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Abstract We consider a phase-field model for a mixture of two immiscible, incom-
pressible porous media flow including surface tension effects. At micro-scale, the
model comprises a strongly coupled system of Stokes–Cahn–Hilliard equations. An
evolving diffuse interface having finite width independent of the scale parameter
ε is separating the fluids in the considered model. In order to investigate the well-
posedness of system at micro-scale, we first derived some a-priori estimates. With
the help of two-scale convergence and unfolding operator technique we rigorously
derived the homogenized equations for the microscopic model. For our purpose, we
have used extensions theorems and well-known theories available in the literature
beforehand.

Keywords Phase-field model · Porous media flow · Stokes equations ·
Cahn–Hilliard equations · Existence of solution · Homogenization · Asymptotic
expansion method · Two-scale convergence · Periodic unfolding

1 Introduction

We study a binary-fluid model where the considered fluids are incompressible and
immiscible. The domain U ⊂ R

n , n = 2, 3 is occupied by the binary-fluid mixture.
On the time interval S = (0, T ), the model comprises a system of steady Stokes–
Cahn–Hilliard equations
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−μ�u + ∇ p = λw∇c in (0, T ) ×U, (1.1a)

∇.u = 0 in (0, T ) ×U, (1.1b)

∂t c + u.∇c = �w in (0, T ) ×U, (1.1c)

w = −�c + f (c) in (0, T ) ×U, (1.1d)

where u and w are the unknown velocity and chemical potential, respectively. μ is
the viscosity and λ is the interfacial width parameter. Here c represents microscopic
concentration of one of the fluids with values lying in the interval [−1, 1] in the
considered domain and (−1, 1) within the thin diffused interface of uniform width
proportional to λ. The term f (c) = F ′(c), where F is a homogeneous free energy
functional that penalizes the deviation from the physical constraint |c| ≤ 1. In our
work,we consider F to be a quadratic double-well free energy functional, i.e., F(s) =
1
4 (s

2 − 1)2. One can choose F as a logarithmic or a non-smooth (obstacle) free
energy functional, cf. [3, 4]. The nonlinear term c∇w in (1.1a) models the surface
tension effects, and the advection effect is modeled by the term u · ∇c in (1.1c). The
system (1.1a)-(1.1d) represent the steady Stokes equations for incompressible fluid
and Cahn–Hilliard equations, respectively.

1.1 The Model

We consider U as a bounded domain with a sufficiently smooth boundary ∂U in
R

n , n = 2, 3, S := (0, T ) denotes the time interval for any T > 0, and the unit
reference cell Y := (0, 1)n ⊂ R

n . Yp and Ys represent the pore and solid part of Y ,
respectively, which are mutually distinct, i.e., Ys ∩ Yp = ∅, also Y = Yp ∪ Ys . The
solid boundary of Y is denoted as �s = ∂Ys , see Fig. 1. The domainU is assumed to
be periodic and is covered by a finite union of the cells Y . In order to avoid technical
difficulties, we postulate that: solid parts do not touch the boundary ∂U , solid parts
do not touch each other and solid parts do not touch the boundary of Y . Let ε > 0

Fig. 1 (left) PorousmediumU = U ε
p ∪U ε

s as a periodic covering of the reference cellY = Yp ∪ Ys
(right). The blue interface � is the macroscopic interface between two fluids occupying the pore
space U ε

p
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be the scale parameter. We define the pore space U ε
p := ⋃

k∈Zn Ypk ∩U , the solid
part asU ε

s := ⋃
k∈Zn Ysk ∩U = U\U ε

p and�ε := ⋃
k∈Zn �sk , where Ypk := εYp + k,

Ysk := εYs + k and �sk = Ȳpk ∩ Ȳsk .
Let χ(y) be the Y -periodic characteristic function of Yp defined by

χ(y) =
{
1 y ∈ Y p,

0 y ∈ Y − Y p.
(1.2)

