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Abstract. A matching M in a graph G is an induced matching if the
subgraph of G induced by M is the same as the subgraph of G induced
by S = {v ∈ V (G) | v is incident on an edge of M}. Given a graph G
and a positive integer k, Induced Matching asks whether G has an
induced matching of cardinality at least k. An induced matching M is
maximal if it is not properly contained in any other induced matching of
G. Given a graph G, Min-Max-Ind-Matching is the problem of finding
a maximal induced matching M in G of minimum cardinality. Given a
bipartite graph G = (X � Y,E(G)), Saturated Induced Matching
asks whether there exists an induced matching in G that saturates every
vertex in Y . In this paper, we study Min-Max-Ind-Matching and Sat-
urated Induced Matching. First, we strengthen the hardness result of
Min-Max-Ind-Matching by showing that its decision version remains
NP-complete for perfect elimination bipartite graphs, star-convex bipar-
tite graphs, and dually chordal graphs. Then, we show the hardness
difference between Induced Matching and Min-Max-Ind-Matching.
Finally, we propose a linear-time algorithm to solve Saturated Induced
Matching.

Keywords: Matching · Induced matching · Minimum maximal
induced matching · NP-completeness · Linear-time algorithm

1 Introduction

All graphs considered in this paper are simple, finite, connected, and undirected.
For a graph G, let V (G) denote its vertex set, and E(G) denote its edge set. A
matching M in a graph G is an induced matching if G[M ], the subgraph of G
induced by M , is the same as G[S], the subgraph of G induced by S = {v ∈
V (G) | v is incident on an edge of M}. An induced matching M is maximal
if M is not properly contained in any other induced matching of G. Given a
graph G, Min-Max-Ind-Matching asks to find a maximal induced matching
M of minimum cardinality in G. Formally, the decision version of Min-Max-
Ind-Matching is defined as follows:
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Decide-Min-Max-Ind-Matching:
Input: A graph G and a positive integer k ≤ |V (G)|.
Question: Does there exist a maximal induced matching M in G such that
|M | ≤ k?

The induced matching number of G is the maximum cardinality of an induced
matching among all induced matchings in G, and we denote it by μin(G). The
minimum maximal induced matching number of G is the minimum cardinality
of a maximal induced matching among all maximal induced matchings in G,
and we denote it by μ′

in(G). It is also known as the lower induced matching
number of G [8]. For an example, consider the graph G with vertex set V (G) =
{a, b, c, d, e} and edge set E(G) = {ab, bc, cd, de}. M1 = {bc} and M2 = {ab, de}
are two maximal induced matchings of G and M1 is a minimum maximal induced
matching of G. Therefore, μ′

in(G) = 1.
When we restrict Induced Matching by applying a constraint, which is

to saturate one of the partitions of the bipartite graph, then we obtain Satu-
rated Induced Matching. The motivation for Saturated Induced Match-
ing comes directly from the applications of Induced Matching, which are
secure communication networks, VLSI design, risk-free marriages, etc. One pos-
sible application of Saturated Induced Matching in the secure communica-
tion channel is as follows: Suppose we have a bipartite graph G = (X � Y,E(G))
where the partitions X and Y represent broadcasters and receivers, respectively,
and the edges represent the communication capabilities between broadcasters and
receivers. Now, we want to select |Y | edges such that all receivers should get the
information, and that too from a unique broadcaster. Moreover, there should be
no edge between any two active channels (i.e., edges) to avoid any interception or
leakage.

Related Work. Min-Max-Ind-Matching is known to be polynomial-time
solvable for graph classes like chordal graphs, circular-arc graphs, and AT-free
graphs [15]. The weighted version of Min-Max-Ind-Matching is known to be
linear-time solvable for trees [11]. Min-Max-Ind-Matching for random graphs
has been studied in [6]. A graph G is bi-size matched if there exists k ≥ 1 such
that |M | ∈ {k, k + 1} for every maximal induced matching M in G. For bi-size
matched graphs,Decide-Min-Max-Ind-Matching is shown to beNP-complete
in [16]. From the approximation point of view, Min-Max-Ind-Matching cannot
be approximated within a ratio of n1−ε for any ε > 0 unless P = NP [15]. TheMin-
Max version of other variants of matchings, like acyclic matching and uniquely
restricted matching, have also been considered in the literature [4,5,12].

