less than 0.1. The minimum value of dependability is determined using
the formula below:

Dmin = 1 −
(

1

d − 1

)(
e−Ind/d−1 − edInd/d−1

)
(17.6)
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17.2.5 MTBF

The MTBF stands for the mean time between failures. Hours are typically used to
express it. The system becomes more reliable as the MTBF rises. The following is
the MTBF for an exponentially distributed system:

MTBF =
∞∫

0

R(t)dt =
∞∫

0

e−θ tdt = 1

θ
. (17.7)

17.2.6 MTTR

The reciprocal of the system repair rate is specified as MTTR. It is mathematically
expressed as follows:

MTTR = 1

μ
. (17.8)

where μ is the system’s repair rate.

17.2.7 Exponential Distribution

ArandomvariableX is said to obey an exponential distributionwith parameter θ > 0,
if its probability density function is given by:

f (x, θ) =
{

θe−θx , if x ≥ 0
0, otherwise

(17.9)

17.2.8 Constant Failure Rate

The constant hazard rate function can be written as follows:

f (t, θ) =
{

θe−θ t , if t ≥ 0
0, otherwise

(17.10)

where θ is constant with probability density function, with F(t) = 1 −
e−θ t and R(t) = e−θ t .
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17.2.9 Notations

Failure state of all subsystems.

Operative state of all subsystems.

Partial failed state of all subsystems.

G, J, and T : Denote the conditions in which a subsystem is performing at its best.
H, I, K , L , M and V : Represent the states of the subsystems that are working
less.
P, N and r : Represent the failure states of subsystem A, B, and C, respectively.
c: Coverage factor.
δi , i = 1, 2, 3: Rate of failure of subsystems A, B, and C, respectively.
ηi , i = 1, 2, 3: Rate of repair of subsystems A, B, and C, respectively.
P0(t): Probability that the system is operating at maximum capacity when it starts
up.
Pi ; i = 0, 1, 2, 3: Steady-state probability that the system is in i th state.

17.3 System Description

The distributed parallel system studied in this chapter consists of three distinct
subsystems:

17.3.1 Description

Subsystem A: comprises three active units. Two units must be operational for the
system to function. The capacity of subsystem A is reduced when one of its units
malfunctions.

Subsystem B: This subsystem consists of four active components. For the system
to function, at least two units must be operational. Reduced system capacity results
from a system unit failing.
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Subsystem C: The two active servers in this subsystem are arranged in parallel.
The system performs at a reduced capacity when one of the two active units in this
subsystem malfunctions. While the failure of the two units’ causes the system to fail
completely.

17.3.2 Objectives

1. To componently analyze the system reliability metrics.
2. To identify the most important subsystem.
3. To look for potential solutions for escaping dangerous situations.
4. To demonstrate the effectiveness of a covered fault system.

17.3.3 Assumption

1. Moving from standby to operation is ideal.
2. The restored item functions flawlessly.
3. The distribution of failure and repair time is thought to be exponential.
4. Except in a complete failed state, a unit’s failure has no impact on the system’s

operation (Fig. 17.1).

17.4 RAMD Analysis of the System

In order to mathematically model a rice mill plant system, Chapman-Kolmogorov
differential equations have been constructed for each subsystem utilizing theMarkov
birth–death process. Using the nomenclature from Sect. 17.2.1 above, Figs. 17.2,

A1 

A2

A3

B4

B3

B2

B1

C1

C2

Fig. 17.1 Distributed parallel system
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Fig. 17.2 Transition diagram of subsystem A
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Fig. 17.3 Transition diagram of subsystem B

Fig. 17.4 Transition
diagram of subsystem C T r V

Table 17.1 Subsystem
failure and repair rates in the
system of the rice mill plant

Subsystem Failure rate Repair rate

SSA δ1 = 0.005 η1 = 0.082

SSB δ2 = 0.002 η2 = 0.35

SSC δ3 = 0.0015 η3 = 0.45

17.3, and 17.4 provide transition diagrams for each of the three subsystems.
By solving the relevant Chapman-Kolmogorov differential equations in a steady
state while simultaneously applying normalization conditions, system performance
measures such as availability, reliability,maintainability, and dependability have been
developed. Table 17.1 shows various subsystem maintenance and failure rates.

