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Abstract This paper explores the feasibility and strategies of using model-free rein-
forcement learning-based control (RLC) for the slow response radiant floor heating 
(RFH) systems with a setback setting. First, a detailed physics-based virtual testbed 
is developed and validated. Then based on the virtual testbed, four different strategies 
of RLC to handle the slow response are studied, along with a conventional rule-based 
control (RBC) without setback as a baseline and an MPC with a setback for the upper 
bound on the performance. The results show that the DQN_TD(λ) with forecasted 
weather data as states provides the best performance, showing potential for applica-
tions. Compared to the baseline, the heating demand is reduced by 19.1% with RLC 
and 18.5% with MPC. The unmet hours of RLC with our settings are higher than 
that of MPC, which suggests that more research is needed for RLC to better meet 
the constraints. 

Keywords Reinforcement learning based control · Model predictive control ·
Radiant floor heating 

150.1 Introduction 

Radiant floor heating (RFH) systems have been demonstrated to provide better 
thermal comfort while reducing energy consumption. However, the control of such 
systems is challenging because of the high thermal inertia and corresponding slow 
response time (Arteconi et al. 2014). Rule-based control (RBC) has been demon-
strated to be effective in continuous operation by controlling the supply water temper-
ature or concrete core temperature as a function of outdoor weather conditions, which 
can be the mean ambient temperature of the past 24 h (Kalz 2010) or weather forecast 
of the ambient temperature and solar radiation (Hoogmartens and Maarten 2011).
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However, the RBC may become problematic when a temperature setback during an 
occupied period at night is applied, which may cause delayed heating during the 
following morning. 

Model predictive control (MPC) has been proposed to address this issue. Two 
studies demonstrated that 17–24% (Privara et al. 2011) and 19–25% (Gayeski et al. 
2012) of energy were saved by using MPC. However, the necessity of an accurate 
dynamic model limits its wide applications in real practice. For example, a grey-
box model for the thermal dynamics was developed in Hoogmartens and Maarten 
(2011), which requires expert knowledge. In contrast, as a model-free algorithm, 
reinforcement learning (RL) is promising to provide a practical solution based on 
a few attempts that have been made for HVAC control. However, reinforcement 
learning-based control (RLC) for the RFH systems has not been thoroughly studied. 

Zhang and Lam (2018) applied a deep RL control method to a radiant heating 
system, which was found to be able to save 16.6–18.2% of energy compared to 
an RBC. However, they pointed out that future work should focus on the delayed 
reward problem caused by a slow thermal response. And, other optimal control 
methods (e.g., MPC) need to be included to further evaluate and benchmark the 
effectiveness of RLC. Blad et al. (2019) utilized two different RL algorithms with 
Q-networks to control an underfloor heating system and found that adding eligibility 
trace showed a better performance than standalone Q-networks for cases with slow 
dynamics but performed slightly worse for cases without slow dynamics, which 
revealed the potential of eligibility trace to deal with slow dynamics. However, the 
environment is simplified and hypothetical without validation using measured data, 
which did not include solar radiation, windows, real weather data and setback. Also, 
as mentioned in the paper, they did not take forecasted weather data into account in the 
RL model, which may have improved the performance. Arroyo et al. (2022) proposed 
a reinforced model-predictive control algorithm and tested it with a floor heating 
system. They found that the proposed algorithm can meet constraints and achieve 
similar performance as MPC. However, this algorithm requires system identification 
and is consequently not a pure model-free method. 

This paper explores the feasibility and strategies of using model-free RLC for the 
slow response RFH systems with a setback setting. To benchmark the effectiveness 
of the proposed RLC strategies, a conventional rule-based control (RBC) without 
setback is chosen as a baseline and an optimal MPC with a setback is included to 
provide the upper bound on the performance. A detailed physics-based virtual testbed 
for a single zone is developed in Modelica and validated based on operating data of 
a real building. 

150.2 Methods 

The section introduces the proposed four RLC strategies along with RBC and MPC. 
First, the RBC, serving as a baseline, is designed based on the control logic running 
in the real system. Then, in the MPC, a state-space model is developed with the
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simulation data from the RBC case, and an MPC optimization problem is formulated. 
In the RLC, four different strategies are proposed. Finally, the development and 
validation of the physics-based virtual testbed are described. 