We assume thatU ε
p is connected and has a smooth boundary.We consider the situation

where the pore partU ε
p is occupied by the mixture of two immiscible fluids separated

by an evolving macroscopic interface� : [0, T ] → U represented by the blue part in
Fig. 1, and includes the effects of surface tension on the motion of the interface. We
model the flow of the fluid mixture on the pore-scale using a phase-field approach
motivated by the Stokes–Cahn–Hilliard system (1.1) in [2]. The velocity of the fluid
mixture is assumed to beuε = uε(t, x), (t, x) ∈ S ×U ε

p which satisfies the stationary
Stokes equation. The order parameter cε plays the role of microscopic concentration
and the chemical potential wε satisfies the Cahn–Hilliard equation. pε is the fluid
pressure. The term λcε∇wε models the surface tension forces which acts on the
macroscopic interface between the fluids. Fluid density is taken to be 1. Then, the
Stokes–Cahn–Hilliard system of equations is given by

−με2�uε + ∇ pε = −λcε∇wε S ×U ε
p, (1.3a)

∇.uε = 0 S ×U ε
p, (1.3b)

uε = 0 S × ∂U ε
p, (1.3c)

∂t c
ε + εuε.∇cε = �wε S ×U ε

p, (1.3d)

wε = −ε2�cε + f (cε) S ×U ε
p, (1.3e)

∂nc
ε = 0 S × ∂U ε

p, (1.3f)

∂nw
ε = 0 S × ∂U ε

p, (1.3g)

cε(0, x) = c0(x) U ε
p, (1.3h)

where ∂cε

∂n = ∂ncε and f (s) = s3 − s = F ′(s) = 1
4 (s

2 − 1)2 is the double-well free
energy. The above scaling for the viscosity is such that the velocity uε has a nontrivial
limit as ε goes to zero. Also, 0 ≤ α,β, γ ≤ 2 where α,β, γ ∈ R. We denote (1.3a)–
(1.3h) by (Pε).

2 Preliminaries and Notation

Let θ ∈ [0, 1] and 1 ≤ r, s ≤ ∞ be such that 1
r + 1

s = 1. Assume that
� ∈ {U,U ε

p,U
ε
s } and l ∈ N0, then as usual Lr (�) and Hl,r (�) denote the Lebesgue

and Sobolev spaces with their usual norms and they are denoted by ||.||r and ||.||l,r ,
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cf. [5]. The extension and restriction operators are denoted by E and R, respectively.
The symbol (., .)H represents the inner product on a Hilbert space H and ||.||H
denotes the corresponding norm. For a Banach space X , X∗ denotes its dual and
the duality pairing is denoted by 〈. , .〉X∗×X . By classical trace theorem on Sobolev
space H 1,2

0 (�)∗ = H−1,2(�). The symbols ↪→, ↪→↪→ and d
↪→ denote the continuous,

compact, and dense embeddings, respectively.
We define the function spaces:

H1(U ) = H 1(U )n, H1
0(U ) = H 1

0 (U )n ,
Uε := H1

div(U ) = {η : η ∈ H1
0(U ),∇ · η = 0},

Cε = {cε : cε ∈ L∞(S; H 1(U ε
p)), ∂t cε ∈ L2(S; H 1(U ε

p)
∗)},

Wε = L2(S; H 1(U ε
p)) and L2

0(U ) = {φ ∈ L2(U ) : ∫
U φ dx = 0.}.

We choose uε ∈ Uε, cε ∈ Cε,wε ∈ Wε and pε ∈ L2(S ×U ε
p). We will now state few

results and lemmas which are used in this paper and proofs of these can be found in
literature.

Lemma 1 Let E be a Banach space and E0 and E1 be reflexive spaces with E0 ⊂
E ⊂ E1. Suppose further that E0 ↪→↪→ E ↪→ E1. For 1 < p, q < ∞ and 0 < T <

1 define X := {u ∈ L p(S; E0) : ∂t u ∈ Lq(S; E1)}. Then X ↪→↪→ L p(S; E).

