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Abstract This article discusses the stability analysis problem of Takagi–Sugeno
(T–S) fuzzy system with additive time-varying delay components. To find a stability
region and to stabilize the system, a state feedback control scheme is considered.
A Lyapunov–Krasovskii functional is constructed to obtain less conservative results
by utilizing the integral inequality based on non-orthogonal polynomials and the
conditions are derived as linear matrix inequality form. The stability conditions are
obtained for the system involving two delay components and the proposed result is
validated through numerical examples.
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1 Introduction

In real world, there exist delays in physical systems inherently. Avoiding these delays
when modeling physical system into mathematical model gives only the approxi-
mated results. In order to get more accurate results, the time delays must be included
in mathematical models. Time-delay systems are fundamental mathematical repre-
sentations of real-world events such as chemical engineering system, power system,
biological system, and so on. The presence of delay causes the system to be unstable
and gives poor performance. As a result, substantial research has been focused on
analysis and synthesis challenges of time-delayed systems. Researchers have been
more focused on determining the stability of systems of various kinds, such as neu-
tral system [4], stochastic system [10], fuzzy system [11], singular system [14], and
hybrid system [15].

The majority of work focused on determining the maximum upper bound for
delayed systemand analyzing its stability. It has been accomplished through the appli-
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cation of Lyapunov stability theory by developing appropriate Lyapunov–Krasovskii
functional (LKF). The construction of proper LKF ensures to get less conservative
results in analyzing stability of the system. There are various types of LKF which
have been used in the literature such as discretized LKF [5], polynomial-type LKF
[6], augmented LKF [7], relaxed LKF [18], etc.

Takagi and Sugeno first introduced the concept of fuzzy IF-THEN rules for non-
linear systems to make it into linear subsystems by employing input–output data.
Another primary role of T–S fuzzy system is that the control and stability conditions
can be expressed as linear matrix inequality (LMI). This methodology is used in non-
linear systems, which has wide applications in many practical problems. Discrete-
time [16] and continuous-time [13] systems are two types of time-varying T–S fuzzy
systems. These systems addressed the problem with time delays such as constant
delay, discrete delay, distributed delay, and additive time-varying delays. In order to
handle system with such delays, various control methodologies have been employed
to stabilize the system, such as state feedback control, sliding mode control, fuzzy
logic control, and adaptive control.

Many researchers have investigated the stability of nonlinear system with addi-
tive time-varying delays. A new stability results have been studied for the nonlinear
system with additive time-varying delays via new augmented LKFs in [2]. In [8],
stability problem of a system involves two additive time-varying delays which have
been investigated by using a quadratic function negative-determination lemma. Sta-
bilization problem of switched T–S fuzzy system has been investigated with additive
time-varying delays and robust stabilization is also investigated in [1]. In [20], a
stability and stabilization problem via new LKFs has been studied for additive time-
varying delayed T–S fuzzy system. In [21], a local stability and stabilization problem
has been investigated for nonlinear systemswith parameter uncertainty and two addi-
tive time-varying delays via T–S fuzzy model.

In this paper, a stability and stabilization problem for T–S fuzzy systemwith addi-
tive time-varying delays has been considered. A state feedback controller involves
state with additive time-varying delays which is employed to stabilize the system.
LKFs are considered in an augmented form and an integral inequality based on
non-orthogonal polynomials has been applied to get less conservative results. Fur-
thermore, the stability conditions have been obtained in the form of LMI. Finally,
the advantages of proposed method have been validated through numerical example.

2 Problem Formulations

Consider the delayed T–S fuzzy model with additive time-varying delays as follows:
Fuzzy Plant Rule i(i = 1, 2, . . . , p) : IF s1 is wi1, and, …, and sq is wiq THEN{

ẋ(t) = Ai x(t) + Bi x(t − �1(t) − �2(t)) + Ciu(t),

x(t) = φ(t), t ∈ [−�̄, 0], t ≥ 0,
(1)
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where x(t) ∈ R
n represents the state vector and u(t) ∈ R

n is control input; sm, wim

(m = 1, . . . , q) represents the premise variables and associated fuzzy sets, respec-
tively; p denotes the number of IF-THEN rules; Ai , Bi andCi are appropriate dimen-
sional known matrices. �1(t), �2(t) are two additive positive time-varying bounded
delays satisfying the following conditions:

0 ≤ �1(t) ≤ �1, �̇1(t) ≤ μ1 < 1, 0 ≤ �2(t) ≤ �2, �̇2(t) ≤ μ2 < 1, (2)

and �̄ = �1 + �2. φ(t) denotes initial condition and it is continuously differentiable
function on [−�̄, 0]. �1 and �2 are constant and positive scalars which represent the
upper bound of two additive time-varying delays.

