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Color Multiscale Block-ZigZag LBP
(CMB-ZZLBP): An Efficient
and Discriminant Face Descriptor

Shekhar Karanwal

Abstract Literature reports numerous local descriptors based on extracting rich
information from color space formats. The color scale format provides more robust-
ness as compared to grayscale counterparts. This work introduces such descriptors
called Color Multiscale Block-ZigZag LBP (CMB-ZZLBP) for Face Recognition
(FR). CMB-ZZLBP is the advanced method of MB-ZZLBP. In MB-ZZLBP, first
mean patch is generated (from 9 regions of the 6 × 6 patch) and then zigzag pixels
are compared to develop MB-ZZLBP code. MB-ZZLBP forms the histogram repre-
sentation of 256, by computing MB-ZZLBP code in each position. The major issue
with MB-ZZLBP is that it restricts its robustness due to grayscale feature extraction.
By introducing CMB-ZZLBP, this issue is resolved effectively. In CMB-ZZLBP,
the MB-ZZLBP feature extraction is done from each component of the RGB color
space format. Further, all three channel features are integrated to build the CMB-
ZZLBP feature size. FLDA is used to achieve compressed feature representation,
and classification is performed from SVM and NN. Experiments justify the effec-
tiveness of CMB-ZZLBP against MB-ZZLBP on Georgia Technology Face Dataset
(GTFD). CMB-ZZLBP proves its dominance against various literature techniques
also. CMB-ZZLBP secures the best ACC of 96.66% on a training size of 9.

Keywords Local feature · Advanced local feature · Feature compression ·
Classification · Dataset · Gray samples · Color samples

1 Introduction

The emergence of local descriptors has given new directions for feature extrac-
tion pertaining to computer vision and pattern recognition. In the last 2 decades,
numerous local descriptors were introduced for distinct applications. Among all
these, LBP [1] is regarded as the most prolific and discriminant descriptor. LBP was
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introduced initially for Texture Analysis (TA), and since then it is utilized auspi-
ciously in various applications. In LBP, neighbors are thresholded to 0 or 1, by
comparing their values with the center pixel, which is further transformed to LBP
code by supplying binomialweights. The basicLBPdescriptor has attracted the atten-
tion of different research groups. As a result, various LBP variants were launched
after the LBP proposal. Some of these LBP variants are explored from [2–6]. All
these LBP variants achieve stupendous outcomes with respect to the application they
were introduced. The grayscale-based descriptors have earned huge respect in the
form of discriminativity achieved by them in different applications. But research has
significantly progressed from grayscale-based descriptors to color-based descrip-
tors. The color-based descriptors achieved notable attention in the last few years. By
using different color space formats, more complementary information is extracted
as compared to grayscale counterparts. In Sect. 2, some of the color-based LBP
variants are discussed which achieve excellent outcomes.

In [7], the authors develop a new LBP variant for Face Recognition (FR) called
MB-ZZLBP. In MB-ZZLBP, a novel method was introduced for feature extraction.
Precisely, there is the usage of mean filter first in 9 different regions of the 6 × 6
image patch to suppress the effect of image noise. After the mean generation, the
zigzag-oriented pixels are compared. After comparison, the code of MB-ZZLBP is
built. Forming code in all places creates theMB-ZZLBP image, which forms the size
of 256. MB-ZZLBP is tested on 2 challenges (i.e. light and expression variations)
and it achieves good results in these conditions.

After carefully analyzing MB-ZZLBP, it is found that MB-ZZLBP discrimina-
tivity is limited by not including color features for classification. To remedy this
challenge, the proposedwork introduces the advanced version ofMB-ZZLBP, the so-
called Color MB-ZZLBP (CMB-ZZLBP) for FR. In CMB-ZZLBP, the MB-ZZLBP
features are extracted from each channel of RGB color format. Further, all three
channel features are integrated to build CMB-ZZLBP size. FLDA [8] is used to
achieve compressed feature representation, and matching is performed from SVM
[9] and NN [10]. Experiments clearly justify the effectiveness of CMB-ZZLBP
against MB-ZZLBP on GTFD [11]. CMB-ZZLBP proves its dominance against
numerous literature techniques also. CMB-ZZLBP secures the best ACC of 96.66%
on a training size of 9.

Road map: Sect. 2 gives related works, MB-ZZLBP and CMB-ZZLBP are
presented in Sect. 3, results are portrayed in Sect. 4 and conclusion with future
prospects are pasted in Sect. 5.

2 Related Works

This part covers up some LBP variants developed by using different color space
formats. Shu et al. [12] introduced Multiple Channels LBP (MCLBP) for color TA.
InMCLBP, the single channel andmultichannel details are fused by using RGB color
format. The resultant feature reflects dependency and correlation among distinct
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channels. Furthermore, MCLBP is expanded to MCLBP + M, in which local color
differences are decomposed into signs and magnitude color differences. Results on
5 texture datasets prove the prominence of developed descriptors. Agarwal et al.
[13] proposed the MCLTCoP for Image Retrieval (IR). In MCLTCoP, each channel
neighborhood (of RGB format) is utilized with the co-occurrence of the V channel
(of HSV format), to create the feature size. Specifically, the difference values derived
from neighborhoods and centers are used for making MCLTCoP size. Experiments
conducted on the Corel-1 k dataset confirm the potency ofMCLTCoP. Tiecheng et al.
[14] discovered the Color Context Binary Pattern (CCBP) for TA and Scene Classifi-
cation (SC). In CCBP, the neighbor and scale context are progressively employed for
correcting the encoded bits. Initially, the intra-channel neighbor details are encoded in
3 states (valued) of scale space and thenmajority voting is utilized for state correction
over different scales. Further distances existing between color features are computed,
and uncertain bits are corrected across neighboring bit propagation. Ultimately, all
histograms are joined for developing the size. For all this evaluation, the RGB color
format is utilized. Experiments on 3 datasets confirm the efficacy of CCBP.

Karanwal et al. [15] invented the DCD for FR. In DCD, the color features of
HELBP, LBP and LPQ are derived by using RGB color space format, and further
all color features are joined to form DCD feature size. The color form of HELBP,
LBP and LPQ is called CHELBP, CLBP and CLPQ. DCD attains superb results on
the GTFD face dataset, by defeating the accuracy of numerous techniques. Vipparthi
et al. [16] invented the CDLQP for IR. By using the RGB format, the edge features
(directional) are acquired among neighbors and reference pixels in 4 directions from
each color channel. CDLQP secure extraordinary results on MIT and Corel-5000
datasets. Karanwal et al. [17] presented 2 novel descriptors for FR, so-called CZZBP
and CMBZZBP. In the former descriptor, 3 different zigzag-oriented designs are
created for 3 channels of RGB color format. Then depending on the designed struc-
ture, zigzag pixels are compared to build the size of the respective color channel. Ulti-
mately, all 3 features (of the channel) are joined to buildCZZBP size. For CMBZZBP,
the median window is used for making size. Both descriptors achieve great results
on GTFD and Faces94 datasets.

Jebali et al. [18] introduced Local Binary Quaternion Rotation Pattern (LBQRP)
for TA. In LBQRP, the color texture is represented by using the Quaternion concept.
The distance within 2 color can be defined as the rotation angle among 2 quaternion
units utilizing the geodesic distance. The local histograms generated after LBQRP
coding are used as the features. The color format utilized is RGB. Experiments on 3
datasets reflect the potential of LBQRP. Sotoodeh et al. [19] proposed 2 descriptors
for IR CRMCLBP and PDM. In CRMCLBP, the RMCLBP concept is applied on 3
channels of the RGB format. Extracted features from 3 channels are joined to form
the CRMCLBP size. In PDM, the ideal set of features is selected from the k-mean
clustering algorithm. Experiments confirm the ability of the proposed descriptors.
Agarwal et al. [20] invented MCLTP for different applications. In MCLTP, cross-
channel information (of the color texture) is capturedby integratingH-V,S-VandV-V
components (acquired from HSV image presentation). The texture details derived in
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such a way contain the color details, and local texture details would also include in
such presentations. Experiments done on 5 datasets shows the capability of MCLTP.

Umer et al. [21] developed the biometric recognition structure by using all phases
of FR. During pre-processing, facial landmarks are detected which is followed by
SIFT for feature extraction. The task of classification is assigned to SVMs. Experi-
ments confirm the potency of the proposed method on 5 challenging datasets. Umer
et al. [22] developed the FR system using all phases of FR. In the pre-processing step,
facial landmarks are detected from which facial regions are extracted. Then SIFT is
utilized for feature extraction which undergoes distinct learning methods to produce
different feature representations. Eventually, the matching is done by SVMs. Results
illustrate the developed method’s efficacy.

3 Description of Descriptors

This section provides the explanation of grayscaleMB-ZZLBP and the proposed one
Color MB-ZZLBP.

3.1 Multiscale Block-ZigZag LBP (MB-ZZLBP)

In [7], Karanwal et al. introduced the MB-ZZLBP descriptor for FR. MB-ZZLBP is
the grayscale-based descriptor. In MB-ZZLBP, the first filtration of the mean is used
in 9 regions of the 6 × 6 image patch. Each region reflects the dimension of 2 × 2.
Aftermean generation, a 3× 3 patch evolves. By usingmean in regions, the unwanted
image noise is reduced. Then pixels placed as per zigzag orientation are compared.
Precisely, the immediate neighbor (as per zigzag orientation, of current/previous
pixel) is differentiated from the current/previous pixel. This procedure is conducted
in eight locations of the 3 × 3 patch. As a consequence, eight difference values
are obtained in eight positions of the 3 × 3 patch. Those difference values that are
higher or equal to 0 are supplied with label 1 else label 0 is supplied. Imposing the
binomial weights to a generated binary pattern forms the MB-ZZLBP code after
adding values, for one pixel location. Developing MB-ZZLBP code in all positions
forms the MB-ZZLBP map image, whose size (histogram) is 256. Equations 1 and
2 show the MB-ZZLBP code procedure for a single location. In Eq. 1, the mean is
generated from 9 regions. Li,j is equipped with region values and Ui,j contain mean
values. Equation 2 computes the MB-ZZLBP code. S, N, UN,s and UN,s+1 signify
the total size, radius, current pixel and neighbor pixel (as per zigzag orientation).
Figure 1 shows the MB-ZZLBP illustration.

Ui,j = mean
(
Li,j

)
(1)
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Fig. 1 MB-ZZLBP illustration

MB − ZZLBPS,N(xc) =
∑S−1

s=0
i
(
UN,s − UN,s+1

)
2s, i(c) =

(
1 c ≥ 0
0 c < 0

)
(2)

3.2 Color MB-ZZLBP (CMB-ZZLBP)

The authors of [7] have introduced the novel local (face) descriptor MB-ZZLBP.
MB-ZZLBP was tested on two challenges, i.e. light and expression variations. MB-
ZZLBP achieved good results under these conditions by using EYB and Faces94
datasets. The major part which is missing in [7] is the color form of MB-ZZLBP,
which adds significant discriminativity if used. This work takes this challenge and
proposes the novel descriptor CMB-ZZLBP for FR. Literature reveals that the color
form generates more discriminativity as compared to the gray form, therefore color-
based descriptor is proposed. The detailed explanation of CMB-ZZLBP is as follows.

In CMB-ZZLBP, the MB-ZZLBP concept is deployed on three channels of RGB
color format. Feature sizes generated from all three channels are integrated to form
the feature size of the CMB-ZZLBP descriptor. Each channel forms the size of 256,
therefore CMB-ZZLBP size is 768. Figure 2 shows the illustration of CMB-ZZLBP
through the transformed images with their histograms. To make a more efficient
feature descriptor, this feature is projected in lower dimensions by using FLDA.
Details pertaining to FLDA size are elaborated in the experiments section. Then the
performance of the compact feature descriptor is evaluated by three matching algo-
rithms. Two areRBF and POLY,which are SVM-based classification techniques. The
other one is the Exhaustive Search Concept (ESC), which is an NN-based classifica-
tion technique. In this concept, cosine distance is utilized for measuring similarity.
Figure 3 displays a schematic diagram/framework of the proposed work. The phases
of feature compression and classification are also conducted on MB-ZZLBP.
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Input image

R image G image                        B image

MB-ZZLBP-R          MB-ZZLBP-G         MB-ZZLBP-B 

MB-ZZLBP-R size   MB-ZZLBP-G size  MB-ZZLBP-B size

Integrating all, the size of CMB-ZZLBP 

Fig. 2 CMB-ZZLBP illustration

4 Experiments

This section initiates by introducing the description of the dataset used for accuracy
analysis. Then feature size essentials are discussed pertaining to evaluated descrip-
tors. Next accuracy is analyzed on four subsets (of the GTFD [11] dataset) and
finally, the proposed descriptor is compared with the numerous techniques from the
literature.
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Input image, RGB format

R channel image

G channel image

B channel image

Rescaling all channels, to reduce 
computational cost and deploying 
MB-ZZLBP to all three channels 
for feature extraction 

Integrating all MB-ZZLBP 
features (from 3 channels) 
to form CMB-ZZLBP size 

Feature compression 
by FLDA

Classification by SVM 
and NN 

Fig. 3 Block diagram of proposed work

Fig. 4 Some samples of GTFD dataset

4.1 Dataset Information

The dataset taken for accuracy analysis is GTFD. GTFD dataset is equipped with
750 color images with respect to 50 subjects. Each subject contributes 15 samples
taken in 4 different conditions. These are scale, pose, expression and light variations.
Resolution of samples in GTFD dataset is not consistent throughout. Some samples
of GTFD dataset are furnished in Fig. 4. Figure 4 delivers some of the facial images
of the GTFD face dataset. Precisely, the 3 subject images are displayed in Fig. 4.

4.2 Feature Size Essentials with Respect to Evaluated
Descriptors

For MB-ZZLBP evaluation, the color samples are transformed to grayscale and then
they are downsampled to 51 × 47. Size generated by MB-ZZLBP is 256. For CMB-
ZZLBP evaluation, 3 channels are extracted (separate) from the RGB image, and
then each channel is downsampled to 51 × 47. The rescaling motive is to lower
the cost of computation. This is the face pre-processing step applied before feature
extraction is performed. Figure 5 shows the face pre-processing step applied before
deploying feature extraction. From each rescaled channel, MB-ZZLBP is deployed
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Fig. 5 Pre-processing steps
before feature extraction

Input image

R image          G image           B image

Rescaled image R           Rescaled image G        Rescaled image B

for feature extraction. Ultimately, all three channel features are merged to generate
CMB-ZZLBP feature size. Therefore, CMB-ZZLBP builds the feature size of 768.
On both MB-ZZLBP and CMB-ZZLBP, the sub-space technique FLDA is imposed
for the feature compression. After PCA compression, the size produced is 190 and
after LDA compression, the size generated is 12. LDA size is utilized for accuracy
analysis. MATLAB R2018a is used for testing.

4.3 Accuracy Analysis on Different Subsets

The accuracy is analyzed by the formula depicted in Eq. 3. In Eq. 3 the elements
ACC, Tstse and FMS imply the evaluated accuracy, test size/set and false matched
samples. Another element Trgse implies the training size, used for the specifications of
training details. On each subset (created from Trgse/Tstse), the ACC is analyzed after
recording FMS on Tstse. FMS are those which are falsely classified. Suppose FMS
generate 5 samples on Tstse = 400 (means Trgse = 7 and Tstse = 8, per subject), then
analyzed ACC = 395/400 = 98.75%. Similarly, ACC is analyzed on every subset:

[
ACC = Tstse − FMS

Tstse
∗ 100

]
(3)

For this work, descriptors are evaluated on Trgse = 6 : 9 and Tstse = 9 : 6. On each
subset, the finest ACC is analyzed after executing the classifier 15 times. All ACC
obtained are placed in Table 1. Table 1 confirms the capacity of color descriptors
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Table 1 ACC analysis through table on GTFD

Trgse essentials

Trgse = 6 Trgse = 7 Trgse = 8 Trgse = 9

All approaches FMS/ACC

MB-ZZLBP + FLDA + SVM (RBF) 42/90.66 30/92.50 25/92.85 17/94.33

MB-ZZLBP + FLDA + SVM (POLY) 63/86.00 52/87.00 40/88.57 31/89.66

MB-ZZLBP + FLDA + NN (ESC Cosine) 52/88.44 36/88.50 38/89.14 28/90.66

CMB-ZZLBP + FLDA + SVM (RBF) 26/94.22 20/95.00 16/95.42 10/96.66

CMB-ZZLBP + FLDA + SVM (POLY) 36/92.00 28/93.00 23/93.42 16/94.66

CMB-ZZLBP + FLDA + NN (ESC Cosine) 42/90.66 34/91.50 27/92.28 23/92.33

Fig. 6 ACC analysis through graph on GTFD

against the grayscale descriptors. CMB-ZZLBP reflects its potential more than MB-
ZZLBP on all subsets. The best ACC of CMB-ZZLBP is extracted from the RBF
classification. The ACC analysis through the graph is shown in Fig. 6.

4.4 Accuracy Comparison with Literature Techniques

As SVM (RBF) extracts the finest ACC from CMB-ZZLBP, RBF classification
results are used for comparison against 10 other techniques from the literature. These
10 techniques pertain to Local, Global/DR, Sparse Representation (SR) Classifica-
tion, Regression Classification and Dictionary-Based. The ACC attained from these
12 are as follows.
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Table 2 ACC comparison on GTFD

Trgse essentials

Trgse = 6 Trgse = 7 Trgse = 8 Trgse = 9

Techniques Technique type ACC in %

DCD [15] Local 88.66 90.25 92.57 93.33

CLPQ [15] Local 80.66 83.50 84.57 87.33

FDLPP [23] Dimension Reduction NE 83.08 86.19 86.33

FLPP [23] Dimension Reduction NE 72.50 73.52 76.22

GBSBP [24] Local 87.55 89.75 91.71 92.33

GBSBP + LPQ [24] Local 90.66 91.50 93.14 94.33

ICS_DLSR [25] SR Classification 78.45 81.47 NE NE

RGLRR [25] Regression Classification 79.47 82.62 NE NE

FKESRC [26] SR Classification 70.29 NE NE NE

KED [26] Dictionary-Based 65.07 NE NE NE

CMB-ZZLBP Local 94.22 95.00 95.42 96.66

*NE-Not Evaluated

DCD [15], CLPQ [15], GBSBP [24] and GBSBP + LPQ [24] obtain the ACC
of [88.66 90.25 92.57 93.33%], [80.66 83.50 84.57 87.33%], [87.55 89.75 91.71
92.33%] and [90.66 91.50 93.14 94.33%] when Trgse = 6 : 9. FDLPP [23] and FLPP
[23] secureACCof [83.08 86.19 86.33%] and [72.50 73.52 76.22%] on Trgse = 7 : 9.
ICS_DLSR [25] andRGLRR [25] attain ACCof [78.45 81.47%] and [79.47 82.62%]
when Trgse = 6 : 7. FKESRC [26] and KED [26] procure the ACC of 70.29 and
65.07% when Trgse = 6. Table 2 presents all the ACC. It is judged from Table 2 that
CMB-ZZLBP is the best among all all subsets.

5 Conclusion and Future Prospect

This work proposed a novel descriptor CMB-ZZLBP for FR. CMB-ZZLBP is the
advancement of MB-ZZLBP. In MB-ZZLBP, the first mean patch is generated (from
9 regions of the 6 × 6 patch) and then zigzag pixels are compared to develop MB-
ZZLBP code. MB-ZZLBP forms the histogram representation of 256, by computing
MB-ZZLBPcode in eachposition. Themajor issuewithMB-ZZLBP is that it restricts
its robustness due to grayscale feature extraction. By introducing CMB-ZZLBP, this
issue is resolved effectively. In CMB-ZZLBP, the MB-ZZLBP feature extraction is
done from each channel of RGB color format. Further, all three channel features
are integrated to build the CMB-ZZLBP feature size. FLDA is used to achieve
compressed feature representation, and matching is conducted from SVM and NN.
Experiments clearly justify the efficacy of CMB-ZZLBP against MB-ZZLBP on the
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GTFD face dataset. CMB-ZZLBP proves its dominance against numerous literature
techniques also.

The proposed work can be extended to futuristic research by incorporating some
points which remain uncovered in the proposed work. First, some other hybrid color
format can be utilized for improving the accuracy. Second, the extraction of regional
features would immensely improve the accuracy and third integration of global and
regional features in 1 framework. All these points build a proposal for future research.
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Effect of Noise in the Quantum Network
Implementation of Cop and Robber
Game

Anjali Dhiman and S. Balakrishnan

Abstract The quantum network designed for the implementation of quantum cop
and robber game in the presence of a noisy environment is investigated. In particular,
the amplitude damping noise model and phase damping noise model are studied
thoroughly by calculating the fidelity of the quantum states. From the analysis of
fidelity graphs, we have observed that there exist suitable entangling operators which
can suppress the noises in the quantum network.

Keywords Game theory · Quantum games · Quantum networks · Noise models

1 Introduction

Since the emergence ofmodern physics, quantummechanics has remained the center-
piece of interest among the research community. Quantum entanglement is one of the
most fascinating quantum phenomena which has revolutionized the field of modern
computation and has gifted modern science with a variety of paradigms of potential
fields like quantum computation [1, 2], quantum cryptography [3, 4] and manymore.
Especially, the field of quantum information and transmission is gaining immense
popularity and progress due to the revolutionary results that are unveiled. With the
increasing introduction of quantum physics in almost every field, even the game
theory has not remained untouched. In 1962, John von Neumann and Oskar Morgen-
stern were the first to bring the notion of game theory, which is the study of decision-
making when two or more parties are fighting for the same interests [5]. When game
theory is studied from the quantum perspective, it increases the strategic space of
the players due to the principle of superposition of states, which allowed them to
achieve optimal results. However, the quantum game theory gained prominence in
1999, when Eisert, Wilkens and Lewenstein introduced the EWL scheme to quantize
the simultaneous game, namely the Prisoner’s dilemma [6].
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Though the game theory finds its application in various fields such as economics,
biology and social science [7], the aspect of data transmission between distant parties
has always remained a concern in quantum communication. Therefore, quantum
networks have become fundamentally important to develop a system for secure
quantum communication. There are schemes like the peer-to-peer scheme and the
client–server scheme which are available for investigating the quantum games on
quantum networks [8]. Although both the schemes are originally designed for the
implementation of simultaneous games, which are more popular among game theo-
rists; recent work [9] has emphasized on a sequential game, namely the cop and
robber game which was first defined by Nowakowski and Winkler [10].

Practically, when the quantum network is exposed to the environment, it becomes
inevitable to prevent the quantum data from outside disturbance. The direct interac-
tion of the quantum network with the surroundings causes decoherence in the data
transmission, which is a serious concern in quantum communication [2]. There are
several noise models which are categorized based on their distinctive properties to
study decoherence. For instance, collective noise is caused by the specific kind of
symmetry arising between the environment and qubits, coupling together without
any distinction [11], on the other hand, Pauli’s noise channels are the set of noise
processes such as depolarizing channel, bit-flip channel and phase bit-flip channel
[12]. However, the noise models like amplitude damping (AD) and phase damping
(PD) have beenwidely studied and have special importance as they have the potential
to cause entanglement sudden death (ESD) [13–16].

In this work, we intend to study the quantum network designed for the imple-
mentation of the quantum version of the cop and robber game, when it is exposed
to the external environment. Thus, we have incorporated two noise forms, namely
amplitude damping and phase damping in the quantum circuit [17]. In this work, we
have considered the case where noise is acting on only one channel of the circuit,
while another channel remains unaffected. In order to get a comprehensive view of
the damping caused by the noise, we have calculated the fidelity of the quantum
states. Interesting inferences are obtained from the analysis of the fidelity graphs.
Implications of the results are discussed in the conclusion.

2 Quantum Version of Cop and Robber Game

The cop and robber game is a popular sequential game. In the classical version of this
game, the player has certain alternatives which he/she chooses to make consistent
decisions. The other player has the choice to play rationally or not [18]. The game has
also been studied in [19], where the players play their moves on the graph, and the
position of players is represented by the vertices on the graph. The quantum version
of the graphically studied cop and robber game has been achieved using graph-
preserving quantum operations in [20]. However, we have considered the quantum
version of the cop and robber game studied in [9], where one of the players is the
quantum player and another is the classical player. The quantum player is free to
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Fig. 1 The quantum player
playing first by applying
non-local operator ‘J’ and
the classical player applying
local operators ‘K1’ and
‘K2’

apply the quantum entangling operators, while the classical player can use only local
operators. One of the players begins with the initial state |0 and |0, and thereafter
applies their respective strategy one by one to reach their desired final state. The
different cases are considered in the game such as robber playing as the quantum
player and allowed to apply a non-local operator on the initial qubits, and hence
entangled state is obtained. On the entangled state, the classical player, cop applies
the local operators. Similarly, in another case, the cop is considered as the quantum
player, hence, he/she applies non-local operator, whereas the robber is considered as
a classical player and applies local operator on the given state. The general form of
the quantum version of the game is represented in Fig. 1 using a block diagram. The
quantum player who applies two-qubit non-local operator J is given as [21]

J =

⎛
⎜⎜⎝

x1 0 0 −iy1
0 x2 −iy2 0
0 −iy2 x2 0

−iy1 0 0 x1

⎞
⎟⎟⎠ (1)

where

x1 = e
−iC3
2 cos

C1 − C2

2
; x2 = e

iC3
2 cos

C1 + C2

2

y1 = e
−iC3
2 sin

C1 − C2

2
; y2 = e

iC3
2 sin

C1 + C2

2

whereC1,C2 andC3 are the entanglingparameters such that π
2 ≥ C1 ≥ C2 ≥ C3 ≥ 0.

The classical player is bound to use single-qubit operators whose general form is
given as [2]

K1 =
(
a1 −b1
b∗
1 a∗

1

)
, K2 =

(
a2 −b2
b∗
2 a∗

2

)
(2)

where

a1 = cos
(γ1

2

)
e

−i
2 (δ1+β1); b1 = sin

(γ1

2

)
e

i
2 (δ1−β1)

a2 = cos
(γ2

2

)
e

−i
2 (δ2+β2); b2 = sin

(γ2

2

)
e

i
2 (δ2−β2)
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where 0 ≤ γi ≤ π and −π ≤ δi , βi ≤ π for i = 1, 2.
Consider the case in which the quantum player first applies entangling operator J

on the initial state |ψi 〉 = |00〉 and afterwards the classical player applies the local
operator (K1 ⊗ K2) to the given state and reach the favorable final state |ψ f

〉
. If the

quantum player is the cop, then the desired final state for him to reach is either |00〉
or |11〉, whereas if a robber is the quantum player, then he desires to achieve the
final state |01〉 or |10〉. The various winning strategies for the quantum player are
obtained and analyzed thoroughly in [9]. The final state which the player wants to
reach is dependent on the quantum player. The game has been analyzed from the
perspective of a quantum player. It is observed that the quantum player is able to
reach his favorable final state only when a certain set of local operators is adapted
by the classical player. There exists no universal entangling operator that can take a
quantum player to his desired state irrespective of the local strategies of the classical
player [9]. Further, the quantum version of the cop and robber game is implemented
on the quantum circuit using various unitary operators, and the final quantum state
|ψ f

〉
is achieved using the peer-to-peer scheme, as shown in Fig. 2.

The first block represents the operations applied by the quantum player, starting
from the initial qubits A and B, while the second block is representing the classical
player applying the local operations on the qubits A and B. Player 1 sends the state
|ψ〉 to player 2 which is given as

|ψ 〉 = 1√
2

[
icos

(
C1 − C2

2

)
|00〉AB − sin

(
C1 − C2

2

)
|11〉AB

]
⊗ |0 f 〉A1B1 (3)

Here, f is the measurement on qubit B1 which can be 0 or 1. It can be noticed from
Fig. 2 that the quantum state |ψ〉 would interact with the environment during the

Fig. 2 Thequantumcircuit affected bynoisewhenplayer 1 transfers the quantumstate |ψ〉 to player
2. σx , σy and σz are the Pauli operators and U (C1),U (C2), K1 and K2 are the single-qubit
operators. The lightning sign on channel B indicates the noise in the quantum network
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transmission from player 1 to player 2. Details of arriving at Eq. (3) can be found in
[9].

3 Noise Models

The quantum circuit implementation of the cop and robber game is considered to
be ideal. In reality, any practical quantum transfer always admits the interaction
of the qubit with the environment. These interactions cause noise in the quantum
channels leading to the loss of information. To understand the effect of the external
environment on the dynamics of the open quantum system, the noise is distinguished
according to its unique properties. In this work, we intend to focus on the two noise
models, namely the amplitude damping model and the phase damping model.

3.1 Amplitude Damping (AD) Noise Model

In the process of amplitude damping, the loss of quantum information is caused by
the dissipation of energy when the system interacts with the environment which acts
as a vacuum bath. The dynamics of amplitude damping is characterized by a general
unitary operator known as the Kraus operator [2], given as

E0 =
[
1 0
0

√
1 − η

]
; E1 =

[
0

√
η

0 0

]
(4)

Here, η is the decoherence rate ranging from 0 to 1 (0 ≤ η ≤ 1). Note that Kraus
operators mentioned above are for the single-qubit noise channel.

3.2 Phase Damping (PD) Noise Model

The process of loss of quantum information exclusively occurring through the
quantummechanical process and without the loss of energy is called phase damping.
The Kraus operators that describe the phase damping are given as [2]

E0 = √
1 − η

[
1 0
0 1

]
; E1 = √

η

[
1 0
0 0

]
; E2 = √

η

[
0 0
0 1

]
(5)

Here η is the decoherence rate such that 0 ≤ η ≤ 1.
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The effect of noise can be investigated by determining the fidelity between the
initial state and the final state in the presence of noise. The steps to calculate fidelity
are as follows [17]:

1. Determine the density matrix ρ for the initial quantum state |ψ〉

ρ = |ψ〉〈ψ | (6)

where |ψ〉 is the initial pure state.
2. Apply the Kraus operator of the particular noise model considered on the state

such as

ρk =
∑
i

EiρE
†
i (7)

where Ei are the Kraus operators of the selected noise model.
3. Calculate fidelity by comparing the initial state and final state after the noise is

incorporated using

F = 〈ψ |ρk |ψ 〉 (8)

This is the expression used to calculate the fidelity of the network.

4 Calculation and Analysis of Fidelity

During the transmission of quantum state |ψ 〉 from the quantum player to the clas-
sical player, noise can be created due to the interaction between the state and the
environment. Figure 2 depicts this scenario, where the lightning symbol is used to
indicate the noise. As a result of noise, the state |ψ 〉 given by Eq. (3) is affected. It can
be noticed in the quantum circuit that the noise is affecting only channel B, whereas
channel A remains unaffected.We consider the amplitude and phase dampingmodels
to understand the effect of noise in the quantum circuit. We can do so, by calculating
the fidelity of the quantum states.

4.1 Effect of Amplitude Damping (AD)

Firstly, we consider the case of amplitude damping introduced in the quantum circuit.
The fidelity between the initial state |ψ 〉, transferred by player 1 to player 2, and
the final state, |ψ 〉 getting affected by the noise channel before reaching player 2,
is calculated using the steps mentioned in the previous section. The initial quantum
state |ψ 〉 is expressed in matrix form as



Effect of Noise in the Quantum Network Implementation of Cop … 21

|ψ 〉 =

⎡
⎢⎢⎣

icos
(C1−C2

2

)
0
0

−sin
(C1−C2

2

)

⎤
⎥⎥⎦

AB

(9)

Following the steps to calculate fidelity as discussed in Sect. 2,

1. The density matrix ρ for the initial state |ψ 〉 is obtained as

ρ =

⎡
⎢⎢⎣

cos2θ 0 0 −isinθcosθ
0 0 0 0
0 0 0 0

isinθcosθ 0 0 sin2θ

⎤
⎥⎥⎦ (10)

where θ = (C1−C2
2

)
. Note that C1 and C2 are parameters of entangling operator

J such that π
2 ≥ C1 ≥ C2 ≥ 0. To minimize the mathematical complexity, we

have assumed C3 = 0.

2. Apply Kraus operators on the above state such that ρ AD
k = ∑

i
Eiρ(Ei )

†. Note

that Ei are the single-qubit Kraus operators which are assumed to act on the
second qubit. Therefore, we have

ρ AD
k =

⎡
⎢⎢⎣

cos2θ 0 0 −(√
1 − η

)
isinθcosθ

0 0 0 0
0 0 0 0(√

1 − η
)
isinθcosθ 0 0 (1 − η)sin2θ

⎤
⎥⎥⎦ (11)

3. The expression obtained for fidelity, by taking the inner product between the
initial state |ψ 〉 and final state ρ AD

k |ψ 〉, is given by

FAD = [
cos2θ + (1 − η)sin2θ

]2
(12)

This is the expression for fidelity due to amplitude damping in the quantum
network. Note that if the decoherence rate η becomes zero, then the fidelity reaches
the maximum. This suggests that the transmission of the quantum state is achieved
with maximum accuracy in the absence of noise. It is important to mention that the
same expression of fidelity is obtained when the amplitude damping acts on channel
A. Using the expression for fidelity FAD , given by Eq. (12), a graph is plotted as
shown in Fig. 3. Note that we consider the term θ = (C1−C2

2

)
as an effective entan-

gling parameter. From the graph, it can be observed that the fidelity of the quantum
states decreases with the increase in the rate of decoherence. Thus, it is evident
that the higher the decoherence rate (η), the lower is the fidelity. When entangling
parameters are equal, C1 = C2, θ becomes 0, thus the fidelity of the network remains
maximum irrespective of the decoherence rate.
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Fig. 3 Effect of amplitude damping on the fidelity of quantum circuit, with respect to entangling
parameter term θ and decoherence rate η

This implies that the set of entangling operators with parameters C1 = C2

supresses the noise in the quantum network, even if the damping reaches the
maximum value. Further, the effective entangling parameter θ becomes π

4 , when
the entangling parameters are C1 = π

2 and C2 = 0 corresponding to the CNOT
operator, J

(
π
2 , 0, 0

)
, the effect of damping on the circuit is maximum. It is clear from

the graph that the fidelity decreases with effective entangling parameters other than
θ = 0.

4.2 Effect of Phase Damping (PD)

In this case, we study the effect of phase damping on the quantum network by
calculating the fidelity of the quantum state by adopting the following steps:

1. The initial state |ψ 〉, given by Eq. (9), sent by the quantum player to the classical
player is the same, therefore, the density matrix ρ is the same.

2. Apply Kraus operators of PD noise, such that ρPD
k = ∑

i
Eiρ(Ei )

†. Hence,

ρPD
k =

⎡
⎢⎢⎣

cos2θ 0 0 −(1 − η)isinθcosθ
0 0 0 0
0 0 0 0

(1 − η)isinθcosθ 0 0 sin2θ

⎤
⎥⎥⎦ (13)

3. The expression obtained for fidelity, by taking the inner product between the
initial state |ψ 〉 and final state ρPD

k |ψ 〉, is given by
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Fig. 4 Effect of phase damping on the fidelity of quantum state, with respect to effective entangling
parameter θ and decoherence rate η

FPD = [
cos4θ + sin4θ + 2(1 − η)sin2θcos2θ

]
(14)

Note that in the absence of damping (η = 0), the fidelity of the quantum state
reaches the maximum. The same expression of fidelity is obtained when phase
damping acts on channel A. The graph shown in Fig. 4 indicates the variation of
fidelity with respect to effective entangling parameters for the different decoherence
rates. The graph exhibits a similar pattern as in the case of amplitude damping. The
fidelity under the effect of phase damping decreases with the decoherence rate and
entangling parameters. However, it can be noted that the fidelity reduces more under
amplitude damping as compared to phase damping. The lowest value of fidelity in
amplitude damping is 0.2499, while in phase damping, the lowest level is 0.4998 for
the choice of θ = π

4 , which corresponds to CNOT gate, J
(

π
2 , 0, 0

)
.

5 Conclusion

In this work, we have investigated the effect of noise on the quantum network which
has been designed to implement a quantum version of the cop and robber game. The
two important noise models, amplitude damping noise model and phase damping
noisemodels, are incorporated into the quantum circuit, and their effects are analyzed
by calculating fidelity. Further, graphs are plotted to realize the variation in the fidelity
of quantum states with respect to entangling parameters C1, C2, and decoherence rate
η. It is observed that the fidelity of the quantum states decreases as the decoherence
rate increases, thus affecting the accuracy of quantum data transmission.
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Entangling operators J(C1,C1, 0) corresponding to the case θ = 0 prevent the
quantum state from the influence of decoherence. This suggests that this set of entan-
gling operators can suppress the amplitude damping and phase damping and thus
provides secure data transmission. Moreover, at θ = π

4 , which corresponds to the
CNOT operator, J

(
π
2 , 0, 0

)
, the fidelity reduces to its minimum value. This effect on

fidelity is observed in the cases of amplitude damping and phase damping for the
CNOT operator.

It is interesting to note that the effect of amplitude damping and phase damping
on the quantum circuit is similar in all aspects. In both cases, the fidelity reaches
its minimum value at θ = π

4 . However, amplitude damping causes more distortion
in the transmission as compared to phase damping. Therefore, amplitude damping
results in more loss of information as compared to phase damping.

It is evident from this work that the appropriate quantum strategy can completely
suppress the noise effect on the transmitted quantum state. However, this result is
quite different from the observation that the classical strategy performs better than the
quantum strategywhen the noise in the quantum circuit is more than 50% [22].More-
over, the payoffs of the players get affected when the decoherence rate increases. In
our work, it is worth investigating the effects of noise on the payoffs of the players in
the cop and robber game. In the present work, we have considered damping in only
one channel. We can extend our analysis of damping in both communication chan-
nels. Nonetheless, this work presents significant observations on the significance of
quantum strategy to reduce the effects of amplitude damping and phase damping on
the transmitted quantum state. To summarize, the appropriate application of entan-
gling operators can suppress the noise in the quantum network implementation of
the cop and robber game.
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Study of Decoherence in Quantum
Cournot Duopoly Game Using Modified
EWL Scheme

A. V. S. Kameshwari and S. Balakrishnan

Abstract The newly proposed modified Eisert-Wilkens-Lewenstein scheme can be
widely used to understand any quantum game through quantum operators. This
scheme provides a vast range of two-qubit entangling operators which is otherwise
not possible using the traditional Eisert-Wilkens-Lewenstein scheme (EWL) and the
Marinatto-Weber scheme (MW). In our work, the proposed modified EWL scheme
is further explored in noisy market games. Decoherence commonly known as noise
is an unavoidable interaction of the system with the surroundings. We analyze the
effects of decoherence in the Cournot duopoly game when amplitude damping is
present in either of the communication channels. We find an interesting result that
decoherence affects channel 2 but does not affect channel 1. Furthermore,we discover
that the effect of decoherence can be partially mitigated by selecting an appropriate
entangling operator.

Keywords Game theory · Quantization scheme · Cournot duopoly game ·
Decoherence

1 Introduction

Basically, a game is any competitive activity that involves twoormore rational players
or multiple agents who compete to maximize their respective payoffs according to
a fixed set of rules [1]. The players are also called the decision makers who interact
with one another. Game theory provides a mathematical model to understand the
competitive situation between the decision makers [1]. The publication, “Theory of
Games and Economic Behaviour” by Oskar Morgenstern and John von Neumann, in
the year 1944 led to the foundation of the present-day understanding of game theory
[2]. Game theory became more popular in the year 1994 when three famous game
theorists won the Nobel Prize in Economic Sciences [1]. A game theoretic model
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has a wide range of applications in the field of economics, politics, social sciences
and biology [3].

The motivation to implement the ideas of classical game theory in the quantum
domain came with the advancement of quantum mechanics and its application in
different fields. David Meyer, in the year 1999, was the first to introduce the concept
of quantum games in his work [4]. In his work, he exclusively showed how powerful
are the playerswhoadopt quantumstrategies over the playerswith classical strategies.
Meyer’s work motivated a significant amount of research in quantum game theory;
refer to [5–8]. In principle, any classical game can be extended to a quantum game
with the help of quantization schemes. The Eisert, Wilkens and Lewenstein (EWL)
[9], Marinatto and Weber (MW) [10], and modified EWL schemes [11–13] are the
notable quantization schemes. Both EWL and MW schemes faced criticism about
their inability to show the quantumness in quantum games [6]. Mostly, quantum
games arewidely studied usingEWLandMWschemeswhich exploit only controlled
unitary operators.

In this paper, we use a modified EWL scheme to study the competitive market
games also known as duopoly games in economics [14]. We analyze the Cournot
duopoly game in the presence of decoherence in the communication channels with
amplitude damping. The Cournot duopoly is a simultaneous game introduced by
Augustin Cournot where both firms move at a time with no information of the oppo-
nent’s move [15]. Decoherence is the interaction of any physical system with the
environmentwhich causes loss of information [16–19]. In reality, no system is closed,
i.e., devoid of interaction with the environment and hence decoherence is inevitable.
In quantum games, decoherence is well known to lower the player’s average payoff;
refer to [13, 16–19]. Recent works on duopoly games in the presence of decoherence
show the effect of decoherence in sequential market games [20–22]. Taking this as
a reference, we explicitly show how decoherence with amplitude damping channel
affects the simultaneous market game.

2 Quantum Cournot Duopoly Game with Decoherence

Cournot duopoly is a competition between two manufacturing firms; let them be
called Firm 1 and Firm 2 which provide certain goods that are strategic substitutes
for the other [15]. The quantity of goods produced by Firm 1 and Firm 2 is given
as q1 and q2, respectively. In this work, we introduce decoherence in the quantum
form of the Cournot duopoly game. Decoherence or noise is the inevitable process
which occurs when any physical system is in contact with the surroundings [16–22].
To observe how decoherence affects the Cournot duopoly game, amplitude damping
is taken which is described by the following Kraus operator [13, 16]:

m0 =
(
1 0
0

√
1 − p

)
(1)
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where p is the amount of noise present in the channel in the range, 0 ≤ p ≤ 1. The
maximum amount of noise in the channel is represented as p = 1. The most general
form of the entangling operator which is non-local and produces entanglement is
given as [11–13]

J (c1, c2, c3) =

⎛
⎜⎜⎜⎝

e
−ic3
2 c− 0 0 −ie

−ic3
2 s−

0 e
ic3
2 c+ −ie

ic3
2 s+ 0

0 −ie
ic3
2 s+ e

ic3
2 c+ 0

−ie
−ic3
2 s− 0 0 e

−ic3
2 c−

⎞
⎟⎟⎟⎠ (2)

where c± = cos
( c1±c2

2

)
, s± = sin

( c1±c2
2

)
and c1, c2, c3 are the geometrical points

of the Weyl chamber satisfying the condition c1 ≥ c2 ≥ c3 ≥ 0 [23, 24]. Further,
we have considered c3 = 0 for the mathematical simplicity as it reduces the three-
dimensional Weyl chamber to two dimensions. This further reduces the entangling
operator J of the form:

J =

⎛
⎜⎜⎝

c− 0 0 −is−

0 c+ −is+ 0
0 −is+ c+ 0

−is− 0 0 c−

⎞
⎟⎟⎠ (3)

The game initially is in the state |00〉 that is the state is further entangled using
Eq. (3). The player strategies are the local operator of the form as given below [25]

UA =
(
cos θ1

2 − sin θ1
2

sin θ1
2 cos θ1

2

)
and UB =

(
cos θ2

2 − sin θ2
2

sin θ2
2 cos θ2

2

)
(4)

where 0 ≤ θ j ≤ π , j = 1, 2. Equivalently, the strategies UA and UB adapted by
Firm 1 and 2 are parameterized by θ1 and θ2, respectively. Using the Kraus operator
of the amplitude damping channel as mentioned earlier, the Cournot duopoly game
is analyzed when noise is present in either of the channels.

2.1 Decoherence in Channel 1

In this section, the quantum Cournot duopoly game is analyzed when channel 1 is
noisy. The final state of this game for the amplitude damping channel is represented
as [13]

∣∣ψ f
〉 = J †(UA ⊗UB)(m0 ⊗ m0)J

∣∣00〉 (5)

The tensor product of the strategies of the firms can be written as
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UA ⊗UB =

⎛
⎜⎜⎝

X −Y −W Z
Y X −Z −W
W −Z X −Y
Z W Y X

⎞
⎟⎟⎠ (6)

where X = cos
(

θ1
2

)
cos

(
θ2
2

)
, Y = cos

(
θ1
2

)
sin

(
θ2
2

)
, W = sin

(
θ1
2

)
cos

(
θ2
2

)
and Z =

sin
(

θ1
2

)
sin

(
θ2
2

)
are the entries of a two-qubit local operator.

We substitute Eqs. (1), (6) and (2) in Eq. (5) to attain final state |ψ f of the form:

|ψ f
〉 =

⎛
⎜⎜⎝

X + p
(
i Zc−s− − Xs−s−)

Y cos c1 + iW sin c1 + p
(
Ys+s− − iWc+s−)

iY sin c1 + W cos c1 + p
(
Ws+s− − iY c+s−)

Z + p
(
i Xs−c− − Zs−s−)

⎞
⎟⎟⎠ (7)

Measurement of the final state is performed using the measurement operators M1

and M2 of the form [26]:

Mj (x1, x2) =
{

(x1 |0〉〈0 |+x2|1〉〈1 |) ⊗ (|0〉〈0 |+|1〉〈1 |)for j = 1
(x2|0〉〈0 |+x1|1〉〈1 |) ⊗ (|0〉〈0 |+|1〉〈1 |)for j = 2

(8)

where xi ∈ [0,∞) is a set of continuous strategies adopted by both firms. On
performing the measurement, the quantities of the firms are obtained using the
formula given below [26]

q1 = tr(M1ρ), q2 = tr(M2ρ) (9)

where ρ = ∣∣ψ f
〉〈
ψ f

∣∣ represents the density matrix of the final state. On substituting
Eq. (8) in Eq. (9), the quantities of the firms become

q1 =
((

pXs−s− − X
)2 +

(
pZs−c−

)2 +
(
pY s+s− + Y cos c1

)2

+
(
pWc+s− − W sin c1

)2)
x1

+
((

pYc+s− − Y sin c1
)2 +

(
pZs−s− − Z

)2 +
(
pXs−c−

)2)
x2

q2 =
((

pXs−s− − X
)2 +

(
pZs−c−

)2 +
(
pY s+s− + Y cos c1

)2

+
(
pWc+s− − W sin c1

)2)
x2

+
((

pWs+s− + W cos c1
)2 +

(
pYc+s− − Y sin c1

)2 +
(
pZs−s− − Z

)2 +
(
pXc−s−

)2)
x1 (10)

In the above equation, on substituting c1 = c2, i.e., for the choice of entangling
operator J (c1, c2 = c1, c3 = 0), the quantities of the firms become [26]
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q1 = (
X2 + Y 2cos2c1 + W 2sin2c1

)
x1 + (

W 2cos2c1 + Y 2sin2c1 + Z2
)
x2

q2 = (
X2 + Y 2cos2c1 + W 2sin2c1

)
x2 + (

W 2cos2c1 + Y 2sin2c1 + Z2
)
x1

(11)

The quantities of the firms obtained in Eq. (11) satisfy the condition q1 + q2 =
x1 + x2 similar to that of the noiseless game. The general expression for the firms’
profit is given as [26–28]

u1 = q1[k − (q1 + q2)] and u2 = q2[k − (q1 + q2)] (12)

where k = a − c, a is the market’s net capacity and c represents cost [26–28]. The
Nash equilibrium of the Cournot duopoly game is obtained by calculating the best
response of both firms. The best response of the firms is calculated by differentiating
the firm’s profit function and then equating it to zero [25]. The Nash equilibrium so
obtained is given below [26]

x∗
1 = x∗

2 = k
(
X2 + Y 2 cos2 c1 + W 2 sin2 c1

)
2
(
X2 + Y 2 cos2 c1 + W 2 sin2 c1

) + 1
(13)

Profit of the firms at the Nash equilibrium is [26]

u∗
1 = u∗

2 = k2
(
X2 + Y 2 cos2 c1 + W 2 sin2 c1

)
[
2
(
X2 + Y 2 cos2 c1 + W 2 sin2 c1

) + 1
]2 (14)

From the above equation, it is observed that for the choice of entangling operator
J
(
0 ≤ c1 ≤ π

2 , c2 = c1, c3 = 0
)
, the profit from the Cournot duopoly game with

decoherence is identical to the noiseless case; refer to [26]. Further, from Eq. (14) it
can be seen that the profit of the firm is independent of the level of noise in channel 1
as it only depends upon the strategies and the entangling operator. Also, the quantities
q1 and q2 are independent of decoherence (p) for the mentioned entangling operator.
This observation is due to the presence of noise in the communication channel before
the application of the strategies adopted by the firms. The effect of noise in channel
1 for the quantum Cournot duopoly game can be killed with an appropriate choice
of entangling operator.

2.2 Decoherence in Channel 2

In this section, the quantum Cournot duopoly game is analyzed when channel 2 is
noisy. The final state of the game for the amplitude damping channel becomes [13]

∣∣ψ f
〉 = J †(m0 ⊗ m0)(UA ⊗UB)J

∣∣00〉 (15)

We substitute Eqs. (1), (6) and (2) in Eq. (15), to attain the final state of the form:
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|ψ f
〉 =

⎛
⎜⎜⎝

X + p
(
i Zc−s− − Xs−s−)

Y
√
1 − p cos c1 + iW

√
1 − p sin c1

iY
√
1 − p sin c1 + W

√
1 − p cos c1

Z + p
(
i Xs−c− − Zc−c−)

⎞
⎟⎟⎠ (16)

The measurement operator given by Eq. (8) is applied to this final state, and the
following quantities q1 and q2 of Firms 1 and 2 are obtained by using Eq. (9):

q1 =
((

X − pXs−s−
)2 + (

pZc−s−
)2 + Y 2(1 − p)cos2c1 + W 2(1 − p)sin2c1

)
x1

+
(
Y 2(1 − p)sin2c1 + W 2(1 − p)cos2c1 + (

Z − pZc−c−
)2 + (

pXc−s−
)2)

x2

q2 =
((

X − pXs−s−
)2 + (

pZc−s−
)2 + Y 2(1 − p)cos2c1 + W 2(1 − p)sin2c1

)
x2

+
(
Y 2(1 − p)sin2c1 + W 2(1 − p)cos2c1 + (

Z − pZc−c−
)2 + (

pXc−s−
)2)

x1 (17)

For the choice of entangling operator J (c1, c2 = c1, c3 = 0), the quantities of the
firms become

q1 = (
X2 + Y 2(1 − p)cos2c1 + W 2(1 − p)sin2c1

)
x1

+ (
W 2(1 − p)cos2c1 + Y 2(1 − p)sin2c1 + Z2(1 − p)2

)
x2

q2 = (
X2 + Y 2(1 − p)cos2c1 + W 2(1 − p)sin2c1

)
x2

+ (
W 2(1 − p)cos2c1 + Y 2(1 − p)sin2c1 + Z2(1 − p)2

)
x1 (18)

Using the expressions of the quantities of the firms from Eq. (18), we attain Nash
equilibrium as

x∗
1 = x∗

2 = ka

b(2a + b)
(19)

The firm’s profit at Nash equilibrium is

u∗
1 = u∗

2 = k2ab

(2a + b)2
(20)

where a = X2 + (1 − p)Y 2 cos2 c1 + (1 − p)W 2 sin2 c1, b = X2 + (1 − p)Y 2 +
(1 − p)W 2 + (1 − p)2Z2 and 0 ≤ p ≤ 1.

From the above equation, it can be identified that the profit of firms depends
upon three parameters, namely strategies adopted by the firms, entangling operator
J
(
0 ≤ c1 ≤ π

2 , c2 = c1, c3 = 0
)
and decoherence (p). Further, when noise is present

after the application of the strategies of the players, no choice of player strategies and
entanglement can eliminate the effects of decoherence. Therefore, noise in channel
2 affects the profit function of both firms independent of the choice of entangling
operator J

(
0 ≤ c1 ≤ π

2 , c2 = c1, c3 = 0
)
.
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Fig. 1 Effect of noise on the profit of the firms for a particular strategic combination of the firms

The impact of noise in channel 2 parameterized by p on thefirm’s profit is analyzed
from the graphs. In Fig. 1a, the strategic choice of Firms 1 and 2 is taken as mixed
strategy and identity, whereas in Fig. 1b the strategic choice is taken asmixed strategy
and flip. The graphs show that decoherence has an effect on the firm’s profit. Observe
from Fig. 1a that as decoherence increases from p = 0 to p = 1, the profit of the
firms decreases. The decrease in the profit of the firms due to decoherence or noise
can be seen evidently for lower levels of entanglement. A similar observation can
also be found in Fig. 1b where an increase in decoherence decreases the profit of the
firms for a particular choice of entangling operator. From this observation, we can
state that the entangling operator parameterized by c1 either increases or decreases
the profit of the firms for a given value of p. Such an observation has arrived at for the
noisy prisoner’s dilemmawith an amplitude damping channel using amodified EWL
scheme [13]. Further from the analysis carried out in Sects. 2.1 and 2.2, analytically
it can be said that the presence of noise in channel 2 affects the profit of the firms
more than that of channel 1. A similar observation can also be found using amodified
EWL scheme in the prisoner’s dilemma game [13] and the EWL scheme [16].

3 Conclusion

It is well understood that a certain amount of decoherence in the communication
channels reduces the outcome of the players. We found that due to decoherence,
the quantum version of the Cournot duopoly game lowers the original profit of the
manufacturing firms. Such an observation can also be found in the works of Zhu
and Kuang [20, 21] and Khan et al. [22], for the Stackelberg duopoly game which
is a well-known sequential game. We found that when decoherence in the form of
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amplitude damping is present in the channels; its effect on the profit of the firms can be
modulated with an appropriate choice of entangling operator. According to Sect. 2.1,
when noise is present in channel 1, its effect on the firm’s profit can be eliminated
by using the entangling operator J

(
0 ≤ c1 ≤ π

2 , c2 = c1, c3 = 0
)
. However, this is

not the case for amplitude damping in channel 2. Furthermore, when damping is
present in channel 2 for a given value of decoherence (p), the profit of the firms is
found to either increase or decrease for a given entangling operator, depending on the
strategies used by both firms. Our analysis shows that the effect of decoherence in
channel 2 is greater than that in channel 1. This behavior is caused by the presence of
decoherence in the channel after the players’ respective strategies have been applied,
whereas in the case of channel 1, decoherence is present before the application of
player strategies. Such an observation is consistent with the available literature [13,
16]. In this work, we have discussed only amplitude damping in either channel 1
or channel 2. Further, amplitude damping in both channel 1 and channel 2 can also
be analyzed for the same quantum Cournot duopoly game. The entire analysis to
calculate the noisy duopoly games can also be approached using the density matrix
formalism.
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A New Aggregation Operator for
Single-Valued Triangular Neutrosophic
Number in Decision-Making

G. Tamilarasi and S. Paulraj

Abstract In the last few years, many researchers have established Multi-Attribute
Decision-Making (MADM) in fuzzy, intuitionistic fuzzy, and neutrosophic sets.
This research paper develops a Single-Valued Triangular Neutrosophic General-
ized Ordered Weighted Harmonic Averaging (SVTrNGOWHA) operator to aggre-
gate Single-Valued Triangular Neutrosophic (SVTrN) number information and all
properties are discussed in detail. Further, the MADM method depends on SVTrN-
GOWHAoperator and score function for SVTrN numbers in ranking the alternatives.
Lastly, the proposed approach for numerical example is tested and it gives the most
effective of the proposed approach.

Keywords SVTrNGOWHA operator · Multi-attribute decision-making

1 Introduction

MADM problem is an important role in decision-making situations. In 1988,
Yager [31] introduced the concept of ordered weighting averaging operators which
assigns weight to the greatest input value and solving multi-criteria decision-making
(MCDM) problems. Yager [33] proposed a Generalized Ordered Weighted Averag-
ing operator (GOWA) that is combined the OWA operator with generalized mean
operator. Xu and Da [29] established the ordered weighted geometric (OWG) oper-
ators, combing with OWA operators and GM operators. Yager [32] proposed the
power average operator. Chen et al. [3] developed an ordered weighted harmonic
averaging operator and applied to the method of combination forecasting. Many
researchers proposed various aggregation operators for MADM problems based on
uncertain environment. In 1965, Zadeh [34] discovered fuzzy set, which deals with
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uncertainty situations. Wang and Fan [28] developed ordered weighted averaging
operator in fuzzy environment and applied to decision-making problems. Wei and
Yi [16] proposed harmonic aggregation operators and applied to MAGDM software
selection problems with triangular fuzzy linguistic variables. In 1986, Atanassov [2]
established an intuitionistic fuzzy set that is described by fuzzy set. Wang and Zhong
[15] developed weighted aggregation operators under intuitionistic fuzzy situations
and solving MCDM problems.

In 1998, Smarandache [25] introduced neutrosophic sets which deals with mem-
bership, non-membership, and indeterminacymembership functions. Deli and Subas
[17] extended Single-ValuedTrapezoidalNeutrosophicWeightedAggregationOper-
ator (SVTNWAO) and solving for MCDM problem. Jun Ye [21, 22] developed
Trapezoidal Neutrosophic Number Weighted Arithmetic (TNNWAA) and Geomet-
ric Averaging (TNNWGA) operators to deal withMADMproblems. JunYe [11] pro-
posed similaritymeasures depending on interval neutrosophic sets applied toMCDM
problems. Jun Ye [12] established TNNWAA and TNNWGA operators described in
trapezoidal neutrosophic numbers applied to MADM problems. Zhao et al. [35]
developed generalized weighted aggregation operator for solving MADM problems
depending on Interval-Valued Neutrosophic Sets (IVNSs). Liu and Tang [14] devel-
oped generalization power aggregation operators with IVNSs to handle decision-
making problems. Xu andWei [30] established aminimumdeviationmethod for neu-
trosophic MADM problems. Harish and Nancy [4] investigated MCDM problems
handle with hybrid weighted aggregation operators in neutrosophic environment.
Surapati and Mallick [26] extended trapezoidal neutrosophic weighted averaging
operator and Hamming distance to deal with VIKOR (VIekriterijumsko KOmpro-
misno Rangiranje) strategy to decision-making problems. Sahin et al. [23] developed
a new solution for solving MADM problems.

Bharatraj and Anand [20] developed MCDM problem for power harmonic aggre-
gation operator under SVTNnumber and interval-valued neutrosophic numbers. Jana
et al. [7] established Hamacher operation laws in SVTN arithmetic and geometric
operator for solvingMADMproblems. Jana et al. [6] developed Interval Trapezoidal
Neutrosophic Number Weighted Arithmetic Averaging (ITNNWAA) operator and
Geometric Averaging (ITNNWGA) operator for solving MADM problems. Garai et
al. [27] extended the possibility mean ranking technique for neutrosophic numbers
and applied to MADM. Paulraj and Tamilarasi [24] developed some new harmonic
averaging operators for SVTN environment and apply with MADM problems. Aliya
et al. [1] developedTriangularNeutrosophicCubic FuzzyWeightedArithmeticAver-
aging (TNCFWAA) and Geometric Averaging (TNCFWGA) operator for solving
MADM problems. Jana and Pal [8] developed Dombi operations and power averag-
ing operators for solving MCDM problems under a neutrosophic environment. Jana
et al. [10] introduced arithmetic and geometric averaging operators using Dombi
operations on SVTN numbers for solving MCDM problems. Jana and Pal [9] devel-
oped dynamic intuitionistic fuzzy aggregation operators to apply to gray relational
analysis approach for solving multiple attribute problems.

Upon investigating the literature, no research work has achieved harmonic aver-
aging operators with triangular neutrosophic numbers for MADM. To merge this
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gap, harmonic averaging operator that deals with SVTrN numbers is presented. In
order to analyze the harmonic averaging operators in SVTrN numbers, to simplify
comparison and application for MADM problems and this research paper attempts
do to the following:

1. To define some SVTrN aggregation operators, that is, the SVTrN Weighted Har-
monicAveraging (SVTrNWHA), SVTrNOrderedWeightedHarmonicAveraging
(SVTrNOWHA), SVTrN Generalized Ordered Weighted Harmonic Averaging
(SVTrNGOWHA) operators.

2. To propose an easy and straightforward technique for solving MADM problems
where the ratings of the performance are expressed in SVTrN numbers and also
investigate some of their properties.

3. The main goal of this developed approach chosen the best one and the SVTrN-
GOWHA operator considers the position of input argument for any stage which
does not focus on the degree of input argument.

Connecting harmonic operators and the MADM problems when the attribute val-
ues are SVTrN numbers, this paper developed SVTrN generalized ordered weighted
harmonic averaging (SVTrNGOWHA) operator. The organization of this paper con-
tents is as follows: Sect. 2, the preliminary concepts of SVTrNnumbers are presented.
Section3, SVTrN weighted harmonic averaging operator is derived and SVTrN-
GOWHA operator is proposed. Section4, a new MADM approach is proposed and
applied to MADM problem. Section5, the conclusion is presented.

2 Preliminaries

This section reviews basic definitions about the concept of SVTrN numbers.

Definition 1 ([25]) Let Z be a non-empty set. Then a neutrosophic set N of Z is
defined as N = {< z, TN (z), IN (z), FN (z) > |z ∈ Z} , TN : N → [0, 1], IN : N →
[0, 1], FN : N → [0, 1] for satisfy the condition 0 ≤ TN (z) + IN (z) + FN (z) ≤ 3
for every z ∈ N . The function TN , IN , and FN are said to be the degree of truth,
indeterminacy, and falsity-membership functions of N , respectively.

Definition 2 ([18]) Let nl , nm, nu ∈ R such that nl ≤ nm ≤ nu . A SVTrN number
ñ =< (nl , nm, nu);αñ, βñ, γñ > is a special neutrosophic set on the real number set
R, whose truth Tñ(z), indeterminacy Iñ(z) , and falsity Fñ(z) membership functions
are defined as follows:

Tñ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z−nl
nm−nl

αñ, for nl ≤ z ≤ nm

αñ, for z = nm
nu−z
nu−nm

αñ, for nm ≤ z ≤ nu

0, otherwise.

(1)
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Iñ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nm−z+(z−nl )βñ

nm−nl
, for nl ≤ z ≤ nm

βñ, for z = nm
z−nm+(nu−z)βñ

nu−nm
, for nm ≤ z ≤ nu

0, otherwise.

(2)

Fñ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nm−z+(z−nl )γñ
nm−nl

, for nl ≤ z ≤ nm

γñ, for z = nm
z−nm+(nu−z)γñ

nu−nm
, for nm ≤ z ≤ nu

0, otherwise.

(3)

Definition 3 ([18]) Let m̃ =< (ml,mm,mu);αm̃, βm̃, γm̃ > and ñ =< (nl, nm, nu);
αñ, βñ, γñ > be two SVTrN numbers and r �= 0, then

1. m̃ + ñ =< (ml + nl,mm + nm,mu + nu);αm̃ ∧ αñ, βm̃ ∨ βñ, γm̃ ∨ γñ >

2. m̃ − ñ =< (ml − nu,mm − nm,mu − nl);αm̃ ∧ αñ, βm̃ ∨ βñ, γm̃ ∨ γñ >

3. m̃ñ =
⎧
⎨

⎩

< (mlnl ,mmnm ,munu); αm̃ ∧ αñ, βm̃ ∨ βñ, γm̃ ∨ γñ >, (mu > 0, nu > 0)
< (mlnu,mmnm ,munl); αm̃ ∧ αñ, βm̃ ∨ βñ, γm̃ ∨ γñ >, (mu < 0, nu > 0)
< (munu,mmnm ,mlnl); αm̃ ∧ αñ, βm̃ ∨ βñ, γm̃ ∨ γñ >, (mu < 0, nu < 0)

4. m̃
ñ =

⎧
⎨

⎩

< (ml
nu

, mm
nm

, mu
nl

);αm̃ ∧ αñ, βm̃ ∨ βñ, γm̃ ∨ γñ >, (mu > 0, nu > 0)
< (mu

nu
, mm

nm
, ml

nl
);αm̃ ∧ αñ, βm̃ ∨ βñ, γm̃ ∨ γñ >, (mu < 0, nu > 0)

< (mu
nl

, mm
nm

, ml
nu

);αm̃ ∧ αñ, βm̃ ∨ βñ, γm̃ ∨ γñ >, (mu < 0, nu < 0)

5. rm̃ =
{
< (rml, rmm, rmu);αm̃, βm̃, γm̃ >, (r > 0)
< (rmu, rmm, rml);αm̃, βm̃, γm̃ >, (r < 0)

6. m̃−1 =< ( 1
mu

, 1
mm

, 1
ml

);αm̃, βm̃, γm̃ > (m̃ �= 0̃)

Definition 4 ([13]) Let ñ =< (nl , nm, nu);αñ, βñ, γñ > be a SVTrN number. Then
the score function of ñ represented as follows:

S(ñ) = 1

8
(nl + nm + nu)(2 + αñ − βñ − γñ) (4)

where nl , nm, nu ∈ R and 0 ≤ αñ + βñ + γñ ≤ 3.

3 SVTrN Generalized Ordered Weighted Harmonic
Averaging Operator

This section is based on harmonic averaging operators to establish SVTrNWHA,
SVTrNOWHA, and SVTrNGOWHA operators.

Definition 5 Let ñk =< (nkl, nkm, nku);αñk, βñk, γñk >, k = 1, 2, ..., n be a set of
SVTrN numbers. Then, the SVTrNWHA operator is defined as
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SV TrNWH A(ñ1, ñ2, ..., ñk) = 1
(

n∑

k=1

wk
ñk

) (5)

where w = (w1, w2, ..., wk)
T is the weight of ñk such that wk > 0 and

n∑

k=1
wk = 1.

Definition 6 Let ñk =< (nkl, nkm, nku);αñk, βñk, γñk > be a set of SVTrNnumbers.
Then, the SVTrNOWHA operator is defined as

SV TrNOWH A(ñ1, ñ2, ..., ñk) = 1
(

n∑

k=1

wk
m̃k

) (6)

wherew = (w1, w2, ..., wk)
T is theweight of ñk such thatwk ∈ [0, 1] and

n∑

k=1
wk= 1,

where m̃k is the largest kth element in the collection of ñk, k = (1, 2, ..., n).

Definition 7 Let ñk =< (nkl, nkm, nku);αñk, βñk, γñk > be a set of SVTrNnumbers.
Then, an SVTrNGOWHA operator is defined as

SV TrNGOWH A(ñ1, ñ2, ..., ñk) = 1
(

n∑

k=1

wk
m̃r

k

) 1
r

(7)

where w = (w1, w2, ..., wk)
T is the weight of ñk such that wk > 0 and

n∑

k=1
wk = 1.

and m̃k is the largest kth element in the collection of ñk .
m̃k =< (mkl,mkm,mku);αm̃k, βm̃k, γm̃k > is reordering of the collection of ñk , where
r �= 0, r ∈ R is a parameter.

Special Cases of SVTrNGOWHA Operator

(i) If r = 1, then SVTrNGOWHA operator reduces to SVTrNOWHA operator.
SV TrNOWH A(ñ1, ñ2, ..., ñk) = 1(

n∑

k=1

wk
m̃k

)

(ii) If r = 2, then SVTrNGOWHA operator reduces to GOWQHA operator with
SVTrN number.
SV TrNGOWQH A(ñ1, ñ2, ..., ñk) = 1

(
n∑

k=1

wk
m̃2
k

) 1
2

(iii) If r = −1, then SVTrNGOWHA operator reduces to OWA operator with
SVTrN number.

SV TrNOW A(ñ1, ñ2, ..., ñk) =
(

n∑

k=1

wk
m̃k

)
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Theorem 1 Let ñk =< (nkl, nkm, nku);αñk, βñk, γñk >, (k = 1, 2, ..., n) be a set
of SVTrN number and w = (w1, w2, ..., wk)

T be a weighted vector of ñk , wk ∈
[0, 1],

n∑

k=1
wk = 1 and the parameter r ∈ R, then the aggregation value by utiliz-

ing the operator is defined as
SVTrNGOWHA (ñ1, ñ2, ..., ñk) = 1

(
n∑

k=1

wk
m̃r
k

) 1
r

=
〈
⎛

⎜
⎝

1
(

n∑

k=1

wk
(m̃kl )

r

) 1
r
, 1

(
n∑

k=1

wk
(m̃km )r

) 1
r
, 1

(
n∑

k=1

wk
(m̃ku )r

) 1
r

⎞

⎟
⎠ ;mink(αm̃k),maxk(βm̃k),maxk(γm̃k)

〉

Properties

(i) Monotonicity: Let ñk =< (nkl, nkm, nku);αñk, βñk, γñk > and ñ
′
k =< (n

′
kl,

n
′
km, n

′
ku);α

′
ñk, β

′
ñk, γ

′
ñk >, (k = 1, 2, ..., n) be set of SVTrN numbers. If m̃k ≤

m̃
′
k for k=1,2, ..., n. Then SVTrNGOWHA(ñ1, ñ2, ..., ñk) ≤SVTrNGOWHA

(ñ
′
1, ñ

′
2, ..., ñ

′
k)

(ii) Idempotency: Let ñk =< (nkl , nkm, nku);αñk, βñk, γñk >, (k = 1, 2, ..., n) be
a set of SVTrN number. If all ñ j are equal, ñ j = ñ, (k = 1, 2, ...n), then
SVTrNGOWHA(ñ1, ñ2, ..., ñk) =SVTrNGOWHA(ñ, ñ, ..., ñ) = ñ.

(iii) Commutativity: If (ñ
′
1, ñ

′
2, ..., ñ

′
k) is any permutation of (ñ1, ñ2, ..., ñk), then

SVTrNGOWHA(ñ1, ñ2, ..., ñk) =SVTrNGOWHA(ñ
′
1, ñ

′
2, ..., ñ

′
k).

(iv) Boundedness: Let ñk =< (nkl, nkm, nku);αñk, βñk, γñk >, (k = 1, 2, ..., n)

be a set of SVTrNnumbers andLet ñ+
k = 〈(mink(mkl),mink(mkm),mink(mku));

mink (αm̃k),maxk (βm̃k),maxk (γm̃k)〉 ñ−
k = 〈(maxk(mkl),maxk(mkm),maxk(mku));

mink (αm̃k),maxk (βm̃k),maxk (γm̃k)〉. Then ñ− ≤ SVTrNGOWHA(ñ1, ñ2, ...,
ñk) ≤ ñ+.

4 MADM Problems with Neutrosophic Numbers

Considering theMADMproblem, assume the set of alternatives Ai and attributesCk .
The rating of an alternative Ai with an attribute Ck then the neutrosophic decision-
makers can be describe as (S̃ik)m×n, i = 1, 2, ...,m and k = 1, 2, ..., n. The weights
of the attribute are w = (w1, w2, ..., wk)

T , satisfying 0 ≤ wk ≤ 1(k = 1, 2, ..., n)

and
n∑

k=1
wk = 1.

The following algorithm is to obtain the solution of multi-attribute decision-
making problem with SVTrN number information by using SVTrNGOWHA opera-
tors with score function.
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Let S̃ = (S̃ik)m×n be the decision matrix provided by decision expert D which

can be expressed as D =
(
S̃ik

)

(m×n)
=

C1 C2 . . . Cn

A1

A2
...

Am

⎛

⎜
⎜
⎜
⎝

S̃11 S̃12 . . . S̃1n
S̃21 S̃22 . . . S̃2n
...

...
. . .

...

S̃m1 S̃m2 . . . S̃mn

⎞

⎟
⎟
⎟
⎠

where S̃ik =< (Sikl, Sikm, Siku);αik, βik, γik >, i = 1, 2, ...,m, k = 1, 2, ..., n.

Step 1: Computation of the normalized given matrix
If all the ratings are either profit or cost, then there is no need of normalization.
Otherwise, the normalized decision matrix is constructed.

(R̃ik) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S̃ik
n∑

k=1
S̃ik

, if the rating is profit

1
S̃ik

n∑

k=1
( 1
S̃ik

)

, if the rating is cost

Therefore, every SVTrN decision matrix D is converted into a normalized decision
matrix N represented by

N = (R̃ik)m×n =

C1 C2 . . . Cn

A1

A2
...

Am

⎛

⎜
⎜
⎜
⎝

R̃11 R̃12 . . . R̃1n

R̃21 R̃22 . . . R̃2n
...

...
. . .

...

R̃m1 R̃m2 . . . R̃mn

⎞

⎟
⎟
⎟
⎠

where R̃ik =< (Rikl, Rikm, Riku);αik, βik, γik >, i = 1, 2, ...,m, k = 1, 2, ..., n.

Step 2: Construct expert ratings for each alternative
To aggregate expert ratings and utilize GOWHA operator for neutrosophic environ-
ment, aggregated value can be represented by Ri

ri = SV TrNGOWH A(R̃i1, R̃i2, ..., R̃in), (i = 1, 2, ...,m)

Step 3: Ranking of the alternatives
To find the rank of the alternatives based on Definition4.
Step 4: End

4.1 Numerical Example

In this section, we discussed the effectiveness of the proposed approach applied
to system analyst problem. The proposed SVTrNGOWHA operator to deal with
MADM problem is adapted from [18]. Let us consider a software company desire to
hire a system analyst and, after the basic screen process, three candidates to take arbi-
trary computer science background students from3 sources are StateUniversity (A1),
Deemed University (A2), and Central University (A3). The experts assess the three
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candidates with respect to five attributes, which are emotional steadiness (C1), oral
communication skill (C2), personality (C3), past experience (C4), and self-confidence
(C5). Theweighted vector of the five attributes isw = (0.15, 0.25, 0.20, 0.25, 0.15)T

and according to the decision matrix shown in Table1.

Step 1: Computing the normalized given matrix
Calculate the normalized matrix N = (R̃i j )(m×n) of the matrix shown in Table2.
Step 2: Construct aggregate ratings for each alternative
To aggregate expert ratings for each Ai w.r.to each Ck .
If the decision-maker, alternatives k = 1, 2, 3, i = 1, 2, 3, 4, 5 and parameter λ = 1.
r̃1 = SV TrNGOWH A(C1,C2,C3,C4,C5)

r̃1 =< ( 1
0.15
0.152 + 0.25

0.136+ 0.20
0.124 + 0.25

0.108+ 0.15
0.103

, 1
0.15
0.216+ 0.25

0.216+ 0.20
0.21 + 0.25

0.185+ 0.15
0.172

,

1
0.15
0.372 + 0.25

0.323+ 0.20
0.32 + 0.25

0.32 + 0.15
0.272

); 0.3, 0.8, 0.3 >

=⇒ < ( 1
8.2157 ,

1
5.0231 ,

1
3.1389 ); 0.3, 0.8, 0.3 >

r̃1 =< (0.1217, 0.1991, 0.3186); 0.3, 0.8, 0.3 >

In the same way, find R̃2, R̃3

r̃2 =< (0.1535, 0.1982, 0.2577); 0.4, 0.5, 0.6 >

r̃3 =< (0.1321, 0.1975, 0.2951); 0.5, 0.2, 0.8 >

Step 3: Ranking of the alternatives
Finally, to calculate the ranking result of alternatives Ai .
S1= Score value of alternative A1 = S(R̃1) = 0.0959,
S2= Score value of alternative A2 = S(R̃2) = 0.0990,
S3= Score value of alternative A3 = S(R̃3) = 0.1171
Since S3 > S2 > S1, the third alternative source A3 is best.

Analyzing Different Variation of λ on Results of Alternatives
Furthermore, to analyze different variation λ that deals with harmonic aggregation
operator based on SVTrN number provided by desirable alternative. A complete
variation of the ranking value of each alternative with respect to λ is shown in Fig. 1.
From this figure, to observe the value of λ that decreases when the score value of
each alternative increases and also increases the value of parameter λwhen the score
value of alternative decreases but the rank order of these alternative remains the same.
Hence the best alternative is A3.

Effectiveness of the Developed Method
Advantages of the proposed approach are pointed out after comparing the results of
the existing works with the proposed work. First, our proposed work is compared
with Jun Ye [22] and it is considered with the same problem under neutrosophic
environment to obtain the similar alternative. The existing work considers arithmetic
and geometric aggregation operators to solve MADM problems under neutrosophic
environment. Similarly, consider our proposed work compared with existing work
Deli and Subas [18] to deal with value and ambiguity de-neutrosophication for solv-
ing MADM problems obtained similar ranking result. The comparative results for
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Fig. 1 Different variation values of alternatives w.r.to parameter λ in SVTrNGOWHA operator

Table 3 Decision-making results of different aggregation operators
Method Operator A1 A2 A3 Best alternative

Jun Ye [22] SVTrNWAA 0.0984 0.1 0.1185 A3

SVTrNWGA 0.0981 0.0999 0.116 A3

Deli and Subas
[18]

Value and
Ambiguity

0.059 0.127 0.189 A3

Proposed method SVTrNWHA 0.098 0.0997 0.1292 A3

SVTrNGOWHA 0.0959 0.099 0.117 A3

different aggregation operators are shown inTable3. Furthermore, the proposed oper-
ator SVTrNGOWHA involves a different parameter λ, which makes it flexible in the
process of information and is more adequate to model practical MADM problems.

5 Conclusion

The objective of this paper the MADM problem with attribute values in SVTrN
numbers form has been investigated. Some SVTrN number operations and the corre-
sponding operation laws have been established based on harmonic averaging opera-
tions. Then amethod based on operators (SVTrNWHA, SVTrNOWHA, and SVTrN-
GOWHA) has been constructed to effectively deal with the MADM problem under
neutrosophic environment. The procedure has been clearly explained with the help of
an illustration. In future research, we aim to extend the proposed operator and applied
to several examples such as information material, project selection, and many other
areas of decision-making problems.
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Redundancy of Codes with Graph
Constraints

Ghurumuruhan Ganesan

Abstract In this paper, we study linear code redundancy in the presence of graph
constraints. First, we describe linear parity check codes with graphical constraints
and employ the probabilistic method to achieve the Gilbert-Varshamov redundancy
bound. Next, we define a fractional version of graph capacity and obtain bounds for
arbitrary graphs, again using the probabilistic method.

Keywords Linear codes · Bipartite graphs · Fractional graph capacity

1 Introduction

Codes based on graphs arise often in both theory and applications and it is impor-
tant to understand redundancies of such codes. Typically, redundancy bounds like
Gilbert-Varshamov, Hamming and Singleton are obtained under the Hamming dis-
tance measure with no restrictions on the codes themselves. In many applications,
the code itself might have additional graph constraints.

In this paper we are interested in linear and non-linear codes with graph con-
straints. Graph based linear codes like low density parity check (LDPC) codes [15]
are used extensively in communication systems with the constraint that the left and
right vertex degrees in the bipartite graph representation are small compared to the
total number of vertices. Similarly, expander codes [14] are also popular because of
their inherent expansion property and algorithms for encoding and decoding in lin-
ear time is presented for such codes in [14]. Recently, [7] has described a localized
decoding procedure for expander codes capable of correcting a fraction of errors
using a (relatively) few number of symbols from corrupted codeword. In Sect. 2,
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we obtain linear codes with graph constraints that also attain the Gilbert-Varshamov
bound.

The capacity of a graph [13] measures the capability communication without
errors for channelsmodelled by a confusion graph.Many bounds for the graph capac-
ity are known: Lovász [11] used projection techniques to determine the capacity of
the cycle C5 on 5 vertices and [6] who studied analogues of Shannon capacity and
its connections with the ultimate chromatic number. Marton [12] obtained expres-
sions for graph capacities for a sequence of graphs based on typical sequences and
more recently, [1] investigated the problem of approximating graph capacity by finite
graph products.

In this paper, we study and establish bounds for a fractional version of the graph
capacity in terms of its structural parameters: We obtain an upper bound for the
fractional capacity in terms of the full graph capacity and a lower bound in terms of
the average and maximum vertex degrees.

The paper is organized as follows: In Sect. 2 we study linear parity check codes
with graphical constraints and use random bipartite graphs to determine achievability
of the Gilbert-Varshamov bound. Next in Sect. 3, we define and obtain bounds for
the fractional capacity of a graph.

2 Linear Parity Check Codes with Graph Constraints

We begin with some general definitions. Let Y be any finite set. An n-length word
is an element of Yn and an n-length code C is a subset of Yn. If Y is a finite field,
then we have the concept of linear codes: we say that C is linear if for any c,d ∈ C
and x, y ∈ Y, the word x · c + y · d ∈ C.

