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Abstract. A matching M in a graph G is an induced matching if the
subgraph of G induced by M is the same as the subgraph of G induced
by S = {v € V(G) | v is incident on an edge of M}. Given a graph G
and a positive integer k, INDUCED MATCHING asks whether G has an
induced matching of cardinality at least k. An induced matching M is
mazimal if it is not properly contained in any other induced matching of
G. Given a graph G, MIN-MAX-IND-MATCHING is the problem of finding
a maximal induced matching M in G of minimum cardinality. Given a
bipartite graph G = (X WY, E(G)), SATURATED INDUCED MATCHING
asks whether there exists an induced matching in G that saturates every
vertex in Y. In this paper, we study MIN-MAX-IND-MATCHING and SAT-
URATED INDUCED MATCHING. First, we strengthen the hardness result of
MIN-MAX-IND-MATCHING by showing that its decision version remains
NP-complete for perfect elimination bipartite graphs, star-convex bipar-
tite graphs, and dually chordal graphs. Then, we show the hardness
difference between INDUCED MATCHING and MIN-MAX-IND-MATCHING.
Finally, we propose a linear-time algorithm to solve SATURATED INDUCED
MATCHING.

Keywords: Matching - Induced matching - Minimum maximal
induced matching -+ NP-completeness - Linear-time algorithm

1 Introduction

All graphs considered in this paper are simple, finite, connected, and undirected.
For a graph G, let V(G) denote its vertex set, and E(G) denote its edge set. A
matching M in a graph G is an induced matching if G[M], the subgraph of G
induced by M, is the same as G[S], the subgraph of G induced by S = {v €
V(G) | v is incident on an edge of M}. An induced matching M is mazimal
if M is not properly contained in any other induced matching of G. Given a
graph G, MIN-MAX-IND-MATCHING asks to find a maximal induced matching
M of minimum cardinality in G. Formally, the decision version of MIN-MAX-
IND-MATCHING is defined as follows:
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DECIDE-MIN-MAX-IND-MATCHING:

Input: A graph G and a positive integer k < [V (G)|.

Question: Does there exist a maximal induced matching M in G such that
|M| < k?

The induced matching number of G is the maximum cardinality of an induced
matching among all induced matchings in G, and we denote it by pin(G). The
manimum maximal induced matching number of G is the minimum cardinality
of a maximal induced matching among all maximal induced matchings in G,
and we denote it by u/ (G). It is also known as the lower induced matching
number of G [8]. For an example, consider the graph G with vertex set V(G) =
{a,b,c,d, e} and edge set E(G) = {ab, bc, cd, de}. My = {bc} and My = {ab, de}
are two maximal induced matchings of G and Mj is a minimum maximal induced
matching of G. Therefore, p!,(G) = 1.

When we restrict INDUCED MATCHING by applying a constraint, which is
to saturate one of the partitions of the bipartite graph, then we obtain SATU-
RATED INDUCED MATCHING. The motivation for SATURATED INDUCED MATCH-
ING comes directly from the applications of INDUCED MATCHING, which are
secure communication networks, VLSI design, risk-free marriages, etc. One pos-
sible application of SATURATED INDUCED MATCHING in the secure communica-
tion channel is as follows: Suppose we have a bipartite graph G = (X WY, E(G))
where the partitions X and Y represent broadcasters and receivers, respectively,
and the edges represent the communication capabilities between broadcasters and
receivers. Now, we want to select |Y'| edges such that all receivers should get the
information, and that too from a unique broadcaster. Moreover, there should be
no edge between any two active channels (i.e., edges) to avoid any interception or
leakage.

Related Work. MIN-MAX-IND-MATCHING is known to be polynomial-time
solvable for graph classes like chordal graphs, circular-arc graphs, and AT-free
graphs [15]. The weighted version of MIN-MAX-IND-MATCHING is known to be
linear-time solvable for trees [11]. MIN-MAX-IND-MATCHING for random graphs
has been studied in [6]. A graph G is bi-size matched if there exists k > 1 such
that |[M| € {k,k + 1} for every maximal induced matching M in G. For bi-size
matched graphs, DECIDE-MIN-MAX-IND-MATCHING is shown to be NP-complete
in [16]. From the approximation point of view, MIN-MAX-IND-MATCHING cannot
be approximated within a ratio of n' =€ for any € > 0 unless P = NP [15]. The MIN-
MAX version of other variants of matchings, like acyclic matching and uniquely
restricted matching, have also been considered in the literature [4,5,12].

