
Multi-agent Deep Reinforcement
Learning-Based Content Caching

in Cache-Enabled Networks

Sai Liu1, Jia Chen1, Deyun Gao1(B), Meiyi Yang1, and Junfeng Ma2

1 National Engineering Research Center of Advanced Network Technologies,
School of Electronic and Information Engineering, Beijing Jiaotong University,

Beijing 100044, China
{21120089,chenjia,gaody,19111045}@bjtu.edu.cn

2 China Academy of Information and Communication Technology,
Beijing 100191, China

majunfeng@caict.ac.cn

Abstract. Deploying popular contents during the off-peak time via
node cooperative caching has been proved to be an important mea-
sure to alleviate the link burden of wired multi-hop network. However,
due to the unknown and time-varying content popularity in practice,
it is imminent to optimize the content placement to effectively utilize
the limited caching storage. In this paper, to address these issues, we
investigate a multi-agent reinforcement learning (DRL) mechanism to
intelligently deploy contents in dynamic environments. The optimization
of content caching is modeled as a cooperative Markov decision pro-
cess (MDP) to minimize the content transmission cost in the network.
Then, a multi-agent deep deterministic policy gradient-based collabo-
rative caching algorithm (MADDPG-CC) is proposed to solve this opti-
mization problem with the goal of maximizing long-term caching reward.
Extensive simulations have demonstrated the superior performance of the
proposed algorithm in reducing the content transmission cost compared
to existing caching algorithms, as well as its compatibility with variable
and dynamic network environments.

Keywords: Collaborative caching · Content transmission cost ·
Markov decision process · Multi-agent deep deterministic policy
gradient

1 Introduction

In recent years, with the boom in new multimedia applications such as short-form
video applications, a huge volume of content that requires additional resources
has been generated on the network, and this leads to the exceptional growth
of network traffic. In order to reduce the burden of content transmit in the

Supported by School of Electronic and Information Engineering, Beijing Jiaotong Uni-
versity.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Quan (Ed.): ICENAT 2022, CCIS 1696, pp. 146–157, 2023.
https://doi.org/10.1007/978-981-19-9697-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9697-9_12&domain=pdf
https://doi.org/10.1007/978-981-19-9697-9_12


Content Caching in Cache-Enabled Networks 147

network and improve the users’ service experience, mobile edge caching (MEC)
has been proposed in many studies, such as [1–3]. That is, a limited local cache
space is allocated in the edge node to store some popular requested content,
and when the user requests for this popular content, the edge node can respond
directly to the user’s content request. However, as the number of users of these
applications proliferates, it is difficult to fully satisfy user demand for popular
content by considering caching deployments solely in the edge nodes. And now
resource storage and caching technologies are also pervading various network
architectures such as content delivery networks (CDNs) and information centre
networks (ICNs). So, inspired by this, we consider a wired multi-hop network
that can support caching, and the central issue in this type of network scenario
is how to make full use of the limited local cache space of the cache nodes to
minimize the content transmission cost in the network.

Efficient utilization of limited node cache resources is highly dependent on
the content popularity. However, it is dynamic in both time and space, which is
a priori unknown. To this end, machine learning is employed to predict content
popularity based on historical observations and then optimize content placement,
such as [4–6]. In [4], the authors propose a transfer learning-based caching scheme
to predict trends in the popularity of user-requested content by extracting rich
contextual information from the target and source domains, while the authors
in [5] and [6] used multi-armed bandit (MAB) to predict the content popularity.
However, the effectiveness of these efforts depends heavily on the accuracy of the
predictions, so there is a great deal of uncertainty and ultimately it is difficult
to obtain an optimal caching strategy.

The rise and widespread use of reinforcement learning has shown promise
in solving the caching decision problem for mobile edge nodes in wireless net-
works. It adapts to the dynamics of the network environment without the need
for prior knowledge of the dynamics of the network environment. To deal with
higher dimensional state spaces, deep reinforcement learning (DRL) has started
to be used in recent years of research to develop caching strategies. Many of
the current studies related to MEC use centralized deep reinforcement learning,
where edge nodes in a static network environment are trained centrally to obtain
the full caching policy directly, as in [7,8]. However, for the complex network
environment and the dynamic content popularity, applying centralized deep rein-
forcement learning algorithms to this is hardly successful. Then some of the latest
research for MEC is starting to use multi-agent deep reinforcement learning algo-
rithms, such as [9–11], in which all agents can not only fully perceive and acquire
the state of the complex and changing network environment through distributed
learning, but also better collaborative caching between agents through central-
ized training. However, in all of these studies, the authors only considered the
collaborative nature of adjacent edge nodes, which is very different from caching
in wired multi-hop networks.