We define the Hamming distance between x = (x1, . . . , xn) and y = (y1, . . . , yn)
in Yn, as

d(x, y) =
n∑

i=1

11(xi �= yi ), (2.1)

where 11(.) is the indicator function. In this section, all distances are Hamming and
the minimum distance between any two words in C is denoted as dH (C). The relative
distance, rate and redundancy of C are respectively defined as

δH (C) := dH (C) − 1

n
, R(C) := log(#C)

n log(#Y)
and ξ(C) := 1 − R(C), (2.2)

where #C is the size of C and logarithms are always to the base 2.
In this section we setY = {0, 1} and begin with a description of the random graph

construction of linear parity check codes. LetU = {ui }1≤i≤n and V = {v j }1≤ j≤m be
the left and right vertex sets of the complete bipartite graph Kn,m and let {Z f } f ∈Kn,m

be independent and identically distributed (i.i.d.) Bernoulli random variables with
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indices from the edge set of Kn,m and satisfying

P(X f = 1) = p = 1 − P(X f = 0)

for 0 < p < 1
2 a constant not depending on n. Let G be the random subgraph con-

sisting of the edges f satisfying X f = 1 and define G on the space (�,F ,P).

For 1 ≤ j ≤ m let V j ⊂ X be the neighbour set of v j ∈ Y and let C be the set of
all words x = (x1, . . . , xn) ∈ C satisfying

⊕i∈V j xi = 0 for all 1 ≤ j ≤ m. (2.3)

Settingm = nε, we see that the code C is linear with rate at least 1 − m
n = 1 − ε [14].

We now introduce expansion and graph constraints on C. For 0 < γ < 1 we say
that C has a diversity index of at least γ if

#
(Rx \ Ry

) ≥ γ#Rx for any bx , by ∈ Y. (2.4)

Thus any two parity nodes have at least a fraction γ of different neighbours and
this could be interpreted as an expansion property with respect to the right vertices
of Kn,m . We remark that in the usual construction via expander graphs, the condition
for expansion is with regards to the (left) codeword index nodes of the bipartite
graphs (see [14]).

A n-length constraint E is simply an event in the collection F . For example, the
event Fn that vi−1 and vi+1 are both adjacent to ui for each i, is a constraint. The
random graph G is said to satisfy the constraint E if G ∈ E . Given a sequence of
constraints E and real numbers 0 < δ, γ < 1, we ask if there is a linear code having
relative distance δ and diversity index γ that also satisfies the constraints. If so, what
would be the redundancy of such a code?

If there were no constraints or diversity, then the Gilbert-Varshamov bound
(Theorem 4.2.1, [5]) implies that codes with redundancy at most H(δ) + o(1) are
available, where o(1) −→ 0 as n → ∞ and

H(x) := −x · log x − (1 − x) · log(1 − x) (2.5)

is the binary entropy function. Does imposing diversity and constraints increase the
redundancy of a linear code? The following result says that if the constraints are
not too strict, then we can still get linear parity check codes satisfying the Gilbert-
Varshamov redundancy bound and with a given diversity index.
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Theorem 1 Let 0 < δ < 1
2 and 0 < γ < 1 be any two constants and let {En} be a

sequence of constraints with probability pn = P(En) satisfying

log
(

1
pn

)

n
−→ 0 (2.6)

as n → ∞.

For all n large, there is a n-length linear parity check code Wn that satisfies the
constraint En and has relative distance at least δ, redundancy H(δ) + o(1) and
diversity index ≥ γ.

The condition (2.6) is satisfied, for example, if P(En) ≥ e− f (n) for some sublinear
function f, i.e. if f (n)

n −→ 0 as n → ∞. For all n large, the code Wn then attains
the Gilbert-Varshamov bound and satisfies the constraint En. For example, the prob-
ability of the event Fn described prior to the statement is ≥ p2

√
n and so (2.6) holds

in this case.
Proof of Theorem 1: We obtain our proof in three steps. First we choose the edge

probability p to be an appropriate constant so that the diversity condition is ensured
and in the second step, we ensure that the resulting code C obtained from (2.3) has
a minimum distance of at least δn + 1 with large probability, with probability → 1
as n → ∞. We also set ε > H(δ) so that #C ≥ 2n(1−ε). Finally, in the third step, we
add the constraints into C.

Step 1 (Ensuring diversi t y): Let C be the linear code as obtained in (2.3). To
ensure that C satisfies the diversity property, we argue as follows. Let bx and by
be any two right vertex nodes. We have that a left vertex ai is present in Rx with
probability p and is present inRx ∩ Ry with probability p2. Therefore by standard
deviation estimates (Corollary A.1.14, pp. 312, [2]), for 0 < θ < 1

4 we get that

P (|#Rx − np| ≥ npθ) ≤ exp

(
−θ2

4
np

)
(2.7)

and that

P
(∣∣#(Rx ∩ Ry) − np2

∣∣ ≥ np2θ
) ≤ exp

(
−θ2

4
np2

)
. (2.8)

Letting
Rtot :=

⋂

x

{|#Rx − np| ≥ npθ}

we then get that

P(Rtot ) ≥ 1 − 2m2e− θ2

4 np2 . (2.9)

Similarly, using np2 < np, we get from (2.7) and (2.8) that the event

Fx,y := {
#

(Rx \ Ry
) ≥ np(1 − θ) − np2(1 + θ)

}
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occurs with probability at least 1 − 2e− θ2

4 np2 and so letting Ftot := ⋂
x,y Fx,y, we

then get that

P(Ftot ) ≥ 1 − 2m2e− θ2

4 np2 . (2.10)

From (2.9), (2.10) and the union bound, we therefore we get that the event Ediv :=
Rtot ∩ Ftot occurs with probability

P(Ediv) ≥ 1 − 4m2e− θ2

4 np2 . (2.11)

If Ediv occurs, then for any right nodes bx , by we have

#
(Rx \ Ry

)

#Rx
≥ np(1 − θ) − np2(1 + θ)

np(1 + θ)

= 1 − θ

1 + θ
− p (2.12)

which is at least γ provided θ, p are sufficiently small constants. We henceforth fix
such a p.

Step 2 (Estimating the minimum distance): For the left vertex set J =
{u1, . . . , ub}, we upper bound the probability the word c(J ) = (c1, . . . , cn) defined
by ci = 1 if ui ∈ J and ci = 0 else, is present in the code C. We split our analysis
into two possibilities based on the cardinality #J ≤ t or not, where integer t ≥ 1
will be determined later.

Case I (#J = b ≤ t): The probability that any vertex in J is adjacent to the right
vertex v1 is p. Therefore with probability p(1 − p)b−1 the right vertex v1 is adjacent
to ui and no other vertex in J . Thus with probability (1 − p(1 − p)b−1)m, there is
no “unique” right vertex adjacent only to ui and no other vertex in J . If Euni (J ) is
the event that each vertex in J contains a unique right neighbour, then by the union
bound

P
(
Ec
uni (J )

) ≤ g(1 − p(1 − p)b−1)m ≤ ge−mp(1−p)b−1
. (2.13)

If Euni (J ) occurs, then the word c(J ) /∈ C because the parity constraints will not
be satisfied. Therefore if the event

Etot :=
⋂

S
Euni (J ) (2.14)

occurs, where the intersection is over all subsets J of size g ≤ t, then any word in C
has weight ≥ t + 1 where weight is defined to be the number of indices with 1 as
the entry. But C is linear and so dH (C) ≥ t + 1. From (2.13) we have

P
(
Ec
tot

) ≤
t∑

b=1

b

(
n

b

)
e−mp(1−p)b−1 ≤ t2

(
n

t

)
e−mp(1−p)t−1
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provided t < n
2 . Using

(n
t

) ≤ (
ne
t

)t
we further get that

P(Ec
tot ) ≤ e−θ0 (2.15)

where

θ0 := mp(1 − p)t−1 − t log
(ne
t

)
− 2 log t ≥ m

2
p(1 − p)t−1 ≥ 4C · n, (2.16)

for some constant C > 0, since m = εn and p > 0 is a constant.
Case II (t + 1 ≤ #J = b ≤ δn): For vertex v j ∈ Y, we recall that V j is its (left)

neighbour set in G and define

Hj (J ) := {# (V j ∩ J )
is odd}.

If Hj (J ) occurs, then c(J ) would not satisfy the parity constraints at v j and so the
occurrence of the event

⋃
1≤ j≤m Hj (J ) implies that c(J ) /∈ C. Set

Ecomb :=
⋂

J

⎛

⎝
⋃

1≤ j≤m

Hj (J )

⎞

⎠ (2.17)

where the intersection is over all J satisfying t + 1 ≤ #J ≤ δn. Under Ecomb, no
word in C has weight between t + 1 and δn and so together with case I, we get that
if Etot ∩ Ecomb occurs, then dH (C) ≥ δn + 1.

It remains to estimate P(Ecomb). We know that #V j has a Binomial (n, p) distri-
bution and so #(V j ∩ J ) is Binomial (b, p) distribution. Consequently,

P(Hc
j (J )) =

∑

0≤k≤b
k even

(
b

k

)
pk · (1 − p)b−k = 1

2

(
1 + (1 − 2p)b

)
. (2.18)

and so for any 0 < η < 1
2 we can choose t ≤ g large enough so that P

(
Hc

j (J )
)

≤
1

21−η . In turn this gives

P

(
m⋂

l=1

Hc
l (J )

)
≤ 1

2m(1−η)
= 1

2(1−η)εn
.

The number of choices for J is
(n
g

)
and so by the union bound

P
(
Ec
comb

) ≤
(

δn∑

b=t+1

(
n

g

))
· 1

2(1−η)εn
≤ 1

2βn
, (2.19)
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where β := (1 − η)ε − H(δ) and the final estimate in (2.19) is due to the Hamming
ball size bounds in Proposition 3.3.1 [5]. Recalling that we have chosen ε > H(δ)
strictly, we now set η > 0 smaller if necessary so that β > 0 strictly. Setting Edist :=
Etot ∩ Ecomb we get from (2.19), (2.15) and (2.16) that

P(Edist ) ≥ 1 − e−4Cn − 1

2βn
≥ 1 − e−3Cn (2.20)

for all n large.
Combining (2.11) and (2.20) and using the fact that m = εn, we get from a union

bound that

P(Ediv ∩ Edist ) ≥ 1 − 4m2e− θ2

4 np2 − e−3Cn ≥ 1 − e−2Dn (2.21)

for some constant D > 0.
Step 3 (I ncorporating constraints): By the relation (2.6), we see that P(En) ≥

e−Dn where D > 0 is as in (2.21). Therefore from (2.21) we have

P (En ∩ Ediv ∩ Edist ) ≥ e−Dn − e−2Dn > 0

and so the probabilistic method establishes the existence of our desired an n-length
linear code satisfying the diversity, graphical and redundancy constraints. �

3 Fractional Graph Capacity

For a connected graph H with vertex set {1, 2, . . . , n}, let NH [u] be the closed
neighbourhood of u consisting of all neighbours of u, including u. A stable set in V
is a set I such that no edge of H has both endvertices in I and we the maximum size
of a stable set in H is denoted as α(H).

For integers 1 ≤ k ≤ r,wedefine H(r, k)with vertex set {1, 2, . . . , n}r as follows.
Two verticesu = (u1, . . . , ur ) and v = (v1, . . . , vr ) are said to be adjacent in H(r, k)
if ui ∈ NG[vi ] for each 1 ≤ i ≤ r and

r∑

i=1

11(ui �= vi ) ≤ k,

where 11(.) is the indicator function. For k = n, the above definition is simply the
strong graph product.

Definition 1 For 0 < ζ ≤ 1 the ζ-fractional capacity of H is defined as

�ζ(H) := sup
r≥ 1

ζ

(α(H(r, ζr)))
1
r . (3.1)
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For ζ = 1, this reduces to the graph capacity as defined in [13] and we refer to�(H)

and �ζ(H) as the full and fractional graph capacities, respectively.
Letting H(.) be the entropy function as in (2.5), we have the following:

Theorem 2 Let dav and� be the average andmaximumvertex degree of a connected
graph H. For any 0 < ζ ≤ 1 the fractional graph capacity satisfies

n · max(W (ζ, dav),W (ζ,�),W (ζ, n − 1)) ≤ �ζ(H) ≤ n ·
(

�(H)

n

)ζ

(3.2)

where

W (a, y) :=

⎧
⎪⎨

⎪⎩

(
2H(a) · ya)−1

if 0 < a <
y

y+1

(y + 1)−1 if y
y+1 ≤ a ≤ 1.

(3.3)

We have the following remarks:

Remark 1 For example if H = C5 then dav = � = 2 and from [11] we have
that �(H) = √

5. For ζ = 1
2 , we get the following estimates for the “half” capacity

of C5 :
5

2
√
2

≤ � 1
2
(C5) ≤ 5

4
√
5
.

Remark 2 In general, we see from (3.2) that as γ → 0, the fractional graph capac-
ity�γ(G) → n, the maximum possible value. On the other end, setting γ = 1 in the
lower bound (3.3), we get that the full graph capacity

�(G) ≥ n

dav + 1
,

the Turán’s bound [16].

Proof of Theorem 2: The lower bound is obtained using a combination of prob-
abilistic method and Gilbert-Varshamov argument [8] and for the upper bound we
use a recursive relation analogous to the Singleton bound [8].

We begin with the lower bound. Let w = (w1, . . . , wr ) have independent entries
that are uniform in {1, 2, . . . , n} so that the expected degree of eachw j isdav. IfBζ(w)

is the set of vertices adjacent to w in H(r, ζr), then

E#Bζ(w) =
ζr∑

l=0

(
r

l

)
dlav. (3.4)

For 0 < ζ < 1 − 1
dav+1 , the Hamming ball estimates in Proposition 3.3.1 [5] gives

E#Bζ(w) ≤ nyr (3.5)
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where y = H(ζ)+ζ log dav

log n satisfies 0 < y < 1. Setting

Z(η) := {v : #Bζ(v) ≤ nr(y+η)} (3.6)

for η > 0 to be determined later, we use the Markov inequality to obtain

#Z(η) ≥ nr
(
1 − 1

nrη

)
. (3.7)

Let D := {w1, . . . ,wM} ⊆ (η) be a stable set of maximum size in H(r, ζr). By
the maximality, we must have that the union

⋃M
i=1 Bζ(wi ) = Z(η) and so from (3.7)

and (3.6), we have

nr
(
1 − 1

nrη

)
≤ #Z(η) ≤

M∑

i=1

#Bζ(wi ) ≤ M · nr(θ+η). (3.8)

Consequently M ≥ n(1−θ−η)r
(
1 − 1

nrη
)
and choosing η = 1√

r
, taking r th roots and

allowing r → ∞, we get that

�ζ(H) ≥ W (ζ, dav) (3.9)

for 0 < ζ < 1 − 1
dav+1 .

For 1 − 1
dav+1 ≤ ζ ≤ 1, we have

E#Bζ(w) ≤
r∑

k=0

(
r

k

)
dk
av = (dav + 1)r . (3.10)

Again the Gilbert-Varshamov argument implies that (3.9) is true for 1 − 1
dav+1 ≤ γ ≤

1. Similarly, the deterministic estimate

#Bζ(w) ≤
ζr∑

k=0

(
r

k

)
�r (3.11)

gives �ζ(H) ≥ W (γ,�) and using � ≤ n − 1 we get that �γ(G) ≥ W (γ, n − 1).
This proves the lower bound in (3.2).

For the upper bound, we use recursion. Letting s(r, z) be the maximum size of a
stable set in H(r, z), we first obtain a recursion for s(r, z) in terms of r. Let D be a
maximum stable set in H(r, z) and let D(w) ⊂ D be those vertices containing w as
the last entry (i.e. r th component. There are n choices for w and so the pigeonhole
principle implies that #D(w0) ≥ s(r,z)

n for some w0. Removing w0 from each vertex
in D(w0) gives us a new vertex set C(w0) ⊂ H(r − 1, z). By definition C(w0) is
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stable in H(r − 1, z) as well and so s(r, z) ≤ n · s(r − 1, d). Subsequent iterations
gives us

s(r, z) ≤ nr−z · s(z, z). (3.12)

Setting z = ζr, taking r th roots and using

sup
r≥ 1

ζ

(s(ζr, ζr))
1
r = sup

j≥1
(s( j, j))ζ = (�(H))ζ ,

we then obtain the upper bound in (3.2). �
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Tree Parity Machine-Based Symmetric
Encryption: A Hybrid Approach
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Abstract In a symmetric key encryption the sender and the receiver must possess
the same pre-distributed key in order to encrypt or decrypt the exchanged messages.
Exchanging symmetric keys is a challenging issue in cryptography. In this paper, we
put forward a symmetric key encryption technique that does not require any common
pre-shared “knowledge” between the parties. More specifically, we use a type of neu-
ral network called Tree Parity Machines (TPMs) which, when synchronized, enable
two parties to reach a common state. The common state can be used to establish a
common secret key. Our method makes use of the Tree Parity Machines to reach a
common state between the parties communicating and encrypt the communications
with an ElGamal-type encryption methodology. The advantage of our implemen-
tation is that the initial key exchange method is fast, lightweight and believed to
become a post-quantum candidate. We have analyzed the randomness of the pro-
duced ciphertexts from our system using NIST randomness tests and the results are
included in the paper. We also demonstrate security against chosen plaintext attacks.
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1 Introduction

Cryptographically secure key exchange protocols or public key encryption schemes
such as RSA [13], Diffie-Hellman (DH) key exchange [3] or ElGamal [4] base their
security on problems which are “hard” to solve by probabilistic polynomial time
adversaries. However, the Diffie-Hellman key exchange technique, which constitutes
the main building block of ElGamal, is a key exchange protocol. It allows two
parties to mutually compute the same secret key in presence of adversaries who are
eavesdropping on the channel. ElGamal [4] extended the idea of the Diffie-Hellman
key exchange protocol to get an asymmetric encryption protocol.

With the advent of a novel technique proposed by Abadi and Andersen [1] which
allows two neural networks to mutually learn to encrypt communication in the pres-
ence of an eavesdropping neural network, researchers are exploring alternative ways
of securing communications with the hope of creating lightweight post-quantum-
safe primitives. Abadi and Andersen [1] borrow ideas from generative adversarial
networks and put forward a methodology which they termed as adversarial neural
cryptography. The work of [1] has seen a decent amount of follow-up works such
as [6, 11, 17] where the methodology has been adapted to achieve steganographic
techniques and also extensive security analysis in [18] and security improvements
in [2, 10]. The works along this direction are purely based on the philosophy where
two or more neural networks compete against each other to learn and achieve a goal,
e.g. learning to encrypt a communication. The security provided does not depend on
any well-defined “hard” problem which is improbable to solve by any probabilistic
polynomial time adversary.

Motivation of the work. The existing methodology does not immediately provide
any sort of provable security, e.g. semantic security which is widely believed to be
the minimum security requirement nowadays. The motivation behind our work is to
implement a secure symmetric key encryption scheme using Tree Parity Machines
and standard hardness assumptions like decisional Diffie-Hellman (DDH). Using
Tree Parity Machines removes the need of having a pre-shared state/information in
order to generate a secret key as in [1]. On the other hand, using an ElGamal-type
encryption method over a DDH group ensures some reasonable provable security
against chosen plaintext attacks.

Our Contribution. We aim to take initial steps into hybridizing existing cryptog-
raphy techniques with recent neural networks-based cryptography techniques. Con-
cretely, we aim to realize a symmetric key encryption scheme based on the hardness
of discrete logarithm problem and using the Tree ParityMachine proposed byKanter,
Kinzel and Kanter [8]. Tree Parity Machines are neural networks composed of three
layers: Input layer, Hidden layer and Output layer. Kanter et al.
[8] show that two Tree Parity Machines can be synchronized and obtain the same
state that can be later used to generate a common secret key.

We choose the Tree Parity Machines to establish key(s) in order to gain more
speed and flexibility in the key generation process. Additionally, the Tree Parity
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Machines exchange does not rely on a problemwhich is hard to solve by probabilistic
polynomial time adversaries and therefore can be seen as a potential quantum-safe
candidate. To the best of our knowledge, such a hybrid approach toward constructing
a symmetric key encryption has not been considered in the literature before.

1.1 Related Works

Key Exchange using Tree Parity Machines Kanter et al. [8] proposed a model of
two neural networks that can synchronize and learn to exchange a secret key on a
public channel just like the Diffie-Hellman protocol [3]. The two parties are neural
networks with the same structure. They have the following structure as shown in
Fig. 1.

We can see that the neural networks are composed of an input layer I containing
K · N neurons to read the input, a hidden layer W containing K neurons to mix and
transform the input and finally a single neuron output layer.

To mutually obtain the same weights vector W which will be used to generate
the secret key, the two neural networks need to publicly exchange random vectors.
Alice will initiate the communication by generating a random input vector and send
it publicly to Bob. Alice and Bob will pass the same vector through their neural
network in order to obtain the output. Alice and Bob will now publicly compare their
outputs. If they have different outputs, they use Hebbian Learning [7] in order to
update their parameters and repeat the process (i.e. continue training). If they have
equal outputs, they can stop the training.

Fig. 1 Neural Network structure of a Tree Parity Machine
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Hebbian learning [7] (proposed in a different context) is an unsupervised learning
technique which allows two neural networks to synchronize and obtain the same
training weights remotely. The formula for updating the parameters is detailed in
Eq.1

Wi, j = L f (Wi, j + τA · Θ(σi , τ1) · Θ(τA, τB)) (1)

where Wi, j is the current weight value we are updating, L f is a function that limits
the value it receives as parameter in {−L , . . . ,+L}, τA and τB are Alice’s and Bob’s
output, respectively, σi is the output of the i th hidden neuron and θ is a function that
returns 0 if its two parameters are not equal and 1 otherwise.

However, this exchange has been proven weak against attacks as shown in [9].
The authors have shown that three different attacks can be done on the Tree Parity
Machine. These attacks either bruteforce all possible structures for the TPMsor
eavesdrop the communication to mimic Bob’s behavior and synchronize passively.
The authors in [9] also show probabilistic-based attacks.

The authors in [15] show that using a value of K = 8 and N = 16 exponentially
increases the possible weights and makes it difficult for an attacker to realize proba-
bilistic or brute force attacks. They also show that using these values, a small change
in the parameters increases the time required to perform a passive attack polyno-
mially. Therefore, we will be using these parameters for the structure of our neural
networks to provide maximum security for the exchange. On the other hand, [5] has
a concrete instantiation of a symmetric key protocol via. DES which we believe falls
short of achieving semantic security.

SecureCommunication usingAdversarial Neural Cryptography [1] This GANs-
based neural network model proposed in late 2016 by Abadi and Andersen [1] shows
that two neural networks can learn to encrypt a communication in the presence of an
eavesdropper by training in a GANs setup. We aim to compare our work with this
work in Sect. 5

In a GANs setup, two neural networks compete against each other in order to
generate data that is statistically similar to the original training Data. We usually find
the Generator that tries to generate data as similar as possible to the original data and
the Discriminator has to tell generated data and original data apart.

In the model proposed by Abadi and Andersen [1], the setup is also based on
GANs but is slightly different. The Generator Alice will be in charge of generating
ciphertexts that are easy to decrypt for Bob and difficult to decrypt by the eavesdrop-
ping adversary Eve.

The two parties need to have a pre-shared secret key to encrypt data with.
As for the training, at each iteration, Alice will generate a ciphertext using a

random key and send it to Bob. Bob will try to decrypt the ciphertext using the same
random key (We assume that Bob can get the secret key safely). A third party, the
eavesdropper Eve, will intercept each ciphertext and try to decrypt it without the key.

Encryption and Decryption are done by passing the key and the plaintext and
ciphertext, respectively, through the party’s neural network and processing it.

The neural network structure is composed of a fully connected layer that reads the
plaintext P and the secret key Key andwill then be followed bymultiple convolutions
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and activation to get the ciphertext C as an output. The decryption follows the same
procedure with the exception that the receiving party uses C instead of P as input
along with Key. On the other hand, the eavesdropper only has C as input to her
neural network.

In our experiments with an average computer, establishing a connection takes
between 15 and 30 min (in order to train the neural networks for the first time),
and after that, encryption and decryption processes are mostly instant. This means
that this model can be used in production environments without any worries about
performance even on resource-limited devices such as IoT devices. The authors in
[2, 10] proposed some changes to the neural network structure to get ciphertexts
that are close to uniformly random. To cope with the problem of long training time,
Researchers in [12] proposed training and saving the neural network parameters in
advance and using them directly when a communication is needed.

2 A Hybrid Method for Symmetric Encryption

Existing neural networks-based symmetric key encryption schemes arising from
TPMs [5, 8] or from adversarial neural networks [1, 12] do not provide any provable
security. The security of the aforementioned proposals was not based on any hard
problem like discrete log or factorization problem. In fact, [9, 18] analyzed the
shortcomings of the proposals which imply vulnerability against multiple attacks
including chosen plaintext attacks.

In this section, we present a hybrid approach to develop a symmetric key encryp-
tion which uses a TPMs to generate common randomness between two parties and
a setup for ElGamal-type encryption. The main advantage of our model is that there
is no need to share a common (secret) state in advance like the work in [1]. The
synchronization of the Tree Parity Machines of the two parties will allow them to
reach a common secret state that can be used to generate secret keys.

For the sake of completeness, we summarize the Diffie-Hellman key exchange
protocol below (between Alice and Bob):

1. q is a prime, G is a cyclic group of order q in which DDH is hard and g is a
generator of G. The information (G, g, q) is made public.

2. Alice uniformly selects rA ∈ Zq − {0}; computes KA = grA mod q; sends
KA to Bob.

3. Bob uniformly selects rB ∈ Zq − {0}; computes KB = grB mod q; sends
KB to Alice.

4. Alice computes KrA
B and Bob computes KrB

A locally.
5. Both output grA ·rB as their common secret key.
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Fig. 2 Synchronization process between Alice and Bob

In our proposal, we let the parties Alice and Bob use TPMs to generate the
common randomness which serves as the exponent of g to establish the secret key.
The details are given below.

1. (G, g, q) are public values such that G is a DDH group.
2. Alice and Bob synchronize their TPMs as shown before in Sect. 1.1 and

Fig. 2 to obtain the same vector of parameters W .
3. Alice and Bob generate a common secret Key from the weight-vector W

(Details in Sect. 2.1).

Figure2 gives a pictorial depiction of the steps during the synchronization process
of TPMs.

2.1 Key Generation

The generation of Key from the weight-vector W and the public generator g are as
follows. When the neural networks are synchronized, both the parties have the same
parameters W which is an array of integers W = [a0, a1, · · · , aK ·N ] with a taking
values between −L and +L .
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All the elements of W are converted to binary and concatenated together trans-
forming negative numbers into positive numbers. The result of the concatenationCR
is then used to calculate the secret key in binary.

The common secret key is calculated as Key = ˜CR, a conversion of CR into an
element of Zq . In the following, we describe the encryption scheme.
Method 1. In the first method, once the key is obtained by Alice and Bob, encryption
and decryption algorithms are similar to the ElGamal.

1. Alice (or Bob) randomly chooses r ←$ Zq .
2. Alice (or Bob) computes

• gr and outputs (C1,C2) ←− (gr , (gr )Key · M) as ciphertext.
3. Bob (or Alice) receives (C1,C2).
4. Bob (or Alice) computes M ← C2

CKey
1

.

Security against chosen plaintext attacks. It is well known that over a DDH
group theElGamal encryptionprovides IND-CPA(Indistinguishability underChosen
Plaintext Attack) security. The IND-CPA security of the above-mentioned scheme
can be proved using the same proof strategy and is omitted from this draft.
Method 2 The second method generates a mutual random vector between Alice and
Bob and uses it to transform the secret key every time a communication is needed.

The encryption and decryption work as follows for the second method:

1. Alice (or Bob) chooses a random vector r as long as the input of their Neural
Network and sends it to the other party.

2. Alice and Bob both pass the vector r through their neural network and cal-
culate the output without the activation (in order to get a vector of integers).

3. Now they both have the same output vector R.
4. In order to encrypt a message, Alice (or Bob) does the following:

(a) Choose the next unused element e with index i inside the vector R.
(b) Calculate Key′ = Key ∗ e, i.e. multiply the key by the element e.
(c) To encrypt a message M as C , the sender calculates C = M ∗ Key′

mod q.
(d) The sender sends the pair (C, i) where i is the index of the element e

used to transform the key.

5. Bob (or Alice) receives (C, i).
6. Bob (or Alice) gets the i th element e from the vector R.
7. Bob (or Alice) calculates Key′ = Key ∗ e.
8. Bob (or Alice) can now decrypt C using Key′ with the following formula:

M = C ∗ Key′−1 mod q.
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Security against chosen plaintext attacks. Similarly to method one, randomness
is introduced to the key at every exchange. The only inconvenience of this method is
that the two parties will need a new random vector R every time they have used all
the elements of the current vector R. However, this method provides slightly faster
encryption as it is only amultiplicationwhereas in the firstmethod calculating (gr )Key

is required and is more expensive to calculate. This method is more appropriate for
IoT devices such as sensors that do not need to communicate too often with a server.
For example, sensors that send average weather during the day every 24h.

3 Results, Training Time and Encryption Time

We conducted hundreds of simulations training Alice and Bob to perform the syn-
chronization of TPMsand get a common secret key to use it for encryption as defined
in the previous section. Table1 summarizes our results over 3 sets of 200 training
simulations. Each simulation contains an adversary Eve with the same structure as
Bob. Eve will try to get the secret key by mimicking Bob’s behavior to synchronize
with Alice and Bob without their knowledge. Technically speaking, Eve updates her
parameters when her output is the same as Bob’s and Alice’s.

As shown in Table1, we performed 900 simulations each divided into groups of
300. We can see that the average number of exchanges required to synchronize is
around 230 exchanges. The synchronization takes on average around 300 millisec-
onds with a minimum of 73ms and a maximum of 610ms synchronization time
recorded. During all of our 900 simulations, there has been no simulation where Eve
has been able to secretly synchronize with Alice and Bob and end up with the same
key as them. We have used K = 8, N = 16, L = 8 as parameters for the Tree Parity
Machine. This means that the Tree Parity Machine has K · N = 128 input neurons
and K = 8 hidden neurons that can take a value between −L and +L (i.e. Between
−8 and +8).

We have chosen these values as they have been found to be optimal in the exper-
iments conducted in [15]. The authors state that among all the different structures
they used, the structure that uses the values K = 8, N = 16, L = 8 is themost secure
and out of the 1 million simulations they have performed, only 1 successful synchro-
nization by Eve has been recorded. This is the reason why have used this technique
as it is the safest according to the work done in [15].

Table 1 Table summarizing the time and number of exchanges required to synchronize

Sim. # Sim. Avg. #
exchange

Min. Sync
time (ms)

Max. Sync
time (ms)

Avg. Sync
time (ms)

1 300 222 124 610 266

2 300 229 110 606 278

3 300 225 73 580 273
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4 Security Analysis

The security of the encryption algorithm is dependent on the randomness of the key
generated using the Tree Parity Machine. If the generated key is close to uniformly
random, then the security of the protocol can be reduced to the security of the key
exchange.

4.1 NIST Statistical Test Results

To test the randomness of the keys generated and therefore the security of our pro-
posed method, we have conducted the NIST statistical test on a series of ciphertexts
generated by our implementation of the proposed model using the two methods.

We have generated approximately two sets of 500 ciphertexts each with a unique
key. The first set being generated with the first method and the second set with the
second method. All the ciphertexts had a size of 2048 bits.

Both the two methods got approximately the same results which are detailed in
Table2.

In order to compare our results, we also conducted the NIST randomness test on
ElGamal with the same amount of sample ciphertexts as our first encryption method
is similar to that of ElGamal.

Table 2 NIST randomness test results on our model and ElGamal

Test name Result with
Method 1

Result with
Method 2

Result with original ElGamal scheme

Frequency SUCCESS SUCCESS SUCCESS

BlockFrequency SUCCESS SUCCESS SUCCESS

CumulativeSums SUCCESS SUCCESS SUCCESS

Runs SUCCESS SUCCESS SUCCESS

LongestRun SUCCESS SUCCESS SUCCESS

Rank SUCCESS SUCCESS SUCCESS

FFT SUCCESS SUCCESS SUCCESS

Non Overlapping
Template

FAILED FAILED FAILED

OverlappingTemplate SUCCESS SUCCESS SUCCESS

Universal FAILED FAILED FAILED

ApproximateEntropy FAILED FAILED FAILED

Serial SUCCESS SUCCESS SUCCESS

LinearComplexity FAILED FAILED FAILED
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We can see that the method has passed most of the tests performed by the NIST
statistical test. According to [16], the samples are considered random and therefore
secure if they pass at least 7 NIST statistical tests which is our case.

As we can see, the NIST randomness test shows that our ciphertexts are uniformly
random which implies that our method can be used at a production level securely.

4.2 Security Against Chosen Plaintext Attacks

Wehave alreadymentioned the IND-CPAsecurity of the encryption schemedescribed
in this paper. Due to lack of space, we do not give the details. However, in order to
prove that the scheme is secure against chosen plaintext attack, we must analyze the
randomness/unpredictability of the key ˜CR in Zq generated by the TPMs.

4.3 Other Attacks

Additionally to the NIST Statistical test, we have noticed that the key exchange using
the Tree Parity Machines has been proven to be vulnerable against multiple attacks
as shown in [9]. The authors in [9] show three different attacks that can be applied in
order to allow a third party Eve to simulate the exchange between Alice and Bob and
end up with the same weights array W . However, as shown in [14, 15], this can be
avoided by increasing the size of the neural networks (i.e. number of input neurons
and neurons in the hidden layer).

5 Comparison with Existing Works

We compare our proposed implementation with the model of Abadi and Andersen
[1] in terms of multiple factors as shown in Table3.

We can see that our model outperforms the model proposed by Abadi and
Andersen [1] in terms of synchronization time. This is mainly due to the large CNN
(Convolutional Neural Network) structure used by Abadi and Andersen versus a
relatively smaller unique hidden layer neural network structure used in our model.
Our model also has the advantage of not relying on any initial common state or pre-
shared secret such as a secret key. As for the key length, ElGamal encryption needs
large keys; therefore, the key generated with our model is quite large versus a small
32 or 64 bits key in the model by Abadi and Andersen [1]. The encryption time is
roughly the same for both the techniques as it is a simple neural network feed-forward
operation in the model used by Abadi and Andersen [1] and a simple mathematical
multiplication in our proposed technique. However, the encryption technique learned
by the neural networks in [1] is blackboxed and cannot be known. The messages in
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Table 3 Comparison of our work with the work by Abadi and Andersen [1]. *The encryption time
in our model does not require multiple iterations as opposed to [1]

Model Min and
Max Sync.
time
recorded*

Pre-shared
info.

Key length Enc. type Message
needs to be
as long as
the key?

Ciphertext
size

Our model 73 − 103 ms No Varies
depending
on the
values of K,
L and N. In
our model,
the key
length is
500 bits

ElGamal
-based
affine cipher

No Large

Abadi and
Andersen
[1]

15–30 mins Yes Chosen by
the user.
The authors
used 32bits.
However,
the longer
the length,
the longer
training will
be

Blackboxed Yes Small (As
long as the
message)

our model do not need to be as long as the key in contrary to the model in [1] but this
comes for the price of larger ciphertexts in our model versus ciphertexts as long as
the message in the model in [1]. Lastly, it has not been verified that the Tree Parity
Machines can be synchronized with multiple parties simultaneously in contrary to
the model in [1] where it is possible as shown by the researchers in [12].

Additionally, the authors in [18] have shown that the original model by Abadi and
Andersen [1] has only passed the BlockFrequency and the NonOverlapping
Template and failed the rest. However, the improved versions in [2, 10] achieve better
results.

6 Conclusion and Future Work

We have proposed an encryption that makes use of the Tree Parity Machines [8] in
order to reach a common state between two parties and encrypt the communication
using an ElGamal-like encryption. The technique allows fast and lightweight syn-
chronization and encryption of messages between two parties. The key generation is
purely based on the common state established between the two Tree Parity Machines
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in synchronization and does not require any initial common knowledge. Once the
key is generated, it can be used to encrypt the messages as explained in Sect. 2.1.

As a future work, we aim to do the following:

• Enable synchronization between more than two parties to exchange the same key.
• Find the optimal values for the parameters K , L , N in order to build a Tree Parity
Machine that is resistant to all the attacks shown in [9] by experimenting with
more values as done in [15] but using larger numbers.

• Investigate the reasons behind failing the NonOverlappingTemplate, Universal,
Approximate Entropy and the LinearComplexity NIST statistical tests.

• Study the possibility of using multiple hidden layers and whether it provides more
security or not.

• Study the resistance against quantum attacks in the key exchange phase.
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Metadata Analysis of Web Images
for Source Authentication in Online
Social Media

Mohd Shaliyar and Khurram Mustafa

Abstract Camera mobility-based embedded devices now facilitate easy creation,
manipulation, and sharing of digital content on social media. While doing so, the
shareablemisinformation or disinformation content may harm society. Such contents
may be variously forwarded without verified integrity and authenticity of the source
on Online Social Networks (OSN). Thus, it is inevitable to trace the epicenter and the
kind of information being spread on social networks. In this paper, we have inves-
tigated the types of metadata linked with digital images and analyzed the different
attributes that are susceptible to squandering the integrity of source authentication
with the easy availability of online tools and mobile-based apps. Finally, we accen-
tuate protecting the metadata through the watermarking technique to reveal a piece
of important information in the digital forensic investigation.

Keywords Digital forensic · Digital image · DWT · EXiF · IPTC · Metadata ·
XMP · Watermarking

1 Introduction

With the dramatic advancement in the field of OSN has come of age with Face-
book, YouTube, Twitter, WhatsApp, Tinder, Instagram, etc. OSN has become a cost-
effective way to share digital content. It is an easy-to-access platform to obtain
information about the globe, weather, people, politics, finance, etc. As per [1], OSM
will have roughly 3.78 billion users in 2021, reaching 4.41 billion by 2025. Because
sharing digital content on social media is so easily accessible, users are often ignorant
about the source’s integrity and authenticity. Such lapses and practices may harm
society. To prevent such activities, we need to look at digital content metadata.

M. Shaliyar (B) · K. Mustafa
Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
e-mail: mohdshaliyar@yahoo.com

K. Mustafa
e-mail: kmustafa@jmi.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
B. Rushi Kumar et al. (eds.), Mathematics and Computing, Springer Proceedings in
Mathematics & Statistics 415, https://doi.org/10.1007/978-981-19-9307-7_7

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9307-7_7&domain=pdf
mailto:mohdshaliyar@yahoo.com
mailto:kmustafa@jmi.ac.in
https://doi.org/10.1007/978-981-19-9307-7_7


76 M. Shaliyar and K. Mustafa

Metadata describes data about data. It describes the entity via its attribute values.A
file stored on a computer systemmay have associated metadata (name, creation date)
and system-specific metadata (accessed date). Both types of metadata are suscep-
tible to modifications. So, every metadata must be preserved to protect the data’s
integrity and the source’s authenticity. Moreover, unaltered metadata content serves
as a backbone of digital forensic research. However, image analysis for forensic
purposes comprises two phases: image authentication and source identification [2].
The first determines whether the image has gone through any process of modification
[3]. The latter determines the source. Even so, it is based on the device’s features and
image-making techniques [4].

However, the Exif format used by each device maker varies. This information
includes the image source, technical data, and GPS location. Metadata techniques
are among the simplest ones. However, they depend on the manufacturer’s rules to
determine what metadata should be included in an image. Because metadata is so
simple, it can be changed with existing tools. However, proof of no alteration in an
image’s metadata can be very beneficial in forensic investigations.

Moreover, images are themost shareable digital resource onOSN [5]. Pixel values
compose images visually, but imagemetadata contains a vast quantity of information.
Image metadata describes everything from the camera’s maker and model to the
image’s GPS location. Metadata attributes reveal vital information about an image,
such as copyright, GPS position, and date/time. However, this, too, has severe results.

By publishing a group of images on social media, an interloper can determine the
time and location of a photographer by their GPS coordinates. In 2017, four apache
choppers were attacked by insurgents in Iraq by having metadata coordinates of
web-published images by an unaware soldier [6]. Besides this, numerous collections
of GPS users’ locations were recorded through metadata of online published videos
that enable larcenists to further their aims [7].

1.1 State of the Art

Metadata is a collection of data about an entity. With the ease of access to digital
cameras and the Internet, usersmay instantly share imageswith geotagging.However,
geotagging attaches GPS locations to photographs, jeopardizing privacy.

As per [8], the authors outlined the image creation life cycle, emphasizing the
value of metadata. In recent years, much research has been conducted to protect
image metadata. In [6], the authors try to secure metadata through symmetric key
cryptography, but their methodology proved inadequate. They could not securely
exchange keys and were susceptible to a man-in-the-middle attack.

The authors employed online tools to validate image authenticity using Exif meta-
data [9]. The automated insertion of the APP0 marker, absence of the IFD1 marker,
and shortening of the Huffman code implied morphing. The authors of [10] carried
out a deep analysis of 4000 images and 10 mobile phone manufacturers. They test
images from Flickr and other mobile devices. Their study found 10 types of errors
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in Exif metadata. They conclude that many manufacturers do not strictly follow Exif
specifications. However, they also tested five image metadata tools for robustness.

The authors [11] used metadata in provenance analysis to protect the authenticity
and copyright of creativework such as paintings ormemes. Provenance analysis gives
a timeline and validity of uploaded, re-uploaded, or modified content. In [12], the
authors have created an Android application to check the legitimacy of digitally
embedded images using Error Level Analysis (ELA) and metadata features. They
also provided a scale to assess amodificationpercentage. It defined significantmodifi-
cation as less than 40%, perceptiblemodification as 40–60%, suspiciousmodification
as 60–80%, and no modification as 80–99%.

In [13], the authors developed a way to detect an individual’s location using
geotags in uploaded images or videos. They downloaded an image from socialmedia,
extracted their Exif metadata, created a table of GPS, and compared it with a GPS
mapper. Finally, they used the EXIF tool to locate the geographic position. In [14],
the authors utilized a digital certificate as an Exif metadata item to assure an image’s
authenticity and integrity.

Metadata can contain copyright information in addition to manufacturer and GPS
location data. Facebook was prosecuted by a German photographer for deleting
metadata and violating the German Copyright Act [2]. So metadata is a double-
edged sword. It must be available publicly for authenticity and copyright, but it
must also be unalterable to prevent misuse and abuse.

According to the researchmentioned above, themorphed image can be detected by
the additionalmetadata attributes ormeasuring scales.However, “how to authenticate
similar images with different metadata” is challenging.

The paper is divided into 6 sections. Section 1 consists of an introduction. Section 2
describes the types of image metadata. We have shown experimental validation in
Sect. 3. The proposed solution is in Sect. 4. Results and discussion are carried out in
Sect. 5, and in Sect. 6, we conclude the paper.

2 Image Metadata

As is seen from the above-mentioned work on image metadata, we can conclude that
it is highly significant to secure metadata. Our work is to authenticate the source of
information or misinformation in online social media. To accomplish this, we first
discovered image-related metadata. Second, we identified metadata attributes that
are susceptible to alteration. There exist three types of metadata: EXIF, IPTC, and
XMP. An introductory detail on each is given as follows.
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2.1 EXIF Metadata

EXIF (Exchangeable Image File Format) metadata falls in the class of Technical
metadata. Technical metadata may contain a collection of technical details of digital
objects such as object maker, copyright information, brand, model, date of image
shot, sensitivity, focal distance, and GPS coordinate. In 1992, JPEG created the
first format named JFIF, which allowed the exchange of JPEG bit streams between
applications. Later, in 1998, JPEG introduced a new standard called EXIF. It enables
cameramakers or photographers to directly insert camera and image data in JPEGand
TIFFfiles. Thismetadatamay include detailed sources of authentication information,
such as the time and location of the image click and the device utilized.

Moreover, the JPEG file format is divided into several markers. Marker FDD8
defines a Start-Of-Image (SOI), whereas FDD9 defines an End-Of-Image (EOI).
In between these markers, data is divided into different segments. As per JPEG
flexibility, one can add more markers and segments as metadata. The authors [14]
conduct a deep study on the errors of Exif metadata in mobile devices.

2.2 IPTC Metadata

IPTC (International Press Telecommunications Council) comes in a descriptive
metadata class. Descriptive metadata contains details about digital devices such as
the author’s name, email address, copyright, license, address, and contact number.
Initially, IPTCwas used as a standard for information interchange among news orga-
nizations. In 1994, Adobe Photoshop allowed users to update metadata for digital
images via file information. Moreover, many photo and publishing organizations
adopted the IPTC standard. Besides these, IPTC metadata provides rich information
during a forensic investigation, utilizing attributes such as the author’s name, address,
copyright, and caption.

2.3 XMP Metadata

The administrative class of metadata includes XMP (Extensible Metadata Platform).
Administrative metadata identifies administrative information of a file, such as when
the file was created, determines access rights, title, author name, and intellectual
property rights, and preserves metadata details. In 2001, Adobe developed XML-
based XMP. Moreover, in 2005, Adobe developed an “IPTC core schema for XMP”
by incorporating the old IPTC headers into the new XMP framework. The specific
XMP fields are title, author, date of creation, and subject. It also contains metadata
of embedded images.
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3 Experimental Validation

In this section, we experiment to ensure the integrity of data and the authenticity of
the source of information.We also highlight the imagemetadata attributes that can be
modified using free Android apps or computer software. First, we identify attributes
that have potential in forensic investigation. Along with this, we shall analyze their
authenticity by various computer-based tools such as Metadata++, EXIF tool, File
date changer, and Android-based app EXIF editor for GPS alteration. In Fig. 1, we
have shown an original image downloaded from Flickr with its genuine metadata
values, as shown in Figs. 2a, 3a, 4a, and 5a.

3.1 Date and Time

This attribute has tremendous significance in forensic investigation. This signifies
when the factor of investigation. These attributes give information about the date
and time of access, creation, and modification of an image. Figure 2a and b show
the metadata with its original and modified date and time values, whereas for a file
system, the original access, create, and modify data is shown in Fig. 3a, and the
modified version of access, create, and modify data is shown in Fig. 3b. As a result
of this experiment, we concluded that the metadata of date and time is vulnerable to
maintaining an image’s integrity.

Fig. 1 Original image
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Exif Version 0230 

Exif

Create Date 2013:10:26 01:00:25
Custom Rendered Normal 
Date Time Original 2013:10:26 01:00:25 

Exposure Compensation 0

(a)

(b)

Aperture value 6.3 

Exif
Aperture value 6.3 

Create Date 2020:10:04 16:59:27

Custom Rendered Normal 
Date Time Original 2020:10:04 16:59:22
Exif Version 0230 
Exposure Compensation 0

Fig. 2 a Original metadata with original date and time value, b Modified metadata with altered
date and time values

System

(a)

(b)

Directory C:/Users/student/Desktop

File access date 2020:10:13 14:54:07
File create date 2020:10:13 14:54:22
File modify date 2020:10:13 14:54:28

System
Directory C:/Users/student/Desktop
File access date 2020:10:13 14:54:07
File create date 2020:10:13 14:54:22
File modify date 2020:10:13 14:54:28

Fig. 3 a Original values of access create and modify the date, bModified values of access, create,
and modify the date
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(a) 

(b) 

IFD0

Artist Matt Armstrong

Copyright Matt Armstrong 2012

Make Canon

Model Canon EOS7D

IFD0

Artist Arnold

Copyright Arnold 2021

Make Sony

Model Sony EXW8Z

Fig. 4 a Original values of name and copyright, bModified values of name and copyright

Taken on: 10 October, 2021
Sunday, 16:50

FileInfo: IMG_202114_7.jpg        
2.42 MB 4000x 3000 px

Exif data: Redmi Note 8,Xiomi 
f/1.79 1/1369 ISO100 4.74mm 
No flash

Local path: 
Internal storage/DCIM/Camera/ 
IMG_202114_7.jpg        

Location: 14, Netaji Subhash 
Marg, Lal Qila, Daryaganj, 
Delhi, 110002, India

Taken on: 14 October, 2021
Thursday, 16:30

FileInfo: IMG_202114_7.jpg        
2.42 MB 4000x 3000 px

Local path: internal             
storage/DCIM/Camera/ 
IMG_202114_7.jpg        

Exif data: Note 8,Samsung 
f/1.79 1/1369 ISO100 4.74mm 
No flash

Location: 27, Jangpura, Bhogal, 
New Delhi, Delhi, 110014, 
India 

Fig. 5 a Original GPS information of the image, b Modified GPS information of the image



82 M. Shaliyar and K. Mustafa

3.2 Copyright

This attribute gives details about the ownership or the creator of the entity. This
signifies the who factor of investigation. This may reveal important information
about the creator in a forensic investigation until and unless it is unalterable. As
shown in Fig. 4a, the original copyright information has been modified to other
details in Fig. 4b. This type of change may lead to severe consequences, such as
publishing an image on OSN, which negatively impacts society with the copyright
information of others. So, the copyright information should be preserved to have the
authenticity of the ownership.

3.3 GPS Coordinate

It is momentous to know “where the crime took place” in a forensic study. This
contributes to where factors. When an image is clicked, some GPS coordinates get
attached to the image through geotagging if it is enabled by the photographer. Before
the alteration, the genuine GPS information of the original image of Red Fort (New
Delhi, India) and modified values of metadata attributes are shown in Fig. 5a and
b, respectively. We have also shown the same image with modified GPS details and
other modified metadata values. To know the true information about the epicenter of
the initial message, it is crucial to know the correct GPS location of the source.

3.4 Contact Details

Contact details also play a significant role in forensic examination. The perpetrator
can be traced out effortlessly as long as their accurate contact details are accessible.
To trace out the malicious user on OSN, the contact details should be embedded in
an image of the user who is going to share it initially; through this, it becomes an
easy and effective way to trace out the malicious users on OSN.

In the above experimental work, it has been seen that all potential attributes that
may lead to source authentication in OSN are susceptible to modification. Therefore,
the authors proposed a solution to the aforementioned issues in light ofwatermarking.

4 Proposed Solution

The digital watermark is a technique for source identification, authentication, copy-
right protection, disclosure, e-medical services, and e-voting, among other things.
The information for authentication or copyright in the form of text, audio, images, or
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videos is embedded in the host/carrier signal in digital watermarking. Watermarking
was typically done in three stages: (a) generation, (b) insertion, and (c) extraction
[15]. During all watermarking operations, however, the insertion and extraction of
the watermark should not jeopardize the quality of the original host.

The watermarking technique is divided into spatial and transform domains based
on the domain. In the spatial domain, the watermark bits are directly embedded into
the coefficients of host signals. It is, however, simple to implement and has a lower
level of complexity. Further, it has a high embedding capacity and imperceptibility.
In the transform domain, the carrier signal is transformed into the frequency domain
before the watermark is embedded. Due to this, the watermark bits are uniformly
spread across the host signal. As a result, the watermarked becomes more resilient
against various attacks while also being more complex than the spatial domain. As
per [16], embedding capacity is relatively high in the spatial domain, but processing
time, imperceptibility, and resilience are all relatively low. While the embedding
capacity in the transform domain is limited, it is highly imperceptible and robust.

Further, the transform domain has a high level of computational complexity and
processing time. In this review article [17], the authors described the research on
digital forensic analysis of multimedia data transmitted via online social networks.
The study is divided into three classes: source identification via forensic analysis,
the credibility of uploaded multimedia, and identification of sharing platforms. They
have also discussed various challenges and issues in spreading misinformation in
OSM.

According to its robustness,watermarking is characterized as fragile, semi-fragile,
and robust. Furthermore, it is also classified as visible or invisible depending on its
visibility. The watermarking process is categorized as video, picture, text, and audio
watermarking based on a carrier signal.

In this section, we demonstrate the feasibility of a solution to the above-stated
issues by using the Discrete Wavelet Transform (DWT) watermarking technique
to preserve the metadata of an image through a Matlab environment. For experi-
mental purposes, the image has been downloaded from [18]. The proposed solution
is divided into two phases: insertion and extraction of a watermark. Among the
different metadata attributes, we used the contact/phone number information of a
user as a watermarked in the cover image of Lena. Through this, we can resolve
the issue of source authentication. Whenever a user is trying to upload an image on
OSN, the model will check whether the image which is going to be uploaded has a
contact number as a watermark on it. If the watermark is already present, then the
model will not overwrite the current sender’s contact number. If it is not found, then
the model will insert the contact number as the watermark of the current sender. In
this way, we can trace out the user who shared the information on OSN for the first
time. Hence, the source will be authenticated. However, instead of a contact number,
many other metadata attributes may exist that can be utilized as a watermark in the
source authentication.



84 M. Shaliyar and K. Mustafa

Fig. 6 a Original image, b watermark image

4.1 Watermark Insertion

To embed awatermark,we extract a green channel of the original cover image of Lena
Fig. 6a. We split the green channel into four sub-bands, LL1, HL1, LH1, and HH1,
by using DWT with Haar wavelet. As the LL1 sub-band contains low-frequency
components and carries the maximum energy in the image, we further split it into the
LL2 sub-band. Hence, the LL2 sub-band is selected for the watermark embedding
process. To insert a contact number as a watermark in the image, first, we convert
each decimal digit of the contact number into an 8-bit binary number. As a result, we
have a 10 × 8 matrix (DB) of binary numbers. In the matrix, we assign the value of
−1 to every corresponding 0. Using Eq. 1, we embed a watermark into the new sub-
band NLL2, where i and j represent corresponding pixel values. K is an embedding
strength ranging from 0.005 to 0.5, as shown in Table 1:

NLL2 (i, j) = LL2(i, j) ∗ (1 + K ∗ DB) (1)

After embedding, the NLL2 is inserted in LL1 through inverse Discrete Wavelet
Transform (IDWT). Further, LL1 is injected into the green channel of the cover image
with IDWT. Hence, as shown in Fig. 6b, we have a watermarked image.

4.2 Watermark Extraction

In the watermark extraction process, we extract the LL1 sub-band from the green
channel of the watermarked image through DWT. From LL1, we derive the ELL2
sub-band, which contains the watermark. In Eq. 2, NLL2 is an embedded watermark,
ELL2 is an extracted watermark, K is an embedding strength, and EBit is a 10 × 8
matrix consisting of 1 or −1 corresponding to each pixel value denoted by i and j.
Further, we change the values of EBit from −1 to 0 to have a binary matrix. Finally,
EBit is converted into their corresponding decimal numbers:
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Table 1 Embedding strength
K, PSNR, and BER values

K PSNR BER SSIM

0.005 76.0153 80 1

0.006 76.0153 80 1

0.007 76.0153 75 1

0.008 76.0153 0 1

0.009 76.0153 0 1

0.01 76.0153 0 1

0.02 66.4729 80 0.9999

0.03 63.9741 51 0.9999

0.04 61.7808 11 0.9999

0.05 59.4736 47 0.9999

0.06 57.86758 57 0.9999

0.07 56.7314 19 0.9999

0.08 55.4658 40 0.9999

0.09 54.3733 53 0.9999

0.1 53.5479 37 0.9999

0.2 47.5167 39 0.9998

0.3 43.9877 42 0.9997

0.4 41.4838 46 0.9994

0.5 39.5521 39 0.9992

EBit(i, j) = (NLL2(i, j) − ELL2(i, j))/(k ∗ ELL2(i, j)) (2)

In the process of watermarking, we used the LL2 sub-band of the Lena image to
insert the contact number of a user as a watermark. From Table 1, it can be observed
that with the increased value of embedding strength K, the imperceptibility (PSNR)
starts to decrease. For the optimal solution, we choose an embedding strength of 0.01
for three similar values of PSNR, SSIM, and for minimum values of BER.

5 Result and Discussion

In the conducted experiment, it has been seen that the attributes that were selected
for forensic investigation are found to be susceptible. The alteration of metadata is
easily feasible, and hence source and copyright authenticity are at risk.Moreover, the
integrity of data and the authenticity of the source are very much dependent on these
attributes. Further, an attacker may advance their aim due to the free availability of
tools to alter metadata attributes. So, it is a strong necessity to preserve the values
of the attributes so that they can be used to maintain the integrity and trace out the
source.
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Fig. 7 a Graph of
Embedding strength (K)
versus PSNR, b Graph of
Embedding strength (K)
versus BER
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Weproposed a solution based on thewatermarking technique. This reveals that the
source can be authenticated if the metadata values can be embedded as a watermark
in an image uploaded on OSN.With the values of embedding strength= 0.01, PSNR
= 76.0153, structural similarity index (SSIM)= 1, and BER= 0, we have an optimal
solution as shown in Fig. 7a and b.

5.1 Limitation

In this study, the proposed solution for source authentication through watermarking
has certain limitations. The findings we have obtained are free from any kind of
attack on the watermark image but limited to JPEG compression, cropping, rotating,
filtering, etc.
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6 Conclusion

In this paper, we have explored various aspects of image metadata and the pertinent
attributes of metadata specific to forensic investigation. The attributes, including
date and time, and copyright, to name a few, were studied for source authentication
and data integrity. It is found that these are vulnerable and can be easily altered
with freely available tools. These vulnerabilities can cause severe social, political, or
financial threats to genuine users. Further, we have proposed a simple but effective
watermarking solution in a Matlab environment for source authentication in online
social media by embedding a contact number as one of the metadata attributes.
With the embedding factor of 0.01, the results were encouraging in terms of PSNR,
SSIM, and BER as 76.0153, 1, and 0, respectively. In the future, the study can be
extended with various watermarking methods, attacks, and optimization techniques
by using multiple watermarks, such as GPS coordinates and Aadhaar, to authenticate
the source of information in online social media.
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A Computational Diffie–Hellman-Based
Insider Secure Signcryption with
Non-interactive Non-repudiation

Ngarenon Togde and Augustin P. Sarr

Abstract An important advantage of signcryption schemes compared to one pass
key exchange protocols is non-interactive non-repudiation (NINR). This attribute
offers to the receiver of a signcrypted ciphertext the ability to generate a non-
repudiation evidence, that can be verified by a third party without executing a costly
multi-round protocol. We propose a computational Diffie–Hellman based insider
secure signcryption scheme with non-interactive non-repudiation. Namely, we show
that under the computational Diffie–Hellman assumption and the random oracle
model, our scheme is tightly insider secure, provided the underlying encryption
scheme is semantically secure. Compared to a large majority of the previously pro-
posed signcryption schemeswithNINR, our construction ismore efficient and it does
not use any specificity of the underlying group, such as pairings. The communication
overhead of our construction, compared to Chevallier Mâmes’ signature scheme is
one group element.

Keywords Signcryption · Non-interactive non-repudiation · Insider security ·
Computational Diffie–Hellman · Random oracle model

1 Introduction

A signcryption scheme provides simultaneously the functionalities of encryption
and signature schemes [24]. A natural use of a signcryption scheme is to build an
asynchronous secure channel i.e., a confidential and authenticated asynchronous
channel. Given the similar uses of signcryption and (one pass) Key Exchange Pro-
tocols (KEP), to build confidential and authenticated channels, it appears, from a
real world perspective, that the right security definition for signcryption schemes is
insider security [3]. Informally, insider security ensures (i) confidentiality even if the
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sender’s static private key is revealed to the attacker, and (ii) unforgeability even if
the receiver’s static private key is disclosed.

A signcryption scheme is said to provide non-repudiation, if the receiver of a
signcrypted ciphertext has the ability to generate a non-repudiation evidence, that
can be verified by a third party (a judge, for instance); as a result, a message sender
cannot deny having signcrypted the message. The non-repudiation attribute is said
to be non-interactive, if a non-repudiation evidence can be generated and verified
without executing a multi-round protocol. An important advantage of signcryption
schemes, compared to one pass KEP, which often outperforms signcryption schemes,
is non-interactive non-repudiation (NINR).

A signcryption scheme with the aim to provide NINR was proposed for the first
time by Bao and Deng [5]; unfortunately their design fails in achieving confiden-
tiality [19]. Malone–Lee [19] proposes an efficient design with NINR he analyzes
in the Random Oracle (RO) model. The scheme achieves confidentiality under the
computational Diffie–Hellman (cDH) assumption, and unforgeability under the gap
Diffie–Hellman Assumption. Unfortunately, the security model he uses is closer to
the outsider than to the insider model. Indeed, the scheme fails in providing insider
confidentiality. In [8], Bjørstad and Dent (BD) propose a design based on Chevallier
Mâmes’ (CM) signature scheme they show to tightly achieve insider unforgeability
under the cDH assumption and outsider confidentiality under the gap DH assump-
tion. Unfortunately, as for the ML scheme, the BD scheme does not achieve insider
confidentiality.

In subsequentworks [2, 13, 14, 20, 23], several insider secure schemeswithNINR
have been proposed. The designs offer a superior security, compared to the ML or
BD schemes. However, they are less efficient and often assume some specificities of
the underlying groups, such as the existence of a bilinear pairing. In [2], Arriaga et al.
propose a generic insider secure signcryption scheme, with randomness reuse, in the
standardmodel. They exhibit an insider secure instantiation of their design, under the
Decisional Bilinear and the q-Strong Diffie–Hellman (DBDH and q-sDH) assump-
tions. Unfortunately, the unforgeability is achieved in the registered key model [20],
wherein an attacker is required to register the keys pairs it uses in its attack.
Matsuda et al. [20] propose a generic composition of signature and tag-based encryp-
tion schemes, which yields to different shades of security depending on the security
attributes of the base schemes. They exhibit two constructions with NINR that fully
achieve insider confidentiality (under the cDH and the gap DH assumptions respec-
tively) and unforgeability (under the co-cDH assumption). Chiba et al. [13] propose
a generic construction of signcryption schemes, and exhibit two insider secure con-
structions with NINR under the DBDH and the q-sDH assumptions. In [14], Fan
et al. propose a signcryption scheme with non-interactive non-repudiation (SCN-
INR), based on Boneh et al.’s signature scheme [10], they show to be insider secure
under the DBDH assumption, without resorting the RO model. Sarr et al. [23] pro-
pose, over the group of signed quadratic residues, a SCNINR, based on a signature
scheme of their own design, they show to be insider secure under theRSA assumption
and the RO model.
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The basic design principle in the SCNINR schemes from [8, 14, 19, 23], is (i) a
Diffie–Hellman (DH) secret derivation, using ephemeral keys from the sender and
the receiver’s static public key, followed by (ii) an encryption using some part of the
derived secret, and (iii) a signature generation, using the sender’s private key, on the
plain text and some part of the derived DH secret. One may notice also that these
schemes assume rather specific groups or have loose security reductions. As tightly
secure cDH-based signature schemes exist [12, 15, 17], we investigate whether such
schemes can be leveraged as building blocks for tightly (multi-user) insider secure
cDH based SCNINR schemes. As we aim at an efficient design, we use the random
oracle (RO) model. We propose a new SCNINR, termed SCedl, based on a variant
of Chevallier–Mâmes’ signature scheme [12], tailored to (i) be combined with Cash
et al.’s twin Diffie–Hellman key exchange [11], (ii) and to allow a use of the same
randomness in the DH key exchange and in the signature generation.

And, using the trapdoor test technique [11], we show that SCedl is tightly insider
secure under the cDH assumption and the RO model, provided the underlying sym-
metric encryption scheme is semantically secure. Even better, we show the insider
confidentiality attribute in the secret key ignorant multi-user model, i.e., when the
sender public key is chosen by the adversary and the challenger does not know the
corresponding private key. Compared to the ML and BD schemes, which do not
require any specificity of the underlying group and do not achieve insider security,
SCedl offers a stronger security, even if it is less efficient. And, compared to the
schemes from [2, 13, 14, 20, 23], SCedl offers a tight security reduction, a better
efficiency, and a comparable or a superior security.

This paper is organized as follows. In Sect. 2, we present some preliminaries on
the syntax of SCNINR schemes and the insider security definitions for SCNINR. In
Sect. 3, we propose the SCedl scheme. We propose our security results in Sect. 4,
and compare our design with previous constructions in Sect. 5.

2 Preliminaries

Notations. G = 〈G〉 is a cyclic group of prime order p, G∗ denotes the set G \ {1}. We
denote by Exp(G, t) the computational effort required to perform t exponentiations
with |p|-bits exponents inG ;Exp(G)denotesExp(G, 1). For an integern, [n]denotes
the set {0, . . . , n}. If S is a set, a ←R S means that a is chosen uniformly at random
from S; wewrite a, b, c, . . . ←R S as a shorthand for a ←R S; b←R S, etc.We denote
by sz(S) the number of bits required to represent a ∈ S. For a probabilistic algorithm
A with parameters u1, . . . , un and output V ∈ V, we write V ←R A(u1, . . . , un).
We denote by {A(u1, . . . , un)} the set {v ∈ V : Pr(V = v) �= 0}. If x1, x2, . . . , xk
are objects belonging to different structures (group, bit-string, etc.) (x1, x2, . . . , xk)
denotes a representation as a bit-string of the tuple such that each element can be
unequivocally parsed.

The cDH Assumption. We assume the existence of an algorithm Setupgrp(·),
which on input a security parameter k outputs a system parameter �k which fully



92 N. Togde and A. P. Sarr

identifies a group G = 〈G〉 together with its order. For X ∈ G, we denote the small-
est non-negative integer x such that Gx = X by logG X . For, X,Y ∈ G, we denote
G(logG X)(logG Y ) by cDH(X,Y ); if B ∈ G, we denote (cDH(X, B), cDH(Y, B)) by
2DH(X,Y, B). The cDH assumption is said to hold in G if for all efficient algo-
rithms A, AdvcDHA (G) = Pr[X,Y ←R G; Z ←R A(G, X,Y ) : Z = cDH(X,Y )] is
negligible in k.

A Symmetric Encryption scheme E = (E,D,K,M,C) is a pair of efficient algo-
rithms (E,D) together with a triple of sets (K,M,C), which depend on the secu-
rity parameter k, such that for all τ ∈ K and all m ∈ M, it holds that E(τ ,m) ∈ C
and m = D(τ ,E(τ ,m)). Let A = (A1,A2) be an adversary against E and let

Pr(Oi,i=0,1) = Pr

[
(m0,m1, st)←R A1(k); τ ←R K; c←R E(τ ,mi );
b̂←R A2(k, c, st)

: b̂ = 1

]
;

then AdvssA,E(k) denotes the quantity AdvssA,E(k) = |Pr(O0) − Pr(O1)| , where m0,

m1 ∈ M are distinct equal length messages. The scheme E is said to be (t, ε(k))-
semantically secure if for all adversaries A running in time t , AdvssA,E(k) � ε(k).

2.1 Insider Security for SCNINR

We recall the syntax of a SCNINR scheme and the insider security definitions in the
Flexible Signcryption / Flexible Unsigncryption Oracle (FSO/FUO) model [4], also
termed dynamic Multi-user model [2].

Definition 1 A signcryption scheme is a quintuple of algorithms SC = (Setup,

GenS, GenR,Sc,Usc) where

(a) Setup takes a security parameter k as input, and outputs a public domain param-
eter dp.

(b) GenS is the sender key pair generation algorithm. It takes as input dp (an implicit
parameter) and outputs a key pair (skS, pkS), wherein skS is the signcrypting
key.

(c) GenR is the receiver key pair generation algorithm; it takes dp as input and
outputs a key pair (skR, pkR).

(d) Sc takes as inputs dp, a sender private key skS , a receiver public key pkR , and
a message m, and outputs a signcryptext C . We write C ←R Sc(skS, pkR,m).

(e) Usc is a deterministic algorithm. It takes as inputs dp, a receiver secret key
skR , a sender public key pkS , and a signcryptext C , and outputs either a valid
message m ∈ M or an error symbol ⊥ /∈ M.

And, for all dp ∈ {Setup(k)}, all m ∈ M, all (skS, pkS) ∈ {GenS(dp)}, and all
(skR, pkR) ∈ {GenR(dp)}, m = Usc(skR, pkS, Sc(skS, pkR,m)). The scheme is
said to provide NINR if there are two algorithms N and PV, termed non-repudiation
evidence generation and pubic verification algorithms such that:
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– N takes as inputs a receiver secret key skR , a sender public key pkS , and a sign-
crypted ciphertextC , andoutputs anon-repudiation evidence nr or a failure symbol
⊥; we write nr ← N(skR, pkS,C).

– PV takes as inputs a signcryptext C , a message m, a non-repudiation evidence nr ,
a sender public key pkS , and a receiver public key pkR , and outputs d ∈ {0, 1};
we write d ← PV(C,m, nr, pkS, pkR).

– For all dp ∈ {Setup(k)}, all C ∈ {0, 1}∗, all (skS, pkS) ∈ {GenS(dp)}, and all
(skR, pkR) ∈ {GenR(dp)}, if ⊥ �= m ← Usc(skR, pkS,C) and nr ← N(skR,

pkS,C) then 1 = d ← PV(C,m, nr, pkS, pkR).

Game 1 SKI–MU Insider Confidentiality in the FSO/FUO–IND–CCA2 sense

We consider the experiments E0 and E1, described hereunder, whereinA = (A1,A2) is a two–stage
adversary against a SCNINR scheme SC;
(1) The challenger generates dp←R Setup(k) and (skR, pkR) ←R GenR(dp);
(2) A1 is provided with dp and pkR , and is given access to:

(a) an unsigncryption oracleOUsc(·, ·), which takes as inputs a public key pk and a signcrypted
ciphertext C , and outputs m ← Usc(skR, pk,C), and (b) a non–repudiation evidence gener-
ation oracleON(·, ·) which takes as inputs a public key pk and a signcrypted ciphertext C and
outputs nr ← N(skR, pk,C).

(3) A1 outputs (m0,m1, pkS, st) ←R AOUsc(·,·),ON(·,·)
1 (pkR)wherem0,m1 ∈ M are distinct equal

length messages, st is a state, and pkS is the attacked sender public key (skS is unknown to the
challenger).

(4) In the experiment Eb,b=0,1, the challenger computes C∗ ←R Sc(skS, pkR,mb).

(5) A2 outputs b′ ←R AOUsc(·,·),ON(·,·)
2 (C∗, st) (OUsc(·, ·) and ON(·, ·) are as in step 2).

(6) For Eb,b=0,1, outb denotes the event: (i)A2 never issuedOUsc(pkS,C∗) orON(pkS,C∗), and
(ii) b′ = 1.

And, Advcca2A,SC(k) =| Pr(out0) − Pr(out1) | denotes A’s CCA2 insider security advantage.

Definition 2 (Secret Key Ignorant Multi-user Insider Confidentiality) A SCNINR
SC is said to be (t, qUsc, qN, ε)-secure in the Secret Key Ignorant Multi-user (SKI–
MU) insider confidentiality in the FSO/FUO IND–CCA2 sense, if for all adver-
saries A playing Game 1, running in time t , and issuing respectively qUsc and
qN queries to the unsigncryption and non-repudiation evidence generation oracles,
Advcca2A,SC(k) � ε.

Definition 3 (Multi-user Strong Insider Unforgeability) A SCNINR is said to be
(t, qSc, ε) Multi-user Insider Unforgeable in the FSO/FUO–sUF–CMA sense if for
all attackers A playing Game 2, running in time t , and issuing qSc queries to the
signcryption oracle, AdvsufA,SC(k) � ε.

Confidentiality andunforgeability are natural security goals for signcryption schemes.
The soundness and unforgeability of non-repudiation evidence attributes are specific
to SCNINR schemes.
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Game 2 MU Insider Unforgeability in the FSO/FUO–sUF–CMA sense

A is a forger, dp←R Setup(k) still denotes the public domain parameter.

(1) The challenger computes (skS, pkS) ←R GenS(dp).
(2) A runs with inputs (dp, pkS) and is given a FSOOSc(·, ·), which takes as inputs a valid public

receiver key pk and a message m and outputs C ←R Sc(skS, pk,m).
(3) A outputs ((skR, pkR),C∗) ←R AOSc(·,·)(dp, pkS). It succeeds if:

(i) ⊥ �= m ← Usc(skR, pkS,C∗), and
(ii) it never received C∗ from OSc(·, ·) on a query on (pkR,m).

AdvsufA,SC(k) = Pr(SuccsufA ) denotes the probability that A wins the game.

Game 3 Soundness of non–repudiation

(1) The challenger computes dp←R Setup(k).
(2) A runs with input dp and outputs (C∗, pkS, skR, pkR,m′, nr) ←R A(dp).
(3) A wins the game if:

(i) ⊥ �= m ← Usc(skR, pkS,C∗), and
(ii) m �= m′ and 1 = d ← PV(C∗,m′, nr, pkS, pkR).

AdvsnrA,SC(k) denotes the probability that A wins the game.

Definition 4 (Soundness of non-repudiation) A SCNINR is said to achieve (t, ε)-
computational soundness of non-repudiation if for all attackers A playing Game 3
and running in time t , AdvsnrA,SC(k) � ε.

Game 4 Unforgeability of non–repudiation evidence

A is an attacker against SC, dp←R Setup(k) is the domain parameter.

(1) The challenger computes (skS, pkS) ←R GenS(dp); (skR, pkR) ←R GenR(dp);
(2) A runs with inputs (dp, pkS , pkR ), and outputs (C∗,m∗, nr∗) ←R AOSc(·,·),OUsc(·,·),ON(·,·)(dp, pkS , pkR ).

(3) A wins if:
(i) C∗ was generated through the OSc(·, ·) oracle on inputs (pkR,m) for some m,
(ii) 1 = d ← PV(C∗,m∗, nr∗, pkS, pkR), and
(iii) nr∗ was not generated by the oracle ON(·, ·) on a query on (pkS,C∗).

AdvunrA,SC(k) denotes the probability that A wins the game.

Definition 5 (Unforgeability of non-repudiation evidence) A SCNINR is said to
achieve (t, qSc, qUsc, qN, ε) unforgeability of non-repudiation evidence if for all
adversariesA playing Game 4, running in time t , and issuing respectively qSc, qUsc,
and qN queries to the signcryption, unsigncryption, and non-repudiation evidence
generation oracles, AdvunrA,SC(k) � ε.
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3 The New Construction

Weconsider the followingvariant ofChevallier–Mâmes’ (CM) signature scheme [12];
H1 : {0, 1}∗ → G,H2 : {0, 1}∗ → K, andH3 : {0, 1}∗ → [p − 1] are hash functions,
aux denotes some auxiliary information.

A Variant of Chevallier–Mâmes’ signature scheme

1: SetupSign(k): the setup outputs a description of the group G, a generator G of G, its prime order

p, together with descriptions of the hash functions Hi,i=1,2,3.

2: Gen(dp): sk ←R [p − 1]; pk ← Gsk ; return (sk, pk);

3: Sign(sk,m): x1, x2 ←R [p − 1]; X1 ← Gx1 ; X2 ← Gx2 ; R ← H1(X1, X2); V ← Rx1 ;

4: W ← Rsk ; h ← H3(m, X1, X2,G, R, V,W, pk,aux); σ ← x1+h · sk; return (X2,W,σ, h);

5: Vrfy(pk, (X2,W,σ, h),m): X1 ← Gσ pk−h ; R ← H1(X1, X2); V ← RσW−h ;
6: if h = H3(m, X1, X2,G, R, V,W, pk,aux) then return 1; else return 0;

As for CM, in the RO model, the signature generation can be efficiently simu-
lated, and the scheme can be shown to be unforgeable under cDH assumption. An
interesting property of this scheme is that when it comes to extend it to a SCNINR,
in a simulation of a signcrypted ciphertext generation, we can generate X1, X2 ←R G
such that for all (B, Z1, Z2) ∈ G3, using the trapdoor test technique [11], we can effi-
ciently decide whether 2DH(X1, X2, B) = (Z1, Z2) or not. Then, if (B1, B2) ∈ G2

is a receiver public key, and a twin Diffie–Hellman key exchange [11] is performed
using (X1, X2) and (B1, B2), we can use a trapdoor test at both the sender and the
receiver. Then, as for the signature scheme’s unforgeability, we can show the sign-
cryption scheme to be tightly insider secure.

The SCedl Scheme

10: Setup(k): the algorithm defines a group G = 〈G〉 of prime order p, together with an encryption
scheme E = (E,D,K,M,C) and the hash functions H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → K, and
H3 : {0, 1}∗ → [p − 1]. The domain parameter is dp = (G, E,H1,H2,H3). We assume p �
|K|.

11: GenS(dp): a ←R [p − 1]; (skS, pkS) ← (a,Ga); return (skS, pkS);

12: GenR(dp): b1, b2 ←R [p − 1]; (skR, pkR) ← (
(b1, b2), (Gb1 ,Gb2 )

) ; return (skR, pkR);

13: Sc(skS, pkR,m): Parse pkR as (B1, B2); x1, x2 ←R [p − 1]; X1 ← Gx1 ; X2 ← Gx2 ;
14: R ← H1(X1, X2); V ← Rx1 ; W ← RskS ;
15: Z1 ← Bx1

1 ; Z2 ← Bx1
2 ; Z3 ← Bx2

1 ; Z4 ← Bx2
2 ;

16: τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
17: c ← E(τ2,m); h ← H3(m, τ1, c, X1, X2,G, R, V,W, pkS, pkR);
18: σ ← x1 + h · skS mod p; return (X2,W,σ, h, c);

19: Usc(skR, pkS,C): Parse skR as (b1, b2) ∈ [p − 1]2;
20: Parse C as (X2,W,σ, h, c) ∈ G2 × [p − 1]2 × C.
21: X1 ← Gσ pk−h

S ; Z1 ← Xb1
1 ; Z2 ← Xb2

1 ; Z3 ← Xb1
2 ; Z4 ← Xb2

2 ;
22: τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
23: m ← D(τ2, c); R ← H1(X1, X2); V ← RσW−h;
24: if h = H3(m, τ1, c, X1, X2,G, R, V,W, pkS, pkR) then return m; else return ⊥;

25: N(skR, pkS,C): Parse skR as (b1, b2); Parse C as (X2,W,σ, h, c).
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26: X1 ← Gσ pk−h
S ; Z1 ← Xb1

1 ; Z2 ← Xb2
1 ; Z3 ← Xb1

2 ; Z4 ← Xb2
2 ;

27: τ1 ← H2(X1, X2, Z1, Z2, Z3, Z4, pkS, pkR); τ2 ← H2(X2, X1, Z3, Z4, Z1, Z2, pkS, pkR);
28: m ← D(τ2, c); R ← H1(X1, X2); V ← RσW−h;
29: if h = H3(m, τ1, c, X1, X2,G, R, V,W, pkS, pkR) then return (τ1, τ2); else return ⊥;

30: PV(C,m, nr, pkS, pkR): Parse C as (X2,W,σ, h, c) and nr as (τ1, τ2);
31: m′ ← D(τ2, c);
32: if m′ �= m then return 0;
33: X1 ← Gσ pk−h

S ; R ← H1(X1, X2); V ← RσW−h;
34: if h = H3(m, τ1, c, X1, X2,G, R, V,W, pkS, pkR) then return 1; else return 0;

For the consistency of SCedl, one can observe that, as σ = x1 + h · skS , Gσ pk−h
S

yields X1; similarly RσW−h yields V . Then, if C ←R Sc(skS, pkR,m) the same
Zi ’s are computed in the signcryption and unsigncryption algorithms. And, the same
values of τ1 and τ2 are derived both in Sc(skS, pkR,m) and Usc(skR, pkS,C).
The remaining part in the definition of Sc (resp. Usc) is essentially a proof (resp.
verification) of equality of discrete logarithms (edl) modified to include m, τ1 and c.
Doing so, for all dp ∈ {Setup(k)}, all m ∈ M, all (skS, pkS) ∈ {GenS(dp)}, and
all (skR, pkR) ∈ {GenR(dp)}, m = Usc(skR, pkS,Sc(skS, pkR,m)). Moreover, if
nr ← N(skR, pkS,Sc(skS, pkR,m)) then 1 = d ← PV(C,m, nr, pkS, pkR).

4 Security of the SCedl Scheme

We have the following results; detailed proofs are given in [21].

Theorem 1 We assume the RO model. If qX , with X ∈ {H2,Usc,N}, is an upper
bound on the number of timesA issues theOX oracle in Game 1, the cDH problem is
(t (k), εcDH(k))-hard inG, and the encryption scheme E is (t (k), εss(k))-semantically
secure, then SCedl is (t (k), qUsc, qN, ε(k))-secure in the SKI–MU insider confiden-
tiality in the FSO/FUO–IND–CCA2 sense, where

ε(k) � εcDH(k) + εss(k) + 4(qH2 + 2qUsc + 2qN + 1)/p + 2qH3/|K|. (1)

Theorem 2 Let qX , where X ∈ {H1,H2,H3,Sc}, be an upper bound on the number
of timesA issues theOX oracle inGame2.Under theROmodel, if the cDH problem is
(t (k), εcDH(k))-hard in G, then SCedl is (t (k), qSc(k), ε(k))-MU insider unforgeable
in the FSO/FUO–sUF–CMA sense, where ε � εcDH + ((qSc + qH3)

2 + q2
Sc)/2p +

(qH3 + 2qH2 + 1)/p.