By adopting standard fuzzy inference, the overall fuzziness of the design can be
denoted as follows:⎧⎨

⎩ẋ(t) =
p∑

i=1
ζi (s(t))

[
Ai x(t) + Bi x(t − �1(t) − �2(t)) + Ciu(t)

]
,

x(t) = φ(t), t ∈ [−�̄, 0], t ≥ 0,
(3)

where s(t) = [s1(t), . . . , sq(t)] and

ζi (s(t)) = ψi (s(t))∑p
i=1 ψi (s(t))

≥ 0, and ψi (s(t)) =
q∏

m=1

wim(sm(t))

withwim(sm(t)) representing the grade membership of sm(t) in wim . It is clear to see
that

ψi (s(t)) > 0, ∀i = 1, . . . , p,
p∑

i=1

ψi (s(t)) > 0, for any s(t).

Hence ζi (s(t)) satisfy, ζi (s(t)) ≥ 0, ∀i = 1, . . . , p,
p∑

i=1

ζi (s(t)) = 1, for any s(t).

Now, to stabilize the delayed T–S fuzzy system, consider the state feedback control
design with additive time delay as follows:

Controller rule: IF s1 is wi1 and , …,and sq is wiq , THEN

u(t) = Kai x(t) + Kbi x(t − �1(t) − �2(t)),

where Kai and Kbi are unknown control gainmatrices. Therefore, the complete fuzzy
control rule is inferred as

u(t) =
p∑

i=1

ζi (s(t))[Kai x(t) + Kbi x(t − �1(t) − �2(t))]. (4)
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By adopting (4) in (3), the closed-loop system can be obtained as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(t) =

p∑
i=1

p∑
l=1

ζi (s(t))ζl(s(t))
[
Ai x(t) + Bi x(t − �1(t) − �2(t))

+Ci
(
Kal x(t) + Kbl x(t − �1(t) − �2(t))

)]
,

x(t) = φ(t), t ∈ [−�̄, 0], t ≥ 0.

(5)

The major goal of this paper is to establish stability of additive time-varying delayed
T–S fuzzy system (5). Besides that, the problem deals with finding the control gain
matrices Kal and Kbl and to stabilize the system (5). Some important lemmas are
introduced before deriving the main results as follows.

Most existing results for delayed systems have been used inmemoryless controller
design of the form u(t) = Kx(t). The controller considered in this paper contains
state vector, also a state with two additive time-varying delays of the form u(t) =
Kax(t) + Kbx(t − �1(t) − �2(t)).

2.1 Preliminaries

This section provides some lemmas that can be used in the main result to obtain
stability criteria of the delay-dependent T–S fuzzy system.

Lemma 1 ([19]) For two scalars a and b with b > a, a vector z : [a, b] → R
n, and

n × n real matrices R > 0, Hi (i = 1, 2) and Y j ( j = 1, 2, 3) satisfying

Θ :=
⎡
⎣Y1 Y2 H1

∗ Y3 H2

∗ ∗ R

⎤
⎦ ≥ 0, the following inequality holds:

∫ b

a
żT (s)Rż(s)ds ≥ 1

b − a
χT
1 Rχ1 + χT

2

(
H1 + HT

1 − b − a

3
Y1
)
χ2

+ χT
3

[
15(H2 + HT

2 ) − 20(b − a)Y3
]
χ3 + 20χT

3 HT
2 L2χ1.

Where χ1 := z(b) − z(a), χ2 := z(b) + z(a) − (2/(b − a))

∫ b

a
z(s)ds,

χ3 := 4

b − a

∫ b

a
z(s)ds − 8

(b − a)2

∫ b

a

∫ b

θ

z(s)dsdθ.