In a wired multi-hop network, the source node generating the content request
is directly connected to the network, so there is an interaction between the cache
update policy of the source node and the cache policies of the intermediate
nodes on the routing path. That is, these cache nodes are all in a cooperative



148 S. Liu et al.

relationship with each other and are not limited to neighboring nodes. So when
considering caching in a wired multi-hop network, we need to take full account
of the collaboration between all the cache nodes in the network, which also
dictates that the edge node caching strategy for wireless networks cannot be
directly applied to wired multi-hop networks.

In this paper, we aim to optimize content caching among cooperative nodes
by minimizing the expected total transmission cost over a finite time horizon in
cache-enabled wired networks without knowing content popularity in advance.
In our experiments, we use the reduction in transmission cost as the caching
reward compared to caching without requesting content at the cache node, and
then we reformulate this content caching as a Markov decision process (MDP) to
maximize the total caching reward. In addition, we take into account the com-
plexity network environment and the collaboration between nodes, and choose
to use a multi-agent deep reinforcement learning algorithm to train and learn
the caching policy. The main contributions of this paper are as follows.

1) Analyzes the problem to optimizing content caching policies in cache-
enabled wired multi-hop networks and transmits it as a cooperative MDP
by defining the caching reward.

2) Considering the complex and variable nature of the actual network environ-
ment and the cooperative relationship between caching nodes, we propose
a multi-agent-based intelligent caching algorithm MADDPG-CC.

3) Through extensive simulations, we demonstrate that our algorithm converges
up to nearly 10% better and significantly faster in the same network environ-
ment compared to various other algorithms. In addition, our algorithms are
highly compatible with complex and changing network environments.

2 System Model

2.1 Model Building

When considering a practical network model, we choose to use directed graphs to
represent general multi-hop networks, whose general expression is G = (N,L),
where N denotes the set of all nodes in this multi-hop network, and L denotes the
set of all links between any two adjacent nodes, i.e., ∀l = (n1, n2) ∈ L, Ns � Nc. In
addition, we assume that a total of M different content (e.g., video, audio, image,
text, etc.) is stored in the content library of this multi-hop network. The content
base of the entire network is denoted by E, i.e., E = {e1, e2, ..., em, ..., eM}, and in
the model, we set the size of a content to 1 and represent the different contents with
different natural numbers. The nodes in this network are divided into two types,
server nodes and cache nodes, whose sets are denoted as Ns and Nc respectively,
and N = Ns ∪ Nc, Ns � Nc. Each cache node i has a local cache space Di of size
V , i.e., Di =

{
di1, d

i
2, ..., d

i
v, ..., d

i
V

}
, V � M . And each server node s has a local

cache space that is larger than the cache node. For each content em in the network
content library E, there exists a server node s that stores it uniquely and fixedly,



Content Caching in Cache-Enabled Networks 149

i.e., the content in the entire network content library is stored non-repeatedly in
each server node in the network.

In addition, we divide a longer period of time T into different time slot t,
i.e., T = {1, 2, ..., t}. We assume that all cache nodes i, except server node s,
receive a certain number of content requests at each time slot t. We denote
the set of content requests from cache node i at time slot t as bi(t), i.e.,
bi(t) =

{
bti,1, b

t
i,2, ..., b

t
i,w, ..., bti,W

}
, where bti,w indicates the specific content of

the request, while W is the total number of all content requests received by
cache node i at time slot t. To ensure that the number of content requests
received by each cache node i within each time slot better matches a realistic
scenario, we set the number of content requests W received by each cache node i
within each time slot to follow an independent Poisson distribution process with
arrival rate λi. In addition, for the request contents received by each cache node
i at each time slot t, we set it to follow Zipf distributions with parameter α.

As mentioned earlier, for each cache node i there is a finite size of local cache
space Di. In this paper, we define the set of local cache contents maintained by all
cache nodes in time slot t as the cache matrix x (t), and x (t) = {xi (t) ,∀i ∈ Nc},
where xi (t) represents the vector consisting of the local cache contents main-
tained by cache node i in time slot t. It is important to note here that the
total amount of content stored in the local cache space per time slot t for each
cache node i must not exceed the maximal cache space V for that node, and
that both the content stored in the local cache space for each cache node i and
the requested content from each cache node i should be available for matching
within the server nodes in the network.