Our Contribution. In Sect. 3, we discuss Min-Max-Ind-Matching. In par-
ticular, in Subsect. 3.1, we strengthen the hardness result of Min-Max-Ind-
Matching by showing that Decide-Min-Max-Ind-Matching remains NP-
complete for perfect elimination bipartite graphs, star-convex bipartite graphs,
and dually chordal graphs. In Subsect. 3.2, we show the hardness difference
between Induced Matching and Min-Max-Ind-Matching by giving a graph
class where one problem is polynomial-time solvable while the other problem
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is APX-hard, and vice-versa. In Sect. 4, we introduce Saturated Induced
Matching and propose a linear-time algorithm for the same.

2 Preliminaries

For a positive integer k, let [k] denote the set {1, . . . , k}. Given a graph G and a
matching M , we use the notation VM to denote the set of M -saturated vertices and
G[VM ] to denote the subgraph induced by VM . In a graph G, the open and closed
neighborhood of a vertex v ∈ V (G) are denoted by N(v) and N [v], respectively,
and defined by N(v) = {w | wv ∈ E(G)} and N [v] = N(v) ∪ {v}. The degree of
a vertex v is |N(v)| and is denoted by dG(v). When there is no ambiguity, we do
not use the subscript G. If d(v) = 1, then v is a pendant vertex. For a graph G, the
subgraph of G induced by S ⊆ V (G) is denoted by G[S], where G[S] = (S,ES)
and ES = {xy ∈ E(G) | x, y ∈ S}. A graph G is a k-regular graph if d(v) = k
for every vertex v of G. Let Kn and Pn denote a complete graph and a path graph,
respectively. A graph G is a bipartite graph if its vertex set V (G) can be partitioned
into two sets,X andY , such that every edge ofG joins a vertex inX to a vertex inY .
Weuse the notationG = (X�Y,E(G)) to represent the bipartite graphwith vertex
partitions X and Y . An edge xy of G is a bisimplicial edge if N(x)∪N(y) induces a
complete bipartite subgraph of G. Let σ = (x1y1, x2y2, . . . , xkyk) be a sequence of
pairwise nonadjacent edges of G. Let Sj = {x1, x2, . . . , xj} ∪ {y1, y2, . . . , yj} and
S0 = ∅. Then, σ is a perfect edge elimination ordering for G if each edge xj+1yj+1

is bisimplicial in Gj+1 = G[(X � Y ) \ Sj ] for j = 0, 1, . . . , k − 1 and Gk+1 =
G[(X � Y ) \ Sk] has no edge. A bipartite graph for which there exists a perfect
edge elimination ordering is a perfect elimination bipartite graph. Introduced by
Golumbic and Goss, the class of perfect elimination bipartite graphs is considered
to be a bipartite counterpart of chordal graphs and can be recognized in polynomial
time [9].

A bipartite graph G is a tree-convex bipartite graph, if a tree T = (X,EX) can
be defined on the vertices of X, such that for every vertex y in Y , the neighbor-
hood of y induces a subtree of T . Tree-convex bipartite graphs are recognizable
in linear time, and an associated tree T can also be constructed in linear time
[2]. A tree with at most one non-pendant vertex is called a star. If the tree T in
a tree-convex bipartite graph G is a star, then G is a star-convex bipartite graph.
The following proposition is a characterization of star-convex bipartite graphs.

Proposition 1 (Pandey and Panda [14]). A bipartite graph G = (X � Y,
E(G)) is a star-convex bipartite graph if and only if there exists a vertex x ∈ X
such that every vertex y ∈ Y is either a pendant vertex or is adjacent to x.