150.2.1 Rule-Based Control (RBC) 

A commonly used RBC for a radiant floor heating system is to control the slab temper-
ature instead of the zone air temperature. To deal with the high thermal inertia, the 
setpoint of the slab temperature is modulated as a function of the weather forecasts. 
The zone air temperature is therefore maintained relatively stable within an accept-
able range taking advantage of the self-regulating effect. Refer to Yan et al. (2022) 
for more detailed descriptions of the RBC. The weighted forecasted outdoor air dry-
bulb temperature T E is defined as average of hourly outdoor air temperatures for the 
next 24 h. The setpoint of the slab temperature (Tm) is calculated with: 

Tm = 27.8 − 0.18 × T E , (150.1) 

The slab temperature is controlled by modulating the flowrate and temperature 
of the water supplied to the radiant systems of the room. The flowrate is controlled 
with an on/off heat valve. The supply water temperature (Tsup) is determined by: 

Tsup = 43.6 − 0.76 × T E , (150.2) 

150.2.2 Model Predictive Control (MPC) 

A linear state-space model is identified with a discrete formulation: 

x(t + 1) = Ax(t) + Bu(t) + Fd(t) + K , (150.3) 

where, x(t + 1) and x(t) are the states and response variables at the time step of 
t + 1 and t , respectively, which denote the room air temperature Tr in this study. 
u(t) denotes the vector of control inputs, on/off of heat valve uval , and supply water 
temperature uTsup. d(t) denotes the vector of disturbances, which in this study is 
presence of occupancy Docc, outdoor dry bulb temperature DTdb, and solar radiation 
Dsol . A, B, F and K are system matrices that need to be parameterized based on the 
input and output data. After identifying the state-space model, an MPC optimization 
problem is formulated:
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min 
N−1Σ

k=0 

δTr (k) + w1 · 
N−1Σ

k=0 

uval (k) + w2 · 
N−1Σ

k=1 

(uval (k) − (uval (k − 1))2 (150.4) 

s.t. Tr (k + 1) = a1Tr (k) +
[
b1 b2

][ uval (k) 
uTsup(k)

]

+ [
f1 f2 f3

]
⎡ 

⎣ 
D̂occ(k) 
D̂Tdb(k) 
D̂sol  (k) 

⎤ 

⎦ + K , k = 0, . . .  N − 1, (150.5) 

T r (k) − δTr (k) ≤ Tr (k) ≤ T r (k) + δTr (k), k = 1, . . .  N , (150.6) 

T r (k) =
{
15 i f  D̂occ(k) = 0 
20 i f  D̂occ(k) = 1 

, k = 1, . . .  N , (150.7) 

T r (k) =
{
32 i f  D̂occ(k) = 0 
26 i f  D̂occ(k) = 1 

, k = 1, . . .  N , (150.8) 

δTr (k) ≥ 0, k = 1, . . .  N , (150.9) 

35 ≤ uTsup(k) ≤ 55, k = 0, . . .  N − 1, (150.10) 

uval (k) ∈ 0, 1}, k = 0, . . .  N − 1, (150.11) 

D̂occ(k) = Docc(k), k = 0, . . .  N − 1, (150.12) 

D̂Tdb(k) = DTdb(k) + ωTdb, ωTdb  ∈ N
(
0, 0.32

)
, k = 0, . . .  N − 1, (150.13) 

D̂sol  (k) = Dsol (k) + ωsol  , ωsol  ∈ N
(
0, 5%2

)
, k = 0, . . .  N − 1, (150.14) 

In Eq. 150.4, the three terms to minimize are the discomfort (δTr denoting the 
deviation of Tr out of the comfort range), total opening period of heat valve (energy), 
and frequent cycling of heat valve, where w1 and w2 are weighting factors (0.02 and 
0.05, respectively, in this study). Equation 150.5 is the identified dynamic system. 
Equations 150.7and150.8 are the bounding constraints for room temperature for 
thermal comfort considering a setback on occupied hours (lower setpoint at night to 
save energy). Equations 150.9–150.11 are bounding constraints of three optimization 
variables. In Eq. 150.12, a perfect prediction of the occupancy status is assumed. In 
Eqs. 150.13and150.14, the predictions of outdoor dry bulb temperature and solar 
radiation are assumed to be adding a Gaussian noise to the ground truth.
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150.2.3 Reinforcement Learning-Based Control (RLC) 

