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Abstract An important advantage of signcryption schemes compared to one pass
key exchange protocols is non-interactive non-repudiation (NINR). This attribute
offers to the receiver of a signcrypted ciphertext the ability to generate a non-
repudiation evidence, that can be verified by a third party without executing a costly
multi-round protocol. We propose a computational Diffie–Hellman based insider
secure signcryption scheme with non-interactive non-repudiation. Namely, we show
that under the computational Diffie–Hellman assumption and the random oracle
model, our scheme is tightly insider secure, provided the underlying encryption
scheme is semantically secure. Compared to a large majority of the previously pro-
posed signcryption schemeswithNINR, our construction ismore efficient and it does
not use any specificity of the underlying group, such as pairings. The communication
overhead of our construction, compared to Chevallier Mâmes’ signature scheme is
one group element.

Keywords Signcryption · Non-interactive non-repudiation · Insider security ·
Computational Diffie–Hellman · Random oracle model

1 Introduction

A signcryption scheme provides simultaneously the functionalities of encryption
and signature schemes [24]. A natural use of a signcryption scheme is to build an
asynchronous secure channel i.e., a confidential and authenticated asynchronous
channel. Given the similar uses of signcryption and (one pass) Key Exchange Pro-
tocols (KEP), to build confidential and authenticated channels, it appears, from a
real world perspective, that the right security definition for signcryption schemes is
insider security [3]. Informally, insider security ensures (i) confidentiality even if the
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sender’s static private key is revealed to the attacker, and (ii) unforgeability even if
the receiver’s static private key is disclosed.

A signcryption scheme is said to provide non-repudiation, if the receiver of a
signcrypted ciphertext has the ability to generate a non-repudiation evidence, that
can be verified by a third party (a judge, for instance); as a result, a message sender
cannot deny having signcrypted the message. The non-repudiation attribute is said
to be non-interactive, if a non-repudiation evidence can be generated and verified
without executing a multi-round protocol. An important advantage of signcryption
schemes, compared to one pass KEP, which often outperforms signcryption schemes,
is non-interactive non-repudiation (NINR).

A signcryption scheme with the aim to provide NINR was proposed for the first
time by Bao and Deng [5]; unfortunately their design fails in achieving confiden-
tiality [19]. Malone–Lee [19] proposes an efficient design with NINR he analyzes
in the Random Oracle (RO) model. The scheme achieves confidentiality under the
computational Diffie–Hellman (cDH) assumption, and unforgeability under the gap
Diffie–Hellman Assumption. Unfortunately, the security model he uses is closer to
the outsider than to the insider model. Indeed, the scheme fails in providing insider
confidentiality. In [8], Bjørstad and Dent (BD) propose a design based on Chevallier
Mâmes’ (CM) signature scheme they show to tightly achieve insider unforgeability
under the cDH assumption and outsider confidentiality under the gap DH assump-
tion. Unfortunately, as for the ML scheme, the BD scheme does not achieve insider
confidentiality.

In subsequentworks [2, 13, 14, 20, 23], several insider secure schemeswithNINR
have been proposed. The designs offer a superior security, compared to the ML or
BD schemes. However, they are less efficient and often assume some specificities of
the underlying groups, such as the existence of a bilinear pairing. In [2], Arriaga et al.
propose a generic insider secure signcryption scheme, with randomness reuse, in the
standardmodel. They exhibit an insider secure instantiation of their design, under the
Decisional Bilinear and the q-Strong Diffie–Hellman (DBDH and q-sDH) assump-
tions. Unfortunately, the unforgeability is achieved in the registered key model [20],
wherein an attacker is required to register the keys pairs it uses in its attack.
Matsuda et al. [20] propose a generic composition of signature and tag-based encryp-
tion schemes, which yields to different shades of security depending on the security
attributes of the base schemes. They exhibit two constructions with NINR that fully
achieve insider confidentiality (under the cDH and the gap DH assumptions respec-
tively) and unforgeability (under the co-cDH assumption). Chiba et al. [13] propose
a generic construction of signcryption schemes, and exhibit two insider secure con-
structions with NINR under the DBDH and the q-sDH assumptions. In [14], Fan
et al. propose a signcryption scheme with non-interactive non-repudiation (SCN-
INR), based on Boneh et al.’s signature scheme [10], they show to be insider secure
under the DBDH assumption, without resorting the RO model. Sarr et al. [23] pro-
pose, over the group of signed quadratic residues, a SCNINR, based on a signature
scheme of their own design, they show to be insider secure under theRSA assumption
and the RO model.
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The basic design principle in the SCNINR schemes from [8, 14, 19, 23], is (i) a
Diffie–Hellman (DH) secret derivation, using ephemeral keys from the sender and
the receiver’s static public key, followed by (ii) an encryption using some part of the
derived secret, and (iii) a signature generation, using the sender’s private key, on the
plain text and some part of the derived DH secret. One may notice also that these
schemes assume rather specific groups or have loose security reductions. As tightly
secure cDH-based signature schemes exist [12, 15, 17], we investigate whether such
schemes can be leveraged as building blocks for tightly (multi-user) insider secure
cDH based SCNINR schemes. As we aim at an efficient design, we use the random
oracle (RO) model. We propose a new SCNINR, termed SCedl, based on a variant
of Chevallier–Mâmes’ signature scheme [12], tailored to (i) be combined with Cash
et al.’s twin Diffie–Hellman key exchange [11], (ii) and to allow a use of the same
randomness in the DH key exchange and in the signature generation.