The following are RAMD indices for rice mill plant (RMP) subsystems:

17.4.1 RAMD Indices for Subsystem A

There are three active units in this subsystem. The subsystem as a whole fails when
any one of the three components fails since they all have the same failure rate. The
differential equations for subsystem A are represented in Fig. 17.2 and are given
below:
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P1
0 (t) = −3cδ1P0 + η1P3, (17.11)

P1
1 (t) = −(2cδ1)P1 + 3cδ1P0, (17.12)

P1
2 (t) = −(cδ1)P2 + 2cδ1P1, (17.13)

P1
3 (t) = −η1P3 + cδ1P2. (17.14)

Using the initial circumstances and taking t → ∞, Eqs. (17.11) through (17.14)
can be simplified to the following

−3cδ1P0 + η1P3 = 0, (17.15)

−(2cδ1)P1 + 3cδ1P0 = 0, (17.16)

−(cδ1)P2 + 2cδ1P1 = 0, (17.17)

−η1P3 + cδ1P2 = 0. (17.18)

Using the normalization condition (P0 + P1 + P2 + P3 = 1) and recursively
solving Eqs. (17.15) through (17.18), we have as follows:

P0 = 2η1
11η1 + 6cδ1

, P1 = 3η1
11η1 + 6cδ1

, P2 = 6η1
11η1 + 6cδ1

, and P3 = 6cδ1
11η1 + 6cδ1

.

The steady-state availability is now calculated as the product of all functioning
state probability as follows:

AvSSA(t) = P0 + P1 + P2. (17.19)

Thus, we have the availability of subsystem A as follows:

AvSSA(t) = 11η1
11η1 + 6cδ1

= 0.902

0.902 + 0.030c
(17.20)

1. The system’s accessibility when coverage is disregarded;

AvSSA(t) = 11η1
11η1 + 6δ1

= 0.9678111588

2. The availability of the system with coverage;
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AvSSA(t) = 11η1
11η1 + 6cδ1

= 0.9933920705 at c = 0.2

AvSSA(t) = 11η1
11η1 + 6cδ1

= 0.9868708972 at c = 0.4

AvSSA(t) = 11η1
11η1 + 6cδ1

= 0.9804347826 at c = 0.6

Equation provides the system’s reliability information (17.1). Equation (17.1) is
reduced to for a component with an exponentially distributed failure rate:

R(t) = e−θ t . (17.21)

As a result, subsystem A’s reliability is determined as follows:

RSSA(t) = e−0.005t . (17.22)

The maintainability of the system is determined by Eq. (17.4).
Equation (17.23) following so presents the maintainability of subsystem A.

MSSA(t) = 1 − e−0.082t . (17.23)

Other subsystem A performance indicators are listed below using Eqs. (17.4),
(17.5), (17.6), (17.7), and (17.8):

MTBF = 200 h,MTTR = 12.1951 h, d = 16.4000, Dmin(SSA)(t) = 0.9395.

17.4.2 RAMD Indices for Subsystem B

This subsystem has four active components. The system will collapse as it did in
subsystem A if any one of the four units—which all have the same rate of failure—
fails. Figure 17.3 depicts the differential equations for subsystem B. They are as
follows:

P1
0 (t) = −4cδ2P0 + η2P4, (17.24)

P1
1 (t) = −(3cδ2)P1 + 4cδ2P0, (17.25)

P1
2 (t) = −(2cδ2)P2 + 3cδ2P1, (17.26)
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P1
3 (t) = −cδ2P3 + 2cδ2P2. (17.27)

P1
4 (t) = −η2P4 + cδ2P3. (17.28)

Equations (17.24) through (17.27), when combined with the beginning circum-
stances and the value of t → ∞, result in the following

−4cδ2P0 + η2P4 = 0, (17.29)

−(3cδ2)P1 + 4cδ2P0 = 0, (17.30)

−(2cδ2)P2 + 3cδ2P1 = 0, (17.31)

−cδ2P3 + 2cδ2P2 = 0. (17.32)

−η2P4 + cδ2P3 = 0 (17.33)

Solving Eqs. (17.26)–(17.30) recursively and using normalizing condition (i.e.,
P0 + P1 + P2 + P3 = 1), we get:

P0 = 3η2
25η2 + 12cδ2

, P1 = 4

3
P0, P2 = 2P0, P3 = 4P0 and P4 = 4cδ2

η2
P0.