Lemma 2 ([17]) For any constant positive symmetric matrix L ∈ R
m×m, scalar

κ > 0, vector function z : [0, κ] → R
m such that the integration concerned is well

defined, then

κ

∫ κ

0
zT (s)Lz(s)ds ≥

(∫ κ

0
z(s)ds

)T

L

(∫ κ

0
z(s)ds

)
.
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3 Main Results

In this section, the stability criteria conditions are derived by choosing suitable LKFs
and using the above-mentioned lemmas. Now, the following notations are given to
understand the main results:

ei =[
0n×(i−1)n In 0n×(15−i)n

]
(i = 1, . . . , 15),

ξ T (t) =
[
xT (t) xT (t − �̄) xT (t − �1) xT (t − �2) xT (t − �1(t)) xT (t − �2(t))

xT (t − �(t)) xT (t − �1(t) − �2(t)) ẋ T (t)
1

�2 − �1

∫ t−�1

t−�2

xT (s)ds
∫ t

t−�1

xT (s)ds

∫ t

t−�2

xT (s)ds
1

(�2 − �1)2

∫ t−�1

t−�2

∫ t−�1

θ

xT (s)dsdθ
1

�
2
2

∫ t−�1

t−�̄

∫ t−�1

θ

xT (s)dsdθ

1

�
2
1

∫ t−�2

t−�̄

∫ t−�2

θ

xT (s)dsdθ
]
.

Theorem 1 For given scalars and control gain matrices �1 > 0, �2 > 0, μ1, μ2,

Kal , Kbl , the system (5) with additive time-varying delays �1(t), �2(t) satisfying
condition (2) is asymptotically stable if there exist positive definite symmetric matri-
ces P, Qi , Ri , Si (i = 1, 2, 3), Ti (i = 1, 2)andanymatrices Li , Zi (i = 1, 2, 3) such
that the following LMI is satisfied:

Ωi,l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1
1il 0 ϕ3

1 ϕ4
1 0 0 0 ϕ8

1il ϕ9
1il 0 0 0 0 ϕ14

1 ϕ15
1∗ ϕ2

2 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ϕ3

3 ϕ4
3 0 0 0 0 0 ϕ10

3 0 0 ϕ13
3 ϕ14

3 ϕ15
3∗ ∗ ∗ ϕ4

4 0 0 0 0 0 ϕ10
4 0 0 ϕ13

4 ϕ14
4 ϕ15

4∗ ∗ ∗ ∗ ϕ5
5 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ϕ6
6 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ7
7 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ8
8 ϕ9

8il 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ9

9 0 0 0 0 ϕ14
9 ϕ15

9∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ10
10 0 0 ϕ13

10 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ11

11 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ12

12 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ13

13 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ14

14 ϕ15
14∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ15
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (6)

where
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ϕ1
1il = Q2 + Q3 + �1T1 + �2T2 − S1 + 2βN Ai + 2βNCKal , ϕ3