And, using the trapdoor test technique [11], we show that SCedl is tightly insider
secure under the cDH assumption and the RO model, provided the underlying sym-
metric encryption scheme is semantically secure. Even better, we show the insider
confidentiality attribute in the secret key ignorant multi-user model, i.e., when the
sender public key is chosen by the adversary and the challenger does not know the
corresponding private key. Compared to the ML and BD schemes, which do not
require any specificity of the underlying group and do not achieve insider security,
SCedl offers a stronger security, even if it is less efficient. And, compared to the
schemes from [2, 13, 14, 20, 23], SCedl offers a tight security reduction, a better
efficiency, and a comparable or a superior security.

This paper is organized as follows. In Sect. 2, we present some preliminaries on
the syntax of SCNINR schemes and the insider security definitions for SCNINR. In
Sect. 3, we propose the SCedl scheme. We propose our security results in Sect. 4,
and compare our design with previous constructions in Sect. 5.

2 Preliminaries

Notations. G = 〈G〉 is a cyclic group of prime order p, G∗ denotes the set G \ {1}. We
denote by Exp(G, t) the computational effort required to perform t exponentiations
with |p|-bits exponents inG ;Exp(G)denotesExp(G, 1). For an integern, [n]denotes
the set {0, . . . , n}. If S is a set, a ←R S means that a is chosen uniformly at random
from S; wewrite a, b, c, . . . ←R S as a shorthand for a ←R S; b←R S, etc.We denote
by sz(S) the number of bits required to represent a ∈ S. For a probabilistic algorithm
A with parameters u1, . . . , un and output V ∈ V, we write V ←R A(u1, . . . , un).
We denote by {A(u1, . . . , un)} the set {v ∈ V : Pr(V = v) �= 0}. If x1, x2, . . . , xk
are objects belonging to different structures (group, bit-string, etc.) (x1, x2, . . . , xk)
denotes a representation as a bit-string of the tuple such that each element can be
unequivocally parsed.

The cDH Assumption. We assume the existence of an algorithm Setupgrp(·),
which on input a security parameter k outputs a system parameter �k which fully
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identifies a group G = 〈G〉 together with its order. For X ∈ G, we denote the small-
est non-negative integer x such that Gx = X by logG X . For, X,Y ∈ G, we denote
G(logG X)(logG Y ) by cDH(X,Y ); if B ∈ G, we denote (cDH(X, B), cDH(Y, B)) by
2DH(X,Y, B). The cDH assumption is said to hold in G if for all efficient algo-
rithms A, AdvcDHA (G) = Pr[X,Y ←R G; Z ←R A(G, X,Y ) : Z = cDH(X,Y )] is
negligible in k.

A Symmetric Encryption scheme E = (E,D,K,M,C) is a pair of efficient algo-
rithms (E,D) together with a triple of sets (K,M,C), which depend on the secu-
rity parameter k, such that for all τ ∈ K and all m ∈ M, it holds that E(τ ,m) ∈ C
and m = D(τ ,E(τ ,m)). Let A = (A1,A2) be an adversary against E and let

Pr(Oi,i=0,1) = Pr

[
(m0,m1, st)←R A1(k); τ ←R K; c←R E(τ ,mi );
b̂←R A2(k, c, st)

: b̂ = 1

]
;

then AdvssA,E(k) denotes the quantity AdvssA,E(k) = |Pr(O0) − Pr(O1)| , where m0,

m1 ∈ M are distinct equal length messages. The scheme E is said to be (t, ε(k))-
semantically secure if for all adversaries A running in time t , AdvssA,E(k) � ε(k).