A vertex u ∈ NG[v] in a graph G is a maximum neighbor of v if for all
w ∈ NG[v], NG[w] ⊆ NG[u]. An ordering α = (v1, . . . , vn) of V (G) is a maximum
neighborhood ordering, if vi has a maximum neighbor in Gi = G[{vi, . . . , vn}] for
all i ∈ [n]. A graph G is a dually chordal graph if it has a maximum neighborhood
ordering. These graphs are a generalization of strongly chordal graphs and a
superclass of interval graphs. Furthermore, note that dually chordal graphs can
be recognized in linear time [1].
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Fig. 1. An illustration of the construction of G′ from G.

3 Minimum Maximal Induced Matching

3.1 NP-completeness Results

In this subsection, we first show that Decide-Min-Max-Ind-Matching is NP-
complete for perfect elimination bipartite graphs.

Theorem 2. Decide-Min-Max-Ind-Matching is NP-complete for perfect
elimination bipartite graphs.

Proof. Given a perfect elimination bipartite graph G and a matching M , it is easy
to observe that Decide-Min-Max-Ind-Matching is in NP. Next, we prove that
Decide-Min-Max-Ind-Matching is NP-hard for perfect elimination bipartite
graphs by establishing a polynomial-time reduction fromDecide-Min-Max-Ind-
Matching for bipartite graphs, which is known to be NP-hard [15].

Given a bipartite graph G = (X � Y,E(G)), where X = {x1, . . . , xp} and
Y = {y1, . . . , yl}, an instance of Decide-Min-Max-Ind-Matching, construct a
graph G′ = (X ′ �Y ′, E(G′)), an instance of Decide-Min-Max-Ind-Matching
for perfect elimination bipartite graphs in the following way: For each yi ∈
Y , introduce a path Pi = yi, ai, bi, ci, di, ei of length 5. Formally, X ′ = X ∪⋃

i∈[l]{ai, ci, ei}, Y ′ = Y ∪⋃
i∈[l]{bi, di} and E(G′) = E(G)∪⋃

i∈[l]{yiai, aibi, bici,

cidi, diei}. See Fig. 1 for an illustration of the construction of G′ from G. Note
that G′ is a perfect elimination bipartite graph as (e1d1, . . . , eldl, c1b1, . . . , clbl,
a1y1, . . . , alyl) is a perfect edge elimination ordering of G′. Now, the following
claim is sufficient to complete the proof of the theorem.

Claim 3. G has a maximal induced matching of cardinality at most k if and
only if G′ has a maximal induced matching of cardinality at most k + l.

Proof. Let M be a maximal induced matching in G of cardinality at most k.
Define a matching M ′ = M ∪ ⋃

i∈[l]{bici} in G′. By the definition of an induced
matching, note that M ′ is a maximal induced matching in G′ and |M ′| ≤ k + l.

Conversely, let M be a minimum maximal induced matching in G′ of cardi-
nality at most k + l. Since M is maximal, |M ∩ {bici, cidi, diei}| ≥ 1 for each
i ∈ [l]. Furthermore, since M is an induced matching, |M ∩ {bici, cidi, diei}| ≤ 1
for each i ∈ [l]. Thus, for each i ∈ [l], |M ∩ {bici, cidi, diei}| = 1.
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Fig. 2. An illustration of the construction of ̂G from G′. Here, the dashed edges show
a minimum maximal induced matching in G′.

Now, we label each yi ∈ Y as either Type-I vertex, Type-II vertex or Type-III
vertex depending on whether bici, cidi or diei belongs to M . For every i ∈ [l],
if yi is a Type-I vertex, remove the vertices ai, bi, ci, di, ei from G′, if yi is a
Type-II vertex, remove the vertices bi, ci, di, ei from G′, and if yi is a Type-
III vertex, remove the vertices ci, di, ei from G′. After removing all the desired
vertices, let us call the graph so obtained as Ĝ. See Fig. 2 for an illustration of
the construction of Ĝ from G′. Let M̂ be the restriction of M to Ĝ. Clearly, M̂
is a maximal induced matching in Ĝ and |M̂ | = (k + l) − l = k. Now, we claim
that there exists a maximal induced matching in G of cardinality at most k. If
M̂ ⊂ E(G), then we are done, as M̂ will be a desired maximal induced matching
in G of cardinality at most k. So, let us assume that M̂ contains an edge from
the path Pj for some fixed j ∈ [l].