Theorem 3 Under the RO model, the SCedl scheme achieves (t, ε)-computational
soundness of non-repudiation, where ε � q2

H3
/2p wherein qH3 , is an upper bound on

the number of times A issues queries to the OH3 oracle.

Theorem 4 Under the RO model, if the cDH problem is (t (k), εcDH(k)) hard,
then SCedl achieves (t, qSc, qUsc, qN, ε) unforgeability of non-repudiation evidence
wherein ε � εcDH + 1/|K| + 3/(2p).
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4.1 On the Concrete Choice of the Set of Domain Parameters

A concrete instance of a cryptographic problem is said to have k-bits of security if
any adversary A running in time t and trying to solve the problem succeeds with
probability ε � t/2k . A cryptographic scheme is said to have k-bits of security with
respect to some security attribute, if any attacker playing the security game that
defines the attribute and running in time t , succeeds with probability ε � t/2k .

In SCedl, if the underlying group G and the encryption scheme E are chosen
such that the cDH problem in G has (k + 1)-bits of security and E has (k + 3)-bits of
security then, from (1), it follows thatSCedl is (t, qSc, qUsc, qN, ε)-secure in the SKI–
MU insider confidentiality in the FSO/FUO–IND–CCA2 sense, where ε � t/2k+1 +
t/2k+3 + 4(qH2 + 2qUsc + 2qN + 1)/p + 2t/|K|.As anO(

√
p) algorithm is known

for the discrete logarithm problem, α
√
p � 2k+1 for some “moderate” constant α.

As qH2 + 2qUsc + 2qN + 1 � 2t and |K| � 2k+3, we obtain ε � t/2k . Hence, SCedl

has k-bits of security in the SKI–MU insider confidentiality in the FSO/FUO–IND–
CCA2 sense. A similar analysis shows that under the same assumptions, SCedl has
k-bits of security with regard to (i) (ii) the MU insider strong unforgeability in the
FSO/FUO–sUF–CMA sense, (iii) the soundness of non-repudiation, and (vi) the
unforgeability of non-repudiation evidence.

5 Comparison with Other Schemes

The design of SCedl integrates the randomness reuse idea suggested in [2, 20]. A
SCedl sender (resp. receiver) key pair generation requires one (resp. two) exponen-
tiations. An execution of the Sc algorithm requires Exp(G, 8). Four of the 8 expo-
nentiations can be performed offline, before the receiver public key and the plain
text are provided. If the receiver public key is provided before the plain text (this
may occur in email systems where the recipient is often typed before email text) all
the 8 exponentiations can be performed before the plain text is provided The Usc
and N algorithms require Exp(G, 4) (two pairs of exponentiations with the same
exponent) and two multi-exponentiations. The public verification algorithm requires
two multi-exponentiations. If the encryption scheme E is such that a clear text and
a corresponding ciphertext have the same length, the communication overhead of
SCedl, compared to the CM signature scheme is one group element. Notice that we
neglected the groupmembership tests, as they have a negligible cost inZ∗

q and elliptic
curve groups.

In [19], Malone–Lee (ML) proposes a very efficient design with NINR. Unfor-
tunately, the design, which is analyzed in the RO model under de cDH assumption,
does not achieve insider security. Also the reduction uses the Forking Lemma [6,
22]. Assuming qH = 232, for a security target of 128-bits, the underlying group
G ′ must be chosen to offer 160-bits of security. In the case G ′ is a (sub)group of
the rational points of an elliptic curve G ′ = E(Fq ′), q ′ has to be chosen such that
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|q ′| ≈ 320. An execution of the ML Sc or Usc algorithm requires two exponentia-
tions. As amodular multiplication (performedwith theKaratsuba–Ofman algorithm)
in Fq ′ has complexity ≈ |q ′|1.585. Given the tightness of our reduction, in ECC,
we need |q| = 256 to have 128 bits of security. As Mult(Fq ′) ≈ 1.42 · Mult(Fq),
assuming that a group operation in G ′ requires 14 · Mult(Fq ′) (see1 [16, p. 96]),
Exp(G ′) ≈ 6720 · Mult(Fq ′) ≈ 9570 · Mult(Fq) ≈ 1.78 · Exp(G). The ML design
is about (a) 2.25 times faster for signcryption, and (b) 1.25 times faster for unsign-
cryption than ours.

Bjørstad and Dent’s (BD) design [8] tightly achieves, in the RO model, insider
unforgeability under the cDH assumption and outsider confidentiality under the
gap DH assumption. The scheme does not achieve insider confidentiality. The Sc
algorithm requires Exp(G, 3) operations, the Usc algorithm requires two multi-
exponentiations. The BD construction is about 2.5 times faster than SCedl for sign-
crypted ciphertext generation and about 3 times faster for unsigncryption.

Some of the designs we consider hereunder assume the existence of groups
G1,G2,GT together with a bilinear pairing e : G1 × G2 → GT . Recall that for a
choice of the groups G,G1,G2, and GT (where G is a classical ECC group), with a
target of 128-bits of security, the cost of a pairing evaluation is about ≈ Exp(G, 8),
Exp(G1) ≈ Exp(G, 3), and Exp(G2) ≈ Exp(G, 6) [7, p. 126].

Arriaga et al.’s generic construction with NINR [2] is insider secure in the stan-
dard model. They propose an instantiation of their design which assumes the Deci-
sional Bilinear and the q-Strong DH assumptions. Unfortunately, the unforgeability
is achieved in the registered key model [20], wherein an attacker needs to register to
the challenger the keys pairs it uses in its attack. The design assumes the existence of
groups G,G1,G2,GT such that (i)G1,G2,GT are of order q, (ii) there is a bilinear
pairing e : G1 × G2 → GT and (iii) a one to one and efficiently invertible mapping
from G to Zq .

An evaluation of theSc algorithm requiresExp(G, 2) + Exp(G1) and one multi-
exponentiation inG. TheUsc algorithm requires twomulti-exponentiations, one inG
and one inG2, and a pairing evaluation. For a target of 128 bits of security, we expect
SCedl to be 1.5 times faster for signcryption and 2.8 times faster for unsigncryption.

Matsuda et al. [20]’s two generic constructions with NINR are insider secure
in the FSO/FUO model. The security reduction is provided in the RO model. The
most efficient among the instanciations that achieve insider security in the FSO/FUO
model uses as base schemes, theDHIES encryption scheme [1] and theBLS signature
scheme [9]. The construction assumes the existence of groups G1,G2,GT together
with a bilinear pairing e : G1 × G2 → GT . A Sc operation requires Exp(G1, 3), an
Usc operation requires Exp(G2) and two pairing evaluations. Compared to SCedl,
for a target of 128 bits of security (given that Exp(G1) ≈ Exp(G, 3), Exp(G2) ≈

1 If |G| = 2λ, the cost of Exp(G) using the classical square-and-multiply algorithm is ≈ 1.5 · λ
operations in G. And if G is such that the multiplication of two of its elements requires 14 multi-
plications in Fq then the computational cost of an exponentiation is 14 · 1.5 · λ multiplications in
Fq .



A Computational Diffie-Hellman-Based Insider Secure Signcryption … 99

Exp(G, 6) and the cost of a pairing evaluation ≈ Exp(G, 8)) we expect our design to
be 1.12 times faster for signcryption, and about 3.6 times faster for unsigncryption.

For a comparison with Chiba et al.’s generic construction with NINR [13], we
consider the most efficient among the instantiations they propose. It achieves insider
security in the FSO/FUO model, under the Decisional Bilinear and the q-strong
DH assumptions. Although the insider security is shown in the standard model,
the unforgeability is achieved in the registered key model. Besides, the scheme
assumes the existence of a pairing e : G1 × G2 → GT , withG1 = G2. The Sc algo-
rithm requires Exp(G1, 3) together with a multi-exponentiation. The Usc operation
requires one exponentiation, one multi-exponentiation, and one pairing evaluation.
We expect SCedl to be about 1.5 times faster for signcryption, and about 2.3 times
faster for unsigncryption.

Fan et al.’s design [14] assumes the existence of a bilinear map e : G × G → GT ,
where G and GT are multiplicative cyclic groups. The Sc algorithm requires one
pairing, Exp(G, 4) + Exp(GT ), and (n + 1)/2 group operations in G, where n is
the bit-length output of some collision resistant hash function H : G → {0, 1}n used
in the design. The unsigncryption algorithm requires 3 pairings, Exp(G, 2), and
(n/2 + 1) group operations inG. A signcrypted ciphertext is an element ofGT × G

3.
For a choice of the groups G, G, and GT , with target 128-bits of security, we expect
our design to be about (a) (b) 2.5 times faster for signcryption, and (c) 7.5 times
faster for unsigncryption than Fan et al.’s construction, in addition to having shorter
signcrypted ciphertexts.

In the scheme from [23], defined over the (RSA based) group of signed quadratic
residues J+

N , the Sc algorithm requires Exp(J+
N , 6) and the Usc algorithm requires

Exp(ZN , 3) (we ignore the exponentiation with the RSA public exponent, which
is often small and sparse). Unfortunately, the security reduction uses the Forking
Lemma, which implies a 1/qH security degradation, where qH is the number of digest
queries the attacker issues. For qH = 232, if the target security is 128-bits, the RSA
modulus needs to have a bitlength |N | ≈ 7864 [18]2. Then, considering a square-
and-multiply based exponentiation,Exp(J+

N ) ≈ 11796 · Mult(ZN ), whereMult(ZN )

denotes the cost of a multiplication in ZN . In contrast SCedl can be instantiated over
an elliptic curve (sub)group G = E(Fq) such that |q| ≈ 256 and G has 128-bits of
security. Assuming that a group operation in G requires 14 · Mult(Fq) [16, p. 96],
Exp(G) ≈ 5376 · Mult(Fq). As Mult(ZN ) > 30 · Mult(Fq), for a 128-bits security
target, we expect SCedl over G to be at least 13 times faster (for key generation,
signcryption, unsigncryption, etc.) than the design from [23].

Compared to the ML and BD schemes, which do not require any specificity of
the underlying group and do not achieve insider security, SCedl offers a stronger
security, even if it is less efficient. And, compared to the schemes from [2, 13,
14, 20, 23], SCedl offers a tight security reduction, a better efficiency and a com-
parable or a superior security. We summarize in Table 1 some elements of com-
parisons. The column Assumptions indicates the computational assumptions used
in the security reductions; FL and IS stand respectively for Forking Lemma and

2 see also www.keylength.com

www.keylength.com
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Table 1 Comparison of the proposed signcryption schemes with some SCNINR schemes from the
litterature

Scheme Assumptions FL IS Computations Overhead

ML [19] RO, cDH y n [2, 0, 0] [2, 0, 0] 2 · sz(Zp)

BD [8] RO, cDH n p [2, 0, 0] [0, 2, 0] sz(G) + sz(Zp)

ABF [2] DBDH, q-sDH n y [3, 1, 0] [0, 2, 1] sz(G) + sz(G1)

MMS [20] RO, GDH,
co–cDH

n y [3, 0, 0] [1, 0, 2] sz(G1) + sz(G2)

CMSM [13] DBDH, q-sDH n y [3, 1, 0] [1, 1, 2] sz(Zp) + 4 · sz(G1)

FZT [14] DBDH, DL n y [5, 0, 1] [2, 0, 3] sz(Zp) + 2 · sz(G1)

SSN [23] RO, RSA y y [6, 0, 0] [3, 0, 0] sz(Zp) + 2 · sz(ZN )

Ours: SCedl RO, cDH n y [8, 0, 0] [4, 2, 0] 2 · sz(Zp) + 2 · sz(G)

Insider Security (in the FSO/FUO model). The letters ‘y’ and ‘n’ stand for “yes”
and “no”, respectively; ‘p’ stands for “partial” (BD achieves insider unforgeabil-
ity, but outsider confidentiality). In the column Computations [a, b, c][a′, b′, c′]
means that a Sc (resp. Usc) operation requires a (resp. a′) exponentiations, b (resp.
b′) multi-exponentiations, and c (resp. c′) pairing evaluations. We recall that the
number of exponentiations has to be considered in conjunction with the underly-
ing mathematical structure. For instance, as previously said, if a scheme requires
a bilinear pairing e : G1 × G2 → GT , for a target of 128 bits of security, it holds
Exp(G1) ≈ Exp(G, 3) andExp(G2) ≈ Exp(G, 6). The columnOverhead indicates
the signcrypted ciphertext overhead compared to the cleartext.
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kNN-SVM with Deep Features for
COVID-19 Pneumonia Detection from
Chest X-ray

Aman Bahuguna, Deepak Yadav, Apurbalal Senapati, and Baidya Nath Saha

Abstract Most attention has been paid to chest Computed Tomography (CT) in
this burgeoning crisis because many cases of COVID-19 demonstrate respiratory
illness clinically resembling viral pneumonia which persists in prominent visual sig-
natures on high-resolution CT befitting of viruses that damage lungs. However, CT is
very expensive, time-consuming, and inaccessible in remote hospitals. As an impor-
tant complement, this research proposes a novel kNN-regularized Support Vector
Machine (kNN-SVM) algorithm for identifying COVID-induced pneumonia from
inexpensive and simple frontal chest X-ray (CXR). To compute the deep features, we
used transfer learning on the standard VGG16 model. Then the autoencoder algo-
rithm is used for dimensionality reduction. Finally, a novel kNN-regularized Support
Vector Machine algorithm is developed and implemented which can successfully
classify the three classes: Normal, Pneumonia, and COVID-19 on a benchmark chest
X-ray dataset. kNN-SVM combines the properties of two well-known formalisms:
k-Nearest Neighbors (kNN) and Support Vector Machines (SVMs). Our approach
extends the total-margin SVM, which considers the distance of all points from the
margin; each point is weighted based on its k nearest neighbors. The intuition is that
examples that are mostly surrounded by similar neighbors, i.e., of their own class,
are given more priority to minimize the influence of drastic outliers and improve
generalization and robustness. Thus, our approach combines the local sensitivity
of kNN with the global stability of the total-margin SVM. Extensive experimen-
tal results demonstrate that the proposed kNN-SVM can detect COVID-19-induced
pneumonia from chest X-ray with greater or comparable accuracy relative to human
radiologists.
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1 Introduction

The impact of the recent outbreak of novel coronavirus disease, COVID-19, on
the global healthcare systems is unprecedentedly enormous [22]. Many COVID-19
infections have included respiratory illness manifesting such as fever and cough,
developing pulmonary symptoms like chest discomfort and shortness of breath, and
clinically resembling viral pneumonia which preserves the hallmark characteris-
tics of COVID-19 infection as bilateral, peripheral ground-glass, and consolidative
pulmonary opacities on CT [6]. High-resolution CT, which combines many X-ray
images from multiple angles into a single picture, can image in-depth visual signa-
tures. Unfortunately, a CT scan to manage the pandemic is not practical because it is
expensive, time-consuming, labor-intensive, inaccessible in remote hospitals, scan-
ning equipment needs prolonged deep sterilization after each potentially infected
patient is scanned, and there is always the risk of transmission of the virus to health-
care workers [3]. To better address these issues, CXR, though less sensitive to detect
the lung pathology caused by the coronavirus, has taken center stage as a front line
diagnostic test because X-ray machines are widely available, scans are relatively low
cost, are ubiquitous in both emergency and rural hospital settings, can be installed
on a mobile platform, relatively easy to disinfect, and are one of the most affordable
ways to respond the outbreak [25].

Deep learning has been extensively employed in medical imaging over the past
decade, and it has surpassed the performance of medical professionals in many
cases [28]. Finding the presence of pneumonia in the chest X-ray can be interpreted
as a classification problem. Several Convolutional Neural Networks (CNNs)-based
deep learning models show great performance on various image classification tasks,
and VGG16 is one of them. However, deep learning models rely on large-scale
datasets to train and evaluate classifiers. In this context, transfer learning is preferred
due to the limited availability of COVID-19 chest X-ray samples. In this study, we
used the VGG16model fromKeras, which was pretrained on a large-scale ImageNet
dataset. Transfer learning avoids the training of the deep models from scratch and
also the lack of training data, and it takes advantage of the extraction of knowledge
achieved through visual recognition from large-scale ImageNet.

To improve the performance of the VGG16 model, this study performs four
sequential steps: (a) first we extract the deep or bottleneck features from the VGG16
model’s second last dense layer, (b) then reduce the dimension through the Autoen-
coder algorithm, and (c) cluster the reduced features through K-Means algorithm and
aggregate the cluster information in the reduced feature sets, and finally (d) classify
through kNN-SVM. Experimental results demonstrate that clustering information
improves the performance of classification results.
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SVMs [15] have been widely used in many applications due to their robustness,
especially for small training sets, adaptability to various classification and regression
problems through the incorporation of appropriate kernel functions, as well as the
ability to obtain a global optimal solution via quadratic programming. However, it
is well-known that minimizing solely the empirical training error can result in poor
generalization due to overfitting [38]. Regularization methods such as 1-norm [42]
or manifold regularization [5] and loss functions such as least-square SVM [32] have
been proposed as a solution to this problem. However, a persistent problem endemic
to these approaches is their inability to perform under noisy conditions. This issue is
especially exacerbated when these methods are confronted with extreme outliers. As
the approaches aremargin-based, they tend to weigh the outliers very strongly, which
leads to overfitting and a loss of robustness; this ultimately affects generalization.

To mitigate the effects of outliers and inspired by previous attempts to weigh indi-
vidual examples differently during training, we propose to use a weighting scheme
based on kNN [10, 16]. We propose to assign weights to training examples propor-
tional to the number of neighbors of the same class. The intuition is that, locally,
a data point will be surrounded by similar neighbors (i.e., of the same class), and
consequently, extreme outliers will be weighted less. This prevents such outliers
from exerting too much influence on the final classifier and improves robustness.
However, depending on the choice of k and the density of the data, kNN itself can
be very locally sensitive. This motivates the adoption of total-margin SVMs [40]
as the formalism underlying our approach. The total-margin SVM extends classical
SVMs by adding extra surplus terms in the objective and constraints which measure
the deviation of all data points from the classification hyperplane [20, 24]. Thus,
while the slack variables measure the deviation of miscategorized points, the surplus
variables measure the deviation of the correctly categorized points. Training a clas-
sifier that maximizes the total margin requires minimizing error (measured by slack
variables) and maximizing “right classification” (measured by surplus variables). By
weighting the data points in the total-margin SVM with kNN-based weights, our
method combines the kNN’s local sensitivity with the total-margin SVM’s global
stability. We refer to this algorithm as kNN-weighted SVM. Finally, kNN-SVM has
the benefit of allowing the use of a wide range of different distance metrics including
those learned via metric learning approaches such as LMNN [37] and MDML [18].

On a synthetic example, Fig. 1 compares the behavior of our proposed kNN-
weighted SVM to that of classical SVMs. The dataset (Fig. 1, left) consists of uni-
formly randomly generated linearly separable data. The dataset also contains six
outliers, three for each class, which are circled. Figure1 (center) shows the weights
of the training examples for a standard soft-margin SVM. More importantly, for
soft-margin SVM, the badly misclassified outliers have the same weights relative to
the correctly classified within-margin examples. Figure1 (right) shows the weights
of the training examples for the kNN-weighted SVM. Because kNN-weighted SVM
assigns weights proportional to similar neighbors, the outliers’ influence on the clas-
sifier is greatly reduced. The reduced overfitting enables the maximization of the
total margin. As shown in Fig. 1, the kNN-weighted SVM has a larger margin than
the classical SVM.
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Fig. 1 A simple synthetic example to compare the behavior of the proposed kNN-SVM (right)
with classical soft-margin SVM (center). The dataset (left) is almost linearly separable except for
the six circled outliers. These outliers receive high weights under the classical soft-margin SVM.
In contrast, kNN-SVM minimizes their effect as they have few neighbors of the same class as
themselves. As a result, the effects of overfitting are reduced, and the kNN-SVM can achieve a
greatermargin.We show theoretically and empirically that this corresponds to better generalization

There has previously been researchon combining the power of kNNsandSVMs [8,
14, 19, 30]. These strategies all seek to “localize” by picking a few training examples
that are close to a test example and designing a SVM for these chosen training
examples [14]. At a high level, these methods can be thought of as learning one
SVM for each partition of the data space. The class of these approaches in general,
and the SVM-KNN approach [41] in particular, is closely related to our approach
where it finds the neighbors to a query and then trains a local SVM. On the contrary,
we train the SVM on all the examples from the training set by incorporating the kNN
distance function directly into our optimization problem. Our method “localizes”
SVMs by employing a data-driven regularization approach. Instead of focusing on a
test point, we weigh the input training space based on their feature locations. Instead
of using multiple localized SVMmodels [41], we use a single SVMmodel to capture
both “global” and “local” information.

2 Deep Learning for CXR-Based Covid Detection

Panwar et al. [26] developed a deep model called “nConvNet” which employs trans-
fer learning on a pretrained VGG16 network for fast detection of COVID-19 patients
from chest X-rays. Similarly, Das et al. [12] utilized CNNs and Xception model to
build deep transfer learning-based COVID-19 detection model from chest X-rays.
Bassi et al. [4] proposed a novel twice transfer learning method called “output neu-
ron keeping” which performs better than both twice and simple transfer learning and
simple transfer learning model. Twice transfer learning method is a two-stage sim-
ple transfer learning method where in the first stage it trains the pretrained VGG16
model on a large CXR dataset first and then trains it with a smaller COVID-19 CXR
dataset. Brunese et al. [7] developed a two-stage transfer learning approach by pre-
trained VGG16 model. In the first stage, they detect whether a chest X-ray is of a
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healthy patient or of a patient with generic pulmonary disease. Then, if the X-ray
image is of a patient with generic pulmonary disease, they pass this image to another
model which detects whether this pulmonary disease is COVID-19 or not. Salman
et al. [29] exploited the pretrained InceptionV3 model for feature extraction using
a transfer learning approach for covid pneumonia detection. Jaiswal et al. [17] cre-
ated a new model called “CovidPen” that detects COVID-19 infection from chest
X-ray images using transfer learning on a Pruned EfficientNet model. Pham [27]
et al. reported that three pretrained CNN Models named AlexNet, GoogLeNet, and
Squeezenet demonstrate higher accuracy for COVID-19 classification from chest
X-ray and they take less time than other pretrained models as well. Al-Waisy et
al. [2] devised a new deep learning system called Covid-CheXNet by combin-
ing two different deep learning models, ResNet34 and HRNet, and exploited the
CLAHE method and Butterworth bandpass filter to enhance the poor image quality
and reduce the noise level, respectively. Waheed et al. [35] proposed a special type
of network called CovidGAN which uses an Auxiliary Classifier Generative Adver-
sarial Network (ACGAN) to generate synthetic Chest X-ray images. This research
showed that the training dataset augmented with CovidGAN offers better classifi-
cation results with deep neural networks. Ahmed et al. [1] proposed ReCoNet, an
end-to-end CNN architecture that used two loss functions—Multi-tasking learn loss
function and a joint weighted cross-entropy loss function for improving its perfor-
mance. LV et al. [21] proposed cascade-SEMEnet which employed SEME-ResNet50
for detecting the type of lung infection and a DenseNet169 for the subdivision of
viral pneumonia, used to diagnose lung disease. This research also utilized Contrast
Limited Adaptive Histogram Equalization (CLAHE) to improve the contrast of chest
X-rays and U-Net to remove the non-pathological features on the chest X-rays.

3 Proposed Methodology for COVID-Induced Pneumonia
Detection from Chest X-ray

To improve the performance of transfer learning of the pretrained VGG16 model,
this study explores a new avenue that follows the four sequential steps which are
demonstrated in four different subsections.

3.1 Deep Feature Extraction Using VGG16

We used VGG16 [31] for extracting deep features from the chest X-ray images.
VGG16 is a 16-layer convolutional neural network. We used a pretrained version
of the VGG16 network trained on the ImageNet dataset [13], which is a dataset
of over 14 million images: the pretrained network can classify images into 1,000
different classes, for instance, cat, dog, and other objects. VGG16 has a very simple
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architecture that consists of convolution layers of 3 × 3 filter with a stride 1 and
always uses the same padding and max pool layer of 2 × 2 filter with stride 2. This
arrangement of convolution and max pool is repeated throughout the architecture. In
the end, it has two Fully connected layers followed by a softmax for the multiclass
classification [31]. The 16 inVGG16 refers to the number of layers that haveweights.
This network is fairly large and has around 138 million (approximately) parameters.
Using pretrained VGG16 as a fixed feature extractor, we utilize the transfer learning
approach. We load the VGG16 network with weights pretrained on ImageNet, only
keeping the convolutional base and truncating the fully connected layer head. Then,
we construct our new fully connected layer head, which consists of Global Average
Pooling layer, Dense layer with 64 neurons and ReLU activation, Dropout with 0.2
rate, and a last Dense layer (output layer) with the softmax activation and 3 neurons
for classification and append it on top of the VGG16 convolutional base. We then
freeze the convolutional base of VGG16 such that only the fully connected layer
head is going to be trained. After the model has been trained, we pass the entire
training and test data through the model and collect the deep features from the last
Dense layer before the output layer.

3.2 Dimensionality Reduction Using Autoencoders

To reduce the dimensionality of the extracted deep features, we exploited Autoen-
coder [36]. Autoencoder is a self-supervised deep learning model that is used to
reduce the dimensionality of input data. Firstly, an encoder which is a compression
unit that compresses the input data. And secondly, a decoder which decompresses
the compressed input by reconstructing it. Each Dense layer, except for the last one,
is followed by a BatchNormalization layer and a LeakyReLU activation layer with
the value of alpha=0.3. The last Dense layer uses a linear activation function. We
train the autoencoder with Adam as an optimizer.

3.3 Incorporating Clustering Information into Classification
Tasks

To improve the performance of the classification tasks,we cluster the reduced features
computed above using theK-means algorithm [15] as illustrated in Fig. 2. The goal of
K-means clustering is to divide n observations into k clusters, with each observation
belonging to the cluster with the closest mean (cluster centers or cluster centroid).
K-means clustering reduces within-cluster variances (squared Euclidean distances).
Optimal values of K are determined in this study using the Silhouette Method in
combination with the Elbow Method.
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(a) Clustering before Classification.

(b) Optimal Values of K for K-Means Al-
gorithm.

Fig. 2 Incorporating clustering for improving classification tasks

3.4 kNN-Regularized Support Vector Machine (kNN-SVM)

Let the training data consists of l pairs (xi , yi ), i = 1, ..., l, with xi ∈ IRp and yi ∈
{−1, 1}. Typically in SVMs, the input space is mapped into a high dimensional
feature space using the mapping function φ(x) to increase the linear separability.
The following Quadratic Programming (QP) problem [15] is used to find the optimal
separating hyperplane of the kNN-SVM:

min
w,ξ

1

2
||w||22 + C

l∑

i=1

Diξi

subject to yi (w
t zi + b) ≥ Di (1 − ξi ),∀i, ξi ≥ 0

(1)

where zi = φ(xi ), w is a weight vector, and C is the margin parameter that deter-
mines the tradeoff between the margin maximization(2/||w||) and error minimiza-
tion. ξi (i = 1, ..., l) are non-negative variables called slacks which measure the dis-
tance of the example (xi , yi ) from the optimal separating hyperplane. Di = |Ni |

k , and
Ni ∈ {N (i) : C(N (i)) = C(i)}, where C(i) and N (i) are the class and the neigh-
bors of i , respectively. Given that we are using a kNN formulation, N (i) = k, ∀i .
Di explains the significance of the slack and surplus variables. The key intuition in
this framework is that instances surrounded by instances in the training data from its
own class get more importance than the instances surrounded by the members of the
opposite class. For traditional SVM, Di = 1, ∀i . We now present some key features
of this framework as a function of the number of neighbors (k).

– It is necessary that k ≥ 1.
– When k == l, where l is the number of training instances, every Di becomes the
fraction of the number of examples in its class. Then this formulation reduces to
the total-margin SVM as proposed by Yoon et al. [40].

– If k is sufficiently large, the formulation is robust to outliers and noise and works
well.
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– If k is quite small, say k −→ 1, the formulation can become potentially infeasible.
This is due to the fact that outliers can have their D values to be 0 (as no neighbors
of their class may be within k). To avoid such cases, we perform a pre-processing
step and identify the number of neighbors that will mitigate the effects of the
outliers.

– While it is potentially possible to add a small non-zero term, say ε, to each Di , it
does not work well. First when ε −→ 0, the problem can become infeasible. But
if ε is higher, the final solution can become very sensitive to the choice of this
parameter. A more principled way of defining Di is to employ Laplace correction,
a standard method for probability estimation to ensure that the probabilities do
not go to 0 or 1. Hence, Di = |Ni |+1

k+n where n is the number of classes. This will
ensure that outliers get a weight of 1/2 while the rest of the points will end up with
a reasonable weight.

As long as the value of k is reasonable, our method is quite robust. Typically, we
introduce Lagrange multipliers, αi , and obtain the dual:

max
αi

l∑

i=1

αi Di − 1

2

l∑

i=1

l∑

j=1

αiα j yi y j K (xi , x j )

subject to 0 ≤ αi ≤ C,∀i,
l∑

i=1

αi yi = 0

(2)

where K (xi , x j ) = φ(xi )tφ(x j ) is any kernel function. Solving the above dual prob-
lem, we obtain the decision function needed to predict the classification of a new

data point x′: f (x′) = sign(
l∑

i=1
α∗
i yi K (xi , x′) + b∗), where ‘*’ denotes the optimal

solution. The value of b∗ can be obtained from the constraint of Eq.1 using Karush-
Kuhn-Tucker (KKT) conditions: b∗ = 1

Ns

∑
s∈S

(ys − ∑
m∈S

αm ymK (xm, xs)), where S is

the set of indices of support vectors and Ns is the number of support vectors.

Multiclass kNN-Weighted SVM We now extend the QP formulation of kNN-
weighted SVM for two-class classification into general multiclass settings [11].
Assume the given training data consists of l pairs (xi , yi ), i = 1, ..., l with xi ∈ IRp,
where each example is assigned a label yi from a fixed finite set Y ∈ {1, ...,m}. A
feature function ψ(x, y) can be defined in such a way that it explicitly includes the
y-labels and allows for a separate weight vector wk for each class k [33]. We define
ψ(x, y) for our experiment as

ψ(x, y) = 1√
(2π)k |Σ |exp

(
−1

2
(x − μy)

′Σ−1
y (x − μy)

)
. (3)

We now consider the following Quadratic Programming (QP)-based optimization
problem [34] to define the multiclass kNN-SVM.
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min
w,ζ ,η

1

2
||w||22 + C

l∑

i=1

Diζi

subject to wtδψi ( y) ≥ Di (1 − ζi ),

∀i,∀y ∈ Y \ yi , ζi ≥ 0, ηi ≥ 0.

(4)

δψi ( y) is defined as δψi ( y) ≡ ψ(xi , yi ) − ψ(xi , y).Variables ζi and Di are defined
above. Once a complete weight vector is learned, a new test example x′ is classified
as f (x′) = argmaxywtψ(x′, y) [39]. The subsequent dual formulation is

max
α

∑

i, y 
=yi

αi yDi − 1

2

∑

i, y 
=yi
j, ȳ 
=y j

αi yα j ȳδψ
t
i ( y)δψ j ( ȳ)

subject to αi y ≤ C,∀i,∀y ∈ Y \ yi .

(5)

4 Experimental Results and Discussions

4.1 Dataset Description

The dataset used in this experiment consists of chest X-rays of normal, COVID-19,
and pneumonia patients. The dataset includes 69 confirmedCOVID-19, 79 confirmed
pneumonia, and 158 normal images, i.e., overall 306 images. Again, the pneumonia
images consist of 79 bacterial pneumonia and 79 viral pneumonia cases. Images
have been accumulated in this dataset from diverse sources. The normal and pneu-
monia X-ray images are collected from the Kaggle Chest X-ray dataset [23]. This
dataset consists of Chest X-ray images (anterior-posterior) selected from retrospec-
tive cohorts of pediatric patients of one to five years old from Guangzhou Women
and Children’s Medical Center, Guangzhou. In addition to Kaggle, the COVID-19
X-ray images are collected from the COVID-19 Chest X-ray dataset [9], organized
by Dr. Joseph Paul Cohen of the University of Montreal. This dataset is a publicly
open dataset of chest X-ray images of patients who are positive or suspected of
COVID-19 or other viral and bacterial pneumonia. Both of these datasets include
posterior-anterior chest images of patients with pneumonia.

4.2 Comparison of Different Algorithms

Table 1 demonstrates the comparison among VGG16 transfer learning, SVM, SVM
with clustering information, kNN-SVM, and kNN-SVM with clustering algorithms
in terms of Accuracy, Precision, Recall, and F1-Score. Accuracy is calculated as
the fraction of correct predictions in the test dataset. Precision is the ability of the
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Table 1 Performance analysis of different models for three classes (Normal, Pneumonia, and
COVID-19) classification

Algorithm Accuracy Precision Recall F1-score

VGG16 +
Transfer learning

0.75 0.73 0.69 0.66

SVM 0.86 0.88 0.83 0.85

SVM +
Clustering

0.86 0.88 0.83 0.85

kNN-SVM 0.89 0.89 0.89 0.89

kNN-
SVM+Clustering

0.92 0.92 0.91 0.91

Fig. 3 ROC and Precision-Recall curve for different algorithms

model to identify only the relevant instances. Recall is the ability of a model to
find all the relevant cases. F1-score is the harmonic mean of Precision and Recall.
Table 1 shows that the performance of kNN-SVM outperforms all other models. In
addition, incorporating clustering information into classification tasks enhances the
discriminating ability of the classifiers.

Figure 3 illustrates the Receiver Operating Characteristic (ROC) and Precision-
Recall curves for all the algorithms executed in this study. The area under the ROC
curve and Average precision are also mentioned in the legend of the figure. Results
show that kNN-SVM with clustering information is superior to other algorithms
(area under ROC and Average Precision (AP) for kNN-SVM are 0.93 and 0.87,
respectively).

5 Conclusion and Future Works

In this research, we improved the performance of the transfer learning with the
VGG16model for COVID-19 pneumonia detection through a novel kNN-regularized
Support Vector Machine (kNN-SVM). The kNN prioritizes the examples that are
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mostly surrounded by the examples from its own class to correctly classify while
deciding decision boundary during training. This study shows that incorporating clus-
tering information improves the performance of the classifiers. Results demonstrate
that the machine learning algorithms are able to detect COVID-19-induced pneumo-
nia from chest X-ray as accurate as radiologists. Extensive testing of the proposed
methodonothermedical imaging classificationproblems remains an intriguing future
direction.
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Quantum Simulation of Perfect State
Transfer on Weighted Cubelike Graphs

Jaideep Mulherkar, Rishikant Rajdeepak, and Sunitha VadivelMurugan

Abstract A continuous-time quantum walk on a graph evolves according to the
unitary operator e−i At , where A is the adjacency matrix of the graph. Perfect state
transfer (PST) in a quantum walk is the transfer of a quantum state from one node of
a graph to another node with 100% fidelity. It can be shown that the adjacency matrix
of a cubelike graph is a finite sum of tensor products of Pauli X operators. We use
this fact to construct an efficient quantum circuit for the quantum walk on cubelike
graphs. In [5, 15], a characterization of integer weighted cubelike graphs is given
that exhibit periodicity or PST at time t = π/2. We use our circuits to demonstrate
PST or periodicity in these graphs on IBM’s quantum computing platform [1, 10].

Keywords Continuous-time quantum walk · Perfect state transfer · Periodicity ·
Quantum circuits

1 Introduction

A quantum random walk is the quantum analogue of a classical random walk [12,
18, 19]. The study of classical random walks has led to many applications in science
and engineering, such as in the study of randomized algorithms and a sampling
approach called Markov chain Monte Carlo in computer science, in the study of
social networks, in the behavior of stock prices in finance, in models of diffusion
and study of polymers in Physics, and the motion of motile bacteria in biology. In [3,
7], the first models for quantum random walks were proposed. Since then, quantum
walks have been a source of intense study. Researchers observed that there are some
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startling differences between classical and quantum walks. For example, a quantum
walk on a one-dimensional lattice spreads quadratically faster than a classical walk
[16]. Quantum walks on cubelike graphs, such as the hypercubes, hit exponentially
faster to the antipodal vertex as compared to classical counterparts [13].

Quantumwalks on graphs are of two types: discrete and continuous. In the discrete
case, a graph is associated with a Hilbert space of dimension N × Δ, where N is the
number of vertices, and Δ is the maximum degree of the graph. In the continuous
case, a graph is associated with a Hilbert space of dimension N , and the evolution of
the system is described by eιt A, where A is the adjacency matrix of the graph and t
is real. An essential feature of a quantum walk is a quantum state transfer from one
vertex to another with high fidelity. When the transfer occurs with 100% fidelity, it
is called perfect state transfer (PST). Some of the excellent survey papers on graph
families that admit PST are [8, 9]. Among these graphs, cubelike graphs are themost
famous ones that have been researched thoroughly for determining the existence and
finding the pair of vertices admitting perfect state transfer in constant time [4, 6].
Notice that all cubelike graphs do not allow perfect state transfer. The study of PST
on weighted graphs has been less studied. Recently, weighted abelian Cayley graphs
have been characterized that exhibit PST [5].

In this paper, we look at the implementation of perfect state transfer on weighed
cubelike graphs. Some of the efficient implementations of quantum walks are
described in [2, 11, 14, 20, 21]. It can be shown that the adjacency matrix of a
cubelike graph is the sum of the tensor products of Pauli X operators. One then
observes that generating efficient quantum circuits for quantum walks can then be
done by quantum hamiltonian simulation techniques that have been described in
[17]. We use quantum simulation techniques to verify the theoretical results of PST
on weighted cubelike graphs.

2 Preliminaries

An undirected weighted graph Γ consists of a triplet (V, E, f ), where V is a non-
empty set whose elements are called vertices; E is a set of edges, where an edge is
an unordered tuple of vertices, and f : V × V → R is a weight function that assigns
non-zero real weights to edges. If Γ is finite, then its adjacency matrix A is defined
by

Au,v = f ((u, v)), (u, v) ∈ V × V .

The adjacency matrix A is real and symmetric. A tuple (u, u) is a loop if its weight
is non-zero. If f ((u, u)) = 0 for all u ∈ V , then the diagonal entries of A are zero
and the graph has no loops. A graph family of interest is a weighted cubelike graph
which is defined as follows.

Definition 1 Let f be a real-valued function over a finite Boolean group Z
n
2 of

dimension n > 0. A cubelike graph, denoted by Cay(Zn
2, f ), is a graph with vertex-
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set Zn
2, and the weight of a pair (u, v) of vertices is given by f (u ⊕ v), where ⊕

denotes the group addition, i.e., componentwise addition modulo 2. The adjacency
matrix A of Cay(Zn

2, f ) is given by

Au,v = f (u ⊕ v), u, v ∈ V .

An equivalent definition for an unweighted cubelike graph is given as follows: let
Ω f = {u ∈ Z

n
2 : f (u) = 1}, then two vertices u and v are adjacent if u ⊕ v ∈ Ω f .

The cubelike graph, in this case, is denoted by Cay(Zn
2,Ω f ), see Figs. 1 and 2.

000 001

011010

100 101

111110

Fig. 1 Cay(Z3
2, {001, 010, 100})

000 001

011010

100 101

111110

Fig. 2 Cay(Z3
2, {001, 010, 011, 100, 111})
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2.1 Continuous-Time Quantum Walk

Let Γ be an undirected and weighted graph with or without loops and A be the
adjacency matrix. A quantum walk on Γ is described by an evolution of the quan-
tum system associated with the graph. Suppose the graph has N vertices, then it is
associated with a Hilbert spaceHP

∼= C
N of dimension N , called the position space,

and the computational basis is represented by

{|v〉 : v is a vertex in Γ }.

The continuous-time quantum walk (CTQW) on Γ is described by the transition
matrix U(t) = e−ιt A, where ι = √−1, that operates on the position space HP . In
other words, if |ψ(0)〉 is the initial state of the quantum system associated with the
graph, then the state of the system after time t is given by

|ψ(t)〉 = e−ιt A |ψ(0)〉 .

Definition 2 A graph is said to admit perfect state transfer (PST) if the quantum
walker beginning at some vertex u reaches a distinct vertex v with probability 1, i.e.,
for some positive real τ and scalar λ,

|〈v|e−ιτ A|u〉| = |λ| = 1.

Alternatively, we say perfect state transfer occurs from the vertex u to the vertex
v. If u = v, we say the graph is periodic at u with period τ , and if the graph is periodic
at every vertex with the same period τ then, the graph is periodic.

Example 1 Consider the graph on the cycle of size 4, see Fig. 3, with the adjacency
matrix A given by

A =

⎡
⎢⎢⎣
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ .

Then, the transition matrix at time t = π/2 is

Fig. 3 PST occurs between
the pairs {1, 4} and {2, 3}
with time π

2 , and the graph is
periodic with period π

1 2

43
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U(t = π

2
) =

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ .

Thus, perfect state transfer occurs between the pairs {1, 4} and {2, 3}, both in time
π
2 . The graph is periodic with period π.

2.2 Decomposition of the Adjacency Matrix of Weighted
Cubelike Graph

2.2.1 Group Representations

An m-degree representation of a finite group G is a homomorphism ρ from G into
the general linear groupGL(V ) of anm-dimensional vector space V over the field F,
whereF is a complex or real field. SinceGL(V ) is isomorphic toGLm(F), the general
linear group of degree m that consists of m × m invertible matrices, an equivalent
definition for the group representation is the group homomorphism

ρ : G → GLm(F).

The group algebra C[G] is an inner product space whose vectors are formal linear
combinations of the group elements, i.e.,

C[G] =
⎧⎨
⎩

∑
g∈G

λgg : λg ∈ C

⎫⎬
⎭ ,

with the vector addition, the scalar multiplication, and the inner product defined by

∑
g∈G

λgg +
∑
g∈G

μgg =
∑
g∈G

(λg + μg)g, (addition),

λ
∑
g∈G

λgg =
∑
g∈G

(λλg)g (scalar multiplication),

〈∑
g∈G

λgg,
∑
g∈G

μgg

〉
=

∑
g∈G

λgμ̄g, (inner product).

The regular representation on G, ρreg : G → GL(C[G]), is defined by;
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ρreg(x)

⎛
⎝∑

g∈G
λgg

⎞
⎠ =

∑
g∈G

λg(xg) =
∑
y∈G

λx−1 y y.

2.2.2 The Decomposition

If G = Z
n
2, then for x ∈ Z

n
2 the regular representation acts on Zn

2 as

ρreg(x)y = x ⊕ y = (x1 ⊕ y1, . . . , xn ⊕ yn), y ∈ Z
n
2.

Let X , Y , and Z denote the three Pauli matrices that act on the computational basis
{|0〉 , |1〉} of the two-dimensional Hilbert space C2 as

X |a〉 = |a ⊕ 1〉 , Y |a〉 = (−1)aι |a ⊕ 1〉 , Z |a〉 = (−1)a |a〉 , a ∈ {0, 1}.

The group element y is also a vector in C[Zn
2] whose matrix representation is |y〉 =

|y1〉 ⊗ · · · ⊗ |yn〉. Hence, the action of ρreg(x) over y can be rewritten as

ρreg(x)y = (Xx1 |y1〉) ⊗ · · · ⊗ (Xxn yn), where Xxi |yi 〉 = |xi ⊕ yi 〉 ,

= (
Xx1 ⊗ · · · ⊗ Xxn

)
(|y1〉 ⊗ · · · ⊗ |yn〉).

The adjacency matrix A of Cay(Zn
2, f ) is decomposed by using the regular repre-

sentation on Z
n
2, viz., given x, y ∈ Z

n
2, the value ρreg(x)y = x ⊕ y corresponds to

the (x, y)-entry of A, so A can be expressed as

A =
∑
x∈Zn

2

f (x)ρreg(x). (1)

Since ρreg(x) commutes with ρreg(y) for all x, y ∈ Z
n
2, the evolution operatorU(t) =

e−ιt A is decomposed into

U(t) =
∏
x∈Zn

2

U (x, t), U (x, t) = e−ιt f (x)ρreg(x). (2)

2.3 PST or Periodicity in Weighted Cubelike Graphs

We simulate continuous-time quantum walk on Cay(Zn
2, f ) and verify the existence

of perfect state transfer or periodicity as mentioned in the following theorem.

Theorem 1 ([5, 15]) Let f : Zn
2 → Z be an integer-valued function. For x ∈ Z

n
2 ,

define a subset Ox = {y ∈ Z
n
2 : 〈x |y〉 mod 2 = 1}. Let ei , 1 ≤ i ≤ n, denote the n-

tuple with entry 1 at position i and zero everywhere else. Let σ ∈ Z
n
2 such that
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σi = 1 only if
∑
y∈Oei

f (y) mod 2 = 1. (3)

Then,

1. if σ is the identity element, i.e., σ = 0, then Cay(Zn
2, f ) is periodic with period

π
2 ,

2. if σ �= 0, then PST occurs between every pair {u, v} satisfying u ⊕ v = σ, with
time τ = π

2 .

Note 1 Although PST or periodicity in weighted cubelike graph mentioned in [15]
was done independently, it was only later that the authors realized that its generalized
version, viz., PST on weighted abelian Cayley graph, has already been proved in
another paper [5].

3 The Quantum Simulation

The idea to design a quantum circuit for CTQW on a cubelike graph has been taken
from [17]; if the Hamiltonian is given by A = Z1 ⊗ · · · ⊗ Zn , where Zi = Z , then
the phase shift applied to the system is e−ιt if the parity of the n qubits in the com-
putational basis is even; otherwise, the phase shift applied is eιt . Figure 4 illustrates
the quantum circuit for e−ιt A, where A = Z ⊗ Z ⊗ Z .

3.1 Quantum Circuits

Let x ∈ Z
n
2, then the regular representation ρreg(x) is given by

ρreg(x) = ⊗n
i=1X

xi = H⊗n
(⊗n

i=1Z
xi
)
H⊗n, since X = HZH.

Applying the changes to the operator U (x, t) in Eq. 2, we get

Fig. 4 Quantum circuit to
implement e−ιt A, where
A = Z ⊗ Z ⊗ Z

• •
• •

• •

|0〉 e−ιtZ |0〉
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Fig. 5 Quantum circuit for
U (x, t) = e−ιt f (x)ρreg(x)

|x1〉 H · · · · · · H
...

...
. . .

...
...

... . .
. ...

...
...

|xi1〉 H • · · · · · · • H
...

...
. . .

...
...

... . .
. ...

...
|xik 〉 H · · · • • · · · H

...
...

. . .
... . .

. ...
...

|xn〉 H · · · · · · H

|0〉 Rẑ(2tf(x))

U (x, t) = e−ιt f (x)ρreg(x) = e−ιt f (x)[⊗n
i=1X

xi ]

=
∞∑
l=0

(−ιt f (x))l

l!
[⊗n

i=1X
xi
]l

=
∞∑
l=0

(−ιt f (x)))2l

(2l)! I⊗n +
∞∑
l=0

(−ιt f (x))2l+1

(2l + 1)!
[⊗n

i=1X
xi
]

= H⊗nV (x, t)H⊗n, V (x, t) = e−ιt f (x)[⊗n
i=1Z

xi ].

We see that
(
Zx1
1 ⊗ · · · ⊗ Zxn

n

) |y〉 = (−1)x1 y1 |y1〉 ⊗ · · · ⊗ (−1)xn yn |yn〉
= (−1)

∑n
i=1 xi yi |y1〉 ⊗ · · · ⊗ |yn〉

=
{

|y〉 , if 〈x |y〉 mod 2 = 0

− |y〉 , if 〈x |y〉 mod 2 = 1.

This implies

V (x, t) |y〉 =
{
e−ιt f (x)Z |y〉 if 〈x |y〉 mod 2 = 0

eιt f (x)Z |y〉 if 〈x |y〉 mod 2 = 1.

Thus, the action of the operator V (x, t) is equivalent to the application of the rotation
operator Rẑ(2t f (x)) about the ẑ-axis if 〈x |y〉 is even, and Rẑ(−2t f (x)) if 〈x |y〉 is
odd. Hence, if x has non-zero entries at positions i1, . . . , ik , then the quantum circuit
for the operator e−ιt f (x)ρreg(x) is depicted by Fig. 5. Suppose elements in Ω f = {y :
f (y) �= 0} are represented by Ω f = {x (1), . . . , x (Δ)}, where Δ is the cardinality of
Ω f , then the quantum circuit for the continuous-time quantum walk is as shown in
Fig. 6, where the initialized state, in general, is |0〉⊗n along with an ancilla qubit with
state |0〉.
Remark 1 As seen in Fig. 6, the Hadamard gates H applied at the end ofU (x (i), t)
and the beginning of U (x (i+1), t), 1 ≤ i < Δ, are not required, because H 2 = I ;
thus, the actual number of H gates required are 2n. Secondly, the number of rotation
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q0 = |0〉

U(x(1), t)

· · ·

U(x(Δ), t)

q1 = |0〉 · · ·

...
· · · . . .

qn−1 = |0〉 · · ·

|0〉 · · ·
c : /

2 0 1 n−1

Fig. 6 An illustration of CTQW quantum circuit on weighted cubelike graph

operators used is Δ. Lastly, for each x ∈ Ω f , the number of CNOT gates applied is
equal to the Hamming weight wt (x) of x . Thus, the total number of CNOT gates
used is

∑
x∈Ω f

wt (x).

3.2 Results

Recall that, if u ⊕ v = σ, where σ is given by Eq. 3 in Theorem 1, then {u, v} is the
PST pair. This partitions the vertex set into PST pairs. The graph shown in Fig. 1
admits PST between pairs {000, 111}, {001, 110}, {010, 101}, {011, 100}, and the
other graph in Fig. 2 has PST pairs {000, 011}, {001, 010}, {100, 111}, {101, 110}.
Since weighted cubelike graphs, as described in Theorem 1, are vertex-transitive,
the study of PST between the pair {0,σ} is equivalent to any other pair. Therefore,
every quantum circuit is initialized to state |0〉⊗n , see Figs. 7 and 8 which illustrate
quantum circuits for the above graphs mentioned.

Suppose the weight function f is defined by

f (001) = 4, f (011) = 8, and , f (101) = 3, (4)

and zero on other elements, then the 3-tuple σ is computed as (using Theorem 1)

Fig. 7 Quantum circuit for Cay(Z3
2, {001, 010, 100})
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Fig. 8 Quantum circuit for Cay(Z3
2, {001, 010, 011, 100, 111})

Fig. 9 Quantum circuit for Cay(Z3
2, { f (001) = 4, f (011) = 8, f (101) = 3})

O001 = {001, 011, 101} =⇒ f (001) + f (011) + f (101) mod 2 = 1

=⇒ σ1 = 1

O010 = {011} =⇒ f (011) mod 2 = 0

=⇒ σ2 = 0

O100 = {101} =⇒ f (101) mod 2 = 1

=⇒ σ3 = 1

Thus, σ = 101 and {000, 101} is a PST pair. The same is obtained by simulating the
quantum circuit shown in Fig. 9. On the other hand, if f is defined by

f (010) = 4, f (011) = 7, f (100) = 8, f (101) = 2, f (110) = 5, (5)

then σ = 101, and {000, 101} is a PST pair.
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Fig. 10 Experimented probability distribution of CTQW on Cay(Z3
2, {01, 10}) (left) and on

Cay(Z3
2, {001, 010, 100}) (right) after time π

2

Remark 2 Given a pair in a cubelike graph, we can assign weights to edges such
that PST occurs between the given pair.

Note 2 Quantum circuits displayed in Fig. 6 cannot be run on real quantum com-
puters due to some technical issues such as quantum decoherence and state fidelity.
We have, however, tested small graphs on the computer ibmq_manila as shown in
Fig. 10.

4 Conclusion and Future Work

In this paper, we have experimentally tested perfect state transfer on IBM’s quantum
simulators and quantum computers on weighted cubelike graphs. We have used
Hamiltonian simulation techniques to construct efficient circuits for continuous-time
quantum randomwalks.We have verified the theoretical results of [5, 15] that PST or
periodicity on integral weighted cubelike graphs occurs at time t = π

2 , where weights
are determined by Theorem 1. In the future, we plan to construct efficient quantum
circuits for quantum walks on weighted abelian Cayley graphs.
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Quadratically Sound
Proof-of-Sequential-Work

Souvik Sur and Dipanwita Roychowdhury

Abstract Proof-of-sequential-work (PoSW) is a protocol which ensures that a
prover must spend a specified number of sequential steps to evaluate a proof against
some given statement, but can be efficiently verified. A crucial criterion for PoSW,
known as soundness, is that a prover even with reasonable parallelism should not be
able to compute the proof in steps much less than the specified amount. In particular,
if a malicious prover skips α (known as soundness gap) fraction of computations
to produce a proof, then the verifier should accept this proof with the probability
≤ (1 − α)t using t number of random challenges. While all the existing PoSWs [1,
4, 5] achieve soundness of (1 − α)t , our proposed scheme gives a quadratic improve-
ment of (1 − α)2t . Our construction is based on linear hybrid cellular automata
(LHCA), a widely used primitive in symmetric-key cryptography. Additionally, we
show that our scheme is proven to be secure in the random oracle model.

Keywords Proofs-of-sequential-work · Cellular automata random oracle model ·
Soundness · Sequentiality

1 Introduction

APoSW is a cryptographic protocol executed by a proverP and a verifier V . Against
an input x , P computes a commitment φ in Ω(N ) sequential time. Then V asks P
to provide proofs π against t number of challenges chosen uniformly at random. V
accepts if and only if all the proofs π validate the commitment φ; rejects otherwise.
To verify efficiently, V minimizes t but keeps it sufficient to catch a malicious prover
P̃ skipping a fraction (say α) of N . This fraction α is called the soundness of a
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PoSW. Soundness ensures that every malicious prover P̃ spending only (1 − α)N
sequential effort should be accepted with the probability < (1 − α)t .

Mahmoody et al. introduced the first PoSW [5]. The prover finds a Merkle root
of labels of a depth robust graph with N vertices. The verifier asks for the labels of
the parents of some of the vertices in order to verify the commitment. So, it takes
Ω(N ) time to compute the Merkle root.

Cohen and Pietrzak use a different graph in their PoSW [4]. They exploit an
upward-directed binary tree with some additional edges. So, the labeling of the
graph does not need a separate Merkle commitment as it is implicit in their graph.

Abusalah et al. added another dimension to PoSWs known as reversibility [1]. P
undergoes N reversible random permutations on an input x . V chooses a challenge
permuted string. The proof is accepted only if the challenge string lies within the
smallest number of reversed permutations.

Each of these schemes accepts any false proofwith the probability atmost (1 − α)t

for a soundness gap of 0 ≤ α ≤ 1 and t number of challenges chosen by the verifier.
It is because these schemes allow V to verify only a single challenge in each of the
t rounds. The proposed PoSW in this paper scales down it to (1 − α)2t by checking
two challenges simultaneously in each of the rounds.

1.1 Our Techniques

Wepropose a PoSWscheme based on linear hybrid cellular automata (LHCA). These
automata fit in the current context, because they offer intrinsic randomness required
for the soundness of a PoSW.

Briefly, our schemeworks as follows.We use a n-bit linear hybrid cellular automa-
tonwhere n is the security parameter. The input x ∈ X passes through a hash function
h(·) that produces a n-bit hash value. Both the LHCAand the hash function h are pub-
lic knowledge. The prover uses this hash output to initialize the state of the LHCA.
The LHCA is then iterated N ≤ 2n − 1 times, where N is the specified number of
sequential steps and is again a public parameter. Under the assumption that the ini-
tializing state is a random n-bit vector (because it is a hash output), the sequence of
the states can not be predicted unless computed. After each iteration, the prover needs
to compute another hash (modeled as a random oracle H) output with the inputs of
the current state of the LHCA and the hash output computed in the last iteration. We
call this output the label � against the corresponding state. Using all the N labels,
the prover enumerates a Merkle tree with the root φ and announces it as the proof.
The prover also stores the labels at the d topmost levels of the Merkle tree.

During verification, the verifier gets the same initial state of the LHCA by cal-
culating h(x). The verifier then chooses t integers uniformly at random within the
range [1, N ]. For each of these t integers τ , the verifier jumps onto the τ -th state
starting from the h(x) and check the integrity of the labels of the τ -th and either the
(τ + 1)-th or the (τ − 1)-th states in the sequence. Therefore, for each τ , two labels
can be verified simultaneously. Essentially, the verifier computes the Merkle root �r
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using the labels supplied by the prover against those random challenges. If the com-
puted root �r matches with the φ for all the t challenges, the verifier accepts it; rejects
otherwise. To jump on the τ -th state, unlike the prover, the verifier multiplies the
initial state vector h(x) of the LHCA by Mτ , where M is the n × n transition matrix
of the LHCA. This can be done in O(n2 log τ ) time with some precomputation. For
t challenges, this sums up to O(tn2 log τ ) time.

We show that our construction is correct and secure in the random oracle model.
In particular, this scheme enforces a prover to compute a sequence of N states
querying the random oracle H at least N times sequentially. Moreover, we show that
depending upon the rule vector, an LHCA produces a sequence of random states
during its evolution (See Theorem 1). This randomness is at the heart of our design
of asymptotically difficult computations.

1.2 Organization of the Paper

In Sect. 2, we present a succinct review of PoSW, random oracle, and cellular
automata, and prove some results for use in later sections. We propose our PoSW
scheme in Sect. 3. In Sect. 4, we establish the essential properties, correctness and
soundness of the PoSW. Finally, Sect. 5 concludes the paper after highlighting an
open problem in this context.

2 Preliminaries

We takeP andV as the prover and the verifier, respectively.Wedenote three statistical
security parameters with w, t, n ∈ Z

+ and a time parameter N ∈ Z
+. Let poly(n)

be some function nO(1), and negl(n) represents some function n−ω(1). For some
x, z ∈ {0, 1}∗, x‖z implies concatenation of strings x and z. The i-th bit of x is
represented by x[i] and x[i . . . j] = x[i]‖ . . . x[ j]. We denote |x | as the bit length
of x .

If any randomized algorithmA outputs y on an input x , we write y
R←− A(x). By

x
$←− X , we mean that x is sampled uniformly at random from X . We considerA as

efficient if it runs in probabilistic polynomial time (PPT). We assume H:{0, 1}∗ →
{0, 1}w is a random oracle. If an algorithm A queries the random oracle H, it is
denoted as AH.
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2.1 Proof of Sequential Work

Definition 1 (Proof of Sequential Work) Assuming X ⊆ {0, 1}∗, a PoSW is a
quadruple of Gen, SolveH, OpenH,VerifyH that implements a mapping X →
{0, 1}w is specified by four algorithms.

Gen(1n, N ) → pp is an algorithm that takes as input a security parameter n and
a targeted time bound N , and produces the public parameters pp.
SolveH(pp, x) → (φ,φP) takes an input x ∈ X , and produces a proofφ ∈ {0, 1}w
alongwith aφP ∈ {0, 1}∗.P announcesφ, whereas storesφP locally. Upon receiv-
ing φ, V samples a set of random challenges γ = {γ1, γ2, . . . , γt }, where each
γi ∈ [1, N ].
OpenH(pp, x,φP , γ) → π takes the challenge γ and the φP as the inputs, and
sends the output π ∈ {0, 1}∗ to V .
VerifyH(pp,π, x, γ,φ) → {0, 1} is an algorithm that takes an input x , a challenge
γ, an output π, and a proof φ, and either accepts (1) or rejects (0). The algorithm
must be “significantly” faster than SolveH. So, we require VerifyH must run in
poly(n, log N ) time.

The two desirable properties of a PoSW are now introduced.

Definition 2 (Correctness) A PoSW is correct, if for all n, N , parameters pp, and
x ∈ X , we have

Pr

⎡
⎢⎢⎢⎢⎣
VerifyH(pp,π, x, γ,φ) = 1

∣∣∣∣

pp ← Gen(1n, N )

x
$←− X

(φ,φP) = SolveH(pp, x)

π = OpenH(pp, x,φP , γ)

⎤
⎥⎥⎥⎥⎦

= 1.

V always accept a proof φ generated by N sequential queries to H.

Definition 3 (Soundness) A PoSW is sound if for all non-uniform algorithms P̃ that
run in parallel time o(N ), we have

Pr

⎡
⎢⎣φ 	= SolveH(pp, x)

VerifyH(pp,π, x, γ,φ) = 1

∣∣∣∣
pp ← Gen(1n, N )

(x,φ,φP) ← P̃(1n, 1N ,pp)

π = OpenH(pp, x,φP , γ)

⎤
⎥⎦ ≤ negl(n).

All non-uniform parallel adversaries P̃ should pass the verification at most negligible
probability.



Quadratically Sound Proof-of-Sequential-Work 133

2.2 Cellular Automata

Cellular automata (CA, for short) is a model of computation. A one-dimensional CA
can be visualized as a grid of cells that assume values at discrete time steps according
to a set of functions working on the states of neighboring cells [3]. In this paper, we
focus on one-dimensional binary cellular automaton. We call a CA binary when its
cells can have only binary values, i.e., {0, 1}. Let n be the number of cells in the CA.
We call an ensemble of values at a time-step t as a state of the CA and is denoted
by an n-dimensional vector s(t). Let, the i-th bit of the vector s(t) be bti . The cells
are numbered i = 0, 1, 2, . . . , n − 1 in a left-to-right manner. The cells bti assume
values from a set of boolean functions ri , traditionally called rules. Two rules are
used in this work.

Rule 90: bt+1
i = bti−1 ⊕ bti+1.

Rule 150: bt+1
i = bti−1 ⊕ bti ⊕ bti+1.

Note that the bits at the positions i = 0 and i = n − 1 require the bits bt−1 and b
t
n to

be defined. We call a CA null-boundary CA if these boundary-bits bt−1 and btn are
always assumed to be 0 for all t . Like the states, the ensemble of rules r0, . . . , rn−1

can also be represented as bit-vector since there are only two rules (90 and 150). If
ri = 0, Rule 90 applies to the i-th cell of the CA. If ri = 1, Rule 150 applies to the
i-th cell of the CA. A rule ri is linear if it uses only linear operators, e.g., logical XOR
⊕. Rules 90 and 150 are linear as they use only ⊕ operator. A CA is called linear if
it uses only linear rules. Further, a CA is called hybrid if all rules are not identical to
each other. For example, the CA in Fig. 1 is a hybrid CA. The state transition of an
8-bit LHCA under a given rule vector is illustrated in Fig. 1.

An LHCAwith rules 90 and 150, starting from an all-zero state s(0) = 0n contin-
ues to stay in that state. If the remaining 2n − 1 non-zero states occur in a single cycle,
the LHCA is called a maximum-length LHCA. In order to derive the rule vector for
a maximum-length LHCA of n cells, we need a primitive polynomial of degree n
over F2. There exists a deterministic algorithm [2] to generate the rule vector for an
n-cell maximum-length LHCA from this primitive polynomial.

As all rules are linear, an LHCA can also be characterized by an n × n linear map
M over F2, such that

Mi j =
{
1, if the bt+1

i depends on btj
0, otherwise

State s(t) at time t 0 1 0 1 1 1 0 0

Rule vector 1 0 1 0 1 1 0 0

State s(t+ 1) at time t+ 1 1 0 0 1 1 0 1 0

Fig. 1 State change of an LHCA with rule vector 〈150, 90, 150, 90, 150, 150, 90, 90〉
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This linear map M is called the characteristic matrix of the LHCA. The τ -th state
s(t + τ ) starting from the state s(t) can be obtained as

s(t + τ ) = Mτ s(t) (1)

Thus, given an arbitrary τ < 2n − 1, the τ -th state s(τ ) can be found in O(log τ )-
time via the characteristic matrix. Still, the states are updated using the rule vector as
matrix exponentiation is much costlier than evaluating the rules of an LHCA. Given
a rule vector, the characteristic matrixM can be efficiently constructed by placing the
rule vector along the principle diagonal of M , filling the super and the sub diagonals
with 1s, and leaving all other entries as 0s.

We restate two theorems on LHCAs from [7].

Theorem 1 Let L be an n-cell LHCA governed by Rule 90 and Rule 150 only. If
L is initialized by a random bit sequence (like the output of a well-designed hash
function), then at any time t, the bits b(t)

i of L remain independent of one another
with Pr[bti = 0] = Pr[bti = 1] = 1

2 for all i .

Proof We proceed by induction on t . For t = 0, the result follows from the induction
hypothesis that the initial state is a random bit sequence. For the inductive step,
suppose that the bits of L are unbiased and independent at some time t ≥ 0. It
suffices to show that

Pr[bt+1
i = x | bt+1

j = y] = Pr[bt+1
i = x] = 1

2
(2)

for all i, j with i 	= j , and for all x, y ∈ {0, 1}. For any i , if ri applies rule 90, then
bt+1
i = bti−1 ⊕ bti+1, andwe say supporti = {i − 1, i + 1}. If ri applies rule 150, then
bt+1
i = bti−1 ⊕ bti ⊕ bti+1, and we say supporti = {i − 1, i, i + 1}. If |i − j | > 2,
then supporti ∩ support j = ∅, and thus the bits bt+1

i and bt+1
j are independent. So

assume that j = i + 1. Since ri = 0 implies rule 90 and ri = 1 denotes rule 150, we
may write bt+1

i = bti−1 ⊕ ribti ⊕ bti+1, and b
t+1
j = bt+1

i+1 = bti ⊕ ri+1bti+1 ⊕ bti+2. The

bit bt+1
i depends on bti−1 but not on bti+2. Moreover, the bit bt+1

j depends on bti+2
but not on bti−1. By induction hypothesis, bti−1 and bti+2 are independent, so Eq. (2)
holds. The cases j = i − 1, i + 2, i − 2 can be analogously handled. �

Theorem 2 If L is a null-boundary LHCA and the rule vector applies Rule 150
to both the boundary cells, then for all t ≥ 0 and, for all i, j , the bits bt+1

i are
independent of any single btj only.

Proof Let us call the bits bt+1
i at two boundaries i ∈ {0, n − 1} as the boundary

bits and all the other bits at the positions 0 < i < n − 1 as the non-boundary bits.
The non-boundary bits are dependent on multiple btj s. If ri = 0 (i.e., for rule 90),

the non-boundary bit bt+1
i = bti−1 ⊕ bti+1. Similarly, when ri = 1 (i.e., for rule 150),

bt+1
i = bti−1 ⊕ bti ⊕ bti+1. On the contrary, if r0 = rn−1 = 0, the boundary bits depend
on a single btj . Since L is a null-boundary CA, bt−1 = btn = 0 always. If r0 = 0,
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then bt+1
0 = bt1, whereas if rn−1 = 0, then bt+1

n−1 = btn−2. Taking r0 = rn−1 = 1makes
bt+1
0 = bt0 ⊕ bt1 and b

t+1
n−1 = btn−2 ⊕ btn−1. Now, by Theorem 1 at any t ≥ 0, all btj are

independent of each other. Therefore, r0 = rn−1 = 1 makes each bt+1
i for 0 ≤ i ≤

n − 1 independent of any single btj only. �

The number of primitive polynomials of degree n is φ(2n − 1)/n, where φ()

denotes Euler’s totient function. So, for any n, there exist a plenty of primitive
polynomials satisfying Theorem 2. Therefore, finding such a rule vector would not
be hard practically.

Theorem 1 implies that the bits of an LHCA remain independent of one another
for all t , when it is initializedwith a random state. Theorem. 2 suggests that there is no
leakageof informationbetween two successive states. Itmeans, given a state s(t)of an
LHCA, the next state s(t + 1) appears as a pseudo-randombit-stringwhich can not be
guessed unless computed. Therefore, the sequence of states s(0), s(1), . . . , s(2n − 1)
looks like a pseudo-random sequence of bit-strings. These observations constitute
the foundation of our PoSW scheme.

3 PoSW Based on Cellular Automata

In this section, we propose a PoSW scheme based on a maximum-length null-
boundary LHCA L. We denote the characteristic matrix of L by M . The number
of cells of L is taken to be same as the security parameter n ∈ Z

+. Moreover, the
targeted sequential steps are taken as O(N ). The four algorithms that specify our
PoSW are now described.

3.1 The Gen(1n, N) Algorithm

This algorithm outputs the public parameters pp = 〈R,H, h, w, d, t〉 having the
following meanings.

1. R is the rule vector of a maximum-length, null-boundary LHCA L.
2. We keep the size of L same as n.
3. As stated in Sect. 2.1 w, t ∈ Z

+. Another integer d < n is introduced.
4. We denote the set of all states of the LHCA by S. We take h : X → S and

H : S × {0, 1}w → {0, 1}w to be two efficiently computable hash functions. H is
modeled as a random oracle.

Complexity: Among the public parameters, only the rule vector needs to be com-
puted. As already mentioned in Sect. 2, given a primitive polynomial of degree n,
R is generated by a polynomial-time algorithm [2]. It is a randomized algorithm
that succeeds with the probability 1/2 if n is even, and is deterministic if n is odd.
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The additional requirement of having Rule 150 at the boundary cells implies a con-
stant expected number of searches for the appropriate rule vector. We can design
H and h from any good hash function. The parameter t is used to confirm that the
Verify algorithm succeeds with high probability for all outputs without violating the
soundness.

3.2 The SolveH (pp, x) Algorithm

Without the loss of generality, we may consider N to be the nearest smallest power
of 2 greater than or equal to the specified number of steps. Essentially, SolveH

equally partitions the sequence S into 2d partitions (See Fig. 2). For each of these
partitions, it computes theH-sequence of length N/2d using � j ← H(s( j)||� j−1) for
1 ≤ j ≤ N/2d . Subsequently for each partition, it finds the Merkle root �ri−1 of the
Merkle tree {Gi−1}1≤i≤2d assuming � j ’s are sorted by their indices. Also, for each
of the i-partitions, �1 ← H(s(1)||�ri−1) except the very first partition. The first one
assumes �r0 = 0w. Finally, it computes the Merkle root �r of the tree G from the
roots of the trees {Gi−1}1≤i≤2d . The algorithm SolveH is defined as follows.

1. Use h to map the challenge x ∈ X to s(0) ∈ S.
2. Initialize salt ← 0w.
3. Repeat for 1 ≤ i ≤ 2d :

(a) Assign τ ← (i−1)N
2d .

(b) Initialize L with s(τ ).
(c) Compute �τ ← H(s(τ )||salt).
(d) Repeat for 1 ≤ j ≤ N

2d :
i Update L to s(τ + j) from s(τ + j − 1).
ii Compute the label � j ← H(s(τ + j − 1)||� j−1).

(e) Compute the Merkle root �ri−1 of the tree Gi−1 from

N
2d⋃
j=1

� j−1 (See Fig. 2).

(f) Assign salt ← �ri−1 .

4. Compute the Merkle root �r of the tree G from the roots
2d⋃
i=1

�ri−1 of {Gi−1}1≤i≤2d .

5. Announce the �r as φ and store all the labels of G as φP .

Complexity: The effort spent by the prover to run SolveH (pp, x) is now deduced.
We assume that each single call of the hash function h takes O(1) time. Each state
update s(i) → s(i + 1) ofL requires computing the next value of each of the n cells.
Depending on whether Rule 90 or Rule 150 is used for a cell, the update for that
cell requires one or two two-input XOR calculations. For each transition, the number
of XOR operations is in the range [n, 2n]. Although S has been partitioned into 2d

subsequences, each of these partitions takes the Merkle root of the last partition as
an input to the very first H-computation of its H-sequence. Therefore, any malicious
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Fig. 2 A schematic view of
the PoSW scheme on an
LHCA of size n = 2 and
d = 1. The indices is of the
labels �i s have been
represented in binary format.
When N = 2n − 1, a dummy
state s(2n − 1) = {0}n has
been added at the end of the
cycle in order to make N as a
power of 2. In this example,
it is s(3)

s(1) s(2) s(3)s(0)

00

H

01 11

H H H

10

0w

G

L

G0 G1
r0 r1

r

prover P̃ having even O(N ) parallel processors needs to compute the entire H-
sequence sequentially spending O(N )-time. The processor that computes the very
first label � in every Gi in the sequence must wait until the Merkle root of the Gi−1

is computed. As there are N iterations, the total effort of P is O(nN ) along with
N sequential queries to the oracle H. When N = O(2n), it becomes an exponential
expression in the security parameter n.

3.2.1 Precompute and Jump

Before we proceed to describe the OpenH and VerifyH algorithm, let us define two
procedures, Precompute and Jump.

Precompute(·) is a polynomial-time procedure that needs to be run only once
unless the rule vector R is modified. Indeed, this procedure may be considered as
a part of the Gen algorithm. Specifically, it uses the idea of fixed-base exponentia-
tion [6] in order to reduce the running time of Verify by a factor of n. Given the rule
vectorR, the transition matrix M of L can be constructed efficiently as described in
Sect. 2.2. The matrices M2i for i = 0, 1, 2, . . . , n − 1 are precomputed and stored
to be used in Jump.

Jump( j, τ ) → {0, 1}n jumps from a state s( j) to the state s( j + τ ) in polynomial
time using the precomputed matrices M, M2, . . . , M2n−1

. First, it decomposes τ =
2i1 + 2i2 + · · · + 2iρ then computes s( j + τ ) = (M2i1 (M2i2 (· · · (M2iρ s(i)) · · · )).
The 1-bit positions i1, i2, . . . , iρ in τ can be identified in O(n) time. Since N ≤
2n − 1, the computation of s( j + τ ) needs at most n matrix-vector multiplications;
so, it requires O(n2 log τ ) time.
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3.3 The OpenH (pp, x,φP,γ)

This algorithm is the standard Merkle commitment opening algorithm and works as
follows:

1. Repeat for 0 ≤ i ≤ t − 1:

(a) If γi is even then assign τ ← (γi − 1); otherwise, τ ← γi .
(b) Enumerate s(τ ) ← Jump(0, τ ).

(c) Find the set πi = ⋃
k∈Ti

�k , where Ti
def=

log N⋃
j=1

γi [1 . . . j − 1]||γi [ j]

2. Collect all π =
t⋃

i=1
{�γi−1 ∪ �γi ∪ πi }

Complexity: The effort spent by the prover to open the commitments is now enu-
merated. For each γi , P needs to supply log N − 1 number of labels, correspond to
each levels of G and Gγi . As G is already stored in φP , P requires to figure out
Gγi only. So, P first finds out the partition of S containing the γi and construct the
Merkle tree Gγi . Then it sends the log(N/2d) required labels. So, (s)he queries the
oracle H for O(N/2d − 1) times in each iteration. As there are t iterations in total,
it takes O(t (N/2d − 1)) sequential queries the oracle H. Also a Jump(0, τ ) needs
O(n2 log τ ) time yielding O(tn2 log τ ) time in t iterations.

3.4 The VerifyH (pp, x,γ,π,φ) Algorithm

The VerifyH algorithm runs the following steps:

1. Use h to map the challenge x ∈ X to s(0) ∈ S.
2. Repeat for 0 ≤ i ≤ t − 1:

(a) If γi is even then assign τ = γi − 1; otherwise, τ = γi .
(b) Enumerate s(τ ) ← Jump(0, τ ).
(c) Set a flag fi if and only if:

i. �τ
?= H(s(τ )||�τ−1) and �τ+1

?= H(s(τ + 1)||�τ ).

ii. The Merkle root �r
?= φ, where �r can be computed recursively using

�γi [0...i] = H(�γi [0...i]||0||�γi [0...i]||1).

3. Assign f ← f0 ∧ f1 ∧ f2 ∧ . . . ∧ ft−1.
4. Accept if f = 1; reject otherwise.

Complexity: The effort needed for the verification is now evaluated. The initial query
to h should be done inO(1) time. For eachγi , there is a single call for Jump, update of
L, and Merkle root computation yielding O(n2 log τ ), O(n) time, and log N queries
to H, respectively. So, in t iterations, the required effort is t log N queries to H plus
O(tn2 log τ ) time; a polynomial in the security parameter n.
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3.5 Efficiency

Here, we will discuss the efficiencies of both the prover P and the verifier V in terms
of number of H-queries and the memory requirement for φ and φP .

Prover’s efficiency: As alreadymentionedP needs to runSolveH andOpenH. So,
P requires O(N + t (N−1)

2d )) number of H-queries. In general, for any 0 ≤ β ≤ 1

and d = n/β, P requires t.Nβ sequential queries for OpenH on top of the N
queries for SolveH to H and N 1−β .w space to store φP .

Verifier’s efficiency: V only executes VerifyH. So, V requires only O(t log N )

number of H-queries using t.w. log N space. Moreover, (s)he needs t.w space for
the random challenge γ.

4 Security of the Proposed PoSW

In this section, we establish two essential properties of PoSW. Throughout the anal-
ysis, we will assume that P evaluates h(x) honestly as h is called only once.

4.1 Correctness

According to Definition 2, any PoSW should always accept, a valid proof against
the corresponding input from its domain. The following theorem establishes this
correctness property of our PoSW scheme.

Theorem 3 The proposed PoSW is correct.

Proof In the algorithm SolveH, since h is a deterministic hash function, s(0) ∈ S is
uniquely determined by the challenge x ∈ X . Moreover, if φ is the correct evaluation
of SolveH, then ∀i, fi must be 1 results into f = 1 in VerifyH. So, V has to accept
it. It therefore follows that

Pr

⎡
⎢⎢⎢⎢⎣
VerifyH(pp, x,φ, γ,π) = 1

∣∣∣∣

pp ← Gen(1n, N )

x
$←− X

(φ,φP) = SolveH(pp, x)

π = OpenH(pp, x,φP , γ)

⎤
⎥⎥⎥⎥⎦

= 1.

�
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4.2 Soundness

Here, we show that the PoSW is sound, means a dishonest prover P̃ succeeds to
convince V to accept a misleading proof with at most negligible probability.

Theorem 4 With parameters t, w, N and a “soundness gap” α > 0, even if P̃ enu-
merates the sequence of states S correctly but makes at most (1 − α)N sequential
queries to H after receiving x, and at most q queries in total, then V will accept the
proof φ with probability,

Pr[P̃ wins] < (1 − α)2t + (n − 1).w.q2

2w

Proof Suppose P̃ has made onlym = (1 − α)N queries toH to compute the correct
labels �i+1 = H(s(i)||�i ). For each γi , V checks the correctness of the labels for both

�γi and �γi+1 by two ways. First, V checks if both �γi
?= H(s(γi − 1)||�γi−1) and

�γi+1
?= H(s(γi )||�γi ) are true. If yes, then if the corresponding �r

?= φ or not. So on
the i-th trial, i.e., for each γi , P̃ passes the verification with the probability,

Pr[P̃γi wins] = Pr[�r = φ|�γi , �γi+1 both are correct ]

=
(
m

N

) N
2d

−2

×
(
m − 2i

N − 2i
× m − 2i − 1

N − 2i − 1

)

<

(
m

N

) N
2d

(3)

Since t << N , we may assume none of the γi and γi ± 1 collide with each other,
i.e., ∀i, j, |γi − γ j | ≥ 3. So, for all i , the events [P̃γi win]s are independent of each
other. Therefore, P̃ passes the verification with the probability,

Pr[P̃ wins] =
t−1∏
i=0

Pr[P̃γi win]

<

t−1∏
i=0

(m
N

)2

=
(
m

N

)2t

= (1 − α)2t

(4)

Finally, P̃ would have aminuscule advantage due to the collision and the sequentiality
in random oracle H established in [4].
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Therefore, P̃ passes the verification with the probability,

Pr[P̃ wins] < (1 − α)2t + (n − 1).w.q2

2w

�

5 Conclusion and Open Problem

This paper presents an idea of constructing a proof of sequential work based on linear
hybrid cellular automata and hash function. Our scheme is proven to be correct and
much more sound in the random oracle model. We have been able to link the security
of our schemewith the inherent randomness of cellular automata and the sequentiality
in the random oracle. It remains open to establish a verifiable delay function with
similar constructions if we eliminate the random oracle from this and able to find
some algebraic hardness assumptions from the same.
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On Some Properties of K -type Block
Matrices in the Context of
Complementarity Problem

A. Dutta and A. K. Das

Abstract In this article, we introduce K -type block matrices which include two
new classes of block matrices, namely block triangular K -matrices and hidden block
triangular K -matrices. We show that the solution of linear complementarity problem
with K -type block matrices can be obtained by solving a linear programming prob-
lem.We show that block triangular K -matrices satisfy the least element property.We
prove that hidden block triangular K -matrices are Q0 and processable by Lemke’s
algorithm. The purpose of this article is to study properties of K -type block matrices
in the context of the solution of linear complementarity problem.