1 = �
2
2

2
P12 + S1, ϕ4

1 = �
2
1

2
P13,

ϕ8
1il = βN Bi + βNCKbl , ϕ9

1il = P11 + AT
i N

T + KT
alC

T NT − βN , ϕ14
1 = −P12�

2
2,

ϕ15
1 = −P13�

2
1, ϕ2

2 = −R2 − R3, ϕ3
3 = (�2 − �1)R1 + R2 − S1 − 1

�2 − �1
S2

− (L1 + LT
1 − �2 − �1

3
Z1), ϕ4

3 = 1

�2 − �1
S2 − (L1 + LT

1 − �2 − �1

3
Z1),

ϕ10
3 = 2(L1 + LT

1 − �2 − �1

3
Z1) − 80LT

2 , ϕ13
3 = 160LT

2 , ϕ14
3 = �

2
2�

2
1

2
PT
14, ϕ15

3 = �
4
2

2
P15,

ϕ4
4 = −(�2 − �1)R1 + R3 − 1

�2 − �1
S2 − (L1 + LT

1 − �2 − �1

3
Z1),

ϕ10
4 = 2(L1 + LT

1 − �2 − �1

3
Z1) + 80LT

2 , ϕ13
4 = −160LT

2 , ϕ14
4 = �

4
1

2
PT
15, ϕ15

4 = �
2
1�

2
2

2
PT
16,

ϕ5
5 = (1 − μ1)Q1 − (1 − μ1)Q2 + (1 − μ1)S3, ϕ6

6 = −(1 − μ2)Q3, ϕ7
7 = −(1 − μ1 − μ2)Q1,

ϕ8
8 = −(1 − μ1 − μ2)S3, ϕ9

8il = BT
i NT + KT

blC
T NT , ϕ9

9 = �
2
1S1 + (�2 − �1)S2 − 2N ,

ϕ14
9 = �

2
1P12, ϕ15

9 = �
2
2P13, ϕ10

10 = −4(L1 + LT
1 − �2 − �1

3
Z1) − 16

[
15(L2 + LT

2 ) − 20(�2 − �1)Z3
]
,

ϕ13
10 = 32

[
15(L2 + LT

2 ) − 20(�2 − �1)Z3
]
, ϕ11

11 = −1

�1
T1, ϕ12

12 = −1

�2
T2,

ϕ13
13 = −64

[
15(L2 + LT

2 ) − 20(�2 − �1)Z3
]
, ϕ14

14 = −2�
2
1�

2
2P14, ϕ15

14 = −�
4
2P15 − �

4
1P15,

ϕ15
15 = −2�

2
1�

2
2P16.

Proof Construct the LKF in the following form:

V (xt ) =
5∑

ν=1

Vν(xt ),

where

V1(xt ) =ηT (t)Pη(t),

V2(xt ) =
∫ t−�1(t)

t−�(t)
xT (s)Q1x(s)ds +

∫ t

t−�1(t)
xT (s)Q2x(s)ds +

∫ t

t−�2(t)
xT (s)Q3x(s)ds,

V3(xt ) =(�2 − �1)

∫ t−�1

t−�2

xT (s)R1x(s)ds +
∫ t−�1

t−�̄

xT (s)R2x(s)ds +
∫ t−�2

t−�̄

xT (s)R3x(s)ds,

V4(xt ) =
∫ 0

−�1

∫ t

t+θ
xT (s)T1x(s)dsdθ +

∫ 0

−�2

∫ t

t+θ
xT (s)T2x(s)dsdθ,

V5(xt ) =�1

∫ 0

−�1

∫ t

t+θ
ẋ T (s)S1 ẋ(s)dsdθ +

∫ −�1

−�2

∫ t

t+θ
ẋ T (s)S2 ẋ(s)dsdθ

+
∫ t−�1(t)

t−�1(t)−�2(t)
xT (s)S3x(s)ds,

with η =col
{
x(t),

∫ t−�1

t−�̄

∫ t−�1

θ
x(s)dsdθ,

∫ t−�2

t−�̄

∫ t−�2

θ
x(s)dsdθ

}
.
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The derivative of V (xt ) is derived as follows:

V̇1(xt )) =2ηT (t)P η̇(t),

= 2ξT (t)

{⎡⎣ e1
�
2
1e14

�
2
2e15

⎤
⎦
T ⎡
⎣ P11 P12 P13

∗ P14 P15
∗ ∗ P16

⎤
⎦
⎡
⎢⎢⎣

e9
�
2
2
2 e3 − �

2
2e14

�
2
1
2 e4 − �

2
1e15

⎤
⎥⎥⎦
}
ξ(t) = ξT (t)Υ1ξ(t), (7)

V̇2(xt ) ≤ξT (t)

{
eT1 [Q2 + Q3]e1 + eT5 [(1 − μ1)Q1 − (1 − μ1)Q2]e5 − (1 − μ1 − μ2)e

T
7 Q1e7

− (1 − μ2)e
T
6 Q3e6

}
ξ(t) = ξT (t)Υ2ξ(t), (8)

V̇3(xt ) = ξT (t)

