

On Two Variants of Induced Matchings

Juhi Chaudhary
1 ${}^{(\boxtimes)}$ and B. S. Panda²

¹ Department of Computer Science, Ben-Gurion University of the Negev, Beersheba, Israel

juhic@post.bgu.ac.il

² Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

bspanda@maths.iitd.ac.in

Abstract. A matching M in a graph G is an *induced matching* if the subgraph of G induced by M is the same as the subgraph of G induced by $S = \{v \in V(G) \mid v \text{ is incident on an edge of } M\}$. Given a graph G and a positive integer k, INDUCED MATCHING asks whether G has an induced matching of cardinality at least k. An induced matching M is maximal if it is not properly contained in any other induced matching of G. Given a graph G, MIN-MAX-IND-MATCHING is the problem of finding a maximal induced matching M in G of minimum cardinality. Given a bipartite graph $G = (X \uplus Y, E(G))$, SATURATED INDUCED MATCHING asks whether there exists an induced matching in G that saturates every vertex in Y. In this paper, we study MIN-MAX-IND-MATCHING and SAT-URATED INDUCED MATCHING. First, we strengthen the hardness result of MIN-MAX-IND-MATCHING by showing that its decision version remains NP-complete for perfect elimination bipartite graphs, star-convex bipartite graphs, and dually chordal graphs. Then, we show the hardness difference between INDUCED MATCHING and MIN-MAX-IND-MATCHING. Finally, we propose a linear-time algorithm to solve SATURATED INDUCED MATCHING.

Keywords: Matching \cdot Induced matching \cdot Minimum maximal induced matching \cdot NP-completeness \cdot Linear-time algorithm

1 Introduction

All graphs considered in this paper are simple, finite, connected, and undirected. For a graph G, let V(G) denote its vertex set, and E(G) denote its edge set. A matching M in a graph G is an *induced matching* if G[M], the subgraph of G induced by M, is the same as G[S], the subgraph of G induced by $S = \{v \in V(G) \mid v \text{ is incident on an edge of } M\}$. An induced matching M is *maximal* if M is not properly contained in any other induced matching of G. Given a graph G, MIN-MAX-IND-MATCHING asks to find a maximal induced matching M of minimum cardinality in G. Formally, the decision version of MIN-MAX-IND-MATCHING is defined as follows:

DECIDE-MIN-MAX-IND-MATCHING:

Input: A graph G and a positive integer $k \leq |V(G)|$. **Question:** Does there exist a maximal induced matching M in G such that $|M| \leq k$?

The *induced matching number* of G is the maximum cardinality of an induced matching among all induced matchings in G, and we denote it by $\mu_{in}(G)$. The *minimum maximal induced matching number* of G is the minimum cardinality of a maximal induced matching among all maximal induced matchings in G, and we denote it by $\mu'_{in}(G)$. It is also known as the *lower induced matching number* of G [8]. For an example, consider the graph G with vertex set $V(G) = \{a, b, c, d, e\}$ and edge set $E(G) = \{ab, bc, cd, de\}$. $M_1 = \{bc\}$ and $M_2 = \{ab, de\}$ are two maximal induced matchings of G and M_1 is a minimum maximal induced matching of G. Therefore, $\mu'_{in}(G) = 1$.

When we restrict INDUCED MATCHING by applying a constraint, which is to saturate one of the partitions of the bipartite graph, then we obtain SATU-RATED INDUCED MATCHING. The motivation for SATURATED INDUCED MATCH-ING comes directly from the applications of INDUCED MATCHING, which are secure communication networks, VLSI design, risk-free marriages, etc. One possible application of SATURATED INDUCED MATCHING in the secure communication channel is as follows: Suppose we have a bipartite graph $G = (X \uplus Y, E(G))$ where the partitions X and Y represent broadcasters and receivers, respectively, and the edges represent the communication capabilities between broadcasters and receivers. Now, we want to select |Y| edges such that all receivers should get the information, and that too from a unique broadcaster. Moreover, there should be no edge between any two active channels (i.e., edges) to avoid any interception or leakage.

Related Work. MIN-MAX-IND-MATCHING is known to be polynomial-time solvable for graph classes like chordal graphs, circular-arc graphs, and AT-free graphs [15]. The weighted version of MIN-MAX-IND-MATCHING is known to be linear-time solvable for trees [11]. MIN-MAX-IND-MATCHING for random graphs has been studied in [6]. A graph G is *bi-size matched* if there exists $k \geq 1$ such that $|M| \in \{k, k + 1\}$ for every maximal induced matching M in G. For bi-size matched graphs, DECIDE-MIN-MAX-IND-MATCHING is shown to be NP-complete in [16]. From the approximation point of view, MIN-MAX-IND-MATCHING cannot be approximated within a ratio of $n^{1-\epsilon}$ for any $\epsilon > 0$ unless P = NP [15]. The MIN-MAX version of other variants of matchings, like acyclic matching and uniquely restricted matching, have also been considered in the literature [4,5,12].