Our Contribution. In Sect. 3, we discuss MIN-MAX-IND-MATCHING. In par-
ticular, in Subsect. 3.1, we strengthen the hardness result of MIN-MAX-IND-
MATCHING by showing that DECIDE-MIN-MAX-IND-MATCHING remains NP-
complete for perfect elimination bipartite graphs, star-convex bipartite graphs,
and dually chordal graphs. In Subsect. 3.2, we show the hardness difference
between INDUCED MATCHING and MIN-MAX-IND-MATCHING by giving a graph
class where one problem is polynomial-time solvable while the other problem
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is APX-hard, and vice-versa. In Sect.4, we introduce SATURATED INDUCED
MATCHING and propose a linear-time algorithm for the same.

2 Preliminaries

For a positive integer k, let [k] denote the set {1,...,k}. Given a graph G and a
matching M, we use the notation V) to denote the set of M-saturated vertices and
G[V] to denote the subgraph induced by Vis. In a graph G, the open and closed
neighborhood of a vertex v € V(G) are denoted by N (v) and NJv], respectively,
and defined by N(v) = {w | wv € E(G)} and N[v] = N(v) U {v}. The degree of
a vertex v is [N (v)| and is denoted by dg(v). When there is no ambiguity, we do
not use the subscript G. If d(v) = 1, then v is a pendant vertex. For a graph G, the
subgraph of G induced by S C V(G) is denoted by G[S], where G[S] = (S, Es)
and Es = {zy € E(G) | z,y € S}. A graph G is a k-regular graph if d(v) = k
for every vertex v of G. Let K, and P,, denote a complete graph and a path graph,
respectively. A graph G is a bipartite graphif its vertex set V(@) can be partitioned
into twosets, X and Y, such that every edge of G joins a vertex in X toavertexinY'.
We use the notation G = (XWY, E(G)) torepresent the bipartite graph with vertex
partitions X and Y. An edge xy of G is a bisimplicial edge if N (x) U N (y) induces a
complete bipartite subgraph of G. Let o = (z1y1, X2y, - - - , TrYk) be a sequence of
pairwise nonadjacent edges of G. Let S; = {x1,29,...,2;} U{y1,¥2,...,y;} and
So = 0. Then, o is a perfect edge elimination ordering for G if each edge z;11Y;j4+1
is bisimplicial in Gj41 = G[(X WY)\ S;] for j = 0,1,...,k — 1 and Gpq1 =
G[(X WY) \ Sk has no edge. A bipartite graph for which there exists a perfect
edge elimination ordering is a perfect elimination bipartite graph. Introduced by
Golumbic and Goss, the class of perfect elimination bipartite graphs is considered
to be a bipartite counterpart of chordal graphs and can be recognized in polynomial
time [9)].

A bipartite graph G is a tree-convex bipartite graph, if a tree T = (X, EX) can
be defined on the vertices of X, such that for every vertex y in Y, the neighbor-
hood of y induces a subtree of T'. Tree-convex bipartite graphs are recognizable
in linear time, and an associated tree 1" can also be constructed in linear time
[2]. A tree with at most one non-pendant vertex is called a star. If the tree T' in
a tree-convex bipartite graph G is a star, then G is a star-convez bipartite graph.
The following proposition is a characterization of star-convex bipartite graphs.

Proposition 1 (Pandey and Panda [14]). A bipartite graph G = (X WY,
E(G)) is a star-convex bipartite graph if and only if there exists a vertex x € X
such that every verter y € Y is either a pendant vertex or is adjacent to x.

A vertex u € Ng[v] in a graph G is a mazimum neighbor of v if for all
w € Ng[v], Ng[w] C Ng[u]. An ordering o = (vy, ..., v,) of V(G) is a mazimum
neighborhood ordering, if v; has a maximum neighbor in G; = G[{v,,...,v,}] for
all ¢ € [n]. A graph G is a dually chordal graph if it has a maximum neighborhood
ordering. These graphs are a generalization of strongly chordal graphs and a
superclass of interval graphs. Furthermore, note that dually chordal graphs can
be recognized in linear time [1].
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Fig. 1. An illustration of the construction of G’ from G.

3 Minimum Maximal Induced Matching

3.1 NP-completeness Results

In this subsection, we first show that DECIDE-MIN-MAX-IND-MATCHING is NP-
complete for perfect elimination bipartite graphs.