In network G, each link is assigned a fixed weight as the data transmission
cost of that link, after taking into account the various types of transmission
costs of the link (e.g., transmission delay, energy consumption, traffic, etc.). In
this paper, we set cache nodes to communicate with server nodes according to
the least weighted path. So the request bi,m for content m from cache node i
complete the transmission of the content request and response with the target
server node s, where content m is stored, via the least weighted path pmi,s. In
addition, it is also important to note that the cost of transmitting the content
request itself across the network is minimal compared to the content response.
Therefore, in this paper, we ignore the request transmission cost. Moreover,
during the transmission of request bi,m along the path pmi,s, if the intermediate
cache node j passes through a successful match for content m, the transmission is
terminated and cache node j follows the reverse symmetric path, not necessarily
the path of least weight of cache nodes i and j, and responds directly to the
request bi,m from the cache node i.

2.2 Problem Transformation

Based on the main idea of deep reinforcement learning, we transmit the problem
to optimizing content caching policies in cache-enabled wired multi-hop networks
into a MDP, in which each cache node acts as an agent and the cache-enabled
network acts as environment. Define the each critical elements of MDP as follows:



150 S. Liu et al.

State: The state of each agent reflects the local network environment. So,
when we define the state of each agent, it should include the storage state
of the agent’s local cache space and the state of content requests received by
the agent. In turn, the global state can be defined as s (t) = {x (t) , b (t)},
x (t) = {xi,m (t) ,∀i ∈ Nc,∀m ∈ E} denotes the vector consisting of the contents
stored in the local cache space of agent i at time slot t, and b(t) = {bi,m(t),∀i ∈
Nc,∀m ∈ E} denotes the vector of all request contents received by agent i
at time slot t. So the state of agent i at time slot t can then be expressed
as si (t) = {xi (t) , bi (t) ,∀i ∈ Nc}, where bi (t) is a vector of dimension M (M
denotes the size of the content library in this network ), and the index corre-
sponding to each position in the vector indicates the specific content requested.
The value corresponding to the index at each position indicates the number of
times agent i requests that content at time slot t. Our goal is to continuously
train the neural network at time slot t + 1 using the global state s (u) of some
historical time slots, u ∈ {1, 2, 3, ..., t}, with the rewards obtained from these
time slots, and then learn to obtain the optimal caching policy for each agent
within time slot t + 1.

Action: At the end of time slot t, agent i gets its state vector xi (t) as input to its
actor network, and the output from the actor network is the caching policy pi (t)
of agent i, where pi (t) is a vector of dimension M , and the specific value in the
vector represents the value of the indexed content of the corresponding location
of the cache selected by agent i, i.e., the larger the value, the bigger reward will
be given for caching its corresponding indexed content. We then note the value
of the first V index positions of the value according to the cache policy pi (t) as
1, and the rest of the index positions as 0. Thus we can obtain the cache action
vector ai (t) consisting of 0, 1 binary numbers, and the index corresponding to
the vector position where the number 1 is located indicates the request content
that agent i should cache updates. So the global action matrix at time slot t can
be defined as a (t) = {ai (t) ,∀i ∈ Nc}.

Reward Function: At time slot t, we define the transmission cost spent by target
server node s to respond to the agent i that sends the request bi,m (t) with
content m via the path pmi,s as Cm

i,s, and we define the transmission cost spent by
cache node j on the path pmi,s storing content m to respond directly to agent i via
the reverse symmetric path as Cm

i,j . And the difference between the above two
costs we define as the reward given to cache node j by caching content m. We
define that the set of intermediate nodes contained in the path pmi,s is Ni,pm

i,s,s
,

i, s ∈ Ni,pm
i,s,s

, then Cm
i,s can be expressed as:

Cm
i,s =

∑

f,k∈Ni,pm
i,s

,s

Wlf,k (1)

where Wlf,k is the link weight corresponding to the link lf,k between node f and
node k.