2.1 Insider Security for SCNINR

We recall the syntax of a SCNINR scheme and the insider security definitions in the
Flexible Signcryption / Flexible Unsigncryption Oracle (FSO/FUO) model [4], also
termed dynamic Multi-user model [2].

Definition 1 A signcryption scheme is a quintuple of algorithms SC = (Setup,

GenS, GenR,Sc,Usc) where

(a) Setup takes a security parameter k as input, and outputs a public domain param-
eter dp.

(b) GenS is the sender key pair generation algorithm. It takes as input dp (an implicit
parameter) and outputs a key pair (skS, pkS), wherein skS is the signcrypting
key.

(c) GenR is the receiver key pair generation algorithm; it takes dp as input and
outputs a key pair (skR, pkR).

(d) Sc takes as inputs dp, a sender private key skS , a receiver public key pkR , and
a message m, and outputs a signcryptext C . We write C ←R Sc(skS, pkR,m).

(e) Usc is a deterministic algorithm. It takes as inputs dp, a receiver secret key
skR , a sender public key pkS , and a signcryptext C , and outputs either a valid
message m ∈ M or an error symbol ⊥ /∈ M.

And, for all dp ∈ {Setup(k)}, all m ∈ M, all (skS, pkS) ∈ {GenS(dp)}, and all
(skR, pkR) ∈ {GenR(dp)}, m = Usc(skR, pkS, Sc(skS, pkR,m)). The scheme is
said to provide NINR if there are two algorithms N and PV, termed non-repudiation
evidence generation and pubic verification algorithms such that:
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– N takes as inputs a receiver secret key skR , a sender public key pkS , and a sign-
crypted ciphertextC , andoutputs anon-repudiation evidence nr or a failure symbol
⊥; we write nr ← N(skR, pkS,C).

– PV takes as inputs a signcryptext C , a message m, a non-repudiation evidence nr ,
a sender public key pkS , and a receiver public key pkR , and outputs d ∈ {0, 1};
we write d ← PV(C,m, nr, pkS, pkR).

– For all dp ∈ {Setup(k)}, all C ∈ {0, 1}∗, all (skS, pkS) ∈ {GenS(dp)}, and all
(skR, pkR) ∈ {GenR(dp)}, if ⊥ �= m ← Usc(skR, pkS,C) and nr ← N(skR,

pkS,C) then 1 = d ← PV(C,m, nr, pkS, pkR).

Game 1 SKI–MU Insider Confidentiality in the FSO/FUO–IND–CCA2 sense

We consider the experiments E0 and E1, described hereunder, whereinA = (A1,A2) is a two–stage
adversary against a SCNINR scheme SC;
(1) The challenger generates dp←R Setup(k) and (skR, pkR) ←R GenR(dp);
(2) A1 is provided with dp and pkR , and is given access to:

(a) an unsigncryption oracleOUsc(·, ·), which takes as inputs a public key pk and a signcrypted
ciphertext C , and outputs m ← Usc(skR, pk,C), and (b) a non–repudiation evidence gener-
ation oracleON(·, ·) which takes as inputs a public key pk and a signcrypted ciphertext C and
outputs nr ← N(skR, pk,C).

(3) A1 outputs (m0,m1, pkS, st) ←R AOUsc(·,·),ON(·,·)
1 (pkR)wherem0,m1 ∈ M are distinct equal

length messages, st is a state, and pkS is the attacked sender public key (skS is unknown to the
challenger).

(4) In the experiment Eb,b=0,1, the challenger computes C∗ ←R Sc(skS, pkR,mb).

(5) A2 outputs b′ ←R AOUsc(·,·),ON(·,·)
2 (C∗, st) (OUsc(·, ·) and ON(·, ·) are as in step 2).

(6) For Eb,b=0,1, outb denotes the event: (i)A2 never issuedOUsc(pkS,C∗) orON(pkS,C∗), and
(ii) b′ = 1.

And, Advcca2A,SC(k) =| Pr(out0) − Pr(out1) | denotes A’s CCA2 insider security advantage.

Definition 2 (Secret Key Ignorant Multi-user Insider Confidentiality) A SCNINR
SC is said to be (t, qUsc, qN, ε)-secure in the Secret Key Ignorant Multi-user (SKI–
MU) insider confidentiality in the FSO/FUO IND–CCA2 sense, if for all adver-
saries A playing Game 1, running in time t , and issuing respectively qUsc and
qN queries to the unsigncryption and non-repudiation evidence generation oracles,
Advcca2A,SC(k) � ε.