Theorem 2. DECIDE-MIN-MAX-IND-MATCHING is NP-complete for perfect
elimination bipartite graphs.

Proof. Given a perfect elimination bipartite graph G and a matching M, it is easy
to observe that DECIDE-MIN-MAX-IND-MATCHING is in NP. Next, we prove that
DECIDE-MIN-MAX-IND-MATCHING is NP-hard for perfect elimination bipartite
graphs by establishing a polynomial-time reduction from DECIDE-MIN-MAX-IND-
MATCHING for bipartite graphs, which is known to be NP-hard [15].

Given a bipartite graph G = (X WY, E(G)), where X = {z1,...,2,} and
Y ={y1,...,u}, an instance of DECIDE-MIN-MAX-IND-MATCHING, construct a
graph G' = (X'WY’, E(G")), an instance of DECIDE-MIN-MAX-IND-MATCHING
for perfect elimination bipartite graphs in the following way: For each y; €
Y, introduce a path P; = y;,a;,b;,ci,d;,e; of length 5. Formally, X' = X U
Uiem{ai, Ci, ei}, Y/ = YUUie[l]{bi’ dz} and E(G/) = E(G)UUie[l]{yiai’ aibi, biCi,
cid;, d;e;}. See Fig. 1 for an illustration of the construction of G’ from G. Note
that G’ is a perfect elimination bipartite graph as (e1ds,...,e;d;, c1b1, ..., by,
aiyi,--.,aqy;) is a perfect edge elimination ordering of G'. Now, the following
claim is sufficient to complete the proof of the theorem.

Claim 3. G has a mazimal induced matching of cardinality at most k if and
only if G' has a mazimal induced matching of cardinality at most k + 1.

Proof. Let M be a maximal induced matching in G of cardinality at most k.
Define a matching M’ = M UUJ,¢;{bic;} in G'. By the definition of an induced
matching, note that M’ is a maximal induced matching in G' and |M'| < k + .

Conversely, let M be a minimum maximal induced matching in G’ of cardi-
nality at most k + [. Since M is maximal, |M N {b;c;, ¢;d;, d;e;}| > 1 for each
i € [I]. Furthermore, since M is an induced matching, |M N {b;c;, ¢;d;, d;ie;}] < 1
for each i € [I]. Thus, for each i € [I], |[M N {b;c;, c;d;, die; }| = 1.
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Fig. 2. An illustration of the construction of G from G'. Here, the dashed edges show
a minimum maximal induced matching in G’.

Now, we label each y; € Y as either Type-I vertex, Type-II vertex or Type-II1
vertex depending on whether b;c;,c;d; or d;e; belongs to M. For every i € [l],
if y; is a Type-I vertex, remove the vertices a;, b;, c;,d;, e; from G', if y; is a
Type-II vertex, remove the vertices b;,¢;,d;,e; from G’, and if y; is a Type-
IIT vertex, remove the vertices c¢;, d;, e; from G’ After removing all the desired
vertices, let us call the graph so obtained as G. See Fig. 2 for an illustration of
the construction of G from G’. Let M be the restriction of M to G. Clearly, M
is a maximal induced matching in G and |M | = (k+1) — 1 = k. Now, we claim
that there exists a maximal induced matching in G of cardinality at most k. If
McCE (@), then we are done, as M will be a desired maximal induced matching
in G of cardinality at most k. So, let us assume that M contains an edge from
the path P; for some fixed j € [I].

If yja; € M and y;j is a Type-II (or Type-III) vertex, then we claim that one
of the following conditions will hold:

i) (M\\ {yja;}) U{y;xr} is a maximal induced matching in G for some zj, €
N(y;). _ N

ii) M\{y;a;} is a maximal induced matching in G\ {a;} or G\{qa;,b;} depending
on whether y; is a Type-II vertex or a Type-III vertex, respectively.