Lemma 2 (Restriction theorem) There exists a linear restriction operator Rε :
L2(S; H 1

0 (U ))d −→ L2(S; H 1
0 (U ε

p))
d such that Rεu(x) = u(x)|U ε

p
for u ∈

L2(S; H 1
0 (U ))d and ∇ · Rεu = 0 if ∇ · Rεu = 0 if ∇ · u = 0. Furthermore, the

restriction satisfies the following bound

||Rεu||L2(S×U ε
p)

+ ε||∇Rεu||L2(S×U ε
p)

≤ C(||u||L2(S×U ) + ε||∇u||L2(S×U )),

where C is independent of ε.

Similarly, one can define the extension operator from S ×U ε
p to S ×U , cf. [1, 8].

Definition 1 (Two-scale convergence) A sequence of functions (uε)ε>0 in L p(S ×
U ) is said to be two-scale convergent to a limit u ∈ L p(S ×U × Y ) if

lim
ε→0

∫

S×U
uε(t, x)φ

(
t, x,

x

ε

)
dx dt =

∫

S×U×Y
u(t, x, y)φ(t, x, y) dx dt dy

for all φ ∈ Lq(S ×U ;C#(Y )).

Lemma 3 For ε > 0, let (uε)ε>0 be a sequence of functions, then the following
holds:

(i) for every bounded sequence (uε)ε>0 in L p(S ×U ) there exists a subsequence
(uε)ε>0 (still denoted by same symbol) and an u ∈ L p(S ×U × Y ) such that

uε 2
⇀ u.



A Multiscale Model of Stokes–Cahn–Hilliard Equations in a Porous … 595

(ii) let uε → u in L p(S ×U ), then uε 2
⇀ u.

(iii) let (uε)ε>0 be a sequence in L p(S; H 1,p(U )) such that uε w
⇀ u in

L p(S; H 1,p(U )). Then uε 2
⇀ u and there exists a subsequence uε

ε>0, still

denoted by same symbol, and an u1 ∈ L p(S ×U ; H 1,p
# (Y )) such that ∇xuε 2

⇀

∇xu + ∇yu1.
(iv) let (uε)ε>0 be a bounded sequence of functions in L p(S ×U ) such that ε∇uε is

bounded in L p(S ×U )n. Then there exist a function u ∈ L p(S ×U ; H 1,p
# (Y ))

such that uε 2
⇀ u, ε∇xuε 2

⇀ ∇yu.

Definition 2 (Periodic Unfolding) Assume that 1 ≤ r ≤ ∞. Let uε ∈ Lr (S ×U )

such that for every t , uε(t) is extended by zero outside ofU . We define the unfolding
operator T ε : Lr (S ×U ) → Lr (S ×U × Y ) as

T εuε(t, x, y) = uε
(
t, ε

[ x

ε

]
+ εy

)
for a.e. (t, x, y) ∈ S ×U × Y, (2.1a)

= 0 otherwise. (2.1b)

For the following definitions and results, interested reader can refer to [7] and
references therein.

Definition 3 Assume that 1 ≤ r ≤ ∞, uε ∈ Lr (S ×U ) and T ε is defined as in
Definition3. Then we say that:
(i) uε is weakly two-scale convergent to a limit u0 ∈ Lr (S ×U × Y ) if T εuε

converges weakly to u0 in Lr (S ×U × Y ).
(ii) uε is strongly two-scale convergent to a limit u0 ∈ Lr (S ×U × Y ) if T εuε

converges strongly to u0 in Lr (S ×U × Y ).

Lemma 4 Let (uε)ε>0 be a bounded sequence in Lr (S ×U ). Then the following
statements hold:

(a) if uε 2
⇀ u, then T εuε w

⇀ u, i.e., uε is weakly two-scale convergent to a u.
(b) if uε → u , then T εuε → u, i.e., uε is strongly two-scale convergent to u.

Lemma 5 Let (uε)ε>0 be strongly two-scale convergent to u0 in L
r (S ×U × �) and

(vε)ε>0 be weakly two-scale convergent to v0 in Ls(S ×U × �). If the exponents
r, s, ν ≥ 1 satisfy 1

r + 1
s = 1

ν
, then the product (uεvε)ε>0 two-scale converges to the

limit u0v0 in Lν(S ×U × Y ). In particular, for any φ ∈ Lμ(S ×U )with μ ∈ (1,∞)

such that 1
ν

+ 1
μ

= 1 we have

∫

S×U
uε(t, x)vε(t, x)φ(t, x) dx dt

ε→0−→
∫

S×U×Y
u0(t, x, y)v0(t, x, y)φ(t, x) dx dy dt.