Our Contribution. In Sect. 3, we discuss MIN-MAX-IND-MATCHING. In particular, in Subsect. 3.1, we strengthen the hardness result of MIN-MAX-IND-MATCHING by showing that DECIDE-MIN-MAX-IND-MATCHING remains NPcomplete for perfect elimination bipartite graphs, star-convex bipartite graphs, and dually chordal graphs. In Subsect. 3.2, we show the hardness difference between INDUCED MATCHING and MIN-MAX-IND-MATCHING by giving a graph class where one problem is polynomial-time solvable while the other problem is APX-hard, and vice-versa. In Sect. 4, we introduce SATURATED INDUCED MATCHING and propose a linear-time algorithm for the same.

2 Preliminaries

For a positive integer k, let [k] denote the set $\{1, \ldots, k\}$. Given a graph G and a matching M, we use the notation V_M to denote the set of M-saturated vertices and $G[V_M]$ to denote the subgraph induced by V_M . In a graph G, the open and closed neighborhood of a vertex $v \in V(G)$ are denoted by N(v) and N[v], respectively, and defined by $N(v) = \{w \mid wv \in E(G)\}$ and $N[v] = N(v) \cup \{v\}$. The degree of a vertex v is |N(v)| and is denoted by $d_G(v)$. When there is no ambiguity, we do not use the subscript G. If d(v) = 1, then v is a pendant vertex. For a graph G, the subgraph of G induced by $S \subseteq V(G)$ is denoted by G[S], where $G[S] = (S, E_S)$ and $E_S = \{xy \in E(G) \mid x, y \in S\}$. A graph G is a k-regular graph if d(v) = kfor every vertex v of G. Let K_n and P_n denote a *complete graph* and a *path graph*, respectively. A graph G is a bipartite graph if its vertex set V(G) can be partitioned into two sets, X and Y, such that every edge of G joins a vertex in X to a vertex in Y. We use the notation $G = (X \uplus Y, E(G))$ to represent the bipartite graph with vertex partitions X and Y. An edge xy of G is a bisimplicial edge if $N(x) \cup N(y)$ induces a complete bipartite subgraph of G. Let $\sigma = (x_1y_1, x_2y_2, \dots, x_ky_k)$ be a sequence of pairwise nonadjacent edges of G. Let $S_j = \{x_1, x_2, \ldots, x_j\} \cup \{y_1, y_2, \ldots, y_j\}$ and $S_0 = \emptyset$. Then, σ is a perfect edge elimination ordering for G if each edge $x_{j+1}y_{j+1}$ is bisimplicial in $G_{j+1} = G[(X \uplus Y) \setminus S_j]$ for $j = 0, 1, \ldots, k-1$ and $G_{k+1} =$ $G[(X \uplus Y) \setminus S_k]$ has no edge. A bipartite graph for which there exists a perfect edge elimination ordering is a *perfect elimination bipartite graph*. Introduced by Golumbic and Goss, the class of perfect elimination bipartite graphs is considered to be a bipartite counterpart of chordal graphs and can be recognized in polynomial time [9].

A bipartite graph G is a *tree-convex bipartite graph*, if a tree $T = (X, E^X)$ can be defined on the vertices of X, such that for every vertex y in Y, the neighborhood of y induces a subtree of T. Tree-convex bipartite graphs are recognizable in linear time, and an associated tree T can also be constructed in linear time [2]. A tree with at most one non-pendant vertex is called a *star*. If the tree T in a tree-convex bipartite graph G is a star, then G is a *star-convex bipartite graph*. The following proposition is a characterization of star-convex bipartite graphs.

Proposition 1 (Pandey and Panda [14]). A bipartite graph $G = (X \uplus Y, E(G))$ is a star-convex bipartite graph if and only if there exists a vertex $x \in X$ such that every vertex $y \in Y$ is either a pendant vertex or is adjacent to x.

A vertex $u \in N_G[v]$ in a graph G is a maximum neighbor of v if for all $w \in N_G[v], N_G[w] \subseteq N_G[u]$. An ordering $\alpha = (v_1, \ldots, v_n)$ of V(G) is a maximum neighborhood ordering, if v_i has a maximum neighbor in $G_i = G[\{v_i, \ldots, v_n\}]$ for all $i \in [n]$. A graph G is a dually chordal graph if it has a maximum neighborhood ordering. These graphs are a generalization of strongly chordal graphs and a superclass of interval graphs. Furthermore, note that dually chordal graphs can be recognized in linear time [1].

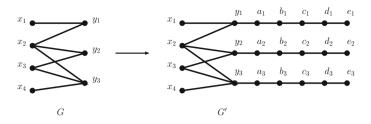


Fig. 1. An illustration of the construction of G' from G.

3 Minimum Maximal Induced Matching

3.1 NP-completeness Results

In this subsection, we first show that DECIDE-MIN-MAX-IND-MATCHING is NPcomplete for perfect elimination bipartite graphs.

