
Adaptive Reactionless Null Space 
Planning and Control of Free-Floating 
Space Manipulator After Capturing 
Unknown Rotating Target 

Chenyang Gao, Tao Lin, and Xiaoyan Yu 

Abstract On the basis of the momentum conservation equations and recursive least 
squares with forgetting factor, a new adaptive reactionless planning algorithm is 
proposed for the reaction null-space motion of the free-floating space manipulator 
after capturing an unknown rotating target. First, the Lagrange dynamic model of 
the manipulator is established. Second, the adaptive reactionless planning algorithm 
is designed to update the null-space solutions for joint rates in online manner. To 
go to a step further, the desired motion generated by adaptive reactionless plan-
ning is produced by driving joints with the PID controller. Finally, on the basis of 
Lyapunov method, the stability of the proposed scheme is proved theoretically, and 
the effectiveness of the designed scheme is verified by computer simulation. 

Keywords Free-floating space robots · On orbit capture · Reactionless null space 
planning 

1 Introduction 

With the development of space technology, the dynamics and control of space robot 
systems have attracted the attention of researchers from all over the world [1, 2]. 
Because space is the environment characterized by microgravity and strong radia-
tion, the risks of astronauts performing missions in space are extremely high. The 
manipulator has been gradually used to replace astronauts for space operations. It is 
an important and basic mission for space manipulator to capture unknown target. In
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order to maintain good communication, space manipulator system must move in a 
stable attitude after capturing the unknown rotating target by the designed controller 
[3, 4]. Bandyopadhyay et al. [5] proposed a robust nonlinear tracking control law, for 
the combined aerospace system after capturing a larger target, which can stabilize the 
combined system in the presence of bounded disturbances and uncertainties. Matu-
naga et al. [6] designed a scheme that use impact to suppress the angular momentum 
of non-cooperative rotating targets, and then proposed a bumper damper control 
method based on collision push to eliminate the rotational motion of the captured 
target. However, the end effector with passive damper needs to contact the rotating 
target multiple times to reduce the target angular momentum, which makes the control 
of the entire robot system difficult to stabilize and coordinate. Yiping et al. [7] built 
the dynamics model of the overall system composed of the space manipulator and 
target, and performed stable control of the space robot system after capturing the 
target. Jing et al. [8] designed an adaptive control scheme combined with saturation 
function, using a high-precision nonlinear filter to replace the measurement of the 
speed term, and carried out the stable control of the capture operation of the dual-arm 
space manipulator under the condition of limited input torque. The above methods 
are easily limited in the complex environment. Nenchev et al. [9] proposed a reaction 
null-space motion control law (RNS) to keep joint rates of the manipulator within 
the set of RNS motion solutions and the disturbance-free operation based on RNS 
has been experimentally verified by the Engineering Test Satellite VII (ETS-VII). 
Yoshida et al. [10] proposed a distributed momentum control (DMC) strategy with 
RNS motion to capture free-floating rotating satellites. RNS motion control is applied 
to the pre-shock and post-shock control phases known situation. Nakanishi et al. [11] 
adopted the redundant control technology to develop a distributed momentum control 
algorithm to realize the distribution and absorption of the initial angular momentum 
of the captured target, and to control the attitude of the base while satisfying the 
tracking control of the end effector. 

In the above methods in articles [5–8] do not adopt reactionless null space plan-
ning, but study different controllers to control the attitude of the machine. The uncon-
trollability is to high to adapt to the complex space environment. The researches in 
articles [9–11] although consider the reactionless null space planning of the base 
attitude after capturing the target, but these all need to know the specific parameter 
information of the captured target, and cannot solve the problem of zero disturbance 
to base attitude when the inertial parameters of the captured target are unknown. 
In view of the above problems, this paper proposes a new adaptive reactionless 
planning algorithm. This algorithm combines the momentum conservation equa-
tions and recursive least squares (RLS) method with forgetting factor to adaptively 
obtain a set of joint rates of reaction null-space motion. Then, the desired motion is 
produced by driving the joints with velocity-based controller where joint torques are 
computed as per the PID control law for the whole motion. Using the recursive least 
squares method with forgetting factor not only ensures the speed of convergence, 
but also effectively prevents the phenomenon of data saturation and reduces the total 
prediction error.
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2 Dynamic Model 

Figure 1 shows a triple-link manipulator system with a capture target, which is 
composed of free-floating base B0, rigid links B1, B2, B3 and End gripper P . The  
system is comprised of 4 rigid bodies where the target is assumed to be rigidized by 
the end-effector to the last link of the arm when the capture is established. Ji is the 
joint connecting Bi−1 and Bi (i = 1, 2, 3). Ci is the centroid of Bi (i = 1, 2, 3). Cg is 
the mass center of the system.