Before we proceed with the weak formulation, we make the following assumptions
for the sake of analysis of (Pε).
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A1. for all x ∈ U , u0, c0 and w0 ≥ 0.
A2. u0 ∈ L∞(U ) ∩ H 1(U ), c0 ∈ L∞(U ) ∩ H 1(U ) and w0 ∈ L∞(U ) ∩ H 1(U )

such that supε>0 ||u0||L∞(U )∩H 1(U ) < ∞, supε>0 ||c0||L∞(U )∩H 1(U ) < ∞,

supε>0 ||w0||L∞(U )∩H 1(U ) < ∞.
A3. pε ∈ L2(S; H 1(U ε

p)) such that supε>0 ||pε||L2(S;H 1(U ε
p))

< ∞.

2.1 Weak Formulation of (Pε)

Let the assumptions A1–A4 be satisfied. A triple (uε, cε, wε) ∈ Uε × Cε × Wε

is said to be the weak solution of the model (Pε) such that (uε, cε, wε)(0, x) =
(u0, c0, w0)(x) for all x ∈ U , and

με2
∫

S×U ε
p

∇uε : ∇η dx dt = −λ

∫

S×U ε
p

cε∇wε · η dx dt, (2.2a)

∫

S
〈∂t c

ε,φ〉 dt − ε

∫

S×U ε
p

cεuε · ∇φ dx dt +
∫

S×U ε
p

∇wε · ∇φ dx dt = 0, (2.2b)

∫

S×U ε
p

wεψ dx dt = ε2
∫

S×U ε
p

∇cε · ∇ψ dx dt +
∫

S
〈 f (cε),ψ〉 dx dt, (2.2c)

for all η ∈ L2(S; H1
div(U

ε
p)) and φ, ψ ∈ L2(S; H 1(U ε

p)).
We are now going to state the two main theorems of this paper which are given

below.

Theorem 1 Let the assumptions A1–A4 be satisfied, then there exists a unique pos-
itive weak solution (uε, cε, wε) ∈ Uε × Cε × Wε of the problem (Pε) which satisfies

||uε||L4(U ε
p)

+ √
με||∇uε||L2(S×U ε

p)
+ ||wε||L2(S×U ε

p)
+ √

ελ||∇wε||L2(S×U ε
p)

+||cε||L∞(S;L4(U ε
p))

+
√

λ

2
||∇cε||L∞(S);L2(U ε

p))
+ ||∂t c

ε||L2(S;H 1(U ε
p)

∗)

≤ C < ∞ ∀ε, (2.3)

where the constant C is independent of ε.

Theorem 2 (Upscaled Problem (P)) There exists (u, c, w) ∈ U × C × W which
satisfies
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−μ�yu + ∇y p1(x, y) + ∇x p(x) = −λc
(∇xw(x) + ∇yw1(x, y)

)
, S ×U × Yp,

(2.4a)

∇y · u(x, y) = 0, S ×U × Yp,

(2.4b)

∇x · u(x) = 0, S ×U,

(2.4c)

u(x, y) = 0, S ×U × �s,

(2.4d)

∂t c(x, y) + ∇y · c(x, y)u(x, y) = �xw(x) + ∇x · ∇yw1(x, y), S ×U × Yp,

(2.4e)

w(x, y) = −�yc(x, y) + f (c(x, y)), S ×U × Yp,

(2.4f)

∇y · {∇xw(x) + ∇yw1(x, y)} = 0, S ×U × Yp,

(2.4g)

∇y · ∇yw(x) = 0, S ×U × Yp

(2.4h)

c(0, x) = c0(x), U.