Theorem 2. DECIDE-MIN-MAX-IND-MATCHING is NP-complete for perfect elimination bipartite graphs.

Proof. Given a perfect elimination bipartite graph G and a matching M, it is easy to observe that DECIDE-MIN-MAX-IND-MATCHING is in NP. Next, we prove that DECIDE-MIN-MAX-IND-MATCHING is NP-hard for perfect elimination bipartite graphs by establishing a polynomial-time reduction from DECIDE-MIN-MAX-IND-MATCHING for bipartite graphs, which is known to be NP-hard [15].

Given a bipartite graph $G = (X \uplus Y, E(G))$, where $X = \{x_1, \ldots, x_p\}$ and $Y = \{y_1, \ldots, y_l\}$, an instance of DECIDE-MIN-MAX-IND-MATCHING, construct a graph $G' = (X' \uplus Y', E(G'))$, an instance of DECIDE-MIN-MAX-IND-MATCHING for perfect elimination bipartite graphs in the following way: For each $y_i \in Y$, introduce a path $P_i = y_i, a_i, b_i, c_i, d_i, e_i$ of length 5. Formally, $X' = X \cup \bigcup_{i \in [l]} \{a_i, c_i, e_i\}, Y' = Y \cup \bigcup_{i \in [l]} \{b_i, d_i\}$ and $E(G') = E(G) \cup \bigcup_{i \in [l]} \{y_i a_i, a_i b_i, b_i c_i, c_i d_i, d_i e_i\}$. See Fig. 1 for an illustration of the construction of G' from G. Note that G' is a perfect elimination bipartite graph as $(e_1d_1, \ldots, e_ld_l, c_1b_1, \ldots, c_lb_l, a_1y_1, \ldots, a_ly_l)$ is a perfect elimination ordering of G'. Now, the following claim is sufficient to complete the proof of the theorem.

Claim 3. G has a maximal induced matching of cardinality at most k if and only if G' has a maximal induced matching of cardinality at most k + l.

Proof. Let M be a maximal induced matching in G of cardinality at most k. Define a matching $M' = M \cup \bigcup_{i \in [l]} \{b_i c_i\}$ in G'. By the definition of an induced matching, note that M' is a maximal induced matching in G' and $|M'| \leq k + l$.

Conversely, let M be a minimum maximal induced matching in G' of cardinality at most k + l. Since M is maximal, $|M \cap \{b_i c_i, c_i d_i, d_i e_i\}| \ge 1$ for each $i \in [l]$. Furthermore, since M is an induced matching, $|M \cap \{b_i c_i, c_i d_i, d_i e_i\}| \le 1$ for each $i \in [l]$. Thus, for each $i \in [l]$, $|M \cap \{b_i c_i, c_i d_i, d_i e_i\}| = 1$.

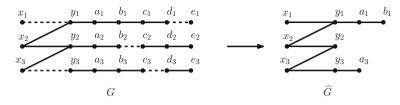


Fig. 2. An illustration of the construction of \widehat{G} from G'. Here, the dashed edges show a minimum maximal induced matching in G'.

Now, we label each $y_i \in Y$ as either Type-I vertex, Type-II vertex or Type-III vertex depending on whether $b_i c_i, c_i d_i$ or $d_i e_i$ belongs to M. For every $i \in [l]$, if y_i is a Type-I vertex, remove the vertices a_i, b_i, c_i, d_i, e_i from G', if y_i is a Type-II vertex, remove the vertices b_i, c_i, d_i, e_i from G', and if y_i is a Type-III vertex, remove the vertices c_i, d_i, e_i from G'. After removing all the desired vertices, let us call the graph so obtained as \widehat{G} . See Fig. 2 for an illustration of the construction of \widehat{G} from G'. Let \widehat{M} be the restriction of M to \widehat{G} . Clearly, \widehat{M} is a maximal induced matching in \widehat{G} and $|\widehat{M}| = (k+l) - l = k$. Now, we claim that there exists a maximal induced matching in G of cardinality at most k. If $\widehat{M} \subset E(G)$, then we are done, as \widehat{M} will be a desired maximal induced matching in G of cardinality at most k. So, let us assume that \widehat{M} contains an edge from the path P_j for some fixed $j \in [l]$.

If $y_j a_j \in \widehat{M}$ and y_j is a Type-II (or Type-III) vertex, then we claim that one of the following conditions will hold:

- i) $(\widehat{M} \setminus \{y_j a_j\}) \cup \{y_j x_k\}$ is a maximal induced matching in \widehat{G} for some $x_k \in N(y_j)$.
- ii) $\widehat{M} \setminus \{y_j a_j\}$ is a maximal induced matching in $\widehat{G} \setminus \{a_j\}$ or $\widehat{G} \setminus \{a_j, b_j\}$ depending on whether y_j is a Type-II vertex or a Type-III vertex, respectively.