After adding up all of the working state probabilities, the steady-state availability
is calculated as follows:

AvSSB(t) = P0 + P1 + P2 + P3. (17.34)

Thus, we have the availability of subsystem B as follows:

AvSSB(t) = 25η2
25η2 + 12cδ2

= 8.75

8.75 + 0.0024c
(17.35)

1. If coverage is disregarded, the system’s availability is as follows:

AvSSB(t) = 25η2
25η2 + 12δ2

= 0.9972646451

2. The system’s coverage and accessibility;

AvSSB(t) = 25η2
25η2 + 12cδ2

= 0.9994517295 at c = 0.2
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AvSSB(t) = 25η2
25η2 + 12cδ2

= 0.9989040591 at c = 0.4

AvSSB(t) = 25η2
25η2 + 12cδ2

= 0.9983569899 at c = 0.6

Equation provides the system’s reliability information (17.1). Equation (17.1) is
reduced to for a component with an exponentially distributed failure rate:

R(t) = e−θ t . (17.36)

The subsystem B’s reliability is calculated as follows:

RSSB(t) = e−0.002t . (17.37)

Equation (17.4) estimates the system’s maintainability.
Therefore, Eq. (17.36) below presents the maintainability of subsystem B.

MSSB(t) = 1 − e−0.35t . (17.38)

Using Eqs. (17.4), (17.5), (17.6), (17.7), and (17.8), other performance indicators
of subsystem A are given below:

MTBF = 500 h,MTTR = 2.8571 h, d = 175.0026, Dmin(B)(t) = 0.9395.

17.4.3 RAMD Indices for Subsystem C

Two active units are connected in parallel by this subsystem’s two active units. The
subsystem’s capability is reduced when one of its active units malfunctions. On the
other hand,when the two components fail, the systemas awhole fails. The differential
equations for subsystem C are displayed in Fig. 17.4 and are as follows:

P1
0 (t) = −2cδ3P0 + η3P2, (17.39)

P1
1 (t) = −(cδ3)P1 + 2cδ3P0, (17.40)

P1
2 (t) = −η3P2 + cδ3P1. (17.41)

Using the initial circumstances and taking t → ∞, Eqs. (17.37) through (17.39)
can be simplified to the following
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0 = −2cδ3P0 + η3P2, (17.42)

0 = −(cδ3)P1 + 2cδ3P0, (17.43)

0 = −η3P2 + cδ3P1, (17.44)

Using the normalization condition (i.e., P0+P1+P2 = 1) and recursively solving
Eqs. (17.40) through (17.42), we arrive at:

P0 = η3

3η3 + 2cδ3
, P1 = 2P0, and P2 = 2cδ3

η3
P0

Now, all of the working state probabilities are added together to determine the
steady-state availability of subsystem C as follows:

AvSSC(t) = P0 + P1. (17.45)

As a result, we obtain subsystem C’s availability as:

AvSSC(t) = 3η3
3η3 + 2δ3

= 1.35

1.35 + 0.003
. (17.46)

1. The system’s availability if coverage is disregarded;

AvSSC(t) = 3η3
3η3 + 2δ3

= 0.9977827051

2. The availability of the system with coverage;

AvSSC(t) = 3η3
3η3 + 2cδ3

= 0.9995557530 at c = 0.2

AvSSC(t) = 3η3
3η3 + 2cδ3

= 0.9991119006 at c = 0.4

AvSSC(t) = 3η3
3η3 + 2cδ3

= 0.9986684420 at c = 0.6

Equation provides the system’s reliability information (17.1). Equation (17.1) is
simplified to: for a component with an exponentially distributed failure rate.