{
eT2

[ − R2 − R3
]
e2 + eT3

[
(�2 − �1)R1 + R2

]
e3 + eT4

[ − (�2 − �1)R1

+ R3
]
e4

}
ξ(t) = ξT (t)Υ3ξ(t), (9)

V̇4(xt ) ≤ξT (t)
{
eT1 [�1T1 + �2T2]e1 − 1

�1
eT11T1e11 − 1

�2
eT12T2e12

}
ξ(t) = ξT (t)Υ4ξ(t), (10)

V̇5(xt ) ≤ξT (t)

{
�
2
1e

T
9 S1e9 − [e1 − e3]T S1[e1 − e3] + (�2 − �1)e

T
9 S2e9 + (1 − μ1)e

T
5 S3e5

− (1 − μ1 − μ2)e
T
8 S3e8

}
ξ(t) −

∫ t−�1

t−�2

ẋ T (s)S2 ẋ(s)ds

= ξT (t)Υ5ξ(t) −
∫ t−�1

t−�2

ẋ T (s)S2 ẋ(s)ds. (11)

applying Lemma1 in the integral − ∫ t−�1

t−�2
ẋ T (s)S2 ẋ(s)ds yields

−
∫ t−�1

t−�2

ẋ T (s)S2 ẋ(s)ds ≤ξ T (t)

{ −1

�2 − �1
[e3 − e4]T S2[e3 − e4] − [e3 + e4 − 2e10]T

× (
L1 + LT

1 − �2 − �1

3
Z1
)[e3 + e4 − 2e10]

− [4e10 − 8e13]T
(
15(L2 + LT

2 ) − 20(�2 − �1)Z3
)

× [4e10 − 8e13]
}
ξ(t) = ξ T (t)Υ6ξ(t). (12)

The following equation is obtained from the system (5) for any matrix N and any
scalar β

0 =[e9 + βe1]2N
{ p∑

i=1

p∑
l=1

ζi (s(t))ζl (s(t))
[
Ai e1 + Bi e8 + Ci (Kale1 + Kble8

]
− e9

}

=ξT (t)Υ7ξ(t). (13)

From (7) to (13), the upper bound of V̇ (xt ) is obtained as
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V̇ (xt ) ≤
p∑

i=1

p∑
l=1

ζi (s(t))ζl (s(t))ξ
T (t)

{ 7∑
a=1

Υa

}
ξ(t) =

p∑
i=1

p∑
l=1

ζi (s(t))ζl(s(t))ξ
T (t)Ωi,lξ(t),

(14)

where ξ(t) is given in the main results and Ωi,l is given in (6). If the LMI (6) hold
then the condition defined in (14) is satisfied. Thus the system (5) is asymptotically
stable, this completes the proof.

Remark 1 In the derivative of V5(x(t)) there exists single integral term∫ t−�1

t−�2
ẋ T (s)S2 ẋ(s)ds in which integral inequality based on non-orthogonal polyno-

mials has been applied. This integral inequality helps to derive a less conservative
result.

Theorem 2 For given scalars �1 > 0, �2 > 0, μ1, μ2 and unknown control gain
matrices Kal , Kbl , the system (5)with additive time delays�1(t), �2(t) satisfying con-
dition (2) is asymptotically stable if there exist positive definite symmetric matrices
P̌, Q̌i , Ři , Ši (i = 1, 2, 3), Ťi (i = 1, 2) and any matrices Ľi , Ži (i = 1, 2, 3) such
that the following LMI is satisfied:

Ω̌i,l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̌1
1il 0 ϕ̌3

1 ϕ̌4
1 0 0 0 ϕ̌8

1il ϕ̌9
1il 0 0 0 0 ϕ̌14

1 ϕ̌15
1∗ ϕ̌2

2 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ϕ̌3

3 ϕ̌4
3 0 0 0 0 0 ϕ̌10

3 0 0 ϕ̌13
3 ϕ̌14

3 ϕ̌15
3∗ ∗ ∗ ϕ̌4

4 0 0 0 0 0 ϕ̌10
4 0 0 ϕ̌13

4 ϕ̌14
4 ϕ̌15

4∗ ∗ ∗ ∗ ϕ̌5
5 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ϕ̌6
6 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ̌7
7 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌8
8 ϕ̌9