If Condition i) holds, then we are done. So, let us assume that $(\widehat{M} \setminus \{y_j a_j\}) \cup \{y_j x_k\}$ is not a maximal induced matching in \widehat{G} for any $x_k \in N(y_j)$. This implies that the edges incident on y_j (except $y_j a_j$) are dominated by edges from the edge set $E(G) \cap \widehat{M}$. So, in other words, if we remove the edge $y_j a_j$ from \widehat{M} , then all edges except $y_j a_j$ will be dominated by the rest of \widehat{M} . This further implies that $\widehat{M} \setminus \{y_j a_j\}$ is a maximal induced matching in $\widehat{G} \setminus \{a_j\}$ or $\widehat{G} \setminus \{a_j, b_j\}$ depending on whether y_j is a Type-II or a Type-III vertex. Similarly, if $a_j b_j \in \widehat{M}$, then we claim that either $(\widehat{M} \setminus \{a_j b_j\}) \cup \{y_j a_j\}$ is a maximal induced matching in $\widehat{G} \setminus \{a_j, b_j\}$. So, we have proved that every edge $e \in \widehat{M} \cap P_j$ can either be replaced by an edge in E(G) or can be removed without disturbing the maximality of the matching restricted to E(G). Therefore, G has a maximal induced matching of cardinality at most k.

Hence, DECIDE-MIN-MAX-IND-MATCHING is NP-complete for perfect elimination bipartite graphs. □ Next, we show that DECIDE-MIN-MAX-IND-MATCHING is NP-complete for star-convex bipartite graphs.

Theorem 4. DECIDE-MIN-MAX-IND-MATCHING is NP-complete for starconvex bipartite graphs.

Proof. Given a star-convex bipartite graph G and a matching M, it is easy to observe that DECIDE-MIN-MAX-IND-MATCHING is in NP. Next, we prove that DECIDE-MIN-MAX-IND-MATCHING is NP-hard for star-convex bipartite graphs by establishing a polynomial-time reduction from DECIDE-MIN-MAX-IND-MATCHING for bipartite graphs, which is known to be NP-hard [15].

Given a bipartite graph $G = (X \uplus Y, E(G))$, where $X = \{x_1, \ldots, x_p\}$ and $Y = \{y_1, \ldots, y_q\}$ for $q \ge 3$, an instance of DECIDE-MIN-MAX-IND-MATCHING, we construct a star-convex bipartite graph $G' = (X' \uplus Y', E(G'))$, an instance of DECIDE-MIN-MAX-IND-MATCHING in the following way:

- Introduce a vertex x_0 and make x_0 adjacent to y_i for each $i \in [q]$.
- Introduce the vertex set $\{\overline{y}_1, \ldots, \overline{y}_q\}$ and make x_0 adjacent to \overline{y}_i for each $i \in [q]$.
- Introduce the edge set $\bigcup_{i,j\in[q]} \{x_{ij}y_{ij}\}$. For each $i \in [q]$, make \overline{y}_i adjacent to x_{ij} for every $j \in [q]$.

Formally, $X' = X \cup \{x_0\} \cup \bigcup_{i,j \in [q]} \{x_{ij}\}$ and $Y' = Y \cup \bigcup_{i \in [q]} \{\overline{y}_i\} \bigcup_{i,j \in [q]} \{y_{ij}\}$. See Fig. 3 for an illustration of the construction of G' from G. Note that every vertex in Y' is either adjacent to x_0 or is a pendant vertex. So, by Proposition 1, it is clear that the graph G' is a star-convex bipartite graph. Now, the following claim is sufficient to complete the proof of the theorem.

Claim 5. *G* has a maximal induced matching of cardinality at most k if and only if G' has a maximal induced matching of cardinality at most k + q.

Proof. Let M be a maximal induced matching in G of cardinality at most k. Define a matching M' in G' as follows: $M' = M \cup \bigcup_{i \in [q]} \{\overline{y}_i x_{ii}\}$. Clearly, M' is a maximal induced matching in G' and $|M'| \leq k + q$.

Conversely, let M be a minimum maximal induced matching in G' of cardinality at most k + q. Let M_G denote a maximum induced matching in G. Note that $|M_G| \leq q$. Now consider the following matching: $M' = \bigcup_{i \in [q]} \{\overline{y}_i x_{ii}\} \cup M_G$. Note that M' is a maximal induced matching in G' of cardinality at most 2q. Thus, $|M| \leq 2q$. Now, we will show that there exists a maximal induced matching in G of cardinality at most k.