∑
I is the inertial reference coordinate system.

∑
B is 

the inertial coordinate frame of B0. Ii and mi (i = 0, 1, 2, 3) are the inertial moment 
and mass of the ith link. rg is the position vector of the centroid of the system. ri is 
the position vector of the centroid of Bi (i = 0, 1, 2, 3). Pe is the position vector of 
the end of the manipulator arm. ai and bi are position vectors from Ji to Ci and from 
Ci to Ji+1(i = 1, 2, 3), respectively. b0 is the vector of the position of the origin of 
the B1 coordinate system in the B0 centroid coordinate system. M is the total mass 
of the system. zi(i = 0, 1, 2, 3) the unit vector associated with each revolute joint i . 
ωe is the end-effector angular velocity at the end of the manipulator. ω0 is the angular 
velocity of the B0. ve is the end-effector linear velocity. v0 is the linear velocity of 
the B0. θ̇i (i = 0, 1, 2, 3) is the joint rate associated with each revolute joint i. 

ṽ0 is a skew-symmetric matrix of vector v0 = [x, y, z]T, defined as: 

v0 = 

⎡ 

⎣ 
0 −z y  
z 0 −x 

−y x 0 

⎤ 

⎦

Fig. 1 Free-floating space manipulator and target 
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As shown in Fig. 1, it is easy to write the position relation as: 

ri = pi + ai = r0 + b0 + 
i−1
�
k=1 

(ak + bk) + ai (1) 

pe = r3 + b3 = r0 + b0 + 
i−1
�
k=1 

(ak + bk) (2) 

where ri is the position vector of the mass center of each arm; pe denotes the position 
vector of the end-effector from the origin of the inertial frame. 

The linear velocity of center of mass of link i and the end-effector linear velocity 
can be obtained by differentiating both sides of Eqs. (1) and (2) as follows:  

vi = ṙi = v0 + ω0 × (ri − r0)+ 
i
�
k=1 

[zk × (ri − pk)]θ̇k 
(3) 

ve = ṗe = v0 + ω0 × (pe − r0)+ 
3
�
k=1 

[zk × (pe − pk)]θ̇k 
(4) 

The angular velocity of link i and the angular velocity vector of the last link can 
be written as: 

ωi = ω0 + 
i
�
k=1 

zk θ̇k (5) 

ωe = ω0 + 
3
�
k=1 

zk θ̇k (6) 

Write Eqs. (4) and (6) as matrices:

[
ve 

ωe

]

= Jb
[

v0 

ω0

]

+ Jm θ̇ (7) 

where 

Jb =
[
E3 − p̃0e 
O E3

]

∈ R6×6 , p̃0e = pe − r0 (8) 

Jm =
[
z1 × (pe − p1) z2 × (pe − p2) z3 × (pe − p3) 

z1 z2 z3

]

∈ R6×3 (9) 

where Jb and Jm are Jacobi matrices associated with free-floating base motion and 
manipulator motion, respectively, and p̃0e is the vector of position from the vector 
centroid of the carrier to the end-effector of the manipulator:
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P = 
3∑

i=0 

mi ṙ i (10) 

L = 
3∑

i=0 

( I i ωi + r i × mi ṙ i ) (11) 

The matrix form of Eqs. (10) and (11) can be written as:

[
P 
L

]

=
[
M E3 M r̃T 0g 
0 Hω

][
v0 

ω0

]

+
[
JT ω 
Hωθ

]

θ̇ +
[

0 
rg × P

]

(12) 

where 

Hω = 
3∑

i=1

(
I i + mi

(
r̃gi

)T 
r̃0i

)
+ I0 ∈ R3×3 (13) 

Hωθ = 
3∑

i=1

(
I i J Ri + mi r̃gi JT i

) ∈ R3×3 (14) 

JTω = 
3∑

i=1 

mi JT i  ∈ R3×3 (15) 

JTι =
[
z1 × (r i − p1) z2 × (r i − p2) · · ·  zi × (r i − pi ) 0 · · ·  0

] ∈ R3×3 (16) 

J Ri =
[
z1 z2 · · ·  zi 0 · · ·  0

] ∈ R3×3 (17) 

rg =
∑3 

i=0 mi r i 
M 

, rgi = r i − rg, r0i = r i − r0 (18) 

By using the second Lagrange equation, the dynamic equations of free-floating 
space manipulator system can be obtained as: 

D(q) 
·· 
q +C(q, 

· 
q ) 

· 
q = τ (19) 

where the generalized coordinates are q = [  x0 y0 θ0 θ1 θ2 θ3 ]T and τ = 
[ τx τy τ0 τ1 τ2 τ3 ]T is the driving torque. 