(2.4i)

where κ̄(x) = 1
|Yp |

∫
∂Yp

κ(x, y) dy, x ∈ U denotes the mean of the quantity κ over
the pore space Yp.

The systems of equations (2.4a)–(2.4i) is the required homogenized (upscaled)
model of (1.3a)–(1.3h).

3 Anticipated Upscaled Model via Asymptotic Expansion
Method

We consider the following expansions

uε =
∞∑

i=0

εiui, c
ε =

∞∑

i=0

εi ci , w
ε =

∞∑

i=0

εiwi and pε =
∞∑

i=0

εi pi , (3.1)

where each term ui, pi , ci and wi are Y -periodic functions in y-variable. We have
∇ = ∇x + 1

ε
∇y . After the substitution of uε, cε, wε, pε in the problem (Pε), we get

from (1.3a)



598 N. Lakhmara and H. Shankar

ε−1(∇y p0) + ε0(−μ�yu0 + ∇x p0 + ∇y p1)

+ε[−μ{�yu1 + (∇x · ∇y + ∇y · ∇x )u0} + ∇x p1 + ∇y p2]
= ε−1{−λ(c0∇yw0)} + ε0[−λ{c1∇yw0 + c0(∇xw0 + ∇yw1)}] + O(ε). (3.2)

We use (3.1) in (1.3b) then

ε−1∇y · u0 + ε0(∇x · u0 + ∇y · u1) + ε(∇x · u1 + ∇y · u2) + ε2(. . .) = 0. (3.3)

From (1.3d), after plugging the expansions, we obtain

∂t (c0 + εc1) + ε0{∇y · (c0u0)} + ε{∇y · (c0u1) + ∇x · (c0u0) + ∇y · (c1u0)}
= ε−2�yw0 + ε−1{�yw1 + (∇x · ∇y + ∇y · ∇x )w0}

+ε0{�yw2 + (∇x · ∇y + ∇y · ∇x )w1 + �xw0} + O(ε). (3.4)

Next, we substitute the expansions for wε, cε in (1.3e) and use the Taylor series
expansion of f around c0 which leads to

w0 + εw1 = −�yc0 + ε1{−�yc1 − (∇x · ∇y + ∇y · ∇x )c0} + f (c0) + O(ε).
(3.5)

Nowwe substitute the expansions in the boundary conditions. From (1.3c), we obtain

u0 + εu1 + ε2u2 + · · · = 0 on (0, T ) × ∂U ε
p. (3.6)

From (1.3f) and (1.3g), we get

ε−1∇yc0 · n + ε0(∇xc0 + ∇yc1) · n + ε(∇xc1 + ∇yc2) · n + · · · = 0 (3.7)

and

ε−1∇yw0 · n + ε0(∇xw0 + ∇yw1) · n + ε(∇xw1 + ∇yw2) · n + · · · = 0 (3.8)

respectively.
We compare the coefficient of ε0 from (3.5) and integrate it over Yp, then using

(3.7) we get

w0(t, x, y) = f (c0(t, x, y)) in S ×U × Yp (3.9)

We equate the coefficient of ε0 from (3.4) and integrate it over Yp, then using (3.8)
we obtain

|Yp|{∂t c0 + u0 · ∇yc0} = ∇x ·
∫

Yp

{∇yw1 + ∇xw0} dy. (3.10)
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The coefficients of ε−2 and ε−1 from (3.4) give The coefficient of ε−1 from (3.4)
gives

�yw0 = 0 and ∇x · ∇yw0 + ∇y · {∇xw0 + ∇yw1} = 0 (3.11)

From (3.8) and (3.11) we observe that

w0 = w0(t, x). (3.12)

We equate the coefficients of ε−1 from (3.2), then using (3.12) we get

∇y p0 = 0 for y ∈ Yp. (3.13)

The coefficient of ε0 from (3.2) along with (3.12) gives

− μ�yu0 + ∇x p0 + ∇y p1 = −λ c0 (∇xw0 + ∇yw1). (3.14)

Again, using (3.3) and (3.6) one can deduce

∇x ·
∫

Yp

u0(x, y) dy = 0 in S ×U. (3.15)