If $x_0\overline{y}_i \in M$ for some fixed $i \in [q]$, then $\overline{y}_k x_{kj} \notin M$ for any $k, j \in [q]$. Also, $x_0\overline{y}_k \notin M$ for any $k \in [q] \setminus \{i\}$. So, edges of the form $x_{kj}y_{kj}$ must belong to M for every $k \in [q] \setminus \{i\}$ and $j \in [q]$. Thus, $|M| \ge q(q-1) + 1$, which is a contradiction to the fact that $|M| \le 2q$. Therefore, $x_0\overline{y}_i \notin M$ for any $i \in [q]$. Now, there are two possibilities. If $x_{ij}y_{ij} \in M$ for some $i \in [q]$, then $x_{ij}y_{ij} \in M$ for every $j \in [q]$. On the other hand, if for each $i \in [q]$ there exists some $j \in [q]$ such that $\overline{y}_i x_{ij} \in M$, then only q edges will suffice to make M maximal. So, in

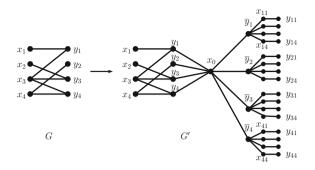


Fig. 3. An illustration of the construction of G' from G.

any minimum maximal induced matching M, it is always better to choose edges of the form $\overline{y}_i x_{ij}$ in M for all $i, j \in [q]$. Thus, M restricted to E(G) is a desired maximal induced matching in G of cardinality at most k.

Hence, by Claim 5, DECIDE-MIN-MAX-IND-MATCHING is NP-complete for starconvex bipartite graphs.

As the class of tree-convex bipartite graphs is a superclass of star-convex bipartite graphs, the following corollary is a consequence of Theorem 4.

Corollary 6. DECIDE-MIN-MAX-IND-MATCHING is NP-complete for treeconvex bipartite graphs.

Next, we show that DECIDE-MIN-MAX-IND-MATCHING is NP-complete for dually chordal graphs. Note that the reduction is similar to the reduction given for star-convex bipartite graphs.

Theorem 7. DECIDE-MIN-MAX-IND-MATCHING *is* NP*-complete for dually chordal graphs.*

Proof. Given a dually chordal graph G and a subset $M \subseteq E(G)$, it can be checked in polynomial time whether M is a maximal induced matching in G or not. So, DECIDE-MIN-MAX-IND-MATCHING belongs to the class NP for dually chordal graphs. To show the NP-hardness, we give a polynomial-time reduction from DECIDE-MIN-MAX-IND-MATCHING for general graphs, which is already known to be NP-complete [15].

Given a graph G, where $V(G) = \{v_1 \dots, v_n\}$ and $n \geq 3$, an instance of DECIDE-MIN-MAX-IND-MATCHING, we construct a dually chordal graph G', an instance of DECIDE-MIN-MAX-IND-MATCHING in the following way:

- Introduce a vertex v_0 and make v_0 adjacent to v_i for each $i \in [n]$.
- Introduce the vertex set $\{w_1, \ldots, w_n\}$ and make v_0 adjacent to w_i for each $i \in [n]$.
- Introduce the edge set $\bigcup_{i,j\in[n]} \{p_{ij}q_{ij}\}$. For each $i \in [n]$, make w_i adjacent to p_{ij} for every $j \in [n]$.

Clearly, G' is a dually chordal graph as $(q_{11}, \ldots, q_{1n}, q_{21}, \ldots, q_{2n}, \ldots, q_{n1}, \ldots, q_{nn}, p_{11}, \ldots, p_{1n}, p_{21}, \ldots, p_{2n}, \ldots, p_{n1}, \ldots, p_{nn}, w_1, w_2, \ldots, w_n, v_1, v_2, \ldots, v_n, v_0)$ is a maximum neighborhood ordering of G'. Now, the following claim is sufficient to complete the proof.

Claim 8. *G* has a maximal induced matching of cardinality at most k if and only if G' has a maximal induced matching of cardinality at most k + n.

Proof. Let M be a maximal induced matching in G of cardinality at most k. Define a matching M' in G' as follows: $M' = M \cup \bigcup_{i \in [n]} \{w_i p_{ii}\}$. Clearly, M' is a maximal induced matching in G' and $|M'| \leq k + n$.

Conversely, let M be a minimum maximal induced matching in G' of cardinality at most k + n. Now, we will show that there exists a maximal induced matching in G of cardinality at most k. Let M_G denote a maximum induced matching in G. Note that $|M_G| \leq \frac{n}{2}$.

If $v_0w_i \in M$ for some fixed $i \in [n]$, then $w_k p_{kj} \notin M$ for any $k, j \in [n]$. Also, $v_0w_k \notin M$ for any $k \in [n] \setminus \{i\}$. So, edges of the form $p_{kj}q_{kj}$ must belong to M for each $k \in [n] \setminus \{i\}$ and $j \in [n]$. Thus, $|M| \ge n(n-1)+1$, which is a contradiction as $M' = \bigcup_{i \in [n]} \{w_i p_{ii}\} \cup M_G$ is a maximal induced matching in G' of cardinality at most $\frac{n}{2} + n$ and cardinality of M cannot be greater than the cardinality of M'. Therefore, $v_0w_i \notin M$ for any $i \in [n]$. Now, there are two possibilities. If $p_{ij}q_{ij} \in M$ for some $i, j \in [n]$, then $p_{ik}q_{ik} \in M$ for every $k \in [n]$. On the other hand, if for each $i \in [n]$ there exists some $j \in [n]$ such that $w_i p_{ij} \in M$, then only n edges will suffice to make M maximal. So, in any minimum maximal induced matching M, it is always better to choose edges of the form $w_i p_{ij}$ in M for all $i, j \in [n]$. Thus, M restricted to E(G) is a desired maximal induced matching in G of cardinality at most k.