R(t) = e−θ t . (17.47)
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The reliability of subsystem C is thus determined as follows:

RSSC(t) = e−0.0015t . (17.48)

The maintainability of the system is determined by Eq. (17.4). Thus, Eq. (17.47)
below presents the maintainability of subsystem C.

MSSC(t) = 1 − e−0.45t . (17.49)

The following list of additional subsystem C performance indicators is based on
Eqs. (17.4), (17.5), (17.6), (17.7), and (17.8):

MTBF = 666.6666 h,MTTR = 2.2222 h, d = 300.0029, Dmin(SSC)(t) = 0.9968.

17.5 Numerical Simulation

Numerical simulations of the reliability metrics are discussed in this section.

(a) System reliability

In a serial order, all four subsystems are linked. The system will fail completely if
one or more components fails. The entire system reliability is calculated as follows

Rsys(t) = RSSA(t) × RSSB(t) × RSSC(t),

Rsys(t) = e−0.005t × e
−0.002t × e

−0.0015t
,

Rsys(t) = e−(0.005+0.002+0.0015)t ,

Rsys(t) = e−(0.0085)t . (17.50)

(b) System availability

Each of the four subsystems is linked to the others in a sequential manner. A single
failure causes the entire system to fail. The following formula gives the overall system
availability:

Avsys(t) = AvSSA(t) × AvSSB(t) × AvSSC(t),

1. The availability of the system when coverage is ignored;

Avsys(t) = 0.9678111584 × 0.9972646451 × 0.9977827051 = 0.9630237936

2. The availability of the system with coverage;
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Table 17.2 RAMD indices
for distributed system

RAMD indices of
subsystems

Subsystem A Subsystem B Subsystem C

Availability 0.164
0.902+0.030c

8.75
8.75+0.0024c

1.35
1.35+0.003

Reliability e−0.005t e−0.002t e−0.0015t

Maintainability 1 − e−0.082t 1 − e−0.35t 1 − e−0.45t

Dependability 0.9395 0.9395 0.9968

11η1
11η1 + 6cδ1

+ 25η2
25η2 + 12δ2

+ 3η2
3η2 + 2cδ2

= 0.902

0.902 + 0.030c
+ 8.75

8.75 + 0.024c

+ 1.35

1.35 + 0.0030c

(c) System maintainability

All four subsystems are linked in a sequential manner. One failure causes the entire
system to fail. The following formula calculates the overall system maintainability:

Msys(t) = MSSA(t) × MSSB(t) × MSSC(t),

Msys(t) = (
1 − e−0.082t

) × (
1 − e−0.35t

) × (
1 − e−0.45t

)
. (17.51)

(d) System dependability

Each of the four subsystems is linked to the others in a sequence. When one part
of the system fails, the entire system fails. The following criteria are used to assess
overall system dependability:

Dmin(sys)(t) = Dmin(SSA)(t) × Dmin(SSB)(t) × Dmin(SSC)(t),

Dmin(sys)(t) = 0.9395 × 0.9395 × 0.9968 = 0.8798. (17.52)

The result summary of RAMD indices is presented below (Table 17.2 and
Figs. 17.5, 17.6):

Table 17.7 shows the variation in each system’s ability to bemaintained over time.

17.6 Result Discussion

Tables 17.3, 17.4 and 17.5 and the figures that go with it make it abundantly evident
that the system’s availability reduces gradually and eventually becomes constant, that
is, that it declines as the coverage variable increases. When no coverage approach
is used and the repair rate follows an exponential distribution for one type of repair
between two transition states of the system, the availability of the subsystems is
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0.9678111584, 0.9972646451, and 0.9977827051 for subsystems A, B, and C,
respectively. While the system’s availability when the subsystems are connected
serially is 0.9630237936, this figure represents the system’s availability when no
coverage approach is used and the repair rate exhibits exponential distribution.When
the repair rate follows an exponential distribution and the coverage factor varies,
Table 17.4 displays the system’s availability. Looking closely at Table 17.3 and the
associated figure, it is evident that each subsystem’s availability is maximum at a
coverage value of 0.2 and lowest at a coverage value of 0.9. The availability value for
each subsystem is 0.9666123428. The system’s availability drops by up to 0.9630
when there is no coverage. This illustrates how beneficial a covered fault system is
to system performance.