D(q) = Hω −
[
JT 
T ω H

T 
ωθ

]T
[
M E3 M r̃T 0g 
0 Hω

][
JT ω 
Hωθ

]

(20) 

C
(
q, ̇q

) = Ḋ q̇ − 
∂ 
∂q

(
1 

2 
q̇T D q̇

)

(21)
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3 Adaptive Reactionless Planning and Control 

3.1 Adaptive Reactionless Planning 

Reaction null-space (RNS) motion control was proposed by Nenchev et al. to mini-
mize coupling disturbance for the free-floating space manipulator. RNS motion is 
defined as a set of joint rates producing zero disturbance to the base. A manipulator 
system with non-zero degree of redundancy (DOR) is required for the existence of 
RNS solutions. 

Now, the RNS concept is proposed for the basic scenario, in which the initial linear 
and angular momenta of both manipulator and target relative to the defined inertial 
frame are zero (P , L = 0), that is, neither translation nor rotation is relative to the 
inertial frame. According to (12), the angular momentum equation can be simplified 
to: 

Hωω0 +Hωθ θ̇ = 0 (22)  

By substituting the desired angular velocity of the base, ω0 = 0, into (22) and 
solving the remaining homogeneous equation, we obtain the null-space solutions for 
joint rates: 

θ̇ RN  S  = ( E − H+ 
ωθ Hωθ )ζ̇ (23) 

where E ∈ Rn is the n-order identity matrix; H+ 
ωθ is the generalized inverse of Hωθ ; 

and ζ̇ ∈ Rn is an arbitrary vector in units of rad
/
s; (E − H+ 

ωθ Hωθ ) represents the 
mapping of matrix Hωθ to its zero space. 

From the existence condition of RNS [12], the solution (23) exists if:  

dim(RN  S) = dim(E − H+ 
ωθ Hωθ ) 

= n − rank(Hωθ ) >  0 
(24) 

where recall n is the DOF of the arm. In this paper, the object of this study is a triple-
link manipulator system with free-floating base, from which n = 3, rank(Hωθ ) = 1, 
dim(RN  S) = 3 − 1 

= 2 > 0 
can be obtained, which satisfies the solution condition of RNS 

motion. 
In practical applications of space manipulator, it is important to avoid base attitude 

disturbances, and base translation does not bring obvious adverse effects. Therefore, 
this paper only studies the change of the spatial attitude of the base, and then it can be 
assumed that the linear momentum of the system before capturing the target is zero. 
After the capture, it is supposed that the system is not subject to any external forces, 
which follow the law of conservation of momentum. Hence, when the manipulator
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captures a rotating target with unknown parameters (the initial angular momentum 
is not zero), the total angular momentum of the system can be written as: 

L = Lm + Lt (25) 

where Lm and Lt are the angular momentum of the space manipulator and the target, 
respectively. 

As per Eq. (12), the angular momentum of the system after capturing a tumbling 
target can be written as: 

Hωω0 + Hωθ θ̇ = L = Lm + Lt (26) 

The matrices Hω and Hωθ in Eq. (26) include the inertia term of the target by 
assuming that the target becomes rigidly attached to the end-effector. if the detailed 
parameters of the captured target are known, and the base attitude is not disturbed, 
that is ω0 = 0, the joint rates of reaction null space motion for the manipulator will 
be computed according to the generalization of Eq. (23) as:  

θ̇ r = H+ 
ωθ L + (E − H+ 

ωθ Hωθ )ζ̇ (27) 

where θ̇ r is the joint rates of reaction null space motion of the space manipulator 
where the target parameters are known. 