Hence, DECIDE-MIN-MAX-IND-MATCHING is NP-complete for dually chordal graphs. $\hfill \square$

3.2 Hardness Difference Between Induced Matching and Minimum Maximal Induced Matching

In this subsection, we show that MIN-MAX-IND-MATCHING and INDUCED MATCHING differ in hardness; that is, there are graph classes in which one problem is polynomial-time solvable while the other is APX-hard, and vice versa. For this purpose, consider the following definition.

Definition 9 (GC₃ graph). A graph H is a GC₃ graph if it can be constructed from some graph G, where $V(G) = \{v_1, \ldots, v_n\}$ in the following way: For each vertex v_i of G, introduce a cycle v_i, a_i, b_i, v_i of length 3 in H. Formally, V(H) = $V(G) \cup \bigcup_{i \in [n]} \{a_i, b_i\}$ and $E(H) = E(G) \cup \bigcup_{i \in [n]} \{v_i a_i, a_i b_i, v_i b_i\}.$

Now, consider the following straightforward observation that follows from the definition of maximal induced matching.

Observation 10. Let M be an induced matching in a GC_3 graph H. Then, M is maximal in H iff for each $i \in [n]$, either v_i is saturated by M or $a_i b_i \in M$.

Now, we will show that INDUCED MATCHING is polynomial-time solvable for GC_3 graphs, and MIN-MAX-IND-MATCHING is APX-hard for GC_3 graphs.

Theorem 11. Let H be a GC_3 graph constructed from a graph G, where $V(G) = \{v_1, \ldots, v_n\}$, as in Definition 9. Then, $\mu_{in}(H) = n$.

Proof. Let $M = \bigcup_{i \in [n]} \{a_i b_i\}$. It is easy to see that |M| = n and $G[V_M]$ is a disjoint union of $K'_2 s$. So, M is an induced matching in H. Hence, $\mu_{in}(H) \ge n$.

Next, consider a maximum induced matching, say M_{in} in H. If $|M_{in}| > n$, then M_{in} must contain at least one edge from the edge set E(G), i.e., $v_i v_j \in M_{in}$ for some $i, j \in [n]$. Define $M = (M_{in} \setminus \{v_i v_j\}) \cup \{a_i b_i, a_j b_j\}$. By Observation 10, M is an induced matching in H and $|M| > |M_{in}|$, which is a contradiction as M_{in} is a maximum induced matching in H. Thus, $\mu_{in}(H) \leq n$.

Proposition 12 (Gotthilf and Lewenstein [10]). Let G be a graph with maximum degree Δ . Then, $\mu_{in}(G) \geq \frac{|E(G)|}{1.5\Delta^2 - 0.5\Delta}$.

Proposition 13 (Duckworth et al. [7]). INDUCED MATCHING is APXcomplete for r-regular graphs for every fixed integer $r \geq 3$.

Theorem 14. MIN-MAX-IND-MATCHING is APX-hard for GC_3 graphs.

Proof. Given a 3-regular graph G, an instance of INDUCED MATCHING, we construct a GC_3 graph H, an instance of MIN-MAX-IND-MATCHING by attaching a cycle v_i, a_i, b_i, v_i of length 3 to each $v_i, i \in [n]$. Next, let Type-A edges $= \bigcup_{i \in [n]} \{a_i b_i\}$ and Type-B edges = E(G). Now, consider the following claim whose proof follows from Observation 10 and the fact that every edge of the form $v_i a_i$ or $v_i b_i$ (where $i \in [n]$) can be replaced with $a_i b_i$.

Claim 15. For every maximal induced matching M in a GC_3 graph H, there exists a maximal induced matching M' such that |M'| = |M| and M' contains edges of Type-A and Type-B only.

Claim 16. Let M_B^* be a minimum maximal induced matching in H and M_A^* be a maximum induced matching in G. Then, $|M_B^*| = n - |M_A^*|$.

Proof. Since M_A^* is a maximum induced matching in G, this implies that $2|M_A^*|$ vertices are saturated, and $n-2|M_A^*|$ vertices are unsaturated by M_A^* in G. Define a matching $M_B = M_A^* \cup \{a_i b_i \mid v_i \text{ is unsaturated by } M_A^*\}$ in H. By Observation 10, M_B is a maximal induced matching in H. Since $|M_B| = (|M_A^*| + n - 2|M_A^*|) = n - |M_A^*|, |M_B^*| \le n - |M_A^*|$.