Content Caching in Cache-Enabled Networks 151

Likewise, let the set of intermediate nodes contained in the path pmi,j between
agent i and agent j be Ni,pm

i,s,j
, i, j ∈ Ni,pm

i,s,j
, then Cm

i,j can be expressed as:

Cm
i,j =

∑

f,k∈Ni,pm
i,s

,j

Wlf,k (2)

We set ym
i,j (t) to be a binary judgment marker. If the request bi,m (t) from agent

i to content m is the first to match successfully in the local cache space of agent
j at time slot t, then ym

i,j (t) set to 1, otherwise, set to 0. Then the total reward
rj (t) obtained by agent j at time slot t can be expressed as:

rj (t) = ym
i,j (t)

∑

i∈Nc

∑

m∈bi(t)

(
Cm

i,s − Cm
i,j

)
(3)

To reduce the order of magnitude of the reward value obtained by each agent
in each time slot, we use the reduction ri (t) in the average transmission cost
of the response to each content request in agenti at time slot t, as the reward
obtained by agent i in that time slot as a result of caching content xi (t), i.e.,
ri (t) = ri (t) /W . Thus, we can obtain the vector set of rewards for all agents at
time slot t as r (t) = {ri (t) , i ∈ Nc}.

2.3 MADDPG-Based Cooperative Caching Algorithm

The MADDPG [12] algorithm is an Actor-Critic based algorithm that uses a
centralized training and decentralized execution architecture. As can be seen in
Fig. 1, it is an architecture consisting of multiple actor-critic. During training,
each agent’s actor network obtains local observation, while the agent’s critic
network obtains global observation (i.e., the local observation and actions of
other agents) for centralized global training. Once the model is trained, it only
needs the agent to interact with the environment to obtain the optimal action
decision. The MADDPG algorithm has three main features: (i) the agents are
centralized training, decentralized execution; (ii) the dynamical model of the
environment does not need to be known; and (iii) the cooperative or competitive
environment is applicable.

In this subsection we propose a cooperative caching algorithm based on
MADDPG, called MADDPG-CC. The algorithm treats each cache node in the
network as a separate agent, and the content deployment policy of each cache
node is trained collaboratively via the continuous interaction between all agents
and the network environment, to minimize the transmission cost. By defining the
input states, output actions and reward functions for each agent in the previous
sub-section, we give the specific training learning process of the MADDPG-CC
algorithm in interaction with the network environment in the form of pseudo-
code, see Algorithm 1.



152 S. Liu et al.

Fig. 1. MADDPG algorithm framework.

Algorithm 1. MADDPG-CC
Input: Initialize online parameters of actor network and online parameters of critic

network for each agent; Initialize the local cache contents of all server nodes in the
network.

Output: Average Reward
for episode=1 to max-episode-number do

Initialize the global local cache matrix x(0);
Initialize the global content request matrix b(0);
Observe the global state matrix s(0)
for t=1 to max-episode-length do

For each agent i, observe a policy pi (t) by current state si (t);
For each agent i, execute action ai (t) with respect to policy pi (t);
Observe new the global local cache matrix x(i + 1);
For each agent i obtains request vector bi (t + 1);
Observe the global reward r (t);
Obtain the global state matrix s(t + 1);
s

′ ← s(t + 1);
Store {s(t), a(t), r(t), s

′} in replay buffer D;
s(t) ← s(t + 1);

end for
for agent i=1 to Nc do

Sample a random mini batch of S samples {sk, ak, rk, s
′k} from D;

Set target network;
Minimizing the loss and update the critic network;
Update the actor network;

end for
Update target network parameters for each agent i;

end for



Content Caching in Cache-Enabled Networks 153

3 Simulation Experiments

In this section, we conduct extensive simulation experiments to verify the perfor-
mance of the MADDPG-CC algorithm in various complex and dynamic network
environments.

3.1 Experimental Simulation Environment

Building the network environment required for our simulation experiments, we
choose to use the US Abilene Network. In this network topology, 11 nodes and 14
links are included. In the simulation experiments, we choose three of the nodes
as server nodes, each of which stores one-third of the content of the network
content library, and the remaining eight nodes as cache nodes, each of which
acts as an independent agent. Each cache node follows an independent Poisson
distribution process to generate the number of content requests for that cache
node. Unless otherwise specified, we set the simulation parameters as follows:
the arrival rate of the Poisson distribution λ = 100, the network content library
size M = 120, the local cache space size of each cache node V = 15 and Zipf
distribution with the parameter α = 0.8. In addition, each link is assigned a
weight derived from TOTEM project [13]. Finally, some key parameters in the
implementation of our algorithm are given in Table 1.