Definition 3 (Multi-user Strong Insider Unforgeability) A SCNINR is said to be
(t, qSc, ε) Multi-user Insider Unforgeable in the FSO/FUO–sUF–CMA sense if for
all attackers A playing Game 2, running in time t , and issuing qSc queries to the
signcryption oracle, AdvsufA,SC(k) � ε.

Confidentiality andunforgeability are natural security goals for signcryption schemes.
The soundness and unforgeability of non-repudiation evidence attributes are specific
to SCNINR schemes.
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Game 2 MU Insider Unforgeability in the FSO/FUO–sUF–CMA sense

A is a forger, dp←R Setup(k) still denotes the public domain parameter.

(1) The challenger computes (skS, pkS) ←R GenS(dp).
(2) A runs with inputs (dp, pkS) and is given a FSOOSc(·, ·), which takes as inputs a valid public

receiver key pk and a message m and outputs C ←R Sc(skS, pk,m).
(3) A outputs ((skR, pkR),C∗) ←R AOSc(·,·)(dp, pkS). It succeeds if:

(i) ⊥ �= m ← Usc(skR, pkS,C∗), and
(ii) it never received C∗ from OSc(·, ·) on a query on (pkR,m).

AdvsufA,SC(k) = Pr(SuccsufA ) denotes the probability that A wins the game.

Game 3 Soundness of non–repudiation

(1) The challenger computes dp←R Setup(k).
(2) A runs with input dp and outputs (C∗, pkS, skR, pkR,m′, nr) ←R A(dp).
(3) A wins the game if:

(i) ⊥ �= m ← Usc(skR, pkS,C∗), and
(ii) m �= m′ and 1 = d ← PV(C∗,m′, nr, pkS, pkR).

AdvsnrA,SC(k) denotes the probability that A wins the game.

Definition 4 (Soundness of non-repudiation) A SCNINR is said to achieve (t, ε)-
computational soundness of non-repudiation if for all attackers A playing Game 3
and running in time t , AdvsnrA,SC(k) � ε.

Game 4 Unforgeability of non–repudiation evidence

A is an attacker against SC, dp←R Setup(k) is the domain parameter.

(1) The challenger computes (skS, pkS) ←R GenS(dp); (skR, pkR) ←R GenR(dp);
(2) A runs with inputs (dp, pkS , pkR ), and outputs (C∗,m∗, nr∗) ←R AOSc(·,·),OUsc(·,·),ON(·,·)(dp, pkS , pkR ).

(3) A wins if:
(i) C∗ was generated through the OSc(·, ·) oracle on inputs (pkR,m) for some m,
(ii) 1 = d ← PV(C∗,m∗, nr∗, pkS, pkR), and
(iii) nr∗ was not generated by the oracle ON(·, ·) on a query on (pkS,C∗).

AdvunrA,SC(k) denotes the probability that A wins the game.

Definition 5 (Unforgeability of non-repudiation evidence) A SCNINR is said to
achieve (t, qSc, qUsc, qN, ε) unforgeability of non-repudiation evidence if for all
adversariesA playing Game 4, running in time t , and issuing respectively qSc, qUsc,
and qN queries to the signcryption, unsigncryption, and non-repudiation evidence
generation oracles, AdvunrA,SC(k) � ε.
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3 The New Construction

Weconsider the followingvariant ofChevallier–Mâmes’ (CM) signature scheme [12];
H1 : {0, 1}∗ → G,H2 : {0, 1}∗ → K, andH3 : {0, 1}∗ → [p − 1] are hash functions,
aux denotes some auxiliary information.

A Variant of Chevallier–Mâmes’ signature scheme

1: SetupSign(k): the setup outputs a description of the group G, a generator G of G, its prime order

p, together with descriptions of the hash functions Hi,i=1,2,3.

2: Gen(dp): sk ←R [p − 1]; pk ← Gsk ; return (sk, pk);

3: Sign(sk,m): x1, x2 ←R [p − 1]; X1 ← Gx1 ; X2 ← Gx2 ; R ← H1(X1, X2); V ← Rx1 ;

4: W ← Rsk ; h ← H3(m, X1, X2,G, R, V,W, pk,aux); σ ← x1+h · sk; return (X2,W,σ, h);

5: Vrfy(pk, (X2,W,σ, h),m): X1 ← Gσ pk−h ; R ← H1(X1, X2); V ← RσW−h ;
6: if h = H3(m, X1, X2,G, R, V,W, pk,aux) then return 1; else return 0;

As for CM, in the RO model, the signature generation can be efficiently simu-
lated, and the scheme can be shown to be unforgeable under cDH assumption. An
interesting property of this scheme is that when it comes to extend it to a SCNINR,
in a simulation of a signcrypted ciphertext generation, we can generate X1, X2 ←R G
such that for all (B, Z1, Z2) ∈ G3, using the trapdoor test technique [11], we can effi-
ciently decide whether 2DH(X1, X2, B) = (Z1, Z2) or not. Then, if (B1, B2) ∈ G2

is a receiver public key, and a twin Diffie–Hellman key exchange [11] is performed
using (X1, X2) and (B1, B2), we can use a trapdoor test at both the sender and the
receiver. Then, as for the signature scheme’s unforgeability, we can show the sign-
cryption scheme to be tightly insider secure.