If yjaj ∈ M̂ and yj is a Type-II (or Type-III) vertex, then we claim that one
of the following conditions will hold:

i) (M̂ \ {yjaj}) ∪ {yjxk} is a maximal induced matching in Ĝ for some xk ∈
N(yj).

ii) M̂\{yjaj} is a maximal induced matching in Ĝ\{aj} or Ĝ\{aj , bj} depending
on whether yj is a Type-II vertex or a Type-III vertex, respectively.

If Condition i) holds, then we are done. So, let us assume that (M̂ \ {yjaj}) ∪
{yjxk} is not a maximal induced matching in Ĝ for any xk ∈ N(yj). This implies
that the edges incident on yj (except yjaj) are dominated by edges from the edge
set E(G) ∩ M̂ . So, in other words, if we remove the edge yjaj from M̂ , then all
edges except yjaj will be dominated by the rest of M̂ . This further implies that
M̂ \ {yjaj} is a maximal induced matching in Ĝ \ {aj} or Ĝ \ {aj , bj} depending
on whether yj is a Type-II or a Type-III vertex. Similarly, if ajbj ∈ M̂ , then we
claim that either (M̂ \ {ajbj}) ∪ {yjaj} is a maximal induced matching in Ĝ or
M̂ \ {ajbj} is a maximal induced matching in Ĝ \ {aj , bj}. So, we have proved
that every edge e ∈ M̂ ∩Pj can either be replaced by an edge in E(G) or can be
removed without disturbing the maximality of the matching restricted to E(G).
Therefore, G has a maximal induced matching of cardinality at most k. ��
Hence, Decide-Min-Max-Ind-Matching is NP-complete for perfect elimina-
tion bipartite graphs. ��
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Next, we show that Decide-Min-Max-Ind-Matching is NP-complete for
star-convex bipartite graphs.

Theorem 4. Decide-Min-Max-Ind-Matching is NP-complete for star-
convex bipartite graphs.

Proof. Given a star-convex bipartite graph G and a matching M , it is easy
to observe that Decide-Min-Max-Ind-Matching is in NP. Next, we prove
that Decide-Min-Max-Ind-Matching is NP-hard for star-convex bipartite
graphs by establishing a polynomial-time reduction from Decide-Min-Max-
Ind-Matching for bipartite graphs, which is known to be NP-hard [15].

Given a bipartite graph G = (X � Y,E(G)), where X = {x1, . . . , xp} and
Y = {y1, . . . , yq} for q ≥ 3, an instance of Decide-Min-Max-Ind-Matching,
we construct a star-convex bipartite graph G′ = (X ′ � Y ′, E(G′)), an instance
of Decide-Min-Max-Ind-Matching in the following way:

– Introduce a vertex x0 and make x0 adjacent to yi for each i ∈ [q].
– Introduce the vertex set {y1, . . . , yq} and make x0 adjacent to yi for each

i ∈ [q].
– Introduce the edge set

⋃
i,j∈[q]{xijyij}. For each i ∈ [q], make yi adjacent to

xij for every j ∈ [q].

Formally, X ′ = X∪{x0}∪⋃
i,j∈[q]{xij} and Y ′ = Y ∪⋃

i∈[q]{yi}
⋃

i,j∈[q]{yij}.
See Fig. 3 for an illustration of the construction of G′ from G. Note that every
vertex in Y ′ is either adjacent to x0 or is a pendant vertex. So, by Proposition 1,
it is clear that the graph G′ is a star-convex bipartite graph. Now, the following
claim is sufficient to complete the proof of the theorem.

Claim 5. G has a maximal induced matching of cardinality at most k if and
only if G′ has a maximal induced matching of cardinality at most k + q.