Equating ε coefficient from (3.5) we get using (3.7)

|Yp|w1 = −∇x ·
∫

Yp

∇yc0 dy (3.16)

4 Proof of Theorem 2.1

4.1 A Priori Estimates

We put η = εuε, φ = λwε, ψ = λ∂t cε in (2.2), and using ∇(cεwε) = cε∇wε +
wε∇cε it yields

√
με||∇uε||L2(S×U ε

p)
+ √

λ||∇wε||L2(S×U ε
p)

+
√

λ

2
ε||∇cε||L∞(S;L2(U ε

p))
≤ C (4.1)

as ε
3
2 < ε for ε ∈ (0, 1).
Next, Young’s inequality gives
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∫

U ε
p

F(cε(t)) dx = 1

4

∫

U ε
p

((cε)2 − 1)2 dx ≤ C ⇒
∫

U ε
p

|cε|4 dx ≤ C ∀t

i.e., sup
ε>0

||cε||L∞(S;L4(U ε
p))

≤ C. (4.2)

We set ψ = 1 as a test function in (1.3e) and then using Poincare’s inequality, we get

||wε −
∫

U ε
p

wε dx ||L2(U ε
p)

≤ C ||∇wε||L2(U ε
p)

⇒ ||wε||L2(S×U ε
p)

≤ C. (4.3)

By Gagliardo–Nirenberg–Sobolev inequality for Lipschitz domain, ||uε||L4(Y ) ≤
C ||∇uε||L2(Y ), where C depend on n and Y . By imbedding theorem, ||uε||L2(Y ) ≤
C ||uε||L4(Y ) ≤ C . By a straightforward scaling argument, we obtain

||uε||L4(U ε
p)

≤ C. (4.4)

From (2.2b) we get,

||∂t c
ε||L2(S;H 1(U ε

p)
∗) ≤ C ∀ε > 0 (4.5)

From proposition III.1.1 in [10] and (2.2a), there exist a pressure pε := ∂t Pε ∈
W−1,∞(S, L2

0(U
ε
p)) such that

〈∇Pε(t), η〉 ≤ με2
∫

S
||∇uε||L2(U ε

p)
||∇ηε||L2(U ε

p)
dt +

∫

S
||cε||L4(U ε

p)
||∇wε||L2(U ε

p)
dt.

Thus by (4.1) and (4.2) it immediately follows that

〈∇Pε(t), η〉 ≤ C ||η||H 1
0 (U ε

p)
n ⇒ sup

t∈[0,T ]
||∇Pε(t)||H−1(U ε

p)
n ≤ C ∀ε > 0. (4.6)

Now, with the help of a-priori estimates from (2.3), the existence of solution of (Pε)

can be shown using Galerkin’s method, cf. [6] and references therein.

5 Proof of Theorem 2 (Homogenization of Problem (Pε))

We start with the construction of an extension of solution fromU ε
p toU in the lemma

below.

Lemma 6 There exists a positive constant C depending on c0, u0, n, |Y |, λ and μ
but independent of ε and extensions (c̃ε, w̃ε, ũε, P̃ε) of the solution (cε, wε, uε, Pε)
to S ×U such that
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||ũε||L∞(S;L2(U )n) + ||c̃ε||L∞(S;L4(U )) + ||w̃ε||L2(S;H 1(U )) + √
με||∇ũε||L2(S×U )n×n

+
√

λ

2
ε||∇ c̃ε||L∞(S;L2(U )n) + √

λ||∇w̃ε||L2(S×U )n + ||∂t c̃
ε||L2(S;H 1(U )∗)

+ sup
t∈[0,T ]

||P̃ε(t)||L2
0(U ) ≤ C.