The SCedl Scheme

10: Setup(k): the algorithm defines a group G = 〈G〉 of prime order p, together with an encryption
scheme E = (E,D,K,M,C) and the hash functions H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → K, and
H3 : {0, 1}∗ → [p − 1]. The domain parameter is dp = (G, E,H1,H2,H3). We assume p �
|K|.

11: GenS(dp): a ←R [p − 1]; (skS, pkS) ← (a,Ga); return (skS, pkS);

12: GenR(dp): b1, b2 ←R [p − 1]; (skR, pkR) ← (
(b1, b2), (Gb1 ,Gb2 )

) ; return (skR, pkR);

13: Sc(skS, pkR,m): Parse pkR as (B1, B2); x1, x2 ←R [p − 1]; X1 ← Gx1 ; X2 ← Gx2 ;
14: R ← H1(X1, X2); V ← Rx1 ; W ← RskS ;
15: Z1 ← Bx1

1 ; Z2 ← Bx1
2 ; Z3 ← Bx2

1 ; Z4 ← Bx2
2 ;

16: τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
17: c ← E(τ2,m); h ← H3(m, τ1, c, X1, X2,G, R, V,W, pkS, pkR);
18: σ ← x1 + h · skS mod p; return (X2,W,σ, h, c);

19: Usc(skR, pkS,C): Parse skR as (b1, b2) ∈ [p − 1]2;
20: Parse C as (X2,W,σ, h, c) ∈ G2 × [p − 1]2 × C.
21: X1 ← Gσ pk−h

S ; Z1 ← Xb1
1 ; Z2 ← Xb2

1 ; Z3 ← Xb1
2 ; Z4 ← Xb2

2 ;
22: τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
23: m ← D(τ2, c); R ← H1(X1, X2); V ← RσW−h;
24: if h = H3(m, τ1, c, X1, X2,G, R, V,W, pkS, pkR) then return m; else return ⊥;

25: N(skR, pkS,C): Parse skR as (b1, b2); Parse C as (X2,W,σ, h, c).
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26: X1 ← Gσ pk−h
S ; Z1 ← Xb1

1 ; Z2 ← Xb2
1 ; Z3 ← Xb1

2 ; Z4 ← Xb2
2 ;

27: τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
28: m ← D(τ2, c); R ← H1(X1, X2); V ← RσW−h;
29: if h = H3(m, τ1, c, X1, X2,G, R, V,W, pkS, pkR) then return (τ1, τ2); else return ⊥;

30: PV(C,m, nr, pkS, pkR): Parse C as (X2,W,σ, h, c) and nr as (τ1, τ2);
31: m′ ← D(τ2, c);
32: if m′ �= m then return 0;
33: X1 ← Gσ pk−h

S ; R ← H1(X1, X2); V ← RσW−h;
34: if h = H3(m, τ1, c, X1, X2,G, R, V,W, pkS, pkR) then return 1; else return 0;

For the consistency of SCedl, one can observe that, as σ = x1 + h · skS , Gσ pk−h
S

yields X1; similarly RσW−h yields V . Then, if C ←R Sc(skS, pkR,m) the same
Zi ’s are computed in the signcryption and unsigncryption algorithms. And, the same
values of τ1 and τ2 are derived both in Sc(skS, pkR,m) and Usc(skR, pkS,C).
The remaining part in the definition of Sc (resp. Usc) is essentially a proof (resp.
verification) of equality of discrete logarithms (edl) modified to include m, τ1 and c.
Doing so, for all dp ∈ {Setup(k)}, all m ∈ M, all (skS, pkS) ∈ {GenS(dp)}, and
all (skR, pkR) ∈ {GenR(dp)}, m = Usc(skR, pkS,Sc(skS, pkR,m)). Moreover, if
nr ← N(skR, pkS,Sc(skS, pkR,m)) then 1 = d ← PV(C,m, nr, pkS, pkR).

4 Security of the SCedl Scheme

We have the following results; detailed proofs are given in [21].