If Condition i) holds, then we are done. So, let us assume that (M \ {yja;}) U
{y;jzr} is not a maximal induced matching in G for any o € N(y;). This implies
that the edges incident on y; (except y;a;) are dominated by edges from the edge
set E(G)N M. So, in other words, if we remove the edge y;a; from ]/\4\, then all
edges except y;a; will be dominated by the rest of M. This further implies that
J\/Z\ {y;a;} is a maximal induced matching in G\ {a;} or G\ {a;,b;} depending
on whether y; is a Type-II or a Type-III vertex. Similarly, if a;b; € Z/W\, then we
claim that either (M\\ {a;jb;}) U{y,a;} is a maximal induced matching in G or
J\/Z\ {a;b;} is a maximal induced matching in G\ {a;,b;}. So, we have proved
that every edge e € Mn P; can either be replaced by an edge in E(G) or can be

removed without disturbing the maximality of the matching restricted to E(G).
Therefore, G has a maximal induced matching of cardinality at most k. a

Hence, DECIDE-MIN-MAX-IND-MATCHING is NP-complete for perfect elimina-
tion bipartite graphs. O
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Next, we show that DECIDE-MIN-MAX-IND-MATCHING is NP-complete for
star-convex bipartite graphs.

Theorem 4. DECIDE-MIN-MAX-IND-MATCHING is NP-complete for star-
convex bipartite graphs.

Proof. Given a star-convex bipartite graph G and a matching M, it is easy
to observe that DECIDE-MIN-MAX-IND-MATCHING is in NP. Next, we prove
that DECIDE-MIN-MAX-IND-MATCHING is NP-hard for star-convex bipartite
graphs by establishing a polynomial-time reduction from DECIDE-MIN-MAX-
IND-MATCHING for bipartite graphs, which is known to be NP-hard [15].

Given a bipartite graph G = (X WY, E(G)), where X = {z1,...,2,} and
Y = {y1,...,yq} for ¢ > 3, an instance of DECIDE-MIN-MAX-IND-MATCHING,
we construct a star-convex bipartite graph G/ = (X' WY’, E(G")), an instance
of DECIDE-MIN-MAX-IND-MATCHING in the following way:

— Introduce a vertex xy and make xy adjacent to y; for each i € [q].

— Introduce the vertex set {gy,... @q} and make zy adjacent to y; for each
i € [q].

— Introduce the edge set |J
x;; for every j € [q].

Formally, X" = XU{zo}UU, jeiq{zis} and Y’ =Y UU,¢ (Wi} U, jeq{vis
See Fig. 3 for an illustration of the construction of G’ from G. Note that every
vertex in Y” is either adjacent to xg or is a pendant vertex. So, by Proposition 1,
it is clear that the graph G’ is a star-convex bipartite graph. Now, the following
claim is sufficient to complete the proof of the theorem.

i.jelg{@ijyij - For each i € [g], make J; adjacent to

Claim 5. G has a mazimal induced matching of cardinality at most k if and
only if G' has a mazimal induced matching of cardinality at most k + q.

Proof. Let M be a maximal induced matching in G of cardinality at most k.
Define a matching M’ in G’ as follows: M’/ = M U Uie[q] {724 }. Clearly, M’ is
a maximal induced matching in G' and |[M’'| < k + gq.

Conversely, let M be a minimum maximal induced matching in G’ of cardi-
nality at most k + ¢. Let Mg denote a maximum induced matching in G. Note
that |[Mg| < ¢q. Now consider the following matching: M’ = Uieg{Wimii} U Me.
Note that M’ is a maximal induced matching in G’ of cardinality at most 2gq.
Thus, |M| < 2q. Now, we will show that there exists a maximal induced matching
in G of cardinality at most k.

If zoy; € M for some fixed i € [g], then G, zx; ¢ M for any k,j € [g]. Also,
20T, ¢ M for any k € [q] \ {i}. So, edges of the form xj;yx; must belong to
M for every k € [q] \ {i} and j € [q]. Thus, |M| > ¢q(¢ — 1) + 1, which is a
contradiction to the fact that |M| < 2q. Therefore, 2oy, ¢ M for any i € [q].
Now, there are two possibilities. If ;;y;; € M for some i € [g], then z;;y;; € M
for every j € [g]. On the other hand, if for each ¢ € [g] there exists some j € [q]
such that y,x;; € M, then only ¢ edges will suffice to make M maximal. So, in
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Fig. 3. An illustration of the construction of G’ from G.

any minimum maximal induced matching M, it is always better to choose edges
of the form g,;x;; in M for all i, j € [g]. Thus, M restricted to E(G) is a desired
maximal induced matching in G of cardinality at most k. O

Hence, by Claim 5, DECIDE-MIN-MAX-IND-MATCHING is NP-complete for star-

convex bipartite graphs. O
As the class of tree-convex bipartite graphs is a superclass of star-convex

bipartite graphs, the following corollary is a consequence of Theorem 4.