By Claim 15, there exists a minimum maximal induced matching M_B^* in H such that M_B^* contains edges of Type-A and Type-B only. Let $T^* \cup S^*$ be a partition of M_B^* such that T^* contains Type-A edges and S^* contains Type-B edges. Since M_B^* is maximal, $|T^*| = n - 2|S^*|$. This implies that $|M_B^*| = |S^*| + (n - 2|S^*|) = n - |S^*|$. Since $S^* \subset M_B^*$, S^* is an induced matching in G and $|S^*| \leq |M_A^*|$. As $|S^*| = n - |M_B^*|$, $n - |M_B^*| \leq |M_A^*|$. This completes the proof of Claim 16.

We now return to the proof of Theorem 14. By Proposition 12, we know that any 3-regular graph G satisfies the inequality $|M_A^*| \geq \frac{n}{8}$. Therefore, we have $|M_B^*| = n - |M_A^*| \leq 8|M_A^*| - |M_A^*| = 7|M_A^*|$. Further, let M be a maximal induced matching in H. By Claim 15, there exists a maximal induced matching in H such that $|M_B| = |M|$ and M_B contains edges of Type-A and Type-B only. Let $T_B \cup S_B$ be a partition of M_B such that T_B contains Type-A edges and S_B contains Type-B edges. Since M_B is maximal, $|T_B| = (n - 2|S_B|)$. Hence, $|M_B| = n - |S_B|$. Here, S_B is a desired induced matching in G. Let $S_B = M_A$. Now, $|M_A^*| - |M_A| = |M_A^*| - |M_A| + n - n = (n - |M_A|) - (n - |M_A^*|) \leq |(|M_B^*| - M_B)|$. From these two inequalities and Proposition 13, it follows that it is an L-reduction with $\alpha = 7$ and $\beta = 1$. Thus, MIN-MAX-IND-MATCHING is APX-hard for GC_3 graphs.

Next, consider the following definition.

Definition 17 (Gx_0 **graph).** A bipartite graph $G' = (X' \uplus Y', E(G'))$ is a Gx_0 graph if it can be constructed from a bipartite graph $G = (X \uplus Y, E(G))$, where $Y = \{y_1, \ldots, y_l\}$ in the following way: Introduce a new vertex x_0 and make x_0 adjacent to each $y_i \in Y$. Formally, $X' = X \cup \{x_0\}, Y' = Y$, and $E(G') = E(G) \cup \{x_0y_i \mid y_i \in Y\}$.

Now, we show that MIN-MAX-IND-MATCHING is polynomial-time solvable for Gx_0 graphs, and INDUCED MATCHING is APX-hard for Gx_0 graphs.

Theorem 18. Let $G' = (X' \uplus Y', E(G'))$ be a Gx_0 graph constructed from a bipartite graph $G = (X \uplus Y, E(G))$, where $Y = \{y_1, \ldots, y_l\}$, as in Definition 17. Then, $\mu'_{in}(G') = 1$.

Proposition 19 (Panda et al. [13]). Let G' be a Gx_0 graph constructed from an r-regular $(r \ge 3)$ bipartite graph G by introducing a vertex x_0 and making x_0 adjacent to every vertex in one of the partitions of G. Then, G has an induced matching of cardinality at least k if and only if G' has an induced matching of cardinality at least k.

Now, we are ready to prove the following theorem by giving a polynomialtime reduction from INDUCED MATCHING.

Theorem 20. INDUCED MATCHING is APX-hard for Gx_0 graphs.

Proof. Given an r-regular graph G, an instance of INDUCED MATCHING, we construct a Gx_0 graph H, an instance of INDUCED MATCHING by introducing a vertex x_0 and making it adjacent to every vertex of G (see Definition 17). Now, we have the following claim from Proposition 19.

Claim 21. If M_B^* is a maximum induced matching in G' and M_A^* is a maximum induced matching in G, then $|M_B^*| = |M_A^*|$.

We now return to the proof of Theorem 20. By Claim 21, it is clear that $|M_B^*| = |M_A^*|$. Further, let M_B be an induced matching in G'. By Proposition 19,

Algorithm 1. Algo-SIM(G)

Input: A bipartite graph $G = (X \uplus Y, E(G));$ Output: A saturated induced matching M_S or a variable reporting that G has no saturated induced matching; $M_S \leftarrow \emptyset;$ for every $y \in Y$ do if (there exists some $x \in N(y)$ such that d(x) = 1) then $\lfloor M_S \leftarrow M_S \cup \{xy\};$ else \lfloor return 0; return $M_S;$

there exists an induced matching M_A in G such that $|M_A| \ge |M_B|$. By Claim 21, it follows that $|M_A^*| - |M_A| \le |M_B^*| - M_B|$. From these two inequalities, it follows that it is an L-reduction with $\alpha = 1$ and $\beta = 1$. Therefore, MIN-MAX-IND-MATCHING is APX-hard for Gx_0 graphs.