Theorem 1 We assume the RO model. If qX , with X ∈ {H2,Usc,N}, is an upper
bound on the number of timesA issues theOX oracle in Game 1, the cDH problem is
(t (k), εcDH(k))-hard inG, and the encryption scheme E is (t (k), εss(k))-semantically
secure, then SCedl is (t (k), qUsc, qN, ε(k))-secure in the SKI–MU insider confiden-
tiality in the FSO/FUO–IND–CCA2 sense, where

ε(k) � εcDH(k) + εss(k) + 4(qH2 + 2qUsc + 2qN + 1)/p + 2qH3/|K|. (1)

Theorem 2 Let qX , where X ∈ {H1,H2,H3,Sc}, be an upper bound on the number
of timesA issues theOX oracle inGame2.Under theROmodel, if the cDH problem is
(t (k), εcDH(k))-hard in G, then SCedl is (t (k), qSc(k), ε(k))-MU insider unforgeable
in the FSO/FUO–sUF–CMA sense, where ε � εcDH + ((qSc + qH3)

2 + q2
Sc)/2p +

(qH3 + 2qH2 + 1)/p.

Theorem 3 Under the RO model, the SCedl scheme achieves (t, ε)-computational
soundness of non-repudiation, where ε � q2

H3
/2p wherein qH3 , is an upper bound on

the number of times A issues queries to the OH3 oracle.

Theorem 4 Under the RO model, if the cDH problem is (t (k), εcDH(k)) hard,
then SCedl achieves (t, qSc, qUsc, qN, ε) unforgeability of non-repudiation evidence
wherein ε � εcDH + 1/|K| + 3/(2p).
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4.1 On the Concrete Choice of the Set of Domain Parameters

A concrete instance of a cryptographic problem is said to have k-bits of security if
any adversary A running in time t and trying to solve the problem succeeds with
probability ε � t/2k . A cryptographic scheme is said to have k-bits of security with
respect to some security attribute, if any attacker playing the security game that
defines the attribute and running in time t , succeeds with probability ε � t/2k .

In SCedl, if the underlying group G and the encryption scheme E are chosen
such that the cDH problem in G has (k + 1)-bits of security and E has (k + 3)-bits of
security then, from (1), it follows thatSCedl is (t, qSc, qUsc, qN, ε)-secure in the SKI–
MU insider confidentiality in the FSO/FUO–IND–CCA2 sense, where ε � t/2k+1 +
t/2k+3 + 4(qH2 + 2qUsc + 2qN + 1)/p + 2t/|K|.As anO(

√
p) algorithm is known

for the discrete logarithm problem, α
√
p � 2k+1 for some “moderate” constant α.

As qH2 + 2qUsc + 2qN + 1 � 2t and |K| � 2k+3, we obtain ε � t/2k . Hence, SCedl

has k-bits of security in the SKI–MU insider confidentiality in the FSO/FUO–IND–
CCA2 sense. A similar analysis shows that under the same assumptions, SCedl has
k-bits of security with regard to (i) (ii) the MU insider strong unforgeability in the
FSO/FUO–sUF–CMA sense, (iii) the soundness of non-repudiation, and (vi) the
unforgeability of non-repudiation evidence.

5 Comparison with Other Schemes

The design of SCedl integrates the randomness reuse idea suggested in [2, 20]. A
SCedl sender (resp. receiver) key pair generation requires one (resp. two) exponen-
tiations. An execution of the Sc algorithm requires Exp(G, 8). Four of the 8 expo-
nentiations can be performed offline, before the receiver public key and the plain
text are provided. If the receiver public key is provided before the plain text (this
may occur in email systems where the recipient is often typed before email text) all
the 8 exponentiations can be performed before the plain text is provided The Usc
and N algorithms require Exp(G, 4) (two pairs of exponentiations with the same
exponent) and two multi-exponentiations. The public verification algorithm requires
two multi-exponentiations. If the encryption scheme E is such that a clear text and
a corresponding ciphertext have the same length, the communication overhead of
SCedl, compared to the CM signature scheme is one group element. Notice that we
neglected the groupmembership tests, as they have a negligible cost inZ∗

q and elliptic
curve groups.