8il 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌9

9 0 0 0 0 ϕ̌14
9 ϕ̌15

9∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌10
10 0 0 ϕ̌13

10 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌11

11 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌12

12 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌13

13 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌14

14 ϕ̌15
14∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌15
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (15)

where

ϕ̌1
1il = Q̌2 + Q̌3 + �1 Ť1 + �2 Ť2 − Š1 + 2βAi Ň + 2βCFal , ϕ̌3

1 = �
2
2

2
P̌12 + Š1, ϕ̌4

1 = �
2
1

2
P̌13,

ϕ̌8
1il = βBi Ň + βCFbl , ϕ̌9

1il = P̌11 + Ň T AT
i + FT

alC
T − β Ň , ϕ̌14

1 = −P̌12�
2
2, ϕ̌15

1 = −P̌13�
2
1,

ϕ̌2
2 = −Ř2 − Ř3, ϕ̌3

3 = (�2 − �1)Ř1 + Ř2 − Š1 − 1

�2 − �1
Š2 − (Ľ1 + ĽT

1 − �2 − �1

3
Ž1),

ϕ̌4
3 = 1

�2 − �1
Š2 − (Ľ1 + ĽT

1 − �2 − �1

3
Ž1), ϕ̌10

3 = 2(Ľ1 + ĽT
1 − �2 − �1

3
Ž1) − 80ĽT

2 ,

ϕ̌13
3 = 160ĽT

2 , ϕ̌14
3 = �

2
2�

2
1

2
P̌T
14, ϕ̌15

3 = �
4
2

2
P̌15, ϕ̌4

4 = −(�2 − �1)Ř1 + Ř3 − 1

�2 − �1
Š2
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− (Ľ1 + ĽT
1 − �2 − �1

3
Ž1), ϕ̌10

4 = 2(Ľ1 + ĽT
1 − �2 − �1

3
Ž1) + 80ĽT

2 , ϕ̌13
4 = −160ĽT

2 ,

ϕ̌14
4 = �

4
1

2
P̌T
15, ϕ̌15

4 = �
2
1�

2
2

2
P̌T
16, ϕ̌5

5 = (1 − μ1)Q̌1 − (1 − μ1)Q̌2 + (1 − μ1)Š3, ϕ̌6
6 = −(1 − μ2)Q̌3,

ϕ̌7
7 = −(1 − μ1 − μ2)Q̌1, ϕ̌8

8 = −(1 − μ1 − μ2)Š3, ϕ̌9
8il = Ň T BT

i + FT
bl C

T ,

ϕ̌9
9 = �

2
1 Š1 + (�2 − �1)S2 − 2Ň , ϕ̌14

9 = �
2
1 P̌12, ϕ̌15

9 = �
2
2 P̌13, ϕ̌10

10 = −4(Ľ1 + ĽT
1 − �2 − �1

3
Ž1)

− 16
[
15(Ľ2 + ĽT

2 ) − 20(�2 − �1)Ž3
]
, ϕ̌13

10 = 32
[
15(Ľ2 + ĽT

2 ) − 20(�2 − �1)Ž3
]
, ϕ̌11

11 = −1

�1
Ť1,

ϕ̌12
12 = −1

�2
Ť2, ϕ̌13

13 = −64
[
15(Ľ2 + ĽT

2 ) − 20(�2 − �1)Ž3
]
, ϕ̌14

14 = −2�
2
1�

2
2 P̌14,

ϕ̌15
14 = −�

4
2 P̌15 − �

4
1 P̌15, ϕ̌15

15 = −2�
2
1�

2
2 P̌16.

Then the control gain matrices can be constructed as Kal = Fal Ň−1, Kbl = Fbl Ň−1.

Proof Let us nowconsider Kal Ň = Fal, Kbl Ň = Fbl andΓ = col{Ň , Ň , Ň , Ň , Ň ,

Ň , Ň , Ň , Ň , Ň , Ň , Ň , Ň , Ň , Ň } where Ň = N−1. Let us now consider the other
matrices as P̌ = Ň P Ň , Q̌i = Ň Qi Ň , Ři = Ň Ri Ň , Ši = Ň Si Ň , Ťi = Ň Ti Ň ,

Ľ i = Ň Li Ň , Ži = Ň Zi Ň . Pre- and post-multiplication of Γ T and Γ in LMI (6)
leads to LMI (15). The proof is complete.