Keywords Z -matrix · Hidden Z -matrix · Linear programming problem · Linear
complementary problem · Semi-sublattice · P-matrix · Q0-matrix

1 Introduction

The linear complementarity problem is a combination of linear and nonlinear systems
of inequalities and equations. The problem may be stated as follows: Given M ∈
Rn×n and a vector q ∈ Rn, the linear complementarity problem, LCP(M, q) is the
problem of finding a solutionw ∈ Rn and z ∈ Rn to the following system of linear
equations and inequalities:

w − Mz = q, w ≥ 0, z ≥ 0, wT z = 0.

In complementarity theory, several matrix classes are considered due to the study
of theoretical properties, applications, and its solution methods. For details see [11–
13]. It is well known that the linear complementarity problem can be solved by a
linear program if M or its inverse is a Z -matrix, i.e., a real square matrix with non-
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positive off-diagonal elements. A number of authors have considered the special case
of the linear complementarity problem under the restriction that M is a Z -matrix.
Chandrasekharan [16] considered Z -matrix solving a sequence of linear inequalities.
Lemke’s algorithm is a well-known technique for solving linear complementarity
problem [1]. Mangasarian [8] showed that the following linear program:

minimize pT u
subject to q + Mu ≥ 0,

u ≥ 0
(1)

for an easily determined p ∈ Rn solves the linear complementarity problem for a
number of special cases especially when M is a Z -matrix. Mangasarian [8] proved
that least element of the polyhedral set {u : q + Mu ≥ 0, u ≥ 0} in the sense of
Cottle–Veinott can be obtained by a single linear program. It is well known that the
quadratic programming problem

minimize qT u + 1
2uT Mu

subject to u ≥ 0

can be formulated as a linear complementarity problem when M is symmetric pos-
itive semidefinite. Mangasarian showed that this problem can be solved using a
single linear program if M is a Z -matrix. Hidden Z -matrices are the extension of
Z -matrices. A matrix M is said to be a hidden Z -matrix if ∃ two Z -matrices X and
Y such that

1. M X = Y
2. r T X + sT Y > 0, for some r, s ≥ 0.

For details, see [5, 6]. In this paper, we introduce block triangular K -matrix and
hidden block triangular K -matrix. We call these two classes collectively K -type
block matrix. We discuss the class of K -type block matrices in solution aspects for
linear complementarity problem.

The paper is organized as follows. Section 2 presents some basic notations, defi-
nitions, and results. In sect. 3, we establish some results of these two matrix classes.
We show that a linear complementarity problem with block triangular K -matrix and
hidden block triangular K -matrix can be solved using linear programming problem.

2 Preliminaries

Wedenote the n-dimensional real space by Rn . Rn+ denotes the nonnegative orthant of
Rn.Weconsider vectors andmatriceswith real entries.Anyvector x ∈ Rn is a column
vector and xT denotes the row transpose of x . e denotes the vector of all 1. Amatrix
is said to be nonnegative or M ≥ 0 if mi j ≥ 0 ∀ i, j.Amatrix is said to be positive if
mi j > 0 ∀ i, j. Let M and N be twomatrices with M ≥ N , then M − N ≥ 0. If M is
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a matrix of order n, α ⊆ {1, 2, · · · , n} and ᾱ ⊆ {1, 2, · · · , n} \ α, then Mαᾱ denotes
the submatrix of M consisting of only the rows and columns of M whose indices are
in α and ᾱ, respectively. Mαα is called a principal submatrix of M and det(Mαα) is
called a principal minor of M. Given a matrix M ∈ Rn×n and a vector q ∈ Rn, we
define the feasible set FEA(M, q)= {z ∈ Rn : z ≥ 0, q + Mz ≥ 0} and the solution
set of LCP(M, q) by SOL(M, q) = {z ∈ FEA(M, q) : zT (q + Mz) = 0}.

We state the results of two-person matrix games in linear system with comple-
mentary conditions due to von Neumann [17] and Kaplansky [18]. The results say
that there exist x̄ ∈ Rm, ȳ ∈ Rn and v ∈ R such that

∑m
i=1 x̄i ai j ≤ v, ∀ j = 1, 2, . . . , n,∑n
j=1 ȳ j ai j ≥ v, ∀ i = 1, 2, . . . ,m.

The strategies (x̄, ȳ) are said to be optimal strategies for player I and player II and
v is said to be the minimax value of game. We write v(A) to denote the value
of the game corresponding to the payoff matrix A. The value of the game, v(A)
is positive(nonnegative) if there exists a 0 �= x ≥ 0 such that Ax > 0 (Ax ≥ 0).
Similarly, v(A) is negative(nonpositive) if there exists a 0 �= y ≥ 0 such that yT A <

0 (yT A ≤ 0).
A matrix M ∈ Rn×n is said to be

− P SD-matrix if xT Mx ≥ 0 ∀ 0 �= x ∈ Rn.

− P (P0)-matrix if all its principal minors are positive (nonnegative).
− S-matrix [15] if there exists a vector x > 0 such that Mx > 0 and S̄-matrix if all
its principal submatrices are S-matrix.
− Z -matrix if off-diagonal elements are all non-positive and K (K0)-matrix if it is a
Z -matrix as well as P (P0)-matrix.
− Q-matrix if for every q, LCP(M, q) has at least one solution.
− Q0-matrix if for FEA(q, A) �= ∅ ⇒ SOL(q, A) �= ∅.
Now, we give some definitions, lemmas, and theorems which will be required for
discussion in the next section.

Lemma 1 ([1]) If A is a P-matrix, then AT is also P-matrix.

Lemma 2 Let A be a P-matrix. Then v(A) > 0.

Definition 1 [1] A subset S of Rn is called a meet semi-sublattice (under the com-
ponentwise ordering of Rn) if, for any two vectors x and y in S, their meet, the vector
z = min(x, y) belongs to S.

Definition 2 ([4]) The spectral radius σ(M) of M is defined as the maximum of the
moduli |λ| of all proper values λ of M .

Lemma 3 ([4]) Let M be a nonnegative matrix. Then there exists a proper value
p(M) of M, the Perron root of M, such that p(M) ≥ 0 and |λ| ≤ p(M) for every
proper value λ of M. If 0 ≤ M ≤ N, then p(M) ≤ p(N ). Moreover, if M is irre-
ducible, the Perron–Frobenius root p(M) is positive, simple and the corresponding
proper value may be chosen positive. According to the Perron–Frobenius theorem,
we have σ(M) = p(M) for nonnegative matrices.
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Definition 3 A matrix W is said to have dominant principal diagonal if |wi i | >∑
k �=i |wik | for each i.

Lemma 4 ([4]) If W is a matrix with dominant principal diagonal, then σ(I −
H−1W ) < 1, where H is the diagonal of W .

Theorem 1 ([4]) The following four properties of a matrix are equivalent:
(i) All principal minors of M are positive.
(ii) To every vector x �= 0, there exists an index k such that xk yk > 0, where y = Mx.
(iii) To every vector x �= 0, there exists a diagonal matrix Dx with positive diagonal
elements such that the inner product (Mx, Dx x) > 0.
(iv) To every vector x �= 0, there exists a diagonal matrix Hx ≥ 0 such that the inner
product (Mx, Hx x) > 0.
(v) Every real proper value of M as well as of each principal minor of M is positive.

Lemma 5 ([1]) If F is a nonempty meet semi-sublattice that is closed and bounded
below, then F has a least element.

Lemma 6 ([8]) If z solves the linear programmin pT z subject to Mz + q ≥ 0, z ≥ 0
and if the corresponding optimal dual variable y satisfies (I − MT )y + p > 0, then
z solves the linear complementarity problem LCP(M, q).

3 Main Results

In this paper, we introduce block triangular K -matrix and hidden block triangular
K -matrix, which are defined as follows: A matrix M ∈ Rmn×mn is said to be a block
triangular K -matrix if it is formed with block of K -matrices Mi j ∈ Rm×m, either in
upper triangular forms or in lower triangular forms. Here, i and j varry from 1 to n.
For block upper triangular form of M, the blocks Mi j = 0 for i < j and for block
lower triangular form of M, the blocks Mi j = 0 for i > j.

Consider M=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1
−1.5 2

0 0
0 0

0 0
0 0

3 −1
−1 4

1 −1
−0.75 1

0 0
0 0

1 −1
−0.5 1

1 −0.5
−0.5 1

5 −1
−10 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,which is a block triangular

K − matrix.
The matrix N ∈ Rmn×mn is said to be hidden block triangular K -matrix if there

exist two block triangular K -matrices X and Y such that N X = Y. N is formed
with block matrices either in upper triangular forms or in lower triangular forms. For
block upper triangular form of N , the blocks Ni j = 0 for i < j and X,Y are formed
with K matrices in upper triangular form. Similarly, for block lower triangular form
of N , the blocks Ni j = 0 for i > j and X,Y are formed with K matrices in lower
triangular form.
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Consider N =

⎡

⎢
⎢
⎣

−1 −1
5 4

0 0
0 0

−4.5 −3
4 3.875

1 0.5
−0.25 0.3125

⎤

⎥
⎥
⎦ ,

X =

⎡

⎢
⎢
⎣

2 −1
−3 2

0 0
0 0

3 0
−2 1

4 −1
0 4

⎤

⎥
⎥
⎦ and Y =

⎡

⎢
⎢
⎣

1 −1
−2 3

0 0
0 0

2 −1
0 1

4 0
−1 1

⎤

⎥
⎥
⎦ , such that N X = Y.

Then N is a hidden block triangular K -matrix.

Theorem 2 Let M be a block triangular K -matrix. Then LCP(M, q) is processable
by Lemke’s algorithm.

Proof Let M be a block triangular K -matrix. Then ∃ z ∈ Rn such that zi (Mz)i ≤
0 ∀i =⇒ (z1)i (M11z1)i ≤ 0 ∀i =⇒ z1 = 0, as M11 ∈ K ; (z2)i (M21z1 + M22z2)i

≤ 0 ∀i =⇒ (z2)i (M22z2)i ≤ 0 ∀i =⇒ z2 = 0, as M22 ∈ K . In similar way, (zn)i

(Mn1z1 + Mn2z2 + · · · + Mnnzn)i ≤ 0∀i =⇒ (zn)i (Mnnzn)i ≤ 0∀i =⇒ zn = 0,
as Mnn ∈ K and z1 = z2 = · · · = zn−1 = 0. Hence, z = 0. So M is a P-matrix.
Therefore, LCP(M, q) is processable by Lemke’s algorithm.

Remark 1 ([3]) Let M be a block triangular K -matrix. Then LCP(M, q) is solvable
by criss-cross method.

Theorem 3 If M is a block triangular K -matrix and q is an arbitrary vector, then
the feasible region of LCP(M, q) is a meet semi-sublattice.

Proof Let F =FEA(M, q). Let x =

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦
, y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...

yn

⎤

⎥
⎥
⎥
⎦

∈ F are two feasible

vectors. So x ≥ 0, y ≥ 0, Mx + q ≥ 0, My + q ≥ 0.

Let z =

⎡

⎢
⎢
⎢
⎣

z1
z2
...

zn

⎤

⎥
⎥
⎥
⎦

= min(x, y). Then

Mx + q =

⎡

⎢
⎢
⎢
⎣

M11x1 + q1

M21x1 + M22x2 + q2
...

Mn1x1 + Mn2x2 + Mn3x3 + · · · + Mnn xn + qn

⎤

⎥
⎥
⎥
⎦

≥ 0.

=⇒ x1 ∈ FEA(M11, q1), x2 ∈ FEA(M22, M21x1 + q1), · · · , xn ∈ FEA(Mnn,

Mn1x1 + Mn2x2 + · · · + Mn(n−1)xn−1 + qn). In similarway, My + q ≥ 0 =⇒ y1 ∈
FEA(M11, q1), y2 ∈ FEA(M22, M21x1 + q1), . . . , yn ∈ FEA(Mnn, Mn1x1 + Mn2x2
+ · · · + Mn(n−1)xn−1 + qn). Suppose z = min(x, y) =⇒ z1 = min(x1, y1),
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z2 = min(x2, y2), . . . , zn = min(xn, yn). Mi j ∈ K =⇒ z1 ∈ FEA(M11, q1) =⇒
M11z1+q1 ≥ 0, z2 ∈ FEA(M22, M21z1 + q2) =⇒ M22z2 + M21z1 + q2 ≥ 0, . . . ,
zn ∈ FEA(Mnn, Mn1z1 + Mn2z2 + · · · + Mn(n−1)zn−1 + qn) =⇒ Mn1z1 + Mn2z2
+ · · · + Mn(n−1)zn−1 + Mnnzn + qn ≥ 0. So z = min(x, y) ∈ FEA(M, q). Hence,
the feasible region is a meet semi-sublattice.

Cottle et al. [1] showed that if F is a nonempty meet semi-sublattice, that is closed
and bounded below, then F has a least element by Lemma5. Now, we show that if
the LCP(M, q) is feasible, where M is a block triangular K -matrix, then FEA(M, q)
contains a least element u.

Theorem 4 Let M be a block triangular K -matrix and q be an arbitrary vector.
If the LCP(M, q) is feasible, then FEA(M, q) contains a least element u, where u
solves the LCP(M, q).

Proof Let F =FEA(M, q). By Theorem3, F is a meet semi-sublattice. Let
LCP(M, q) be feasible. Then the set F is obviously nonempty and bounded below

by zero. Then the existence of the least element l =

⎡

⎢
⎢
⎢
⎣

l1
l2
...

ln

⎤

⎥
⎥
⎥
⎦
follows from Lemma 5.

That is l =

⎡

⎢
⎢
⎢
⎣

l1
l2
...

ln

⎤

⎥
⎥
⎥
⎦

≤

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

= x ∀ x ∈ F and l ∈ F.

Let Fi = FEA(Mii , Mi(i−1)zi−1 + Mi(i−2)zi−2 + · · · + Mi2z2 + Mi1z1 + qi ).

Now, it is clear that y1 ∈ F1, y2 ∈ F2, . . . , yn ∈ Fn, where y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...

yn

⎤

⎥
⎥
⎥
⎦

∈ F. As

Mii are Z -matrices, li is the least element of Fi ∀ i ∈ {1, 2, . . . , n} and li solves

LCP(Mii , Mi(i−1)zi−1 + Mi(i−2)zi−2 + · · · + Mi2z2 + Mi1z1 + qi ). So l =

⎡

⎢
⎢
⎢
⎣

l1
l2
...

ln

⎤

⎥
⎥
⎥
⎦

solves LCP(M, q).

Mangasarian [8] showed that if z solves the linear program, min pT z subject
to Mz + q ≥ 0, z ≥ 0 and if the corresponding optimal dual variable y satisfies
(I − MT )y + p > 0, then z solves the linear complementarity problem LCP(M, q)
by Lemma 6. Here, we show that if LCP(M, q)with M, a block triangular K -matrix,
has a solution which can be obtained by solving the linear programmin pT x subject
to Mx + q ≥ 0, x ≥ 0.
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Theorem 5 The linear complementarity problem LCP(M, q), where M is a block
triangular K -matrix, has a solution which can be obtained by solving the linear
program min pT x subject to Mx + q ≥ 0, x ≥ 0, where p = r ≥ 0 and Z1 is a
block triangular K -matrix with r T Z1 > 0.

Proof Let M be a block triangular K -matrix. The linear program, min pT x subject
to Mx + q ≥ 0, x ≥ 0 and the dual linear program, max−qT y subject to −MT y +
p ≥ 0, y ≥ 0 have solutions x and y, respectively. M can be written as D − U,

where D =

⎡

⎢
⎢
⎢
⎣

D11 0 · · · 0
D21 D22 · · · 0

...
...

...
...

Dn1 Dn2 · · · Dnn

⎤

⎥
⎥
⎥
⎦
, Di j ’s are diagonal matrices with positive entries

and

U =

⎡

⎢
⎢
⎢
⎣

U11 0 · · · 0
U21 U22 · · · 0

...
...

...
...

Un1 Un2 · · · Unn

⎤

⎥
⎥
⎥
⎦
,Ui j ’s are matrices with nonnegative entries. Consider

Z1 = D − V, a block triangular K -matrix and the matrix product M Z1 = D − W ,
where

V =

⎡

⎢
⎢
⎢
⎣

V11 0 · · · 0
V21 V22 · · · 0

...
...

...
...

Vn1 Vn2 · · · Vnn

⎤

⎥
⎥
⎥
⎦
, Vi j ’s are matrices with nonnegative entries and

W =

⎡

⎢
⎢
⎢
⎣

W11 0 · · · 0
W21 W22 · · · 0

...
...

...
...

Wn1 Wn2 · · · Wnn

⎤

⎥
⎥
⎥
⎦
, Wi j ’s are matrices with nonnegtive entries. Since Z1 is

a block triangular K -matrix, it is a P-matrix. Hence, v(Z1) > 0 and by Lemma 1
v(Z1

T ) > 0. Let r ≥ 0 be the value of Z T
1 , then r T Z1 > 0. Now, 0 < r T Z1 =

pT Z1 = pT Z1 + yT (−M Z1 + D − W ) = (pT − yT M)Z1 + yT (D − W ) = (pT

− yT M)(D − V ) + yT (D − W ) ≤ (pT − yT M + yT )D as pT − yT M ≥ 0, y ≥
0,U ≥ 0, V ≥ 0. This implies (I − MT )y + p > 0, since Di j ’s are positive diago-
nal matrices. So, by Lemma 6, x solves LCP(M, q), which is a solution of min pt x
subject to Mx + q ≥ 0, x ≥ 0.

Corollary 1 The solution of linear complementarity problem LCP(M, q),with M ∈
block triangular K -matrix can be obtained by solving the linear program min eT x
subject to Mx + q ≥ 0, x ≥ 0.

Proof The identity matrix I itself is a block triangular K -matrix. Then eT I > 0.

Theorem 6 Let M be a block triangular K -matrix. Then M−1 exists and M−1 ≥ 0.

Proof Assume that Q = I − t M ≥ 0, t > 0. Let p(Q) be the Perron-root of Q.
Then we have det[(1 − p(Q))I − t M] = det[Q − p(Q)I ] = 0. By Theorem 1,
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0 < p(Q) < 1. Thus, the series I + Q + Q2 + · · · converges to the matrix (I −
Q)−1 = (t M)−1 ≥ 0, since Qk ≥ 0 for k = 1, 2, · · · . Therefore, M−1 exists and
M−1 ≥ 0.

Theorem 7 Let N be a block triangular K -matrix and M ba a Z-matrix such that
M ≤ N . Then both M−1 and N−1 exist and M−1 ≥ N−1 ≥ 0.

Proof Let N be a block triangular K -matrix and M ba a Z -matrix such that M ≤ N .

Assume that R = I − αN ≥ 0,α > 0. Then S = I − αM ≥ R ≥ 0. Let p(R) be a
Perron root of R. Then we have det[(1 − p(R))I − αN ] = det[R − p(R)I ] = 0.
By Theorem 1, 0 < p(R) < 1. Thus, the series I + R + R2 + · · · converges to
the matrix (I − R)−1 = (αN )−1. Since Sk ≥ Rk ≥ 0, for k = 1, 2, · · · , the series
I + S + S2 + · · · converges to the matrix (I − S)−1 = (αM)−1. Therefore, M−1

and N−1 exist and M−1 ≥ N−1 ≥ 0.

Corollary 2 Assume that M, N are block triangular K -matrices such that M ≤ N .

Then both M−1 and N−1 exist and M−1 ≥ N−1 ≥ 0.

Theorem 8 Let N be a hidden block triangular K -matrix. Then every diagonal
block of N is a hidden Z-matrix.

Proof Let N be a hidden block triangular K -matrix with N X = Y, where X and Y
are the block triangular K -matrices. Let

N =

⎡

⎢
⎢
⎢
⎣

N11 0 · · · 0
N21 N22 · · · 0

...
...

...
...

Nn1 Nn2 · · · Nnn

⎤

⎥
⎥
⎥
⎦
, X=

⎡

⎢
⎢
⎢
⎣

X11 0 · · · 0
X21 X22 · · · 0

...
...

...
...

Xn1 Xn2 · · · Xnn

⎤

⎥
⎥
⎥
⎦
and Y=

⎡

⎢
⎢
⎢
⎣

Y11 0 · · · 0
Y21 Y22 · · · 0

...
...

...
...

Yn1 Yn2 · · · Ynn

⎤

⎥
⎥
⎥
⎦
.

The block diagonal of N X are Nii Xii for i ∈ {1, 2, · · · n}. So, Nii Xii = Yii for
i ∈ {1, 2, · · · n}. Xii ,Yii are K -matrices. Then X T

ii ,Y T
ii are also K -matrices. So

v(X T
ii ) > 0, v(Y T

ii ) > 0.Let ri , si ∈ Rm+ such that X T
ii ri + Y T

ii si > 0 =⇒ r T
i Xii +

sT
i Yii > 0. Hence, the block diagonals of N are hidden Z -matrices.

Theorem 9 Let N be a hidden block triangular K -matrix. Then every determinant
of block diagonal matrices of N is positive.

Proof Let N be a hidden block triangular K -matrix with N X = Y, where X and Y
are block triangular K -matrices. Let

N =

⎡

⎢
⎢
⎢
⎣

N11 0 · · · 0
N21 N22 · · · 0

...
...

...
...

Nn1 Nn2 · · · Nnn

⎤

⎥
⎥
⎥
⎦
, X=

⎡

⎢
⎢
⎢
⎣

X11 0 · · · 0
X21 X22 · · · 0

...
...

...
...

Xn1 Xn2 · · · Xnn

⎤

⎥
⎥
⎥
⎦
and Y=

⎡

⎢
⎢
⎢
⎣

Y11 0 · · · 0
Y21 Y22 · · · 0

...
...

...
...

Yn1 Yn2 · · · Ynn

⎤

⎥
⎥
⎥
⎦
.

The block diagonal of N X are Nii Xii for i ∈ {1, 2, · · · n}. So, Nii Xii = Yii for
i ∈ {1, 2, · · · n}. Xii ,Yii are K -matrices. Then det(Xii ), det(Yii ) > 0 ∀ i. Hence,
det(Nii ) > 0 ∀ i.
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Corollary 3 Every block triangular K -matrix is a hidden block triangular K -
matrix.

Proof Let M be a block triangular K -matrix. Taking X = I, the identity matrix, it
is clear that M is a hidden block triangular K -matrices.

Theorem 10 The linear complementarity problem LCP(N , q), where N is a hidden
block triangular K -matrix with N X = Y, X and Y are the block triangular K -
matrices, has a solution which can be obtained by solving the linear program min
pT x subject to N x + q ≥ 0, x ≥ 0, where p = r + N T s ≥ 0 and r, s ≥ 0 such that
X T r > 0 and Y T s > 0.

Proof Let N be a hidden block triangular K -matrix with N X = Y, where X and Y
are the block triangular K -matrices. The linear program, min pT x subject to
N x + q ≥ 0, x ≥ 0 and the dual linear program,max−qT y subject to−N T y + p ≥
0, y ≥ 0 have solutions x and y, respectively. X can be written as D − U, where

D =

⎡

⎢
⎢
⎢
⎣

D11 0 · · · 0
D21 D22 · · · 0

...
...

...
...

Dn1 Dn2 · · · Dnn

⎤

⎥
⎥
⎥
⎦
, Di j ’s are diagonal matrices with positive entries and

U =

⎡

⎢
⎢
⎢
⎣

U11 0 · · · 0
U21 U22 · · · 0

...
...

...
...

Un1 Un2 · · · Unn

⎤

⎥
⎥
⎥
⎦
, Ui j ’s are matrices with nonnegative entries. Y can be

written as D − V . Then the matrix product N X can be written as D − V, where

V =

⎡

⎢
⎢
⎢
⎣

V11 0 · · · 0
V21 V22 · · · 0

...
...

...
...

Vn1 Vn2 · · · Vnn

⎤

⎥
⎥
⎥
⎦
, Vi j ’s are matrices with nonnegative entries. As X,Y

are block triangular K -matrices, so they are P-matrices. So, v(X) > 0, v(Y ) > 0.
Let r ≥ 0 is the value of X T and s ≥ 0 is the value of Y T . Then 0 < r T X + sT Y =
(r T + sT N )X = pT X = pT (D − U )=pT (D − U ) + yT (−N D + NU + D − V ),

since N (D − U ) = D − V = (pT − yT N )(D − U ) + yT (D − V ) ≤ (yT (I − N )

+ pT )D, since −yT N + pT ≥ 0,U ≥ 0, V ≥ 0, y ≥ 0. Now, Di j ’s are diagonal
matrices with positive entries and D is formed with the block matrices Di j ’s. Hence,
yT (I − N ) + pT > 0. By Lemma 6, x solves the LCP(N , q), which is a solution of
min pT x subject to N x + q ≥ 0, x ≥ 0.

Lemma 7 Let N be a hidden block triangular K -matrix. Consider the LCP(N , q̄),

where N =
[

0 −N T

N 0

]

, q̄ =
[

r + N T s
q

]

and r, s as mentioned in Theorem 10. If
[

x
y

]

∈ FEA(N , q̄), then (I − N T )y + p > 0, where p = r + N T s.
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Proof Suppose

[
x
y

]

∈ FEA(N , q̄). Since N is a hidden block triangular K -matrix,

there exist two block triangular K -matrices X and Y such that N X = Y and r, s ≥ 0,
r T X + sT Y > 0. Let X = D − U and Y = D − V, where U and V are two square
matrices with all nonnegative entries and D is a block triangular diagonal matrix
with positive entries as mentioned in Theorem 10. Then 0 < r T X + sT Y = r T X +
sT N X = pT (D − U ) = pT (D − U ) + yT (Y − N X) = pT (D − U ) + yT (D − V
− N (D − U )) = (−yT N + pT )(D − U ) + yT (D − V ) ≤ (yT (I − N ) + pT )D

since

[
x
y

]

∈ FEA(N , q̄), U ≥ 0, V ≥ 0. Since D is a positive block triangular

diagonal matrix, (I − N T )y + p > 0.

Theorem 11 LCP(N , q̄) has a solution iff LCP(N , q) has a solution.

Proof Suppose LCP(N , q̄) has a solution. Let z̄ =
[

x
y

]

∈ SOL(N , q̄). From the

complementarity condition, it follows that xT (p − N T y) + yT (N x + q) = 0. Since
p − N T y, N x + q, x, y ≥ 0, and xT (p − N T y) = 0, yT (N x + q) = 0. By
Lemma 7, it follows that y + (p − N T y) > 0. This implies for all i either (p −
N T y)i > 0 or yi > 0. Now if (p − N T y)i > 0, then xi = 0. If yi > 0 then (q +
N x)i = 0. This implies xi (q + N x)i = 0 ∀ i. Therefore, x solves LCP(N , q).

Conversely, x solves LCP(N , q). Let y = s, where s as mentioned in Theo-
rem 10. Here, p − N T y = r + N T s − N T y = r + N T s − N T s = r ≥ 0. So z̄ =[

x
s

]

∈ FEA(N , q̄). Further,N is P SD-matrix, which implies thatN ∈ Q0. There-

fore, z̄ solves the LCP(N , q̄).

Theorem 12 All hidden block triangular K -matrices are Q0.

Proof Let N be a hidden block triangular K -matrix. It is clear that feasibility of
LCP(N , q) implies the feasibility of LCP(N , q̄). Note that N ∈ Q0. This implies
that the feasible point of LCP(N , q̄) is also a solution of LCP(N , q̄).Hence, by The-
orem 11, feasibility of LCP(N , q) ensures the solvability of LCP(N , q). Therefore,
N is a Q0-matrix.

Remark 2 Let M =

⎡

⎢
⎢
⎢
⎣

M11 0 · · · 0
M21 M22 · · · 0

...
...

...
...

Mn1 Mn2 · · · Mnn

⎤

⎥
⎥
⎥
⎦
, where Mi j ∈ Rm×m are K -matrices.
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Let z =

⎡

⎢
⎢
⎢
⎣

z1
z2
...

zn

⎤

⎥
⎥
⎥
⎦
and q =

⎡

⎢
⎢
⎢
⎣

q1

q2
...

qn

⎤

⎥
⎥
⎥
⎦
, where zi , qi ∈ Rm . Then

Mz + q =

⎡

⎢
⎢
⎢
⎣

M11z1 + q1

M21z1 + M22z2 + q2
...

Mn1z1 + Mn2z2 + Mn3z3 + · · · + Mnnzn + qn

⎤

⎥
⎥
⎥
⎦
.

First, we solve LCP(M11, q1) and get the solutionw1 = M11z1 + q1, w1
T z1 = 0.

Then we solve LCP(M22, M21z1 + q2) and get the solution w2 = M22z2 + M21z1 +
q2, w2

T z2 = 0. Finally, we solve LCP(Mnn, Mn1z1 + Mn2z2 + Mn3z3 + · · · +
Mn(n−1)zn−1 + qn) and get the solution wn = Mnnzn + Mn1z1 + Mn2z2 + Mn3z3 +

· · · + Mn(n−1)zn−1 + qn, wn
T zn = 0. So, w =

⎡

⎢
⎢
⎢
⎣

w1

w2
...

wn

⎤

⎥
⎥
⎥
⎦

and z =

⎡

⎢
⎢
⎢
⎣

z1
z2
...

zn

⎤

⎥
⎥
⎥
⎦

solve

LCP(M, q).

4 Conclusion

In this article, we introduce the class of block triangular K -matrix and the class of
hidden block triangular K -matrix in the context of solution of linear complementarity
problem. We call these two classes jointly K -type block matrices. We show that
the linear complementarity problem with K -type block matrix is solvable by linear
program. The linear complementarity problemwith block triangular K -matrix is also
processable by Lemke’s algorithm as well as criss-cross method. We show that the
hidden block triangular K -matrix is a Q0-matrix.
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Families of Mordell Curves
with Non-trivial Torsion and Rank of at
Least Three

Renz Jimwel S. Mina and Jerico B. Bacani

Abstract In this study,we consider a particular type of elliptic curves calledMordell
curves, and construct two infinite families of such curves with rank of at least three.
We do this by using parametrizations due to Euler to obtain two rational points on
these curves and obtain the third point from an elliptic curve of rank equal to two.
We then show that the three points are of infinite order and are generally linearly
independent.

Keywords Mordell curve · Elliptic cuve · Rank of elliptic curve

1 Introduction

Let E be an elliptic curve over the field of rationals. It is known that the Q-rational
points on E form an abelian group E(Q), which is called the Mordell–Weil group.
This group was proven by Mordell to be finitely generated, i.e., E(Q) ∼= T ⊕ ZZr ,
where the torsion group T is the group of points with finite order and r ≥ 0 is the
rank of E . It is not known whether the rank is bounded. Twenty-eight is the largest
known lower bound of rank of an elliptic curve over the rationals, and it was found by
N. Elkies in 2006. Other works on elliptic curves with high ranks can be found in [11,
15, 16, 21, 22]. On the other hand, there are also lots of works done in constructing
infinite families of elliptic curves with positive ranks. Some of these are found in [2,
6, 7, 12, 17].

In this paper, we will be dealing with a more specialized elliptic curve, called the
Mordell curve, and is of the form

y2 = x3 + k. (1)
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This curve has been extensively studied over the past years. Some of the works can
be found in [4, 5, 9, 10, 14, 18–20]. On the other hand, the Mordell curve

y2 = x3 + k2 (2)

has not been extensively studied. There are some works on finding high-ranked
Mordell curves of the form (2), but there are only few studies that are concerned with
the infinite family of such curves. In 2004, Elkies and Rogers [3] found a particular
elliptic curve of rank r for every r ≤ 11. In 2017, Izadi and Zargar [8] studied the
twists of y2 = x3 + 1which include theMordell curve (2) and found infinite families
of elliptic curves of rank of at least three parametrized by an elliptic curve of positive
rank. Recently, in 2020, Choudhry and Zargar [1] constructed a parametrized family
of Mordell curves with rank of at least three. From this family, they extracted a
Mordell curve of rank 5.

Motivated by these works, we will also be constructing two infinite families of
Mordell curveswith rankof at least three.Wedo this byutilizing twoparametrizations
due to Euler. It is well known that a Mordell curve of the form (2) has a torsion group
that is isomorphic to ZZ/3ZZwhenever k ∈ ZZ [13]. On the other hand, if k /∈ ZZ, then
by some rescaling, one can show that the torsion subgroup is still ZZ/3ZZ. So, this
study will focus on proving that the rank of the two constructed families is three or
more.

2 A Parametrized Family of Mordell Curves

Consider the following infinite family of Mordell curves

E(a,b) : y2 = x3 + a2b2 (3)

over the field Q(a, b). Forcing a and b to be the x-coordinates of two points on E(a,b),
we get

a3 + a2b2 = a2(a + b2) = u2 (4)

b3 + a2b2 = b2(b + a2) = v2 (5)

for some rational functions u and v. This means that a + b2 and b + a2 must be
simultaneously squares. We use a parametrization due to Euler (and was compiled
in [23]) for a and b. That is, we let

a + b2 = (b + p)2 (6)

b + a2 = (a + q)2 (7)

for some variables p and q. In this case, we get a and b to be
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a = p(p + 2q2)

1 − 4pq
and b = q(q + 2p2)

1 − 4pq
. (8)

Thus, we have the family of Mordell curves

E(p, q) : y2 = x3 + p2q2(p + 2q2)2(q + 2p2)2

(1 − 4pq)4
(9)

with two rational points given by

P1(p, q) =
(

p(p+2q2)

1−4pq ,
p(p+2q2)(q2+p−2p2q)

(1−4pq)2

)
(10)

P2(p, q) =
(
q(q+2p2)
1−4pq ,

q(q+2p2)(p2+q−2q2 p)
(1−4pq)2

)
. (11)

We prove that these two points are independent. If we can find a specialization
(p, q) = (p0, q0) such that P1(p0, q0) and P2(p0, q0) are independent on the spe-
cialized curve over Q and are of infinite order, then by the specialization theorem of
Silverman [24], the points are independent and hence the family of Mordell curves
E(p, q) has rank of at least two overQ for all but finitelymany (p, q). If we specialize
at (p, q) = (2, 3) we obtain the curve

y2 = x3 + 1742400

279841
(12)

with points P1(2, 3) = (− 40
23 ,

520
529

)
and P2(2, 3) = (− 33

23 ,
957
529

)
. Using SAGE [25], we

see that the two points are of infinite order. Moreover, the height pairing matrix of
the two points has a nonzero determinant ≈7.18522262657344 which implies that
the points are independent. Hence, the family E(p, q) has rank of at least two for all
but finitely many (p, q).

Now, we try to increase its rank by forcing the x-coordinate of the third point P3
to be x(P3(p, q)) = − q(q+2p2)

1−4pq . Then, the corresponding y-coordinate is given by

y(P3(p, q)) = q(q + 2p2)
√
p4 + 12p3q2 + 4p2q4 − 2p2q + 4pq3 − q2

(1 − 4pq)2
. (13)

Note that y(P3(p, q)) must be in Q(p, q). So, setting q = 1, we obtain the quartic
curve

u2 = p4 + 12p3 + 2p2 + 4p − 1. (14)

Note that (p, u) = (13/62, 761/3844) is on the curve. Thus, it is birationally equiv-
alent to an elliptic curve in the Weierstrass equation given by

E ′ : g2 = h3 + 4104h − 112320 (15)
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with the transformation

p = g − 18h

6h − 1872
and u = 18p2 + 108p + 6 − h

18
. (16)

Using SAGE, we see that E ′ has rank equal to two, which has generators given
by (h, g) = (33, 243) and (96, 1080). This implies that E ′ has infinitely many
rational points. Now, a point (h, g) = (33, 243) on E ′ corresponds to the (p, u) =
(13/62, 761/3844) on the quartic. Thus, we obtain three points given by

P1(p) =
(

p(p+2)
1−4p ,

p(p+2)(−2p2+p+1)
(1−4p)2

)
(17)

P2(p) =
(
2p2+1
1−4p ,

(2p2+1)(p2−2p+1)
(1−4p)2

)
(18)

P3(p, h) =
(
− 2p+1

1−4p ,
(2p2+1)(18p2+108p+6−h)

18(1−4p2)

)
. (19)

If we specialize at (h, g) = (33, 243) (with the corresponding value p = 13/62), we
get the Mordell curve

E(13/62) : y2 = x3 + 55474819252164

147763360000
(20)

with points

P1(13/62) = (
1781
620 ,

7679672
384400

)
(21)

P2(13/62) = (
4182
620 ,

10040982
384400

)
(22)

P3(13/62, 33) = (− 4182
620 ,

3182502
384400

)
. (23)

Note that these points have infinite order and that the determinant of the corresponding
height pairing matrix is the nonzero value ≈139.537172045240. Thus, these points
are linearly independent. Using Silverman’s specialization theorem, there exists an
infinite family of Mordell curves of rank of at least three. We have proven our first
main theorem.

Theorem 1 Let E(p, q) : y2 = x3 + p2q2(p+2q2)2(q+2p2)2

(1−4pq)4 be defined over Q(p, q).
Then the following holds:

1. The rank of E(p, q) is at least two for all but finitely many pairs (p, q).
2. There exists a subfamily of E(p, q) whose rank is at least three parametrized by

an elliptic curve of rank two.

From this family, we can actually get Mordell curves of rank greater than three.
For example, if (h, g) = (33, 243), then we obtain the Mordell curve given by y2 =
x3 + 55474819252164

147763360000 with rank equal to 5.
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3 Another Parametrized Family of Mordell Curves

Consider the following infinite family of Mordell curves

E(a,b,c) : y2 = x3 + a2b2c2 (24)

over the field Q(a, b, c). Forcing ab, ac, and bc to be the x-coordinates of three
points on E(a,b,c), we get

a3b3 + a2b2c2 = u2 (25)

a3c3 + a2b2c2 = v2 (26)

b3c3 + a2b2c2 = w2, (27)

for some rational functions u, v, and w. This implies that

ab + c2 = u21 (28)

ac + b2 = v21 (29)

bc + a2 = w2
1, (30)

for some rational functions u1, v1, and w1. We use a parametrization of a, b, and c
due to Euler [23] which is given by

{a, b, c} = {s2 + 8st,−8st + t2, 4(s2 + t2)}. (31)

We then have the elliptic curve

E(s, t) : y2 = x3 + 16(s2 + 8st)2(t2 − 8st)2(s2 + t2)2 (32)

with three points given by

P1(s, t) = ((s2 + 8st)(t2 − 8st), (t2 − 8st)(s2 + 8st)(4s2 − st − 4t2)) (33)

P2(s, t) = (4(s2 + t2)(s2 + 8st), 4(s2 + 8st)(s2 + t2)(2s2 + 8st + t2)) (34)

P3(s, t) = (4(s2 + t2)(t2 − 8st), 4(t2 − 8st)(s2 + t2)(s2 − 8st + 2t2)). (35)

We show that two out of the three points are independent for all but finitely many
pairs (s, t). If we specialize at (s, t) = (1, 4), we get the elliptic curve

E(1, 4) : y2 = x3 + 1289097216 (36)

with points

P1(1, 4) = (−528, 33792), and P2(1, 2) = (2244, 112200). (37)
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Using SAGE,we see that the two points are of infinite order.Moreover, the calculated
determinant of the height paring matrix of these two points is the nonzero value
≈5.71586499033672, which implies that the points are independent. Hence, the
family E(s, t) has a rank of at least two for all but finitely many (s, t).

Now, if we force the x-coordinate of the fourth point on E(s, t) to be x(P4) =
−4(s2 + t2)(s2 + 8st), then the corresponding y coordinate is given by

y(P4) = 4(s2 + t2)(s2 + 8st)
√

−4s4 − 32s3t + 60s2t2 − 48st3 + t4. (38)

Note that y(P4) must be in Q(s, t). Setting s = 1, we obtain the quartic curve over
Q given by

u2 = t4 − 48t3 + 60t2 − 32t − 4. (39)

Note that (t, u) = (−37/41, 17605) is on the curve. Thus, it is birationally equivalent
to an elliptic curve in the Weierstrass equation given by

E ′ : g2 = h3 + 28512h − 16236288, (40)

with the transformation

t = 2g + 144h − 24192

12h − 57888
, u = 18t2 − 432t + 180 − h

18
. (41)

Using SAGE, we see that the rank of E ′ is two, meaning, it has infinitely many
rational points with generators (h, g) = (396, 7560) and (504, 11232). If we con-
sider (h, g) = (396, 7560), the corresponding point on the quartic curve is (t, u) =
(−37/41, 17605). Thus, we obtain three points on E(t), which are given by

P1(t) = ((8t + 1)(t2 − 8t), (8t + 1)(t2 − 8t)(4 − t − 4t2)) (42)

P2(t) = (4(t2 + 1)(8t + 1), 4(t2 + 1)(8t + 1)(t2 + 8t + 2)) (43)

P4(t, h) =
(
−4(t2 + 1)(8t + 1), 4(t2 + 1)(8t + 1)

(
18t2−432t+180−h

18

))
, (44)

where h is the first coordinate of a rational point on E ′. If we specialize at (t, h) =
(−37/41, 396), (knowing that (h, g) = (396, 7560) corresponds to the point (t, u) =
(−37/41, 17605)), we get the elliptic curve

E(−37/41) : y2 = x3 + 1765180817543025000000

13422659310152401
(45)

with points
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P1(−37/41) = (− 3443775
68921 ,− 9522037875

115856201

)
(46)

P2(−37/41) = (− 3111000
68921 , 23036955000

115856201

)
(47)

P4(−37/41, 396) = (
3111000
68921 , 54769155000

115856201

)
. (48)

Note that all these points have infinite order and that the calculated determinant
of the associated height pairing matrix is the nonzero value ≈156.789314658799.
Thus, these points are linearly independent. Using the specialization theorem of
Silverman, we have proven that there exists an infinite family of Mordell curves of
the form y2 = x3 + k2 with rank of at least three. We have proven our second main
theorem.

Theorem 2 Let E(s, t) : y2 = x3 + 16(s2 + 8st)2(t2 − 8st)2(s2 + t2)2 be defined
over Q(s, t). Then the following holds:

1. The rank of E(s, t) is at least two for all but finitely many pairs (s, t).
2. There exists a subfamily of E(s, t) whose rank is at least three parametrized by

an elliptic curve of rank two.

From this family, we can actually get Mordell curves of rank greater than three.
For example, if (h, g) = (801,−22815), then we obtain the Mordell curve y2 =
x3 + 960282455448626099867025000000

5522842277952930315265024 with rank equal to 5.
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On the Genus of the Annihilator-Ideal
Graph of Commutative Ring

Selvakumar Krishnan and Karthik Shunmugaiah

Abstract Let R be a commutative ring with identity and A(R) be the set of all
annihilator ideals of R. The annihilator-ideal graph of R, denoted by AI (R), is a
simple graph with the vertex set A

∗(R) := A(R) \ {(0)}, and two distinct vertices
I and J are adjacent if and only if ann(I J ) �= ann(I ) ∪ ann(J ). In this paper, we
characterize all isomorphism classes of Artinian commutative rings whose AI (R)

has genus one and crosscap one.

Keywords Annihilator-ideal graph · Planar · Genus · Crosscap

1 Introduction

In 2011, Behboodi et al. [3] introduced the annihilating ideal graph and found out
more results on it. Let A(R) be the set of all ideals with non-zero annihilators. The
annihilating ideal graph of a commutative ring, denoted byAG(R). The annihilating
ideal graph with vertices A

∗(R) := A(R) \ {(0)}, and two distinct vertices I1 and I2
are adjacent if and only if I1 I2 = (0).

For any ring R, let ann(x) = {y ∈ R : xy = 0} be the annihilator of x ∈ R.
Badawi [2] introduced that the annihilator graph is the simple graph, it is denoted by
AG(R) whose vertex set is a set of all non-zero zero divisors of R and two distinct
vertices z1 and z2 are adjacent if and only if ann(z1z2) �= ann(z1) ∪ ann(z2).

In 2017, Salehifar et al. [9] introduced the annihilator-ideal graph AI (R) as the
simple graph with vertex set A

∗(R) and two distinct vertices I and J are adjacent if
and only if ann(I J ) �= ann(I ) ∪ ann(J ). It is seen that the annihilating-ideal graph
is a subgraph of the annihilator-ideal graph AI (R).

By a graph G = (V, E), we mean an undirected simple graph with vertex set V
and edge set E . Let G be a simple graph, that is, no loops and no multiedges. A
complete bipartite graph is a bipartite graph such that vertex set can be partitioned
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into two disjoint sets of sizes m and n with every pair of vertices in the two sets
adjacent. It is denoted by Km,n . The complete graph on n vertices, denoted Kn, is
the graph in which every pair of distinct vertices is joined by an edge. A graph G is
said to be unicyclic if it contains a unique cycle. A graph G is planar if a graph is
drawn on a plane without edge crossing.

By a surface, wemean a connected two-dimension real manifold, i.e., a connected
topological space such that each point has a neighborhood homeomorphic to an open
disk.We denote Sg for the surface formed by a connected sum of g tori and Nk for the
one formed by a connected sum of k projective planes. The genus g(G) of a simple
graph G is the minimum g such that G can be embedded in Sg . Similarly, crosscap
number g(G) is the minimum k such that G can be embedded in Nk . It is clear that
g(H) ≤ g(G) and g(H) ≤ g(G) for any subgraph H of G.

Note that the annihilating ideal graph is a subgraph of AI (R). In [7, 9], it has been
shown that some basic properties of AI (R), the graphs AG(R) and AI (R) coincide
and under which the AI (R) is a star graph. The following results are useful for further
reference in this paper.

Lemma 1 ([9, Lemma 2.4]) If |V (AI (R))| = 4, then AI (R) is isomorphic to C4 or
K4.

Theorem 1 ([9, Theorem 3.12]) AI (R) is a tree if and only if AI (R) is a star.

Theorem 2 Let G be a connected graph. Then G is a split graph if and only if G
contains no induced subgraph isomorphic to 2K2, C4, C5.

2 Some Well-Known Graph of AI (R)

In this section, we are identifying when the annihilator-ideal graph is isomorphic to
some well-known graph. Also, we assume that R is a commutative Artinian ring.
Then R ∼= R1 × R2 × · · · × Rn , where Ri is an Artinian local ring for each i .

Lemma 2 Let R be a commutative ring with |Nil(R)∗| ≥ 2 and AN (R) is the set
of nilpotent ideal of R. Then the subgraph induced by AN (R) in AI (R) is complete.

Proof Suppose there are non-zero distinct ideals J, K ∈ AN (R) with J K �= (0).
Suppose ann(J K ) = ann(J ) ∪ ann(K ). Then ann(J K ) = ann(J ) or ann(J K ) =
ann(K ). Without loss of generality, we consider ann(J K ) = ann(J ). Since K ∈
AN (R), Kn1 = (0), where n1 ≥ 2 is the nilpotency of K . If J K � �= (0) for all �, 1 ≤
� < n1, then Kn1−1 ⊆ ann(J K ) \ ann(J ), a contradiction. Suppose, there exists a
integer m, 1 ≤ m < n1 such that J Km = (0). Hence, Km−1 ⊆ ann(J K ) \ ann(J ),
a contradiction. Thus, J and K are adjacent of AN (R).

Theorem 3 Let R be a commutative Artinian ring which is not a field. Then AI (R)

is a tree if and only if R ∼= F1 × F2, where R1 and R2 are fields or R is a local ring
with |A∗(R)| ≤ 2.
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Proof Suppose AI (R) is tree. Since R is Artinian, R ∼= R1 × R2 × · · · × Rn , where
every (Ri ,mi ) are Artinian local ring. If n = 3, then R1 × (0) × (0) − (0) × R2 ×
(0) − (0) × (0) × R3 is a cycle in AI (R). Thus, n ≤ 2.

Suppose R ∼= R1 × R2. If R1 is not a field, then R1 has a non-zero maximal
ideal, say m1. Let n1 be the nilpotency of m1. Let I1 = (0) × R2, I2 = m1 × (0),
I3 = mn1−1

1 × R2 and I4 = R1 × (0). Then I j ∈ A
∗(R), for each j . It is easy to see

that ann(I3 I4) = m1 × R2, ann(I3) ∪ ann(I4) �= m1 × R2 and hence I3 and I4 are
adjacent in AI (R). So, (0) × R2 − m1 × (0) − mn1−1

1 × R2 − R1 × (0) − (0) × R2

is a cycle in AI (R). Therefore, we conclude that R1 and R2 are fields.
Finally, suppose R is local ring. Then Lemma 2, AI (R) is complete and we have

|A∗(R)| ≤ 2.

In view of Lemma 1 and Theorem 3, we have the following theorem.

Theorem 4 Let R be a commutative Artinian ring which is not a field. Then AI (R)

is star if and only if R ∼= R1 × R2, where R1 and R2 are fields or R is a local ring
with |A∗(R)| ≤ 2.

Theorem 5 Let R be a commutative Artinian ring which is not a field. Then AI (R)

is a unicycle if and only if R ∼= R1 × R2, where R1 is a field and (R2,m2) is local
ring with A

∗(R2) = {m2}, m2
2 = (0) or |A∗(R)| = 3.

Proof First, suppose that AI (R) is unicycle graph and R ∼= ∏n
i=1 Ri , where every

(Ri ,mi ) is a Artinian local ring. Suppose n ≥ 3. Let I1 = R1 × (0) × (0) × · · · ×
(0), I2 = (0) × R2 × (0) × · · · × (0), I3 = (0) × (0) × R3 × (0) × · · · × (0), J1 =
(0) × R2 × R3 × (0) × · · · × (0), J2 = R1 × (0) × R3 × (0) × · · · × (0) and J3 =
R1 × R2 × (0) × · · · × (0). Then ann(J1 J2) = R1 × R2 × (0) × R4 × · · · × Rn ,
ann(J1) ∪ ann(J2) �= R1 × R2 × (0) × R4 × · · · × Rn , ann(J1 J3) = R1 × (0)
× R3 × · · · × Rn , ann(J1) ∪ ann(J3) �= R1 × (0) × R3 × · · · × Rn and ann(J2 J3)
= (0) × R2 × R3 × · · · × Rn , ann(J2) ∪ ann(J3) �= (0) × R2 × R3 × · · · × Rn .
Hence, I1 − I2 − I3 − I1, aswell as J1 − J2 − J3 − J1, are different cycles in AI (R),
a contradiction. Thus, n ≤ 2.

Assume that n = 2. Suppose mi �= (0) and ni be the nilpotency of mi for
i = 1, 2. Then I1 = m1 × (0), I2 = mn1−1

1 × R2, I3 = mn1−1
1 × mn2−1

2 , I4 = R1 ×
(0), I5 = (0) × R2, for each Ii ∈ A

∗(R) and m1 × (0) − mn1−1
1 × R2 − mn1−1

1 ×
mn2−1

2 − m1 × (0) as well as mn1−1
1 × mn2−1

2 − R1 × (0) − (0) × R2 − mn1−1
1 ×

mn2−1
2 are different cycles in AI (R), a contradiction. Thus any one of Ri is a field.

Consider R1 is a field.
Suppose R2 is not a field with m2 �= (0). If n2 ≥ 3, then R1 × (0) − (0) × m2 −

(0) × mn2−1
2 − R1 × (0) and R1 × (0) − (0) × m2 − R1 × mn2−1

2 − (0)
× R2 − R1 × (0) are two distinct cycles of AI (R), a contradiction. So, n2 = 2. Sup-
pose R2 has non-zero proper ideal I different fromm2. Then R1 × (0) − (0) × m2 −
(0) × I − R1 × (0) and R1 × (0) − (0) × m2 − R1 × I − (0) × R2 − R1 × (0) are
two distinct cycles of AI (R), a contradiction. Hence, A

∗(R2) = {m2}.
Finally, if R is local ring, then AI (R) is complete and by Lemma 2, we have

|A∗(R)| = 3. Conversely, AI (R) ∼= C4 or K3.
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Theorem 6 Let R be a commutative Artinian ring and |A∗(R)| ≥ 2. Then AI (R) is
a split graph if and only if R ∼= F1 × F2, where each Fi is a field or R is a local ring
but not field.

Proof Suppose that AI (R) is split graph, R is Artinian, R ∼= ∏n
i=1 Ri , where each

(Ri ,mi ) is an Artinian local ring. If n ≥ 3, then R1 × (0) × (0) × · · · × (0) − (0) ×
R2 × (0) × · · · × (0) − R1 × (0) × R3 × (0) × · · · × (0) − (0) × R2 × R3 × (0)
· · · × (0) − R1 × (0) × (0) × · · · × (0) as induced cycle of length 4 in AI (R) and
by Theorem 2, AI (R) is not a split graph, a contradiction. Hence, n = 2.

If m2 �= (0) and has nilpotency n2 ≥ 2, then R1 × (0) − (0) × R2 − R1 × m2 −
(0) × m2 as induced cycle of length 4 in AI (R) and by Theorem 2, AI (R) is not a
split graph, a contradiction. Hence, R1 and R2 are fields.

If n = 1, then AI (R) is complete and hence AI (R) is a split graph.

3 Genus of AI (R)

In this section, we characterize when AI (R) is planar or genus one over R is Artinian
ring. The much needed results are given in the following section.

Lemma 3 ([5, Theorem 4.4.5])

(i) If n ≥ 3, then

g(Kn) =
⌈

(n − 3)(n − 4)

12

⌉

and g(Kn) =
⌈

(n − 3)(n − 4)

6

⌉

.

(ii) If m, n ≥ 2, then

g(Km,n) =
⌈

(m − 2)(n − 2)

4

⌉

and g(Km,n) =
⌈

(m − 2)(n − 2)

2

⌉

.

Lemma 4 ([5, Proposition 4.4.4]) Let G be a connected graph with n ≥ 3 vertices
and q edges. If G contains no cycle of length 3, then g(G) ≥ ⌈ q

4 − n
2 + 1

⌉
and

g(G) ≥ ⌈ q
2 − n + 2

⌉
.

Theorem 7 If (R,m) is a local ring and there is an ideal I of R such that I �= mi

for every i , then R has at least three distinct non-trivial ideals J , K , and L such that
J , K , and L �= mi for every i .

Theorem 8 ([9, Theorem 4.1]) Let n = 3. Then AI (R) is planar if and only if R1,
R2, and R3 are fields.

Lemma 5 ([9, Lemma 4.4]) Let n = 2 such that AI (R) be planar. Then at least one
of the rings R1 or R2 is field.
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(0) × R2 × R3

R1 × R2 × (0)

R1 × (0) × (0)

(0) × (0) × R3

(0) × R2 × (0)

R1 × (0) × R3

Fig. 1 The graph AI (R1 × R2 × R3)

The following theorem we characterize when the annihilator-ideal graphs are
planar.

Theorem 9 Let R be an Artinian ring. AI (R) is planar if and only if R is isomorphic
to R1 × R2 × R3, where each Ri is a field, R1 × R2 where R1 is field and R2 is local
ring with exactly one proper ideal m2, R1 × R2, where R1, R2 is field or R is local
ring with |A∗(R)| ≤ 4.

Proof Suppose that AI (R) is planar and R is Artinian, R ∼= ∏n
i=1 Ri , where each

(Ri ,mi ) is an Artinian local ring. If n ≥ 4, then it contains a subgraph of K3,3 with
vertex set is {R1 × (0) × (0) × · · · × (0), (0) × R2 × (0) × · · · × (0), R1 × R2 ×
(0) × · · · × (0)} ⊂ A

∗(R) and {(0) × (0) × R3 × R4 × · · · × Rn, (0) × (0) × R3 ×
(0) × · · · × (0), (0) × (0) × (0) × R4 × · · · × Rn} ⊂ A

∗(R). Thus, n ≤ 3.
If n = 3, then by Theorem 8, we have Ri are fields. If n = 2, then by Lemma 5,

we have at least one of the rings R1 or R2 is field. Let R1 be a field.
Suppose m2 �= (0). Let n2 be the nilpotency of m2. If n2 ≥ 3, then the subgraph

induced by the set {R1 × (0), R1 × mn2−1
2 , R1 × m2, (0) × mn2−1

2 , (0) × m2, (0) ×
R2} contains K3,3 as a subgraph of AI (R), a contradiction. Hence, n2 = 2. Suppose
I is the non-zero proper ideal of R2 different from m2. Then the subgraph induced
by the set {R1 × (0), R1 × I, R1 × m2, (0) × m2, (0) × I, (0) × R2} contains K3,3

as a subgraph AI (R), a contradiction. Thus, m2 is the only one ideal in R2.
Converse follows from Fig. 1 and AI (R) is C4 or Km , where 1 ≤ m ≤ 4.

Now, we characterize all isomorphism classes of commutative Artinian ring R
whose AI (R) has genus one.

Theorem 10 Let R be a commutative Artinian ring. Then g(AI (R)) = 1 if and only
if R is isomorphic to one of the following ring:

(i) R1 × R2,mi is the only non-zero proper ideal in Ri and ni = 2 for all i = 1, 2,
where ni is the nilpotency of mi ;

(ii) R1 × R2, R1 is a field and m2, m2
2 are only ideals of R2 and n2 = 3, where n2

is the nilpotency of m2;
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Fig. 2 Subgraph G of
AI (R) induced by the set Ω2

I4 I5 I6 I9 I10

I1 I2 I3 I7 I8

(iii) R1 × R2, R1 is a field and m2,m2
2,m

3
2 are only ideals of R2 and n2 = 4, where

n2 is the nilpotency of m2;
(iv) R is local ring with 5 ≤ |A∗(R)| ≤ 7.

Proof Assume that g(AI (R)) = 1. Suppose that n ≥ 4. Let Ω1 = {I1, I2, . . . , I13}
⊂ A

∗(R), where I1 = R1 × (0) × · · · × (0), I2 = R1 × R2 × (0) × · · · × (0), I3 =
R1 × (0) × R3 × (0) × · · · × (0), I4 = R1 × R2 × (0) × R4 × · · · × (0), I5 = R1

× R2 × R3 × (0) × · · · × (0), I6 = (0) × (0) × R3 × R4 × (0) × · · · × (0), I7 =
(0) × (0) × (0) × R4 × (0) × · · · × (0), I8 = (0) × (0) × R3 × (0) × · · · × (0),
I9 = (0) × R2 × R3 × (0) × · · · × (0), I10 = R1 × (0) × (0) × R4 × (0) × · · ·
× (0), I11 = (0) × R2 × (0) × R4 × (0) × · · · × (0), I12 = R1 × (0) × R3 × R4 ×
(0) × · · · × (0), I13 = (0) × R2 × R3 × R4 × (0) × · · · × (0). Clearly, I1 I6 = I1
I7 = I1 I8 = I1 I9 = I1 I11 = I1 I13 = I2 I6 = I2 I7 = I2 I8 = I3 I7 = I3 I11 = I4 I8=I5
I7 = I7 I8 = I9 I10 = (0). Then I12 ⊂ ann(I2 I9), I12 � ann(I2) ∪ ann(I9), I12 ⊂
ann(I2 I11), I12 � ann(I2) ∪ ann(I11), I12 ⊂ ann(I2 I13), I12 � ann(I2) ∪ ann(I13),
I4 ⊂ ann(I3 I6), I4 � ann(I3) ∪ ann(I6), I4 ⊂ ann(I3 I9), I4 � ann(I3) ∪ ann(I9),
I4 ⊂ ann(I3 I13), I4 � ann(I3) ∪ ann(I13), I5 ⊂ ann(I4 I6), I5 � ann(I4) ∪
ann(I6), I12 ⊂ ann(I4 I9), I12 � ann(I4) ∪ ann(I9), I9 ⊂ ann(I4 I12), I9 �

ann(I4) ∪ ann(I12), I5 ⊂ ann(I11 I12), I5 � ann(I11) ∪ ann(I12), I3 ⊂ ann(I4 I13),
I3 � ann(I4) ∪ ann(I13), I4 ⊂ ann(I5 I6), I4 � ann(I5) ∪ ann(I6), I13 ⊂ ann(I5
I10), I13 � ann(I5) ∪ ann(I10), I12 ⊂ ann(I5 I11), I12 � ann(I5) ∪ ann(I11), I10 ⊂
ann(I5 I13), I10 � ann(I5) ∪ ann(I13). Then the induced subgraph K5,5 is a subdi-
vision of Ω1. By Lemma 3, g(AI (R)) ≥ 3 and thus n ≤ 3.

Let n = 3. Then by Theorem 9, we assume that R1 is not field and n1 ≥ 2
be the nilpotency of m1. Consider the set Ω2 = {I1, I2, . . . , I10} ⊂ A

∗(R), where
I1 = (0) × (0) × R3, I2 = (0) × R2 × (0), I3 = (0) × R2 × R3, I4 = m1 × (0) ×
(0), I5 = R1 × (0) × (0), I6 = mn1−1

1 × R2 × (0), I7 = mn1−1
1 × (0) × R3, I8 =

mn1−1
1 × R2 × R3, I9 = R1 × R2 × (0), I10 = R1 × (0) × R3. Then the subgraph G

is isomorphic to the graph in Fig. 2 induced by Ω2 and subgraph G have no cycle
of length 3, |V (G)| = 10 and |E(G)| = 21. Hence, by Theorem 4, g(AI (R)) ≥ 2.
Hence, n ≤ 2.

Case 1. Suppose n = 2 and each Ri is not a field for i = 1, 2.
Then mi �= (0) for i = 1, 2. Let ni be the nilpotency of mi for i = 1, 2. Suppose
that n2 ≥ 3. Consider the set Ω3 = {I1, I2, . . . , I9} ⊂ A

∗(R), where I1 = mn1−1
1 ×

(0), I2 = R1 × (0), I3 = R1 × mn2−1
2 , I4 = R1 × m2, I5 = (0) × R2, I6 = (0) × m2,



On the Genus of the Annihilator-Ideal Graph of Commutative Ring 171

Fig. 3 Embedding of
AI (R1 × R2) in S1

I2

J3

I3

J4

J2

I1

J1

I7 = (0) × mn2−1
2 , I8 = m1 × m2, I9 = m1 × mn2−1

2 . Then K4,5 as a subgraph of
AI (R) induced by Ω3 and by Lemma 3, g(AI (R)) ≥ 2, a contradiction. Hence,
ni = 2 for all i = 1, 2.

Suppose R2 has non-zero proper ideal I different fromm2. Sincem2
2 = (0), I 2 =

(0). Consider the set Ω4 = {I1, I2, . . . , I9} ⊂ A
∗(R), where I1 = m1 × (0), I2 =

R1 × (0), I3 = R1 × I , I4 = R1 × m2, I5 = (0) × R2, I6 = (0) × m2, I7 = (0) × I ,
I8 = m1 × m2, I9 = m1 × I . Then K4,5 as a subgraph of AI (R) induced by Ω3 and
by Lemma 3, g(AI (R)) ≥ 2, a contradiction.

Case 2. Suppose n = 2 and R1 is a field.
If R2 is a field, then AI (R) ∼= K2 is planar. Hence, R2 is not a field. Let n2 be the

nilpotency ofm2. Suppose n2 ≥ 5. Consider the setΩ5 = {J1, J2, . . . , J9} ⊂ A
∗(R),

where J1 = R1 × (0), J2 = R1 × m2, J3 = R1 × mn2−3
2 , J4 = R1 × mn2−2

2 , J5 =
(0) × m2, J6 = (0) × mn2−3

2 , J7 = (0) × mn2−2
2 , J8 = (0) × mn2−1

2 , J9 = (0) × R2.
It is easy to see that K4,5 is a subgraph of AI (R), a contradiction. Thus, n2 ≤ 4.

Suppose n2 = 2. If |A∗(R2)| = 1, then by Theorem 9, AI (R) is planar, a contra-
diction. Hence, |A∗(R2)| ≥ 2 and by Theorem 1, there exist three distinct ideals I ,
J , K ∈ A

∗(R2) different from m2. Consider the set Ω6 = {I1, I2, . . . , I9} ⊂ A
∗(R),

where I1 = R1 × (0), I2 = R1 × m2, I3 = R1 × I , I4 = R1 × J , I5 = (0) × m2,
I6 = (0) × I , I7 = (0) × J , I8 = (0) × K , I9 = (0) × R2. Then K4,5 as a subgraph
of AI (R) and by Lemma 3, g(AI (R)) ≥ 2, a contradiction.

Suppose n2 = 3 or 4. If I ∈ A
∗(R2) with I �= mi

2 for all i , then by Theorem 1,
there exist three distinct ideals I , J , K ∈ A

∗(R2) such that I, J, K �= mi
2 for all i .

Consider the set Ω7 = {I1, I2, . . . , I10} ⊂ A
∗(R), where I1 = R1 × (0), I2 = R1 ×

mn2−1
2 , I3 = R1 × I , I4 = (0) × mn2−1

2 , I5 = (0) × m2, I6 = (0) × I , I7 = (0) × J ,
I8 = (0) × K , I9 = (0) × R2, I10 = R1 × m2. Then K4,5 as a subgraph of AI (R) and
by Lemma 3, g(AI (R)) ≥ 2 and by Lemmas 2 and 3, g(AI (R)) ≥ 2, a contradiction.

Case 3. n = 1. Then AI (R) is complete and so 5 ≤ |V (AI (R))| ≤ 7.
Converse follows from Figs. 3 and 4.
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R1 × (0) (0)×R2 (0)×m2 R1 × (0)

(0)×m3
2

(0)×m2
2

R1 × (0)(0)×m2(0)×R2R1 × (0)

(0)×m2
2

(0)×m3
2

R1 ×m3
2

R1 ×m2
2

R1 ×m2

Fig. 4 Embedding of AI (R1 × R2) in S1,where R1 is a fields

Now, we classify all commutative Artinian rings whose annihilator-ideal graph
AI (R) is crosscap one.

Theorem 11 Let R be a Artinian ring. Then g(AI (R)) = 1 if and only if R is iso-
morphic to one of the following:

(i) R1 × R2, mi is the only one non-zero proper ideal in Ri and ni = 2 for all
i = 1, 2, where ni is the nilpotency of mi ;

(ii) R1 × R2, R1 is a field and m2, m2
2 are only ideals of R2 and n2 = 3, where n2

is the nilpotency of m2;
(iii) R is local ring with 5 ≤ |A∗(R)| ≤ 6.

Proof Suppose that g(AI (R)) = 1 and n ≥ 4. By Theorem 10, we have K4,4 as a
subgraph AI (R) and by Lemma 3, g(AI (R)) ≥ 2. Thus, n ≤ 3.

Suppose n = 3. Then by Theorem 9, Ri is not a field for some i . Let R1 is not a
field and n1 ≥ 2 be the nilpotency of m1. Consider the set Ω2 = {I1, I2, . . . , I10} ⊂
A

∗(R), where I1 = (0) × (0) × R3, I2 = (0) × R2 × (0), I3 = (0) × R2 × R3, I4 =
m1 × (0) × (0), I5 = R1 × (0) × (0), I6 = mn1−1

1 × R2 × (0), I7 = mn1−1
1 × (0) ×

R3, I8 = mn1−1
1 × R2 × R3, I9 = R1 × R2 × (0), I10 = R1 × (0) × R3. Then the

subgraph G is isomorphic to the graph in Fig. 2 induced by Ω2 and subgraph G
have no cycle of length 3, |V (G)| = 10 and |E(G)| = 21. Hence, by Theorem 4,
g(AI (R)) ≥ 2. Hence, n ≤ 2.

Suppose n = 2 and each Ri is not a field for i = 1, 2.
Then mi �= (0) for i = 1, 2. Let ni be the nilpotency of mi for i = 1, 2. Suppose

that n2 ≥ 3. Consider the set Ω3 = {I1, I2, . . . , I9} ⊂ A
∗(R), where I1 = mn1−1

1 ×
(0), I2 = R1 × (0), I3 = R1 × mn2−1

2 , I4 = R1 × m2, I5 = (0) × R2, I6 = (0) × m2,
I7 = (0) × mn2−1

2 , I8 = m1 × m2, I9 = m1 × mn2−1
2 . Then the subgraph induced by

Ω3 in AI (R) contains K4,5 as a subgraph and by Lemma 3, g(AI (R)) ≥ 2, a con-
tradiction. Hence, ni = 2 for all i = 1, 2 and R1 × R2, mi is the only one non-zero
proper ideal in Ri .
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A

A

B

B

C

C

(a). The graph AI(R1 ×R2) in N1

A

A

B

B

C

C

(b). The graph AI(R1 ×R1) in N1, where R1 is a fields

J2

J3

I3

J4

I2

I1

J1

J2

J3

I3

I2

I1

J1

Fig. 5 Embedding of annihilator-ideal graphs in N1

Suppose n = 2 and Ri is not a field for some i .
Without loss of generality, we assume that R1 is a field. If R2 is a field,

then AI (R) ∼= K2 is planar. Hence, R2 is not a field. Let n2 be the nilpotency
of m2. Suppose n2 ≥ 4. Consider the set Ω5 = {J1, J2, . . . , J8} ⊂ A

∗(R), where
J1 = R1 × (0), J2 = R1 × m2, J3 = R1 × mn2−2

2 , J4 = R1 × mn2−1
2 , J5 = (0) × m2,

J6 = (0) × mn2−2
2 , J7 = (0) × mn2−1

2 and J8 = (0) × R2. Then the subgraph induced
byΩ5 of AI (R) contains K4,4 as a subgraph and by Lemma 3, g(AI (R)) ≥ 2, a con-
tradiction. Thus, n2 ≤ 3.

Suppose n2 = 2. If |A∗(R2)| = 1, then by Theorem 9, AI (R) is planar, a contra-
diction. Hence, |A∗(R2)| ≥ 2 and by Theorem 1, there exist three distinct ideals I ,
J , K ∈ A

∗(R2) different from m2. Consider the set Ω6 = {I1, I2, . . . , I8} ⊂ A
∗(R),

where I1 = R1 × (0), I2 = R1 × m2, I3 = R1 × I , I4 = R1 × J , I5 = (0) × m2,
I6 = (0) × I , I7 = (0) × J , I8 = (0) × K . Then the subgraph induced by Ω6 in
AI (R) contains K4,4 as a subgraph and by Lemma 3, g(AI (R)) ≥ 2, a contradiction.

Suppose n2 = 3. If I ∈ A
∗(R2) with I �= mi

2 for all i , then by Theorem 1,
there exist three distinct ideals I , J , K ∈ A

∗(R2) such that I, J, K �= mi
2 for

all i . Consider the set Ω7 = {I1, I2, . . . , I8} ⊂ A
∗(R), where I1 = R1 × (0), I2 =

R1 × mn2−1
2 , I3 = (0) × mn2−1

2 , I4 = (0) × m2, I5 = (0) × I , I6 = (0) × J , I7 =
(0) × K , I8 = (0) × R2. Then K3,5 as a subgraph of and byLemma3, g(AI (R)) ≥ 2,
a contradiction. Thus, R is isomorphic to R1 × R2, R1 is a field and m2,m2

2 are only
ideals of R2. Finally, if n = 1, then AI (R) is complete graph and by Lemma 3, we
have 5 ≤ |A∗(R)| ≤ 6.

Converse follows from Fig. 5.
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The Radio k-chromatic Number
for the Corona of Arbitrary Graph
and K1

P. K. Niranjan

Abstract For k > 0, an integer, and a connected simple graph H , a radio k-coloring
of H is a function h which assigns every vertex of H a non-negative integer so
that for each duo of two separate vertices x and y of H , the absolute difference of
color of the vertices is at least 1 + k − d(y, x). For a radio k-coloring h, the span
rck(h) of h is the largest color allotted by it. The radio k-chromatic number, rck(H),
is min{rck(h) : h is a radio k-coloring of H}. In this manuscript, for the radio k-
chromatic number of the corona of any arbitrary graph H and K1, we obtain an
upper bound. Further, we derive a necessary condition for the lower bound to be
exact. Furthermore, we corroborate that the given upper bound is sharp for radio
k-chromatic number of Pn � K1, where Pn is a path with n vertices and n is odd.

Keywords Corona of graphs · Radio coloring · Graph operation · Radio number ·
Radio k-chromatic number · Span · Radio k-coloring

1 Introduction

Inspired by the frequency allocation problems radio k-coloring of graphswas defined.
Detailed study of frequency assignment problem and graph theoretic formulation can
be seen in Hale [5]. In 2001, Chartrand et al. [2] instigated a study of a graph coloring
problem, namely, radio k-coloring of graphs, incentivized by frequency assignment
to radio stations. For a connected simple graph H and a natural number k, which is
less than diam(H), a radio k-coloring of H is an allocation h which assigns every
vertex of H some non-negative integer so that the difference between the color of
every pair of distinct vertices y and x of H is at least 1 + k − d(y, x). The span,
rck(h), of h is the largest color utilized by h. The least of spans overall radio k-
colorings of H is known as the radio k-chromatic number of H and is represented
by rck(H). An optimal radio k-coloring of H is a radio k-coloring of H whose span
is rck(H). Since our aim is to diminish the largest color utilized of radio k-coloring,
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Table 1 Special name for rk-coloring for some specific values of k

k Name of the rk-coloring rk-number

1 Proper coloring Chromatic number (χ(H))

2 L(2, 1)-coloring L(2, 1)-number (λ(H))

diam(H) − 2 Nearly antipodal coloring Nearly antipodal number
(an′(H))

diam(H) − 1 Antipodal coloring Antipodal number (an(H))

diam(H) Radio coloring Radio number (rn(H))

we deem that every radio k-coloring assigns the color 0. Radio 1-coloring of H is a
usual vertex coloring of H and rc1 = χ(H). Radio 2-coloring of H is an L(2, 1)-
coloring of H which was instigated by Griggs and Yeh [4]. In the studies of radio
k-colorings, there are unique titles for some certain values of k, which are given in
Table1. Throughout this writing, we indicate a simple connected graph by a graph.
In short, we refer to radio k-coloring as rk-coloring; radio k-chromatic number as
rk-number; and radio number as r -number.

For theCartesianproduct H�G of arbitrary graphs, anupper bound for rck(H�G)

has been found by Kchikech et al. [8] as χ(Gk)(rck(H) + k − 1) − k and improved
the same for rk-number of Pn�Pn when k ≥ 2n − 3. For rn(Pn�K1,m), Ajayi and
Adefokun [1] have obtained bounds. In [9], Kim et al. have deduced the r -number of
Pn�Km . Morris-Rivera et al. [16] have found rn(Cn�Cn) of the toroidal grid. Saha
and Panigrahi [21] have extended this result for the Cartesian product Cn�Cm of two
cycles, when mn is even. In [11], Kola and Panigrahi have established a lower bound
for rck(H) of any graph H and employing this bound, for prism graph Cm�Pn , they
have established a lower bound for the rk-number. Furthermore, for rn(Cm�P2),
when m ≡ 2 (mod 8) or m ≡ 1 (mod 4), they have ascertained that this bound is
precisely the exact number. For several combinations of m and n, Niranjan and Kola
[18] have found r -number of Cn�Km . Kola and Panigrahi [10] have found r -number
of hypercube Qn . The L(2, 1)-coloring of graphs is a special case of radio k-coloring.
Several authors [6, 12, 14, 15, 19, 20] have studied L(2, 1)-coloring and parameters
related to it for different operations of graphs.

Let G and H be graphs with set of vertices {x1, x2, . . . , xm} and {y1, y2, . . . , yn},
respectively. The corona H � G of H and G is the graph having the set of ver-

tices V (H)
⋃ ( n⋃

i=1
{y j

i : 1 ≤ j ≤ m}
)
and the set of edges E(H)

⋃ ( n⋃

i=1
{yi y j

i :

1 ≤ j ≤ m}
)⋃ ( n⋃

i=1
{y j

i yl
i : x j xl ∈ E(G)}

)
. Identically, H � G is the graph pro-

cured by taking one replicate of H and for each vertex yi of H consider one replicate
of G, say Gi , and joining yi to each and every vertex of Gi by a line. This is straight-
forward to observe that H � G and G � H are not isomorphic if H and G are
not isomorphic, and H � G is connected if and only if H is connected. As well,
it is straightforward to note that diam(H � G) = diam(H) + 2. In [17], Niranjan
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and Kola have determined the r -number for corona of the path Pn and the cycle
Cm , when n is even, and obtained bounds for the r -number of Pn � Cm , for odd
n. Further, similar results were obtained for Pn � Pm . Uma and Bhargavi [22] have
obtained rn(C3 � Pn), rn(C4 � Pn) and rn(C5 � Pn) for n ≥ 2. Das et al. [3] have
obtained a procedure to get lower bound for rck(H) as in Theorem 1.

Theorem 1 ([3]) If h is an rk-coloring of a graph H, then

rck(h) ≥ |Dk | + 2
q∑

i=0

[|Vi |(q − i)] − 2q + β + α − 1,

where Vi ’s and Dk are described as pursues. If k = 2q + 1 is odd, then V0 = V (C),
where C is a maximal clique in H. If k = 2q, then V0 = {v}, where v ∈ V (H).
Define recursively Vi+1 = N (Vi )\(V0 ∪ V1 ∪ V2 ∪ · · · ∪ Vi ) for i = 0, 1, . . . , q − 1.
Let Dk = V0 ∪ V1 ∪ V2 ∪ · · · ∪ Vq. The vertices of Dk receiving the smallest and the
largest colors are in Vα and Vβ , respectively.

The following theorem is one of the main results in this article.

Theorem 2 If k > 1 and H is a graph having n vertices, then rck(H � K1) ≤
2rck−2(H) + k + 2n − 4.

2 Results

In this part of the manuscript, we first deduce an upper bound for the r -number
of H � K1. Later on, prove that the obtained upper bound is precisely exact for
some classes of graphs. Furthermore, we give a necessary condition for the given
bound to be the exact rk-number of the graph. The below definition proffers how
considerably additional is the disparity betwixt any pair of successive colors utilized
in an rk-coloring.

Definition 1 Let h be an rk-coloringof a graph H . Let u1, u2, . . . , um be the arrange-
ment of elements of V (H) so that h(u j+1) ≥ h(u j ), j = 1, 2, . . . , m − 1. Define
ε j = h(u j ) − h(u j−1) − (k + 1 − d(u j , u j−1)), 2 ≤ j ≤ m.

We refer the sums
m∑

j=2
d(u j , u j−1) and

m∑

j=2
ε j as distance sum and epsilon sum,

respectively. Lemma below gives the span of an rk-coloring as a function of k, a
number of vertices m in the graph, distance sum, and epsilon sum.

Lemma 1 Let h be an rk-coloring of H and let u1, u2, u3, . . . , um be an arrange-
ment of elements of V (H) so that h(u j+1) ≥ h(u j ), 1 ≤ j ≤ m − 1 and ε j =
h(u j ) − h(u j−1) − (k + 1 − d(u j , u j−1)), 2 ≤ j ≤ m. Then
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rck(h) = (m − 1)(k + 1) −
m∑

j=2

[d(u j , u j−1) + ε j ].

Proof

h(um) =
m∑

j=2

[h(u j ) − h(u j−1)] + h(u1)

=
m∑

j=2

[1 + k − d(u j , u j−1) + ε j ] + h(u1)

= (m − 1)(1 + k) −
m∑

j=2

d(u j , u j−1) +
m∑

j=2

ε j + h(u1).

Since h(u1) = 0, rck(h) = h(um) = (m − 1)(k + 1) −
m∑

j=2
d(u j , u j−1) +

m∑

j=2
ε j .

Now, we prove the major outcome of the manuscript, which is Theorem2. First,
we consider an optimal radio (k − 2)-coloring of H , using which we obtain a vertex
ordering and a rk-coloring of H � K1.

Proof ofTheorem2Let H be a graph,n be the order of H , and k > 1.Let h be anopti-
mal radio (k − 2)-coloring of H and v1, v2, . . . , vn be the associated vertex arrange-
ment of H such that h(vi+1) ≥ h(vi ), i = 1, 2, 3, . . . , n − 1. Let ui , 1 ≤ i ≤ n, be
the vertex of copy of K1 corresponding to vi . To get the required upper bound, we
first order the vertices of H � K1 depending on n is odd or even, using which we
generate a rk-coloring of H � K1.