Table 1. Parameters for algorithm.

Parameters Values

Agent number 8

Size of replay buffer 1000000

Size of mini-batch 1024

Learning rate 0.001

Discount 0.95

Maximum number of episodes 2500

Number of slots in each episode 50

3.2 Experimental Results

In this section, we analyze our proposed algorithm from two main aspects, the
training process of MADDPG-CC in different network environments and the
performance comparison between different algorithms, to demonstrate its supe-
riority in performance.

Training Process in Different Network Environments. First, we verify
the compatibility of our algorithm in various complex and dynamic network
environments by varying the following variables in the network environment to
obtain different convergence results.



154 S. Liu et al.

Fig. 2. Convergence curves of MADDPG-CC in different network environments: (a)
Different local cache space sizes (V = 15, 20, 25, 30). (b) Different Zipf distribution
parameters for different cache nodes (α = 0.2, 0.4, 0, 6, 0.8, 1.0, 1.2, 1.4, 1.6). (c) Alter-
nating Zipf distribution parameters (α = 0.8 or 1.6).

The Size of Local Cache Space for Cache Nodes. Figure 2a shows the training
curves of our algorithm for cache nodes with local cache space sizes of 15, 20,
25 and 30, and the results show that our algorithm still has good convergence
results in these network environments. Moreover, as the local cache space of the
cache node increases, the hit rate of the requested content at the intermediate
cache nodes also increases, so the final convergence result obtained also increases.

Zipf Distributions of Cache Nodes. Figure 2b shows the convergence of the aver-
age reward value obtained by each cache node when the parameters of Zipf
distributions followed by our algorithm in generating the requested content of
different cache nodes are set to different values (cache node 1 to cache node 8
are set to 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 in that order), from which we can
see that all the cache nodes also converge separately. The difference in the final
convergence results of different cache nodes is due to their specific positions in
the network topology and the different link weights.



Content Caching in Cache-Enabled Networks 155

In addition, when conducting simulation experiments, we also simulated a
network environment with dynamic and complex changes in the request content
popularity of cache nodes by setting the parameter α of Zipf distributions fol-
lowed by the request content of cache nodes to 0.8 at odd episodes and 1.6 at
even episodes, and the obtained training curves are shown in Fig. 2c, and the
final convergence results demonstrate that the MADDPG-CC algorithm also
shows good performance when training cache nodes with dynamically changing
request content popularity, thus indicating that our algorithm is predictive of
the changing trend of request content popularity.

Performance Comparison of Different Algorithms. To verify the perfor-
mance difference between our proposed algorithm and other traditional caching
algorithms as well as centralized reinforcement learning algorithms, we consider
the following three algorithms chosen to compare with our proposed algorithm:
least recently used (LRU), least frequently used (LFU) and deep deterministic
policy gradient (DDPG).

The convergence of the average reward value curve obtained by the four algo-
rithms is shown in Fig. 3. Since the training result data-set obtained from each
training was too large, we considered taking an average every 150 episodes when
plotting, and then plotted the convergence curve based on the obtained average
value, so the starting value of the number of episodes in the horizontal coordi-
nate is 150 instead of 0. In addition, for the initial 400 episodes, the agent only
interacts with the network environment, completes online learning and gener-
ates experience bars, but does not update the actor and critic networks, so we
can see from the figure that the average reward obtained by the two algorithms,
MADDPG-CC and DDPG, do not change during this phase. After 400 episodes,
the agent starts to update the parameters of the neural network by extracting
experience entries from the replay buffer, so in the interval from 400 to 750,
the result curves of the two algorithms start to rise significantly, and it can
be seen that the MADDPG-CC algorithm converges significantly faster than
DDPG. After 750 episodes, the results of both algorithms slowly converge, and
from the final convergence results we can also see that the convergence results
obtained by the two deep reinforcement learning algorithms are much greater
than those obtained by the two traditional algorithms, LRU and LFU. And the
final convergence value obtained by the MADDPG-CC algorithm is also slightly
greater than that obtained by DDPG. We believe that the reason why the final
convergence results of the two deep reinforcement learning algorithms are rela-
tively close is that the size of the network content library set in the simulated
experimental environment is small, so the advantages of our algorithm are not
reflected.