Corollary 6. DECIDE-MIN-MAX-IND-MATCHING s NP-complete for tree-
convez bipartite graphs.

Next, we show that DECIDE-MIN-MAX-IND-MATCHING is NP-complete for
dually chordal graphs. Note that the reduction is similar to the reduction given
for star-convex bipartite graphs.

Theorem 7. DECIDE-MIN-MAX-IND-MATCHING is NP-complete for dually
chordal graphs.

Proof. Given a dually chordal graph G and a subset M C E(G), it can be
checked in polynomial time whether M is a maximal induced matching in G or
not. So, DECIDE-MIN-MAX-IND-MATCHING belongs to the class NP for dually
chordal graphs. To show the NP-hardness, we give a polynomial-time reduction
from DECIDE-MIN-MAX-IND-MATCHING for general graphs, which is already
known to be NP-complete [15].

Given a graph G, where V(G) = {v1...,v,} and n > 3, an instance of
DECIDE-MIN-MAX-IND-MATCHING, we construct a dually chordal graph G’, an
instance of DECIDE-MIN-MAX-IND-MATCHING in the following way:

— Introduce a vertex vy and make vy adjacent to v; for each i € [n].

— Introduce the vertex set {wy,...,w,} and make vy adjacent to w; for each
i€ [n].

— Introduce the edge set U, ;c,, {Pi;j4i;}- For each i € [n], make w; adjacent to
pi; for every j € [n].
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Clearly, G’ is a dually chordal graph as (qi1,.--qin, G215 ---G2ns- - Qnls- - -
dnny P11, ---Pin;P215 ---P2ns---3Pnls- .- Pnn, W1, W2, ..., Wy, V1, V2, ... 7UTL’IUO) is
a maximum neighborhood ordering of G’. Now, the following claim is sufficient
to complete the proof.

Claim 8. G has a maximal induced matching of cardinality at most k if and
only if G' has a mazimal induced matching of cardinality at most k + n.

Proof. Let M be a maximal induced matching in G of cardinality at most k.
Define a matching M’ in G as follows: M" = M U U, ¢(,, {wipii}. Clearly, M’ is
a maximal induced matching in G’ and |M'| < k + n.

Conversely, let M be a minimum maximal induced matching in G’ of cardi-
nality at most k& + n. Now, we will show that there exists a maximal induced
matching in G of cardinality at most k. Let Mg denote a maximum induced
matching in G. Note that [Mg| < 3.

If vow; € M for some fixed i € [n], then wypy; ¢ M for any k, j € [n]. Also,
vowy, ¢ M for any k € [n]\{i}. So, edges of the form py;q; must belong to M for
each k € [n]\ {i} and j € [n]. Thus, |M| > n(n— 1)+ 1, which is a contradiction
as M’ = Uie[n]{wipii} U Mg is a maximal induced matching in G’ of cardinality
at most § +n and cardinality of M cannot be greater than the cardinality of
M’. Therefore, vow; ¢ M for any i € [n]. Now, there are two possibilities. If
Pijqi; € M for some 4,5 € [n], then p;rq;x € M for every k € [n]. On the other
hand, if for each i € [n] there exists some j € [n] such that w;p;; € M, then only
n edges will suffice to make M maximal. So, in any minimum maximal induced
matching M, it is always better to choose edges of the form w;p;; in M for all
1,7 € [n]. Thus, M restricted to E(G) is a desired maximal induced matching in
G of cardinality at most k. O

Hence, DECIDE-MIN-MAX-IND-MATCHING is NP-complete for dually chordal
graphs. ad

3.2 Hardness Difference Between Induced Matching and Minimum
Maximal Induced Matching

In this subsection, we show that MIN-MAX-IND-MATCHING and INDUCED
MATCHING differ in hardness; that is, there are graph classes in which one prob-
lem is polynomial-time solvable while the other is APX-hard, and vice versa. For
this purpose, consider the following definition.

Definition 9 (GCjs graph). A graph H is a GC3 graph if it can be constructed
from some graph G, where V(G) = {v1,...,v,} in the following way: For each
vertex v; of G, introduce a cycle vy, a;,b;,v; of length 3 in H. Formally, V(H) =
V(G) @] Uie[n]{ai, bl} and E(H) = E(G) @] Uze[n] {UiCLZ', aibi, Ulbl}

Now, consider the following straightforward observation that follows from

the definition of maximal induced matching.