Case I: n = 2 p

For l = 1, 2, . . . , p, we choose v2l−1 as x2l−1; u2l as x2l ; v2l as xn+2l and u2l−1 as
xn+2l−1. For 1 ≤ l < j ≤ 2n, we have

d(x j , xl) =

⎧
⎪⎨

⎪⎩

d(v j ′ , vl ′), if both xl and x j are on H ;
d(v j ′ , vl ′) + 1, if only one of xl and x j is on H ;
d(v j ′ , vl ′) + 2, if both xl and x j are on copies of K1,

where j ′ ≡ j (mod n) and l ′ ≡ l (mod n). So, by the choice of the vertices
xl , we have d(xl+1, xl) = 1 + d(vl+1, vl) for 1 ≤ l ≤ n − 1 and d(xl+1, xl) = 1 +
d(vl−n, vl+1−n) for n + 1 ≤ l ≤ 2n − 1, and d(xn+1, xn) ≥ 3.

For H � K1, we describe a coloring g as pursues: g(x1) = h(v1) = 0; for 1 ≤ l ≤
n − 1, g(xl+1) = g(xl) + [h(vl+1) − h(vl)] + 1, g(xn+l+1) = g(xn+l) + [h(vl+1) −
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h(vl)] + 1 and g(xn+1) = g(xn) + k − 2. Next, we show that g is an rk-coloring of
H � K1. By the description of g, the condition for rk-coloring holds good for the
pairs xl and xl+1 for all l. For 1 ≤ l < j ≤ n, g(x j ) − g(xl) = h(v j ) − h(vl) + ( j −
l) ≥ k − 2 + 1 − d(v j , vl) + ( j − l) ≥ k + 1 − d(v j , vl) − 2 + ( j − l). If both xl

and x j are on H or on copies of K1, then j − l ≥ 2. So, g(x j ) − g(xl) ≥ k + 1 −
d(xl , x j ). If only one of xl and x j is on H , then g(x j ) − g(xl) ≥ 1 + k − (d(vl , v j ) +
1) + ( j − l) − 1 ≥ k + 1 − d(xl , x j ). Similarly, the result holds good for n + 1 ≤
l < j ≤ 2n. If 1 ≤ l ≤ n < j ≤ 2n and j 	= l + n, then clearly g(x j ) − g(xl) ≥
k + 1 − d(xl , x j ). If 1 ≤ l ≤ n and j = n + l, then g(x j ) − g(xl) ≥ k. Hence, g is
an rk-coloring of H � K1.

Now, the span of g is given by

rck(g) = g(x2n) = g(x2n) − g(xn+1) + g(xn+1) − g(xn) + g(xn) − g(x1)

=
n−1∑

l=1

[g(xn+l+1) − g(xn+l)] + g(xn+1) − g(xn) +
n−1∑

l=1

[g(xl+1) − g(xl)]

=
n−1∑

l=1

[h(vl+1) − h(vl) + 1] + k − 2 +
n−1∑

l=1

[h(vl+1) − h(vn+l) + 1]

= h(vn) − h(v1) + n − 1 + k − 2 + h(vn) − h(v1) + n − 1

= 2rck−2(H) + k + 2n − 4.

Hence, rck(H) ≤ 2rck−2(H) + k + 2n − 4.

Case II: n = 2 p+ 1
For l = 1, 2, . . . , p, we choose v2l−1 as x2l−1; u2l as x2l ; v2l as xn+2l and u2l−1 as
xn+2l−1. We choose un as xn and vn as x2n . For 1 ≤ l < j ≤ 2n, we have

d(x j , xl) =

⎧
⎪⎨

⎪⎩

d(v j ′ , vl ′), if both xl and x j are on H ;
d(v j ′ , vl ′) + 1, if only one of xl and x j is on H ;
d(v j ′ , vl ′) + 2, if both xl and x j are on copies of K1,

where j ′ ≡ j (mod n) and l ′ ≡ l (mod n). So, by the choice of the vertices
xl , we have d(xl , xl+1) = 1 + d(vl+1, vl) for 1 ≤ l ≤ n − 2 and d(xl+1, xl) = 1 +
d(vl+1−n, vl−n) for n + 1 ≤ l ≤ 2n − 2, d(xn−1, xn) = d(vn−1, vn) + 2, d(x2n−1,

x2n) = d(vn−1, vn) and d(xn, xn+1) ≥ 3.

Now, we describe a coloring g of H � K1 as pursues: g(x1) = h(v1) = 0; for 1 ≤
l ≤ n − 2, g(xl+1) = g(xl) + [h(vl+1) − h(vl)] + 1, g(xn+l+1) = g(xn+l) +
[h(vl+1) − h(vl)] + 1, g(xn) = g(xn−1) + [h(vn) − h(vn−1)], g(xn+1) = g(xn) +
k − 2 and g(x2n) = g(x2n−1) + [h(vn) − h(vn−1)] + 2. Analogous to Case I, here
also we can demonstrate that g is an rk-coloring of H � K1.
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Fig. 1 An optimal radio coloring (radio 5-coloring) of P6
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Fig. 2 An arrangement of the vertices and a radio coloring (radio 7-coloring) of P6 � K1 obtained
as in Theorem 2
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Fig. 3 An optimal radio coloring (radio 6-coloring) of P7

Now, the span of g is given by rck(h) = g(x2n) = g(x2n) − g(xn+1) + g(xn+1) −
g(xn) + g(xn) − g(x1) = h(vn) − h(v1) + n − 2 + k − 2 + h(vn) − h(v1) + n − 2
+ 2 = 2rck−2(H) + k + 2n − 4. Hence rck(H) ≤ 2rck−2(H) + k + 2n − 4. �

Example 1 In Fig. 1, an optimal radio coloring (radio 5-coloring) and hence a vertex
ordering of P6 is considered. Using this vertex ordering, a vertex ordering of P6 � K1

and hence a radio coloring (radio 7-coloring) of P6 � K1 is given in Fig. 2. In Fig. 3,
an optimal radio coloring (radio 6-coloring) and hence a vertex ordering of P7 is
considered. Using this vertex ordering, a vertex ordering of P7 � K1 and hence a
radio coloring (radio 8-coloring) of P7 � K1 is given in Fig. 4. In Fig. 5, an optimal
radio 2-coloring of the cycle C6 is considered and hence its vertices are arranged in
non-decreasing order of their colors. Using this vertex arrangement, a vertex ordering
of C6 � K1 and hence a radio 4-coloring of C6 � K1 is given in Fig. 6. In Fig. 7, an
optimal radio 3-coloring of the cycle C6 is considered and hence its vertices are
arranged in non-decreasing order of their colors. Using this vertex arrangement, a
vertex ordering of C6 � K1 and hence a radio 5-coloring of C6 � K1 is given in
Fig. 8.

The next theorem equips an essential requirement for the inequality in Theorem
2 to be an equality.

Theorem 3 Let k > 1 and H be a connected graph of order n > 1. If rck(H �
K1) = 2rck−2(H) + k + 2n − 4, then, in every optimal radio (k − 2)-coloring of
H, at least one pair of vertices of H receiving the colors 1 and rck(H) are adjacent.
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Fig. 4 An arrangement of the vertices and a radio coloring (radio 8-coloring) of P7 � K1 obtained
as in Theorem 2

Fig. 5 An optimal radio
2-coloring of C6
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Fig. 6 An arrangement of
the vertices and a radio
4-coloring of C6 � K1
obtained as in Theorem 2
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Fig. 7 An optimal radio
3-coloring of C6
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Fig. 8 An arrangement of
the vertices and a radio
5-coloring of C6 � K1
obtained as in Theorem 2

22

0

x1

x2

x5

x3
x12

x10

27

17

10

5

x7

x6

x4
x8

x11

x9

15

12

7

2

25

20

Proof Suppose h is an optimal radio (k − 2)-coloring of H such that none of the
vertex pairs of H receiving the colors 1 and rck(H) are adjacent. We consider a
vertex ordering v1, v2, . . . , vn of H such that h(vi+1) ≥ h(vi ) for all i . We modify
the coloring g defined in the proof of Theorem 2 only for xn+1 as follows, g(xn+1) =
g(xn) + k − 3. Since v1 and vn are not adjacent, with the above modification h still
remains as an rk-coloring of H1 � K1 and and rck(g) = 2rck−2(H) + k + 2n − 5,
this is a repudiation to the attribute that rck(H � K1) = 2rck−2(H) + k + 2n − 4.

For any path Pn (n ≥ 2), Liu and Zhu [13] found that the r -number of Pn is
n2−2n+2

2 for even n and n2−2n+3
2 for odd n. For any integer k ≥ n, Kchikech et al.

[7] have proved that rck(Pn) = (n − 1)k − 1
2n(n − 2) + 1 for even n and rck(Pn) =

(n − 1)k − 1
2 (n − 1)2 + 2 for odd n.

Theorem 4 For a path Pn on even number of vertices and an odd integer k, k > n,
rck(Pn � K1) = 2kn − n2 − k.
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rck(Pn � K1) =
{

n2 + n − 1, i f k = n + 1;
2kn − n2 − k, i f k > n + 1.

Proof Let n = 2q, k = 2p + 1 > n, and Pn : u1u2u3 . . . un be the path.

Case I: k = n + 1
From the outcome of Liu and Zhu [13] article, rcn−1(Pn) = n2−2n+2

2 . Now, by
Theorem 2, rcn−1(Pn � K1) ≤ n2 + n − 1. To get the lower bound, we utilize
Theorem 1. We choose V0 = {vq , vq+1}. By this choice of V0, we get |Vi | = 4,
i = 1, 2, . . . , q − 1 and |Vq | = 2. Now, by Theorem 1, we get rcn−1(Pn � K1) ≥
n2 + n − 1. Hence, rcn−1(Pn � K1) = n2 + n − 1 = 2kn − n2 − k.

Case II: k > n + 1
From the outcome of Kchikech et al. [7] article, rck(Pn) = k(n − 1) − 1

2 (n − 2)n +
1 for even n and k ≥ n. Now, by Theorem2, rcn−1(Pn � K1) ≤ 2kn − n2 − k. To get
the lower bound, we choose V0 = {vq , vq+1}. By this choice of V0, we get |Vi | = 4,
i = 1, 2, . . . , q − 1 and |Vq | = 2. Now, by Theorem 1, we get rcn−1(Pn � K1) ≥
2kn − n2 − k. Hence, rcn−1(Pn � K1) = n2 + n − 1 = 2kn − n2 − k.

3 Conclusion

For a graph, the problem of obtaining the rk-number is a non-trivial problem. In this
manuscript, we obtained an upper bound for the rk-number of H � K1, where H
is an arbitrary connected graph whose order is at least 2 and k > 1. Also, obtained
a necessary condition for the upper bound to be exact. Further, we proved that the
given upper bound is exact for Pn � K1, for even n and odd k > n. It is interesting
to classify graphs for which the upper bound is exact.
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Some Parameters of Restricted Super
Line Graphs

Latha Devi Puli and K. Manjula

Abstract The Restricted Super Line Graph of index r, RLr (G), of a graph G has
the r -element sets of E(G) as its vertex set and two vertices being adjacent if exactly
one edge of one set is adjacent to exactly one edge of the other. In this paper we
characterize the complete graph RLr (G), totally disconnectedness, graph equations
and connectedness of RL2(G).

Keywords Super line graphs · Restricted super line graphs · Dominating
edge-pair

AMS(2000) 05C60 · 05C69 · 05C99

1 Introduction

All graphs considered here are finite, undirected and simple. We refer to [2, 5] for
unexplained terminology and notations. For a given positive integer r and a graph G
on at least r edges, the restricted super line graphof index r ofG, denotedby RLr (G),
is a simple graph whose vertex set consists of all possible r - element subsets of
E(G) and two vertices S = {e1, e2, . . . , er } and T = {e′

1, e
′
2, . . . , e

′
r } in V (RLr (G))

are adjacent if there exists exactly one pair of edges, say, ei , e′
j (1 ≤ i, j ≤ r) that

are adjacent in G. Restricted super line graph [3] is a modification of the super line
graph Lr (G) introduced by Bagga et al. [1]. The two graphs have the same vertex
set and every edge of RLr (G) is an edge of Lr (G). Therefore RLr (G) is a spanning
subgraph of Lr (G). If r = 1, the restricted super line graph RLr (G) coincides with
the usual line graph.

For an edge e of the graph G, the neighborhood N (e) is the set of all edges
of G adjacent to e. i.e. if e = uv, then N (e) = {e′ ∈ E − {e} : e′is incident with u
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or v}. A pair of adjacent edges a, b of G is termed as a dominating edge − pair
if E(G) = N (a) ∪ N (b).Throughout the paper d(v) denotes the degree of a vertex v.

We recall the following results on RLr (G).

Theorem 1 ([4]) For any graph G,

(i) RLr (G) is a subgraph of Lr (G) and

(ii) RLr (G)) ∼= Lr (G) if and only if G ∼= K1,2 ∪ nK2 or nK2

Theorem 2 ([4]) If G is a graph with q edges and no isolated vertices, then

(i) |V (RL2(G)| =
(
q

2

)
and

(ii) For a vertex S = {ei , e j } of RL2(G), d(S) = ν{ei e j }μ{ei e j }
where ν{ei e j } = q − |N (ei ) ∪ N (e j )| and μ{ei e j } = |N (ei )�N (e j )|

Theorem 3 ([4]) If H is a subgraph of G, then RLr (H) is a subgraph of RLr (G).

Theorem 4 ([4]) The graph RL2(Cn),RL2(Pn) is pancyclic for n > 5 (Fig. 1).

Fig. 1 The graph G, its corresponding L(G),L2(G) and RL2(G)
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2 Results on RLr(G)

Wenote the following observations that are useful to understand the adjacency criteria
in RLr (G).

Observation 1 The vertices S = {e1, e2, . . . , er } and T = {e′
1, e

′
2, . . . , e

′
r } are adja-

cent in RLr (G) only if the subgraph induced by the edge set {e1, e2, . . . , er ,
e′
1, e

′
2, . . . , e

′
r } in G has exactly one subgraph H isomorphic to K1,2 where one

edge is in S and the other in T .

Observation 2 If the subgraph of G induced by the edges of S has vertex disjoint
subgraphs H1, H2, . . . , Hα in G each isomorphic to K1,2, then S is adjacent to
vertices of the form Ti = E(Hi ) ∪ X where X ⊆ E(G) − ∪r

j=1N (a j ), | X |=r − 2,
for each i, 1 ≤ i ≤ α.

Observation 3 If the subgraph of G induced by the edges of S is isomorphic to
K1,2 ∪ (r − 2)K2, then S is adjacent to itself.

Theorem 5 If G is a graph with m edges, then for any positive integer r with r < m.

(i) |V (RLr (G))|=
(
m

r

)

(ii) For any vertex S = {a1, a2, . . . , ar } of RLr (G),

d(S) =

( |A|
r − 1

)
|B| + α

( |A|
r − 2

)
− λ where

A = E(G) − ∪r
i=1N (ai )

B = {x/x ∈ N (ai ) for exactly one i, 1 ≤ i ≤ r}
α= Number of disjointK1,2’s in S

λ =
{
1 if the edges of S induce exactly one K1,2 in G
0 Otherwise

Proof (i) Follows directly by the definition of RLr (G).
(ii) Let T be a vertex of RLr (G) which is adjacent to S. Then by Observation 1 the

subgraph of G induced by the edges of S and T has exactly one subgraph H
isomorphic to K1,2, whose one edge is in S and the other in T . Let the edges
al(1 ≤ l ≤ r) of S and b of T form H . Then two cases arise:

Case 1 b /∈ S
By definition, the edge b belongs to B and the remaining r − 1 elements of T are
not adjacent to any edge of S. so they belong to the set A.

Case 2 b ∈ S
In this case, H is contained in the subgraph induced by the edges of S [al and b
are not adjacent to any other edges S] and T may or may not contain al . If al is
contained in T , then the other r − 2 elements of T belong to A.
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Therefore,

d(S) =
( |A|
r − 1

)
|B| + α

( |A|
r − 2

)
− λ

�

Remark 1 For brevity, we have by the inclusion - exclusion principle that
|A| = |E(G)| − (S1 − S2 + S3 − · · · + (−1)r Sr )

|B| = S1 −
(
2

1

)
S2 +

(
3

2

)
S3 − · · · + (−1)r

(
r

r − 1

)
Sr

where
S1 = ∑ |N (ai )|
S2 = ∑ |N (ai ) ∩ N (a j )|
S3 = ∑ |N (ai ) ∩ N (a j ) ∩ N (ak)|
...

Sr = ∑ |N (a1) ∩ N (a2) ∩ . . . ∩ N (ar )|,
Theorem 6 For any integer r ≥ 2, and a vertex S = {a1, a2, . . . , ar } of RLr (G),
d(S) �= 1.

Proof Claim: If S is not an isolated vertex then d(S) > 1.
Suppose to the contrary that T = {b1, b2, . . . , br } of RLr (G) is the only vertex

adjacent to S. Then the subgraph of G induced by the edges of S and T has exactly
one subgraph isomorphic to K1,2 induced by the edges ak and bl for some k, l(1 ≤
k, l ≤ r ). In relation to the edge ak , the remaining (r − 1) edges of S is classified
according as they are adjacent to ak or not.

Case 1 None of the (r − 1) edges in S are adjacent to ak .

Sub case 1 Neither ak ∈ T nor bl ∈ S.
Let T ′ be the vertex obtained from T by replacing bi (i �= l), with ak . Then T ′
exists (as r > 2). But T �= T ′, and S is adjacent to T ′ in RL2(G), a contradic-
tion.

Sub case 2 Let ak ∈ T and bl /∈ S.
Then S′ obtained from S on replacing ak by bl is adjacent to S, a contradiction.

Sub case 3 ak /∈ T and bl ∈ S
Then the vertex T ′ obtained on replacing bl of T by ak is adjacent to S.

Case 2 ak is adjacent to exactly one edge ap of S.

Sub case 1 ap is not adjacent to any other edge of S.
Then T ′ obtained from T on replacing bl by ap is adjacent to S, a contradiction.

Sub case 2 ap is adjacent to at least one more edge of S.
Then T ′ obtained from T on replacing bl by ak is adjacent to S, a contradiction.
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Case 3 ak is adjacent to more than one edge of S.
Let e be an edge of S not in the neighborhood of ak . Such an edge does exist,
otherwise S will be an isolated vertex. T ′ obtained from T on replacing bi (i �= l)
with e is adjacent to S, a contradiction.
Thus d(S) > 1

�

2.1 Completeness of RLr(G)

The following theorem characterizes RLr (G) that are complete graphs.

Theorem 7 For any integer r ≥ 2, RLr (G) is a complete graph if and only if G ∼=
K1,2 ∪ (r − 1)K2.

Proof Suppose RLr (G) is a complete graph.
Let S = {a1, a2, . . . , ar }, T = {b1, b2, . . . , br } and U = {c1, c2, . . . , cr } be any

three vertices of RLr (G). Then as S, T are adjacent, the subgraph of G induced by
the edges in S and T contains exactly one subgraph isomorphic to K1,2 such that its
one edge is in S and the other in T . Again, as the vertices T and U are adjacent, the
subgraph induced by the edges in T and U in G contains exactly one K1,2, whose
one edge is in T and the other inU . Let these two K1,2s be formed by the edge-pairs
{ak, bl} and {bm, c j }. We claim that these K1,2s are not distinct. If all the four edges
ak ,bl ,bm and c j are distinct then T is not adjacent to a vertex containing both ak and
c j , contradicting RLr (G) is complete. So, either r < 2 or ak = c j .But by hypothesis,
r ≥ 2. So ak = c j and further if bl �= bm T is not adjacent to any vertex containing
ak , in particular to S. This implies bl = bm and therefore G has exactly one K1,2 and
all other edges of G are isolated edges. And, if the number of isolated edges exceeds
(r − 1), then RLr (G) contains isolated vertices. Thus G ∼= K1,2 ∪ (r − 1)K2.

Conversely, suppose G ∼= K1,2 ∪ (r − 1)K2. Define:
X = {S ∈ V (RLr (G)) : Scontains r − 2 isolated edges and the two edges of K1,2}
and
Y = {S ∈ V (RLr (G)) : S contains r isolated edges}
Then X and Y form a partition of V (RLr (G)) with |X | = r − 1 and |Y | = 2. For

any two vertices S and T of RLr (G), the following three possibilities arise.

1. S, T ∈ X

2. S, T ∈ Y

3. S ∈ X, T ∈ Y .

In each of the cases, clearly the subgraph induced by edges of S and T contains a
K1,2 having one edge in S and the other in T . Thus S and T are adjacent in RLr (G).
So RLr (G) is a complete graph.

�
Note: Since for r = 1, RLr (G) is isomorphic to the line graph L(G), in this case
RLr (G) is complete if and only if G isomorphic to K3 or K1,n .
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3 Results on RL2(G)

In this section, we obtain some graph equations and characterize totally disconnected
RL2(G).

Theorem 8 If G is an (n,m) graph with no isolated vertices. Then

1. RL2(G) ∼= G has no solution.

2. RL2(G) ∼= L(G) if and only if G ∼= 3K2

3. RL2(G) ∼= G if and only if G ∼= K3

Proof 1. If RL2(G) ∼= G, then,

n = |V (G)| = |V (RL2(G))| =
(
m

2

)

SinceG has no isolated verticeswe have

(
m

2

)
=n ≤ ∑n

i=1 d(vi ) = 2m; m(m−1)
2 ≤

2m and therefore m ≤ 5. Thus the feasible values of (n,m) are (3, 3), (6, 4) and
(10, 5). The graphs associated with these parameters are shown in Fig. 2. The
graphs RL2(K3) and RL2(5K2) are null graphs while in the other three cases,
that is when G is isomorphic to P2 ∪ K1,3, P2 ∪ P4 and 2P3, the corresponding
restricted super line graph of index 2 are connected. Hence there exists no graph
G such that RL2(G) is isomorphic to G.

2. If RL2(G) ∼= L(G), then

(
m

2

)
= m ⇒ m = 3. The graphs on three edges having

no isolates and the corresponding line and restricted super line graphs are listed
in Table1. Clearly RL2(G) ∼= L(G) if and only if G ∼= 3K2

3. Suppose RL2(G) ∼= G.As in (1), the only possible pairs of (n,m) are (3, 3), (6, 4)
and (10, 5) since |V (G)| = |V (G)|. Among the graphs in Fig. 2 we verify that
RL2(G) ∼= G holds only when G ∼= K3.

�

Theorem 9 RL2(G) is totally disconnected if and only if G is isomorphic to K1,n,
K3, nK2, (n ≥ 2) or a connected graph on four vertices.

Proof Sufficiency: Suppose G ∼= K1,n, K3, nK2 or any connected graph with four
vertices as in Fig. 3. Let S be a vertex of RL2(G). Then byTheorem2, for a vertex S =

Fig. 2 Graphs of Theorem 8
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Table 1 The graph G, L(G), RL2(G) for case 2 of Theorem 8

G L(G) RL2(G)

3K2 Null graph Null graph

K1,3 K3 Null graph

P4 K1,2 Null graph

K1,2 ∪ K2 K2 ∪ K1 C3

Fig. 3 Connected spanning graphs of K4 of Theorem 9

{ei , e j } of RL2(G), d(S) = ν{ei ,e j }.μ{ei ,e j }. It can be easily verified that ν{ei ,e j } = 0 for
every pair of edges ei , e j (dominating edge-pair) of G ∼= K1,n, K3 and μ{ei ,e j } = 0
for any ei , e j of G ∼= nK2. If G is a connected graph on four vertices,ν{ei ,e j } = 0
for a pair of adjacent edges, and μ{ei ,e j } = 0 for a pair of nonadjacent edges . Thus
d(S) = 0 for every vertex S and hence RL2(G) is totally disconnected.

Necessity: Suppose RL2(G) is totally disconnected. Then for any vertex S =
{ei , e j } of RL2(G), d(S) = 0. By Theorem 2, ν{ei ,e j }μ{ei ,e j } = 0 that is |E(G) −
(N (ei ) ∪ N (e j ))||(N (ei ) ∪ N (e j )) − (N (ei ) ∩ N (e j ))| = 0.
Then |E(G) − N (ei ) ∪ N (e j )| = 0 or |N (ei ) ∪ N (e j ) − N (ei ) ∩ N (e j )| = 0.
This implies either E(G) − N (ei ) ∪ N (e j ) = φ or N (ei ) ∪ N (e j ) − N (ei ) ∩ N (e j )
= φ.

Case1. For any i, j , E(G) − N (ei ) ∪ N (e j ) = φ.
This implies E(G) = φ or E(G) = N (ei ) ∪ N (e j ). But E(G) �= φ. So E(G) =
N (ei ) ∪ N (e j ) holds for any two edges of G. This means every two edges of G
is a dominating edge-pair. Every pair of edges of G is a dominating edge-pair if
and only if G is isomorphic to K3 or K1,n . Here n ≥ 2 as RL2(G) has at least one
vertex. So, G has at least two edges. Thus G is isomorphic to K3 or K1,n , n ≥ 2.

Case 2. For any i, j , N (ei ) ∪ N (e j ) − N (ei ) ∩ N (e j ) = φ.
Consequently either N (ei ) ∪ N (e j ) = φ or N (ei ) ∪ N (e j ) = N (ei ) ∩ N (e j ).

Sub case 1. For any i, j , N (ei ) ∪ N (e j ) = φ.
In this case, N (ei ) = N (e j ) = φ. That is every edge of G is an isolated edge.
So, G ∼= nK2, n ≥ 2

Sub case 2. For any i, j , N (ei ) ∪ N (e j ) = N (ei ) ∩ N (e j ).
Here N (ei ) = N (e j )( �= φ). This implies ei and e j are a pair of nonadjacent
edges that have non empty and equal neighborhoods. But there are no graphs
existing in which every two edges are nonadjacent having non empty neigh-
borhoods.
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Fig. 4 Graphs for which N (ei ) = N (e j )

Case 3 For some i, j , N (ei ) ∪ N (e j ) = E(G) and for some N (ei ) = N (e j ).
In this case, for every pair of adjacent edges ei , e j of G, N (ei ) ∪ N (e j ) = E(G)

and for every pair of nonadjacent edges ei , e j of G, N (ei ) = N (e j ).
Let ei , e j be non adjacent in G. Then the edge-pair ei , e j induces a 2K2 (in G)
which has 4 pendant vertices. For an edge x of G, let x ∈ N (ei ) then x ∈ N (e j )
and therefore x ∈ N (ei ) ∩ N (e j ). Every edge x joining these pendant vertices
belongs to N (ei ) ∩ N (e j ). If t is an edge of G not joining these pendant vertices,
then t /∈ N (ei ) ∩ N (e j ). Thus the graphs G for which N (ei ) = N (e j ) for every
pair of non adjacent edges are as shown in Fig. 4. Also it can be verified that
for every pair of adjacent edges ei , e j in these graphs, N (ei ) ∪ N (e j ) = E(G).
Hence the result follows.

�
As a consequence we have the following.

Theorem 10 Let G be a connected graph. A vertex S = {ei , e j } of RL2(G) is an
isolated vertex if and only if

(i) ei , e j forms a dominating edge pair of G.
(ii) ei , e j are any two non adjacent edges of a connected graph with four vertices

(Fig. 5).

We note that the diameter of a graph G containing a dominating edge pair is at
most three. So for a connected graph G, if RL2(G) has an isolated vertex then
diam(G) ≤ 3. However the converse is not true. The graph H in Fig. 6 is of diameter
three but RL2(G1) contains no isolated vertex.

Theorem 11 For a disconnected graph G having no isolates, RL2(G) has an iso-
lated vertex if and only if G ∼= H ∪ G1 where H is a graph on 4 vertices without
isolates and not isomorphic to K1,3 and G1 is the graph without isolates.

Proof Let G be a disconnected graph having no isolates. Let {ei , e j } be an isolated
vertex of RL2(G). The subgraph of G induced by ei , e j can not be isomorphic to
K1,2 because for a disconnected graphG, E(G) �= N (ei ) ∪ N (e j ). So, ei , e j ∈ E(G)

must be non adjacent and N (ei ) = N (e j ). Therefore, by Theorem 10,ei , e j may form
a pair of nonadjacent edges or a pair of isolated edges in a connected graph with four
vertices. Thus ei , e j are any two edges of H .

Conversely, let G ∼= H ∪ G1 where H is a graph on 4 vertices not isomorphic to
K1,3. Then by Theorem 9, if ei , e j are non adjacent edges of H , then d({ei , e j }) = 0
as μ{ei ,e j } = 0. Hence the result.
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Fig. 5 Graph in which the
vertex {ei , e j } is dominating
edge-pair

Fig. 6 Graph G1

�
Conclusion: Some results on RLr (G) were obtained. Graph equations on restricted
super line graphs and super line graphs has been established. Characterization of
RL2(G) for being null graph has been obtained. Continuing we want to characterize
RL2(G) for being Hamiltonian and claw free.
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Edge Constrained Eulerian Extensions

Ghurumuruhan Ganesan

Abstract In this paper, we study Eulerian extensions with edge constraints and use
the probabilisticmethod to establish sufficient conditions for a given connected graph
to be a subgraph of a Eulerian graph containing m edges, for a given number m.

Keywords Eulerian extensions · Edge constraint · Probabilistic method

1 Introduction

In the Eulerian extension problem, a given graph is to be converted into a Eulerian
graph by the addition of as few edges as possible and such problems have applica-
tions in routing and scheduling (Dorn et al. [3]). Boesch et al. [2] studied conditions
under which a graph G can be extended to a Eulerian graph and later Lesniak and
Oellermann [6] presented a detailed survey on subgraphs and supergraphs of Eule-
rian graphs and multigraphs. For applications of Eulerian extensions to scheduling
and parametric aspects, we refer to Höhn et al. [5] and Fomin and Golovach [4],
respectively.

In this paper, we construct a Eulerian extension of graphs with a predetermined
number of edges. Specifically, given a graph G with maximum degree Δ and b
number of edges and given an integer m > b, we use the asymmetric probabilistic
method to derive sufficient conditions for the existence of a Eulerian extension of G
with m edges.

The paper is organized as follows: In Sect. 2, we state and prove our main result
regarding Eulerian extensions with edge constraints.
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2 Edge Constrained Eulerian Extensions

Let G = (V, E) be a graph with vertex set V and edge set E . The vertices u and v

are said to be adjacent inG if the edge (u, v)with endvertices u and v is present in E .

We define dG(v) to be the degree of vertex v, i.e., the number of vertices adjacent
to v in G.

A sequence of verticesW := (u1, u2, . . . , ut ) is said to be a walk if ui is adjacent
to ui+1 for each 1 ≤ i ≤ t − 1. If in addition the vertex ut is also adjacent to u1,
thenW is said to be a circuit. We say thatW is a Eulerian circuit if each edge of the
graph G occurs exactly once inW. The graph G is said to be a Eulerian graph if G
contains a Eulerian circuit.

Let G be any graph. We say that a graph H is a Eulerian extension of G if G
and H share the same vertex set, G is a subgraph of H and H is Eulerian.

Definition 1 For an integer m ≥ 1, we say that a graph G ism-Eulerian extendable
if there exists a Eulerian extension H of G containing exactly m edges.

We have the following result regarding m-Eulerian extendability. Throughout,
constants do not depend on n.

Theorem 1 For every pair of constants 0 < α, β < 1 satisfying β + 40α2 < 1
2

strictly, there exists a constant N = N (α, β) ≥ 1 such that the following holds for
all n ≥ N: Let m be any integer satisfying

2n ≤ m ≤ α · n 3
2 (2.1)

and let G ⊂ Kn be any connected graph containing n vertices, b edges and a maxi-
mum vertex degree Δ. If

Δ ≤ β · n and b ≤ m − n, (2.2)

then G is m-Eulerian extendable.

To see the necessity of the bound b ≤ m − n, we use the fact that a graph H
is Eulerian if and only if H is connected and each vertex of H has even degree
(Theorem 1.2.26, pp. 27, West [7]). Therefore, to obtain a Eulerian extension of G,

we only need to convert all odd-degree vertices into even-degree vertices.
Suppose that n is even and all the vertices in G have an odd degree. Because

the degree of each vertex is at most n
2 − 1 (see (2.2)), the sum of neighbourhood

sizes of 2i − 1 and 2i is at most n − 2. Therefore, for each 1 ≤ i ≤ n
2 , there exists a

vertex wi neither adjacent to 2i − 1 nor adjacent to 2i in the graph G. Adding the n
edges {(wi , 2i − 1), (wi , 2i)}1≤i≤ n

2
gives us a Eulerian extension of G.

In our proof of Theorem 1 below, we use the asymmetric probabilistic method
for higher values of m to obtain walks of predetermined lengths between pairs of
odd-degree vertices and thereby construct the desired extension.
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Proof of Theorem 1
As before, we use the fact that a graph H is Eulerian if and only if H is connected
and each vertex of H has an even degree. We assume that the vertex set of G is V :=
{0, 1, 2, . . . , n − 1} and also let T be the set of all odd-degree vertices inG so that the
number of odd degree vertices #T is even. If there are vertices u, v ∈ T that are not
adjacent to each other in G, then we mark the edge (u, v) and also the endvertices u
and v. We then pick two new nonadjacent vertices x and y in T \ {u, v} and repeat
the procedure. We continue this process until we reach one of the following two
scenarios: Either the number of marked edges is m − b in which case, we simply
add the marked edges to G and get the desired Eulerian extension H. Or, we are left
with a set of marked edges of cardinality, say l and a clique C := {u1, . . . , u2z} ⊂ T
containing 2z unmarked vertices.

Let G0 be the graph obtained by adding all the l ≤ n
2 marked edges to G. If Δ0

and b0 denote the maximum vertex degree and the number of edges in G0, respec-
tively, then

Δ0 ≤ Δ + 1 and b0 = b + l ≤ b + n. (2.3)

We now pair the vertices in C as {u2i−1, u2i }1≤i≤z assuming that z ≥ 1 (if not, we
simply remove a marked edge e from G0 and label the endvertices of e as u1 and u2).
We use the probabilisticmethod to obtain z edge-disjoint walks {Wi }1≤i≤z containing
no edge of G0 such that each walkWi has w edges and u2i−1 and u2i as endvertices,
where w satisfies

b0 + z · w = m. (2.4)

Adding the walks {Wi }1≤i≤z to G0 would then give us the desired m-Eulerian exten-
sion.

In (2.4), we have assumed for simplicity that w = m−b0
z is an integer. If not, we

writem − b0 = z · w + r where 0 ≤ r ≤ w − 1 and construct the z − 1 walksWi , 1
≤ i ≤ z − 1 each of length w edges and the last walk Wz of length w + r ≤ 2w.

Again adding these walks to G0 would give us the desired Eulerian extension withm
edges. For future use, we remark that the length w of each walk added in the above
process is bounded above by

w = m − b0
z

≤ m ≤ α · n 3
2 . (2.5)

We begin with the pair of vertices u1 and u2. Let {Xi }1≤i≤w be independent
and identically distributed (i.i.d.) random variables uniformly distributed in the
set {0, 1, . . . , n − 1}. Letting S := (u1, X1, . . . , Xw, u2), we would like to convert
the sequence S into a walk W1 with endvertices u1 and u2 and containing no edge
of G0. The construction ofW1 is split into two parts: In the first part, we collect the
preliminary relevant properties of S and in the second part, we obtain the walkW1.
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Preliminary definitions and estimates: An entry in S is defined to be a vertex and
we define (u1, X1), (Xw, u2) and {(Xi , Xi+1)}1≤i≤w−1 to be the edges of S. The
neighbour set of a vertex v in S the set of vertices u such that either (v, u) or (u, v)

appears as an edge of S. The neighbour set of v in the multigraph G0 ∪ S is the
union of the neighbour set of v in the graph G0 and the neighbour set of v in S. The
degree of a vertex v in G0 ∪ S is defined to be the sum of the degree of v in G0 and
the degree of v in S.

The three main ingredients used in the construction of the walkW1 are
(1) The degree of a vertex in the multigraph G0 ∪ S,

(2) the number of “bad” vertices in G0 ∪ S and
(3) the number of “bad” edges in S.

Below, we define and estimate each of the three quantities in that order.
We first estimate the degree of each vertex in the multigraph G0 ∪ S. For any 0 ≤

v ≤ n − 1 and any 1 ≤ i ≤ w, let Ii = 11(Xi = v) be the indicator function of the
event that Xi = v. We have P(Ii = 1) = 1

n and so if Dv = ∑w
i=1 Ii denotes the

number of times the entry v appears in the sequence (X1, . . . , Xw), then EDv = w
n

and so by the standard deviation estimate (A.30) in Appendix, we have

P

(

Dv ≥ 2w

n

)

≤ 2 exp
(
− w

16n

)
. (2.6)

If w
n ≥ 100 log n, then we get from (2.6) that P(Dv ≥ 2w

n ) ≤ 1
n2 . Else, we use the

Chernoff bound directly to get that

P (Dv ≥ 100 log n) ≤ 1

n2
. (2.7)

Therefore setting an := max
(
2w
n , 100 log n

)
, we get that

P (Dv ≥ an) ≤ 1

n2
. (2.8)

If the event
Edeg :=

⋂

0≤v≤n−1

{Dv ≤ an} (2.9)

occurs, then in G0 ∪ S each vertex has degree at most Δ0 + 1 + an, with the extra
term 1 to account for the fact that vertices X1 and Xw are also adjacent to u1 and u2,
respectively. By the union bound and (2.6), we therefore have

P(Edeg) ≥ 1 − 1

n
. (2.10)

The next step is to estimate the number of “bad” vertices in G0 ∪ S. Let X0 :=
u1, Xw+1 := u2 and for 0 ≤ i ≤ w − 1, say that vertex Xi is bad if Xi = Xi+1
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or Xi = Xi+2. For simplicity define Xw to be bad always. If Ji is the indicator
function of the event that vertex Xi is bad, then for 0 ≤ i ≤ w − 1, we have that

1

n
≤ P(Ji = 1) ≤ 2

n
. (2.11)

The term Nv,bad := ∑w−1
i=0 Ji + 1 denotes the total number of bad vertices in the

sequenceS.To estimate Nv,bad ,we split Nv,bad − 1 = J (A) + J (B) + J (C),where

J (A) = J1 + J4 + . . . , J (B) = J2 + J5 + . . . and J (C) = J3 + J6 + . . .

so that each J (u), u ∈ {A, B,C} is a sum of i.i.d. random variables.
The term J (A) contains at least w

3 − 1 and at most w
3 random variables. As in the

proof of (2.8), we use (2.11) and the standard deviation estimate (A.30) in Appendix
to obtain that

P

(
J (A) ≥ an

3

)
≤ 1

n2

for all n large. A similar estimate holds for J (B) and J (C) and so combining these
estimates and using the union bound, we get that

P
(
Ev,bad

) ≥ 1 − 3

n2
(2.12)

where Ev,bad := {Nv,bad ≤ an + 1} denotes the event that the number of bad vertices
in S is at most an + 1.

The final estimate involves counting the number of bad edges in the sequence S.

For 0 ≤ i ≤ w say that (Xi , Xi+1) is a bad edge if one of the following two conditions
hold:
(d1) Either {Xi , Xi+1} is an edge of G0 or
(d2) There exists i + 2 ≤ j ≤ w such that {Xi , Xi+1} = {X j , X j+1}.
To estimate the probability of occurrence of (d1), let e be an edge of G0 with
endvertices u and v. We have that

P ({Xi , Xi+1} = {u, v}) ≤ 2

n2
.

Similarly for any i + 2 ≤ j ≤ w, the possibility (d2) also occurs with probability
at most 2

n2 . Therefore if Li is the indicator function of the event that (Xi , Xi+1) is a
bad edge, we have that

P(Li = 1) ≤
b0∑

l=1

2

n2
+

w∑

j=i+2

2

n2
≤ 2(b0 + w)

n2
. (2.13)
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If Ne,bad := ∑w
i=0 Li denotes the total number of bad edges inS, then from (2.13)

and the fact that L0 ≤ 1 we have

ENe,bad ≤ 1 + 2(b0 + w)w

n2
=: cn. (2.14)

Letting Ee,bad := {Ne,bad ≤ K · cn} denote the event that the number of bad edges
in S is at most K · cn, for some large integer constant K ≥ 1 to be determined later,
we get from Markov inequality that

P
(
Ee,bad

) ≥ 1 − 1

K
, (2.15)

If Evalid denotes the event that the first and last edges (X0, X1) and (Xw, Xw+1)

are valid edges not in G0, then using the fact that the degree of any vertex in G0 is
at most n

2 (see (2.3) and (2.2) in the statement of the Theorem), we get that

P(Evalid) ≥
(
1

2
− 1

n

)2

. (2.16)

Defining the joint event

E joint := Evalid ∩ Edeg ∩ Ev,bad ∩ Ee,bad

and using

P

(

A
⋂ l⋂

i=1

Bi

)

≥ P(A) − P

(
l⋃

i=1

Bc
i

)

≥ P(A) −
l∑

i=1

P
(
Bc
i

)
(2.17)

with A = Evalid we get from (2.10), (2.12), (2.15) and (2.16) that

P(E joint ) ≥
(
1

2
− 1

n

)2

− 1

K
− 1

n
− 3

n2
≥ 1

21
(2.18)

for all n large, provided the constant K = 5,whichwe fix henceforth. This completes
the preliminary estimates used in the construction of the walk W1.

Construction of the walk W1: Assuming that the event E joint occurs, we now con-
vert S0 := S into a walk W1. We begin by “correcting” all bad vertices. Let Xi1 ,

Xi2 , . . . , Xit , i1 < i2 < . . . < it be the set of all bad vertices. Thus for example
either Xi1 = Xi1+1 or Xi1 = Xi1+2. Because the event Edeg occurs, we get from
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the discussion following (2.9) that the degree of each vertex in G0 ∪ S0 is at
most Δ0 + an + 1. From (2.3) and the first condition in (2.2), we get that

Δ0 ≤ Δ + 1 ≤ n

3
+ 1 (2.19)

and from the definition of an prior to (2.8) and the upper bound w ≤ n
3
2 in (2.5), we

get that

an = max

(

100 log n,
2w

n

)

≤ 100 log n + 2w

n
≤ 100 log n + 2

√
n ≤ 3

√
n

(2.20)
for all n large. Consequently, using β < 1

2 strictly (see statement of Theorem 1),

Δ0 + an + 1 ≤ β · n + 1 + 3
√
n ≤ n

2
− 5 (2.21)

for all n large. From (2.21), we therefore get that there exists a vertex v1 that is
not a neighbour of Xi1 in G0 ∪ S. Similarly, the total number of neighbours of v1
and Xi1+3 in G0 ∪ S is at most

2Δ0 + 2an + 2 ≤ 2β · n + 2 + 6
√
n < n − 10 (2.22)

for all n large and so there exists a vertex v2 	= Xi1 that is not a neighbour of v1 and
also not a neighbour of Xi1+3 in G0 ∪ S.

We now set X (1)
i1+1 = v1 and X (1)

i1+2 = v2 and X (1)
j = X j for j 	= i1 + 1, i1 + 2 and

call the resulting sequence S1 := (X (1)
1 , . . . , X (1)

w ). By construction, the degree of
each vertex in the multigraph G0 ∪ S1 is at most Δ + an + 1 + 2 and there are at
most t − 1 bad vertices in S1. We now pick the bad vertex with the least index in S1

and repeat the above procedure with S1 to get a sequence S2 containing at most t − 2
bad vertices.

After k ≤ t iterations of the above procedure, the degree of each vertex in the
multigraph G0 ∪ Sk would be at most

Δ0 + an + 1 + 2k ≤ Δ0 + an + 1 + 2t ≤ Δ0 + 3an + 3 (2.23)

because the event E joint ⊆ Ev,bad occurs and so t ≤ an + 1. Again using (2.19)
and (2.20) and arguing as in (2.22), we get that the sum of the degrees of any two
vertices inG0 ∪ St is at most n − 10 for all n large. Thus, the above procedure indeed
proceeds for t iterations and by construction, the sequence St obtained at the end has
no bad vertices.

We now perform an analogous procedure for correcting all bad edges in St . For
example if (Xl , Xl+1) is a bad edge in St , then following an analogous argument
as before we pick a vertex Yl+1 that is neither adjacent to Xl nor adjacent to Xl+2

in the sequence St . We replace Xl+1 with Yl+1 to get a new sequence St+1. In the
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union G0 ∪ St+1, the degree of each vertex is at most Δ0 + 3an + 3 + 2 (see (2.23))
and the number of bad edges is at most r − 1. At the end of r ≤ K · cn iterations,
we obtain a multigraph G0 ∪ St+r , where the degree of each vertex is at most

Δ0 + 3an + 3 + 2r ≤ Δ0 + 3an + 3 + 2Kcn,

since the event Ee,bad occurs and therefore Ne,bad ≤ K · cn (see discussion preced-
ing (2.15)). Substituting the expression for cn from (2.14) and using the second
estimate for an in (2.20), we get that Δ0 + 3an + 3 + 2Kcn is at most

Δ0 + 300 log n + 6w

n
+ 3 + 2K + 2K (b0 + w)w

n2

≤ Δ0 + 301 log n + 6w

n
+ 2K (b0 + w)w

n2
(2.24)

for all n large. Recalling that u1 and u2 are the endvertices of the starting sequenceS0,

we get that the final sequence St+r contains no bad edge and is therefore the desired
walkW1 with endvertices u1 and u2.This completes the construction of thewalkW1.

Rest of the walks: We now repeat the above procedure to construct the rest of the
walks. We set G1 := G0 ∪ W1 and argue as above to obtain a walkW2 withw edges
present in G1 and containing u3 and u4 as endvertices. Adding the walk W2 to G1,

we get a new graph G2. In effect, to the graph G1 containing b0 + w edges, we have
addedw edges and by an argument analogous to (2.24), we have increased the degree
of a vertex by at most

301 log n + 6w

n
+ 2K (b0 + 2w)w

n2
,

in obtaining the graph G2. We recall that (see the first paragraph of the proof) there
are z such walks to be created of which z − 1 have length w and the final walk has
length at most 2w. Therefore after z iterations, we get a graph Gz with m edges and
whose maximum vertex degree Δz is at most

Δz ≤ Δ0 +
(

301 log n + 6w

n

)

· (z − 1) + 301 log n + 12w

n

+ 2K
z−1∑

k=1

(b0 + k · w)w

n2
+ 2K

(b0 + (z − 1) · w)2w

n2
. (2.25)

By construction Gz is a Eulerian graph.
To verify the obtainability of Gz, we estimate Δz as follows. The term z is no

more than the size of a maximum clique in the original graph G (see discussion prior
to (2.3)) and since there are m ≤ n

3
2 edges in G, the maximum size of a clique in G

is at most n
3
4 . Therefore
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z ≤ n
3
4 . (2.26)

Also using (2.4) and (2.2), we get that zw ≤ m ≤ α · n 3
2 and so

wz

n
≤ α · √

n ≤ √
n. (2.27)

Finally from (2.3), we have that b0 ≤ b + n and so the second line in (2.25) is at
most

z∑

k=1

(b + n + k · w)w

n2
≤ z(b + n + zw)2w

n2

≤ 2m(n + m)

n2

≤ 2
√
n + 2m2

n2

≤ √
n + 2α2 · n (2.28)

where the second inequality in (2.28) follows from the estimate b + zw ≤ b0 +
zw = m (see (2.4)), and the third and fourth estimates in (2.28) follow from the
bound m ≤ α · n 3

2 (see (2.1)).
Plugging (2.28), (2.27) and (2.26) into (2.25), we get that

Δz ≤ Δ0 + 301n
3
4 · log n + √

n

(
12

10
+ 2K

)

+ 4Kα2 · n

≤ (β + 4Kα2) · n + 1 + 301n
3
4 · log n + √

n

(
12

10
+ 2K

)

(2.29)

for all n large, where the second inequality in (2.29) is obtained by using Δ0 ≤
Δ + 1 ≤ β · n + 1 (see (2.3) and the first condition in (2.2)). From the statement of
Theorem 1 and using K = 5, we have that

β + 4Kα2 = β + 20α2 <
1

2

strictly and so the degree of any vertex in Gz is strictly less than n
2 and also, the sum

of degrees of any two vertices in Gz is at most

(2β + 40α2) · n + 3 + 602n
3
4 · log n + 12

√
n

10
< n − 10

for all n large. Thus, the graph Gz can be obtained by the above probabilistic method
as in the discussion following (2.21). �
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Appendix

Throughout, we use the following deviation estimate. Let Zi , 1 ≤ i ≤ t be indepen-
dent Bernoulli random variables satisfying

P(Zi = 1) = pi = 1 − P(Zi = 0).

If Wt = ∑t
i=1 Zi and μt = EWt , then for any 0 < ε < 1

2 we have that

P (|Wt − μt | ≥ εμt ) ≤ 2 exp

(

−ε2

4
μt

)

. (A.30)

For a proof of (A.30), we refer to Corollary A.1.14, pp. 312, Alon and Spencer [1].
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Bounds of Some Energy-Like Invariants
of Neighbourhood Corona of Graphs

Chinglensana Phanjoubam and Sainkupar Mn. Mawiong

Abstract For a finite simple graph G with n vertices, Laplacian-energy-like is

defined as LEL(G) =
n∑

j=1

√
μ j , where μ j denotes Laplacian eigenvalue; and inci-

dence energy I E(G) =
n∑

j=1

√
q j , where q j denotes signless Laplacian eigenvalue. In

this paper, we give the bounds of some energy-like invariants, namely the Laplacian-
energy-like and the incidence energy of the neighbourhood corona of two graphs.
We observed that the bounds are sharp for the complete graph Kn .

Keywords Simple graph · Incidence energy · Laplacian-energy-like ·
Neighbourhood corona

1 Introduction

For a finite simple graph G having n vertices, its energy is defined [9] as E(G) =
n∑

j=1

|λ j |, where λ j for 1 ≤ j ≤ n denotes the eigenvalue of the adjacency matrix

of the graph G. This graph invariant was motivated by the molecular orbital the-
ory of conjugated π-electron systems in chemistry and was introduced by Gutman
[9] in mathematics, independent of chemical motivations. In [12], analogous to the

energy of a graph, Laplacian energy is defined as LE(G) =
n∑

j=1

∣∣∣∣μ j − 2m

n

∣∣∣∣, where

μ j for 1 ≤ j ≤ n denotes the eigenvalue of the Laplacian matrix of the graph G
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having m edges. Much beyond the applications in the molecular orbital theory of
conjugated molecules, the Laplacian energy is found to have remarkable chemical
applications [2]. Similar to the graph energy and Laplacian energy, Liu and Liu [17]
proposed another graph invariant known as Laplacian-energy-like which is defined

as LEL(G) =
n∑

j=1

√
μ j . The chemical applications of the Laplacian-energy-like are

much studied and are also described as a newly designed molecular descriptor [20].
Nikiforov introduced the idea of graph energy to a matrix as the sum of its singular
values [18]. Nikiforov’s idea inspired Jooyandeh et al. [15] to introduce the incidence
energy of a graph which is defined as the sum of the singular values of the incidence

matrix of the graph G. Moreover, note [10] that I E(G) =
n∑

j=1

√
q j , where q j for

1 ≤ j ≤ n denotes the eigenvalue of the signless Laplacian matrix of the graph G.
Laplacian-energy-like and incidence energy of a graph share many interesting

relations. In particular, they coincide when the graph is bipartite and for more rela-
tions, we refer the readers to see [10]. The Laplacian-energy-like and the incidence
energy are also much studied for some graph operations in recent years, particu-
larly on regular graphs as well as semi-regular graphs. For some derived graphs of
regular graphs, the bounds for the Laplacian-energy-like and the incidence energy
have been determined in [1] and [3]. Motivated by such results, we give the bounds
for the Laplacian-energy-like and the incidence energy of an important graph oper-
ation introduced recently in [8] called neighbourhood corona. The operation known
as corona of graphs is defined in [7] and a variant called neighbourhood corona
is defined recently in [8]. It is worth mentioning that the neighbourhood corona is
quite useful in constructing a new family of expander graphs. Expander graphs are
sparse but they are highly connected graphs. It has a wide number of applications
in computer science, communication networks, complexity theory, etc. (see [16] for
definitions and more details).

2 Preliminaries

We recall a few basic definitions and present some well-known results that are
required in the subsequent sections. We consider only finite simple graph G hav-
ing n number of vertices and m number of edges throughout our paper. Let
V (G) = {v j : 1 ≤ j ≤ n} be the vertex set of G. The adjacency matrix AG = (a jk)

of the graph G is an n × n matrix where a jk is defined as follows:

a jk :=
{
1 ifv j is adjacent to vk

0 otherwise.
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The degree of a vertex v j is denoted by d j , 1 ≤ j ≤ n. The graph G is said to be
regular with regularity r if d j = r ∀ j = 1, . . . , n. The diagonal matrix of the graph
G with d j , 1 ≤ j ≤ n as its diagonal entries is denoted by DG . The Laplacian matrix
of the graph G is defined as LG = DG − AG . And the signless Laplacian matrix of
the graph G is defined as QG = DG + AG . Let μ1 ≤ · · · ≤ μn be the eigenvalues of
LG , known as Laplacian eigenvalues. Let q1 ≤ · · · ≤ qn be the eigenvalues of QG ,
known as signless Laplacian eigenvalues. We remark that it is well known [4] that
μ1 = 0 and q1 ≥ 0; and for an r -regular graph, μn ≤ 2r and qn = 2r .

We now recall the definition of neighbourhood corona, denoted byG1 � G2, of two
graphs G1 and G2 having n1 and n2 vertices respectively that are disjoint, introduced
by Gopalapillai in [8].

Definition 1 Theneighbourhood coronaG1 � G2 is defined [8] as the graph obtained
by taking one copy of G1 and n1 copies of G2 and then joining every neighbour of
the j th vertex of G1 to every vertex in the j th copy of G2 by an edge.

Liu and Zhou in [16] computed the Laplacian eigenvalues of the neighbourhood
corona of a regular and any arbitrary graphs; and also the signless Laplacian eigen-
values of the neighbourhood corona of two regular graphs.

Theorem 1 ([16]) Let G1 be a regular graph having n1 ≥ 2 vertices and regularity
r1 ≥ 1, and G2 be an arbitrary graph having n2 ≥ 1 vertices. Let the Laplacian
eigenvalues of G1 and G2 be 0 = μ1 ≤ μ2 ≤ · · · ≤ μn1 and 0 = η1 ≤ η2 ≤ · · · ≤
ηn2 , respectively. Let G = G1 � G2. Let

α j , ᾱ j = (n2 + 1)r1 + μ j ± √
((n2 + 1)r1 + μ j )2 − 4μ j ((2n2 + 1)r1 − n2μ j )

2

for each j = 1, . . . , n1. The Laplacian eigenvalues of G are then given by

[
r1 + η2 . . . r1 + ηn2 α1 ᾱ1 . . . αn1 ᾱn1

n1 . . . n1 1 1 . . . 1 1

]

where the first row entries are the eigenvalues with their corresponding multiplicities
listed in the second row.

Theorem 2 ([16]) Let G1 and G2 be regular graphs having n1 ≥ 2 and n2 ≥ 2
vertices; and regularities r1 ≥ 1 and r2 ≥ 1, respectively. Let the signless Laplacian
eigenvalues of G1 and G2 be q1 ≤ · · · ≤ qn1 and θ1 ≤ · · · ≤ θn2 , respectively. Let
G = G1 � G2. Then the signless Laplacian eigenvalues of G consist of
(i) two eigenvalues which are the solutions of the following equation:

x2 − ((n2 + 1)r1 + 2r2 + q j )x + (2n2r1r2 + (2n2r1 + 2r2 + r1)q j − n2q j
2) = 0

for each j = 1, . . . , n1;
(ii) r1 + θ j , repeated n1 times, for each j = 1, . . . , n2 − 1.
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Definition 2 The first Zagreb index M1(G) of G is defined [13] as

M1(G) =
∑

v j∈V (G)

d j
2.

Remark 1 Notice that

n∑

j=1

μi
2 = tr(D − A)2 =

n∑

j=1

(d j
2 + d j )

=M1(G) + 2m.

So, for a regular graph G with regularity r we have
n∑

i=1

μ j
2 = M1(G) + rn.

Notice that M1(G) satisfy the following well-known bounds.

Lemma 1 ([6]) Let G be a graph having n ≥ 3 vertices and m edges. Then M1(G)

satisfies the following:

M1(G) ≤ m

(
2m

n − 1
+ n − 2

)
.

The equality is true if and only if G ∼= Sn or Kn.

Lemma 2 ([13]) Let G be a graph having n vertices and m edges. Then M1(G)

satisfies the following:

M1(G) ≥ 4m2

n
.

The equality is true if and only if G is isomorphic to a regular graph.

Lemma 3 ([5]) Let G be a graph having n vertices and m ≥ 1 edges. Let the
Laplacian eigenvalues of G be 0 = μ1 ≤ μ2 ≤ · · · ≤ μn. Then μ2 = μ3 = · · · = μn

if and only if G ∼= Kn.

Lemma 4 ([3]) Let G be a graph having n vertices andm ≥ 1 edges. Let the signless
Laplacian eigenvalues of G be q1 ≤ q2 · · · ≤ qn. Then q1 = q2 = · · · = qn−1 if and
only if G ∼= Kn.

Lemma 5 (Ozeki’s inequality) ([19]) Let {x j : 1 ≤ j ≤ n} and {y j : 1 ≤ j ≤ n} be
two sequences of numbers satisfying C ≥ x j ≥ c > 0 and D ≥ y j ≥ d > 0, ∀ j =
1, . . . , n. Then

⎛

⎝
n∑

j=1

x j y j

⎞

⎠
2

≥
n∑

j=1

x j
2

n∑

j=1

y j
2 − n2

4
(CD − cd)2.
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Lemma 6 ([14]) Let {x j : 1 ≤ j ≤ n} and {y j : 1 ≤ j ≤ n} be two sequences
of numbers satisfying C ≥ x j ≥ c ≥ 0 and D ≥ y j ≥ d ≥ 0, ∀ j = 1, . . . , n, and

CD �= 0. Let x = c

C
and y = d

D
. If (1 + x)(1 + y) ≥ 2, then the above Ozeki’s

inequality holds.

3 Bounds for the Laplacian-Energy-Like
of Neighbourhood Corona

We consider the Laplacian-energy-like of the neighbourhood corona. We present its
bounds in the following theorem and we also observe that the bounds are sharp for
the complete graphs.

Theorem 3 Let G1 be a regular graph having n1 ≥ 2 vertices, m1 edges and reg-
ularity r1 ≥ 1, and G2 be an arbitrary graph having n2 ≥ 1 vertices and m2 edges.

Let G = G1 � G2. Let a = n2

(
r1 + M1(G1)

n1

)
and b = 2m2

n2 − 1
+ r1. Then we have

the following:

(i) LEL(G) ≤ n1

√
(n2 + 2)r1 + 2

√
(2n2 + 1)r12 − a + n1(n2 − 1)

√
b.

The equality is true if and only if G1
∼= Kn1 and G2

∼= Kn2 .

(ii) LEL(G) > n1

√√√√(n2 − 1
2 )r1 + 2

√(
2n2 − 1

2

)
r12 − a + n1(n2 − 1)

√
b − m2

2
.

Proof Let the Laplacian eigenvalues ofG1 andG2 be 0 = μ1 ≤ μ2 ≤ · · · ≤ μn1 and
0 = η1 ≤ η2 ≤ · · · ≤ ηn2 , respectively; and let

α j , ᾱ j = (n2 + 1)r1 + μ j ± √
((n2 + 1)r1 + μ j )2 − 4μ j ((2n2 + 1)r1 − n2μ j )

2

for each j = 1, . . . , n1. Then from Theorem 1 and a simple computation, we have

LEL(G) =
n1∑

j=1

(
√

α j +
√

ᾱ j ) + n1

n2∑

j=2

√
r1 + η j

=
n1∑

j=1

√
(
√

α j +
√

ᾱ j )
2 + n1

n2∑

j=2

√
r1 + η j

=
n1∑

j=1

√
(n2 + 1)r1 + μ j + 2

√
μ j (2n2 + 1)r1 − n2μ j

2 + n1

n2∑

j=2

√
r1 + η j .

(1)
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Note that
n1∑

j=1

μ j = r1n1,
n2∑

j=2

η j = 2m2 and
n1∑

j=1

μ j
2 = r1n1 + M1(G1). By the

Cauchy-Schwarz inequality in (1), we get

LEL(G) ≤
√√√√n1

n1∑

j=1

(
(n2 + 1)r1 + μ j + 2

√
μ j (2n2 + 1)r1 − n2μ j

2

)

+ n1

√√√√(n2 − 1)
n2∑

j=2

(r1 + η j )

=
√√√√n12(n2 + 2)r1 + 2n1

n1∑

i=1

√
μi (2n2 + 1)r1 − n2μi

2

+ n1
√

(n2 − 1)((n2 − 1)r1 + 2m2)

≤

√√√√√n12(n2 + 2)r1 + 2n1

√√√√n1

n1∑

j=1

(
μ j (2n2 + 1)r1 − n2μ j

2
)

+ n1(n2 − 1)

√

r1 + 2m2

n2 − 1

= n1

√√√√
(n2 + 2)r1 + 2

√

(2n2 + 1)r12 − n2

(
r1 + M1(G1)

n1

)

+ n1(n2 − 1)

√
2m2

n2 − 1
+ r1.

Notice that the above inequalities become equalities if and only if μ2 = · · · = μn1
and η2 = · · · = ηn2 . Thus, Lemma 3 implies that the equality is true if and only if
G1

∼= Kn1 and G2
∼= Kn2 .

Next, let x j =
√

(n2 + 1)r1 + μ j + 2
√

μ j (2n2 + 1)r1 − n2μ j
2 and y j = 1 for

j = 1, . . . , n1. ChooseC =
√

(n2 + 3 + 2
√
2)r1, c = √

(n2 + 1)r1, d = 1 and D =
1. Note that 0 ≤ μ j ≤ 2r1 ∀ j = 1, . . . , n1. Thus, C ≥ x j ≥ c > 0 and D ≥ y j ≥
d > 0, ∀ j = 1, . . . , n1. Also, note that (2 + 2

√
2)r1 < (C + c)2. So

(CD − cd)2 = ((2 + 2
√
2)r1)2

(C + c)2
< 6r1.

Thus by Ozeki’s inequality, we have
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n1∑

j=1

x j >

√√√√n1

n1∑

j=1

(
(n2 + 1)r1 + μ j + 2

√
μ j (2n2 + 1)r1 − n2μ j

2

)
− 3n12r1

2

=
√√√√n12

(
n2 − 1

2

)
r1 + 2n1

n1∑

j=1

√
μ j (2n2 + 1)r1 − n2μ j

2. (2)

Again, let x j = √
μ j (2n2 + 1)r1 − n2μ j

2 and y j = 1 for j = 1, . . . , n1. Choose
C = √

2r1, c = 0, d = 1 and D = 1. Since 0 ≤ μ j ≤ 2r1, we have C ≥ x j ≥ c ≥ 0
and D ≥ y j ≥ d ≥ 0, ∀ j = 1, . . . , n1. Also, CD �= 0. Note that (CD − cd)2 =
2r12. Since

(
1 + c

C

) (
1 + d

D

)
= 2, by Lemma 6, we have

n1∑

j=1

(
μ j (2n2 + 1)r1 − n2μ j

2) >

√√√√n1

n1∑

j=1

(
μ j (2n2 + 1)r1 − n2μ j

2) − 1

2
n1

2r1
2

= n1

√(
2n2 − 1

2

)
r12 − n2

(
r1 + M1(G1)

n1

)
. (3)

And let x j = √
r1 + η j and y j = 1, j = 2, 3, . . . , n2. We choose C = √

r1 + 2m2,
c = √

r1, d = 1 and D = 1. Since 0 ≤ η j ≤ 2m2, we have C ≥ xi ≥ c > 0 and

D ≥ yi ≥ d > 0, ∀ j = 2, 3, . . . , n2. Note that (CD − cd)2 = 4m2
2

(C + c)2
< 2m2.

Applying Ozeki’s inequality, we have

n2∑

j=2

√
r1 + η j >

√
2m2(n2 − 1) + (n2 − 1)2

(
r1 − m2

2

)

= (n2 − 1)

√
2m2

n2 − 1
+ r1 − m2

2
. (4)

From (1)–(4) we get (i i).

The following corollary is now immediate by using the fact that 0 ≤ η j ≤ 2r2 to
obtain an inequality similar to (4) for a regular graph with regularity r2 and from
Lemmas 1 and 2.

Corollary 1 Let G1 and G2 be regular graphs having n1 ≥ 2 and n2 ≥ 1 vertices,
m1 and m2 edges, and regularities r1 ≥ 1 and r2 ≥ 1, respectively. Let G = G1 � G2

and let a = r2n2
n2 − 1

+ r1. Then we have the following:
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(i) LEL(G) ≤ n1

√
(n2 + 2)r1 + 2

√
(2n2 + 1)r12 − n2b + n1(n2 − 1)

√
a where

b = r1 + m1

(
r1

n1 − 1
+ n1 − 2

n1

)
. The equality is true if and only if G1

∼= Kn1 and

G2
∼= Kn2 .

(ii) LEL(G) > n1

√√√√
(
n2 − 1

2

)
r1 + 2

√(
n2 − 1

2

)
r12 − n2r1 + n1(n2 − 1)

√
a − r2

2
.

4 Bounds for the Incidence Energy of Neighbourhood
Corona

We consider the incidence energy of neighbourhood corona, and we present its
bounds in the following theorem.We observe similar to the case of Laplacian-energy-
like that the bounds of the incidence energy of neighbourhood corona are sharp when
the graphs are complete.

Theorem 4 Let G1 and G2 be regular graphs having n1 ≥ 2 and n2 ≥ 2 ver-
tices, and regularities r1 ≥ 1 and r2 ≥ 1, respectively. Let G = G1 � G2 . Let

a = r1n2(2r1 + 2r2 − 1) − n2M1(G1)

n1
and b = r1 + (n2 − 2)r2

n2 − 1
. Then we have the

following:
(i) I E(G) ≤ n1

√
(n2 + 2)r1 + 2r2 + 2

√
a + r1(2r2 + 1) + n1(n2 − 1)

√
b.

The equality is true if and only if G1
∼= Kn1 and G2

∼= Kn2 .

(ii) I E(G) > n1

√

(n2 + 1 − 4r1)r1 + 2r2 + 2

√
a + r1

(
r2 + 1 − r1

2

)
+ n1(n2 −

1)

√
b − r2

2
.

Proof Let the signless Laplacian eigenvalues ofG1 andG2 be respectively 0 ≤ q1 ≤
q2 ≤ · · · ≤ qn1 and 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn2 . Let

β j , β̄ j = (n2 + 1)r1 + 2r2 + q j ±
√

((n2 + 1)r1 + 2r2 + q j )2 − 4(2n2r1r2 + kq j − n2q j
2)

for each j = 1, . . . , n1 and k = 2n2r1 + 2r2 + r1.Then fromTheorem2 and a simple
computation, we have
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I E(G) =
n1∑

j=1

⎛

⎝
√

β j

2
+

√
β̄ j

2

⎞

⎠ + n1

n2−1∑

j=1

√
r1 + θ j

=
n1∑

j=1

√
(n2 + 1)r1 + 2r2 + q j + 2

√
2n2r1r2 + kq j − n2q j

2

+ n1

n2−1∑

j=1

√
r1 + θ j . (5)

Note that
n1∑

j=1

q j = r1n1,
n2−1∑

j=1

θ j = (n2 − 2)r2 and
n1∑

j=1

q j
2 = r1n1 + M1(G1). By the

Cauchy-Schwarz inequality in (5) and a simple computation as in Theorem 3, we
have

I E(G) ≤ n1

√√√√
(n2 + 2)r1 + 2r2 + 2

√

r1n2a + r1(2r2 + 1) − n2M1(G1)

n1

+ n1(n2 − 1)

√

r1 + (n2 − 2)r2
n2 − 1

.

Notice that the above inequality becomes an equality if and only if q1 = · · · = qn1−1

and θ1 = · · · = θn2−1. Thus by Lemma 4, the equality is true if and only if G1
∼= Kn1

and G2
∼= Kn2 .

Next, let x j =
√

(n2 + 1)r1 + 2r2 + q j + 2
√
2n2r1r2 + kq j − n2q j

2 and y j = 1

for j = 1, . . . , n1. Choose C =
√

(n2 + 3)r1 + 2r2 + 2
√
2r1(r2n2 + 2r2 + r1), c =√

(n2 + 1)r1 + 2r2 + 2
√
2r1r2n2, d = 1 and D = 1. Note that 0 ≤ q j ≤ 2r1 for j =

1, 2, . . . , n1. ThusC ≥ x j ≥ c > 0 and D ≥ y j ≥ d > 0, ∀ j = 1, . . . n1. Also note
that

(CD − cd)2 = 4r1
2

(
1

C + c
+ r1 + r2

(C + c)(e + f )

)2

< 16r1
2

where e = √
2r1(r2n2 + 2r2 + r1) and f = √

2r1r2n2. Thus by Ozeki’s inequality,
we have

n1∑

j=1

x j >

√√√√n12((n2 + 2 − 4r1)r1 + 2r2) + 2n1

n1∑

j=1

√
2n2r1r2 + kq j − n2q j

2. (6)

Again, let x j = √
2n2r1r2 + kq j − n2q j

2 and y j = 1 for j = 1, . . . , n1. Choose
C=√

2n2r1r2 + 2r1(2r2 + r1), c = √
2n2r1r2, d = 1 and D = 1. Since 0 ≤ q j ≤

2r1, we have C ≥ x j ≥ c > 0 and D ≥ yi ≥ d > 0, ∀ j = 1, . . . , n1. Note that
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(CD − cd)2 = 4r12(2r2 + r1)2

(C + c)2
< 2r1(2r2 + r1).

Thus by Ozeki’s inequality, we have

n1∑

j=1

x j > n1

√

r1n2(2r1 + 2r2 − 1) + r1
(
r2 + 1 − r1

2

)
− n2M1(G1)

n1
. (7)

Finally, let x j = √
r1 + θ j and y j = 1, j = 1, 2, . . . , n2 − 1. ChooseC=√

r1 + 2r2,
c=√

r1, d = 1 and D = 1. Since 0 ≤ θ j ≤ 2r2, we have C ≥ x j ≥ c > 0 and D ≥
y j ≥ d > 0 for j = 1, 2, . . . , n2 − 1. Note that (CD − cd)2 = 4r22

(C + c)2
< 2r2.

Thus by Ozeki’s inequality, we have

n2−1∑

j=1

√
r1 + θ j >

√
(n2 − 2)r2(n2 − 1) + (n2 − 1)2

(
r1 − r2

2

)
. (8)

From (5)–(8) we get the required result (i i).

5 Conclusions

Neighbourhood corona is a recent graph operation which is used in the construction
of graph expanders. In this paper, we have presented the bounds of the two energy-
like invariants of neighbourhood corona of two graphs, namely LEL and I E , which
are important graph invariants with applications in molecular chemistry. We also
obtained that the bounds for LEL and I E for neighbourhood corona of two graphs
are sharp when all the graphs considered are the complete graph Kn .
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Linear Recurrent Fractal Interpolation
Function for Data Set with Gaussian
Noise

Mohit Kumar, Neelesh S. Upadhye, and A. K. B. Chand

Abstract In this article, we use the linear recurrent fractal interpolation function
approach to interpolate a data set with Gaussian noise on its ordinate. To investigate
the variability at any intermediate point in the given noisy data set, we estimate
the parameters of the probability distribution of the fractal function. In addition, we
present a simulation study that experimentally confirms our theoretical findings.

Keywords Recurrent fractal interpolation function · Gaussian noise · Random
noise · Normal distribution · Distribution of fractal function

1 Introduction

In 1986, Barnsley [1] introduced the concept of fractal interpolation based on the the-
ory of iterated function systems (IFSs), and since then it has emerged as an important
and powerful technique for modellingmany natural phenomena. During the develop-
ment of fractal interpolation theory, several researchers have generalized this concept
in various ways and have developed different types of fractal interpolation functions
(FIFs) such as recurrent FIF [2], alpha-FIF [3], vector-valued FIF [4], local FIF [5],
randomFIF [6–9], andmanymore (see, [10, 11]). Further,many of themhave studied
numerous analytical properties of these FIFs such as smoothness [12], stability [13],
convexity [14], positivity [15], and shape preservation [16]. Presently, fractal inter-
polation has several applications in mathematics and various other applied science
disciplines [17–19].
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During data collection process, we often encounter some random noise on data.
However, dealing with noisy data is always a challenging task. In today’s world, it
is necessary to analyse the variability in the data before making any decisions based
on it. Therefore, if we obtain noisy data with some fractal features, such as statistical
self-similarity, and want to predict a missing or unknown value at any intermediate
point in the given data. Then, we have to use this noisy data in such a way that
the fractal properties are retained. In fact, dealing with noise and fractality together
is more challenging. This article considers data set in R

2 with Gaussian noise on
the ordinate and applies the technique of recurrent fractal interpolation [2], which is
useful for predicting variability at an interpolated value. Themotivation behind using
noise with a Gaussian distribution is that it is the most widely used distribution in
statistics, and a significant number of theories for statistical tests of this distribution
have already been developed in the literature.

The rest of the article is arranged as follows. In Sect. 2, we briefly discuss the
theory of recurrent IFS and the construction of recurrent FIF. Section3 describes
the construction procedure of recurrent FIF for data set with Gaussian noise and
estimates the parameters of probability distribution of this fractal function. In Sect. 4,
we present a simulation study that validates our analytical findings. At the end,
concluding observations are discussed in Sect. 5.

2 Preliminaries

For any N ∈ N, let us denote NN := {1, 2, . . . , N } and N
0
N := {0} ⋃

NN . Also,
let N ≥ 2 be an integer and �y = {(xk, yk) : k ∈ N

0
N } be a given data set in R

2,
where x0 < x1 < · · · < xN . There are several functions passing through all the points
(xk, yk) of this data set, such as Lagrange’s interpolation function, which is a unique
N th degree polynomial passing through N + 1 given data points and various types of
splines. However, polynomials or other smooth approximation functions may not be
appropriate if the data points are derived from a curve or process that has fractal prop-
erties such as coastlines or electrocardiograms. In this context, fractal interpolation
[1] is an effective approach.

In this article, we use recurrent fractal interpolation method [2] (a generalization
of approach given in [1]), which is based on the theory of recurrent IFS (or RIFS).

2.1 Basics of RIFS

Definition 1 ([20]) An iterated function system consists of a complete metric space
(X, d) together with a collection of continuous maps Wk : X → X for all k ∈ NN ,
and it is denoted by {X;Wk : k ∈ NN }.
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If each Wk is a contraction, then the IFS is referred to as a hyperbolic or contractive
IFS.

Definition 2 A recurrent IFS comprised of an IFS {X;Wk : k ∈ NN } together with
an N × N irreducible row-stochastic matrix P = (

pi j
)
N×N

satisfying

(i) pi j ∈ [0, 1], i, j ∈ NN ,

(ii)
N∑

j=1
pi j = 1, i ∈ NN ,

(iii) for any i, j ∈ NN , there exist k1, k2, . . . , kn ∈ NN with k1 = i and kn = j such
that pk1k2 pk2k3 . . . pkn−1kn > 0.

We denote this RIFS by {X; P;Wk : k ∈ NN }.
Essentially, RIFS is a Markov chain with N states and its kth state is represented

by mapWk . Hence, pi j is the transition probability from state i to state j . Moreover,
item (iii) implies that the chain is irreducible, which means that every state in the
chain is accessible from every other state. Here, the recurrent structure can also be
given through an irreducible connection matrix C = (

ci j
)
N×N , where

ci j =
{
1 if p ji > 0,

0 if p ji = 0.
(1)

Now, a brief construction of recurrent fractal by using RIFS is given as follows.
For more detailed information, the reader can see Ref. [2]. Let us denote the product
space

H̃(X) := H(X) × · · · × H(X)
︸ ︷︷ ︸

N times

= H(X)N ,

whereH(X) is the collection of non-empty compact subsets of X , which is complete
with respect to the Hausdorff metric

h(A, B) = max{max
a∈A

min
b∈B d(a, b),max

b∈B min
a∈A

d(a, b)}, A, B ∈ H(X).

Define a metric h̃ on H̃(X) by

h̃(A,B) := max
k∈NN

h(Ak, Bk), where A = (A1, . . . , AN ),B = (B1, . . . , BN ).

Then
(
H̃(X), h̃

)
is a complete metric space. Next, we define a map

W : H̃(X) → H̃(X)

for all (A1, . . . , AN ) ∈ H̃(X) by



220 M. Kumar et al.

W(A1, . . . , AN ) =
⎛

⎝
⋃

j∈�(1)

W1(A j ), . . . ,
⋃

j∈�(N )

WN (A j )

⎞

⎠ ,

where �(i) = { j : ci j = 1} �= ∅ for all i ∈ NN . In addition, W is a contraction on(
H̃(X), h̃

)
. Hence, there is a uniqueG = (G1, . . . ,GN ) ∈ H̃(X) such thatW(G) =

G, and Gi = ⋃
j∈�(i) Wi (G j ), i ∈ NN . This G is referred to as recurrent fractal or

attractor or invariant set of the RIFS.

Remark 1 We often call G = ⋃
i∈NN

Gi as the attractor of the RIFS.

As one can see, RIFS is an extension of IFS that gives more complex local self-
similar sets. Therefore, by employing the notion of RIFS, we can construct a more
general FIF known as recurrent FIF. Here, we give a brief construction of RFIF for
the data set �y . For detailed information, see Refs. [2, 21].

2.2 Construction of RFIF

Let us denote intervals I := [x0, xN ], and for all k ∈ NN , Ik := [xk−1, xk], and Jk :=
[xl(k), xr(k)], where l(k), r(k) ∈ N

0
N with l(k) < r(k). Now, define homeomorphisms

Lk : Jk → Ik by

Lk(x) = akx + bk =
(

xk − xk−1

xr(k) − xl(k)

)

x +
(
xr(k)xk−1 − xl(k)xk

xr(k) − xl(k)

)

, k ∈ NN . (2)

Here, Lk satisfies |Lk(x) − Lk(x∗)| ≤ |ak ||x − x∗|, x, x∗ ∈ Jk . In addition, if 0 <

|ak | < 1, i.e., |xk − xk−1| < |xr(k) − xl(k)|, then Lk becomes contraction. Alterna-
tively, to make Lk a contraction, we take Ik and Jk so that the length of Ik is less than
the length of Jk . Now, we define continuous maps Mk : Jk × R → R by

Mk(x, y) = ckx + dk y + ek =
(

yk − yk−1

xr(k) − xl(k)
− dk

yr(k) − yl(k)
xr(k) − xl(k)

)

x + dk y+
(
xr(k)yk−1 − xl(k)yk

xr(k) − xl(k)
− dk

xr(k)yl(k) − xl(k)yr(k)
xr(k) − xl(k)

)

, k ∈ NN . (3)

Here, Mk satisfies |Mk(x, y) − Mk(x, y∗)| ≤ |dk ||y − y∗|, x ∈ Jk and y, y∗ ∈ R.
For Mk to be a contraction on y-variable, we choose dk such that 0 ≤ |dk | < 1.

Next, for all k ∈ NN , we consider Wk : Jk × R → Ik × R by

Wk(x, y) = (Lk(x), Mk(x, y)) .

It is easy to verify thatWk(xl(k), yl(k)) = (xk−1, yk−1) andWk(xr(k), yr(k)) = (xk, yk).
In addition, Wk is a contraction with respect to some metric, equivalent to the
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Euclidean metric in R
2 and hence {I × R;Wk : k ∈ NN } forms a contractive IFS.

Also, we define a row-stochastic matrix P = (
pi j

)
N×N by

pi j =
{

1
ni

if Ii ⊂ Jj ,

0 if Ii �⊂ Jj ,

where ni denotes the number of j such that Ii ⊂ Jj for i ∈ NN . By appropriately
selecting Jk’s, we can assume that P is irreducible. Therefore, we construct RIFS
{I × R; P;Wk : k ∈ NN } associated with �y . Here, C = (

ci j
)
N×N can be obtained

by using (1) such that

ci j =
{
1 if I j ⊂ Ji ,

0 if I j �⊂ Ji .
(4)

Let C(I ) be the collection of real-valued continuous functions defined on I . Let
us define a metric d∞ on C(I ) by d∞( f, g) :=‖ f − g ‖∞= supx∈I | f (x) − g(x)|.
Then (C(I ), d∞) is a complete metric space. Also, define C∗(I ) := { f ∈ C(I ) :
f (xk) = yk, k ∈ N

0
N }. Then C∗(I ) is a closed subset of (C(I ), d∞), and thus a com-

plete metric space. Define an operator T : C∗(I ) → C∗(I ) by

T f (x) := Mk
(
L−1
k (x), f

(
L−1
k (x)

))
, x ∈ Ik and k ∈ NN .