Proof. Let M be a maximal induced matching in G of cardinality at most k.
Define a matching M ′ in G′ as follows: M ′ = M ∪ ⋃

i∈[q]{yixii}. Clearly, M ′ is
a maximal induced matching in G′ and |M ′| ≤ k + q.

Conversely, let M be a minimum maximal induced matching in G′ of cardi-
nality at most k + q. Let MG denote a maximum induced matching in G. Note
that |MG| ≤ q. Now consider the following matching: M ′ =

⋃
i∈[q]{yixii} ∪ MG.

Note that M ′ is a maximal induced matching in G′ of cardinality at most 2q.
Thus, |M | ≤ 2q. Now, we will show that there exists a maximal induced matching
in G of cardinality at most k.

If x0yi ∈ M for some fixed i ∈ [q], then ykxkj /∈ M for any k, j ∈ [q]. Also,
x0yk /∈ M for any k ∈ [q] \ {i}. So, edges of the form xkjykj must belong to
M for every k ∈ [q] \ {i} and j ∈ [q]. Thus, |M | ≥ q(q − 1) + 1, which is a
contradiction to the fact that |M | ≤ 2q. Therefore, x0yi /∈ M for any i ∈ [q].
Now, there are two possibilities. If xijyij ∈ M for some i ∈ [q], then xijyij ∈ M
for every j ∈ [q]. On the other hand, if for each i ∈ [q] there exists some j ∈ [q]
such that yixij ∈ M , then only q edges will suffice to make M maximal. So, in
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Fig. 3. An illustration of the construction of G′ from G.

any minimum maximal induced matching M , it is always better to choose edges
of the form yixij in M for all i, j ∈ [q]. Thus, M restricted to E(G) is a desired
maximal induced matching in G of cardinality at most k. ��
Hence, by Claim 5, Decide-Min-Max-Ind-Matching is NP-complete for star-
convex bipartite graphs. ��

As the class of tree-convex bipartite graphs is a superclass of star-convex
bipartite graphs, the following corollary is a consequence of Theorem 4.

Corollary 6. Decide-Min-Max-Ind-Matching is NP-complete for tree-
convex bipartite graphs.

Next, we show that Decide-Min-Max-Ind-Matching is NP-complete for
dually chordal graphs. Note that the reduction is similar to the reduction given
for star-convex bipartite graphs.

Theorem 7. Decide-Min-Max-Ind-Matching is NP-complete for dually
chordal graphs.

Proof. Given a dually chordal graph G and a subset M ⊆ E(G), it can be
checked in polynomial time whether M is a maximal induced matching in G or
not. So, Decide-Min-Max-Ind-Matching belongs to the class NP for dually
chordal graphs. To show the NP-hardness, we give a polynomial-time reduction
from Decide-Min-Max-Ind-Matching for general graphs, which is already
known to be NP-complete [15].

Given a graph G, where V (G) = {v1 . . . , vn} and n ≥ 3, an instance of
Decide-Min-Max-Ind-Matching, we construct a dually chordal graph G′, an
instance of Decide-Min-Max-Ind-Matching in the following way:

– Introduce a vertex v0 and make v0 adjacent to vi for each i ∈ [n].
– Introduce the vertex set {w1, . . . , wn} and make v0 adjacent to wi for each

i ∈ [n].
– Introduce the edge set

⋃
i,j∈[n]{pijqij}. For each i ∈ [n], make wi adjacent to

pij for every j ∈ [n].
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Clearly, G′ is a dually chordal graph as (q11, . . . q1n, q21, . . . q2n, . . . , qn1, . . .
qnn, p11, . . . p1n, p21, . . . p2n, . . . , pn1, . . . pnn, w1, w2, . . . , wn, v1, v2, . . . , vn, v0) is
a maximum neighborhood ordering of G′. Now, the following claim is sufficient
to complete the proof.

Claim 8. G has a maximal induced matching of cardinality at most k if and
only if G′ has a maximal induced matching of cardinality at most k + n.