According to Eq. (27), if the manipulator motion are governed by nonzero ω0, the  
general solution of the joint rates will be written as: 

θ̇ = H+ 
ωθ (L − Hωω0) + (E − H+ 

ωθ Hωθ )ζ̇ (28) 

Equation (27) can be regarded as a special solution of Eq. (28) in the case of 
ω0 = 0, and Eq. (28) is the general solution of the joint rate of Eq. (27). Subtract 
formula (28) from formula (27): 

θ̇ r − θ̇ = Kω0 (29) 

where K = H+ 
ωθ Hω. To satisfy the planning objective, it is obvious that if θ̇ is 

infinitely close to θ̇ r , ω0 will converges to zero, and then zero disturbance of the base 
attitude will be achieved. 

When the parameters of the capture target are unknown, the specific elements in 
matrix K are unknown and the base attitude cannot be controlled directly by Eq. (29). 
However, the benefit of Eq. (29) is apparent when it is utilized as a regressor form for 
deriving an adaptive control algorithm, so the recursive least squares (RLS) algorithm 
is employed to adaptively update K in online method. Then the joint rates of reaction 
null space will be solved, and write Eq. (30) as follows:  

ˆ̇
θ r − θ̇ = K̂ω0 (30)
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where θ̇ and ω0 are the actual joint rate and the base angular velocities, and the 
symbol “∧” is employed to denote the unknown post-capture vector and matrices, 
which incorporate the properties of the unknown target after capturing the unknown 
target. 

The idea of recursive least squares can be written as: 

New estimated parameters = 
Previous estimated parameters+ 
Correction value 

(31) 

Define the prediction error formula as: 

e(k) = ˆ̇θ r (k − 1) − θ̇ r (k) − K̂ (k − 1)ω0(k) (32) 

where ˆ̇θ r (k − 1) and K̂ (k − 1) represent the estimates of θ̇ r and K at the time of the 
previous (k-1) sampling, respectively. 

The recursive least squares (RLS) algorithm has been known to provide extremely 
fast initial convergence. However, the RLS algorithm is prone to data saturation as the 
data increases, which will lead that as the system parameters change, it is no longer 
possible to effectively estimate the K matrix. Hence, it is necessary to employ the 
forgetting factor to discount old data to minimize the total prediction error, and the 
following cost function is defined: 

J = 
l∑

k=1 

λl−k‖ek‖2 (33) 

where the value range of the forgetting factor is 0 < λ  ≤ 1. 
The measured data is time-varying weighted by Eq. (33), and the newer the data, 

the greater the weight. In order to make an online estimate of the K matrix and 
minimize the value of Eq. (33), the least squares parameter estimation with forgetting 
factor is established as follows: 

K̂ (k) = K̂ (k − 1)+ 

[ ˆ̇θ r (k − 1) − θ̇ (k) − K̂ (k − 1)ω0(k)]N(k) 
(34) 

where 

N(k) = ω0(k)T Q(k − 1) 
λ + ω0(k)T Q(k − 1)ω0(k) 

(35) 

Q(k) = 
1 

λ

[

Q(k − 1) − 
Q(k − 1)ω0(k)ω0(k)T Q(k − 1) 

λ + ω0(k)T Q(k − 1)ω0(k)

]

(36)
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It is noted that N(k) ∈ R1×3 is a row vector. The initial value of Q(k) ∈ R3×3 

can be taken as Q(0) = α E. The  α is a sufficiently large positive real number 
(104 ∼ 1010). A value of forgetting factor λ must very close to 1, generally not less 
than 0.9, if λ = 1 is degraded to the ordinary RLS algorithm. 

Therefore, Eq. (30) can be written as the predicted form of the K-time RNS motion 
solution: 

ˆ̇
θ r (k) = θ̇ (k) + K̂ (k)ω0(k) (37) 

The steps to adaptively update K and obtain the ˆ̇θ r (k) in online method are 
summarized below: 

Initialization (based on the known pre-capture parameters of the manipulator). 

Step1: Initialization (based on the known pre-capture parameters of the manipu-
lator) 

Q(0) = α E 

K̂ (0) = H+ 
ωθ Hω 

ˆ̇
θ r (0) = H+ 

ωθ Lm +
[
E − H+ 

ωθ Hωθ

]
ζ̇ 

(38) 

Step 2: Measure (or simulate)θ̇ (k) and ω0(k). 
Step 3:Update K̂ (k) according to formulas (34), (35) and (36). 
Step 4:Using K̂ (k), update the θ̇ r (k) from (37). 
Step 5: k → k + 1, Return to step 2 until the end of control. 