The RL algorithm learns an optimal policy π : St → At that maximizes the accumu-
lated future rewards

∑∞ 
t Rt through interactions between the agent and the environ-

ment (St , At , St+1, Rt+1). Temporal difference methods including TD(0) and TD(λ) 
are used to update the model in this study. To train the RL model, TD(0) uses infor-
mation from only one step ahead to perform an update, which is biased. In contrast 
to TD(0), the Monte-Carlo method is not biased but needs to wait until the end of a 
complete episode to perform an update. The FHS is continuously running without a 
clear concept of “episode” and therefore may not be suitable for this method. TD(λ), 
also known as Eligibility Traces method, extends TD(0) to perform an update from 
n-steps look-ahead, which shows potential to deal with slow and delayed responses 
in the floor heating systems (Blad et al. 2019). Therefore, TD(λ) is adopted in this 
study with TD(0) as a benchmark. The Deep Q-Network (DQN) is used in this study 
with memory reply for improving training efficiency. The loss function of the DQN 
with TD(0) can be expressed as: 

L(θ ) = E(ŝ,a,r,ŝ ')∼U (D)

[(
r + γ max 

a'∈A 
Q

(
ŝ ', a'; θ −

) − Q
(
ŝ, a'; θ))2

]
. (150.15) 

With the n-step returns involved in the TD(λ), a new loss function becomes: 

L(θ ) = E(ŝ,a,r,ŝ ')∼U (D)

[
Rλ − (

Q
(
ŝ, a'; θ))2]

, (150.16) 

The detailed calculations of Rλ can be referred to Daley and Amato (2019). Four 
cases are proposed to investigate the performance of different learning strategies, 
i.e., TD(0) and TD(λ), and state designs, as shown in Table 150.1. The third and 
fourth cases take the weather forecast information as states to potentially improve 
the ability of the RLC to deal with the slow response FHS. 

Table 150.1 State design for different cases 

Cases States (all standardized) 

DQN_TD(0) Room temperatures at current and last time steps, orientation (room 
temperature compared to setpoint), outdoor dry-bulb temperature, solar 
radiation, occupancy, hour of the day, heat valve status 

DQN_TD(λ) 

DQN_TD(0) + WFa In addition to the states in DQN_TD(0), more states are added, including 
predicted averaged outdoor dry-bulb temperature and solar radiation in 
the next several hours 

DQN_TD(λ) + WF 

a WF weather forecast
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Table 150.2 Results of calibration and validation of the virtual testbed 

Outputs Calibration Validation 

MAE RMSE MAE RMSE 

Tslab 0.71 0.91 0.57 0.83 

TreturnWater 0.71 0.93 0.69 0.85 

Troom 0.54 0.73 0.65 0.76 

150.2.4 Virtual Testbed 

This study assesses the performance of different control algorithms based on a virtual 
testbed developed with Modelica and Python (Wetter et al. 2014). The modeled room 
is a customizable laboratory with floor heating systems on the third floor of the 
small office building and living laboratory, located in Cambridge, Massachusetts, 
named HouseZero (Yan et al. 2022). The room model is calibrated and validated 
with measured data from the third-floor lab of HouseZero. The measured data in 
December 2020 is divided into two parts, in which the data from December 1st to 
15th is used for calibration and the data from December 16th to 31st is used for 
validation. The results are shown in Table 150.2. The errors are less than 1 K for all 
the parameters for both calibration and validation. 

150.3 Results 

The training of the RLC algorithms is performed with the weather data from 2021 
November to 2022 January and repeated as five episodes (three months per episode), 
leading to a total training period of 920 days and total iterations of 88,320 with a time 
step of 15 min. The RLC algorithms are tested with the weather data of February after 
the training. The training curves of the reward score for the four RLC strategies over 
episodes are shown in Fig. 150.1. The two algorithms with TD(0) show relatively 
lower reward scores while the other with TD(λ) and the weather forecast shows the 
best overall performance, in which the step in TD(λ) is set to be 48 (corresponding 
to 12 h) and 1-12-h’ weather forecasts are adopted as states. A further tunning of 
these parameters is performed, and it is found that the step of 60 and 1-24-h’ weather 
forecasts are the optimal settings to achieve the best performance, which is taken to 
compare with the baseline and MPC.