4 Saturated Induced Matching

In this section, we will first introduce SATURATED INDUCED MATCHING and then propose a linear-time algorithm to solve it.

SATURATED INDUCED MATCHING: **Input:** A bipartite graph $G = (X \uplus Y, E(G))$. **Question:** Does there exist an induced matching in G that saturates each vertex of Y?

It is well-known that INDUCED MATCHING is NP-complete for bipartite graphs [3]. However, when we restrict INDUCED MATCHING to SATURATED INDUCED MATCHING, then the problem becomes linear-time solvable. To prove this, consider the following lemma.

Lemma 22. Let M_S be an induced matching in a bipartite graph $G = (X \uplus Y, E(G))$ that saturates all vertices of Y. Then, an edge $x_i y_j \in M_S$ only if $d(x_i) = 1$.

Proof. Targeting a contradiction, let us suppose that there exists an edge $x_iy_j \in M_S$ such that $d(x_i) > 1$. Let $y_k \in Y \setminus \{y_j\}$ be such that $x_iy_k \in E(G)$. Now, since $x_iy_j \in M_S$, therefore $x_iy_k \notin M_S$ (as x_iy_k and x_iy_j are adjacent). However, since M_S is a saturated induced matching, this implies that there is an edge incident on y_k that belongs to M_S . This, in turn, implies that the edge x_iy_k is dominated twice, a contradiction to the fact that M_S is an induced matching. \Box

Based on Lemma 22, we have Algorithm 1 that finds a saturated induced matching M_S in a given bipartite graph, if one exists. Since we are just traversing the adjacency list of every vertex in the X partition of the bipartite graph G, we have the following theorem.

Theorem 23. Given a bipartite graph G, the SATURATED INDUCED MATCHING problem can be solved in $\mathcal{O}(|V(G)| + |E(G)|)$ time.

5 Open Problems

Exploring the parameterized complexity of MIN-MAX-IND-MATCHING is an interesting future direction.

References

- 1. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.: Dually chordal graphs. SIAM J. Discrete Math. **11**(3), 437–455 (1998)
- Bao, F.S., Zhang, Y.: A review of tree convex sets test. Comput. Intell. 28, 358–372 (2012)
- 3. Cameron, K.: Induced matchings. Discrete Appl. Math. 24(1-3), 97–102 (1989)
- Chaudhary, J., Mishra, S., Panda, B. S.: On the complexity of minimum maximal acyclic matching. In: Zhang, Y., Miao, D., Möhring, R. (eds.) Computing and Combinatorics. COCCOON 2022. LNCS, vol. 13595, pp. 106–117. Springer, cham (2022). https://doi.org/10.1007/978-3-031-22105-7_10
- Chaudhary, J., Panda, B.S.: On the complexity of minimum maximal uniquely restricted matching. Theor. Comput. Sci. 882, 15–28 (2021)
- Clark, L.: The strong matching number of a random graph. Australas. J. Comb. 24, 47–58 (2001)
- Duckworth, W., Manlove, D.F., Zito, M.: On the approximability of the maximum induced matching problem. J. Discrete Algorithms 3(1), 79–91 (2005)
- Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R.: Generalized subgraph-restricted matchings in graphs. Discrete Math. 293(1-3), 129–138 (2005)
- Golumbic, M.C., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J. Graph Theory 2(2), 155–163 (1978)
- Gotthilf, Z., Lewenstein, M.: Tighter approximations for maximum induced matchings in regular graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 270–281. Springer, Heidelberg (2006). https://doi.org/10.1007/ 11671411.21
- Lepin, V.V.: A linear algorithm for computing of a minimum weight maximal induced matching in an edge-weighted tree. Electron. Notes in Discrete Math. 24, 111–116 (2006)
- Panda, B.S., Pandey, A.: On the complexity of minimum cardinality maximal uniquely restricted matching in graphs. In: Arumugam, S., Bagga, J., Beineke, L.W., Panda, B.S. (eds.) ICTCSDM 2016. LNCS, vol. 10398, pp. 218–227. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64419-6_29
- Panda, B.S., Pandey, A., Chaudhary, J., Dane, P., Kashyap, M.: Maximum weight induced matching in some subclasses of bipartite graphs. J. Comb. Optim. 40, 1–20 (2020)
- Pandey, A., Panda, B.S.: Domination in some subclasses of bipartite graphs. Discrete Appl. Math. 252, 51–66 (2019)
- Orlovich, Y.L., Finke, G., Gordon, V., Zverovich, I.: Approximability results for the maximum and minimum maximal induced matching problems. Discrete Optim. 5(3), 584–593 (2008)
- Orlovich, Y.L., Zverovich, I.E.: Maximal induced matchings of minimum/maximum size. Technical report, DIMACS TR 2004-26 (2004)