Another point is that, despite a rise in failure rates, subsystem C is the one that
is most reliable. Subsystems A and B are therefore the most important and sensi-
tive parts of the system because they have the highest failure rates. This is seen in
Tables 17.6, 17.7, 17.8, 17.9, 17.10, 17.11, 17.12, and 17.13 aswell as their Figs. 17.7,
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Table 17.3 Variation in
subsystems availability with
coverage

c Subsystem A Subsystem B Subsystem C

0.1 0.9966850832 0.9997257891 0.9997778272

0.2 0.9933920706 0.9994517295 0.9995557530

0.3 0.9901207466 0.9991778195 0.9993337775

0.4 0.9868708974 0.9989040591 0.9991119006

0.5 0.9836423120 0.9986304492 0.9988901222

0.6 0.9804347828 0.9983569899 0.9986684420

0.7 0.9772481043 0.9980836792 0.9984468604

0.8 0.9740820735 0.9978105182 0.9982253772

0.9 0.9709364910 0.9975375078 0.9980039920

Table 17.4 Variation of
systems availability with
coverage

c Avsys(t)

0.1 0.9961904057

0.2 0.9924063535

0.3 0.9886475902

0.4 0.9849138663

0.5 0.9812049363

0.6 0.9775205577

0.7 0.9738604893

0.8 0.9702244950

0.9 0.9666123428

Table 17.5 Variation of
subsystem availability with
no coverage

Av with no coverage

Subsystem A 0.1759656652

Subsystem B 0.9972646451

Subsystem C 0.9977827051

17.8, 17.9, 17.10, 17.11, 17.12, 17.13, and 17.14. Table 17.6 and Fig. 17.7 make it
abundantly evident that subsystem C, which has the lowest failure rate among the
four and offers the highest level of system reliability. This sensitivity analysis shows
that when the total system failure rate is low and the supporting units have been
activated, the optimum system dependability can be attained. In order to increase the
reliability of the system, efficient maintenance solutions should be developed, and
redundant procedures may be employed.

According to the surface plots, tables, and figures, one of the benefits of the
coverage factor “C” for an industrial system is that it aids in enhancing system
dependability, which in turn raises the system’s output capacity. Additionally, it is
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Table 17.6 Subsystem reliability variation over time

Time (t) in (days) RSSA(t) RSSB(t) RSSC(t) Rsys(t)

0 1.0000 1.0000 1.0000 1.0000

20 0.9048 0.9608 0.9704 0.8437

30 0.8607 0.9418 0.9559 0.7749

40 0.8187 0.9231 0.9418 0.7118

50 0.7788 0.9048 0.9277 0.6537

60 0.7408 0.8869 0.9139 0.6005

70 0.7047 0.8694 0.9003 0.5516

80 0.6703 0.8521 0.8869 0.5066

90 0.6376 0.8353 0.8737 0.4653

Table 17.7 Change of subsystems’ maintainability has over time

Time (t) in (days) MSSA(t) MSSB(t) MSSC(t) Msys(t)

0 0.0000 0.0000 0.0000 0.0000

20 0.8060 0.9991 0.9999 1.0000

30 0.9146 0.9999 0.9999 1.0000

40 0.9624 0.9999 0.9999 1.0000

50 0.9834 0.9999 0.9999 1.0000

60 0.9927 0.9999 1.0000 1.0000

70 0.9968 1.0000 1.0000 1.0000

80 0.9986 1.0000 1.0000 1.0000

90 0.9994 1.0000 1.0000 1.0000

Table 17.8 Variation in subsystem A’s failure rate as a function of its reliability