Table 150.3 shows the comparisons of the heating demands (energy perspective) 
and unmet hours (comfort perspective) with RBC, MPC and RLC. Compared to 
baseline (RBC), RLC achieves a similar level of energy savings (19.1%) as MPC 
(18.5%). This is achieved by avoiding overheating of the zone and adopting a setback 
at night through control improvements without any retrofits of the systems. However, 
the unmet hours have not been improved in the RLC case against the baseline, while
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Fig. 150.1 Training curve 
of the reward score over 
episodes with different RLC 
strategies

Table 150.3 Total heating demands and unmet hours in February with different controllers 

Cases Heating demand (kWh) Savings (%) Unmet hours (h) 

Occupied 
period 

Unoccupied 
period 

Total Occupied 
period 

Unoccupied 
period 

Total 

RBC 102.2 160.9 263.1 – 19 0 19 

MPC 26.7 187.6 214.3 18.5 7 1 8 

RLC 52.5 160.3 212.8 19.1 19 0 19 

it is reduced from 19 h in baseline to 8 h in the MPC case. Most of the unmet hours 
occur during an occupied period. 

A more detailed analysis regarding the room temperature control performance 
with different controllers is shown in Fig. 150.2. For the occupied period, the temper-
atures range from 18.8 to 25.4 °C with RBC, from 19.7 to 23.8 °C with MPC, and 
from 19.4 to 24.3 °C with a few outliers below 19.4 °C with RLC, while the comfort 
range is defined from 20 to 26 °C in this study. For the unoccupied period, the temper-
atures range from 18.2 to 23.7 °C with RBC, from 15.0 to 23.2 °C with MPC, and 
from 15.9 to 21.3 °C with a few outliers over 21.3 °C with RLC, while the accept-
able range is defined from 15 to 32 °C. It is found that the MPC and RLC maintain 
the room temperatures more precisely within the comfort range during the occupied 
period while the room temperatures are controlled to be at a much lower level. This 
is still in the acceptable range during the unoccupied period at night, which may 
explain the energy savings through the two control algorithms. In most of the unmet 
hours in both the MPC and RLC cases, the room temperatures are only slightly lower 
than the lower bound.

The detailed control dynamics with different controllers in a selected period from 
February 10th to 15th is shown in Fig. 150.3. The first plot shows the room temper-
ature control trajectories. Both MPC and RLC achieve good temperature control 
during the day and a setback at night to save energy, in which the trajectory in RLC 
mostly aligns with that in MPC but slightly less optimal. For example, in RLC, the 
temperature is a little lower than 20 °C at 9 am on February 10th, and the temper-
ature at night does not drop to a minimum level to maximize the energy savings as
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Fig. 150.2 Statistical distribution of room temperatures with different controllers in February

Fig. 150.3 a Room air temperature, b supply water flow rate and c supply water temperature with 
different controllers from February 10th to 15th 

MPC. The second and third plots show the control sequences determined by different 
controllers. The model-free RLC generally learns a control policy that is similar as 
MPC to operate the FHS in an intermittent manner though still not so optimal as 
MPC. The fourth plot is the weather data in the studied period. 

150.4 Discussion and Conclusions 

This paper proposed a new strategy, i.e., DQN_TD(λ) with weather forecasts, to 
apply model-free RLC to control FHS with a slow response. The effectiveness of the 
proposed strategy was demonstrated and benchmarked by comparing with RBC as 
a baseline, MPC as an upper bound of the performance, and other RLC strategies
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without TD(λ) or weather forecasts. The assessment was conducted in a physics-
based virtual testbed that was validated with measured data from a real building. 
The results showed that the proposed strategy achieved a similar level of energy 
savings (19.1%) against the baseline as MPC (18.5%). Meanwhile, the results of 
more unmet hours occurring with RLC than that in MPC reveal that the constraints 
were not strictly met in RLC though the room temperatures are only slightly lower 
than the lower bound in most of the unmet hours. This suggests more research is 
needed to optimize the RLC to address the constraint violation issue. In summary, 
the proposed strategy of model-free RLC shows comparable performance against 
MPC to solve the challenging control problem for slow response RFH systems with 
a setback setting. Though all the findings are subject to studied cases in this paper 
with our implemented models, the proposed strategy demonstrated its potential to 
be applied in other buildings by adopting a similar model and training the model 
in a new environment. Future research will include improving the performance and 
testing the generalization performance of the RLC algorithm with other cases as well 
as in real building systems. 
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