In [19], Malone–Lee (ML) proposes a very efficient design with NINR. Unfor-
tunately, the design, which is analyzed in the RO model under de cDH assumption,
does not achieve insider security. Also the reduction uses the Forking Lemma [6,
22]. Assuming qH = 232, for a security target of 128-bits, the underlying group
G ′ must be chosen to offer 160-bits of security. In the case G ′ is a (sub)group of
the rational points of an elliptic curve G ′ = E(Fq ′), q ′ has to be chosen such that
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|q ′| ≈ 320. An execution of the ML Sc or Usc algorithm requires two exponentia-
tions. As amodular multiplication (performedwith theKaratsuba–Ofman algorithm)
in Fq ′ has complexity ≈ |q ′|1.585. Given the tightness of our reduction, in ECC,
we need |q| = 256 to have 128 bits of security. As Mult(Fq ′) ≈ 1.42 · Mult(Fq),
assuming that a group operation in G ′ requires 14 · Mult(Fq ′) (see1 [16, p. 96]),
Exp(G ′) ≈ 6720 · Mult(Fq ′) ≈ 9570 · Mult(Fq) ≈ 1.78 · Exp(G). The ML design
is about (a) 2.25 times faster for signcryption, and (b) 1.25 times faster for unsign-
cryption than ours.

Bjørstad and Dent’s (BD) design [8] tightly achieves, in the RO model, insider
unforgeability under the cDH assumption and outsider confidentiality under the
gap DH assumption. The scheme does not achieve insider confidentiality. The Sc
algorithm requires Exp(G, 3) operations, the Usc algorithm requires two multi-
exponentiations. The BD construction is about 2.5 times faster than SCedl for sign-
crypted ciphertext generation and about 3 times faster for unsigncryption.

Some of the designs we consider hereunder assume the existence of groups
G1,G2,GT together with a bilinear pairing e : G1 × G2 → GT . Recall that for a
choice of the groups G,G1,G2, and GT (where G is a classical ECC group), with a
target of 128-bits of security, the cost of a pairing evaluation is about ≈ Exp(G, 8),
Exp(G1) ≈ Exp(G, 3), and Exp(G2) ≈ Exp(G, 6) [7, p. 126].

Arriaga et al.’s generic construction with NINR [2] is insider secure in the stan-
dard model. They propose an instantiation of their design which assumes the Deci-
sional Bilinear and the q-Strong DH assumptions. Unfortunately, the unforgeability
is achieved in the registered key model [20], wherein an attacker needs to register to
the challenger the keys pairs it uses in its attack. The design assumes the existence of
groups G,G1,G2,GT such that (i)G1,G2,GT are of order q, (ii) there is a bilinear
pairing e : G1 × G2 → GT and (iii) a one to one and efficiently invertible mapping
from G to Zq .

An evaluation of theSc algorithm requiresExp(G, 2) + Exp(G1) and one multi-
exponentiation inG. TheUsc algorithm requires twomulti-exponentiations, one inG
and one inG2, and a pairing evaluation. For a target of 128 bits of security, we expect
SCedl to be 1.5 times faster for signcryption and 2.8 times faster for unsigncryption.

Matsuda et al. [20]’s two generic constructions with NINR are insider secure
in the FSO/FUO model. The security reduction is provided in the RO model. The
most efficient among the instanciations that achieve insider security in the FSO/FUO
model uses as base schemes, theDHIES encryption scheme [1] and theBLS signature
scheme [9]. The construction assumes the existence of groups G1,G2,GT together
with a bilinear pairing e : G1 × G2 → GT . A Sc operation requires Exp(G1, 3), an
Usc operation requires Exp(G2) and two pairing evaluations. Compared to SCedl,
for a target of 128 bits of security (given that Exp(G1) ≈ Exp(G, 3), Exp(G2) ≈

1 If |G| = 2λ, the cost of Exp(G) using the classical square-and-multiply algorithm is ≈ 1.5 · λ
operations in G. And if G is such that the multiplication of two of its elements requires 14 multi-
plications in Fq then the computational cost of an exponentiation is 14 · 1.5 · λ multiplications in
Fq .
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Exp(G, 6) and the cost of a pairing evaluation ≈ Exp(G, 8)) we expect our design to
be 1.12 times faster for signcryption, and about 3.6 times faster for unsigncryption.

For a comparison with Chiba et al.’s generic construction with NINR [13], we
consider the most efficient among the instantiations they propose. It achieves insider
security in the FSO/FUO model, under the Decisional Bilinear and the q-strong
DH assumptions. Although the insider security is shown in the standard model,
the unforgeability is achieved in the registered key model. Besides, the scheme
assumes the existence of a pairing e : G1 × G2 → GT , withG1 = G2. The Sc algo-
rithm requires Exp(G1, 3) together with a multi-exponentiation. The Usc operation
requires one exponentiation, one multi-exponentiation, and one pairing evaluation.
We expect SCedl to be about 1.5 times faster for signcryption, and about 2.3 times
faster for unsigncryption.