It is easy to verify that T is a contraction on (C∗(I ), d∞), and hence there is a unique
fy ∈ C∗(I ) such that

fy(x) = Mk
(
L−1
k (x), fy

(
L−1
k (x)

))
, x ∈ Ik and k ∈ NN . (5)

Such an fy is called RFIF associated with �y . Let G := {(x, fy(x)
) : x ∈ I }, and

Gk := {(x, fy(x)
) : x ∈ Ik} for all k ∈ NN . Then G = ⋃

k∈NN
Gk . Moreover,

Gk = {(x, fy(x)
) : x ∈ Ik} = {(x, Mk

(
L−1
k (x), fy

(
L−1
k (x)

))) : x ∈ Ik}
= {(Lk(x), Mk

(
x, fy(x)

)) : x ∈ Jk} = {Wk
(
x, fy(x)

) : x ∈ Jk}
=

⋃

j∈�(k)

Wk
(
G j

)
.

Thus, G = (G1,G2, . . . ,GN ) is an attractor of the RIFS {I × R; P;Wk : k ∈ NN }
associated with the data set �y .

In the next section, we will construct linear RFIF for Gaussian noisy data set and
discuss parameter estimation of distribution of this RFIF.
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3 RFIF for Gaussian Noisy Data

Let us addGaussian noise ε on y-variable, that is, Y := y + ε. Therefore, for each k ∈
N

0
N , Yk := yk + εk , where εk ∼ N (0,σ2

k ) is a Gaussian noise. Let �Y := {(xk,Yk) :
k ∈ N

0
N } be a data set with Gaussian noise. If we assume εk’s are independent, then

Yk’s are as well. Here Yk ∼ N (yk,σ2
k ). For k ∈ NN , we define Mk : Jk × R → R

(a random analog of Mk) by Mk(x,Y ) = Ckx + dkY + Ek , where

Ck = Yk − Yk−1

xr(k) − xl(k)
− dk

Yr(k) − Yl(k)
xr(k) − xl(k)

,

Ek = xr(k)Yk−1 − xl(k)Yk
xr(k) − xl(k)

− dk
xr(k)Yl(k) − xl(k)Yr(k)

xr(k) − xl(k)
.

(6)

DefineWk : Jk × R → Ik × R byWk(x,Y ) = (Lk(x),Mk(x,Y )) , k ∈ NN and
construct RIFS {I × R; P;Wk : k ∈ NN } corresponds to the data set �Y , which is a
random analog to the RIFS {I × R; P;Wk : k ∈ NN } associated with �y . There is
a unique RFIF fY : I → R (a random analog of fy in (5)) such that

fY (x) = Mk
(
L−1
k (x), fY

(
L−1
k (x)

))
, x ∈ Ik, k ∈ NN . (7)

To estimate the parameters of the probability distribution of RFIF fY (x), we first
have to write (7) in the explicit form.

3.1 Explicit Expression of the RFIF

It can be easily observed that the RIFS {I × R; P;Wk : k ∈ NN } is irreducible.
Therefore, we can utilize all the mapsWk’s (or Lk’s) of the RIFS over a sufficiently
long period of time.

Let t ∈ Ii be a given point. Then for any x ∈ I j , we have a sequence {kn}n∈N inNN

such that Lk1k2...kn (x) → t as n → ∞, where Lk1k2...kn (x) = Lk1 ◦ Lk2 ◦ · · · ◦ Lkn (x).
In general, let t ∈ I , then there exists a sequence {kn}n∈N, kn ∈ NN , such that

lim
n→∞ Lk1k2...kn (x) = t, for any x ∈ I. (8)

As we know that Ik = Lk(Jk) = ⋃
j∈�(k) Lk(I j ). Therefore, I = ⋃N

k=1 Ik is the
attractor of RIFS {I ;C; Lk : k ∈ NN }. Hence (8) is verified. Now, by using induction
in (7), we can easily get the following expression (for detailed information, see Ref.
[9]).

fY
(
Lk1k2...kn (x)

)

= [
Ck1Lk2k3...kn (x) + dk1Ck2Lk3k4...kn (x) + · · · + dk1 . . . dkn−1Ckn x

] +
dk1 . . . dkn fY (x) + [

Ek1 + dk1Ek2 + · · · + dk1 . . . dkn−1Ekn

]
, x ∈ Jkn ⊂ I. (9)



Linear Recurrent Fractal Interpolation Function for Data Set with Gaussian Noise 223

Define left shift operator S(k1k2 . . . kn) := k2k3 . . . kn and its j-fold self-
composition by S j (k1k2 . . . kn) := k j+1k j+2 . . . kn for j ∈ Nn−1. Also, for simplicity
of notation, we denote Dj = ∏ j

i=1 dki and t j (x) = LS j (k1...kn)(x), for j ∈ Nn . Thus
(9) becomes

fY (Lk1...kn (x)) = Dn fY (x) +
n∑

j=1

Dj−1
(
Ck j t j (x) + Ek j

)
, x ∈ Jkn ⊂ I. (10)

Here we agreed that LSn(k1...kn)(x) = x and D0 = ∏0
i=1 dki = 1. Since fY is a con-

tinuous function and limn→∞ Dn = 0, therefore, as n → ∞, we have from (8) and
(10) that

fY (t) =
∞∑

j=1

Dj−1
(
Ck j t j (x) + Ek j

)
, x ∈ I. (11)

From (6), we get that

Ckz + Ek =
(

xr(k) − z

xr(k) − xl(k)

)

Yk−1 +
(

z − xl(k)
xr(k) − xl(k)

)

Yk−

dk

[(
xr(k) − z

xr(k) − xl(k)

)

Yl(k) +
(

z − xl(k)
xr(k) − xl(k)

)

Yr(k)

]

. (12)

Using (12) in (11), we get

fY (t) =
∞∑

j=1

[

Dj−1

(
xr(k j ) − t j (x)

xr(k j ) − xl(k j )

)]

Yk j−1

+
∞∑

j=1

[

Dj−1

(
t j (x) − xl(k j )

xr(k j ) − xl(k j )

)]

Yk j

−
∞∑

j=1

[

Dj

(
xr(k j ) − t j (x)

xr(k j ) − xl(k j )

)]

Yl(k j )

−
∞∑

j=1

[

Dj

(
t j (x) − xl(k j )

xr(k j ) − xl(k j )

)]

Yr(k j ). (13)

Aswe know thatYk j−1,Yk j ,Yl(k j ),Yr(k j ) ∈ {Y0,Y1, . . . ,YN }, since each k j ∈ NN . So,
we can separate the coefficients of Yi in (13) as follows

fY (t) =
N∑

i=0

ωi Yi , t ∈ I, (14)
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whereωi depends on the values of the sequence {k j } of t . Aswe can see from (14), for
each t ∈ I , the RFIF fY (t) is a random variable because Yi ’s are random variables.

3.2 Distribution of RFIF

It is known that the distribution of a linear combination of independent Gaussian
random variables is Gaussian. Therefore, for each t ∈ I , we see from (14) that fY (t)
is a Gaussian random variable and its parameters are estimated as follows. Mean of
fY (t) is

E [ fY (t)] =
N∑

i=0

ωiE[Yi ] =
N∑

i=0

ωi yi .

If we assume that yk is a realization of Yk , i.e., �y is a realization of �Y , then from
(14), we get that fy(t) = ∑N

i=0 ωi yi . Hence, E [ fY (t)] = fy(t). Variance of fY (t) is

Var [ fY (t)] =
N∑

i=0

ω2
i Var[Y 2

i ] =
N∑

i=0

ω2
i σ

2
i .

Therefore, the probability distribution of fY (t) is given by

fY (t) ∼ N
(

fy(t),
N∑

i=0

ω2
i σ

2
i

)

. (15)

4 Simulation

Let us consider the observed data set

�y ={(0.5, 3.5), (1.3, 2.3), (1.9, 4.6), (2.4, 7.5), (3.5, 3.8), (4.3, 5.7), (5.2, 3.8)}.

We can see from the above data set that x0 = 0.5, x1 = 1.3, x2 = 1.9, x3 = 2.4,
x4 = 3.5, x5 = 4.3, x6 = 5.2 and y0 = 3.5, y1 = 2.3, y2 = 4.6, y3 = 7.5, y4 = 3.8,
y5 = 5.7, y6 = 3.8. Therefore, N = 6, I = [0.5, 5.2], and I1 = [0.5, 1.3], I2 =
[1.3, 1.9], I3 = [1.9, 2.4], I4 = [2.4, 3.5], I5 = [3.5, 4.3], I6 = [4.3, 5.2]. Let
us consider J1 = J2 = [1.9, 3.5], J3 = J4 = [3.5, 5.2], J5 = J6 = [0.5, 1.9] such
that the row stochastic matrix P is irreducible. Using (4), the recurrent structure is
given by the connection matrix
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Fig. 1 Directed graph of C

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 0 0
0 0 1 1 0 0
1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The irreducibility of C can be confirmed by using its directed graph, as shown in
Fig. 1, which is strongly connected and hence C is irreducible.

Now, using (2), we can compute the parameters ak and bk of Lk as given below.

(a1, . . . , a6) = (0.500, 0.375, 0.294, 0.647, 0.571, 0.643),

(b1, . . . , b6) = (−0.450, 0.587, 0.871, 0.135, 3.214, 3.979).

If we take vertical scaling vector (d1, . . . , d6) = (0.3, 0.5,−0.3, 0.6,−0.5, 0.4).
Then, by using (3), we can compute the parameters ck and ek of Mk as given below.

(c1, . . . , c6) = (−0.600, 1.687, 1.706,−2.176, 1.750,−1.671),

(e1, . . . , e6) = (3.260,−3.206,−0.231, 12.838, 4.675, 5.136).

We may compute the values of RFIF fy using (5). The graph of fy (in blue color
curve) is shown in Fig. 2. Here green color dots represent given initial data points
(xk, yk) of �y .

Now we add Gaussian noise on y-values of the initial data set �y , that is, for k ∈
N

0
6,Yk = yk + εk ,where εk ∼ N (0,σ2

k )with (σ0, σ1, . . . ,σ6) = (1.8, 2.1, 1.7, 3.1,
2.2, 3.0, 1.9). Let us arbitrarily select a point t = 3.133 in the interval I . Ifwe choose
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Fig. 2 95% quantile band of the RFIF fY

x = 4.3 in (8) with maximum tolerance error 0.001 then, we get a sequence (also
known as code space) {4, 6, 1, 4, 6, 1, 3, 5, 1, 4} of t . Therefore, parameters ωi

of (14) can be computed as follows:

(ω0,ω1, . . . ,ω6)= (−0.0672, 0.1567,−0.1157, 0.3716, 0.4324, 0.4196,−0.1975).

Hence, by using (15), we can estimate the distribution of RFIF fY at the given point
t = 3.133.

fY (3.133) ∼ N (5.6646, 4.1186). (16)

The mean value of fY (3.133), i.e. E[ fY (3.133)] = fy(3.133) = 5.6646 is repre-
sented in Fig. 2 by a red color square. Moreover, blue curve in the same figure
depicts the expected value of the RFIF fY . Further, for the given noisy data set �Y ,
we can obtain 95% quantile bands of the RFIF fY , which are shown in Fig. 2. This
quantile band indicates that RFIF fY will lie between the upper and lower quantile
curves with a probability of 0.95.

Now, let us take 5000 random samples of �Y , which are deterministic data sets.
For each observed samplewe get aRFIF by using the same technique aswe did for the
initial data set �y . Therefore, we have 5000 random samples of RFIF fY and hence
we obtain 5000 observations of fY (3.133). The histogram of these random observa-
tions of fY (3.133) is shown in Fig. 3(i). In the same figure, we have fitted empirical
probability density function (PDF) and the estimated Gaussian PDF of fY (3.133)
given in (16). As we can see that the estimated Gaussian PDF is very close to the
empirical PDF, which implies that we have estimated the probability distribution of
fY (3.133) correctly. The same observation can also be seen from Fig. 3(ii), i.e., the
estimated Gaussian cumulative distribution function (CDF) of fY (3.133) is almost
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Fig. 3 Histogram with empirical and estimated gaussian PDFs, empirical and estimated gaussian
CDFs and normal Q-Q plot with 95% confidence bands for 5000 samples of fY (3.133)

similar to the empirical CDF of the observed samples of fY (3.133). Normal quantile-
quantile plot in Fig. 3(iii) depicts that random samples of fY (3.133) are almost in a
straight line, which implies that these samples are drawn from a normal or Gaussian
population. The 95% confidence bands are also represented in the same figure, which
shows that almost all the sample points lie between these lower and upper bands.

We can observe from the above simulation methods that the distribution of
fY (3.133) in (16) is valid. As we have chosen t = 3.133 arbitrarily in our simulation,
therefore, we can say in general that for any given t ∈ I , RFIF fY (t) is a Gaussian
random variable, whose parameters are provided in (15) and may be estimated in the
same manner as we did for t = 3.133.

5 Conclusion

For a data set containing Gaussian noise on the ordinate, the probability distribution
of a linear recurrent fractal interpolation function at any given point is Gaussian.
Therefore, if a data set includes Gaussian noise and is derived from a process that has
fractal characteristics, then we can easily identify the variability at any intermediate
point of the provided Gaussian noisy data set.
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C1-Rational Quadratic Trigonometric
Spline Fractal Interpolation Functions

Vijay and A. K. B. Chand

Abstract Trigonometric interpolation has an essential role in geometric modeling
of conic data. In this paper, a novel C1-rational quadratic trigonometric spline fractal
interpolation function with variable scaling and two families of shape parameters is
introduced. We have investigated the convergence analysis of this fractal interpolant
to a data-generating function in C3 from the uniform error bound. When the conic
data is positive and monotone, we have derived sufficient conditions based on the
scaling functions and shape parameters so that the resultant trigonometric spline FIF
preserves these fundamental shapes of conic data. The proposed results are veri-
fied by generating positive and monotonic trigonometric spline fractal interpolation
functions.

Keywords Fractals · Iterated function system · Rational quadratic trigonometric
fractal function · Positivity · Monotonicity

AMS Classifications 26A48 · 26C15 · 28A80 · 41A05 · 41A25 · 65D10

1 Introduction

Geometric modeling with splines has been a vital and fascinating area of research
for the last six decades with applications ranging from animated films to simulated
surgery. It attracts experts from numerical analysis, approximation theory, wavelets,
classical and discrete geometry, engineering design, civil engineering, and com-
puter science. This field is very active due to the continuous need for new techniques
based on assumptions of data generating function and the nature of data. Researchers
have tried various methods to tackle this problem with interpolating polynomials,
splines, trigonometric splines, exponential splines, rational splines, etc. All these
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non-recursive classical interpolants are either smooth or piecewise smooth and con-
sequently, they can have non-differentiability at a few points. But if the data is gener-
ated from an irregular and non-differentiable function, it is not ideal to approximate
them by these classical interpolants.

To unify the irregular objects and complex structures in nature and scientific
phenomena, Mandelbrot [16] coined the term fractal in the literature. Fractal-
based theory provides a robust framework to describe and analyze self-similar
and scale-invariant patterns. Fractal-generating systems can model most of these
complex phenomena by using simple self-referential rules with few parameters.
Hutchinson [13] proposed the iterated function system (IFS) in 1981 to generate
fractals through a common platform. Based on the structure of IFS, fractal inter-
polation functions (FIFs) were constructed by Barnsley [2] to fit non-smooth and
irregular curves such as peaks of clouds, stalactite dangled roofs of caves, lighten-
ing, ECG curves, turbulence, profiles of mountain ranges, etc., from their data points
[3]. But classical non-recursive interpolants and non-smooth fractal interpolants are
not good enough to interpolate functions that have nowhere differentiability in their
higher order derivatives. Using boundary conditions of fixed type, Barnsley and Har-
rington [4] developed the theory of r -times differentiable polynomial spline. Cubic
spline FIFs with any type of boundary conditions were proposed in an elegant con-
structive way using moments and derivatives in [6, 9] respectively. Thus, fractal
interpolation technique provides the flexibility of preferring a smooth or irregular
model depending on the nature of the problem at hand. Other thanmodeling data with
interpolant having a required degree of smoothness, preserving fundamental shapes
like positivity, monotonicity, and convexity of data are crucial in data visualization.
Chand and group proposed shape preserving interpolation and approximation using
FIFs, see [7, 8, 15, 17–19].

The applications of trigonometric functions are familiar in the fields of medicines,
harmonic motions, electronics, and automobile industries. Trigonometric interpola-
tion functions are effective if our data is generated from a conic function. Several
researchers have worked on shape-preserving trigonometric splines. Abbas [1] pro-
posed a rational cubic trigonometric spline for the positivity-preserving feature of
a prescribed positive data set. Han investigated quadratic and cubic trigonometric
interpolating polynomials with shape parameters analogous to the quadratic and
cubic B-spline curves, respectively [10, 11]. Ibraheem [14] constructed a C1-rational
cubic trigonometric spline to visualize positive data set. Bashir [5] proposed another
cubic rational trigonometric spline to retain positivity, monotonicity, and constrained
aspects of the given data set. Wang and Fan [20] introduced FIFs with variable scal-
ing functions to approximate sophisticated curves with less self-similarity.Wang and
Shan [21] investigated on smoothness, sensitivity, and stability of FIF with variable
scaling functions. Smooth FIFswith variable scaling functions have been constructed
in [19]. In thiswork,wehavepresented a novelC1-rational trigonometric fractal inter-
polation function using variable scaling functions and studied its shape-preserving
aspects.

A short description of our work is as follows. We construct a class of novel C1-
rational quadratic trigonometric spline (RQTS) fractal interpolation functions using
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variable scaling functions and two groups of shape parameters in Sect. 2 based on
the theory of IFS and fractal function with variable scaling. In Sect. 3, we deduce
the convergence analysis for our constructed fractal interpolant to a data-generating
smooth function in C3. In Sect. 4, we give bounds for the norm of variable scaling
functions and shape parameters to obtain strictly positive RQTS FIFs for a strict
positive data set. We obtain the bounds for shape parameters and scaling functions
to get positive and monotone RQTS FIF for a positive and monotonic data in Sect. 5.
Numerical examples of shape-preserving RQTS FIFs are given to support our theory
inside Sects. 4 and 5. Conclusions of our work for this paper are summarized in
Sect. 6.

2 Preliminaries and Construction of RQTS FIFs

Let us fix some notation for this paper: I is denoted as a compact interval of R. For
k ∈ N ∪ {0}, Ck(I ) is the set of all k-times continuously differentiable real valued
functions defined on I , and for g ∈ Ck(I ), ‖g‖k = max{‖g(r)‖∞ r = 0, 1, 2, . . . , k}.
For any j ∈ N, let N j = {1, 2, 3, . . . , j}, and N

0
j := {0, 1, 2, 3, . . . , j}.

Let (X , dX ) be a complete metric space. Consider a finite number of continu-
ous functions Wi : X → X , i ∈ NN−1. Then I := {X ; Wi , i ∈ NN−1} is called an
IFS. If each Wi , i ∈ NN−1 is a contraction map with contractive factor αi , then
I is known as an hyperbolic IFS. Let H(X ) be a set of all compact subsets of
X other than empty set. The Hausdorff metric dH(X ) on H(X ) is defined by
dH(X )(A, B) = max{DB(A),DA(B)}, where DB(A) = maxa∈A minb∈B dX (a, b).
From [3], it can be deduced that H(X ) with Hausdorff metric is a complete met-
ric space. Associated with the IFS I, a Hutchinson map W on H(X ) is defined
by W (A) = ⋃N−1

i=1 Wi (A),∀A ∈ H(X ). If our IFS I is hyperbolic, then eas-
ily we can prove that W on H(X ) is a contraction map with contractive factor
|α|∞ = max{|αi | : i ∈ NN−1} [3]. Therefore, using the Banach fixed point theorem,
the Hutchinson map defined above has a unique fixed point (say) G such that for
any initiator A ∈ H(X ), limm→∞ W o(m)(A) = G, where the limit is taken using
Hausdorff metric. This fixed point G is called the attractor or self-referential set or
deterministic fractal corresponding to the IFS I.

Let a set of interpolation points {(xi , yi ) ∈ I × R : i ∈ NN } be given, where
x1 < x2 < · · · < xN is a partition of I = [x1, xN ], and ∀i ∈ NN , yi ∈ [k1, k2] ⊂ R.
Let Ii := [xi , xi+1] and F := I × [k1, k2]. Let Ui : I → Ii , i = 1, 2, . . . , N − 1, be
contractive homeomorphisms such that

Ui (x1) = xi , Ui (xN ) = xi+1,

|Ui (μ∗) − Ui (μ
∗)| ≤ r |μ∗ − μ∗|, ∀μ∗,μ∗ ∈ I,

(2.1)

for some0 ≤ r < 1. For the values of ordinates, consider N − 1 continuous functions
Vi : F → R satisfying
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Vi (x1, y1) = yi , Vi (xN , yN ) = yi+1,

|Vi (μ,ω∗) − Vi (μ,ω∗)| ≤ |αi ||ω∗ − ω∗|, ∀μ ∈ I, ω∗,ω∗ ∈ [k1, k2], (2.2)

for some −1 < αi < 1, i ∈ NN−1. Now define mappings Wi : F → Ii × R, i =
1, 2, . . . , N − 1 by

Wi (x, y) = (Ui (x), Vi (x, y)), ∀(x, y) ∈ F .

Therefore, {F; Wi : i ∈ NN−1} is an IFS for the data set {(xi , yi ) :i ∈ NN }. For this
IFS, the following vital result has been proved by Barnsley [2]:

Theorem 1 The IFS {F; Wi : i ∈ NN−1} has a unique attractor G which is the
graph of a continuous function Υ : I → R satisfying Υ (xi ) = yi , ∀i = 1, 2, . . . , N.
Additionally, if C∗(I ) := {g ∈ C(I ) : g(x1) = y1, g(xN ) = yN } is endowed with uni-
form metric and Tα : C∗(I ) → C∗(I ) the Read-Bajraktarević (RB) operator is
defined by Tαg(x) = Vi (U

−1
i (x), g(U−1

i (x))), x ∈ Ii , i ∈ NN−1, then the function
Υ is the unique fixed point possesses by Tα.

The above fixed point Υ of Tα is known as a fractal interpolation function which
satisfies the following functional relation:

Υ (x) = Vi (U
−1
i (x), Υ (U−1

i (x))), ∀x ∈ Ii , ∀i ∈ NN−1. (2.3)

Most FIFs constructed for science and engineering problems are given by the maps

Ui (x) = ai x + bi , Vi (x, y) = αi y + qi (x), i ∈ NN−1, (2.4)

where ai and bi can be evaluated from (2.1), the free parameter −1 < αi < 1 is
called vertical scaling factor of the map Wi , and qi ∈ C(I ) such that the condition
(2.2) holds. An IFS with variable scaling functions was presented in [20] by Wang
and Fan using the iterated mappings

Ui (x) = ai x + bi , Vi (x, y) = αi (x)y + qi (x), i ∈ NN−1, (2.5)

where αi (x) on I is a Lipschitz function such that ‖αi‖∞ = sup{|αi (x)| : x ∈ I } <

1. Assume that for i ∈ NN−1, the above maps Ui (x) and Vi (x, y) are satisfying
(2.1)–(2.2). ThenAccording to Theorem1, the IFS {F (Ui (x), Vi (x, y)) : i ∈ NN−1}
defines a FIF Υ : I → R with variable scaling functions that satisfies the following
recursive relation:

Υ (x) = αi (U
−1
i (x))Υ (L−1

i (x)) + qi (U
−1
i (x)), ∀x ∈ Ii , ∀i ∈ NN−1. (2.6)

Barnsley–Harrington [4] developed conditions on parameters αi and qi ∈ Ck(I )
such that the IFS {I × R; (Ui (x), Vi (x, y)) : I ∈ NN−1} in (2.4) determines a FIF
Υ ∈ Ck(I ). This theorem has been extended in [19] to a FIF with variable scaling
functions by developing conditions on αi ∈ Ck(I ) and qi ∈ Ck(I ) such that the IFS
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{I × R; (Ui (x), Vi (x, y)) : i ∈ NN−1} determines a FIF Υ ∈ Ck(I ), where Ui and
Vi are as defined in (2.5). Furthermore, for n ∈ N

0
k , Υ satisfies

Υ (n)(Ui (x)) = a−n
i

[ n∑

j=0

(
n

j

)

α
(n− j)
i (x)Υ ( j)(x) + q(n)

i (x)
]
, i ∈ NN−1. (2.7)

Based on the above theory, we construct a novel continuously differentiable RQTS
FIF containing two shape parameters and a variable scaling function in each subin-
terval.

Theorem 2 Let {(xi , yi , di ) ∈ R
3 : i ∈ NN } be a given Hermite data set with x1 <

x2 < · · · < xN . Construct a rational IFS� = {I × R; (Ui (x), Vi (x, y)) : i ∈ NN−1},
where Ui (x) = ai x + bi , and Vi (x, y) = αi (x)y + qi (x) satisfying (2.1)–(2.2), and
for each i ∈ NN−1, αi ∈ C1(I ) satisfying ‖αi‖1 < ai

2 and qi ∈ C1(I ) is of the form

qi (x) = P∗
i (x)

R∗
i (x)

, where P∗
i (x) is a quadratic trigonometric polynomial and R∗

i (x) �= 0
(for all x ∈ I ) is a preassigned quadratic trigonometric polynomial. Then, for a fixed
choice of the rational IFS parameters, there exists a unique C1-RQTS FIF Υ which
satisfies Υ (xi ) = yi , Υ (1)(xi ) = di , ∀i ∈ NN .

Proof For 0 ≤ θ = π
2

x−x1
xN −x1

≤ π
2 , let

qi (x) = P∗
i (x)

R∗
i (x)

= Pi (θ)

Ri (θ)
, i ∈ NN−1, x ∈ I,

where P∗
i (x) = P∗

i (x1 + 2
π
θ(xN − x1)) = Pi (θ) = Ai1(1 − sin(θ))2 + Ai2(1 −

sin(θ)) sin(θ) + Ai3(1 − cos(θ)) cos(θ) + Ai4(1 − cos(θ))2, and R∗
i (x) = R∗

i (x1 +
2
π
θ(xN − x1)) = Ri (θ)=(1 − sin(θ))2 + ηi (1 − sin(θ)) sin(θ) + βi (1 − cos(θ)) cos

(θ) + (1 − cos(θ))2.
The free parameters ηi and βi to be chosen such that ηi > 0 and βi > 0 to get

a strictly positive denominator R∗
i (x) of qi . Consider G := {g ∈ C1(I ): g(x1) = y1,

g(xN ) = yN , g(1)(x1) = d1, and g(1)(xN ) = dN } be endowedwith themetric induced
by C1(I )-norm on I . Define the RB operator Tα on G as

(Tαg)(x) = αi (U
−1(x))g(U−1(x)) + P∗

i (U−1(x))

R∗
i (U

−1(x))
, x ∈ Ii , i ∈ NN−1, (2.8)

where α(x) = (α1(x),α2(x), . . . ,αN−1(x)). For all i = 1, 2, . . . , N − 1, ‖αi‖1 <
ai
2 < 1 implies Tα : G → G is a contraction map on a complete metric space. Thus,
there exists a unique fixed point say Υ ∈ G corresponding to the IFS �, which
satisfies

Υ (Ui (x)) = Vi (x, f (x)) = αi (x)Υ (x) + qi (x), x ∈ Ii , i ∈ NN−1. (2.9)
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The join-up conditions Vi (x1, y1) = yi , Vi (xN , yN ) = yi+1 are reduced to Υ (xi ) =
yi ,Υ (xi+1) = yi+1, i ∈ NN−1, which are now interpolation and continuity conditions
of Υ on I . Taking x = x1 in (2.9), we get

Υ (Ui (x1)) = αi (x1)Υ (x1) + Ai1 =⇒ Ai1 = yi − αi (x1)y1.

Similarly, substituting x = xN in (2.9), we compute A4i = yi+1 − αi (xN )yN .
Now, for i ∈ NN−1, by choosing ‖αi‖1 < ai

2 ,αi ∈ C1(I ) and qi ∈ C1(I ), we have
Υ ∈ C1(I ) (see [19]), and Υ (1) satisfies

aiΥ
(1)(Ui (x)) = αi (x)Υ (1)(x) + α(1)

i (x)Υ (x) + q(1)
i (x), i ∈ NN−1, x ∈ I.

(2.10)
Assigning x = x1 in (2.10), we have

aiΥ
(1)(Ui (x1)) = αi (x1)Υ (1)(x1) + α(1)

i (x1)Υ (x1) + q(1)
i (x1)

=⇒ Ai2 = ηi (yi − αi (x1)y1) + 2(xN −x1)
π

[ai di − αi (x1)d1 − α′
i (x1)y1].

Similarly, putting x = xN in (2.10), we obtain

Ai3 = βi (yi+1 − αi (xN )yN ) + 2(xN −x1)
π

[αi (xN )dN + α′
i (xN )yN − ai di+1].

Therefore, the novel C1-rational quadratic trigonometric spline FIF is given by

Υ (Ui (x)) = αi (x)Υ (x) + P∗
i (x)

R∗
i (x)

, i ∈ NN−1, x ∈ I, (2.11)

where

P∗
i (x) = Pi (θ) =(yi − αi (x1)y1)(1 − sin(θ))2 + (

ηi (yi − αi (x1)y1)

+ 2(xN − x1)

π
[ai di − αi (x1)d1 − α′

i (x1)y1]
)
(1 − sin(θ)) sin(θ)

+ (
βi (yi+1 − αi (xN )yN ) + 2(xN − x1)

π
[αi (xN )dN +

α′
i (xN )yN − ai di+1]

)
(1 − cos(θ)) cos(θ)

+ (yi+1 − αi (xN )yN )(1 − cos(θ))2,

R∗
i (x) = Ri (θ) =(1 − sin(θ))2 + ηi (1 − sin(θ)) sin(θ)

+ βi (1 − cos(θ)) cos(θ) + (1 − cos(θ))2.
(2.12)

This completes the existence of the proposed RQTS FIF in this result.

Now, let S be the rational quadratic trigonometric spline function defined in [12].
For x ∈ Ii = [xi , xi+1], let S := Si (x) such that

Si (x) := P∗∗
i (φi )

R∗∗
i (φi )

, (2.13)
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where

P∗∗
i (φi ) :=yi (1 − sin(φi ))

2 +
(

ηi yi + 2hi di

π

)

(1 − sin(φi )) sin(φi )

+
(

βi yi+1 − 2hi di+1

π

)

(1 − cos(φi )) cos(φi ) + yi+1(1 − cos(φi ))
2,

R∗∗
i (φi ) :=(1 − sin(φi ))

2 + ηi (1 − sin(φi )) sin(φi )

+ βi (1 − cos(φi )) cos(φi ) + (1 − cos(φi ))
2,

φi :=π

2

(
x − xi

hi

)

, x ∈ Ii , and hi := xi+1 − xi .

(2.14)

Remark 1 For all i ∈ NN−1 and for all x ∈ I , if we choose αi (x) = 0, then the
rational quadratic trigonometric spline FIFΥ given in (2.11) modifies to the classical
rational trigonometric spline interpolant S given in [12].

Remark 2 If derivative parameters di are not givenwith the data {(xi , yi ) : i ∈ NN },
then they must be determined either from the data (xi , yi ) or by any other appropriate
methods. The arithmetic mean and the geometric mean methods are popular choices
for calculating derivatives from data. Details for these methods are given in [8].

3 Convergence Analysis

Let us fix somenotation for this section: |y|∞ := maxi∈NN |yi |, |d|∞ := maxi∈NN |di |,
|η|∞ := maxi∈NN−1 ηi , |β|∞ := maxi∈NN−1 βi , ξi := min{ηi ,βi }, |ρ|∞ := max
{|η|∞, |β|∞}, |γ|∞ := maxi∈NN−1 γi , h := maxi∈NN−1 hi , α := (α1,α2, . . . ,αN−1),
‖α‖∞ := maxi∈NN−1 ‖αi‖∞, ‖α‖1 := maxi∈NN−1 ‖αi‖1, and σ := mini∈NN−1 σi , with

σi :=
{
1 if ξi ≥ 2
ξi

2 if ξi < 2.

From [12], we know that for a data generating function � ∈ C3(I ), the classical
RQTS function S converges to � with order O(h3) as h → 0. Here also we will
show that after giving some restrictions on scaling functions, our RQTS FIF Υ is
also converging to � with order O(h3) as h → 0.

Note that the associated rational functions of RQTS FIF qi depend on the scaling
factor αi (x) and the shape parameters ηi and βi , and hence qi can be considered as
a function of αi , ηi , βi , and φi . Thus, we can write qi (αi , ηi ,βi ,φi ) = Pi (αi ,ηi ,βi ,φi )

Ri (ηi ,βi ,φi )
,

i ∈ NN−1, where Pi and Ri are as given in (2.12).

Theorem 3 For the original data generating function � ∈ C3(I ), let Υ be the RQTS
FIF for data {(xi , yi , di ) : i = 1, 2, . . . , N }, where x1 < x2 < · · · < xN and S be the
non-recursive counterpart of Υ . Let the rational function qi required for Υ satisfying
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|qi (αi (x), ηi ,βi ,φi ) − qi (0, ηi ,βi ,φi )| ≤ ‖α‖1K0 for ‖αi‖1 < ai
2 for all i ∈ NN−1,

and for some real constant K0, Then we have

‖� − Υ ‖∞ ≤ h3‖�(3)‖∞|γ|∞ + ‖α‖1(‖S‖∞ + K0)

1 − ‖α‖1 ,

where |γ|∞ is some constant real number.

Proof Using triangle inequality for uniform norm, we have

‖� − Υ ‖∞ ≤ ‖� − S‖∞ + ‖S − Υ ‖∞. (3.15)

From [12], We know that for x ∈ [xi , xi+1],
|�(x) − Si (x)| = |�(x) − S(x)| ≤ ‖�(3)(λ)‖h3

i γi ,

where γi is some constant real number. Then, we obtain

‖� − S‖∞ ≤ ‖�(3)‖∞h3|γ|∞. (3.16)

Now, for a given data set and ‖αi‖1 < ai
2 , i ∈ NN−1, the RQTS FIF Υ ∈ C1(I ) is

the fixed point of the Read-Bajraktarević operator

(Tαg)(x) = αi (U
−1(x))(g(U−1

i (x)) + qi (αi , ηi ,βi ,φi ). (3.17)

We know these interpolants Υ and S are the fixed points of Tα with α �≡ 0 and α = 0
respectively.

Now

|TαΥ (x) − TαS(x)| = |{αi (U
−1
i (x))(Υ (U−1

i (x)) + qi (αi , ηi ,βi ,φi )}
− {αi (U

−1
i (x))(S(U−1

i (x)) + qi (αi , ηi ,βi ,φi )}|,

=⇒ |TαΥ (x) − TαS(x)| ≤ ‖α‖∞(‖Υ − S‖∞) ≤ ‖α‖1(‖Υ − S‖∞).

From the above inequality, we get

‖TαΥ − TαS‖∞ ≤ ‖α‖1‖Υ − S‖∞. (3.18)

Let x ∈ [xi , xi+1] and α �≡ 0. Then, (3.17) implies

|TαS(x) − T0S(x)| =
|{αi (U

−1
i )(S(U−1

i (x)) + qi (αi , ηi ,βi ,φi )} − qi (0, ηi ,βi ,φi )|,
i.e. |TαS(x) − T0S(x)| ≤ ‖α‖∞‖S‖∞ + ‖α‖1K0 ≤ ‖α‖1(‖S‖∞ + K0).

=⇒ ‖TαS − T0S‖∞ ≤ ‖α‖1(‖S‖∞ + K0). (3.19)
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Now using (3.18) and (3.19), we obtain

‖Υ − S‖∞ = ‖TαΥ − T0S‖∞ ≤ ‖TαΥ − TαS‖∞ + ‖TαS − T0S‖∞
≤ ‖α‖1‖Υ − S‖∞ + ‖α‖1(‖S‖∞ + K0).

=⇒ ‖Υ − S‖∞ ≤ ‖α‖1(‖S‖∞ + K0)

1 − ‖α‖1 . (3.20)

Now after putting (3.16) and (3.20) in the inequality (3.15), we can get our desired
result.

Now to conclude about the convergence results, we will try to find upper bounds
for ‖S‖∞ and K0. For x ∈ Ii , S(x) = Si (x), from (2.13) we have

|Si (x)| ≤ max{|P∗∗
i (φi )| : 0 ≤ φi ≤ π

2 }
min{|R∗∗

i (φi )| : 0 ≤ φi ≤ π
2 } .

Now using the extremum calculations, we can easily get the following bounds

|P∗∗
i (φi )| ≤ |y|∞ +

(

|ρ|∞|y|∞ + 2h

π
|d|∞

)

,

|R∗∗
i (φi )| ≥ 1 + (ξi − 2)(sin(φi ) + cos(φi ) − 1) ≥ σi .

=⇒ ‖S‖∞ ≤ (1 + |ρ|∞)|y|∞ + 2h
π

|d|∞
min{σi : i ∈ NN−1} .

Similarly, for x ∈ Ii and |I | := xN − x1,

|qi (αi , ηi ,βi ,φi ) − qi (0, ηi ,βi ,φi )| ≤ 1

σi

{
‖αi‖∞

(
max{|y1|, |yN |})

+ ‖αi‖∞
(
max{|ηi y1|, |βi yN |})

+ 2|I |
π

‖αi‖∞
(
max{|d1|, |dN |})

+ 2|I |
π

‖α(1)
i ‖∞

(
max{|y1|, |yN |})

}
.

Thus, we can take

K0 = (1 + |ρ|∞ + 2|I |
π

)(max{|y1|, |yN |}) + 2|I |
π

max{|d1|, |dN |}
min{σi : i ∈ NN−1} .
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Convergence results: In view of ai
2 ≤ h

2|I | and Theorem3, it is found that the
RQTS FIF Υ converges to � as h → 0. Furthermore, if we choose our variable
scaling functions such that ‖α‖1 < min

{
h3, h

2|I |
}
, then Theorem3 justifies that Υ

converges to � ∈ C3(I ) with order O(h3) as h → 0.

4 Positivity-Preserving RQTS FIF

In this section, we will restrict the associated shape parameters and variable scaling
functions such that the C1-RQTS FIF Υ satisfies Υ (x) > 0 ∀x ∈ I , for a strictly
positive data set.

Theorem 4 Let {(xi , yi ) i = 1, 2, . . . , N } be a given set of strictly positive data
satisfying x1 < x2 < · · · < xN , and di ’s are chosen derivative values at knots xi ’s.
For i ∈ NN−1, consider the iterated mappings Ui and Vi defined in (2.5) which are
satisfying (2.1) and (2.2), respectively. Then the corresponding RQTS FIF Υ will be
positive on I , if the non-negative variable scaling functions and shape parameters
are chosen as

‖αi‖1 <
ai

2
, αi (x1) <

yi

y1
, αi (xN ) <

yi+1

yN
,

ηi > max
{
0,

− 2|I |
π

[ai di − αi (x1)d1 − α′
i (x1)y1]

yi − αi (x1)y1

}
,

βi > max
{
0,

− 2|I |
π

[αi (xN )dN + α′
i (xN )yN − ai di+1]

yi+1 − αi (xN )yN

}
, ∀i ∈ NN−1.

Proof According to the Theorem2, for ‖αi‖1 < ai
2 and for αi (x), qi (x) ∈ C1(I ),

the RQTS FIF Υ ∈ C1(I ) and it satisfies the recursive formula

Υ (Ui (x)) = αi (x)Υ (x) + Pi (θ)

Ri (θ)
, i ∈ NN−1, x ∈ I.

Choosing ηi > 0 and βi > 0, Ri (θ) becomes positive on I . SinceΥ is the attractor of
the IFS {F; (Ui (x), Vi (x, y)) : i ∈ NN−1} and defined recursively, by the property of
the attractor, to show Υ > 0, it is sufficient to prove that for all x ∈ I , Υ (Ui (x)) > 0
∀i ∈ NN−1, whenever Υ (x) > 0. Take x ∈ I , Υ (x) > 0, and with these positive
shape parameters and the non-negative variable scaling functions, the positivity of
Υ (Ui (x)) reduces to the positivity of Pi (θ) for all θ ∈ [0, 1]. Now, if Ai j > 0, ∀ j ∈
N4, then we have Pi (θ) > 0. Thus,
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Ai1 > 0 ⇐⇒ αi (x1) <
yi

y1
,

Ai4 > 0 ⇐⇒ αi (xN ) <
yi+1

yN
,

Ai2 > 0 ⇐⇒ ηi >
− 2|I |

π
[ai di − αi (x1)d1 − α′

i (x1)y1]
yi − α(x1)y1

,

Ai3 > 0 ⇐⇒ βi >
− 2|I |

π
[αi (xN )dN + α′

i (xN )yN − ai di+1]
yi+1 − αi (xN )yN

.

Using the above conditions, we get the desired result.

Remark 3 For all i ∈ NN−1 and x ∈ I , if we choose these variable scaling functions
αi (x) = 0, then Theorem4 gives sufficient conditions on shape parameters

ηi > max
{
0,

−2hi di

πyi

}
and βi > max

{
0,

−2hi di+1

πyi+1

}
,

such that the RQTS function S defined in [12] becomes positive for a prescribed
positive data set {(xi , yi ) : i ∈ NN }.
Example 1 Consider strictly positive data set {(0.1, 1,−3), (0.3, 0.04, 2), (0.5,
0.6, 1), (0.7, 0.2,−3), (0.9, 4, 1)}. Following variable scaling functions and shape
parameters are used in the construction of RQTS FIFs in Fig. 1a–f.

Figure1 α η β

(a) (0, 0, 0, 0) (1, 1, 1, 3) (135, 1, 16, 1)
(b) ( x

9 , 12
100 , ex

20 ,
sin(x)
10 ) (1, 1, 1, 3) (135, 1, 16, 1)

(c) ( x
100 , x

9 , e1−x

25 ,
1+cos(x)

20 ) (1, 1, 1, 3) (135, 1, 16, 1)

(d) ( x
100 , 1−x

90 , e1−x

25 ,
1+cos(x)

20 ) (1, 1, 1, 3) (135, 1, 16, 1)
(e) ( x

100 , x
9 , ex

60 ,
1+cos(x)

20 ) (1, 1, 1, 3) (135, 1, 16, 1)
(f) ( x

100 , x
9 , ex

60 ,
1+cos(x)

20 ) (100, 10, 1, 35) (135, 12, 16, 19)

Figure1a is the plot of the classical RQTS function defined in [12]. In Fig. 1a, we
have used restricted shape parameters as described in Remark3 to get a strictly posi-
tive RQTS function. In Fig. 1b, we do not restrict our scaling functions as prescribed
by Theorem4, and the corresponding RQTSFIF is not positive on I = [0.1, 0.9]. But
when we restrict our shape parameters and scaling functions as prescribed in The-
orem4, then we get the positive RQTS FIFs plotted in Fig. 1c–f. To see the effects
of variable scaling functions, we have plotted Fig. 1d with a different function α2(x)

from Fig. 1c, and by comparing these figures, we can observe the effects of α2(x)

on a positive RQTS FIF. Similarly, in Fig. 1e, we have used a different scaling func-
tion α3(x) from Fig. 1c. Now, it is easy to observe the effects of α3(x) on positive
RQTS FIF. In Fig. 1f, we have used different shape parameters η = (100, 10, 1, 35)
and β = (135, 12, 16, 19) with the same scaling functions as used for Fig. 1e to
demonstrate the effects of shape parameters on a positive RQTS FIF.
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(f) Effects of shape parameters on
Positive RQTS FIF (e)

Fig. 1 Positive or Non-positive RQTS FIFs

5 Monotonicity Preserving RQTS FIF

In this section, we will show that if scaling functions and shape parameters are
restricted, we can obtain a positive and monotonically increasing C1-RQTS FIF Υ ,
when the data {(xi , yi , di ) : i ∈ NN } is positive and monotonically increasing, i.e.,
0 < y1 ≤ y2 ≤ · · · ≤ yN or �i := yi+1−yi

hi
≥ 0, ∀i ∈ NN−1. Note that if the data set

is negative, one can add a suitable constant to the ordinates, and convert the data
set to a positive one. The RQTS FIF can be shifted back by using equivalence of
two dynamical systems. For a monotonically increasing interpolant, it is necessary
that the derivatives parameters di are non-negative ∀i ∈ NN . It is known from the
calculus that a differentiable function g is monotonically increasing on I if and only
if g(1)(x) ≥ 0 for all x ∈ I . From (2.7), we have

aiΥ
(1)(Ui (x)) = αi (x)Υ (1)(x) + α(1)

i (x)Υ (x) + q(1)
i (x), i ∈ NN−1, ∀x ∈ I,

(5.21)
where q(1)

i (x) = π
2|I |

Γi (θ)
R2

i (θ)
,
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Γi (θ) = M∗
i1(1 − sin(θ))3 cos(θ) + M∗

i2(1 − sin(θ))2 sin(θ) cos(θ)

+ M∗
i3(1 − sin(θ))(1 − cos(θ)) sin(θ) + M∗

i4(1 − sin(θ))(1 − cos(θ)) cos(θ)

+ M∗
i5(1 − sin(θ))(1 − cos(θ))((1 − cos(θ) + sin2(θ))

+ M∗
i6(1 − sin(θ))(1 − cos(θ))((1 − cos(θ) + cos2(θ))

+ M∗
i7((1 − sin(θ))(1 − cos(θ))2 cos(θ)) + M∗

i8((1 − sin(θ))2(1 − cos(θ)) sin(θ))

+ M∗
i9((1 − cos(θ))2 sin(θ) cos(θ)) + M∗

i10(1 − cos(θ))3 sin(θ),

M∗
i1 = Ai2 − ηi Ai1, M∗

i2 = M∗
i1 + (Ai3 − βi Ai1),

M∗
i3 = ηi Ai3 − βi Ai2 = M∗

i4, M∗
i5 = ηi Ai4 − Ai2,

M∗
i6 = Ai3 − βi Ai1, M∗

i7 = 2(Ai4 − Ai1) = M∗
i8,

M∗
i9 = M∗

i10 + (ηi Ai4 − Ai2), M∗
i10 = βi Ai4 − Ai3.

Here we will use a similar argument as described in Theorem4. Since Υ (1) is defined
recursively, to show Υ (1) ≥ 0 on I , it’s enough to show that Υ (1)(Ui (x)) ≥ 0 for all
i ∈ NN−1, whenever Υ (1)(x) ≥ 0. Let Υ (1)(x) ≥ 0 at grid points. Now choose our
shape parameters ηi > 0 and βi > 0, and monotonically increasing scaling functions
0 ≤ αi (x) ∈ C1(I ) such that they satisfy the prescribed conditions in Theorem4.
Hence, 0 ≤ αi (x), 0 ≤ α(1)

i (x), and 0 < Υ (x) for all x ∈ I , and i ∈ NN−1. There-
fore, positivity of Υ (1)(Ui (x)) reduced to the positivity of Γi (θ) for all θ ∈ [0, 1].
For the positivity of Γi (θ), it is sufficient to show that for all j ∈ N10, M∗

i j ≥ 0,
∀i ∈ NN−1.

Now, observe that if d1 = 0, the choice of scaling function α(1)
i (x1) ≤ ai di

2y1
gives

us M∗
i1 ≥ 0 for all i ∈ NN−1. Similarly, if dN = 0, the choice of scaling function

α(1)
i (xN ) ≤ ai di+1

2yN
gives us M∗

i10 ≥ 0 for all i ∈ NN−1. So assume that d1 �= 0 and
dN �= 0. Then, for all j ∈ N10, M∗

i j ≥ 0, if we choose

αi (x1) ≤ min
{ai di

2d1
,

yi

y1

}
, αi (xN ) ≤ min

{ai di+1

2dN
,

yi+1

yN
,

yi+1 − yi

yN

}
,

α
(1)
i (x1) ≤ ai di

2y1
, α

(1)
i (xN ) ≤ ai di+1

2yN
,

ηi > max
{
0,

4|I |
π [ai di − αi (x1)d1 − α

(1)
i (x1)y1]

(yi+1 − αi (xN )yN ) − (yi − αi (x1)y1)

}
,

βi > max
{
0,

4|I |
π [ai di+1 − αi (xN )dN − α

(1)
i (xN )yN ]

(yi+1 − αi (xN )yN ) − (yi − αi (x1)y1)

}
, i ∈ NN−1.

(5.22)

The above results can be encapsulated in the following:

Theorem 5 Let {(xi , yi ) : i = 1, 2, . . . , N }be a positive and monotonically increas-
ing data set. Let di , i ∈ NN be chosen so as to satisfy the necessary monotonic
increasing condition. Then for i ∈ NN−1, the following conditions on non-negative
monotonically increasing αi (x) and shape parameters ηi and βi are sufficient to
preserve the properties of data by the RQTS FIF Υ on I :
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‖αi ‖1 <
ai

2
, αi (x1) ≤ min

{ ai di

2d1
,

yi

y1

}
, αi (xN ) ≤ min

{ ai di+1

2dN
,

yi+1 − yi

yN

}
,

α
(1)
i (x1) ≤ ai di

2y1
, α

(1)
i (xN ) ≤ ai di+1

2yN
,

ηi > max
{
0,

− 2|I |
π [ai di − αi (x1)d1 − α(1)

i (x1)y1]
yi − αi (x1)y1

,

4|I |
π [ai di − αi (x1)d1 − α(1)

i (x1)y1]
(yi+1 − αi (xN )yN ) − (yi − αi (x1)y1)

}
,

βi > max
{
0,

2|I |
π [ai di+1 − αi (xN )dN − α(1)

i (xN )yN ]
yi+1 − αi (xN )yN

,

4|I |
π [ai di+1 − αi (xN )dN − α(1)

i (xN )yN ]
(yi+1 − αi (xN )yN ) − (yi − αi (x1)y1)

}
.

Remark 4 If the data set is monotonically decreasing and positive, then we can
choose a non-negative monotonically decreasing scaling function such that

‖αi‖1 <
ai

2
, αi (x1) ≤ min

{ai di

2d1
,

yi − yi+1

y1

}
, αi (xN ) ≤ min

{ai di+1

2dN
,

yi+1

yN

}
,

α(1)
i (x1) ≥ ai di

2y1
, α(1)

i (xN ) ≥ ai di+1

2yN
,

andwith the restrictions on the shape parameters as in Theorem5, the resultingRQTS
FIF will be monotonically decreasing.

Remark 5 If�i = 0, thenwe takeαi = 0 for themonotonicity of the FIFΥ . Also in
this case, di = di+1 = 0. Consequently,Υ (Ui (x)) = yi = yi+1, i.e., when yi = yi+1,
our RQTS FIF Υ reduces to a constant on the interval Ii = [xi , xi+1].
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Fig. 2 Monotonically increasing RQTS FIFs
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Example 2 For simplicity, we have taken a positive and monotonically increas-
ing data set as {(0, 0.1, 0.1), (0.25, 0.2, 0.3), (0.5, 0.4, 0.1), (0.75, 0.6, 0.5), (1, 1,
0.2)}. For fixed shape parameters η = (1, 2, 1, 1) and β = (1, 11, 2, 1), Fig. 2a is
the plot of classical RQTS, and Fig. 2b–c are generated by using scaling functions
(−0.1, −x

9 , x2

17 ,
1

10(x+1) ) and (
log(1+x)

20 , 0.1, 1+x
40 , ex

24 ) respectively. For Fig. 2b, we do
not restrict our parameters as prescribed by Theorem5, and the corresponding RQTS
FIF is not monotone in nature.Whenwe restrict our parameters as prescribed by The-
orem5, then we get positive and monotone RQTS FIFs in Figs. 2a and c. Figure2d–f
are the plots of the first derivatives of the RQTS FIFs in Fig. 2a–c, respectively. Thus,
it is easy to capture non-linearity associated with the derivatives of data generating
conic function by using the proposed class of RQTS FIFs.

6 Conclusion

We have constructed a novel C1-RQTS FIF with variable scaling functions to inter-
polate conic data that is partially self-similar in nature. The derivative of this RQTS
FIFmay not be differentiable at a dense subset of the given interpolation domain. The
RQTS FIF can be reduced to its non-recursive classical rational quadratic trigono-
metric spline functionwhen all scalings are zero.We have found sufficient conditions
on scaling functions so that the proposed RQTS FIF has the same order of conver-
gence as its non-recursive part. We have derived sufficient conditions on variable
scaling functions and the shape parameters to retain fundamental shapes such as the
positivity and monotonicity features of prescribed conic data.
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Cyclic Multivalued Iterated Function
Systems

R. Pasupathi, A. K. B. Chand, and M. A. Navascués

Abstract IFS constitutes one of the powerful tools to generate fractal sets. Recently,
a cyclic map is used in IFS to construct a new class of fractals. This paper is an effort
to study multivalued IFSs with various types of cyclic multivalued maps such as
cyclic multivalued φ-contraction, cyclic multivalued Meir–Keeler contraction and
cyclic multivalued contractive which are generalizations of contraction map, and the
construction of fractals with the help of these IFSs have been established.

Keywords Iterated function systems · Cyclic Multivalued contractions · Fixed
point · Fractal · Attractor

1 Introduction

Most of the systems resulting from the real-world phenomena or human artefacts
are not of the regular classical Euclidean forms. Modelling or describing such com-
plex structures proved to be a great challenge until fractal theory came into play.
Fractal theory, introduced by Mandelbrot [22] proved to be one of the effective tools
for capturing the complexity of the structure and for modelling a variety of phe-
nomena in applied mathematics and engineering: approximation theory, geometric
modelling, image processing, bio-engineering, signal processing, turbulence, etc.
(see for instance [4–7, 14, 16, 24, 33]).

Hutchinson [13] introduced the concept of Iterated Function System (IFS) and
Barnsley [2, 3] put the foundation of using IFS as a tool to generate fractal sets.
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Over the years, IFS played a central role in generating many important fractal sets.
An IFS is a finite collection of contraction mappings on a complete metric space
E . Let C(E) denote the set of all non-empty subsets of E which are compact. If
E is given the Hausdorff metric, then C(E) becomes complete. The operator on
C(E) induced by the given IFS turns out to be a contraction mapping, and hence
there exists a unique set fixed point (say G) by the Banach contraction principle.
We call G, the attractor of the IFS. Apart from the aforementioned application of
IFS theory, this theory has remarkable applications in various fields like geometric
modelling, pattern recognition, image processing, bio-medical engineering, etc. Due
to its diverse applications, this area has drawn the attention of a lot of researchers in
the last few decades. Many extensions have been done to this framework, say from a
more generalized contraction, to a multivalued approach, to a countable and infinite
set up, to different types of domain spaces, multifunction systems, etc. Some of the
remarkable extensions are discussed below.

Hata [12] worked on IFS composed of φ-contraction functions. The concept of
the iterated multifunction systemwas introduced and studied in detail by Kunze et al.
[19] and they further investigated the same with probability. Georgescu [10] worked
on IFS consisting of generalized convex contractions in the framework of strong
b-metric space. Iaona and Mihail [15] worked on IFS consisting of φ-contractions .
Maślanka and Strobin [23] investigated GIFS on l∞ sum of a metric space. IFS in a
weak contraction setup was studied in detail by Okamura [29]. Lozinski worked on
QIFS where the contractions act randomly with prescribed probability in the Hilbert
space [17]. Fernau [9] introduced the concept of infinite IFS, which was further
investigated by Secelean and many others (see for instance [35, 36]). Infinite IFS
with a multivalued approach was investigated by Leśniak [20]. Also, he investigated
homoclinic attractors in discontinuous IFSs in [21]. Samuel and Tetenov studied
IFSs on uniform spaces [34]. Dumitru [8] studied generalized IFS containing Meir–
Keeler functions. Pasupathi et al. [30] worked on the construction of fractals with IFS
composed of cyclic contractions. Many other remarkable extensions in this theory
can be found in [18, 25–28], and references therein.

This paper is devoted to the study of multivalued IFSs composed of different types
of cyclic multivalued maps, and the existence of attractors of such maps is proven.
Turning to the structure of our paper, in Sect. 2, the prerequisites are given. In Sect. 3,
we discuss different types of cyclic generalized contractions and proved the existence
of fixed points of the above functions by the iteration process. In Sect. 4, we construct
fractal from the various types of new generalized multivalued IFSs consisting of
cyclic multivalued φ-contractions, cyclic multivalued Meir–Keeler contractions and
cyclic multivalued contractive mappings.
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2 Preliminary Facts

2.1 Hausdorff Metric

Let (E, τ ) be a metric space and let C(E) be the collection of non-empty subsets of
E which are compact.

The metric ω : C(E) × C(E) → [0,∞) is defined by

ω(R, S) = max{δ(R, S), δ(S, R)},

where

δ(R, S) = sup
α∈R

τ (α, S) and τ (α, S) = inf
β∈S

τ (α,β) ∀ R, S ∈ C(E).

We call ω, the Hausdorff metric and the space (C(E),ω), the Hausdorff metric space.
The space (C(E),ω) is complete if (E, τ ) is complete and it is compact if (E, τ )

is compact.

Lemma 1 ([3]) If (Rλ)λ∈Λ, (Sλ)λ∈Λ are finite collection of sets in (C(E),ω), then

ω

(⋃
λ∈Λ

Rλ ,
⋃
λ∈Λ

Sλ

)
≤ max

λ∈Λ
ω(Rλ, Sλ).

Lemma 2 Let R, S ∈ C(E) for some metric space (E, τ ). Then for any α ∈ R, there
exists β ∈ S such that τ (α,β) ≤ ω(R, S).

Proof Let α ∈ R. Since S is compact, there exists β ∈ S which satisfies τ (α,β) =
infγ∈S τ (α, γ). Thus τ (α,β) ≤ δ(R, S) ≤ ω(R, S).

Lemma 3 ([30]) Suppose that (E, τ ) is a complete metric space. If R is a closed
subset of E , then C(R) is also a closed subset of C(E) when equipped with the
Hausdorff metric ω.

2.2 Iterated Function Systems

A map g on a metric space (E, τ ) into itself is said to be a contraction if there exists
a constant 0 ≤ s < 1, such that

τ (g(α), g(β)) ≤ s τ (α,β) ∀α,β ∈ E .

The constant s is called a contractivity factor of g.
In 1922, Banach proved the following well-known result called the Banach con-

traction principle:
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Theorem 1 ([1]) Let (E, τ ) be a metric space which is complete and let g be
a contraction map on E . Then there is a unique point α∗ ∈ E obeying g(α∗) =
α∗. And also, for each α ∈ E , the sequence {gn(α)}∞m=1 converges to α∗. That is
limn→∞ gn(α) = α∗ for all α ∈ E .

Afinite collection of contractionmaps (gl)
M
l=1, M ∈ N on a completemetric space

(E, τ ) is called (hyperbolic) iterated function system (IFS), whereN denotes the set
of natural numbers.

We know that each gl induces amap on C(E), and consequently, we can define a set
valued map (Hutchinson operator) on C(E) asH(R) = ⋃M

l=1 gl(R) (see Hutchinson
[13]). He proved that every Hutchinson operator of a IFS has a unique invariant set
G (say) in C(E) by using the Banach contraction principle, such that

G = H(G) =
M⋃
l=1

gl(G).

Moreover, G = limn→∞ Hn(S) for any S ∈ C(E). This set G is called the attractor
of the IFS. It is also called self-referential set (or) fractal.

2.3 Multivalued Maps

Nowwe discuss few basic concepts of multivaluedmaps. For the detailed exposition,
the reader may consult [11].

Let E andD be twometric spaces. Consider amultivaluedmap g : E → D. For the
map g, denote g−1(R) := {α ∈ E : g(α) ⊆ R} and g−1

+ (R) = {α ∈ E : g(α) ∩ R 
=
∅}.
Definition 1 If E ⊆ D and g : E → D is a multivalued map, then a point α ∈ E is
said to be a fixed point of g if α ∈ g(α). The collection of all fixed points of g is
identified by Fix(g) = {α ∈ E : α ∈ g(α)}.
Definition 2 If g : E → D is a multivalued map and

1. if g−1(R) (g−1
+ (R)) is open in E for all open sets R ⊆ D, then g is said to be upper

semicontinuous (lower semicontinuous), respectively,
2. if g is both upper semicontinuous (u.s.c) and lower semicontinuous (l.s.c), then

g is said to be multivalued continuous.

Proposition 1 ([11]) If g : (E, τ ) → (C(E),ω) is a multivalued continuous map,
then the induced map g∗ : (C(E),ω) → (C(E),ω) defined by g∗(R) = ⋃

α∈Rg(α) is
a well-defined (single valued) continuous map.

Lemma 4 ([11]) If g : (E, τ ) → (C(E),ω) is an u.s.c map and R ∈ C(E), then
g(R) ∈ C(E).
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3 Cyclic Contractions and It’s Fixed Point Principles

Kirk et al. [17] introduced various types of generalized contractions by using cyclic
maps. We discuss the conclusion of Banach contraction principle of these contrac-
tions.

Definition 3 Let (E, τ ) be ametric space and let {Λm}km=1 be a set of non-empty sub-
sets of E . A map g : ⋃k

m=1 Λm → ⋃k
m=1 Λm is said to be a cyclic map on {Λm}km=1

if it satisfies:

g(Λm) ⊆ Λm+1, for m ∈ Nk, where Λk+1 = Λ1.

Remark 1 Ifα∗ is a fixed point of a cyclic map g on {Λm}km=1, thenα∗ ∈ ⋂k
m=1 Λm .

Definition 4 A self-mapφ on [0,∞) is said to be comparison function ifφ is a right-
continuous, non-decreasing and it satisfies φ(r) < r for any r > 0 and φ(0) = 0.

Remark 2 If φ is a comparison function, then limn→∞ φn(r) = 0, for any r ≥ 0.

Let us denote Nm to be the collection of first m natural numbers. The following
contractions are the generalizations of the Banach contraction in the cyclic form:

Definition 5 A cyclic map g : ⋃k
m=1 Λm → ⋃k

m=1 Λm is said to be

1. cyclic contraction if we can find a constant 0 ≤ s < 1 such that τ (g(α), g(β)) ≤
s τ (α,β), ∀ α ∈ Λm, β ∈ Λm+1 for m ∈ Nk .

2. cyclic φ-contraction if τ (g(α), g(β)) ≤ φ(τ (α,β)), ∀ α ∈ Λm, β ∈ Λm+1 for
m ∈ Nk , where φ is a comparison function.

3. cyclic Meir–Keeler contraction if ∀ μ > 0, ∃ ν > 0 such that μ ≤ τ (α,β) <

μ + ν implies τ (g(α), g(β)) < μ,∀α ∈ Λm, β ∈ Λm+1 for m ∈ Nk .

4. cyclic contractive if τ (g(α), g(β)) < τ (α,β), ∀ α ∈ Λm, β ∈ Λm+1 with α 
=
β, for m ∈ Nk .

Remark 3 1. Every contraction map on a space E is a cyclic contraction on
{Λm}km=1 (Take Λm = E for each m ∈ Nk) but the converse need not be true
(see Example1).

2. Every cyclic contraction with contractive factor s is a cyclic φ-contraction (where
φ(t) = st) and cyclic Meir–Keeler contraction (for every μ > 0, choose ν =
1−s
s μ).

3. Observe that every cyclic φ-contraction and cyclic Meir–Keeler contraction is a
cyclic contractive map .

Example 1 Let Λ1 = [0, 2] and Λ2 = [1, 3]. Define a mapping g : Λ1 ∪ Λ2 →
Λ1 ∪ Λ2 by

g(α) = 17/8 − α/8 if α ∈ [0, 2],
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g(α) = 15/8 if α ∈
[
2,

11

4

]
,

g(α) = 37/8 − α if α ∈
[
11

4
, 3

]
.

Then the map g is cyclic contraction and also continuous but not a contraction map.

Example 2 LetΛ1 = [0, 1], Λ2 = [0, 3]. Form ≥ 2, define g : Λ1 ∪ Λ2 → Λ1 ∪
Λ2 by

g(α) = α/m if α ∈ [0, 2],

g(α) = 1/m if α ∈ (2, 3].

The map g is non-continuous cyclic contraction.

Proposition 2 ([17])Let (E, τ ) be ametric spacewhich is complete and let {Λm}km=1
be a set of subsets of E which are closed. If g is a cyclic φ-contraction on {Λm}km=1,
then there is a uniquepointα∗ ∈ ⋃k

m=1 Λm obeyingfixedpoint conditiong(α∗) = α∗.

Theorem 2 ([30]) Let (E, τ ) be a metric space which is complete and let {Λm}km=1
be a set of subsets of E which are closed. If g is a cyclic φ-contraction on {Λm}km=1,
then for any α ∈ ⋃k

m=1 Λm, limn→∞ gn(α) = α∗, where α∗ is the fixed point of g.

Proposition 3 Let (E, τ ) be a metric space which is complete and let {Λm}km=1 be
a set of subsets of E which are closed. If g is a cyclic Meir–Keeler contraction on
{Λm}km=1, then there is a unique point α

∗ ∈ ⋃k
m=1 Λm satisfying g(α∗) = α∗ and for

each α ∈ ⋃k
m=1 Λm, limn→∞ gn(α) = α∗

Proposition 4 ([17]) Let (E, τ ) be ametric space which is compact and let {Λm}km=1
be a set of subsets of E which are closed. If g is a cyclic contractive map on {Λm}km=1,
then there is a unique point α∗ ∈ ⋃k

m=1 Λm satisfying g(α∗) = α∗.

Theorem 3 ([32]) Let (E, τ ) be a metric space which is compact and let {Λm}km=1
be a set of subsets of E which are closed. If g is a continuous cyclic contractive map
on {Λm}km=1, then for any α ∈ ⋃k

m=1 Λm, limn→∞ gn(α) = α∗, where α∗ is the fixed
point of g.

4 Cyclic Multivalued Iterated Function Systems

Definition 6 Let (E, τ ) be ametric space and {Λm}km=1 be a set of non-empty subsets
of E . If a multivalued map g : ⋃k

m=1 Λm → ⋃k
m=1 C(Λm) satisfies the following

conditions:
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1. g(α) ∈ C(Λm+1),∀α ∈ Λm,∀m ∈ Nk , where Λk+1 = Λ1,
2. ω(g(α), g(β)) ≤ φ(τ (α,β)),∀α ∈ Λm, β ∈ Λm+1 for m ∈ Nk ,

where φ is a comparison function, then g is said to be a cyclic multivalued φ-
contraction map on {Λm}km=1. If g satisfies only the first condition, then g is said
to be a cyclic multivalued map on {Λm}km=1.

Definition 7 Acyclicmultivaluedmap g on {Λm}km=1 is said to be cyclicmultivalued
contractive if g satisfies

ω(g(α), g(β)) < τ (α,β) ∀ α ∈ Λm, β ∈ Λm+1,with α 
= β for m ∈ Nk . (1)

Definition 8 Acyclicmultivaluedmap g on {Λm}km=1 is said to be cyclicmultivalued
Meir–Keeler contraction if g satisfies ∀ μ > 0, ∃ ν > 0 such that

μ ≤ τ (α, β) < μ + ν implies ω(g(α), g(β)) < μ, ∀α ∈ Λm , β ∈ Λm+1, for m ∈ Nk .

Theorem 4 Let (E, τ ) be a metric space and {Λm}km=1 be a collection of sub-
sets of E . If g is an u.s.c cyclic multivalued φ-contraction on {Λm}km=1, then the
induced map g∗ : ⋃k

m=1 C(Λm) → ⋃k
m=1 C(Λm) defined by g∗(R) = ⋃

α∈R g(α),
for any R ∈ ⋃k

m=1 C(Λm) is a (single valued) cyclic φ-contraction on {C(Λm)}km=1.

Proof Let R ∈ C(Λm) for some m ∈ Nk , this implies g∗(R) ⊆ Λm+1 and by
Lemma4, g∗(R) ∈ C(Λm+1). Let P ∈ C(Λm) and S ∈ C(Λm+1), for some m ∈ Nk .
Let γ ∈ g∗(P), then there exists α ∈ P ⊆ Λm such that γ ∈ g(α). For α ∈ P , there
exists β ∈ S ⊆ Λm+1 such that τ (α,β) ≤ ω(P, S).

Then, it is plain to see that

τ (γ, g∗(S)) ≤ τ (γ, g(β)) ≤ ω(g(α), g(β)) ≤ φ(τ (α,β)) ≤ φ(ω(P, S)).

Since γ is arbitrary in g∗(P),

δ(g∗(P), g∗(S)) ≤ φ(ω(P, S)).

Similarly

δ(g∗(S), g∗(P)) ≤ φ(ω(S, P)).

Hence,
ω(g∗(P), g∗(S)) ≤ φ(ω(P, S)).

Theorem 5 Let (E, τ ) be a metric space and {Λm}km=1 be a collection of subsets of
E . If {gl}Ml=1 is a collection of u.s.c cyclic multivalued φl -contractions on {Λm}km=1,
then the Hutchinson map H : ⋃k

m=1 C(Λm) → ⋃k
m=1 C(Λm) defined by H(R) :=⋃M

l=1 g∗
l (R), for any R ∈ ⋃k

m=1 C(Λm) is a cyclic φ-contraction on {C(Λm)}km=1,
where φ(r) := max1≤l≤M φl(r).
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Proof Let R ∈ C(Λm) for some m ∈ Nk . By Theorem4, for each l ∈ NM , g∗
l is a

cyclic φl-contraction. Therefore, g∗
l (R) ∈ C(Λm+1) for all l ∈ NM . Hence H(R) =⋃M

l=1 g∗
l (R) ∈ C(Λm+1), and consequently, we haveH(C(Λm)) ⊆ C(Λm+1) form ∈

Nk .
Let P ∈ C(Λm) and S ∈ C(Λm+1) for some m ∈ Nk . Since {g∗

l }Ml=1 are cyclic
φl-contractions, we have

ω(H(P),H(S)) = ω

(
M⋃
l=1

g∗
l (P),

M⋃
l=1

g∗
l (S)

)

≤ max
1≤l≤M

ω(g∗
l (P), g∗

l (S))

≤ max
1≤l≤M

φl(ω(P, S))

≤ φ(ω(P, S)).

Corollary 1 Suppose that (E, τ ) is a complete metric space and {Λm}km=1 is a col-
lection of closed subsets of E . If {gl}Ml=1 is a collection of u.s.c cyclic multivalued φl -
contractions on {Λm}km=1, then the corresponding Hutchinson mapH defined in the
previous theorem has a unique invariant set G (say) and for each R ∈ ⋃k

m=1 C(Λm),
the sequence (Hn(R))n≥1 converges to G.

Proof By Lemma3, for each m ∈ Nk, C(Λm) is a closed non-empty subset of the
complete metric space (C(E),ω).

By Theorem5, H is a cyclic φ-contraction on {C(Λm)}km=1. From Theorem2,
H has a unique set G ∈ ⋃k

m=1 C(Λm), such that H(G) = G and for any R ∈⋃k
m=1 C(Λm), limn→∞ Hn(R) = G.

Definition 9 A cyclic multivalued φ-contraction IFS is a finite collection of u.s.c
φl-contraction maps gl : ⋃k

m=1 Λm → ⋃k
m=1 C(Λm), l ∈ NM on a complete metric

space (E, τ ), where {Λm}km=1 are closed.

Theorem 6 Let (E, τ ) be a metric space and {Λm}km=1 be a collection of subsets
of E . If {gl}Ml=1 is a collection of u.s.c cyclic multivalued Meir–Keeler contractions
on {Λm}km=1, then theHutchinsonmapH : ⋃k

m=1 C(Λm) → ⋃k
m=1 C(Λm) defined by

H(R) := ⋃M
l=1 g∗

l (R), for any R ∈ ⋃k
m=1 C(Λm) is a cyclicMeir–Keeler contraction

on {C(Λm)}km=1.

Proof Since {gl}Ml=1 are u.s.c cyclic multivalued maps on {Λm}km=1, H is a well-
defined cyclic map on {C(Λm)}km=1.

For a given μ > 0, there exists νl > 0, l ∈ NM , such that

μ ≤ τ (α,β) < μ + νl ⇒ ω(gl(α), gl(β)) < μ,∀α ∈ Λm, β ∈ Λm+1,∀m ∈ Nk .
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Let P ∈ C(Λm) and S ∈ C(Λm+1), for some m ∈ Nk , such that μ ≤ ω(P, S) < μ +
ν, where ν = min{νl : l ∈ NM}. Our claim is ω(H(P),H(S)) < μ.

Let γ ∈ H(P), then there exists l ∈ NM and α ∈ P ⊂ Λm such that γ ∈ gl(α).
For this α ∈ P , there exists β ∈ S ⊂ Λm+1, such that τ (α,β) ≤ ω(P, S) < μ + ν.

Case 1. If τ (α,β) ≥ μ, then μ ≤ τ (α,β) < μ + ν and α ∈ Λm,β ∈ Λm+1

implies
δ(γ,H(S)) ≤ ω(gl(α), gl(β)) < μ.

Case 2.: If 0 < τ (α,β) < μ,

δ(γ,H(S)) ≤ ω(gl(α), gl(β)) < τ (α,β) < μ.

By compactness of H(P),

δ(H(P),H(S)) < μ.

Similarly,
δ(H(S),H(P)) < μ.

Hence, H is a cyclic Meir–Keeler contraction on {C(Λm)}km=1.

Corollary 2 Suppose that (E, τ ) is a complete metric space and {Λm}km=1 is a col-
lection of closed subsets of E . If {gl}Ml=1 is a collection of u.s.c cyclic multivalued
Meir–Keeler contractions on {Λm}km=1, then the corresponding Hutchinson map H
has a unique invariant set G (say) and for each R ∈ ⋃k

m=1 C(Λm), the sequence
(Hn(R))n≥1 converges to G.

Theorem 7 Let (E, τ ) be a metric space and {Λm}km=1 be a collection of sub-
sets of E . If g is a multivalued continuous and cyclic multivalued contractive map
on {Λm}km=1, then the induced map g∗ : ⋃k

m=1 C(Λm) → ⋃k
m=1 C(Λm) defined by

g∗(R) = ⋃
α∈R g(α), for any R ∈ ⋃k

m=1 C(Λm) is continuous cyclic contractive on
{C(Λm)}km=1 when endowed with the Hausdorff metric ω.

Proof By Proposition1, g∗ is a (single valued) continuous map with respect to ω.
Since g is a multivalued cyclic map on {Λm}km=1, g

∗ is a cyclic map on {C(Λm)}km=1.
Let P ∈ C(Λm), S ∈ C(Λm+1) with P 
= S for some m ∈ Nk . Let γ ∈ g∗(P), then
there exists α ∈ P ⊆ Λm such that γ ∈ g(α).

Case 1. If α ∈ S, then τ (γ, g∗(S)) = 0 < ω(P, S).

Case 2. If α /∈ S, then ω(g(α), g(β)) < τ (α,β), ∀ β ∈ S ⊆ Λm+1.
By compactness of S, there exists β∗ ∈ S ⊆ Λm+1 satisfying τ (α,β∗) = infβ∈S
τ (α,β). Thus,

τ (γ, g∗(S)) ≤ δ(g(α), g(β∗)) ≤ ω(g(α), g(β∗)) < τ (α,β∗)
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= inf
β∈S

τ (α,β) ≤ ω(P, S).

Since γ is an arbitrary element in g∗(P) and g∗(P) is compact,

δ(g∗(P), g∗(S)) < ω(P, S).

Similarly
δ(g∗(S), g∗(P)) < ω(S, P).

Hence, g∗ is a continuous cyclic contractive map on {C(Λm)}km=1.

Lemma 5 If {gl}Ml=1 are continuous maps on a Hausdorff metric space (C(E),ω)

for any metric space (E, τ ), then the map H : C(E) → C(E) defined by F(R) :=⋃M
l=1 gl(R) is also a continuous map.

Theorem 8 Let (E, τ ) be ametric space and {Λm}km=1 be a collection of subsets of E .
If {gl}Ml=1 is a collection of multivalued continuous and cyclic multivalued contractive
functions on {Λm}km=1, then the Hutchinson mapH : ⋃k

m=1 C(Λm) → ⋃k
m=1 C(Λm)

defined byH(R) := ⋃M
l=1 g∗

l (R), for any R ∈ ⋃k
m=1 C(Λm) is continuous cyclic con-

tractive on {C(Λm)}km=1 when equipped with the Hausdorff metric ω.

Proof By Theorem7 and Lemma5, {gl∗}Ml=1 are cyclic contractive maps on
{C(Λm)}km=1 and H is a continuous cyclic map. Let P ∈ C(Λm) and S ∈ C(Λm+1),
for any m ∈ Nk , we have

ω(H(P),H(S))) ≤ max
1≤l≤M

ω(g∗
l (P), g∗

l (S)) < max
1≤l≤M

ω(P, S) = ω(P, S).

Hence, the proof.

Corollary 3 Let (E, τ ) be a compact metric space and {Λm}km=1 be a collection of
closed subsets of E . If {gl}Ml=1 is a collection of multivalued continuous and cyclic
multivalued contractive functions on {Λm}km=1, then the corresponding Hutchinson
mapH has a unique invariant set G (say). Moreover, for any R ∈ ⋃k

m=1 C(Λm), the
sequence (Hn(R))n≥1 converges to G.

Proof By Theorems8 and 3, we can conclude the proof.
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Univ. Bucureşti, Math. LVIII, 3–15 (2009)
9. Fernau, H.: Infinite iterated function systems. Math. Nachr. 170, 79–91 (1994)
10. Georgescu, F.: Iterated function systems consisting of generalized convex contractions in the

framework of complete strong b-metric spaces. Ann. Univ. Vest Timiş. Şer. Mat. Inform. 55,
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On Almost Statistical Convergence
of Weight r

Ekrem Savaş

Abstract In this paper, we introduce the opinion of τ -almost statistical convergence
of weight r : R+ → R+ where r(ξk) → ∞ for any sequence (ξk) inR+ with ξk →
∞.We also examine some relations.

Keywords Weight function r · Statistical convergence · Almost convergence

1 Introduction

The following definition was given by Fast [1]: A sequence ξ is said to be statistically
convergent to the number γ if for every ω > 0

lim
t

1

t
|{k < t : |ξk − γ| ≥ ω}| = 0.

In such case, we write s − lim ξ = γ or ξk → γ(s). Subsequently statistically con-
vergent sequences have been considered in [5, 6].

Further the concept of τ -almost statistical convergence was considered by Savas
[5]. The goal of this note is to consider the idea of τ -almost statistical convergence
of weight r.

Lorentz [2] has expressed that

ĉ =
{
ξ ∈ l∞ : lim

p
ϕp,q(ξ) exists, uniformly in q

}

where

ϕp,q(ξ) = ξq + ξq+1 + ξq+2 + · · · + ξq+p

p + 1
.
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Definition 1 ([3]) A sequence ξ = (ξk) ∈ m∞ (the set of bounded sequences) is said
to be strongly almost convergent to a number γ if

lim
q→∞

1

q

q∑
k=1

∣∣ξk+p − γ
∣∣ = 0

uniformly in p.

By
[
ĉ
]
we represent the space of all strongly almost convergent sequences. It has

been observed that c ⊂ [ĉ] ⊂ ĉ ⊂ m∞ and the inclusions are strict.

Definition 2 ([4]) Let τ = (τq) be a non-decreasing sequence of positive numbers in
such a way τq+1 ≤ τq + 1, τ1 = 1, τq → ∞ as q → ∞. Let Iq = [

q − τq + 1, q
]
.

The generalized de La Vallée–Poussin mean is interpreted such as

tq(ξ) = 1

τq

∑
k∈Iq

ξk .

A sequence ξ = (ξk) is said to be (V, τ )-summable to γ if tq(ξ) → γ as q → ∞.

The opinion of τ -statistical convergence was considered byMursaleen [4]. Recall
that a sequence ξ = (ξk) is said to be τ -statistically convergent if there is a complex
number γ in such a way

lim
q→∞

1

τq

∣∣{k ∈ Iq : |ξk − γ| ≥ ω
∣∣ = 0.