3.2 PID Controller Design 

When the angular velocity of the space manipulator joint is set to ˆ̇θ r (k), the PID 

controller is designed to produce ˆ̇θ r (k) to achieve zero disturbance to the base attitude, 
and the PID control law is: 

τ = KPė(k) + KI 

k∑

i=0 

ė(i ) + KDė(k − 1) (39) 

where ė(k) = ˆ̇θ r (k) − θ̇ (k) is the joint rate error at the time of the k sampling; 

ė(k − 1) is the joint rate error at the time of the previous (k-1) sampling; 
k∑

i=0 
ė(i ) is 

the sum of all previous joint rate errors. 
The overall control scheme of the system is shown in Fig. 2.
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Fig. 2 Adaptive reactionless planning and control scheme 

3.3 Stability Proof 

The stability of the proposed planning algorithm is analyzed under the assumption 
that the algorithm is implemented at a sufficiently high sampling rate to ensure a 
relatively small change in K between two consecutive samples. On this basis, the i 
component of the i line of matrix K̂ is used to analyze the various components of 
the prediction error e(k), according to Eq. (32): 

ei (k) = ˆ̇θir  (k − 1) − θ̇i (k)ωT 
0 (k) K̂ 

T 
i (k − 1) (40) 

where K̂ i is the i (i = 1, 2, 3) row of matrix K̂ , and matrix Q and regression vector 
ω0 are the same as in Eqs. (34) through (36), and therefore have: 

K̂ 
T 
i (k) = K̂ 

T 
i (k − 1) + N(k)ei (k) (41) 

N(k) = ω0(k)T Q(k − 1) 
λ + ω0(k)T Q(k − 1)ω0(k) 

(42) 

Q(k) = 
1 

λ

[

Q(k − 1) − 
Q(k − 1)ω0(k)ω0(k)T Q(k − 1) 

λ + ω0(k)T Q(k − 1)ω0(k)

]

(43) 

Introduce a scalar Lyapunov function as shown below: 

Vi (k) = K̃ i (k) Q−1 (k) K̃ T i (k) (44)
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where K̃ i (k) = K̂ i (k) − K i (k), K i (k − 1) ≈ K i (k) 
(based on the assumption that the sampling frequency is high enough and the 

prediction error between two consecutive samples is small). Subtract KT 
i (k) from 

both sides of Eq. (41) to get it: 

K̃ 
T 
i (k) = K̃ T i (k − 1)+ 

N(k)

[ ˆ̇
θ ir  (k − 1) − θ̇ i (k) − ωT 

0 (k) K̂ 
T 
i (k − 1)

] (45) 

Write Eq. (30) as follows in discrete form 

ˆ̇
θ ir  (k − 1) − θ̇ i (k) = ωT 

0 (k) K̂ 
T 
i (k) (46) 

Using formula (41) and formula (46) is substituted for formula (45) to obtain 

K̃ 
T 
i (k) = λ 

1 

λ 

⎡ 

⎢ 
⎣ 

Q(k − 1)− 
Q(k − 1)ω0(k)ω0(k)T Q(k − 1) 

λ + ω0(k)T Q(k − 1)ω0(k) 

⎤ 

⎥ 
⎦∗ 

Q−1 (k − 1) K̃ T i (k − 1) 

(47) 

Equation (47) may also be abbreviated to the following form 

K̃ 
T 
i (k) = λ Q(k) Q−1 (k − 1) K̃ T i (k − 1) (48) 

Consider the following relationship 

Vi (k) − λVi (k − 1) =
[
K̃ i (k) − K̃ i (k − 1)

]
Q−1 (k) K̃ T i (k) 

= −  ̃
K i (k − 1)ω0(k)ω0(k)T Q(k − 1) 

λ + ω0(k)T Q(k − 1)ω0(k) 
Q−1 (k) K̃ T i (k) 

(49) 

Using formulas (44) and (48), and prescribing A, Eq. (49) may be written as: 

Vi (k) − Vi (k − 1) = −λ 
K̃ i (k − 1)ω0(k)ω0(k)T K̃ 

T 
i (k − 1) 

λ + ω0(k)T Q(k − 1)ω0(k) 
− 

(1 − λ)Vi (k − 1) ≤ 0 
(50) 

Since the gain matrix Q is a positively definite symmetric matrix, it can be seen 
by Eq. (49) that Vi (k) must be a positive scalar function without incrementing, 
completing the proof of stability.
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4 Simulation 

In order to verify the effectiveness of the planning and control algorithm proposed 
in this paper and visualize the motion state of the space manipulator, this paper 
develops a co-simulation platform using MSC. Adams and Matlab/Simulink soft-
ware. It is assumed that prior to target capture, the angular momentum and linear 
momentum of the space manipulator system are equal to zero. It is suppose that 
after capture, the target is rigidized by the gripper relative to the end-effector within 
0.1 s and the system begins adaptive reactionless control immediately. The combined 
simulation time is 120 s. Adams and Matlab/Simulink exchange data every 0.025 s, 
and Matlab/Simulink calculates in 0.0001 s. 