Fan et al.’s design [14] assumes the existence of a bilinear map e : G × G → GT ,
where G and GT are multiplicative cyclic groups. The Sc algorithm requires one
pairing, Exp(G, 4) + Exp(GT ), and (n + 1)/2 group operations in G, where n is
the bit-length output of some collision resistant hash function H : G → {0, 1}n used
in the design. The unsigncryption algorithm requires 3 pairings, Exp(G, 2), and
(n/2 + 1) group operations inG. A signcrypted ciphertext is an element ofGT × G

3.
For a choice of the groups G, G, and GT , with target 128-bits of security, we expect
our design to be about (a) (b) 2.5 times faster for signcryption, and (c) 7.5 times
faster for unsigncryption than Fan et al.’s construction, in addition to having shorter
signcrypted ciphertexts.

In the scheme from [23], defined over the (RSA based) group of signed quadratic
residues J+

N , the Sc algorithm requires Exp(J+
N , 6) and the Usc algorithm requires

Exp(ZN , 3) (we ignore the exponentiation with the RSA public exponent, which
is often small and sparse). Unfortunately, the security reduction uses the Forking
Lemma, which implies a 1/qH security degradation, where qH is the number of digest
queries the attacker issues. For qH = 232, if the target security is 128-bits, the RSA
modulus needs to have a bitlength |N | ≈ 7864 [18]2. Then, considering a square-
and-multiply based exponentiation,Exp(J+

N ) ≈ 11796 · Mult(ZN ), whereMult(ZN )

denotes the cost of a multiplication in ZN . In contrast SCedl can be instantiated over
an elliptic curve (sub)group G = E(Fq) such that |q| ≈ 256 and G has 128-bits of
security. Assuming that a group operation in G requires 14 · Mult(Fq) [16, p. 96],
Exp(G) ≈ 5376 · Mult(Fq). As Mult(ZN ) > 30 · Mult(Fq), for a 128-bits security
target, we expect SCedl over G to be at least 13 times faster (for key generation,
signcryption, unsigncryption, etc.) than the design from [23].

Compared to the ML and BD schemes, which do not require any specificity of
the underlying group and do not achieve insider security, SCedl offers a stronger
security, even if it is less efficient. And, compared to the schemes from [2, 13,
14, 20, 23], SCedl offers a tight security reduction, a better efficiency and a com-
parable or a superior security. We summarize in Table 1 some elements of com-
parisons. The column Assumptions indicates the computational assumptions used
in the security reductions; FL and IS stand respectively for Forking Lemma and

2 see also www.keylength.com

www.keylength.com
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Table 1 Comparison of the proposed signcryption schemes with some SCNINR schemes from the
litterature

Scheme Assumptions FL IS Computations Overhead

ML [19] RO, cDH y n [2, 0, 0] [2, 0, 0] 2 · sz(Zp)

BD [8] RO, cDH n p [2, 0, 0] [0, 2, 0] sz(G) + sz(Zp)

ABF [2] DBDH, q-sDH n y [3, 1, 0] [0, 2, 1] sz(G) + sz(G1)

MMS [20] RO, GDH,
co–cDH

n y [3, 0, 0] [1, 0, 2] sz(G1) + sz(G2)

CMSM [13] DBDH, q-sDH n y [3, 1, 0] [1, 1, 2] sz(Zp) + 4 · sz(G1)

FZT [14] DBDH, DL n y [5, 0, 1] [2, 0, 3] sz(Zp) + 2 · sz(G1)

SSN [23] RO, RSA y y [6, 0, 0] [3, 0, 0] sz(Zp) + 2 · sz(ZN )

Ours: SCedl RO, cDH n y [8, 0, 0] [4, 2, 0] 2 · sz(Zp) + 2 · sz(G)

Insider Security (in the FSO/FUO model). The letters ‘y’ and ‘n’ stand for “yes”
and “no”, respectively; ‘p’ stands for “partial” (BD achieves insider unforgeabil-
ity, but outsider confidentiality). In the column Computations [a, b, c][a′, b′, c′]
means that a Sc (resp. Usc) operation requires a (resp. a′) exponentiations, b (resp.
b′) multi-exponentiations, and c (resp. c′) pairing evaluations. We recall that the
number of exponentiations has to be considered in conjunction with the underly-
ing mathematical structure. For instance, as previously said, if a scheme requires
a bilinear pairing e : G1 × G2 → GT , for a target of 128 bits of security, it holds
Exp(G1) ≈ Exp(G, 3) andExp(G2) ≈ Exp(G, 6). The columnOverhead indicates
the signcrypted ciphertext overhead compared to the cleartext.
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