Observation 10. Let M be an induced matching in a GCs graph H. Then, M
is maximal in H iff for each i € [n], either v; is saturated by M or a;b; € M.
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Now, we will show that INDUCED MATCHING is polynomial-time solvable for
G5 graphs, and MIN-MAX-IND-MATCHING is APX-hard for GC5 graphs.

Theorem 11. Let H be a GC3 graph constructed from a graph G, where V(G) =
{v1,...,Un}, as in Definition 9. Then, uin(H) = n.

Proof. Let M = ;¢ {aibi}. It is easy to see that [M] = n and G[Viy] is a
disjoint union of Kls. So, M is an induced matching in H. Hence, pin(H) > n.

Next, consider a maximum induced matching, say M, in H. If |M;,| > n,
then M;,, must contain at least one edge from the edge set E(G), i.e., v;v; € My,
for some 4, j € [n]. Define M = (M, \ {viv;}) U{a;b;, a;b;}. By Observation 10,
M is an induced matching in H and |M| > |M,,|, which is a contradiction as
M;,, is a maximum induced matching in H. Thus, uin(H) < n. O

Proposition 12 (Gotthilf and Lewenstein [10]). Let G be a graph with
|E(G)]

mazimum degree A. Then, pin(G) > 15x2—g=4 -

Proposition 13 (Duckworth et al. [7]). INDUCED MATCHING is APX-
complete for r-reqular graphs for every fized integer r > 3.

Theorem 14. MIN-MAX-IND-MATCHING is APX-hard for GC3 graphs.

Proof. Given a 3-regular graph G, an instance of INDUCED MATCHING, we con-
struct a GC3 graph H, an instance of MIN-MAX-IND-MATCHING by attach-
ing a cycle v;,a;,b;,v; of length 3 to each v;,i € [n]. Next, let Type-A edges
= Uign{aibi} and Type-B edges = E(G). Now, consider the following claim
whose proof follows from Observation 10 and the fact that every edge of the
form v;a; or v;b; (where i € [n]) can be replaced with a;b;.

Claim 15. For every mazimal induced matching M in a GC3 graph H, there
exists a mazimal induced matching M’ such that |M'| = |M| and M’ contains
edges of Type-A and Type-B only.

Claim 16. Let My be a minimum mazimal induced matching in H and M} be
a mazimum induced matching in G. Then, |M%| =n — |M3].

Proof. Since M} is a maximum induced matching in G, this implies that 2|1} |
vertices are saturated, and n—2| M} | vertices are unsaturated by M7 in G. Define
a matching Mp = M} U{a;b; | v; is unsaturated by M3} in H. By Observation
10, Mg is a maximal induced matching in H. Since |[Mpg| = (|M}|+n—2|M3%]|) =
n— (M), [Mp] < n— M.

By Claim 15, there exists a minimum maximal induced matching My in H
such that M} contains edges of Type-A and Type-B only. Let 7% U S* be a
partition of M} such that T* contains Type-A edges and S* contains Type-
B edges. Since M}, is maximal, |T*| = n — 2|S*|. This implies that |M}| =
|S*| + (n — 2]S*|) = n — |S*|. Since S* C M}, S* is an induced matching in G
and |S*| < |M%]. As |S*| = n — |Mg|, n — |Mp3| < |M}|. This completes the
proof of Claim 16. d
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We now return to the proof of Theorem 14. By Proposition 12, we know
that any 3-regular graph G satisfies the inequality [M}| > g. Therefore, we
have |M}| =n — |M3| < 8M3%| — |M3| = 7|M3%|. Further, let M be a maximal
induced matching in H. By Claim 15, there exists a maximal induced matching
in H such that [Mp| = |M| and Mp contains edges of Type-A and Type-B only.
Let T U Sp be a partition of Mp such that Tp contains Type-A edges and
Sp contains Type-B edges. Since Mp is maximal, |Tz| = (n — 2|Sg|). Hence,
|Mp| = n —|Sg|. Here, Sp is a desired induced matching in G. Let Sg = My.
Now, |M3] — [Ma] = M3 — [Mal + 10 —n = (n— [Mal) — (n — |M3]) <
|(|]M}%] — Mp)|. From these two inequalities and Proposition 13, it follows that
it is an L-reduction with « = 7 and 8 = 1. Thus, MIN-MAX-IND-MATCHING is
APX-hard for GC5 graphs. O

Next, consider the following definition.