(5.1)

Lemma 7 Let (uε, Pε, cε,wε)ε>0 be the extension of the weak solution from Lemma
6 (denoted by the same symbol). Then there exists some functions u ∈ L2(S ×
U ; H 1

# (Y ))n, w ∈ L2(S ×U ), P ∈ L2(S ×U × Y ), c, w1 ∈ L2(S ×U ; H 1
# (Y ))

and a subsequence of (uε, Pε, cε, wε)ε>0, still denoted by the same symbol, such
that the following convergences hold:

(i) (uε)ε>0 two-scale converges to u. (ii) (cε)ε>0 two-scale converges to c.
(iii) (wε)ε>0 two-scale converges to w. (iv) (Pε)ε>0 two-scale converges to

P.
(v) (ε∇xcε)ε>0 two-scale converges to ∇yc. (vi) (ε∇xuε)ε>0 two-scale converges

to ∇yu.
(vii) (∇xw

ε)ε>0 two-scale converges to ∇xw + ∇yw1.

Proof The convergences follow from the estimates (5.1), Lemmas3 and 4.

In the next lemma we will discuss the convergence of nonlinear terms for ε → 0.

Lemma 8 The following convergence results hold:

(i) (cε)ε>0 is strongly convergent to c in L2(S ×U ). Thus, T ε(cε) converges to c
strongly in L2(S ×U × Y ), i.e., (cε)ε>0 is strongly two-scale convergent to c.

(ii) T εuε is weakly convergent to u in L2(S ×U × Y )n, i.e., (uε)ε>0 is weakly
two-scale convergent to u.

(iii) T ε[ε∇xcε] converges to ∇yc weakly in L2(S ×U × Y )n, i.e., ε∇xcε is weakly
two-scale convergent to ∇yc.

(iv) The nonlinear terms f (cε), cε∇xw
ε and cεuε two-scale converge to f (c),

c(∇xw + ∇yw1) and cu.

Proof We will prove step by step. From estimate (5.1) for (cε)ε>0 and Theorem 2.1
in [9], there exists a subsequence of (cε)ε>0, still denoted by same symbol, such that
(cε)ε>0 is strongly convergent to a limit c. The rest of (i) and the proofs of (ii) and
(iii) follow from Lemma4. Following the similar arguments as in [2] we can prove
(iv).

Proof (Proof of Theorem 2) (i) We choose a test function φ in (2.2b) defined as
φ = φ(t, x, x

ε
) = φ0(t, x) + εφ1(t, x,

x
ε
), where the functionsφ0 ∈ C∞

0 (S ×U ) and
φ1 ∈ C∞

0 (S ×U ;C∞
# (Y )):

∫

S
〈∂t c

ε,φ〉 dt −
∫

S×U ε
p

cεuε · ε∇φ dx dt +
∫

S×U ε
p

∇wε · ∇φ dx dt = 0.
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We extend the solution to U and pass ε → 0 in the two-scale sense and get

−
∫

S×U
c(t, x, y)∂tφ0(t, x) dx dt −

∫

S×U
c(t, x, y)u(t, x) · ∇yφ0(t, x) dx dt

+
∫

S×U
{∇xw(t, x) + ∇yw1(t, x, y)} ·

(
∇xφ0(t, x) + ∇yφ1(t, x, y)

)
dx dt = 0.

(5.2)

Setting φ0 = 0 and φ1 = 0 in (5.2) yield, respectively,

∇y · {∇xw(t, x) + ∇yw1(t, x, y)} = 0, (5.3)

∂t c(t, x, y) + ∇y · c(t, x, y)u(t, x, y) = �xw(t, x) + ∇x · ∇yw1(t, x, y), (5.4)

in S ×U × Yp. Similarly, choosing a function ψ ∈ C∞
0 (S ×U ;C∞

# (Y )) in (2.2c)
and passing the limit gives

w(t, x, y) = −�yc(t, x) + f (c(t, x, y)) in S ×U × Yp. (5.5)

(ii) We choose the test functions η ∈ C∞
0 (U ;C∞

#) (Y ))n and ξ ∈ C∞
0 (S) and proceed

as in [2]. Then, using Lemmas7 and 8, and passing to the two-scale limit

lim
ε→0

∫

S×U ε
p

Pε(t, x)
{
∇x · η(x,

x

ε
) + 1

ε
∇y · η(x,

x

ε
)
}
∂tξ(t) dx dy dt

=
∫

S×U×Yp

P(t, x, y)∇y · η(x, y)∂tξ(t) dx dy dt

= 0 (5.6)