Time (t) in (days) δ1 = 0.005 δ1 = 0.006 δ1 = 0.007 δ1 = 0.008

0 1.0000 1.0000 1.0000 1.0000

20 0.9048 0.8869 0.8694 0.8521

30 0.8607 0.8353 0.8106 0.7866

40 0.8187 0.7866 0.7558 0.7261

50 0.7788 0.7408 0.7047 0.6703

60 0.7408 0.6977 0.6570 0.6188

70 0.7047 0.6570 0.6126 0.5712

80 0.6703 0.6188 0.5712 0.5273

90 0.6376 0.5827 0.5326 0.4868
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Table 17.9 Subsystem B’s failure rate varies with its reliability

Time (t) in (days) δ2 = 0.002 δ2 = 0.003 δ2 = 0.004 δ2 = 0.005

0 1.0000 1.0000 1.0000 1.0000

20 0.9608 0.9418 0.9231 0.9048

30 0.9418 0.9139 0.8869 0.8607

40 0.9231 0.8869 0.8521 0.8187

50 0.9048 0.8607 0.8187 0.7788

60 0.8869 0.8353 0.7866 0.7408

70 0.8694 0.8106 0.7558 0.7047

80 0.8521 0.7866 0.7261 0.6703

90 0.8353 0.7634 0.6977 0.6376

Table 17.10 Subsystem C’s Failure rate and reliability variation

Time (t) in (days) δ3 = 0.0015 δ3 = 0.0016 δ3 = 0.0017 δ3 = 0.0018

0 1.0000 1.0000 1.0000 1.0000

20 0.9704 0.9685 0.9666 0.9646

30 0.9559 0.9531 0.9503 0.9474

40 0.9418 0.9380 0.9343 0.9305

50 0.9277 0.9231 0.9185 0.9139

60 0.9139 0.9085 0.9030 0.8976

70 0.9003 0.8940 0.8878 0.8816

80 0.8869 0.8799 0.8728 0.8659

90 0.8737 0.8659 0.8581 0.8504

Table 17.11 Variation in system reliability owing to subsystem A failure rate variation

Time (t) in (days) δ1 = 0.005 δ1 = 0.006 δ1 = 0.007 δ1 = 0.008

0 1.0000 1.0000 1.0000 1.0000

20 0.4449 0.4360 0.4274 0.4190

30 0.2967 0.2879 0.2794 0.2712

40 0.1979 0.1901 0.1827 0.1755

50 0.1320 0.1256 0.1194 0.1136

60 0.0880 0.0829 0.0781 0.0735

70 0.0587 0.0547 0.0510 0.0476

80 0.0392 0.0362 0.0334 0.0308

90 0.0261 0.0239 0.0218 0.0199
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Table 17.12 Variation in the systems reliability as a result of subsystem B’s failure rate

Time (t) in (days) δ2 = 0.002 δ2 = 0.003 δ2 = 0.004 δ2 = 0.005

0 1.0000 1.0000 1.0000 1.0000

20 0.4449 0.4360 0.4274 0.4190

30 0.2967 0.2879 0.2794 0.2712

40 0.1979 0.1901 0.1827 0.1755

50 0.1320 0.1256 0.1194 0.1136

60 0.0880 0.0829 0.0781 0.0735

70 0.0587 0.0547 0.0510 0.0476

80 0.0392 0.0362 0.0334 0.0308

90 0.0261 0.0239 0.0218 0.0199

Table 17.13 Variance in system reliability owing to variation in subsystem C failure rate

Time (t) in (days) δ3 = 0.0015 δ3 = 0.0016 δ3 = 0.0017 δ3 = 0.0018

0 1.0000 1.0000 1.0000 1.0000

20 0.4449 0.4440 0.4431 0.4422

30 0.2967 0.2958 0.2949 0.2941

40 0.1979 0.1971 0.1963 0.1955

50 0.1320 0.1313 0.1307 0.1300

60 0.0880 0.0875 0.0870 0.0865

70 0.0587 0.0583 0.0579 0.0575

80 0.0392 0.0389 0.0385 0.0382

90 0.0261 0.0259 0.0257 0.0254
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Fig. 17.7 System reliability against time t