Definition 17 (Gxo graph). A bipartite graph G' = (X' WY’ E(G")) is a
Gxg graph if it can be constructed from a bipartite graph G = (X WY, E(Q)),
where Y = {y1,...,uy} in the following way: Introduce a new vertexr xoy and
make xo adjacent to each y; € Y. Formally, X' = X U{z},Y' =Y, and
E(G") = E(G) U{zoy; |yi € Y}

Now, we show that MIN-MAX-IND-MATCHING is polynomial-time solvable
for Gz graphs, and INDUCED MATCHING is APX-hard for Gz, graphs.

Theorem 18. Let G' = (X' WY’ E(G")) be a Gxy graph constructed from a
bipartite graph G = (X WY, E(G)), where Y = {y1,...,ui}, as in Definition 17.
Then, u/, (G') = 1.

Proposition 19 (Panda et al. [13]). Let G’ be a Gz graph constructed from
an r-regular (r > 3) bipartite graph G by introducing a vertex xo and making xg
adjacent to every vertex in one of the partitions of G. Then, G has an induced
matching of cardinality at least k if and only if G' has an induced matching of
cardinality at least k.

Now, we are ready to prove the following theorem by giving a polynomial-
time reduction from INDUCED MATCHING.

Theorem 20. INDUCED MATCHING is APX-hard for Gxzy graphs.

Proof. Given an r-regular graph G, an instance of INDUCED MATCHING, we
construct a Gxg graph H, an instance of INDUCED MATCHING by introducing a
vertex xo and making it adjacent to every vertex of G (see Definition 17). Now,
we have the following claim from Proposition 19.

Claim 21. If M} is a mazimum induced matching in G' and M is a mazimum
induced matching in G, then |M}| = |M3|.

We now return to the proof of Theorem 20. By Claim 21, it is clear that
|M3| = |M%|. Further, let Mp be an induced matching in G’. By Proposition 19,
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Algorithm 1. ALco-SIM(G)
Input: A bipartite graph G = (X WY, E(Q));
Output: A saturated induced matching Mg or a variable reporting that G has no
saturated induced matching;
Ms — 0
for every y € Y do
if (there exists some x € N(y) such that d(z) = 1) then
L Ms — Ms U {zy};
else
| return 0;

return Ms;

there exists an induced matching M4 in G such that |M 4| > |Mp|. By Claim 21,
it follows that |M3%|—|Ma| < |M};|—Mp|. From these two inequalities, it follows
that it is an L-reduction with o = 1 and 8 = 1. Therefore, MIN-MAX-IND-
MATCHING is APX-hard for Gzg graphs. O

4 Saturated Induced Matching

In this section, we will first introduce SATURATED INDUCED MATCHING and
then propose a linear-time algorithm to solve it.

SATURATED INDUCED MATCHING:

Input: A bipartite graph G = (X WY, E(G)).

Question: Does there exist an induced matching in G that saturates each
vertex of Y7

It is well-known that INDUCED MATCHING is NP-complete for bipartite
graphs [3]. However, when we restrict INDUCED MATCHING to SATURATED
INDUCED MATCHING, then the problem becomes linear-time solvable. To prove
this, consider the following lemma.

Lemma 22. Let Mg be an induced matching in a bipartite graph G = (X &
Y, E(G)) that saturates all vertices of Y. Then, an edge x;y; € Mg only if

Proof. Targeting a contradiction, let us suppose that there exists an edge z;y; €
Mg such that d(z;) > 1. Let yi, € Y \{y,} be such that z;y, € E(G). Now, since
x;y; € Mg, therefore x;yx ¢ Mg (as x;y, and x;y; are adjacent). However, since
Mg is a saturated induced matching, this implies that there is an edge incident
on ¥y that belongs to Mg. This, in turn, implies that the edge x;y; is dominated
twice, a contradiction to the fact that Mg is an induced matching. O

Based on Lemma 22, we have Algorithm 1 that finds a saturated induced
matching Mg in a given bipartite graph, if one exists. Since we are just traversing
the adjacency list of every vertex in the X partition of the bipartite graph G,
we have the following theorem.
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Theorem 23. Given a bipartite graph G, the SATURATED INDUCED MATCHING
problem can be solved in O(|V(G)| + |E(G)|) time.

5

Open Problems

Exploring the parameterized complexity of MIN-MAX-IND-MATCHING is an
interesting future direction.
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