In order to verify our above idea, we adjusted the size of the network content
library in the simulation environment from 120 to 240 and 600 respectively, with
other parameters unchanged, and re-trained the two algorithms with MADDPG-
CC and DDPG, and the results are shown in Fig. 4. When the size of the content
library is adjusted to 240 and 600, the difference between the convergence results



156 S. Liu et al.

Fig. 3. Convergence curves for the four algorithms.

of the two algorithms is more obvious. Moreover, we can clearly see from all
three figures that the convergence speed of the MADDPG-CC algorithm is also
significantly faster than that of DDPG.

Fig. 4. Convergence curves of MADDPG-CC and DDPG at content library sizes of
240 and 600.

4 Conclusion

In this paper, we address the problem of content caching in wired multi-hop
networks with the aim of minimizing long-term content transmission cost. Due
to the dynamic and random nature of the network environment, we remodel this
caching decisions making problem as a MDP and address it by learning caching
policy directly online based on the proposed MADDPG-CC framework. Based
on extensive simulation results, we demonstrate that our proposed algorithm
is well compatible with various dynamically changing network environments.



Content Caching in Cache-Enabled Networks 157

Furthermore, our experimental results demonstrate the superior performance
compared to current existing algorithms in different network environments.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China (grant no. 2018YFE0206800), the fundamental
research funds for the central universities (no. 2021YJS013), and the National Nat-
ural Science Foundation of China (grant no. 61971028).

References

1. Yao, J., Han, T., Ansari, N.: On mobile edge caching. IEEE Commun. Surv. Tutor.
21(3), 2525–2553 (2019)

2. Qiu, L., Cao, G.: Popularity-aware caching increases the capacity of wireless net-
works. IEEE Trans. Mob. Comput. 19(1), 173–187 (2019)

3. Wang, R., Zhang, J., Song, S., Letaief, K.B.: Mobility-aware caching in D2D net-
works. IEEE Trans. Wirel. Commun. 16(8), 5001–5015 (2017)

4. Hou, T., Feng, G., Qin, S., Jiang, W., Letaief: Proactive content caching by exploit-
ing transfer learning for mobile edge computing. IEEE Trans. Wirel. Commun., 1–6
(2017). Proc. GLOBECOM

5. Song, J., Sheng, M., Quek, T.Q.S.: Learning-based content caching and sharing for
wireless networks. IEEE Trans. Commun. 65(10), 4309–4324 (2017)

6. Blasco, P., Gndz, D.: Learning-based optimization of cache content in a small cell
base station. In: Proceedings of the ICC, pp. 1897–1903, June 2014

7. Zhong, C., Gursoy, M.C., Velipasalar, S.: A deep reinforcement learning-based
framework for content caching. In: Proceedings of the CISS, pp. 1–6, March 2018

8. Zhu, H., Cao, Y., Wang, W., Jiang, T., Jin, S.: Deep reinforcement learning for
mobile edge caching: review, new features, and open issues. IEEE Netw. 32(6),
50–57 (2018)

9. Jiang, W., Feng, G., Qin, S., et al.: Multi-agent reinforcement learning for efficient
content caching in mobile D2D networks. IEEE Trans. Wirel. Commun. 18(3),
1610–1622 (2019)

10. Feriani, A., Hossain, E.: Single and multi-agent deep reinforcement learning for AI-
enabled wireless networks: a tutorial. IEEE Commun. Surv. Tutor. 23, 1226–1252
(2021)

11. Wang, F., Wang, F., Liu, J., Shea, R., Sun, L.: Intelligent video caching at network
edge: a multi-agent deep reinforcement learning approach. In: IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pp. 2499–2508. IEEE (2020)

12. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments (2017). arXiv preprint
arXiv:1706.02275

13. TOTEM progect. https://www.cs.utexas.edu/yzhang/research/AbileneTM/.
Accessed 4 Oct 2003

http://arxiv.org/abs/1706.02275
https://www.cs.utexas.edu/ yzhang/research/AbileneTM/

	Multi-agent Deep Reinforcement Learning-Based Content Caching in Cache-Enabled Networks
	1 Introduction
	2 System Model
	2.1 Model Building
	2.2 Problem Transformation
	2.3 MADDPG-Based Cooperative Caching Algorithm

	3 Simulation Experiments
	3.1 Experimental Simulation Environment
	3.2 Experimental Results

	4 Conclusion
	References