17 Reliability, Availability, Maintainability, and Dependability of a Serial … 405

0

0.2

0.4

0.6

0.8

1

1.2

0 20 30 40 50 60 70 80 90

M
ai

nt
ai

na
bi

lit
y

Time (t)

MssA (t) MssB (t) MssC (t) Msys (t)

Fig. 17.8 System maintainability against time t

0

0.2

0.4

0.6

0.8

1

1.2

0 20 30 40 50 60 70 80 90

Su
bs

ys
te

m
 A

 re
lia

bi
lty

Time t

deta 1=0.005 deta 1=0.006 detal 1=0.007 deta 1=0.008

Fig. 17.9 Effect of δ1 on the reliability of subsystem A

0

0.2

0.4

0.6

0.8

1

1.2

0 20 30 40 50 60 70 80 90

Su
bs

ys
te

m
 B

 R
el

ia
bi

lit
y

Time t

deta 2=0.002 deta 2=0.003 deta 2=0.003 deta 2=0.004

Fig. 17.10 Effect of δ2 on subsystem B’s dependability



406 N. M. Usman and I. Yusuf

0.75

0.8

0.85

0.9

0.95

1

1.05

0 20 30 40 50 60 70 80 90

Su
bs

ys
te

m
 C

 R
el

ia
bi

lit
y

Time t

deta 3=0.0015 deta 3=0.0016 deta 3=0.0017 deta 3=0.0018

Fig. 17.11 Effect of δ3 on the reliability of subsystem C

0

0.2

0.4

0.6

0.8

1

1.2

0 20 30 40 50 60 70 80 90

Sy
st

em
 R

el
ia

bi
lit

y

Time t

deta 1=0.005 deta 1=0.006 deta 1=0.007 deta 1=0.008

Fig. 17.12 Impact of subsystem A’s failure rate (δ1) on the system’s reliability

0

0.2

0.4

0.6

0.8

1

1.2

0 20 30 40 50 60 70 80 90

Sy
st

em
 R

el
ia

bi
lty

Time t

deta 2=0.002 deta 2=0.003 deta 2=0.004 deta 2=0.005

Fig. 17.13 Impact of subsystem B’s failure rate (δ2) on the system’s reliability



17 Reliability, Availability, Maintainability, and Dependability of a Serial … 407

0

0.2

0.4

0.6

0.8

1

1.2

0 20 30 40 50 60 70 80 90

Sy
st

em
 R

el
ia

bi
lit

y

Time t

deta 3=0.0015 deta 3=0.0016 deta 3=0.0017 deta 3=0.0018

Fig. 17.14 Impact of subsystem C’s failure rate (δ3) on the system’s reliability

clear that higher repair rates combined with reduced failure rates can increase avail-
ability and profit. Therefore, early unit failure repair, individual subsystem replace-
ment, good maintenance planning to prevent catastrophic failure, and the addition of
fault tolerant units/subsystems can all lead to higher system availability and income.
The currentwork can be further expanded to include a systemwith several subsystems
and multiple units that can be solved by human reliability analysis techniques.

17.7 Conclusion

In this article, the RAMD indices for each subsystem are carefully examined in order
to evaluate the system’s performance. Through numerical experiment, the funda-
mental formulations for RAMD measurements for each subsystem were discovered
and validated. Table 17.1 lists the presumptive numbers for failure and repair rates
for each subsystem.While Table 17.4 shows the variation of the systems’ availability
with coverage, Table 17.3 compiles all RAMD measurements of each subsystem’s
availability in relation to the coverage factor. Table 17.5 depicts each subsystem’s
availability without the coverage factor. The numerical results indicate that the pres-
ence of a coverage factor significantly improves the performance of the system. If
updated, the models and results presented in this paper will enable management to
avoid catastrophes and expensivemaintenance costs that would otherwise necessitate
unnecessary spending. In order to increase customer satisfaction and reduce failure
rates, the adopted approach (RAMD analysis) for maintenance policies for themodel
under review could be proposed and put into practice. The results of the recent study
are as follows.
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