4 Numerical Examples

Example 1 Consider the delayed system (5) with parameters

A1 =
[−2.1 0.1
−0.2 −0.9

]
, B1 =

[−1.1 0.1
−0.8 −0.9

]
, C1 =

[
0.14 0
0.1 1.15

]
,

A2 =
[−1.9 0
−0.2 −1.1

]
, B2 =

[−0.9 0
−1.1 −1.2

]
, C2 =

[
0.13 −0.1
0 0.12

]
.

Membership function is chosen in the form that ζ1(t) = 1

1 + e−2x1(t)
and ζ2(t) = 1 −

ζ1(t). Moreover, let μ1 = 0.1, μ2 = 0.1, �1 = 0.1, β = 0.1 and solving the LMIs in
Theorem2, the obtained maximum upper bound �2 is 3.2562. Also, the control gain
matrices corresponding to Theorem2 are obtained as

Ka1 =
[−197.6648 −197.9296

19.2615 18.8824

]
, Ka2 =

[−197.6648 −197.9296
19.2615 18.8824

]
,

Kb1 =
[
9.9122 2.6148

−0.1506 0.4711

]
, Kb2 =

[
9.9122 2.6148

−0.1506 0.4711

]
.

The state response of the closed-loop system is obtained by assuming �1(t) =
0.4 + 0.1 sin t, �2(t) = 0.8 sin t under initial condition x(0) = [2 − 2]T . The state
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Fig. 1 State trajectories with �1(t) = 0.4 + 0.1 sin t, �2(t) = 0.8 sin t (Example (1))

trajectory of the closed-loop system (5) under the obtained control gain matrices is
expressed in Fig. 1. This implies that the additive time-varying delayed T–S fuzzy
system converge to origin under the proposed controller.

Example 2 Consider the delayed system (5) with C = 0 gives

ẋ(t) =
p∑

i=1

ζi (s(t))
[
Ai x(t) + Bi x(t − �1(t) − �2(t))

]
, (16)

and the parameters are as follows:

A1 =
[−2 0
0 −0.9

]
, B1 =

[−1 0
−1 −1

]
.

Consider the LMIs in Theorem2withC = 0, for different values of �1 andμ1 = 0.1,
μ2 = 0.1 the maximum allowable upper bound �2 is calculated and tabulated in
Table1, and for different values of �2 and μ1 = 0.1, μ2 = 0.1 the allowable upper
bound �1 is calculated and tabulated in Table2. When compared with the existing
results, the acquired results, as shown in the table, are less conservative. Moreover,
for the proposed T–S fuzzy system, the delay-dependent conditions obtained increase
the delay bound.
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Table 1 The obtained MAUBs �2 under μ1 = 0.1, μ2 = 0.1

Methods �1 = 1.0 �1 = 1.1 �1 = 1.2 �1 = 1.5

[12] 1.198 1.027 0.980 0.610

[3] 0.9999 1.0770 0.9725 0.6807

[9] 1.2136 1.1136 1.0137 0.7137

Theorem2 1.7231 1.6953 1.5135 1.2356

Table 2 The obtained MAUBs �1 under μ1 = 0.1, μ2 = 0.1

Methods �2 = 0.3 �2 = 0.4 �2 = 0.5

[12] 1.708 1.645 1.574

[3] 1.8804 1.7798 1.6759

[9] 1.9137 1.8137 1.7136

Theorem2 2.4135 2.3651 2.2355

5 Conclusion

The stability problem of T–S fuzzy system has been studied with two additive time-
varying delays. A state feedback control design has been considered to stabilize the
system. The control design takes the form of a state with additive time delays. In
order to get less conservative results, augmented-type LKFs are constructed and an
integral inequality based on non-orthogonal polynomials has been employed. The
conservative results in the form of linear matrix inequalities have been obtained. Two
numerical examples have been given to illustrate the improvement and efficacy of
the proposed method.
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