Proof. Let M be a maximal induced matching in G of cardinality at most k.
Define a matching M ′ in G′ as follows: M ′ = M ∪ ⋃

i∈[n]{wipii}. Clearly, M ′ is
a maximal induced matching in G′ and |M ′| ≤ k + n.

Conversely, let M be a minimum maximal induced matching in G′ of cardi-
nality at most k + n. Now, we will show that there exists a maximal induced
matching in G of cardinality at most k. Let MG denote a maximum induced
matching in G. Note that |MG| ≤ n

2 .
If v0wi ∈ M for some fixed i ∈ [n], then wkpkj /∈ M for any k, j ∈ [n]. Also,

v0wk /∈ M for any k ∈ [n]\{i}. So, edges of the form pkjqkj must belong to M for
each k ∈ [n]\{i} and j ∈ [n]. Thus, |M | ≥ n(n−1)+1, which is a contradiction
as M ′ =

⋃
i∈[n]{wipii}∪MG is a maximal induced matching in G′ of cardinality

at most n
2 + n and cardinality of M cannot be greater than the cardinality of

M ′. Therefore, v0wi /∈ M for any i ∈ [n]. Now, there are two possibilities. If
pijqij ∈ M for some i, j ∈ [n], then pikqik ∈ M for every k ∈ [n]. On the other
hand, if for each i ∈ [n] there exists some j ∈ [n] such that wipij ∈ M , then only
n edges will suffice to make M maximal. So, in any minimum maximal induced
matching M , it is always better to choose edges of the form wipij in M for all
i, j ∈ [n]. Thus, M restricted to E(G) is a desired maximal induced matching in
G of cardinality at most k. ��
Hence, Decide-Min-Max-Ind-Matching is NP-complete for dually chordal
graphs. ��

3.2 Hardness Difference Between Induced Matching and Minimum
Maximal Induced Matching

In this subsection, we show that Min-Max-Ind-Matching and Induced
Matching differ in hardness; that is, there are graph classes in which one prob-
lem is polynomial-time solvable while the other is APX-hard, and vice versa. For
this purpose, consider the following definition.

Definition 9 (GC3 graph). A graph H is a GC3 graph if it can be constructed
from some graph G, where V (G) = {v1, . . . , vn} in the following way: For each
vertex vi of G, introduce a cycle vi, ai, bi, vi of length 3 in H. Formally, V (H) =
V (G) ∪ ⋃

i∈[n]{ai, bi} and E(H) = E(G) ∪ ⋃
i∈[n]{viai, aibi, vibi}.

Now, consider the following straightforward observation that follows from
the definition of maximal induced matching.

Observation 10. Let M be an induced matching in a GC3 graph H. Then, M
is maximal in H iff for each i ∈ [n], either vi is saturated by M or aibi ∈ M .



On Two Variants of Induced Matchings 45

Now, we will show that Induced Matching is polynomial-time solvable for
GC3 graphs, and Min-Max-Ind-Matching is APX-hard for GC3 graphs.

Theorem 11. Let H be a GC3 graph constructed from a graph G, where V (G) =
{v1, . . . , vn}, as in Definition 9. Then, μin(H) = n.

Proof. Let M =
⋃

i∈[n]{aibi}. It is easy to see that |M | = n and G[VM ] is a
disjoint union of K ′

2s. So, M is an induced matching in H. Hence, μin(H) ≥ n.
Next, consider a maximum induced matching, say Min in H. If |Min| > n,

then Min must contain at least one edge from the edge set E(G), i.e., vivj ∈ Min

for some i, j ∈ [n]. Define M = (Min \ {vivj}) ∪ {aibi, ajbj}. By Observation 10,
M is an induced matching in H and |M | > |Min|, which is a contradiction as
Min is a maximum induced matching in H. Thus, μin(H) ≤ n. ��
Proposition 12 (Gotthilf and Lewenstein [10]). Let G be a graph with
maximum degree Δ. Then, μin(G) ≥ |E(G)|

1.5Δ2−0.5Δ .