Space manipulator system model parameters: mass of target m t=250 kg, angular 
velocity of target ωt = 0.2 rad/s, m0 = 500.7 kg, mi= 10.7 kg(i= 1, 2, 3), 
I0= 83.33 kg · m2, Ii= 1.05 kg · m2(i = 1, 2, 3), b0 = 0.6 m, li= 1m(i = 1, 2, 3), 
ai = bi = 0.5 m(i= 1, 2, 3). 

System control parameters: Forgetting factor λ = 0.99, Positive scale factor 
α = 104, ζ̇ (0) = [  0.1 0.1 0.1 ]T, K P = diag(1500, 1500, 1500), KI = 
diag(0.1, 0.1, 0.1), KD = diag(20, 20, 20). 

The simulation results are shown in Figs. 3, 4, 5, 6, 7 and 8. Figures 3 and 4 show 
the base attitude and base angular velocity after capturing the target without adaptive 
reactionless control, respectively. Figures 5, 6, 7 and 8 show the base attitude, the 
base angular velocity, the joint rate error and joint rate after capturing the target with 
adaptive reactionless control, respectively. 

Fig. 3 Base attitude without adaptive reactionless planning and control
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Fig. 4 Base angular velocity without adaptive reactionless planning and control 

Fig. 5 Base attitude with adaptive reactionless planning and control
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Fig. 6 Base angular velocity with adaptive reactionless planning and control 

Fig. 7 Joint rate error with adaptive reactionless planning and control
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Fig. 8 Joint rate with adaptive reactionless planning and control 

As can be seen from Figs. 3 and 4, if no control is added to the manipulator after 
capturing the unknown rotating target, the angular velocity of the base is not zero, 
and the base is significantly deflected, which the maximum change in the attitude 
angle of the base within 120 s reaches −0.53 rad. To go a step further, it can be seen 
from the above comparison of Figs. 3 and 5 and that the base attitude deflection angle 
is significantly reduced, which the maximum deviation of the base attitude within 
120 s in adaptive reactionless control is −4.66×10−4 rad within the allowable range. 
From the comparison of Figs. 4 and 6 and, it can be observed that the disturbance of 
the base attitude is quickly suppressed and the angular velocity of the base attitude 
is rapidly converged to near zero in adaptive reactionless control, which realizes the 
non-disturbance of the base attitude. 

Furthermore, from the Fig. 6, it can be noted that the system has a peak of size 
−7.14 × 10−5 rad

/
s in the base angular velocity at 24 s. It can be seen that the peak of 

the angular velocity of the base is due to the rapid change of the joint angular velocity 
and the closed-loop PID controller can not quickly track the expected joint rates 
obtained by the adaptive algorithm according to the existence of the corresponding 
peak of the angular velocity error of the joint of the manipulator at 24 s in Fig. 7 
and the rapid change of the angular velocity of the joint of the manipulator in Fig. 8 
around 24 s.
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5 Conclusions 

The Lagrange dynamic model of a free-floating triple-link manipulator is established 
to update the actual angular velocity of each member of the space manipulator. The 
expression with unknown parameters of RNS joint rates is derived according to the 
momentum conservation equations after the free-floating space manipulator capture 
the rotating target. To go a step further, the recursive least squares method with 
forgetting factor is proposed, in which the forgetting factor is introduced to discount 
old data to minimize the total prediction error and the expression of RNS joint rates is 
made into a recursion form. Then unknown parameters and the null-space solutions 
for joint rates can be adaptive updated online by the proposed planning algorithm, 
and the desired joint rates is produced by driving joints with the PID controller 
to complete the adaptive reactionless planning and control. Simulation results show 
that the proposed method can obtain the RNS motion of the free-floating manipulator 
under the condition that the target inertial properties are unknown. 
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