The family of all τ -statistically convergent sequences is represented by Ŝτ . Later the
opinion of almost τ -statistical convergence was studied by Savas [5].

For this paper we will consider function r : R+ → R+ such that r(ξk) → ∞ if
ξk → ∞. The family of all such functions will be represent by R.

2 Main Results

Definition 3 Let the sequence τ = (τq) of real numbers be considered as above
and let r ∈ R. A sequence ξ = (ξk) is said to be τ -almost statistically convergent of
weight r if there is γ in such a way

lim
q→∞

1

r(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ω

∣∣ = 0

uniformly in p. Consequently we write Ŝrτ − lim ξk = γ.
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Theorem 1 Let r ∈ R and ξ = (ξk), ρ = (ρk) be sequences of complex numbers.

(i) If Ŝrτ − lim ξk = ξ0 and φ ∈ C, then Ŝrτ − lim φξk = φξ0.

(ii) If Ŝrτ − lim ξk = ξ0 and Ŝrτ − lim ρk = ρ0, then Ŝrτ − lim(ξk + ρk) = ξ0 + 	0.

Proof (i) For φ = 0 the result is clear. Let φ �= 0. Now consider that

1

r(τq)

∣∣{k ∈ Iq : ∣∣φξk+p − φξ0
∣∣ ≥ ω}∣∣ = 1

r(τq)

∣∣∣∣
{
k ∈ Iq : ∣∣ξk+p − ξ0

∣∣ ≥ ω

|φ|
}∣∣∣∣ .

(ii) Now

1

r(τq)

∣∣{k ∈ Iq : ∣∣ξk+p + ρk+p − (ξ0 + ρ0)
∣∣ ≥ ω}∣∣

≤ 1

r(τq)

∣∣∣{k ∈ Iq : ∣∣ξk+p − ξ0
∣∣ ≥ ω

2

}∣∣∣ + 1

r(τq)

∣∣∣{k ∈ Iq : ∣∣ρk+p − ρ0
∣∣ ≥ ω

2

}∣∣∣ .
This completed proof.

Definition 4 Let τ = (
τq

)
and r ∈ R. Let 	 be a positive real number. A sequence

ξ = (ξk) is claimed to be strongly
(
V̂ , τ

)
-almost summable of weight r if there

exists γ such that

lim
q→∞

1

r(τq)

∑
k∈Iq

∣∣ξk+p − γ
∣∣	 = 0

uniformly in p. The family of all strongly
(
V̂ , τ

)
-almost summable sequences of

weight r will be represent by
[
V̂ r

	 , τ
]
.

Theorem 2 Let r1,r2 ∈ R and there are M > 0 and s ∈ N in such a way
r1(τq)/r2(τq) ≤ M for all q ≥ s then Ŝr1τ ⊆ Ŝr2τ .

Proof Note that, for all p

1

r2(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ω}∣∣ = r1(τq)

r2(τq)
· 1

r1(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − L
∣∣ ≥ ω}∣∣

≤ M · 1

r1(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − L
∣∣ ≥ ω}∣∣

for all q ≥ s. If ξ = (ξk) ∈ Ŝr1τ for all ω > 0 and finally

1

r2(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ε}∣∣ = 0

uniformly in p and so ξ ∈ Ŝr2τ . Therefore Ŝr1τ ⊆ Ŝr2τ .
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Corollary 1 In especial let r ∈ R and there are T > 0 and a r ∈ N in such a way
q/r(τq) ≤ T for all q ≥ s then Ŝrτ ⊆ Ŝτ .

Theorem 3 Ŝ ⊆ Ŝrτ if lim inf
q→∞

r(τq)

q
> 0.

Proof For any ω > 0, we have

{
k ≤ t : ∣∣ξk+p − γ

∣∣ ≥ ω
} ⊇ {

k ∈ Iq : ∣∣ξk+p − L
∣∣ ≥ ω

}
.

Therefore we get that for p ∈ N

1

t

∣∣{k ≤ t : ∣∣ξk+p − γ
∣∣ ≥ ω

}∣∣ ≥ 1

t

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ω

}∣∣
≥ r(τq)

t
· 1

r(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ω

}∣∣ .

If ξ → γ(Ŝ) then 1
t |{k ≤ t : |ξk − γ| ≥ ω}| → 0 as t → ∞ and finally via above

we write
1

t

∣∣{k ≤ t : ∣∣ξk+p − γ
∣∣ ≥ ε

}∣∣ → 0

and so
1

r(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ε

}∣∣ → 0

as q → ∞.We get that ξ → γ(Ŝrτ ).

Theorem 4 Let r1, r2 ∈ R and there are T > 0 and a s ∈ N in such a way

r1(τq)/r2(τq) ≤ M for all q ≥ s at that time
[
V̂ r

	 , τ
]

⊆
[
V̂ r

	 , τ
]
.

Proof The proof is easy and so is omitted.

Corollary 2 Let r ∈ R and there exist T > 0 and a s ∈ N in such a way q/r(τq) ≤
M for all q ≥ s then Ŝrτ ⊆ Ŝτ .

Theorem 5 If 0 < 	 < σ < ∞ and r ∈ R at that time
[
V̂ r

σ , τ
]

⊂
[
V̂ r

	 , τ
]
.

The proof is evident via Holder’s inequality.

Theorem 6 Let r1, r2 ∈ R and there exist T > 0 and a s ∈ N in such a way
r1(τq)/r2(τq) ≤ T for all q ≥ s and let0 < 	 < ∞. If a sequence ξ = (ξk) is strongly(
V̂ , τ

)
-almost summable of weight r1 to γ then it is τ -almost statistically convergent

of weight r2 to γ i.e
[
V̂ r1

	 , τ
]

⊂ Ŝr2τ .
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Proof Let ξ = (ξk) ∈
[
V̂ r1

	 , τ
]
and Let us take ω > 0 and so

∑
k∈Iq

∣∣ξk+p − γ
∣∣	 =

∑
k∈Iq

|ξk+p−γ|≥ω

∣∣ξk+p − γ
∣∣	 +

∑
k∈I	

|ξk+q−γ|<ω

∣∣ξk+p − γ
∣∣	

≥
∑
k∈Iq

|ξk+p−γ|≥ω

∣∣ξk+p − γ
∣∣	

≥ ∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ω

∣∣ .ω	.

Now it follows that

1

r1(τq)

∑
k∈Iq

∣∣ξk+p − γ
∣∣	 ≥ 1

r1(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ω

∣∣ .ε	

= r2(τq)

r1(τq)
· 1

r2(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ε

∣∣ .ω	

≥ 1

T
· 1

r2(τq)

∣∣{k ∈ Iq : ∣∣ξk+p − γ
∣∣ ≥ ω

∣∣ .ω	

for all q ≥ s. If ξ → γ(
[
V̂ r1

	 , τ
]
) we get ξ → γ(Ŝr2τ ).
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Non-neighbor Topological Indices
on Covid-19 Drugs with QSPR Analysis

W. Tamilarasi and B. J. Balamurugan

Abstract Coronavirus (COVID-19) is one of the recent infectious diseases caused
by the virus SARS-CoV-2. The virus causes mild to severe respiratory problems
which may lead to death in most cases. There is currently no precise or effective
medication available to treat COVID-19 patients. Researchers and many pharma-
ceutical industries are working toward novel therapeutics and repurposed drugs for
coronavirus. In this study, we consider some investigational antiviral drugs like
Nitazoxanide, Imatinib, Famotidine, Galidesivir, and Artesunate that are used for
the treatment of COVID-19. For this purpose, here we define various non-neighbor
topological indices over the above aforesaid antiviral drugs to investigate the physic-
ochemical properties associated with the indices. Further QSPR analysis was carried
out between seven non-neighbor topological indices and eight physicochemical prop-
erties for the above drugs using the Linear regression method. The result obtained
could aid in discovering new vaccines and drugs for COVID-19 disease.

Keywords Antiviral drugs · NN-polynomial · Non-neighbor topological indices ·
QSPR study · Linear regression

1 Introduction

The SARS-CoV-2 virus, which is the cause of COVID-19, spreads through respira-
tory droplets when an infected person sneezes or coughs. The outbreak of the disease
was first reported in China and has spread worldwide. The person infected by this
virus has symptoms like fever, cough, and shortness of breath. People with lung
disease, diabetes, old age, and a compromised immune system are at higher risk of
COVID-19. Although FDA has approved only one antiviral drug namely remdesivir
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for the treatment of COVID-19, there are many investigational drugs like Nitazox-
anide, Imatinib, Famotidine, Galidesivir, and Artesunate that are being tested. It has
been recently reported [1] that the drug Nitazoxanide exhibits in vitro activity and
antiviral effect against SARS-CoV-2. The drug Imatinib provide significant clinical
impact for COVID-19 patient who is in critical condition [2]. Moreover, this drug
will increase the endosomal pH level and reduce cell fusion of SARS-CoV-2 virus.
It has also been reported [3] that Famotidine, another unique drug, is being tested
currently for the treatment of COVID-19 based on its excellent ADMET proper-
ties. Galidesivir is a broad-spectrum antiviral drug that potentially fights against the
coronavirus family: Ebola virus and some RNA viruses [4]. The drug Artesunate
was considered an effective medicine for the treatment of COVID-19 because of its
anti-inflammatory activity [5].

One branch of mathematical chemistry that examines the chemical characteristics
of molecules is chemical graph theory. Topological index is an important tool in
chemical graph theory which gives a mathematical measure of chemical graphs such
as vertex degree, distance, eccentricity, spectrum, etc. Topological indices are mainly
used in QSPR, QSAR, and QSTR studies that allow pharmacologists and chemists to
use these data for drug discovery. Here we have considered non-neighbor topological
indices which were first introduced by A. Rizwana et al. [6]. The indices considered
for the study are non-neighbor First Zagreb index M1(G) [6], non-neighbor Second
Zagreb index M2(G) [6], non-neighbor Harmonic index H(G) [6], non-neighbor
Randić index Rα(G) [̄7], non-neighbor Sum Connectivity index SC I (G) [8], non-
neighbor ABC index ABC(G) [8], and non-neighbor Geometric Arithmetic index
GA(G) [9].

The topological indices are computed by transforming the structure of a chemical
compound into a molecular graph G = (V, E) by representing the atoms as a
vertex set V and bonds between the atoms as an edge set E . The computation of
topological indices directly byusing the formula from themolecular graph is a tedious
process. To overcome this there are several algebraic polynomials that can help to
recover various topological indices.One of the polynomials is theHosoya polynomial
[10], which is used to deduce distance-based indices mainly the Weiner index. The
indices which calculate the equidistant edges of the graph are found using Omega
and Theta polynomials, whereas the indices which compute non-equidistant edges of
the graph are deduced using Sadhana and PI polynomial [11]. M-polynomial [12] is
used by many researchers to recover topological indices based on degree. Similar to
M-polynomial, NM-polynomial [13] is also used to compute neighborhood degree
sum-based topological indices. Here we have introduced a non-neighbor polynomial
(NN-polynomial) to recover various non-neighbor topological indices.

Topological descriptor plays a significant role in mathematical chemistry, espe-
cially in QSPR/QSAR studies. Kirmani et al., in [14] carried out QSPR and QSAR
analysis between topological index based on the degree and physicochemical prop-
erties of some COVID-19 drugs by using a multiple linear regression model. M.
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C. Shanmukha et al., in [15] established QSPR analysis using a linear regression
model for anticancer drugs. Havareh has designed QSPR model using degree-based,
mostar type, and distance-based topological drugs that are used in the treatment of
COVID-19 by curvilinear regression method [16]. Similarly, a QSPR model was
designed using degree-based and neighborhood degree-based topological indices of
novel drugs for the treatment of cancer by using the same curvilinear regression
approach [17]. QSPR analysis using well-known degree-based topological indices
for drugs used in the treatment of breast cancerwas investigated [18] andwas revealed
that some of the indices possess high correlation values with the physicochemical
properties of drugs. Zhong et al. [19] have investigated theQSPR analysis of valency-
based topological indices of COVID-19 drugs and found that these indices serve as
good predictive means in QSPR investigations. The above literature motivated us to
carry out QSPR analysis between non-neighbor topological indices and physical and
chemical properties for the aforesaid drugs using a linear regression model.

The Non-Neighbor polynomial of a graph G is defined as follows:

Definition 1.1 The Non-Neighbor polynomial (NN-polynomial) of a graph G is
defined as

NN (G; x, y) = ∑

i≤ j
ei, j x

i y j , where ei, j , i, j ≥ 1, is a number of edges uv of

G such that
{
dG(u), dG(v)

} = {i, j} and dG(v) = n − 1 − dG(v) where dG(v) =
number of non-neighbors of the vertex v ∈ G and dG(v) = degree of the vertex v.

The mathematical expression of the above indices is summarized in Table 1.

where Dx = x
(

∂(h(x,y))
∂x

)
, Dy = y

(
∂(h(x,y))

∂y

)
, Sx = x∫

0

h(t,y)
t dt, Sy =

y∫
0

h(x,t)
t dt,

J (h(x, y)) = h(x, x), Qk(h(x, y)) = xkh(x, y)For non-neighbor topological
indices: h(x, y) = NN (G; x, y).

2 Methodology and New Results

Theedgepartition technique is used todetermine theNN-polynomial of themolecular
graphs for the drugs Nitazoxanide (N), Imatinib (I), Famotidine (F), Galidesivir (G),
and Artesunate (A). The aforementioned antiviral drugs’ chemical structures are
retrieved from “www.pubchem.ncbi.nlm.nih.gov.” For each of the aforementioned
medications, molecular graphs are created using their respective chemical structures.
Using the formulae in Table 1, the various non-neighbor topological indices from
the NN-polynomial are obtained.

http://www.pubchem.ncbi.nlm.nih.gov
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Table 1 Derivation formulae of topological indices from NN-polynomial

Non-neighbor
topological
indices

Mathematical expression h(x, y) = NN (G; x, y)

Non-Neighbor First
Zagreb index

M1(G)

∑

uv∈E(G)

(
dG(u) + dG(v)

) (
Dx + Dy

)
(h(x, y))|x=y=1

Non-Neighbor
Second Zagreb

index M2(G)

∑

uv∈E(G)

(
dG(u).dG(v)

) (
Dx Dy

)
(h(x, y))|x=y=1

Non-Neighbor
Harmonic index
H(G)

∑

uv∈E(G)

2
dG (u)+dG (v)

(2Sx J )(h(x, y))|x=1

Non-Neighbor

Randić index Rα(G)

∑

uv∈E(G)

(
dG(u).dG(v)

)α
(
Dk
x D

k
y

)
(h(x, y))|x=y=1

Non-Neighbor Sum
connectivity index

SC I (G)

∑

uv∈E(G)

(
dG(u) + dG(v)

)α

(

S
1/2
x J

)

(h(x, y))|x=1

Non-Neighbor ABC

index ABC(G)

∑

uv∈E(G)

√
dG (u)+dG (v)−2
dG (u).dG (v)

(

D
1/2
x Q−2 J S

1/2
x S

1/2
y

)

(h(x, y))|x=1

Non-Neighbor
Geometric
Arithmetic index
GA(G)

∑

uv∈E(G)

2
√

dG (u).dG (v)
du+dv

(

2Sx J D
1/2
x D

1/2
y

)

(h(x, y))|x=1

2.1 Computation of NN-polynomial and Topological Indices
of Nitazoxanide

Theorem 2.1.1 The NN-polynomial of the chemical graph N of Nitazoxanide is

N N (N ; x, y) = 3x17y17 + 10x17y18 + 5x17y19 + 4x18y18

Proof The chemical structure and chemical graph of Nitazoxanide are shown in
Fig. 1a and 1b, respectively. Let N be the chemical graph of Nitazoxanide with 21
vertices and 22 edges. Let Ei, j denote the set of all edges uv where {i, j} denote the
number of non-neighbor vertices at u and v respectively such that

Ei, j = {
uv ∈ E(G) : dG(u) = i, dG(v) = j

}
and

∣
∣Ei, j

∣
∣ = ei, j . From the

molecular graph of Nitazoxanide we obtain,
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Fig. 1 a Chemical structure and b Chemical graph of Nitazoxanide

e17,17 = 3, e17,18 = 10, e17,19 = 5, e18,18 = 4

Therefore, by Definition 1.1, we have

NN (N ; x, y) =
∑

i≤ j

ei, j x
i y j

= e17,17x
17y17 + e17,18x

17y18 + e17,19x
17y19 + e18,18x

18y18

= 3x17y17 + 10x17y18 + 5x17y19 + 4x18y18

Hence the result.
In the following theorem, we recover some non-neighbor topological indices of

Nitazoxanide from the NN-polynomial in Theorem 2.1.1 and by using the formula
in Table 1.

Theorem 2.1.2 Let N be the molecular graph of Nitazoxanide, then we have

M1(N ) = 776, M2(N ) = 6838, H(N ) = 1.2478, R−1/2(N ) = 1.2485,

SC I (N ) = 3.7048, ABC(N ) = 7.2,GA(N ) = 21.9881.7

Proof Consider theNN-polynomial of Nitazoxanide from the above result.We have,

NN (N ; x, y) = f (x, y) = 3x17y17 + 10x17y18 + 5x17y19 + 4x18y18

Then
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(
Dx + Dy

)
( f (x, y)) = 102x17y17 + 350x17y18 + 180x17y19 + 144x18y18

(
Dx Dy

)
( f (x, y)) = 867x17y17 + 3060x17y18 + 1615x17y19 + 1296x18y18

(2Sx J )( f (x, y)) = 6

34
x34 + 20

35
x35 + 10

36
x36 + 8

36
x36

(
Dk

x D
k
y

)
( f (x, y)) = 3(289)αx17y17 + 10(306)αx17y18 + 5(323)αx17y19

+4(324)αx18y18
(

S
1/2
x J

)

( f (x, y)) = 3√
34

x34 + 10√
35

x35 + 5√
36

x36 + 4√
36

x36

(

D
1/2
x Q−2 J S

1/2
x S

1/2
y

)

( f (x, y)) = 3
√
32

17
x32 + 10

√
33

√
17

√
18

x33

+ 5
√
34√

19
√
17

x34 + 4
√
34

18
x34

(

2Sx J D
1/2
x D

1/2
y

)

( f (x, y)) = 102

34
x34 + 20

√
17

√
18

35
x35

+10
√
19

√
17

36
x36 + 144

36
x36

Now from Table 1, we get

M1(N ) = (
Dx + Dy

)
( f (x, y))|x=y=1 = 776

M2(N ) = (
Dx Dy

)
( f (x, y))|x=y=1 = 6838

H(N ) = (2Sx J )( f (x, y))|x=1 = 1.2478

R−1/2(N ) = (
Dk

x D
k
y

)
( f (x, y))|x=y=1 = 1.2485

SC I (N ) =
(

S
1/2
x J

)

( f (x, y))|x=1 = 3.7048

ABC(N ) =
(

D
1/2
x Q−2 J S

1/2
x S

1/2
y

)

( f (x, y))|x=1 = 7.2

GA(N ) =
(

2Sx J D
1/2
x D

1/2
y

)

( f (x, y))|x=1 = 21.9881

Hence the result.
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2.2 Computation of NN-polynomial and Topological Indices
of Imatinib

Theorem 2.2.1 The NN-polynomial of the chemical graph I of Imatinib is

N N (I ; x, y) = 3x33y33 + 24x33y34 + 3x33y35 + 11x34y34

Proof The molecular graph of Imatinib (I ) as shown in Fig. 2b contain 37
vertices and 41 edges. Let Ei, j denote the set of all edges uv where {i, j} denote
the number of non-neighbor vertices at u and v respectively such that Ei, j . ={
uv ∈ E(G) : dG(u) = i, dG(v) = j

}
and

∣
∣Ei, j

∣
∣ = ei, j . From the molecular graph

of Imatinib, we get.

e33,33 = 3, e33,34 = 24, e33,35 = 3, e34,34 = 11

Therefore, by Definition 1.1, we have

NN (I ; x, y) =
∑

i≤ j

ei, j x
i y j

= e33,33x
33y33 + e33,34x

33y34 + e33,35x
33y35 + e34,34x

34y34

= 3x33y33 + 24x33y34 + 3x33y35 + 11x34y34

Hence the result.
Now, using the NN-polynomial from the previous theorem, we derive various

non-neighbor topological indices for the chemical graph of imatinib in the following
theorem. By applying the same methodology as in Theorem 2.1.2, we arrive at the
following result.

Fig. 2 a Chemical structure and b Chemical graph of Imatinib
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Theorem 2.2.2 Let I be the chemical graph of Imatinib, then

M1(I ) = 2758, M2(I ) = 46376, H(I ) = 1.2190, R−1/2(I ) = 1.219, SC I (I ) = 4.9989

ABC(I ) = 9.8491,GA(I ) = 40.996

2.3 Computation of NN-polynomial and Topological Indices
of Famotidine

Theorem 2.3.1 The NN-polynomial of the chemical graph F of Famotidine is

N N (F; x, y) = x15y17 + 3x15y18 + 9x16y17 + 3x16y18 + 4x17y17

Proof The chemical structure and chemical graph of Famotidine are shown in Fig. 3a
and b, respectively. Let F be the molecular graph of Famotidine with |V (F)| =
20 and |E(F)| = 20. Let Ei, j denote the set of all edges uv where {i, j} denote
the number of non-neighbor vertices at u and v, respectively, such that Ei, j . ={
uv ∈ E(G) : dG(u) = i, dG(v) = j

}
and

∣
∣Ei, j

∣
∣ = ei, j . From the molecular graph

of Famotidine, we obtain

e15,17 = 1, e15,18 = 3, e16,17 = 9, e16,18 = 3, e17,17 = 4

Therefore, by Definition 1.1, we have

NN (F; x, y) =
∑

i≤ j

ei, j x
i y j

= e15,17x
15y17 + e15,18x

15y18 + e16,17x
16y17 + e16,18x

16y18 + e17,17x
17y17

= x15y17 + 3x15y18 + 9x16y17 + 3x16y18 + 4x17y17

Fig. 3 a Chemical structure and b Chemical graph of Famotidine
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Hence the result.
The NN-polynomial from the previous theorem is now used to generate a number

of non-neighbor topological indices for the chemical graph of Famotidine in the
following theorem by applying the same methodology as in Theorem 2.1.2, and the
outcome is as follows:

Theorem 2.3.2 Let F be the chemical graph of Famotidine, then

M1(F) = 666, M2(F) = 5533, H(I ) = 1.2015, R−1/2(F) = 1.2027, SC I (F) = 3.4661

ABC(F) = 7.7703,GA(F) = 19.9761

2.4 Computation of NN-polynomial and Topological Indices
of Galidesivir

Theorem 2.4.1 The NN-polynomial of the chemical graph G of Galidesivir is

N N (G; x, y) = 7x15y15 + 7x15y16 + 3x15y17 + 3x16y16 + x16y17

Proof From Fig. 4a and b, we see that the molecular graph of Galidesivir has 19
vertices and 21 edges. Let Ei, j denote the set of all edges uv where {i, j} indicate
the number of non-neighbor vertices at u and v, respectively, such that Ei, j . ={
uv ∈ E(G) : dG(u) = i, dG(v) = j

}
and

∣
∣Ei, j

∣
∣ = ei, j . From the molecular graph

of Galidesivir, we get

e15,15 = 7, e15,16 = 7, e15,17 = 3, e16,16 = 3, e16,17 = 1

Fig. 4 a Chemical structure and b Chemical graph of Galidesivir
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Therefore, by Definition 1.1, we have

NN (G; x, y) =
∑

i≤ j

ei, j x
i y j

= e15,15x
15y15 + e15,16x

15y16 + e15,17x
15y17 + e16,16x

16y16 + e16,17x
16y17

= 7x15y15 + 7x15y16 + 3x15y17 + 3x16y16 + x16y17

This completes the proof.
By using the NN-polynomial of the chemical graph of Galidesivir, the indices

values are computed in Theorem 2.4.2 by following the same procedure as in
Theorem 2.1.2.

Theorem 2.4.2 Let G be the chemical graph of Galidesivir, then

M1(G) = 652, M2(G) = 5060, H(G) = 1.3538, R−1/2(G) = 1.3543, SC I (G) = 3.7699

ABC(G) = 7.2958,GA(G) = 20.9898

2.5 Computation of NN-polynomial and Topological Indices
of Artesunate

Theorem 2.5.1 The NN-polynomial of the chemical graph A of Artesunate is

NN (A; x, y) = 3x22y23 + 4x22y24 + x22y25 + 3x23y23 + 10x23y24 + 5x23y25 + 4x24y24

Proof The chemical structure and molecular graph of Artesunate are shown in
Fig. 5a and b, respectively. Let A be the molecular graph of Artesunate with
27 vertices and 30 edges. Let Ei, j denote the set of all edges uv where {i, j}
denote the number of non-neighbor vertices at u and v, respectively, such that
Ei, j . = {

uv ∈ E(G) : dG(u) = i, dG(v) = j
}
and

∣
∣Ei, j

∣
∣ = ei, j . From themolecular

graph of Artesunate, we obtain

e22,23 = 3, e22,24 = 4, e22,25 = 1, e23,23 = 3, e23,24 = 10, e23,25 = 5, e24,24 = 4
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Fig. 5 a Chemical structure and b Chemical graph of Artesunate

Therefore, by Definition 1.1, we have

NN (A; x, y) =
∑

i≤ j

ei, j x
i y j

= e22,23x
22 y23 + e22,24x

22 y24 + e22,25x
22 y25 + e23,23x

23 y23 + e23,24x
23 y24 + e23,25x

23 y25 +24,24 x
24 y24

= 3x22 y23 + 4x22 y24 + x22 y25 + 3x23 y23 + 10x23 y24 + 5x23 y25 + 4x24 y24

Hence the result.
By using the NN-polynomial of the chemical graph of Artesunate, the indices

values are computed in Theorem 2.5.2 by following the same procedure as in
Theorem 2.1.2.

Theorem 2.5.2 Let A be the chemical graph of Artesunate, then

M1(A) = 1406, M2(A) = 16466, H(A) = 1.2807, R−1/2(A) = 1.281, SC I (A) = 4.3828

ABC(A) = 8.5801,GA(A) = 29.9864

3 Non-neighbor Topological Indices in QSPR Studies

Here we define seven non-neighbor topological indices such as non-neighbor First
Zagreb index M1(G), non-neighbor Second Zagreb index M2(G), non-neighbor
Harmonic index H(G), non-neighbor Randić index Rα(G), non-neighbor Sum
connectivity index SC I (G), non-neighbor ABC index ABC(G), and non-neighbor
Geometric Arithmetic index GA(G) for modeling eight Physical and chemical
properties such as Boiling Point (BP), Enthalpy of Vaporization (EV), Flash Point
(FP), Molar Refraction (MR), Polar Surface Area (PSA), Polarizability (P), Surface
Tension (ST) andMolar Volume (MV) of five antiviral drugs Nitazoxanide, Imatinib,
Famotidine, Galidesivir, andArtesunate. The values for these Physicochemical prop-
erties of drugs are obtained from ChemSpider. The above-mentioned non-neighbor
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topological indices and the experimental values of the physicochemical properties
of drugs are represented in Table 2 and Table 3, respectively.

For the purpose of computation in the QSPR analysis study, a linear regression
method is adopted. The linear regression method is represented by the following
equation.

Y = A + B(X) (1)

where Y is the Physicochemical properties of drugs, A is a constant, B represents
the regression coefficient and X represent the topological index. Table 4 repre-
sents the value of R2, the square of the correlation coefficient which is obtained by
linear regression model between seven non-neighbor topological indices and eight
Physicochemical characteristics of five aforesaid medications. The most significant
maximum R2 values in Table 4 are shown in bold, indicating that they represent
the best predictor of the physicochemical characteristics of drugs. Table 5 shows
the linear regression equation for the topological indices that fit the best and are the
most predictable, along with the correlation coefficient value (R), F-Statistics, and
P-value.

Table 2 Non-Neighbor topological indices values of antiviral drugs

Drugs M1(G) M2(G) H(G) R−1/2(G) SC I (G) ABC(G) GA(G)

Nitazoxanide 776 6838 1.2478 1.2485 3.7048 7.2 21.9881

Imatinib 2758 46,376 1.2190 1.219 4.9989 9.8491 40.996

Famotidine 666 5533 1.2015 1.2027 3.4661 7.7703 19.9761

Galidesivir 652 5060 1.3538 1.3543 3.7699 7.2958 20.9898

Artesunate 1406 16,466 1.2807 1.281 4.3828 8.5801 29.9864

Table 3 Physicochemical characteristics values of antiviral medications

Drugs Formula BP EV FP MR PSA P ST MV

Nitazoxanide C12H9N3O5S 394 – – 75.2 142 29.8 70.6 200.5

Imatinib C29H31N7O 754.9 – – 147.1 86 58.3 63.6 393

Famotidine C8H15N7O2S3 662.4 97.4 354.4 79.1 238 31.3 97.3 183.6

Galidesivir C11H15N5O3 661.2 102.2 353.7 68.3 140 27.1 103.2 162.6

Artesunate C19H28O8 507.1 85.1 175.6 92.2 101 36.6 51.4 292.2
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Table 4 R2 value obtained by linear regression model between NN-topological indices and
Physicochemical properties of the antiviral drugs

Indices BP EV FP MR PSA P ST MV

M1(G) 0.223 0.934 0.999 0.976 0.470 0.977 0.373 0.960

M2(G) 0.268 0.944 0.998 0.987 0.421 0.988 0.303 0.923

H(G) 0.011 0.062 0.001 0.211 0.093 0.209 0.065 0.142

R−1/2(G) 0.012 0.064 0.001 0.217 0.089 0.215 0.068 0.147

SC I(G) 0.140 0.675 0.896 0.834 0.687 0.837 0.478 0.934

ABC(G) 0.293 0.990 0.864 0.927 0.320 0.928 0.349 0.936

GA(G) 0.171 0.811 0.992 0.931 0.557 0.932 0.454 0.979

Table 5 The best linear regression model for the physical–chemical characteristics of antiviral
drugs

Linear model R F P Indicator

BP = 20.469 + 70.702 ABC 0.541 1.245 0.345 Not Significant

EV = 201.432–13.515 ABC 0.995 102.603 0.062 Not Significant

FP = 511.408–0.238 M1 0.999 2595.411 0.012 Significant

MR = 63.521 + 0.001 M2 0.993 232.063 0.000 Significant

PSA = 462.203–78.928 SCI 0.8291 6.596 0.082 Not Significant

P = 25.179 + 0.0007 M2 0.9939 243.005 0.000 Significant

ST = 177.57–24.689 SCI 0.6915 2.748 0.195 Not Significant

MV = -39.495 + 10.672 GA 0.989 140.167 0.001 Significant

4 Conclusion

Topological indices are used to identify various properties of the molecular struc-
ture of chemical compounds which are an essential part of drug discovery. There-
fore, in this article, we have studied some investigational drugs for the treatment
of COVID-19 like Nitazoxanide, Imatinib, Famotidine, Galidesivir, and Artesunate
and established NN-polynomial expression from their molecular structures. Further,
some non-neighbor topological indices are recovered from the NN-polynomial. The
QSPR study shows a strong correlation value between various non-neighbor topo-
logical indices and physicochemical properties of the above drugs. In particular,
non-neighbor First Zagreb index M1(G) shows high significant correlation value (r
= 0.999) with Flash point (FP), non-neighbor Second Zagreb index M2(G) gives
high positive significant correlation (r= 0.993) with Molar refraction (MR) and (r=
0.9939) with Polarizability (P). non-neighbor Geometric Arithmetic index GA(G)

shows high significant correlation value (r = 0.989) with Molar volume (MV). The
result of QSPR analysis will help chemists and pharmacists in new drug discovery
for the treatment of Corona virus (COVID-19).
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5 Data and Software Availability

In this article, the expression for NN-polynomial of molecular graphs of Nitazox-
anide, Imatinib, Famotidine, Galidesivir, and Artesunate are obtained by using the
edge partition method. The values of the physical and chemical properties of the
above drugs are obtained from https://www.chemspider.com, an online chemical
structure database. The chemical structure of antiviral drugs is obtained from www.
pubchem.ncbi.nlm.nih.gov. Using SPSS Software, the linear regression analysis is
performed (Statistical Package for the Social Sciences).
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Some Results on Differential Polynomials
of Meromorphic Functions Sharing
Certain Values

M. Tejuswini and N. Shilpa

Abstract Off late, “Value Distribution Theory” concerning the differential polyno-
mials of meromorphic functions is studied thoroughly. In this article, we consider
a differential polynomial of a meromorphic function and its corresponding q-shift
differential polynomial sharing the value 1, counted according to multiplicity and
ignoring multiplicity to prove the uniqueness theorem. The concepts of normal fam-
ilies are employed to procure the main result, which in turn generalizes the existing
result....

Keywords Normal Families · q-shift Differential Polynomials · Value
Distribution · Meromorphic Functions · Uniqueness

1 Preliminaries

Throughout the article, the term “meromorphic function” means that the function
has no other singularities other than poles in the whole complex plane C. On the
contrary, if the function is analytic everywhere in C, then the function is called an
“entire function”. LetF = { f : f is non constant meromorphic f unction in C}.
For f, g ∈ F and a ∈ C ∪ {∞}, if the zeros of f − a coincide in location and mul-
tiplicity with the zeros of g − a, then we say f and g share a CM (counting mul-
tiplicities), if the coincidence happens only with location then f and g share a IM
(ignoring multiplicities) and a is termed as the value point of f and g. Now f and g
share ∞ CM (IM) if f and g have same poles CM (IM). If f − a has no zeros, then
a is the “Picard exceptional Value (PeV)” of f [12]. Let q ∈ Z

+, then the “counting
function” N(q(r,

1
f −a ) means that the a-points of f , CM whose multiplicities are not

less than q and the corresponding “reduced counting function” counted IM is given
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by N (q(r,
1

f −a ) [9]. For the basic definitions and standard notations of Nevanlinna
theory, the readers are referred to [10].We use the notation ρ( f ),μ( f ),Θ(a, f ), and
δk(a, f ) to represent the terms “order of f ”, “lower order of f ” “truncated defect of
f ”, and the “deficiency of f ”, respectively, whose definitions can be seen in [3, 6].

Definition 1 ([6]) Let f ∈ F be transcendental having infinitely many zeros then
the “exponent of convergence of zeros” of f , is defined as

λ( f ) = lim sup
r→∞

log+N (r, 1
f −a )

log r
.

In 1981, the author duo Shibazaki–Yang gave the following result:

Theorem 1 ([8]) Let f and g be two entire functions of finite order. Suppose f ′ and
g′ share 1 value and if δ(0, f ) > 0, where 0 is the PeV of g, then either f ′g′ ≡ 1 or
f ≡ g.

For the meromorphic class of functions, in 2012, Banerjee–Majumder proved the
following uniqueness result:

Theorem 2 ([2])Let f, g ∈ F . For n ≥ 13, if f n( f − 1)2 f ′ and gn(g − 1)2g′ share
1 CM then, f ≡ g.

The authors X. M. Li et.al., in 2014, gave a new perspective for the unicity theorems
by considering a “differential polynomial” generated by ameromorphic function and
its shift counterpart to prove the uniqueness result as stated below

Theorem 3 ([6]) Let f ∈ F , n, k ∈ Z
+ and the constant ξ( 	= 0) ∈ C. If [ f n(z)

( f (z) − 1)](k) and [ f n(z + ξ)( f (z + ξ) − 1)](k) share 1 value CM (1 IM) then

f (z + ξ) = f (z),∀z ∈ C, whenever λ

(
1

f

)
/∈ [1, 2] and Θ(∞, f ) >

2

n
with n >

3k + 11 (n > 9k + 20).

This is the main motivation for the primary results of this paper stated below

Theorem 4 Let f be a non constant meromorphic function and the constants
q, c ∈ C. Form, n, k ∈ Z

+ satisfying n > 3k + m + 10, k ≥ 1, if [ f n(z)( f m(z) −
1)](k) and [ f n(qz + c)( f m(qz + c) − 1)](k) share 1 CM with λ

(
1

f

)
/∈ [1, 2] and

Θ(∞, f ) >
2

n
then f (qz + c) = f (z),∀z ∈ C.

Theorem 5 Let f be a non constant meromorphic function and the constants q, c ∈
C. For m, n, k ∈ Z

+ satisfying n > 9k + 4m + 16, k ≥ 1, if [ f n(z)( f m(z) −
1)](k) and [ f n(qz + c)( f m(qz + c) − 1)](k) share 1 IM with λ

(
1

f

)
/∈ [1, 2] and

Θ(∞, f ) >
2

n
then f (qz + c) = f (z),∀z ∈ C.
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2 Lemmas

Lemma 1 ([7]) Let f ∈ F and if

F =

k∑
p=0

ap f p

l∑
q=0

bq f q

is in the most reduced form with ap and bq being constant coefficients and ak, bl 	= 0
then T (r, F) = d T (r, f ) + O(1), d = max {k, l}.
Lemma 2 ([5]) Let f, g ∈ F and k(≥ 1) ∈ Z. Suppose f (k) and g(k) share a poly-
nomial Q 	= 0 CM and if

Δ1 = (k + 2)Θ(∞, f ) + Θ(0, f ) + δk+1(0, f ) + 2Θ(∞, g) + Θ(0, g)+
δk+1(0, g) > k + 7,

(1)

and

Δ2 = (k + 2)Θ(∞, g) + Θ(0, g) + δk+1(0, g) + 2Θ(∞, f ) + Θ(0, f )+
δk+1(0, f ) > k + 7

(2)

then either f (k)g(k) = Q2 or f ≡ g.

Lemma 3 ([5]) Let f, g ∈ F and k(≥ 1) ∈ Z. Suppose f (k) and g(k) share a poly-
nomial Q 	= 0 IM and if

Δ3 = (3 + 2k)Θ(∞, f ) + Θ(0, f ) + 2δk+1(0, f ) + (4 + 2k)Θ(∞, g) + Θ(0, g)

+3δk+1(0, g) > 4k + 13,
(3)

and

Δ4 = (3 + 2k)Θ(∞, g) + Θ(0, g) + 2δk+1(0, g) + (4 + 2k)Θ(∞, f ) + Θ(0, f )

+3δk+1(0, f ) > 4k + 13
(4)

then either f (k)g(k) = Q2 or f ≡ g.

Lemma 4 ([4]) Suppose f ∈ F has a spherical derivative which is bounded on C,
then f is of order at most 1.

Lemma 5 ([6]) For f, g ∈ F and constants c1, c2, c ∈ C\{0} such that (−1)k

(c1c2)n(nc)2k = 1 if suppose ( f n)(k)(gn)(k) = 1, then the functions take the form
f (z) = c1ecz and g(z) = c2e−cz satisfying n > 2k and k ≥ 1.



282 M. Tejuswini and N. Shilpa

Lemma 6 Let f, g ∈ F and n, k, m ∈ Z
+ with n > 2k − m, k ≥ 1 if

[ f n(z)( f m(z) − 1)](k)[gn(z)(gm(z) − 1)](k) ≡ 1, (5)

then ρ( f ) and ρ(g) is ≤ 2.

Proof In case if f and g are “rational functions”, then ρ( f ) = ρ(g) = 0 and the
lemma holds. Suppose f and g are “transcendental functions”, we define two families
of meromorphic functions say F = { fw} and G = {gw} where fw(z) = f (z + w)

and gw(z) = g(z + w).

Case 1: Suppose one of the families say F is normal on C. By “Marty’s theorem”,
the spherical derivative is bounded, i.e., for someM > 0, we have f #(w) = f #w(0) ≤
M, ∀ w ∈ C therefore by Lemma4, ρ( f (z)) is maximum 2.

Case 2: Suppose one of the families say F is not normal on C. By “Marty’s theo-
rem”, we have a sequence of functions fi (z) in F such that fi (z) = f (wi + z), z ∈
{z : |z| < 1} and wi is some infinite sequence in C. Also as |wi | → ∞, we have

f #i (0) = f #i (wi ) → ∞. (6)

Now by Zalcman’s lemma [11], we get:
(a) for |zi | < 1, zi → 0,
(b) positive numbers ρi such that ρi → 0+,
(c) sequence of functions fi (zi + ρiη) of f (wi + z) where fi (zi + ρiη) = f (wi +
zi + ρiη) such that we have a spherically uniformly converging sequence hi (η)

defined as
hi (η) := ρ

−k
n

i fi (zi + ρiη), (7)

which converges to h(η) and satisfies the normalization h#(η) ≤ h#(0) = 1. There-
fore by Lemma4 order of h is at most 2. For ai = wi + zi , the steps in the proof of
“Zalcman’s lemma” (refer[11]) gives the following results:

ρi = 1

f #i (zi )
= 1

f #(ai )
, (8)

f #(ai ) = f #i (zi ) ≥ f #i (0) = f #(wi ). (9)

Substituting (7) in (5), we get

[
ρ

k
m+n

i hm+n
i (η) − ρ

k
n
i h

n
i (η)

](k)

= [
f m+n
i (zi + ρiη) − f ni (zi + ρiη)

](k)
, (10)

which converges spherically uniformly to

− [hn(η)](k) in C \h̃−1(∞). (11)
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We claim that [gm+n − gn](k) is non constant. If suppose [gm+n − gn](k) is some
constant then, gm+n − gn = Pk where Pk is a polynomial of degree ≤ k which in
turn leads to m + n ≤ k, a contradiction. Let us define

ĥi (η) = ρ
−k
n

i gi (zi + ρiη). (12)

Substituting (12) in (5) and proceeding in the same manner as (10) and (11), we
get the converging sequence [ĥn(η)](k). By deducing according to formula of higher
derivatives, we get [

ĥn(η)
](k) → −h̃(η). (13)

By “Hurwitz’s theorem”, each zero and each pole of the non constant meromorphic
function, h̃(η) is of multiple n, so we write

h̃(η) = ĥn, ∀ η ∈ C\{h̃−1(∞) ∪ ĥ−1(∞)}. (14)

Using (13) and (14) in (5), we get

[h̃(η)](k)[ĥn(η)](k) ≡ 1. (15)

With the assumption of (15) and that “order of f ” is maximum 2, we have

ρ( f ) = ρ( f n) = ρ(( f n)(k)) = ρ((gn)(k)) = ρ(gn) = ρ(g) ≤ 2, (16)

ρ(h) =ρ(h̃) ≤ 2. (17)

The equations (15) and (17) together satisfy the conditions of Lemma5, hence h(z)
and h̃(z) are transcendental functions which takes the form

h(z) = c1e
cz, h̃(z) = c2e

−cz . (18)

where the constants obey the condition (−1)k(c1c2)n(nc)2k = 1. Now

h′
i (η)

hi (η)
= ρ

−k
n

i f ′
i (zi + wi + ρiη)

ρ
−k
n

i fi (zi + wi + ρiη)

= ρi f ′
i (zi + wi + ρiη)

fi (zi + wi + ρiη)
→ h′(η)

h(η)
. (19)

Using Eq. (18) in (19), we get
h′(η)

h(η)
= K . (20)

Now,
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ρi
f ′(wi + zi )

f (wi + zi )
=

(
1 + f (wi + zi )|2

f ′(wi + zi )

)(
f ′(wi + zi )

f (wi + zi )

)

= 1 + | f (wi + zi )2

f (wi + zi )
→ h′(0)

h(0)
. (21)

Again by using Eq. (18) in (21), we get

h′(0)
h(0)

= |c|. (22)

Therefore
lim
i→∞ f (wi + zi ) 	= 0,∞. (23)

The results of (11), (18), and (23) gives

hi (0) = ρ
−k
n

i fi (zi ) = ρ
−k
n

i f (wi + zi ) → ∞. (24)

Therefore
hi (0) = h(0) = C, (25)

which is a contradiction.

Lemma 7 Let f ∈ F be of finite order. For n, m, k ∈ Z
+ with n > 2k − m, k ≥ 1

and the constants c, q ∈ C if

[ f n(z)( f m(z) − 1)](k)[ f n(qz + c)( f m(qz + c) − 1)](k) ≡ 1 (26)

then λ

(
1

f

)
= ρ( f ) and λ

(
1

f

)
∈ [1, 2].

Proof Let
G(z) = [ f n(z)( f m(z) − 1)](k). (27)

Therefore, (26) can be written as

G(z)G(qz + c) ≡ 1. (28)

On the same lines of (16), one can get

ρ( f ) = ρ(G). (29)

Lets take up the emerging cases.

Case 1: In case if f (z) is a “rational function”, then G(z) is also rational function.
Suppose qz0 ∈ C is a pole of f (z), then by (26) and (27), qz0 is a zero of G(qz + c).
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On the same lines, qz0 + c is a pole of G(qz + c), qz0 + 2c is a zero of G(qz + c)
and so on. Proceeding same way, we find G(z) has infinitely many poles and zeros
which is a contradiction.

Case 2:Suppose f (z) is a “transcendentalmeromorphic function”, then byLemma6,
we have ρ( f ) is maximum 2. Let’s discuss the two subcases.

Subcase 1: Suppose f (z) has no poles in C, then by (26) and with the condition
n > 2k − m, f has no zeros in C. If α(z) is a non constant polynomial, then f can
be written as

f (z) = eα(z), deg(α) = ρ( f ) ≥ 1. (30)

Using (30) in (26), we get

[
f m+n(z) − f n(z)

](k) = [
e(m+n)α(z) − enα(z)

](k)

= Rk[α′(z)]enα(z), (31)

[
f m+n(qz + c) − f n(qz + c)

](k) = [
e(m+n)α(qz+c) − enα(qz+c)

](k)

= Rk[α′(qz + c)]enα(qz+c), (32)

where

Rk[α′(z)] = [(m + n)kemα(z) − nk](α′(z))k + [(m + n)emα(z) − n](α(z))(k)+
k[(m + n)k−1emα(z) − nk−1]α(z)(k−1)α(z)(k−2),

(33)
and

Rk [α′(qz + c)] = qk [[(m + n)kemα(qz+c) − nk ](α′(qz + c))k + [(m + n)emα(qz+c)−
n](α(qz + c))(k) + k[(m + n)k−1emα(qz+c) − nk−1]α(qz + c)(k−1)α(qz + c)(k−2)].

(34)
Substituting (31) and (32) in (26), we get

Rk[α′(z)]enα(z)Rk[α′(qz + c)]enα(qz+c) ≡ 1.

Neglecting higher order terms of Rk[α′(z)] and Rk[α′(qz + c)], we get
[
(m + n)2kem(α(z)+α(qz+c)) − n2k − (m + n)knk(emα(qz+c) + emα(z))

]×[
α′(z)α′(qz + c)

]k
en[α(z)+α(qz+c)]α′(z)α′(qz + c) ≡ 1.

(35)

Since α′(z) and α′(qz + c) are non zero constants, from (35), we see that α(z) is a
constant which is a contradiction.
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Subcase 2: Suppose f has atleast one pole, say z1, then as discussed in case 1, G(z)
has infinitely many poles and zeros. For sufficiently large positive integer m

n(qz1 + 2mc,G) ≥ m. (36)

The “exponent of convergence of poles of G”

λ

(
1

G

)
= lim sup

qz1+2mc→∞
log+n(qz1 + 2mc,G)

log(qz1 + 2mc)
≥ lim sup

m→∞
logm

log(qz1 + 2mc)
≥ 1.

(37)

Subcase 2.1: Suppose that

λ

(
1

G

)
< ρ( f ). (38)

With the assumption that n > 2k − m and using Eqs. (26) to (28) in Lemma 2.4 of
[6], we write

λ( f ) ≤ λ

(
1

G

)
. (39)

Combining Eqs. (38) and (39), we get

λ( f ) < ρ( f ). (40)

Let a1, a2 . . . am, . . . and b1, b2 . . . bq , . . . be the non zero zeros and poles of f (z)
each counted according to its multiplicity, respectively, then the cannonical products
of zeros and poles of f (z) can be written as

h1(z) = zn0
∞∏

m=1

Enm

(
z

am

)
and (41)

h2(z) = zn̂0
∞∏
q=1

Ên̂q

(
z

bq

)
, (42)

where n0, n̂0 ≥ 0 are integers. Let g(z) be an “entire function”, we rewrite f (z) in
the form

f (z) = h1(z)

h2(z)
eg(z). (43)

Def ine h(z) = h1(z)

h2(z)
,

Hence
f (z) = h(z)eg(z). (44)
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From Theorem 4.3.6 of [1], we write (45) and (46) as follows:

λ(h1) = ρ(h1) = λ( f ), (45)

λ(h2) = ρ(h2) = λ(
1

f
). (46)

Equations (45) and (46) concludes that

N (r, f ) ≤ N (r,G). (47)

Equations (47) and (40) gives that

λ

(
1

f

)
≤ λ

(
1

G

)
< λ( f ) < ρ( f ). (48)

Using Eqs. (46) and (48) for (44), we can write

ρ(h) < ρ( f ) and ρ( f ) = ρ(eg) < ∞.

Therefore, g is a non constant polynomial with

ρ( f ) = ρ(eg) = deg(g).

Replacing (44) in the left inequality of (26) individually, we have

[ f m+n(z) − f n(z)](k) = [
hm+n(z)e(m+n)g(z) − hn(z)eng(z)

](k)

= K1(z)e
(m+n)g(z) + K2(z)e

ng(z), (49)

where

K1(z) = (hm+n(z))(k) + k(m + n)g′(z)(hm+n(z))(k−1)

+
k∑
j=2

{(
k

j

) (
(m + n)g′(z)

) j + Hj−1
(
(m + n)g′(z)

)} (
hm+n(z)

)(k− j)
,

K2(z) = −[(hn(z))(k) + kng′(z)(hn(z))(k−1)

+
k∑
j=2

{(
k

j

) (
ng′(z)

) j + Hj−1
(
ng′(z)

)} (
hn(z)

)(k− j)],

(50)

and
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[
f m+n(qz + c) − f n(qz + c)

](k) = [
hm+n(qz + c)e(m+n)g(qz+c)

−hn(qz + c)eng(qz+c)
](k)

= K1(qz + c)e(m+n)g(qz+c) + K2(qz + c)eng(qz+c), (51)

where

K1(qz + c) = qk [(hm+n(qz + c))(k) + k(m + n)g′(qz + c)(hm+n(qz + c))(k−1)

+
k∑
j=2

{(
k

j

) (
(m + n)g′(qz + c)

) j + Hj−1
(
(m + n)g′(qz + c)

)} (
hm+n(qz + c)

)(k− j)],

K2(qz + c) = −qk [(hn(qz + c))(k) + k n g′(qz + c)(hn(qz + c))(k−1)

+
k∑
j=2

{(
k

j

) (
ng′(qz + c)

) j + Hj−1
(
n g′(qz + c)

)} (
hn(qz + c)

)(k− j)].

(52)
Here Hj−1(v) is a polynomial of degree ≤ j − 1. Using (49) and (51) in (26), we
get

[K1(z)e
(m+n)g(z) + K2(z)e

ng(z)][K1(qz + c)e(m+n)g(qz+c) + K2(qz + c)eng(qz+c)] ≡ 1.

which gives

K1(z)K1(qz + c)e(m+n)[g(z)+g(qz+c)] + K2(z)K2(qz + c)en[g(z)+g(qz+c)]+
K1(z)K2(qz + c)e[(m+n)g(z)+ng(qz+c)] + K1(qz + c)K2(z)e

[(m+n)g(qz+c)+ng(z)] ≡ 1,
(53)

Arguing in a similar way as in the subcase 1 of Lemma7, we see that g(z) is a constant
polynomial, a contradiction to the lemma statement.
Subcase 2.2: suppose that

λ

(
1

G

)
= ρ( f ). (54)

N (r,G) = N (r, ( f m+n − f n)(k))

≤ N (r, f m+n − f n) + kN (r, f )

N (r,G) ≤ (m + n + k)N (r, f ). (55)

Using Eqs. (30), (48), (54), and Lemma6, we get

λ

(
1

f

)
= ρ( f ) ∈ [1, 2], (56)

which proves the lemma.
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3 Proof of Theorems

Theorem 4: Let

F1 = f n(z)( f m(z) − 1), (57)

G1 = f n(qz + c)( f m(qz + c) − 1). (58)

Using the condition n > 3k + m + 10 and Lemma1 for F1 defined in (57), we have

Θ(∞, F1) = 1 − lim sup
r→∞

N (r, F1)

T (r, F1)

≥1 − lim sup
r→∞

T (r, f )

(m + n)T (r, f ) + O(1)
≥ 1 − 1

m + n
. (59)

Θ(0, F1) = 1 − lim sup
r→∞

N
(
r, 1

F1

)
T (r, F1)

≥1 − lim sup
r→∞

T (r, f )

(m + n)T (r, f ) + O(1)
≥ 1 − 2

m + n
. (60)

δk+1(0, F1) = 1 − lim sup
r→∞

Nk+1

(
r,

1

F1

)

≥1 −
(m + k + 1)N

(
r, 1

f

)
m + n

≥ 1 − m + k + 1

m + n
. (61)

Similarly, for G1, we obtain

Θ(∞,G1) ≥ 1 − 1

m + n
. (62)

Θ(0,G1) ≥ 1 − 2

m + n
. (63)

δk+1(0,G1) ≥ 1 − m + k + 1

m + n
. (64)

Substituting (59)–(64) in (1) and (2), we get
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Δ1 = k + 8 − 3k + 2m + 10

m + n
. (65)

Δ2 = k + 8 − 3k + 2m + 10

m + n
. (66)

For n > 3k + m + 10, we get Δ1 > k + 7 and Δ2 > k + 7. Applying Lemma2, for
F (k)
1 and G(k)

1 sharing 1 CM, we get F (k)
1 G(k)

1 ≡ 1 or F1 ≡ G1. We look into the
following two cases:

Case 1: Suppose that F (k)
1 G(k)

1 ≡ 1, then by Lemma7, we have λ

(
1

f

)
= ρ( f ) ∈

[1, 2] which contradicts the statement of the Theorem4.

Case 2: Suppose that F1 ≡ G1, then by (57) and (58), we write

f n(z)( f m(z) − 1) = f n(qz + c)( f m(qz + c) − 1). (67)

Let

φ(z) = f (z)

f (qz + c)
. (68)

We take up the subsequent two possibilities:

Subcase 1: Suppose that the non constant φ is a “meromorphic function”, then using
(68), (67) can be rewritten as

f n(qz + c) − f n(z) = f m+n(qz + c) − f m+n(z).

f m(qz + c) = 1 − φn(z)

1 − φm+n(z)
. (69)

Using Eqs. (68), (69), and Lemma1, we write

T (r, f m(z)) = T (r, φm(z) f m(qz + c))

mT (r, f ) ≤ (m + n)T (r, φ) + S(r, φ) (or) T (r, f ) ≤ nT (r, φ) + S(r, φ).

(70)

Now using “Second Fundamental Theorem” of Nevanlinna, the reduced counting
function will be

N (r, f ) ≥ (n − 2)T (r, φ) + S(r, φ). (71)

Using Eqs. (70) and (71), the truncated defect
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Θ(∞, f ) = 1 − lim sup
r→∞

N (r, f )

T (r, f )

≤ 1 − n − 2

n
≤ 2

n
, (72)

which is a contradiction.

Subcase 2: Suppose that φ is a constant and if φm+n 	= 1 then the right equality
of Eq. (69) becomes a constant and hence f m(qz + c) becomes a constant which is
wrong. Therefore, φm+n ≡ 1. Using (68), (67) can be rewritten as

(1 − φm+n(z)) f m(qz + c) = 1 − φn(z). (73)

Therefore

φm+n ≡ φn ≡ φ ≡ 1. (74)

Equation (74) in (68) gives the complete proof of the Theorem. �

Theorem 5: Substituting the values (59)–(64) in (3) and (4), we get

Δ3 = 4k + 14 − 9k + 5m + 16

m + n
. (75)

Δ4 = 4k + 14 − 9k + 5m + 16

m + n
. (76)

Forn > 9k + 4m + 16,wehaveΔ3 > 4k + 13 andΔ4 > 4k + 13.With the assump-
tion that F (k)

1 and G(k)
1 share 1 IM, applying Lemma3, we get F (k)

1 G(k)
1 ≡ 1 or

F1 ≡ G1. Following a similar methodology as in the proof of Theorem4, we arrive
at the desired result. �

Corollary 1 If m = 1 and q = 1 in the Theorem4, as a special case, we get the
results of Theorem3.
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A Subclass of Pseudo-Type Meromorphic
Bi-Univalent Functions of Complex
Order Associated with Linear Operator

Asha Thomas, Thomas Rosy, and G. Murugusundaramoorthy

Abstract In this article, we construct a new subclass of pseudo-type meromorphic
bi-univalent function class of complex order, associated with linear operator and
investigate the initial coefficient estimates |b0|, |b1| and |b2|. Furthermore, several
new or known outcomes of our result are mentioned.

Keywords Analytic · Univalent · Meromorphic functions · Pseudo-type
functions · Bi-univalent · Coefficient bounds
1 Introduction and Definitions

Let A denote class of analytic functions

f (ξ) = ξ +
∞∑

n=2

anξ
n, (1)

in U = {ξ : |ξ | < 1}. Also, let S consist of functions in A which are univalent and
normalized by f (0) = f ′(0) − 1 = 0 in U.

For f1, f2 ∈ A, f1 is subordinate to f2, denoted by f1(ξ) ≺ f2(ξ), if there exists
� defined onUwith�(0) = 0 and |�(z)| < 1 satisfies f1(ξ) = f2(�(ξ)). Ma and
Minda [8] consolidated different subclasses of starlike and convex functions where
either

ξ f ′(ξ)

f (ξ)
or 1 + ξ f ′′(ξ)

f ′(ξ)

is subordinate to a more general function and are denoted by S∗
Σ(ϕ) and KΣ(ϕ),

respectively. In this article, ϕ is assumed to be an analytic function in the unit disk
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U, which satisfies ϕ(0) = 1 and ϕ′(0) > 0 and with respect to the real axis ϕ(U) is
symmetric. This function is written as

ϕ(ξ) = 1 + β1ξ + β2ξ
2 + β3ξ

3 + · · · , (β1 > 0). (1.2)

Setting ϕ(ξ) as

ϕ(ξ) =
(
1 + ξ

1 − ξ

)δ

= 1 + 2δξ + 2δ2ξ 2 + 4δ2 + 2δ

3
ξ 3 + · · · , 0 < δ ≤ 1 (1.3)

we have β1 = 2δ, β2 = 2δ2, β3 = 4δ2+2δ
3 .

If

ϕ(ξ) = 1 + (1 − 2ω)ξ

1 − ξ
= 1 + 2(1 − ω)ξ + 2(1 − ω)ξ 2 + · · · , (0 ≤ ω < 1)

(1.4)
then β1 = β2 = β3 = 2(1 − ω).

Let Σ ′ denote the class of all meromorphic univalent functions g of the form

g(ξ) = ξ + b0 +
∞∑

n=1

bn
ξ n

, (1.5)

defined on U
∗ = {ξ : 1 < |ξ | < ∞}. Since g ∈ Σ ′ is univalent its inverse g−1 = υ

exists and satisfies

g−1(g(ξ)) = ξ and g−1(g(w)) = w for ξ ∈ U
∗, M > 0 , M < |w| < ∞

where

g−1(w) = υ(w) = w +
∞∑

n=0

Cn

wn
, M < |w| < ∞ (1.6)

Now g ∈ Σ ′ is meromorphic bi-univalent if g−1 ∈ Σ ′, akin to the bi-univalent
analytic functions [5]. Let the class of all meromorphic bi-univalent functions be
denoted by MΣ ′ . In literature, the coefficient bounds of meromorphic univalent
functions were studied extensively, the bound |b2| ≤ 2

3 for meromorphic univalent
functions g ∈ Σ ′ with b0 = 0 was estimated by Schiffer [13] and Duren [3] proved
that |bn| ≤ 2

(n+1) on the coefficient of meromorphic univalent functions g ∈ Σ ′ with
bk(0) = 0 for 1 ≤ k < n

2 . For the coefficient of υ ∈ MΣ ′ , Springer [15] proved
|C3| ≤ 1; |C3 + 1

2C
2
1 | ≤ 1

2 and conjectured |C2n−1| ≤ (2n−1)!
n!(n−1)! , (n=1,2,. . .).

Springer’s conjecture was proved true for n = 3, 4, 5 by Kubota [7] and the coef-
ficient bounds C2n−1, 1 ≤ n ≤ 7 for the inverse meromorphic univalent functions
in U

∗ was obtained by Schober [12] and also proved the sharpness. The coefficient
bounds for a class consisting of inverses of meromorphic starlike univalent functions
of order δ in U

∗ was estimated [6, 16].
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For g ∈ Σ ′ as in (1.5), a linear differential operator is defined as follows [10, 14]:

�
0
ζg(ξ) = g(ξ),

�
1
ζg(ξ) = (1 − ζ )g(ξ) + ζ ξg′(ξ) = �ζg(ξ) (ζ ≥ 0) (1.7)

�
ν
ζg(ξ) = �ζ (�

ν−1
ζ g(ξ)) (ν ∈ N = {1, 2, 3, . . .}) (1.8)

Then from (1.7) and (1.8), we get

�
ν
ζg(ξ) = ξ + (1 − ζ )νb0 +

∞∑

n=1

[1 − (n + 1)ζ ]νbnξ−n (ν ∈ N = {0, 1, 2, 3, . . .}).
(1.9)

A new subclass μ - pseudo starlike function of order ϑ (0 ≤ ϑ < 1) satisfying the
analytic condition

Re

(
ξ( f ′(ξ))μ

f (ξ)

)
> ϑ, ξ ∈ U, 1 ≤ μ ∈ R (1.10)

and denoted by Lμ(ϑ) was defined by Babalola [1] and he remarked that for μ > 1,
the classes of μ− pseudo starlike functions represent the analytic starlike functions.
Also, when μ = 1, we have the class of starlike functions of order ϑ (1-pseudo
starlike functions of order ϑ) and for μ = 2, we get the class of functions, which
is a product combination of geometric expressions for bounded turning and starlike
functions.

Motivated by the earlier works [2, 4, 9, 10, 17, 18], a new subclass of pseudo-
type meromorphic bi-univalent functions class, denoted byPγ

Σ ′(η, μ, ϕ, ζ, ν)where
γ ∈ C\{0} is introduced and the coefficient bounds |b0|, |b1| and |b2| are determined
when associated with the linear operator as defined in (1.9). Several outcomes of the
new results are discussed.

Definition 1 For 0 < η ≤ 1 and μ ≥ 1, a function g(ξ) ∈ Σ ′ given by (1.5) is said
to be in the class Pγ

Σ ′(η, μ, ϕ, ζ, ν) if the following conditions are satisfied:

1 + 1

γ

[
(1 − η)

(
�

ν
ζg(ξ)

ξ

)μ

+ η

(
ξ(�ν

ζg
′(ξ))μ

�
ν
ζg(ξ)

)
− 1

]
≺ ϕ(ξ) (1.11)

and

1 + 1

γ

[
(1 − η)

(
�

ν
ζ υ(w)

w

)μ

+ η

(
w(�ν

ζ υ
′(w))μ

�
ν
ζ υ(w)

)
− 1

]
≺ ϕ(w) (1.12)

where ξ,w ∈ U
∗, γ ∈ C\{0} and the function υ is given by (1.6).



296 A. Thomas et al.

By suitably specializing the parameter η, we obtain new subclasses ofPγ

Σ ′(η, μ, ϕ,

ζ, ν) as illustrated in the following Examples.

Example 1 For η = 1, g ∈ Σ ′ is in the classPγ

Σ ′(1, μ, ϕ, ζ, ν) ≡ P
γ

Σ ′(μ, ϕ, ζ, ν)

if the following conditions hold:

1 + 1

γ

(
ξ(�ν

ζg
′(ξ))μ

�
ν
ζg(ξ)

− 1

)
≺ ϕ(ξ) and 1 + 1

γ

(
w(�ν

ζ υ
′(w))μ

�
ν
ζ υ(w)

− 1

)
≺ ϕ(w)

where ξ,w ∈ U
∗, μ ≥ 1, γ ∈ C\{0} and the function υ is given by (1.6).

Remark 1 We note that Pγ

Σ ′(1, 1, ϕ, ζ, ν) ≡ S
γ

Σ ′(ϕ)

Example 2 For η = 1 and γ = 1, g ∈ Σ ′ given by (1.5) is in the classP1
Σ ′(1, μ, ϕ,

ζ, ν) ≡ PΣ ′(μ, ϕ, ζ, ν) if the following conditions hold:

ξ(�ν
ζg

′(ξ))μ

�
ν
ζg(ξ)

≺ ϕ(ξ) and
w(�ν

ζ υ
′(w))μ

�
ν
ζ υ(w)

≺ ϕ(w)

where ξ,w ∈ U
∗, μ ≥ 1 and υ is given by (1.6).

Example 3 For η = 0, g ∈ Σ ′ given by (1.5) is in the class Pγ

Σ ′(1, μ, ϕ, ζ, ν) ≡
R

γ

Σ ′(μ, ϕ, ζ, ν) if the following conditions hold:

1 + 1

γ

[(
�

ν
ζg(ξ)

ξ

)μ

− 1

]
≺ ϕ(ξ) and 1 + 1

γ

[(
�

ν
ζ υ(w)

w

)μ

− 1

]
≺ ϕ(w)

where ξ,w ∈ U
∗, μ ≥ 1 and the function υ is given by (1.6).

2 Coefficient Bounds

The bounds |b0|, |b1| and |b2| for functions in the class Pγ

Σ ′(η, μ, ϕ, ζ, ν) are esti-
mated.

Lemma 1 ([11]) If Φ ∈ P, the class of all functions with 
 (Φ(ξ)) > 0, (ξ ∈ U)

then
|ck | ≤ 2, for each k,

where
Φ(ξ) = 1 + c1ξ + c2ξ

2 + · · · for ξ ∈ U.
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The functions p(ξ), q(w) ∈ P is defined by

p(ξ) = 1 + r(ξ)

1 − r(ξ)
= 1 + p1

ξ
+ p2

ξ 2
+ · · ·

and

q(w) = 1 + s(w)

1 − s(w)
= 1 + q1

w
+ q2

w2
+ · · · .

we obtain

r(ξ) = p(ξ) − 1

p(ξ) + 1
= 1

2

[
p1
ξ

+
(
p2 − p21

2

)
1

ξ 2
+ · · ·

]

and

s(w) = q(w) − 1

q(w) + 1
= 1

2

[
q1
w

+
(
q2 − q2

1

2

)
1

w2
+ · · ·

]
.

Also, observe that for p(ξ), q(w) ∈ P, for each i

|pi | ≤ 2 and |qi | ≤ 2 for each i.

Theorem 1 Let g of the form (1.5) be in Pγ

Σ ′(η, μ, ϕ, ζ, ν). Then

|b0| ≤ |γ ||β1|
|μ − μη − η||(1 − ζ )ν | , (2.1)

|b1| ≤ |γ |
2|μ − η − 2μη||(1 − 2ζ )ν |

(
4|(β1 − β2)

2| + 4|β2
1 | + 8|β1(β1 − β2)|

+ |μ(μ − 1)(1 − η) + 2η|2|γ |2|β1|4
|μ − μη − η|4

) 1
2

(2.2)

and

|b2| ≤ |γ |
2|μ − η − 3μη||(1 − 3ζ )ν |

(
2|β1| + 4|β2 − β1| + 2|β1 − 2β2 + β3|

+ |μ(μ − 1)(μ − 2)(1 − η) − 6η||γ |2|β1|3
3|η|3

)

(2.3)

with 0 < η ≤ 1, μ ≥ 1 , γ ∈ C\{0} and ξ,w ∈ U
∗.
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Proof From (1.11) and (1.12)

1 + 1

γ

[
(1 − η)

(
�

ν
ζg(ξ)

ξ

)μ

+ η

(
ξ(�ν

ζg
′(ξ))μ

�
ν
ζg(ξ)

)
− 1

]
= ϕ(r(ξ)) (2.4)

and

1 + 1

γ

[
(1 − η)

(
�

ν
ζ υ(w)

w

)μ

+ η

(
w(�ν

ζ υ
′(w))μ

�
ν
ζ υ(w)

)
− 1

]
= ϕ(s(w)). (2.5)

Using (1.5), (1.6), (1.11), and (1.12), we have

1 + 1

γ

[
(1 − η)

(
�

ν
ζg(ξ)

ξ

)μ

+ η

(
ξ(�ν

ζg
′(ξ))μ

�
ν
ζg(ξ)

)
− 1

]

= 1 + β1 p1
1

2ξ
+

[
1

2
β1

(
p2 − p21

2

)
+ 1

4
β2 p

2
1

]
1

ξ 2

+
[
β1

2

(
p3 − p1 p2 + p31

4

)
+ β2

2

(
p1 p2 − p31

2

)
+ β3

p31
8

]
1

ξ 3
. . . (2.6)

and

1 + 1

γ

[
(1 − η)

(
�

ν
ζ υ(w)

w

)μ

+ η

(
w(�ν

ζ υ
′(w))μ

�
ν
ζ υ(w)

)
− 1

]

= 1 + β1q1
1

2w
+

[
1

2
β1

(
q2 − q2

1

2

)
+ 1

4
β2q

2
1

]
1

w2

+
[
β1

2

(
q3 − q1q2 + q3

1

4

)
+ β2

2

(
q1q2 − q3

1

2

)
+ β3

q3
1

8

]
1

w3
. . . . (2.7)

Equating the coefficients of ξ−1, ξ−2, ξ−3, . . . and w−1, w−2, w−3, . . . in (2.6) and
(2.7), we get

(μ − μη − η)(1 − ζ )ν

γ
b0 = 1

2
β1 p1, (2.8)

1

2γ

[(
μ(μ − 1)(1 − η) + 2η

)
(1 − ζ )2νb20 + 2(μ − η − 2ημ)(1 − 2ζ )νb1

]
= 1

2
β1

(
p2 − p21

2

)
+ 1

4
β2 p

2
1 ,

(2.9)
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1

6γ

[(
μ(μ − 1)(μ − 2)(1 − η) − 6η

)
(1 − ζ )3νb30 + 6

(
μ(μ − 1)(1 − η) + 2η + ημ

)
(1 − ζ )ν (1 − 2ζ )νb0b1

+6(μ − η − 3ημ)(1 − 3ζ )νb2

]
=

[
β1

2

(
p3 − p1 p2 + p31

4

)
+ β2

2

(
p1 p2 − p31

2

)
+ β3

p31
8

]
,

(2.10)

−(μ − μη − η)

γ
(1 − ζ )νb0 = 1

2
β1q1, (2.11)

1

2γ

[(
μ(μ − 1)(1 − η) + 2η

)
(1 − ζ )2νb20 + 2(η − μ + 2ημ)(1 − 2ζ )νb1

]
= 1

2
β1

(
q2 − q21

2

)
+ 1

4
β2q

2
1

(2.12)
and

1

6γ

[(
6η − μ(μ − 1)(μ − 2)(1 − η)(1 − ζ )3ν

)
b30

+ 6
(
μ(μ − 1)(1 − η) − μ(1 − η) + 3η + 3ημ

)
(1 − ζ )ν(1 − 2ζ )νb0b1 + 6(η − μ + 3ημ)(1 − 3ζ )νb2

]

=
[

β1

2

(
q3 − q1q2 + q31

4

)
+ β2

2

(
q1q2 − q31

2

)
+ β3

q31
8

]
. (2.13)

From (2.8) and (2.11), we get
p1 = −q1 (2.14)

and

b20 = γ 2β2
1

8(μ − μη − η)2(1 − ζ )2ν
(p21 + q2

1 ). (2.15)

Applying Lemma1 for the coefficients p1 and q1, we have

|b0| ≤ |γ ||β1|
|μ − μη − η||(1 − ζ )ν | .

|b1| is determined using (2.9), (2.12), (2.14) and (2.15),

2(μ − η − 2ημ)2(1 − 2ζ )2ν
b21
γ 2

+ [μ(μ − 1)(1 − η) + 2η]2(1 − ζ )4ν
b40
2γ 2

= (β1 − β2)
2 p41

8
+ β2

1

4
(p22 + q2

2 ) + β1(β2 − β1)
(p21 p2 + q2

1q2)

4
. (2.16)

By Lemma1 and using (2.15), we get
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|b1|2 ≤ |γ 2|
4|μ − η − 2ημ|2|(1 − 2ζ )2ν |×

(
4|(β1 − β2)

2| + 4|β1|2 + 8|β1(β1 − β2)| + |μ(μ − 1)(1 − η) + 2η|2|γ |2|β1|4
|μ − μη − η|4

)
.

=⇒ |b1| ≤ |γ |
2|μ − η − 2ημ||(1 − 2ζ )ν |×√

4|(β1 − β2)2| + 4|β1|2 + 8|β1(β1 − β2)| + |μ(μ − 1)(1 − η) + 2η|2|γ |2|β1|4
|μ − μη − η|4 .

|b2| is determined using (2.10) and (2.13) with p1 = −q1,

1

γ
b0b1 = β1[p3 + q3] + (β2 − B1)p1[p2 − q2]

2[2μ(μ − 1)(1 − η) − (1 − η)μ + 5η + 4ημ](1 − ζ )ν(1 − 2ζ )ν
.

(2.17)
Subtracting (2.13) from (2.10) and using p1 = −q1, we have

2(μ − η − 3ημ)(1 − 3ζ )ν
b2
γ

= −(μ − η − 3μη)(1 − ζ )ν (1 − 2ζ )ν
b0b1
γ

− [μ(μ − 1)(μ − 2)(1 − η) − 6η](1 − ζ )3ν
b30
3γ

+ β1

2
(p3 − q3)

+ β2 − β1

2
(p2 + q2)p1 + β1 − 2β2 + β3

4
p31 . (2.18)

Substituting for b0b1
γ

and b30
γ
in (2.18), further computation yields,

b2
γ

= −β1

2(μ − η − 3ημ)(1 − 3ζ )ν

(
μ − 3η − 4ημ − μ(μ − 1)(1 − η)

2μ(μ − 1)(1 − η) − μ + 5η + 5ημ
p3

+ 2η + ημ + μ(μ − 1)(1 − η)

2μ(μ − 1)(1 − η) − μ + 5η + 5ημ
q3

)

− (β2 − β1)p1
2(μ − η − 3ημ)(1 − 3ζ )ν

(
μ − 3η − 4ημ − μ(μ − 1)(1 − η)

2μ(μ − 1)(1 − η) − μ + 5η + 5ημ
p2

− 2η + ημ + μ(μ − 1)(1 − η)

2μ(μ − 1)(1 − η) − μ + 5η + 5ημ
q2

)

+ β1 − 2β2 + β3

8(μ − η − 3ημ)(1 − 3ζ )ν
p31 − (μ(μ − 1)(μ − 2)(1 − η) − 6η)γ 2 β3

1

48(μ − η − 3ημ)(1 − 3ζ )νη3
p31.
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Applying Lemma1 in the above equation yields

|b2| ≤ |γ |
2|μ − η − 3ημ||(1 − 3ζ )ν |×(

2|β1| + 4|β2 − β1| + 2|β1 − 2β2 + β3|

+ |μ(μ − 1)(μ − 2)(1 − η) − 6η||γ |2|β1|3
3|η|3

)
. (2.19)

By taking η = 1, we get the results mentioned below.

Theorem 2 Let g of the form (1.5) be in the class Pγ

Σ ′(μ, ϕ, ζ, ν). Then

|b0| ≤ |γ | |β1|
|(1 − ζ )ν | , (2.20)

|b1| ≤ |γ |
|1 + μ||(1 − 2ζ )ν |

√
|(β1 − β2)2| + |β2

1 | + 2|β1(β1 − β2)| + |γ |2 |β1|4
(2.21)

and

|b2| ≤ |γ |
|1 + 2μ||(1 − 3ζ )ν |

(|β1| + 2|β2 − β1| + |β1 − 2β2 + β3| + |γ |2 |β1|3
)

(2.22)
where γ ∈ C\{0}, μ ≥ 1 and ξ,w ∈ U

∗.

By taking η = 1 and γ = 1, we state the following results.

Theorem 3 Let g of the form (1.5) be in the class PΣ ′(μ, ϕ, ζ, ν). Then

|b0| ≤ |β1|
|(1 − ζ )ν | ,

|b1| ≤ 1

|1 + μ||(1 − 2ζ )ν |
√

|(β1 − β2)2| + |β2
1 | + 2|β1(β1 − β2)| + |β1|4

and

|b2| ≤ 1

|1 + 2μ||(1 − 3ζ )ν |
(|β1| + 2|β2 − β1| + |β1 − 2β2 + β3| + |β1|3

)

where μ ≥ 1, ξ, w ∈ U
∗.
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3 Corollaries and Concluding Remarks

For g of the form (1.5) and g ∈ P
γ

Σ ′

(
η,μ,

(
1+ξ

1−ξ

)δ

, ζ, ν

)
≡ P

γ

Σ ′(η, μ, δ, ζ, ν) set-

ting β1 = 2δ, β2 = 2δ2 and β3 = 4δ2+2δ
3 , and similarly,

for g ∈ P
γ

Σ ′

(
η,μ,

1+(1−2ω)ξ

1−ξ
, ζ, ν

)
≡ P

γ

Σ ′(η, μ, ω, ζ, ν) setting β1 = β2 = β3 =
2(1 − ω) analogous results of Theorems1, 2 and 3 can be derived.

Corollary 1 Let g of the form (1.5) be in Pγ

Σ ′ (η, μ, δ, ζ, ν) . Then

|b0| ≤ 2|γ |δ
|μ − μη − η||(1 − ζ )ν | , (3.1)

|b1| ≤ 2|γ |δ
|μ − η − 2ημ||(1 − 2ζ )ν |

√

(δ − 2)2 + |μ(μ − 1)(1 − η) + 2η|2|γ 2|
|μ − μη − η|4 δ2

(3.2)
and

|b2| ≤ 2|γ |δ
|μ − η − 3ημ||(1 − 3ζ )ν |

(
3 − 2δ +

(
4 − 6δ + 2δ2

3

)

+ 2|γ |2δ2|μ(μ − 1)(μ − 2)(1 − η) − 6η|
3|η|3

)

(3.3)

where γ ∈ C\{0}, 0 < η ≤ 1, μ ≥ 1 and ξ,w ∈ U
∗.

Corollary 2 Let g of the form (1.5) be in Pγ

Σ ′(η, μ, ω, ζ, ν). Then

|b0| ≤ 2|γ |(1 − ω)

|μ − μη − η||(1 − ζ )ν | , (3.4)

|b1| ≤ 2|γ |(1 − ω)

|μ − η − 2ημ||(1 − 2ζ )ν |

√

1 + |μ(μ − 1)(1 − η) + 2η|2|γ 2|
|μ − μη − η|4 (1 − ω)2

(3.5)
and

|b2| ≤ 2|γ |(1 − ω)

|μ − η − 3ημ||(1 − 3ζ )ν |

(
1 + 2|γ |2(1 − ω)2|μ(μ − 1)(μ − 2)(1 − η) − 6η|

3|η|3
)

(3.6)
where γ ∈ C\{0}, 0 < η ≤ 1, μ ≥ 1 and ξ,w ∈ U

∗.
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Concluding Remarks: We remark that, when η = 1 and μ = 1, the coefficient
bounds b0, b1 and b2 for functions in the class Sγ

Σ ′(ϕ, ζ, ν), can be obtained which
gives us the results discussed in Theorems of [9]. Also, the bounds for the function
g given by (1.5) in the subclass Sγ

Σ ′(ϕ, ζ, ν) can be determined by taking ϕ(ξ) as
given in (1.3) and (1.4), respectively.
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Bi-Starlike Function of Complex Order
Involving Double Zeta Functions in Shell
Shaped Region

V. Malathi and K. Vijaya

Abstract In the contemporary paper concerning double zeta functions, we demar-
cated two new-fangled subclasses of bi-starlike and bi-convex function of complex
order in the open unit disc linked with shell-shaped region and acquired Taylor–
Maclaurin coefficients |a2| and |a3| of functions in these classes. Furthermore, we
determine the Fekete–Szegö inequalities and the significance of the results which
are new and are also piercing out as corollaries.

1 Introduction and Definitions

Let A signify the class of functions of the form

f (t) = t +
∞∑

n=2

ant
n (1)

which are analytic in the open unit discD = {t : |t | < 1} and normalized by f (0) = 0
and f ′(0) = 1. Additionally, let S symbolize the class of all functions in A which
are univalent in D. Some of the substantial and well-investigated subclasses of S
comprise (for example) the class of starlike S∗(�) and convex functions K(�) of
order �(0 ≤ � < 1) in D, respectively. The convolution or Hadamard product of two
functions f, h ∈ A is defined as

( f ∗ h)(t) = t +
∞∑

n=2

anbnt
n, (2)
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where f is given by (1) and h(t) = t +
∞∑
n=2

bntn.