Proposition 13 (Duckworth et al. [7]). Induced Matching is APX-
complete for r-regular graphs for every fixed integer r ≥ 3.

Theorem 14. Min-Max-Ind-Matching is APX-hard for GC3 graphs.

Proof. Given a 3-regular graph G, an instance of Induced Matching, we con-
struct a GC3 graph H, an instance of Min-Max-Ind-Matching by attach-
ing a cycle vi, ai, bi, vi of length 3 to each vi, i ∈ [n]. Next, let Type-A edges
=

⋃
i∈[n]{aibi} and Type-B edges = E(G). Now, consider the following claim

whose proof follows from Observation 10 and the fact that every edge of the
form viai or vibi (where i ∈ [n]) can be replaced with aibi.

Claim 15. For every maximal induced matching M in a GC3 graph H, there
exists a maximal induced matching M ′ such that |M ′| = |M | and M ′ contains
edges of Type-A and Type-B only.

Claim 16. Let M∗
B be a minimum maximal induced matching in H and M∗

A be
a maximum induced matching in G. Then, |M∗

B | = n − |M∗
A|.

Proof. Since M∗
A is a maximum induced matching in G, this implies that 2|M∗

A|
vertices are saturated, and n−2|M∗

A| vertices are unsaturated by M∗
A in G. Define

a matching MB = M∗
A ∪ {aibi | vi is unsaturated by M∗

A} in H. By Observation
10, MB is a maximal induced matching in H. Since |MB | = (|M∗

A|+n−2|M∗
A|) =

n − |M∗
A|, |M∗

B | ≤ n − |M∗
A|.

By Claim 15, there exists a minimum maximal induced matching M∗
B in H

such that M∗
B contains edges of Type-A and Type-B only. Let T ∗ ∪ S∗ be a

partition of M∗
B such that T ∗ contains Type-A edges and S∗ contains Type-

B edges. Since M∗
B is maximal, |T ∗| = n − 2|S∗|. This implies that |M∗

B | =
|S∗| + (n − 2|S∗|) = n − |S∗|. Since S∗ ⊂ M∗

B , S∗ is an induced matching in G
and |S∗| ≤ |M∗

A|. As |S∗| = n − |M∗
B |, n − |M∗

B | ≤ |M∗
A|. This completes the

proof of Claim 16. ��



46 J. Chaudhary and B. S. Panda

We now return to the proof of Theorem 14. By Proposition 12, we know
that any 3-regular graph G satisfies the inequality |M∗

A| ≥ n
8 . Therefore, we

have |M∗
B | = n − |M∗

A| ≤ 8|M∗
A| − |M∗

A| = 7|M∗
A|. Further, let M be a maximal

induced matching in H. By Claim 15, there exists a maximal induced matching
in H such that |MB | = |M | and MB contains edges of Type-A and Type-B only.
Let TB ∪ SB be a partition of MB such that TB contains Type-A edges and
SB contains Type-B edges. Since MB is maximal, |TB | = (n − 2|SB |). Hence,
|MB | = n − |SB |. Here, SB is a desired induced matching in G. Let SB = MA.
Now, |M∗

A| − |MA| = |M∗
A| − |MA| + n − n = (n − |MA|) − (n − |M∗

A|) ≤
|(|M∗

B | − MB)|. From these two inequalities and Proposition 13, it follows that
it is an L-reduction with α = 7 and β = 1. Thus, Min-Max-Ind-Matching is
APX-hard for GC3 graphs. ��

Next, consider the following definition.

Definition 17 (Gx0 graph). A bipartite graph G′ = (X ′ � Y ′, E(G′)) is a
Gx0 graph if it can be constructed from a bipartite graph G = (X � Y,E(G)),
where Y = {y1, . . . , yl} in the following way: Introduce a new vertex x0 and
make x0 adjacent to each yi ∈ Y . Formally, X ′ = X ∪ {x0}, Y ′ = Y, and
E(G′) = E(G) ∪ {x0yi | yi ∈ Y }.