We get the y-variable independency of the two-scale limit of the pressure P
from (5.6). Further, we consider the function η ∈ C∞

0 (U ;C∞
# (Y ))n such that ∇y ·

η(x, y) = 0, so that

με2
∫

S×U ε
p

∇uε(t, x) : ∇η(x, y)ξ(t) dx dt +
∫

S×U ε
p

Pε(t, x)∇ · η(x, y)∂tξ(t) dx dt

= −λ

∫

S×U ε
p

cε(t, x)∇wε(t, x) · η(x, y)ξ(t) dx dt .

(5.7)

We use the extensions of solution to U (using the same notations), and pass to the
two-scale limit.
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−λ

∫

S×U×Yp

c(t, x, y){∇xw(t, x) + ∇yw1(t, x, y)} · η(x, y)ξ(t) dx dy dt

= μ

∫

S×U×Yp

∇yu(t, x, y) : ∇yη(x, y)ξ(t) dx dy dt

+
∫

S×U×Yp

P(t, x)∇x · η(x, y)∂tξ(t) dx dy dt . (5.8)

The existence of a pressure P1 ∈ L∞(S; L2
0(U ; L2

#(Yp))) and two-scale convergence
results are followed as in [2] for the final step of the upscaling of themodel equations.

∫

S×U×Yp
P(t, x)∇x · η(x, y)∂t ξ(t) dx dy dt +

∫

S×U×Yp
P1(t, x, y)∇y · η(x, y)∂t ξ(t) dx dy dt

+λ

∫

S×U×Yp
c(t, x, y){∇xw(t, x) + ∇yw1(t, x, y)} · η(x, y)ξ(t) dx dy dt

+μ

∫

S×U×Yp
∇yu(t, x, y) : ∇yη(x, y)ξ(t) dx dy dt

= 0.
(5.9)

for all η ∈ C∞
0 (U ;C∞

# (Y ))n and ξ ∈ C∞
0 (S).

From (5.9), we obtain

− μ�yu(x, y) + ∇x p(x) + ∇y p1(x, y) = −λ c(x, y) {∇xw(t, x) + ∇yw1(t, x, y)}
(5.10)

in S ×U × Yp.

6 Conclusion

A two fluids’ mixture in strongly perforated domain is considered in which the fluids
are separated by an interface of thickness of λ in the pore part. From the modeling
of such phenomena in the pore space, we got a strongly coupled system of Stokes–
Cahn–Hilliard equations. The surface tension effects have been taken into account
and the aforementioned interface is assumed to be independent of the scale parameter
ε. Several a-priori estimates are derived and the well-posedness at the micro-scale
is shown. Two-scale convergence, periodic unfolding, and the estimates after using
extension theorems on them, yield the homogenized model.
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7. Francŭ, Jan, Svanstedt, Nils EM.: Some remarks on two-scale convergence and periodic unfold-

ing. Appl. Math. 57(4), 359–375 (2012)
8. Hari Shankar Mahato and MICHAEL Böhm: Homogenization of a system of semilinear

diffusion-reaction equations in an h 1, p setting. Electronic J. Diff. Equ. 2013(210), 1–22
(2013)

9. Meirmanov, A., Zimin, R.: Compactness result for periodic structures and its application to
the homogenization of a diffusion-convection equation. Electr. J. Diff. Equ. 2011(115), 1–11
(2011)

10. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis, vol. 343. American
Mathematical Soc. (2001)


	 A Multiscale Model of Stokes–Cahn–Hilliard Equations in a Porous Medium: Modeling, Analysis and Homogenization
	1 Introduction
	1.1 The Model

	2 Preliminaries and Notation
	2.1 Weak Formulation of (mathcalPε)

	3 Anticipated Upscaled Model via Asymptotic Expansion Method
	4 Proof of Theorem 2.1
	4.1 A Priori Estimates

	5 Proof of Theorem 2 (Homogenization of Problem (mathcalPε))
	6 Conclusion
	References