Now, we show that Min-Max-Ind-Matching is polynomial-time solvable
for Gx0 graphs, and Induced Matching is APX-hard for Gx0 graphs.

Theorem 18. Let G′ = (X ′ � Y ′, E(G′)) be a Gx0 graph constructed from a
bipartite graph G = (X � Y,E(G)), where Y = {y1, . . . , yl}, as in Definition 17.
Then, μ′

in(G
′) = 1.

Proposition 19 (Panda et al. [13]). Let G′ be a Gx0 graph constructed from
an r-regular (r ≥ 3) bipartite graph G by introducing a vertex x0 and making x0

adjacent to every vertex in one of the partitions of G. Then, G has an induced
matching of cardinality at least k if and only if G′ has an induced matching of
cardinality at least k.

Now, we are ready to prove the following theorem by giving a polynomial-
time reduction from Induced Matching.

Theorem 20. Induced Matching is APX-hard for Gx0 graphs.

Proof. Given an r-regular graph G, an instance of Induced Matching, we
construct a Gx0 graph H, an instance of Induced Matching by introducing a
vertex x0 and making it adjacent to every vertex of G (see Definition 17). Now,
we have the following claim from Proposition 19.

Claim 21. If M∗
B is a maximum induced matching in G′ and M∗

A is a maximum
induced matching in G, then |M∗

B | = |M∗
A|.

We now return to the proof of Theorem 20. By Claim 21, it is clear that
|M∗

B | = |M∗
A|. Further, let MB be an induced matching in G′. By Proposition 19,
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Algorithm 1. Algo-Sim(G)

Input: A bipartite graph G = (X � Y,E(G));
Output: A saturated induced matching MS or a variable reporting that G has no
saturated induced matching;
MS ← ∅;
for every y ∈ Y do

if (there exists some x ∈ N(y) such that d(x) = 1) then
MS ← MS ∪ {xy};

else
return 0;

return MS ;

there exists an induced matching MA in G such that |MA| ≥ |MB |. By Claim 21,
it follows that |M∗

A|−|MA| ≤ |M∗
B |−MB |. From these two inequalities, it follows

that it is an L-reduction with α = 1 and β = 1. Therefore, Min-Max-Ind-
Matching is APX-hard for Gx0 graphs. ��

4 Saturated Induced Matching

In this section, we will first introduce Saturated Induced Matching and
then propose a linear-time algorithm to solve it.

Saturated Induced Matching:
Input: A bipartite graph G = (X � Y,E(G)).
Question: Does there exist an induced matching in G that saturates each
vertex of Y ?

It is well-known that Induced Matching is NP-complete for bipartite
graphs [3]. However, when we restrict Induced Matching to Saturated
Induced Matching, then the problem becomes linear-time solvable. To prove
this, consider the following lemma.

Lemma 22. Let MS be an induced matching in a bipartite graph G = (X �
Y,E(G)) that saturates all vertices of Y . Then, an edge xiyj ∈ MS only if
d(xi) = 1.

Proof. Targeting a contradiction, let us suppose that there exists an edge xiyj ∈
MS such that d(xi) > 1. Let yk ∈ Y \{yj} be such that xiyk ∈ E(G). Now, since
xiyj ∈ MS , therefore xiyk /∈ MS (as xiyk and xiyj are adjacent). However, since
MS is a saturated induced matching, this implies that there is an edge incident
on yk that belongs to MS . This, in turn, implies that the edge xiyk is dominated
twice, a contradiction to the fact that MS is an induced matching. ��

Based on Lemma 22, we have Algorithm 1 that finds a saturated induced
matching MS in a given bipartite graph, if one exists. Since we are just traversing
the adjacency list of every vertex in the X partition of the bipartite graph G,
we have the following theorem.
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Theorem 23. Given a bipartite graph G, the Saturated Induced Matching
problem can be solved in O(|V (G)| + |E(G)|) time.

5 Open Problems

Exploring the parameterized complexity of Min-Max-Ind-Matching is an
interesting future direction.
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