For h1,h2 ∈ A and h1, is subordinate to h2, is written h1 ≺ h2, provided there
is an analytic function � definite on D with �(0) = 0 and |�(z)| < 1 sustaining
h1(z) = h2(�(z)).

The study of operators plays a central role in the geometric function theory and its
correlated fields. In recent years, there has been collective importance in problems
concerning evaluations of various families of the Hurwitz–Lerch zeta function [10].
These functions ascend naturally in many branches of analytic function theory and
have plentiful applications in mathematics [1].

We recall Hurwitz–Lerch Zeta function [23], assumed as

H(t, �, s) :=
∞∑

n=0

tn

(n + �)s
(3)

(� ∈ C \ Z
−
0 ; s ∈ C;R(s) > 1 and |t | < 1 where, as usual, Z

−
0 := Z \ N, (Z :=

{0,±1,±2,±3, . . .}). It is clear thatH(2π iλ, s, �) is an ordinaryLerch zeta function
and note that

H(t, 1, �) = �−1
2F1(�, 1; � + 1, t),

where 2F1 is the Gaussian hypergeometric function. Recent investigations on
Hurwitz–Lerch Zeta function can be found in [6, 15], and also the references stated
therein. The double zeta function of Barnes [2] is defined by

ζ(x, �, τ ) =
∞∑

n=0

∞∑

j=0

(j + � + τ)−x ,

where � �= 0 and τ ∈ C \ {0} with |arg(τ )| < π . Bin-Saad [3] posed a generalized
form of double zeta function as

ζ κ
τ (t, s, �) =

∞∑

n=0

(κ)nH(t, s, � + nτ)
tn

n!

where τ ∈ C \ {0}; κ ∈ C \ Z
−
0 ; � ∈ C \ {−(j + τn)}, n, j ∈ N0 := N ∪ {0}, |s| <

1; |t | < 1 and (κ)n is the Pochhammer symbol defined by

(κ)n =
{
1, n = 0
κ(κ + 1)(κ + 2) . . . (κ + n − 1), n ∈ N.

(4)

Hurwitz–Lerch zeta function in [18] is given by

�n(t, �, s) = H(t, s, � + nτ)

H(t, �, s)
, n ∈ N0. (5)
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It is clear that �0(t, �, s) = 1. Now consider the function

ϒκ(t, �, s) =
∞∑

n=0

(κ)n

n! �n(t, �, s)t
n, (6)

which implies

tϒκ(t, �, s) = z +
∞∑

n=2

(κ)n−1

(n − 1)!�n−1(t, �, s)t
n.

Thus,

tϒκ(t, �, s) ∗ (zϒκ(t, �, s))
−1 = t

(1 − t)δ
= t +

∞∑

n=2

(δ)n−1

(n − 1)! t
n, δ > −1

poses a linear operator

Iδ
κ (t, �, s) f (t) = (tϒκ(t, �, s))

−1 ∗ f (t) = t +
∞∑

n=2

(δ)n−1

(κ)n−1�n−1(t, �, s)
ant

n (7)

where κ ∈ C \ Z
−
0 ; τ ∈ C \ {0}; � ∈ C \ {−(j + τn)}, n, j ∈ N0, |s| < 1; |t | < 1

and �n(t, a, s) is defined in (5). It is clear that I δ
κ (t, �, s) f (t) ∈ A.

Iδ
κ f (t) = Iδ

κ (t, �, s) f (t) = t +
∞∑

n=2

wn an t
n, (8)

where

wn = (δ)n−1

(κ)n−1�n−1(t, �, s)
, (9)

κ ∈ C \ Z
−
0 ; � ∈ C \ {−(j + τn)}, n, j ∈ N0, τ ∈ C \ {0}; |s| < 1; |t | < 1 and

�n(t, �, s) is defined in (5) .
It is well recognized that each f ∈ S has an inverse f −1 demarcated by

f −1( f (t)) = t (z ∈ D)

and f ( f −1(w)) = w (|w| < r0( f ); r0( f ) ≥ 1/4)

where
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Fig. 1 The boundary of the
set ℘(D)

f −1(w) = g(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · .

(10)
A function f ∈ A is said to be bi-univalent in D if both f and f −1 are univalent

in D. Let � signify the class of bi-univalent functions in D given by (1). Formerly,
Brannan and Taha [5] presented certain subclasses of �, specifically bi-starlike
functions S∗

�(�) of order �(0 < � ≤ 1) and bi-convex function K�(�) of order
�. For each f ∈ S∗

�(�) and f ∈ K�(�), non-sharp estimates on Taylor–Maclaurin
coefficients |a2| and |a3| were established [5, 28] and succeeding coefficients:

|an| (n ∈ N \ {1, 2}; N := {1, 2, 3, · · · })

is still an open problem (see [4, 5, 13, 16, 28]). Numerous researchers (see [12, 22,
24]) have familiarized and inspected many interesting subclasses of� and they have
originate non-sharp approximations on the coefficients |a2| and |a3|.

Making use of the above subordination, Lately in [20] Raina and Sokol, defined a

S∗(℘) =
{
f ∈ A : t f

′(t)
f (t)

≺ t +
√
1 + t2 =: ℘(t)

}

where the branch of the square root is chosen to be the principal one, that is℘(0) = 1.
The function ℘(t) := t + √

1 + t2 maps the unit disc D onto a shell-shaped region
on the right half plane, and it is analytic and univalent on D. The range ℘(D) is
symmetric regarding the real axis and ℘(z) is a function with positive real part in
D, with ℘(0) = ℘ ′(0) = 1. Besides, it is a starlike domain with respect to the point
℘(0) = 1 (see Fig. 1) also see [21].

Inspired by the aforementioned works, we define a subclass of bi-univalent func-
tions, namely � as follows.

Inspired by the work of Silverman and Silvia [26] (also see [27]) and a recent
study by Srivastava et al. [25], and by the earlier work of Deniz [9] and Huo Tang
et al. [12], in the present paper we introduce two new-fangled subclasses given in
Definitions1 and 2 comprising the linear operator Iδ

κ and determine estimates of |a2|
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and |a3|. Some associated classes are also well-thought-out, and linking to earlier
recognized results are stated as corollaries.

Definition 1 Let f ∈ � given by (1) and let f ∈ Sδ,κ
�,℘(ϑ, λ) if

1 + 1

ϑ

(
t (Iδ

κ f (t))
′

Iδ
κ f (t)

+
(
1 + eiλ

2

)
t2(Iδ

κ f (t))
′′

Iδ
κ f (t)

− 1

)
≺ ℘(t) (11)

and

1 + 1

ϑ

(
w(Iδ

κg(w))′

Iδ
κg(w)

+
(
1 + eiλ

2

)
w2(Iδ

κg(w))′′

Iδ
κg(w)

− 1

)
≺ ℘(w) (12)

where ϑ ∈ C\{0} λ ∈ (−π, π ], t, w ∈ D and g is given by (10).

Definition 2 Let f given by (1) and so f ∈ Kδ,κ
�,℘(ϑ, λ) if

1 + 1

ϑ

⎛

⎝
[t (Iδ

κ f (t))
′ +

(
1+eiλ

2

)
t2(Iδ

κ f (t))
′′]′

(Iδ
κ f (t))

′ − 1

⎞

⎠ ≺ ℘(t) (13)

and

1 + 1

ϑ

⎛

⎝
[w(Iδ

κg(w))′ +
(
1+eiλ

2

)
w2(Iδ

κg(w))′′]′
(Iδ

κg(w))′
− 1

⎞

⎠ ≺ ℘(w) (14)

where ϑ ∈ C\{0} λ ∈ (−π, π ], t, w ∈ D and g is given by (10).

Remark 1 By fixing λ = 0, and f ∈ � given by (1), we note that Sδ,κ
�,℘(ϑ, 1) ≡

Sδ,κ
�,℘(ϑ) and Kδ,κ

�,℘(ϑ, 1) ≡ Kδ,κ
�,℘(ϑ).

1. Let f ∈ Sδ,κ
�,℘(ϑ) if

[
1 + 1

ϑ

(
t (Iδ

κ f (t))′

Iδ
κ f (t)

− 1

)]
≺ ℘(t) and

[
1 + 1

ϑ

(
w(Iδ

κg(w))′

Iδ
κg(w)

− 1

)]
≺ ℘(w)

2. Also, f ∈ Kδ,κ
�,℘(ϑ) if

[
1 + 1

ϑ

(
t (Iδ

κ f (t))
′′

(Iδ
κ f (t))

′

)]
≺ ℘(t) and

[
1 + 1

ϑ

(
w(Iδ

κg(w))′′

(Iδ
κg(w))′

)]
≺ ℘(w),

where ϑ ∈ C\{0} t, w ∈ D and g is given by (10).

Remark 2 Assuming ϑ = 1, and for f ∈ � given by (1), we two new classes as
below

Sδ,κ
�,℘(1, λ) ≡ Sδ,κ

�,℘(λ) and Kδ,κ
�,℘(1, λ) ≡ Kδ,κ

�,℘(λ).
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1. Let f ∈ Sδ,κ
�,℘(λ) if

(
t (Iδ

κ f (t))
′

Iδ
κ f (t)

+
(
1 + eiλ

2

)
t2(Iδ

κ f (t))
′′

Iδ
κ f (t)

)
≺ ℘(t)

and (
w(Iδ

κg(w))′

Iδ
κg(w)

+
(
1 + eiλ

2

)
w2(Iδ

κg(w))′′

Iδ
κg(w)

)
≺ ℘(w).

2. Let f ∈ Kδ,κ
�,℘(λ) if

⎛

⎝
[t (Iδ

κ f (t))
′ +

(
1+eiλ

2

)
t2(Iδ

κ f (t))
′′]′

(Iδ
κ f (t))

′

⎞

⎠ ≺ ℘(z)

and ⎛

⎝
[w(Iδ

κg(w))′ +
(
1+eiλ

2

)
w2(Iδ

κg(w))′′]′
(Iδ

κg(w))′

⎞

⎠ ≺ ℘(w),

where λ ∈ (−π, π ], t, w ∈ D and g as given by (10).

2 Coefficient Estimates for f ∈ S
δ,κ
�,℘(ϑ, λ)

and f ∈ K
δ,κ
�,℘(ϑ, λ)

For notational simplicity, in the sequel, we let

w2 = (δ)1

(κ)1�1(t, �, s)
, (15)

w3 = (δ)2

(κ)2�2(t, �, s)
(16)

where τ ∈ C \ {0}; κ ∈ C \ Z
−
0 ; � ∈ C \ {−(j + τn)}, n, j ∈ N0, |s| < 1; |t | < 1

and �n(t, s, a) is defined in (5). Also

℘(t) := t +
√
1 + t2 = 1 + t + 1

2
t2 − 1

8
t4 + · · · . (17)

For deriving our main results, we need the following lemma.
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Lemma 1 ([17]) If h ∈ P, then |ck | ≤ 2 for each k, where P is the family of all
functions h analytic in D for which (h(z)) > 0 and

h(z) = 1 + c1t + c2t
2 + · · · for z ∈ D.

Let p(t) and q(t) by

p(t) := 1 + u(t)

1 − u(t)
= 1 + p1z + p2t

2 + · · ·

and

q(t) := 1 + v(t)

1 − v(t)
= 1 + q1z + q2t

2 + · · · .

It follows that

u(t) := p(t) − 1

p(t) + 1
= 1

2

[
p1z +

(
p2 − p21

2

)
t2 + · · ·

]

and

v(t) := q(t) − 1

q(t) + 1
= 1

2

[
q1z +

(
q2 − q2

1

2

)
t2 + · · ·

]
.

Then p(t) and q(t) are analytic in D with p(0) = 1 = q(0).
Since u, v : D → D, the functions p(t) and q(t) have a positive real part in D,

for each i
|pi | ≤ 2 and |qi | ≤ 2. (18)

Theorem 1 Let f be assumed as in (1) and f ∈ Sδ,κ
�,℘(ϑ, λ). Then

|a2| ≤
√
2 |ϑ |√

2
∣∣ϑ[(5 + 3eiλ)w3 − (2 + eiλ)w2

2] + (2 + eiλ)2w2
2

∣∣
. (19)

and

|a3| ≤ |ϑ |2
|2 + eiλ|2w2

2

+ |ϑ |
|5 + 3eiλ|w3

. (20)

Proof It follows from (11) and (12) that

1 + 1

ϑ

(
t (Iδ

κ f (t))
′

Iδ
κ f (t)

+
(
1 + eiλ

2

)
t2(Iδ

κ f (t))
′′

Iδ
κ f (t)

− 1

)
= ℘(u(t)) (21)

and
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1 + 1

ϑ

(
w(Iδ

κg(w))′

Iδ
κg(w)

+
(
1 + eiλ

2

)
w2(Iδ

κg(w))′′

Iδ
κg(w)

− 1

)
= ℘(v(w)), (22)

where

℘(u(t)) =
√

1 +
( p(t) − 1

p(t) + 1

)2 + p(t) − 1

p(t) + 1

= 1 + p1
2
t +

( p2
2

− p21
8

)
t2 +

( p3
2

− p1 p2
4

)
t3 + · · · . (23)

and similarly we get

℘(v(w)) = 1 + q1
2

w +
(q2
2

− q2
1

8

)
w2 +

(q3
2

− q1q2
4

)
w3 + · · · . (24)

Now, equating the coefficients in (21) and (22), we get

1

ϑ
(2 + eiλ)w2a2 = 1

2
p1, (25)

1

ϑ

[
(5 + 3eiλ)w3a3 − (2 + eiλ)w2

2a
2
2

] = 1

2

(
p2 − p21

2

)
+ 1

8
p21, (26)

− 1

ϑ
(2 + eiλ)w2a2 = 1

2
q1, (27)

and

1

ϑ

([2(5 + 3eiλ)w3 − (2 + eiλ)w2
2]a22 − (5 + 3eiλ)w3a3

) = 1

2

(
q2 − q2

1

2

)
+ 1

8
q2
1 .

(28)
From (25) and (27), we get

p1 = −q1 (29)

and
8(2 + eiλ)2w2

2a
2
2 = ϑ2(p21 + q2

1 ). (30)

Now from (26), (28) and (30), we obtain

(
2{2ϑ[(5 + 3eiλ)w3 − (2 + eiλ)w2

2] + (2 + eiλ)2w2
2}

)
a22 = ϑ2(p2 + q2). (31)

Applying Lemma1 and using (18), we have
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|a2| ≤
√
2 |ϑ |√

2
∣∣ϑ[(5 + 3eiλ)w3 − (2 + eiλ)w2

2] + (2 + eiλ)2w2
2

∣∣
.

Next, by subtracting (26) from (28) and using (29), we get

2

ϑ
(5 + 3eiλ)w3(a3 − a22) = 1

4
(p2 − q2).

Upon substituting the value of a22 from (30), we get

a3 = ϑ2(p21 + q2
1 )

8(2 + eiλ)2�2
+ ϑ(p2 − q2)

4(5 + 3eiλ)w3
.

Applying Lemma1 and using (18), we get

|a3| ≤ |ϑ |2
|2 + eiλ|2w2

2

+ |ϑ |
|5 + 3eiλ|w3

.

�

Theorem 2 Let f ∈ Kδ,κ
�,℘(ϑ, λ), ϑ ∈ C\{0} and λ ∈ (−π, π ]. Then

|a2| ≤ |ϑ |√
|ϑ[3(5 + 3eiλ)w3 − 4(2 + eiλ)w2

2] + 2(2 + eiλ)2w2
2|

(32)

and

|a3| ≤ |ϑ |2
4|2 + eiλ|2w2

2

+ |ϑ |
3|5 + 3eiλ|w3

. (33)

Proof From (13) and (14) equivalently we have

1 + 1

ϑ

⎛

⎝
[t (Iδ

κ f (t))
′ +

(
1+eiλ

2

)
t2(Iδ

κ f (t))
′′]′

(Iδ
κ f (t))

′ − 1

⎞

⎠ = ℘(u(t)) (34)

and

1 + 1

ϑ

⎛

⎝
[w(Iδ

κg(w))′ +
(
1+eiλ

2

)
w2(Iδ

κg(w))′′]′
(Iδ

κg(w))′
− 1

⎞

⎠ = ℘(v(w)), (35)

and on lines similar to the proof of Theorem1, from (34) and (35), we get

2

ϑ
(2 + eiλ)w2a2 = 1

2
p1, (36)
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1

ϑ
[3(5 + 3eiλ)w3a3 − 4(2 + eiλ)w2

2a
2
2] = 1

2

(
p2 − p21

2

)
+ 1

8
p21, (37)

and

− 2

ϑ
(2 + eiλ)w2a2 = 1

2
q1, (38)

1

ϑ
[3(5 + 3eiλ)(2a22 − a3)w3 − 4(2 + eiλ)w2

2a
2
2] = 1

2

(
q2 − q2

1

2

)
+ 1

8
q2
1 . (39)

From (36) and (38), we get
p1 = −q1 (40)

and
32(2 + eiλ)2w2

2a
2
2 = ϑ2(p21 + q2

1 ). (41)

Now from (37), (39) and (41), we obtain

a22 = ϑ2(p2 + q2)

4[ϑ[3(5 + 3eiλ)w3 − 4(2 + eiλ)w2
2] + 2(2 + eiλ)2w2

2]
. (42)

Applying Lemma1 and by (18), we get the desired inequality given in (32).
Now by subtracting (37) from (39), and using (40), we get

6

ϑ
(5 + 3eiλ)(a3 − a22)w3 = 1

2
(p2 − q2).

Upon substituting the value of a22 given (41), the above equation leads to

a3 = ϑ(p2 − q2)

12(5 + 3eiλ)w3
+ ϑ2(p21 + q2

1 )

32(2 + eiλ)2w2
2

. (43)

Applying Lemma1 and by (18), we get the preferred estimate in (33). �

Fixing λ = π in Theorems1 and 2, we can state the following:

Corollary 1 Let f be given by (1) and f ∈ Sδ,κ
�,℘(ϑ). Then

|a2| ≤
√
2 |ϑ |√

2|ϑ |(2w3 − w2
2) + w2

2

and |a3| ≤ |ϑ |2
w2

2

+ |ϑ |
2w3

.

Corollary 2 Let f be given by (1) and f ∈ Kδ,κ
�,℘(ϑ). Then

|a2| ≤ |ϑ |√
2|ϑ |(3w3 − 2w2

2) + 2w2
2

and |a3| ≤ |ϑ |2
4w2

2

+ |ϑ |
6w3

.
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Taking ϑ = 1 in Theorems1 and 2, we state the following results:

Corollary 3 Let f be given by (1) and f ∈ Sδ,κ
�,℘(λ). Then

|a2| ≤
√
2√

2|(5 + 3eiλ)w3 − (2 + eiλ)w2
2| + |2 + eiλ|2w2

2

and

|a3| ≤ 1

|2 + eiλ|2w2
2

+ 1

|5 + 3eiλ|w3
.

Corollary 4 Let f be given by (1) and f ∈ Kδ,κ
�,℘(λ). Then

|a2| ≤ 1√
{[3|5 + 3eiλ|w3 − 4

∣∣2 + eiλ
∣∣w2

2] + 2|2 + eiλ|2w2
2}

and

|a3| ≤ 1

4
∣∣2 + eiλ

∣∣2 w2
2

+ 1

3
∣∣5 + 3eiλ

∣∣w3
.

3 Fekete–Szegö Inequality for f ∈ S
δ,κ
�,℘(ϑ, λ)

In this section, due to Fekete–Szegö [11], we prove the following result:

Theorem 3 Let f ∈ Sδ,κ
�,℘(ϑ, λ) and ℵ ∈ R. Then

| a3 − ℵa22 |≤
{

ϑ
3|5+3eiλ|w3

, 0 ≤| �(ℵ, ϑ) |≤ ϑ
3|5+3eiλ|w3

2|ϑ ||�(ℵ, ϑ)|, |�(ℵ, ϑ)| ≥ ϑ
3|5+3eiλ|w3

.

where

�(ℵ, ϑ) = ϑ2(1 − ℵ)

4[ϑ[3(5 + 3eiλ)w3 − 4(2 + eiλ)w2
2] + 2(2 + eiλ)2w2

2]
.

Proof From (42) and (43)

a3 − ℵa22 = (1 − ℵ)ϑ2(p2 + q2)

4[ϑ[3(5 + 3eiλ)w3 − 4(2 + eiλ)w2
2] + 2(2 + eiλ)2w2

2]
+ ϑ(p2 − q2)

12(5 + 3eiλ)w3

=
[
�(ℵ, ϑ) + ϑ

12(5 + 3eiλ)w3

]
p2 +

[
�(ℵ, ϑ) − ϑ

12(5 + 3eiλ)w3

]
q2
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where

�(ℵ, ϑ) = ϑ2(1 − ℵ)

4[ϑ[3(5 + 3eiλ)w3 − 4(2 + eiλ)w2
2] + 2(2 + eiλ)2w2

2]
.

Thus, by applying Lemma1, we get

| a3 − ℵa22 |≤
{

ϑ
3|5+3eiλ|w3

, 0 ≤| �(ℵ, ϑ) |≤ ϑ
3|5+3eiλ|w3

2|ϑ ||�(ℵ, ϑ)|, |�(ℵ, ϑ)| ≥ ϑ
3|5+3eiλ|w3

.

In particular, by taking ℵ = 1, we get

| a3 − a22 |≤ ϑ

3|5 + 3eiλ|w3

�

4 Concluding Remarks

Lately, various subclasses of starlike functions were introduced, see [7, 8, 14], by
subordinating (or fixing) some particular functions such as functions linked with Bell
numbers, shell-like curve connected with Fibonacci numbers, functions associated
with conic domains and rational functions. Instead of ℘ in (17), one can determine
new results for the subclasses introduced in this paper.

Acknowledgements If you want to include acknowledgments of assistance and the like at the end
of an individual chapter please use the acknowledgement environment—it will automatically
be rendered in line with the preferred layout.
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Fuzzy Rule-Based Expert System
for Multi Assets Portfolio Optimization

Garima Bisht and Sanjay Kumar

Abstract Portfolio optimization has always been a topic of wide interest for
investors. They always want to maximize their return for a given level of risk or
minimize the risk for a given level of return. Modern Portfolio Theory (MPT) helps
investors in portfolio selection but doesn’t consider the uncertainty and complexity
associated with the real market. Thus, to deal with the uncertainty of the real market,
we use fuzzy logic in portfolio selection. In this paper, we have found the results
with Statistical method (using Lagrange’s multipliers method) and then by using
Fuzzy logic toolbox of MATLAB (Triangular membership function and Gaussian
membership function). The results obtained by both the methods are then compared.
This study also examines the testing data sets.

Keywords Lagrange’s multiplier · Fuzzy expert system · MATLAB · Triangular
and Gaussian membership function

1 Introduction

In the investment world, there exist different motives of investors, but the most
prominent among them is to get the highest return at a given level of risk or to get
minimum risk at a given level of return. The financial market despite its benefits and
rewards is the most complex industry which requires critical analysis to evaluate risk
and return. The application of fuzzy set theory in real estate investment, especially
on the allocation of assets in investment portfolios, has been a relatively explored
area. So, here we make use of fuzzy logic in portfolio selection which considers the
uncertainty of the investment world and thus gives a closer result to the financial
market as compared to the Statistical method.

Investment portfolio theories guide the investors that how should an individual
investor or financial institution allocate their money and other capital assets within an
investing portfolio. An investing portfolio has long-term goalswhich are independent
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of the day-to-day fluctuations of the financial market. Investment portfolio theories
help the investors to calculate the expected return and risk associated with the allo-
cation of assets. An investor will face the trade-off between expected / anticipated
return and risk, subject to various constraints on account that the market imperfec-
tions can’t be ignored [1]. Each investor is different, having different financial goals,
different levels of risk tolerance, and personal preferences which are often defined as
the objectives and constraints. Objectives can be the type of return being expected,
while constraints may include factors such as time horizon, etc. Thus, it is really a
balancing act between risk and returnwith each investor having a unique requirement
as well as financial outlook [2].

An expert system is a computer program that emulates human expertise like
decision-making, the ability to solve complex problems. Imprecision, incomplete-
ness, and vagueness are the main characteristics of the information expressed using
natural language.Management of uncertainty due to linguistic representationwas one
of the major issues of conventional expert systems. Hence, there comes the concept
of fuzzy set theory for the management of uncertainty due to linguistic representa-
tion of information [3]. A fuzzy rule-based system which is commonly known as
Mamdani fuzzy inference system (FIS) was developed [4]. A fuzzy rule-based expert
system is a collection of fuzzy membership functions and rules of the form “If x is
low and y is high then z is medium”. Here, x, y, and z are input and output variables,
and low, high, and medium are fuzzy sets defined for x, y, and z, respectively. Later
an FIS in which the conclusion part of the fuzzy rule was constituted by a weighted
linear combination of crisp input rather than a fuzzy set was given [5].

In the past, many researchers have developed different types of methods to predict
the ambiguity of real market, thus making an optimal portfolio selection. The ambi-
guity of a financial market is traditionally dealt with the probabilistic methods. A
number of experimental studies showed the restrictions of probabilistic approaches
in depicting the uncertainty of the financial markets, but the integrated use of fuzzy
methods, quantitative analysis, qualitative analysis, the expert’s knowledge and the
manager’s individual opinions can be effective for portfolio selection problem [6].
Efficient portfolios designed by the Markowitz model did achieve better than any
domestic individual security. By capitalizing inefficient portfolios, the portfolios
located on the efficient frontier, the depositors afford to get maximum return on
savings by taking a certain given level of risk, maximum Sharpe ratio or minimum
risk [7].

By utilizing a different perspective, a new definition of the risk for the random
fuzzy portfolio selection was given [8] which considers the portfolio selection
problem when the returns of the securities contain both randomness and fuzziness.
Then two fuzzy mathematical programming models were developed considering the
expert’s knowledge of the classical quadratic programming approach of Modern
Portfolio Theory (MPT) through the fuzzy set theory in obtaining portfolio return
optimization involving direct real estate investment [9].

Then researchers integrated fuzzy set theory with genetic algorithms to develop a
methodology for effective stock selection. A stock scoring mechanism using funda-
mental variables and applied fuzzy membership functions was developed to re-scale
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the scores properly. The scoreswere then used to obtain the relative rankings of stocks
and the genetic algorithm was employed for the optimization of model parameters
and feature selection for input variables [10]. Many researchers revised the MPT,
they established that many inherent flaws of the MPT theory had marred the efficacy
of the theory. Among all other things of MPT, its simplistic assumptions and direct
correlation of risks and returns were identified as significant flaws [11].

Later, the difficulties were examined in optimizing the diffuse limited value with
reverence to the structures of the parametric representation of diffuse figures as a
convex constraint function [12]. A new method for the selection of the portfolio
of new product development under uncertainty and inaccuracy [13] also takes into
account the time-related effects of the project completion time, when the compe-
tition becomes relevant and when the product becomes obsolete and is no longer
of any interest. An alternative solution to quadratic programming in the portfolio
allocation situation [14] was given by describing the Markowitz mapping model
in two factors: quadratic efficiency function and quadratic programming configura-
tion. They focused on a universal approach to numerical resolution of non-QP port-
folio allocation models and considered procedures that had been applied correctly to
machine learning and large-scale optimization. Later, the uncertain variables were
introduced to describe security performance and the return of contextual factors
in portfolio selection models [15]. They estimated security performance by expert
evaluation rather than historical data.

In this paper, Mamdani fuzzy rule-based expert systems are developed for
analyzing the different portfolios with three assets for their risk and return using
triangular andGaussianmembership functions. Performances of the fuzzy rule-based
systems are also tested using testing data and conventional methodology of portfolio
optimization.

The rest of the paper is structured as follows. Numerical method is discussed
in Sect. 2. Problem formulation is presented in Sect. 3. Fuzzy rule-based model
is developed in Sect. 4 for evaluating expected return and risk with triangular and
gaussian fuzzy sets. Results are discussed in Sect. 5. At last, conclusions are given
in Sect. 6.

2 Numerical Method

2.1 Lagrange’s Multiplier Method

Considering n assets portfolio, we need to minimize the risk given by variance and
the constraints are considered:

1. Sum of weights of assets is equal to 1.

2. E(rP) =
n∑

i=1
wi E(r)
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Let the n assets i = 1, 2, 3 … n be represented by column vector w = [w1 w2 …
wn] T and the returns on assets are represented by column vector R = [r1 r2 … rn] T

We consider a column vector e = [1 1 1 …1] T and the covariance matrix as

C =
⎡

⎢
⎣

σ11 · · · σ1n
...

. . .
...

σn1 · · · σnn

⎤

⎥
⎦

then the optimization condition and constraints are written as

min. σ2 = wTCw

subject to, wT e = 1

wTμ = R

defining a Lagrange’s function

L
(
wT , λ1, λ2

) = (
wTCw − σ2

) + λ1
(
1−wT e

) + λ2
(
R − wTμ

)
(1)

and differentiating Eq. (1) partially w.r.t wT , λ1, λ2

∂L

∂wT
= wC − λ1e − λ2μ (2)

∂L

∂λ1
= 1 − wT e (3)

∂L

∂λ2
= R − wTμ (4)

After putting all of them to zero, we get

w = λ1eC−1 + λ2μC−1 (5)

1 = eλ1e
TC−1 + λ2μ

TC−1 (6)

R = λ1μe
TC − 1 + λ2μ

TC − 1μ (7)

putting, a = eTC−1e, b = μTC−1e, c = μTC−1μ

we have

1 = aλ1 + bλ2 (8)
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R = bλ1 + cλ2 (9)

[
1
R

]

=
[
a b
b c

][
λ1

λ2

]

(10)

σ2 = wTCw

= λ2
1c + 2λ1λ2b + λ2

2a

= [λ1λ2]

[
a b
b c

][
λ1

λ2

]

(11)

putting the value of

[
λ1

λ2

]

from Eqs. (10) to (11), we have

σ2 =
[
cR2 − 2bR + a

]

(
ac − b2

)

3 Problem Formulation

Let A, B, and C be the three assets with expected returns of 5, 10, and 15% and
standard deviations of 10, 20, and 30%. The coefficient of correlations between
assets return are taken as ρAB = 0, ρBC = 0.5, and ρAC = 0.5, .Let XA, XB, and XC

denote the number of units of assets A, B, and C, respectively, in the portfolio.
Lagrange’s method is used to obtain training data on return and portfolio variance

(Table 1) for a fuzzy rule-based expert system.

4 Fuzzy Rule-Based Model

We have developed fuzzy rule-based expert systems for evaluating expected returns
and risk in different portfolios. Table 1 is used to define the universe of discourse for
different input and output variables.

A fuzzy expert system is an expert system that uses fuzzy logic instead of crisp
two-valued logic and is a collection of membership functions and rules that are
used to reason about data. Fuzzy expert systems are oriented numerical processing
unlike conventional expert systems, which use mainly symbolic reasoning. Fuzzy
rule-based expert systems are generally called fuzzy inference systems (FIS) or
fuzz logic controllers. As shown in Fig. 1, the following are the main steps in the
development of a fuzzy inference system:
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Table 1 Risk and return in different portfolios using statistical model

XA XB XC μ σ

100 0 0 5 10

90 10 0 5.5 9.21

80 20 0 6 8.94

70 30 0 6.5 9.21

63 34 3 7 9.92

57 36 7 7.5 10.76

52 36 12 8 11.68

46 38 16 8.5 12.66

41 38 21 9 13.7

35 40 25 9.5 14.79

29 42 29 10 15.9

24 42 34 10.5 17.04

18 44 38 11 18.20

13 44 43 11.5 19.38

7 46 47 12 20.57

1 48 51 12.5 21.78

0 40 60 13 23.06

0 30 70 13.5 24.55

0 20 80 14 26.23

0 10 90 14.5 28.05

0 0 100 15 30

Fig. 1 Block diagram of
fuzzy inference system

1. Fuzzification
2. Fuzzy Inference
3. Defuzzification.

In this fuzzy rule-based model, no. of units of assets XA, XB, and XC, expected
return (μ), and risk (σ) are fuzzified using fuzzy sets Ai, Bi, Ci, Di, and Ei. Figures 2
and 3 show the graphical representation of these fuzzy sets.
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Fig. 2 Triangular fuzzy sets

Fig. 3 Gaussian fuzzy sets

Table 2 Rule base for fuzzy
rule-based expert system for
expected return

(A1, B2,C6, D6) (A2, B2,C6, D6)

(A1, B2,C6, D7) (A1, B3,C5, D6)

(A1, B2,C7, D6) (A1, B3,C5, D7)

(A1, B2,C7, D7) (A1, B3,C6, D6)

(A1, B3,C6, D6) (A1, B3,C6, D7)

4.1 Rule Base for Fuzzy Rule-Based Expert System

Fuzzy rule “If XA is Ai and XB is Bi and XC is Ci then μ is Di” is abbreviated as (Ai,
Bi, Ci: Di). Table 2 shows some of the rules used in the fuzzy rule-based model.

4.2 Inferencing

In this process, the membership grades are calculated and inferencing of different
rules is done by using min–max methods. The rule base view is shown in Fig. 4.
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Fig. 4 Rule base view for portfolio return

4.3 Defuzzification

Defuzzification is the process in which fuzzy output is converted into crisp output.
The centroid defuzzification method is used to find a point representing the center
of gravity. It is calculated by using the following equation:

ZCOA = ∫ μA(z).z.dz

∫ μA(z).dz
(12)

4.4 Testing Data Set

We take the following random data for XA, XB, and XC (Table 3) and compute
expected return and risk associatedwith different portfolios to verify the performance
of developed all fuzzy rule-based expert systems.
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Table 3 Testing data set S.No XA XB XC

1 95 3 2

2 90 5 5

3 88 10 2

4 85 10 5

5 68 32 0

6 62 34 4

7 63 30 7

8 70 10 20

9 60 30 10

10 57 34 9

11 55 35 10

12 54 36 10

13 52 36 12

14 45 30 25

15 28 45 27

16 27 42 31

17 13 30 57

18 4 46 50

19 0 42 58

20 2 3 95

21 0 4 96

5 Results

Tables 4 and 5 show the expected return and risk associated with portfolios which
are computed using fuzzy rule-based expert systems with triangular and Gaussian
fuzzy sets.

Tables 6 and 7 show the comparison between the Statistical, Triangular, and
Gaussian methods for portfolio return and risk in the testing data.

Now by using fuzzy rule-based expert systems (Tables 4 and 5), we have the
following observations:

• When the assets are taken in the ratio 80:20:0 the return by the statistical method is
6%, whereas the returns obtained by triangular and Gaussian methods are 6.43%
and 6.44%.

• When the assets are taken in the ratio 0:20:80 then the risk in the portfolio by
triangular and Gaussian methods are 25% and 24.9% which is less than the risk
obtained by the statistical method which is 26.23%.
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Table 4 Expected return in different portfolios using statistical and Mamdani FIS with triangular
and gaussian membership functions

Assets Expected return

XA XB XC Conventional Triangular Gaussian

100 0 0 5 6.36 6.36

90 10 0 5.5 6.41 6.41

80 20 0 6 6.43 6.44

70 30 0 6.5 6.37 7.23

63 34 3 7 7.48 7.54

57 36 7 7.5 8.18 8.22

52 36 12 8 8.32 8.36

46 38 16 8.5 8.34 8.43

41 38 21 9 8.90 8.88

35 40 25 9.5 9.78 9.85

29 42 29 10 10.4 10.3

24 42 34 10.5 10.6 10.8

18 44 38 11 10.8 10.8

13 44 43 11.5 11 11

7 46 47 12 11.3 11.4

1 48 51 12.5 11.7 11.6

0 40 60 13 11.7 11.9

0 30 70 13.5 13.6 13.5

0 20 80 14 13.6 13.6

0 10 90 14.5 13.6 13.6

0 0 100 15 13.6 13.6

From Fig. 5, when the combinations of assets are in the ratio 0:30:70, the return
from both the statistical and Gaussian methods is 13.5%, whereas the risk obtained
from the statisticalmethod is 24.55% and the risk obtained from theGaussianmethod
is 23.7%. Hence, by using fuzzy methods, we can considerably reduce the risk for
the same amount of return or increase the return for the same amount of risk level.

• From Table 8, it is observed that the RMSE value in computing expected return
using a fuzzy rule-based model with triangular membership function is 0.690365,
while with Gaussian membership function, it is 0.700040. Even though there
is a very small difference observed in RMSE, we conclude that the triangular
membership function outperforms the Gaussian membership functions in the
fuzzy rule-based model for computing expected return in portfolios.

• Since RMSE value in computing risk associated with different portfolios using
fuzzy rule-based models with the Gaussian membership function is greater than
the triangular membership function, it can be concluded that the triangular
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Table 5 Portfolio variance in different portfolios using statistical andMamdani FIS with triangular
and gaussian membership functions

Assets Portfolio Variance

XA XB XC Conventional Triangular Gaussian

100 0 0 10 11.4 11.4

90 10 0 9.21 11.5 11.5

80 20 0 8.94 11.6 11.6

70 30 0 9.21 11.5 11.5

63 34 3 9.92 12.4 12.3

57 36 7 10.76 13.3 13.3

52 36 12 11.68 13.3 13.4

46 38 16 12.66 13.2 13.4

41 38 21 13.7 14.6 14.5

35 40 25 14.79 15.6 15.9

29 42 29 15 16.6 16.5

24 42 34 17.04 17.6 17.8

18 44 38 18.20 19 18.3

13 44 43 19.38 19.6 19.7

7 46 47 20.57 20.8 20.9

1 48 51 21.78 22.6 22.3

0 40 60 23.06 22.8 22.5

0 30 70 24.55 24.6 23.7

0 20 80 26.23 25 24.9

0 10 90 28.05 25.8 26

0 0 100 30 27.1 27.1

membership function is better than the Gaussian membership function for a fuzzy
rule-based model for computing risk.

From Table 9, it can be concluded that in computing expected return associ-
ated with different portfolios for testing data, the triangular membership function
outperforms the Gaussian membership function in fuzzy rule-based expert systems.

6 Conclusions

In the present study, we suggest the use of fuzzy logic in multi asset portfolio opti-
mization problems. The main reason for using fuzzy logic in the study of multi assets
portfolio optimization is to develop comprehensive models of asset portfolio opti-
mization for investors pursuing either aggressive or conservative strategies. Fuzzy



330 G. Bisht and S. Kumar

Table 6 Expected return in different portfolios using statistical and Mamdani FIS with triangular
and gaussian membership functions for the testing data

Assets Expected return

XA XB XC Conventional Triangular Gaussian

95 3 2 5.35 6.41 6.41

90 5 5 5.75 6.41 6.41

88 10 2 5.7 6.39 6.38

85 10 5 6 6.39 6.38

68 32 0 6.6 6.43 6.44

62 34 4 7.1 7.58 7.61

63 30 7 7.2 7.46 7.6

70 10 20 7.5 7.84 7.83

60 30 10 7.5 6.53 6.59

57 34 9 7.6 8.17 8.21

55 35 10 7.75 8.24 8.29

54 36 10 7.8 8.28 8.32

52 36 12 8 8.32 8.36

45 30 25 9 8.34 8.41

28 45 27 9.95 10.5 10.4

27 42 31 10.2 10.6 10.5

13 30 57 12.2 13.5 13.2

4 46 50 12.3 11.7 11.5

0 42 58 12.9 11.7 11.6

2 3 95 14.65 13.6 13.6

0 4 96 14.8 13.6 13.6

rule-based models with different types of membership functions (triangular and
Gaussian) are developed to analyze the risk and return in three assets problem with
known individual risk and return. The results obtained by fuzzy logic for the portfolio
parameter, e.g., portfolio variance and expected return are a little bit different from
the result obtained by the conventional method, but this result seems very near to
reality. The variation may also be due to the reason that in the conventional method,
non-stochastic uncertainty is left without any reason. But in the present study, by the
use of fuzzy logic, a large amount of uncertainty is dealt with in the form of a rule
base to give a better result.

The expected return from different portfolios computed using fuzzy rule-based
models is better than conventional statistical models. Also, in particular, for fuzzy
methods, we have seen by RMSE values that the triangular membership functions
give better results than the Gaussian membership functions for both training and
testing data.
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Table 7 Portfolio variance in different portfolios using statistical andMamdani FIS with triangular
and gaussian membership functions for the testing data

Assets Portfolio variance

XA XB XC Conventional Triangular Gaussian

95 3 2 9.85 11.5 11.5

90 5 5 9.96 11.5 11.5

88 10 2 9.39 11.5 11.5

85 10 5 9.70 11.5 11.5

68 32 0 10.3 11.6 11.6

62 34 4 10.08 12.6 12.4

63 30 7 10.29 12.5 12.4

70 10 20 11.95 11.8 11.9

60 30 10 10.81 13 12.9

57 34 9 10.94 13.4 13.4

55 35 10 11.21 13.4 13.4

54 36 10 11.30 13.3 13.3

52 36 12 11.68 13.3 13.4

45 30 25 13.83 13.4 13.6

28 45 27 15.81 16.8 16.7

27 42 31 16.35 17 16.9

13 30 57 21.32 24.6 23.5

4 46 50 21.3 22 21.9

0 42 58 22.79 22.1 21.3

2 3 95 28.90 27 27

0 4 96 29.20 26.9 26.9

Fig. 5 Graph between return and risk for non-fuzzy, triangular, and gaussian method
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Table 8 RMSE in expected
return and portfolio variance
(Training data)

Membership function
type

RMSE

Expected return Portfolio variance

Triangular 0.690365 1.599639

Gaussian 0.700040 1.601557

Table 9 RMSE in expected
return and portfolio variance
(Testing data)

Membership function
type

RMSE

Expected return Portfolio variance

Triangular 0.735987 1.828523

Gaussian 0.741154 1.743934

Fuzzy set theory is a convenient method for portfolio optimization. Using fuzzy
data instead of crisp data has the advantage of reducing uncertainty. The financial
system has a number of uncertainties that can never be eliminated completely and
hence cannot be neglected. This approach gives a new dimension to study in the field
of finance.
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Stability Analysis of Additive
Time-Varying T–S Fuzzy System Using
Augmented Lyapunov Functional

Bhuvaneshwari Ganesan and Manivannan Annamalai

Abstract This article discusses the stability analysis problem of Takagi–Sugeno
(T–S) fuzzy system with additive time-varying delay components. To find a stability
region and to stabilize the system, a state feedback control scheme is considered.
A Lyapunov–Krasovskii functional is constructed to obtain less conservative results
by utilizing the integral inequality based on non-orthogonal polynomials and the
conditions are derived as linear matrix inequality form. The stability conditions are
obtained for the system involving two delay components and the proposed result is
validated through numerical examples.

Keywords Additive time-varying delays · T–S fuzzy system · Stability · Linear
matrix inequality

1 Introduction

In real world, there exist delays in physical systems inherently. Avoiding these delays
when modeling physical system into mathematical model gives only the approxi-
mated results. In order to get more accurate results, the time delays must be included
in mathematical models. Time-delay systems are fundamental mathematical repre-
sentations of real-world events such as chemical engineering system, power system,
biological system, and so on. The presence of delay causes the system to be unstable
and gives poor performance. As a result, substantial research has been focused on
analysis and synthesis challenges of time-delayed systems. Researchers have been
more focused on determining the stability of systems of various kinds, such as neu-
tral system [4], stochastic system [10], fuzzy system [11], singular system [14], and
hybrid system [15].

The majority of work focused on determining the maximum upper bound for
delayed systemand analyzing its stability. It has been accomplished through the appli-
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cation of Lyapunov stability theory by developing appropriate Lyapunov–Krasovskii
functional (LKF). The construction of proper LKF ensures to get less conservative
results in analyzing stability of the system. There are various types of LKF which
have been used in the literature such as discretized LKF [5], polynomial-type LKF
[6], augmented LKF [7], relaxed LKF [18], etc.

Takagi and Sugeno first introduced the concept of fuzzy IF-THEN rules for non-
linear systems to make it into linear subsystems by employing input–output data.
Another primary role of T–S fuzzy system is that the control and stability conditions
can be expressed as linear matrix inequality (LMI). This methodology is used in non-
linear systems, which has wide applications in many practical problems. Discrete-
time [16] and continuous-time [13] systems are two types of time-varying T–S fuzzy
systems. These systems addressed the problem with time delays such as constant
delay, discrete delay, distributed delay, and additive time-varying delays. In order to
handle system with such delays, various control methodologies have been employed
to stabilize the system, such as state feedback control, sliding mode control, fuzzy
logic control, and adaptive control.

Many researchers have investigated the stability of nonlinear system with addi-
tive time-varying delays. A new stability results have been studied for the nonlinear
system with additive time-varying delays via new augmented LKFs in [2]. In [8],
stability problem of a system involves two additive time-varying delays which have
been investigated by using a quadratic function negative-determination lemma. Sta-
bilization problem of switched T–S fuzzy system has been investigated with additive
time-varying delays and robust stabilization is also investigated in [1]. In [20], a
stability and stabilization problem via new LKFs has been studied for additive time-
varying delayed T–S fuzzy system. In [21], a local stability and stabilization problem
has been investigated for nonlinear systemswith parameter uncertainty and two addi-
tive time-varying delays via T–S fuzzy model.

In this paper, a stability and stabilization problem for T–S fuzzy systemwith addi-
tive time-varying delays has been considered. A state feedback controller involves
state with additive time-varying delays which is employed to stabilize the system.
LKFs are considered in an augmented form and an integral inequality based on
non-orthogonal polynomials has been applied to get less conservative results. Fur-
thermore, the stability conditions have been obtained in the form of LMI. Finally,
the advantages of proposed method have been validated through numerical example.

2 Problem Formulations

Consider the delayed T–S fuzzy model with additive time-varying delays as follows:
Fuzzy Plant Rule i(i = 1, 2, . . . , p) : IF s1 is wi1, and, …, and sq is wiq THEN{

ẋ(t) = Ai x(t) + Bi x(t − �1(t) − �2(t)) + Ciu(t),

x(t) = φ(t), t ∈ [−�̄, 0], t ≥ 0,
(1)
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where x(t) ∈ R
n represents the state vector and u(t) ∈ R

n is control input; sm, wim

(m = 1, . . . , q) represents the premise variables and associated fuzzy sets, respec-
tively; p denotes the number of IF-THEN rules; Ai , Bi andCi are appropriate dimen-
sional known matrices. �1(t), �2(t) are two additive positive time-varying bounded
delays satisfying the following conditions:

0 ≤ �1(t) ≤ �1, �̇1(t) ≤ μ1 < 1, 0 ≤ �2(t) ≤ �2, �̇2(t) ≤ μ2 < 1, (2)

and �̄ = �1 + �2. φ(t) denotes initial condition and it is continuously differentiable
function on [−�̄, 0]. �1 and �2 are constant and positive scalars which represent the
upper bound of two additive time-varying delays.

By adopting standard fuzzy inference, the overall fuzziness of the design can be
denoted as follows:⎧⎨

⎩ẋ(t) =
p∑

i=1
ζi (s(t))

[
Ai x(t) + Bi x(t − �1(t) − �2(t)) + Ciu(t)

]
,

x(t) = φ(t), t ∈ [−�̄, 0], t ≥ 0,
(3)

where s(t) = [s1(t), . . . , sq(t)] and

ζi (s(t)) = ψi (s(t))∑p
i=1 ψi (s(t))

≥ 0, and ψi (s(t)) =
q∏

m=1

wim(sm(t))

withwim(sm(t)) representing the grade membership of sm(t) in wim . It is clear to see
that

ψi (s(t)) > 0, ∀i = 1, . . . , p,
p∑

i=1

ψi (s(t)) > 0, for any s(t).

Hence ζi (s(t)) satisfy, ζi (s(t)) ≥ 0, ∀i = 1, . . . , p,
p∑

i=1

ζi (s(t)) = 1, for any s(t).

Now, to stabilize the delayed T–S fuzzy system, consider the state feedback control
design with additive time delay as follows:

Controller rule: IF s1 is wi1 and , …,and sq is wiq , THEN

u(t) = Kai x(t) + Kbi x(t − �1(t) − �2(t)),

where Kai and Kbi are unknown control gainmatrices. Therefore, the complete fuzzy
control rule is inferred as

u(t) =
p∑

i=1

ζi (s(t))[Kai x(t) + Kbi x(t − �1(t) − �2(t))]. (4)
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By adopting (4) in (3), the closed-loop system can be obtained as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(t) =

p∑
i=1

p∑
l=1

ζi (s(t))ζl(s(t))
[
Ai x(t) + Bi x(t − �1(t) − �2(t))

+Ci
(
Kal x(t) + Kbl x(t − �1(t) − �2(t))

)]
,

x(t) = φ(t), t ∈ [−�̄, 0], t ≥ 0.

(5)

The major goal of this paper is to establish stability of additive time-varying delayed
T–S fuzzy system (5). Besides that, the problem deals with finding the control gain
matrices Kal and Kbl and to stabilize the system (5). Some important lemmas are
introduced before deriving the main results as follows.

Most existing results for delayed systems have been used inmemoryless controller
design of the form u(t) = Kx(t). The controller considered in this paper contains
state vector, also a state with two additive time-varying delays of the form u(t) =
Kax(t) + Kbx(t − �1(t) − �2(t)).

2.1 Preliminaries

This section provides some lemmas that can be used in the main result to obtain
stability criteria of the delay-dependent T–S fuzzy system.

Lemma 1 ([19]) For two scalars a and b with b > a, a vector z : [a, b] → R
n, and

n × n real matrices R > 0, Hi (i = 1, 2) and Y j ( j = 1, 2, 3) satisfying

Θ :=
⎡
⎣Y1 Y2 H1

∗ Y3 H2

∗ ∗ R

⎤
⎦ ≥ 0, the following inequality holds:

∫ b

a
żT (s)Rż(s)ds ≥ 1

b − a
χT
1 Rχ1 + χT

2

(
H1 + HT

1 − b − a

3
Y1
)
χ2

+ χT
3

[
15(H2 + HT

2 ) − 20(b − a)Y3
]
χ3 + 20χT

3 HT
2 L2χ1.

Where χ1 := z(b) − z(a), χ2 := z(b) + z(a) − (2/(b − a))

∫ b

a
z(s)ds,

χ3 := 4

b − a

∫ b

a
z(s)ds − 8

(b − a)2

∫ b

a

∫ b

θ

z(s)dsdθ.

Lemma 2 ([17]) For any constant positive symmetric matrix L ∈ R
m×m, scalar

κ > 0, vector function z : [0, κ] → R
m such that the integration concerned is well

defined, then

κ

∫ κ

0
zT (s)Lz(s)ds ≥

(∫ κ

0
z(s)ds

)T

L

(∫ κ

0
z(s)ds

)
.
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3 Main Results

In this section, the stability criteria conditions are derived by choosing suitable LKFs
and using the above-mentioned lemmas. Now, the following notations are given to
understand the main results:

ei =[
0n×(i−1)n In 0n×(15−i)n

]
(i = 1, . . . , 15),

ξ T (t) =
[
xT (t) xT (t − �̄) xT (t − �1) xT (t − �2) xT (t − �1(t)) xT (t − �2(t))

xT (t − �(t)) xT (t − �1(t) − �2(t)) ẋ T (t)
1

�2 − �1

∫ t−�1

t−�2

xT (s)ds
∫ t

t−�1

xT (s)ds

∫ t

t−�2

xT (s)ds
1

(�2 − �1)2

∫ t−�1

t−�2

∫ t−�1

θ

xT (s)dsdθ
1

�
2
2

∫ t−�1

t−�̄

∫ t−�1

θ

xT (s)dsdθ

1

�
2
1

∫ t−�2

t−�̄

∫ t−�2

θ

xT (s)dsdθ
]
.

Theorem 1 For given scalars and control gain matrices �1 > 0, �2 > 0, μ1, μ2,

Kal , Kbl , the system (5) with additive time-varying delays �1(t), �2(t) satisfying
condition (2) is asymptotically stable if there exist positive definite symmetric matri-
ces P, Qi , Ri , Si (i = 1, 2, 3), Ti (i = 1, 2)andanymatrices Li , Zi (i = 1, 2, 3) such
that the following LMI is satisfied:

Ωi,l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1
1il 0 ϕ3

1 ϕ4
1 0 0 0 ϕ8

1il ϕ9
1il 0 0 0 0 ϕ14

1 ϕ15
1∗ ϕ2

2 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ϕ3

3 ϕ4
3 0 0 0 0 0 ϕ10

3 0 0 ϕ13
3 ϕ14

3 ϕ15
3∗ ∗ ∗ ϕ4

4 0 0 0 0 0 ϕ10
4 0 0 ϕ13

4 ϕ14
4 ϕ15

4∗ ∗ ∗ ∗ ϕ5
5 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ϕ6
6 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ7
7 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ8
8 ϕ9

8il 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ9

9 0 0 0 0 ϕ14
9 ϕ15

9∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ10
10 0 0 ϕ13

10 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ11

11 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ12

12 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ13

13 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ14

14 ϕ15
14∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ15
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (6)

where
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ϕ1
1il = Q2 + Q3 + �1T1 + �2T2 − S1 + 2βN Ai + 2βNCKal , ϕ3

1 = �
2
2

2
P12 + S1, ϕ4

1 = �
2
1

2
P13,

ϕ8
1il = βN Bi + βNCKbl , ϕ9

1il = P11 + AT
i N

T + KT
alC

T NT − βN , ϕ14
1 = −P12�

2
2,

ϕ15
1 = −P13�

2
1, ϕ2

2 = −R2 − R3, ϕ3
3 = (�2 − �1)R1 + R2 − S1 − 1

�2 − �1
S2

− (L1 + LT
1 − �2 − �1

3
Z1), ϕ4

3 = 1

�2 − �1
S2 − (L1 + LT

1 − �2 − �1

3
Z1),

ϕ10
3 = 2(L1 + LT

1 − �2 − �1

3
Z1) − 80LT

2 , ϕ13
3 = 160LT

2 , ϕ14
3 = �

2
2�

2
1

2
PT
14, ϕ15

3 = �
4
2

2
P15,

ϕ4
4 = −(�2 − �1)R1 + R3 − 1

�2 − �1
S2 − (L1 + LT

1 − �2 − �1

3
Z1),

ϕ10
4 = 2(L1 + LT

1 − �2 − �1

3
Z1) + 80LT

2 , ϕ13
4 = −160LT

2 , ϕ14
4 = �

4
1

2
PT
15, ϕ15

4 = �
2
1�

2
2

2
PT
16,

ϕ5
5 = (1 − μ1)Q1 − (1 − μ1)Q2 + (1 − μ1)S3, ϕ6

6 = −(1 − μ2)Q3, ϕ7
7 = −(1 − μ1 − μ2)Q1,

ϕ8
8 = −(1 − μ1 − μ2)S3, ϕ9

8il = BT
i NT + KT

blC
T NT , ϕ9

9 = �
2
1S1 + (�2 − �1)S2 − 2N ,

ϕ14
9 = �

2
1P12, ϕ15

9 = �
2
2P13, ϕ10

10 = −4(L1 + LT
1 − �2 − �1

3
Z1) − 16

[
15(L2 + LT

2 ) − 20(�2 − �1)Z3
]
,

ϕ13
10 = 32

[
15(L2 + LT

2 ) − 20(�2 − �1)Z3
]
, ϕ11

11 = −1

�1
T1, ϕ12

12 = −1

�2
T2,

ϕ13
13 = −64

[
15(L2 + LT

2 ) − 20(�2 − �1)Z3
]
, ϕ14

14 = −2�
2
1�

2
2P14, ϕ15

14 = −�
4
2P15 − �

4
1P15,

ϕ15
15 = −2�

2
1�

2
2P16.

Proof Construct the LKF in the following form:

V (xt ) =
5∑

ν=1

Vν(xt ),

where

V1(xt ) =ηT (t)Pη(t),

V2(xt ) =
∫ t−�1(t)

t−�(t)
xT (s)Q1x(s)ds +

∫ t

t−�1(t)
xT (s)Q2x(s)ds +

∫ t

t−�2(t)
xT (s)Q3x(s)ds,

V3(xt ) =(�2 − �1)

∫ t−�1

t−�2

xT (s)R1x(s)ds +
∫ t−�1

t−�̄

xT (s)R2x(s)ds +
∫ t−�2

t−�̄

xT (s)R3x(s)ds,

V4(xt ) =
∫ 0

−�1

∫ t

t+θ
xT (s)T1x(s)dsdθ +

∫ 0

−�2

∫ t

t+θ
xT (s)T2x(s)dsdθ,

V5(xt ) =�1

∫ 0

−�1

∫ t

t+θ
ẋ T (s)S1 ẋ(s)dsdθ +

∫ −�1

−�2

∫ t

t+θ
ẋ T (s)S2 ẋ(s)dsdθ

+
∫ t−�1(t)

t−�1(t)−�2(t)
xT (s)S3x(s)ds,

with η =col
{
x(t),

∫ t−�1

t−�̄

∫ t−�1

θ
x(s)dsdθ,

∫ t−�2

t−�̄

∫ t−�2

θ
x(s)dsdθ

}
.
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The derivative of V (xt ) is derived as follows:

V̇1(xt )) =2ηT (t)P η̇(t),

= 2ξT (t)

{⎡⎣ e1
�
2
1e14

�
2
2e15

⎤
⎦
T ⎡
⎣ P11 P12 P13

∗ P14 P15
∗ ∗ P16

⎤
⎦
⎡
⎢⎢⎣

e9
�
2
2
2 e3 − �

2
2e14

�
2
1
2 e4 − �

2
1e15

⎤
⎥⎥⎦
}
ξ(t) = ξT (t)Υ1ξ(t), (7)

V̇2(xt ) ≤ξT (t)

{
eT1 [Q2 + Q3]e1 + eT5 [(1 − μ1)Q1 − (1 − μ1)Q2]e5 − (1 − μ1 − μ2)e

T
7 Q1e7

− (1 − μ2)e
T
6 Q3e6

}
ξ(t) = ξT (t)Υ2ξ(t), (8)

V̇3(xt ) = ξT (t)

{
eT2

[ − R2 − R3
]
e2 + eT3

[
(�2 − �1)R1 + R2

]
e3 + eT4

[ − (�2 − �1)R1

+ R3
]
e4

}
ξ(t) = ξT (t)Υ3ξ(t), (9)

V̇4(xt ) ≤ξT (t)
{
eT1 [�1T1 + �2T2]e1 − 1

�1
eT11T1e11 − 1

�2
eT12T2e12

}
ξ(t) = ξT (t)Υ4ξ(t), (10)

V̇5(xt ) ≤ξT (t)

{
�
2
1e

T
9 S1e9 − [e1 − e3]T S1[e1 − e3] + (�2 − �1)e

T
9 S2e9 + (1 − μ1)e

T
5 S3e5

− (1 − μ1 − μ2)e
T
8 S3e8

}
ξ(t) −

∫ t−�1

t−�2

ẋ T (s)S2 ẋ(s)ds

= ξT (t)Υ5ξ(t) −
∫ t−�1

t−�2

ẋ T (s)S2 ẋ(s)ds. (11)

applying Lemma1 in the integral − ∫ t−�1

t−�2
ẋ T (s)S2 ẋ(s)ds yields

−
∫ t−�1

t−�2

ẋ T (s)S2 ẋ(s)ds ≤ξ T (t)

{ −1

�2 − �1
[e3 − e4]T S2[e3 − e4] − [e3 + e4 − 2e10]T

× (
L1 + LT

1 − �2 − �1

3
Z1
)[e3 + e4 − 2e10]

− [4e10 − 8e13]T
(
15(L2 + LT

2 ) − 20(�2 − �1)Z3
)

× [4e10 − 8e13]
}
ξ(t) = ξ T (t)Υ6ξ(t). (12)

The following equation is obtained from the system (5) for any matrix N and any
scalar β

0 =[e9 + βe1]2N
{ p∑

i=1

p∑
l=1

ζi (s(t))ζl (s(t))
[
Ai e1 + Bi e8 + Ci (Kale1 + Kble8

]
− e9

}

=ξT (t)Υ7ξ(t). (13)

From (7) to (13), the upper bound of V̇ (xt ) is obtained as
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V̇ (xt ) ≤
p∑

i=1

p∑
l=1

ζi (s(t))ζl (s(t))ξ
T (t)

{ 7∑
a=1

Υa

}
ξ(t) =

p∑
i=1

p∑
l=1

ζi (s(t))ζl(s(t))ξ
T (t)Ωi,lξ(t),

(14)

where ξ(t) is given in the main results and Ωi,l is given in (6). If the LMI (6) hold
then the condition defined in (14) is satisfied. Thus the system (5) is asymptotically
stable, this completes the proof.

Remark 1 In the derivative of V5(x(t)) there exists single integral term∫ t−�1

t−�2
ẋ T (s)S2 ẋ(s)ds in which integral inequality based on non-orthogonal polyno-

mials has been applied. This integral inequality helps to derive a less conservative
result.

Theorem 2 For given scalars �1 > 0, �2 > 0, μ1, μ2 and unknown control gain
matrices Kal , Kbl , the system (5)with additive time delays�1(t), �2(t) satisfying con-
dition (2) is asymptotically stable if there exist positive definite symmetric matrices
P̌, Q̌i , Ři , Ši (i = 1, 2, 3), Ťi (i = 1, 2) and any matrices Ľi , Ži (i = 1, 2, 3) such
that the following LMI is satisfied:

Ω̌i,l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̌1
1il 0 ϕ̌3

1 ϕ̌4
1 0 0 0 ϕ̌8

1il ϕ̌9
1il 0 0 0 0 ϕ̌14

1 ϕ̌15
1∗ ϕ̌2

2 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ϕ̌3

3 ϕ̌4
3 0 0 0 0 0 ϕ̌10

3 0 0 ϕ̌13
3 ϕ̌14

3 ϕ̌15
3∗ ∗ ∗ ϕ̌4

4 0 0 0 0 0 ϕ̌10
4 0 0 ϕ̌13

4 ϕ̌14
4 ϕ̌15

4∗ ∗ ∗ ∗ ϕ̌5
5 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ϕ̌6
6 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ̌7
7 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌8
8 ϕ̌9

8il 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌9

9 0 0 0 0 ϕ̌14
9 ϕ̌15

9∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌10
10 0 0 ϕ̌13

10 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌11

11 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌12

12 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌13

13 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌14

14 ϕ̌15
14∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̌15
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (15)

where

ϕ̌1
1il = Q̌2 + Q̌3 + �1 Ť1 + �2 Ť2 − Š1 + 2βAi Ň + 2βCFal , ϕ̌3

1 = �
2
2

2
P̌12 + Š1, ϕ̌4

1 = �
2
1

2
P̌13,

ϕ̌8
1il = βBi Ň + βCFbl , ϕ̌9

1il = P̌11 + Ň T AT
i + FT

alC
T − β Ň , ϕ̌14

1 = −P̌12�
2
2, ϕ̌15

1 = −P̌13�
2
1,

ϕ̌2
2 = −Ř2 − Ř3, ϕ̌3

3 = (�2 − �1)Ř1 + Ř2 − Š1 − 1

�2 − �1
Š2 − (Ľ1 + ĽT

1 − �2 − �1

3
Ž1),

ϕ̌4
3 = 1

�2 − �1
Š2 − (Ľ1 + ĽT

1 − �2 − �1

3
Ž1), ϕ̌10

3 = 2(Ľ1 + ĽT
1 − �2 − �1

3
Ž1) − 80ĽT

2 ,

ϕ̌13
3 = 160ĽT

2 , ϕ̌14
3 = �

2
2�

2
1

2
P̌T
14, ϕ̌15

3 = �
4
2

2
P̌15, ϕ̌4

4 = −(�2 − �1)Ř1 + Ř3 − 1

�2 − �1
Š2
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− (Ľ1 + ĽT
1 − �2 − �1

3
Ž1), ϕ̌10

4 = 2(Ľ1 + ĽT
1 − �2 − �1

3
Ž1) + 80ĽT

2 , ϕ̌13
4 = −160ĽT

2 ,

ϕ̌14
4 = �

4
1

2
P̌T
15, ϕ̌15

4 = �
2
1�

2
2

2
P̌T
16, ϕ̌5

5 = (1 − μ1)Q̌1 − (1 − μ1)Q̌2 + (1 − μ1)Š3, ϕ̌6
6 = −(1 − μ2)Q̌3,

ϕ̌7
7 = −(1 − μ1 − μ2)Q̌1, ϕ̌8

8 = −(1 − μ1 − μ2)Š3, ϕ̌9
8il = Ň T BT

i + FT
bl C

T ,

ϕ̌9
9 = �

2
1 Š1 + (�2 − �1)S2 − 2Ň , ϕ̌14

9 = �
2
1 P̌12, ϕ̌15

9 = �
2
2 P̌13, ϕ̌10

10 = −4(Ľ1 + ĽT
1 − �2 − �1

3
Ž1)

− 16
[
15(Ľ2 + ĽT

2 ) − 20(�2 − �1)Ž3
]
, ϕ̌13

10 = 32
[
15(Ľ2 + ĽT

2 ) − 20(�2 − �1)Ž3
]
, ϕ̌11

11 = −1

�1
Ť1,

ϕ̌12
12 = −1

�2
Ť2, ϕ̌13

13 = −64
[
15(Ľ2 + ĽT

2 ) − 20(�2 − �1)Ž3
]
, ϕ̌14

14 = −2�
2
1�

2
2 P̌14,

ϕ̌15
14 = −�

4
2 P̌15 − �

4
1 P̌15, ϕ̌15

15 = −2�
2
1�

2
2 P̌16.

Then the control gain matrices can be constructed as Kal = Fal Ň−1, Kbl = Fbl Ň−1.

Proof Let us nowconsider Kal Ň = Fal, Kbl Ň = Fbl andΓ = col{Ň , Ň , Ň , Ň , Ň ,

Ň , Ň , Ň , Ň , Ň , Ň , Ň , Ň , Ň , Ň } where Ň = N−1. Let us now consider the other
matrices as P̌ = Ň P Ň , Q̌i = Ň Qi Ň , Ři = Ň Ri Ň , Ši = Ň Si Ň , Ťi = Ň Ti Ň ,

Ľ i = Ň Li Ň , Ži = Ň Zi Ň . Pre- and post-multiplication of Γ T and Γ in LMI (6)
leads to LMI (15). The proof is complete.

4 Numerical Examples

Example 1 Consider the delayed system (5) with parameters

A1 =
[−2.1 0.1
−0.2 −0.9

]
, B1 =

[−1.1 0.1
−0.8 −0.9

]
, C1 =

[
0.14 0
0.1 1.15

]
,

A2 =
[−1.9 0
−0.2 −1.1

]
, B2 =

[−0.9 0
−1.1 −1.2

]
, C2 =

[
0.13 −0.1
0 0.12

]
.

Membership function is chosen in the form that ζ1(t) = 1

1 + e−2x1(t)
and ζ2(t) = 1 −

ζ1(t). Moreover, let μ1 = 0.1, μ2 = 0.1, �1 = 0.1, β = 0.1 and solving the LMIs in
Theorem2, the obtained maximum upper bound �2 is 3.2562. Also, the control gain
matrices corresponding to Theorem2 are obtained as

Ka1 =
[−197.6648 −197.9296

19.2615 18.8824

]
, Ka2 =

[−197.6648 −197.9296
19.2615 18.8824

]
,

Kb1 =
[
9.9122 2.6148

−0.1506 0.4711

]
, Kb2 =

[
9.9122 2.6148

−0.1506 0.4711

]
.

The state response of the closed-loop system is obtained by assuming �1(t) =
0.4 + 0.1 sin t, �2(t) = 0.8 sin t under initial condition x(0) = [2 − 2]T . The state
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Fig. 1 State trajectories with �1(t) = 0.4 + 0.1 sin t, �2(t) = 0.8 sin t (Example (1))

trajectory of the closed-loop system (5) under the obtained control gain matrices is
expressed in Fig. 1. This implies that the additive time-varying delayed T–S fuzzy
system converge to origin under the proposed controller.

Example 2 Consider the delayed system (5) with C = 0 gives

ẋ(t) =
p∑

i=1

ζi (s(t))
[
Ai x(t) + Bi x(t − �1(t) − �2(t))

]
, (16)

and the parameters are as follows:

A1 =
[−2 0
0 −0.9

]
, B1 =

[−1 0
−1 −1

]
.

Consider the LMIs in Theorem2withC = 0, for different values of �1 andμ1 = 0.1,
μ2 = 0.1 the maximum allowable upper bound �2 is calculated and tabulated in
Table1, and for different values of �2 and μ1 = 0.1, μ2 = 0.1 the allowable upper
bound �1 is calculated and tabulated in Table2. When compared with the existing
results, the acquired results, as shown in the table, are less conservative. Moreover,
for the proposed T–S fuzzy system, the delay-dependent conditions obtained increase
the delay bound.
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Table 1 The obtained MAUBs �2 under μ1 = 0.1, μ2 = 0.1

Methods �1 = 1.0 �1 = 1.1 �1 = 1.2 �1 = 1.5

[12] 1.198 1.027 0.980 0.610

[3] 0.9999 1.0770 0.9725 0.6807

[9] 1.2136 1.1136 1.0137 0.7137

Theorem2 1.7231 1.6953 1.5135 1.2356

Table 2 The obtained MAUBs �1 under μ1 = 0.1, μ2 = 0.1

Methods �2 = 0.3 �2 = 0.4 �2 = 0.5

[12] 1.708 1.645 1.574

[3] 1.8804 1.7798 1.6759

[9] 1.9137 1.8137 1.7136

Theorem2 2.4135 2.3651 2.2355

5 Conclusion

The stability problem of T–S fuzzy system has been studied with two additive time-
varying delays. A state feedback control design has been considered to stabilize the
system. The control design takes the form of a state with additive time delays. In
order to get less conservative results, augmented-type LKFs are constructed and an
integral inequality based on non-orthogonal polynomials has been employed. The
conservative results in the form of linear matrix inequalities have been obtained. Two
numerical examples have been given to illustrate the improvement and efficacy of
the proposed method.

References

1. Ahmida, F., Tissir, E.H.: Stabilization of switched T-S fuzzy systemswith additive time-varying
delays. In: Proceedings of the Mediterranean Conference on Information & Communication
Technologies 2015, pp. 401–408. Springer, Cham (2016)

2. Chen,W., Gao, F., Liu, G.: New results on delay-dependent stability for nonlinear systems with
two additive time-varying delays. Eur. J. Control 58, 123–130 (2021)

3. Ding, L., He, Y., Wu, M., Wang, Q.: New augmented Lyapunov-Krasovskii functional for
stability analysis of systems with additive time–varying delays. Asian J. Control 20(4), 1663–
1670 (2018)

4. Han, Q.L.: A descriptor system approach to robust stability of uncertain neutral systems with
discrete and distributed delays. Automatica 40(10), 1791–1796 (2004)

5. Han, Q.L., Gu, K.: Stability of linear systemswith time-varying delay: a generalized discretized
Lyapunov functional approach. Asian J. Control 3(3), 170–180 (2001)

6. Huang, Y.B., He, Y., An, J., Wu, M.: Polynomial-type Lyapunov-Krasovskii functional and
Jacobi-Bessel inequality: further results on stability analysis of time-delay systems. IEEE
Trans. Autom. Control 66(6), 2905–2912 (2020)



346 B. Ganesan and M. Annamalai

7. Kwon, O.M., Park, M.J., Lee, S.M., Park, J.H.: Augmented Lyapunov-Krasovskii functional
approaches to robust stability criteria for uncertain Takagi-Sugeno fuzzy systems with time-
varying delays. Fuzzy Sets Syst. 201, 1–19 (2012)

8. Liu, M., He, Y., Jiang, L.: A binary quadratic function negative-determination lemma and its
application to stability analysis of systems with two additive time-varying delay components.
IET Control Theory & Appl. 15(17), 2221–2231 (2021)

9. Liu, M., He, Y., Wu, M., Shen, J.: Stability analysis of systems with two additive time-varying
delay components via an improved delay interconnection Lyapunov-Krasovskii functional. J.
Frankl. Inst. 356(6), 3457–3473 (2019)

10. Muralisankar, S., Manivannan, A., Balasubramaniam, P.: Robust stability criteria for uncer-
tain neutral type stochastic system with Takagi-Sugeno fuzzy model and Markovian jumping
parameters. Commun. Nonlinear Sci. Numer. Simul. 17(10), 3876–3893 (2012)

11. Lian, Z., He, Y., Zhang, C.K., Wu, M.: Stability and stabilization of T-S fuzzy systems with
time-varying delays via delay-product-type functional method. IEEE Trans. Cybern. 50(6),
2580–2589 (2019)

12. Tang, H., Han, Y., Xiao, X., Yu, H.: Improved stability criterion for linear systems with two
additive time-varying delay. In: 2016 35th Chinese Control Conference (CCC), pp. 1637–1641.
IEEE (2016)

13. Wang, L., Lam, H.K.: A new approach to stability and stabilization analysis for continuous-
time Takagi-Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 26(4), 2460–2465
(2017)

14. Wang, Y., Xia, Y., Shen, H., Zhou, P.: SMC design for robust stabilization of nonlinear Marko-
vian jump singular systems. IEEE Trans. Autom. Control 63(1), 219–224 (2017)

15. Wu, L., Ho, D.W.: Sliding mode control of singular stochastic hybrid systems. Automatica
46(4), 779–783 (2010)

16. Wu, L., Su, X., Shi, P., Qiu, J.: A new approach to stability analysis and stabilization of
discrete-time T-S fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybernetics Part
B (Cybernetics) 41(1), 273–286 (2010)

17. Yoneyama, J.: Robust sampled-data stabilization of uncertain fuzzy systems via input delay
approach. Inf. Sci. 198, 169–176 (2012)

18. Zhang, B., Lam, J., Xu, S.: Stability analysis of distributed delay neural networks based on
relaxed Lyapunov-Krasovskii functionals. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1480–
1492 (2014)

19. Zhang, X.M., Lin, W.J., Han, Q.L., He, Y., Wu, M.: Global asymptotic stability for delayed
neural networks using an integral inequality based on nonorthogonal polynomials. IEEE Trans.
Neural Netw. Learn. Syst. 29(9), 4487–4493 (2017)

20. Zhao, T., Huang,M., Dian, S.: Stability and stabilization of T-S fuzzy systemswith two additive
time-varying delays. Inf. Sci. 494, 174–192 (2019)

21. Zhao, T., Chen, C., Dian, S.: Local stability and stabilization of uncertain nonlinear systems
with two additive time-varying delays. Commun. Nonlinear Sci. Num. Simul. 83, 105097
(2020)



Fractional Calculus and Integral
Equations



Solution of Fractional Differential
Equations by Using Conformable
Fractional Differential Transform
Method with Adomian Polynomials

R. S. Teppawar, R. N. Ingle, and R. A. Muneshwar

Abstract The conformable fractional differential transformmethod (CFDTM)with
Adomian polynomials are used in this work to solve fractional differential equations
(FDEs). We shall solve nonlinear and singular Lane–Emden equations by employ-
ing this innovative approach. We first compute the differential transform (DT) of the
nonlinear term in the conformable fractional sense, but in our novel technique, we
substitute such nonlinear terms with recurrence relations in their Adomian polyno-
mial of index m. The components of the dependent variable are eventually replaced
by FDT of the same index. Because Adomian polynomials may be used for ana-
lytic nonlinear function, the CFDTM becomes much more helpful and significant.
Furthermore, we compute the solution for nonlinear FDEs by using CFDTM with
Adomian polynomials and these solutions are correlated with solutions calculated
by using FDT method. The solutions are analyzed numerically and graphically by
using Python software and the outcomes show that this technique is very effective
and simple.

Keywords Fractional differential equation · Conformable fractional differential
transform method · Adomian polynomials · Singular Lane–Emden equation

1 Introduction and Preliminaries

Fractional calculus has grownmore relevant inmathematical study in recent decades.
There is no standard form for fractional derivative definition. However, the most
widely employed definitions are found in [7, 10]. Recently, several authors [2, 8]
proposed a new limit concept for fractional derivatives, from which he deduced
various results of fractional derivatives.
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Table 1 β-fractional derivative of functions

No. Function φ Tβ(φ(ϑ))

1 ecϑ ecϑcϑ1−β

2 sin cϑ cϑ1−β cos(cϑ)

3 cos cϑ −cϑ1−β sin(cϑ)

4 aϑ (aϑ log a)ϑ1−β

5 1
β ϑβ 1

6 1 0

Definition 1 ([8]) Let ψ : [0,∞) → R be a function and ∀β ∈ (0, 1), then con-
formable fractional derivative of ψ of order β is defined as

Tβ(ψ)(ϑ) = lim
ε→0

ψ
(
ϑ + εϑ1−β

) − ψ(ϑ)

ε
, ϑ > 0. (1.1)

Definition 2 ([8]) The most useful result is that

Tnβ(ψ)(ϑ) = ϑ�β�−βψ�β�(ϑ), (1.2)

where β ∈ (s, s + 1] and ψ is a (s + 1)-differentiable function at ϑ > 0.

Theorem 1 ([8]) If Φ and Ψ are β-differentiable functions at ϑ > 0, then

1. Tβ(σΦ + σΨ )(ϑ) = σTβ(Φ)(ϑ) + σTβ(Ψ )(ϑ), ∀ σ ∈ R.

2. Tβ(ΦΨ )(ϑ) = ΦTβ(Ψ )(ϑ) + Ψ Tβ(Φ)(ϑ).

3. Tβ

(
Φ
Ψ

)
(ϑ) =

(
Ψ (ϑ)TβΦ(ϑ)−Φ(ϑ)TβΨ (ϑ)

Ψ (ϑ)2

)
.

4. TβΦ(ϑ) = ϑ1−β dΦ(ϑ)

dϑ
.

Conformable fractional derivative of some functions in table form.
If 0 < β ≤ 1 and c ∈ R, then following table we have (Table1).
Fractional differential equations (FDEs) are used to simulate a wide range of

physical events, and they may be solved using a variety of transform methods [3, 6,
9, 11]. For this answer, Emrah Ünal and Ahmet Gökdoan [6] created the CFDTM.
For both linear and nonlinear CFDEs, the CFDTM provides a recursive approach for
determining the series solution. The difficulty with this strategy is that obtaining the
differential transform of a nonlinear function will be difficult to calculate. We offer
a more powerful strategy for employing the CFDTM to solve nonlinear FDEs in this
study. Instead of using a nonlinear function, Adomian polynomials are used, and the
dependent components are substituted with their analogous DT component. We sug-
gested a technique combining the DTMwith the ADM. This approach has the benefit
of being able to combine two powerful strategies for producing an approximate series
solution.
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The following are some fundamental definitions of the CFDTM utilized in this
paper:

Definition 3 ([6]) Ifφ(ϑ) is infinitelyβ-differentiable functionwithβ ∈ (0, 1], then
CFDTM of φ(ϑ) is defined as

Φβ(ϑ) = 1

βl l!
[
(T ϑ0

β φ)(l)(ϑ)
]
, (1.3)

where (T ϑ0
β φ)(l)(ϑ) signifies the use of the fractional derivative l many times.

Definition 4 ([6]) If Φβ(l) be the CFDTM of φ(ϑ) then inverse CFDTM of Φ(l) is
defined as

φ(ϑ) =
∞∑

l=0

Φβ(l)ϑβl .

The CFDT of initial circumstances is defined as

Φβ(l) =
⎧
⎨

⎩

1
(βl)!

[
d(βl) y(ϑ)

dϑ(βl)

]

ζ=ζ0
for βl ∈ Z

+

0 for βl /∈ Z
+,

where Φβ(l) is the fractional differential transform of y(ϑ).

Some fundamental properties of the CFDTM can be found in [6]. Let y(ϑ), x(ϑ)

and z(ϑ) be functions of time ϑ and Y (l), X (l) and Z(l) are their corresponding FDT
with order β. If c and d are constants then the following holds.

Theorem 2 If y(ϑ) = cx(ϑ) ± dz(ϑ), then Yβ(l) = c X (l) ± d Zβ(l).

Theorem 3 If y(ϑ) = x(ϑ)z(ϑ), then Yβ(l) = ∑l
r=0 Xβ(r)Zβ(l − r).

Theorem 4 If y(ϑ) = x(ϑ)z(ϑ), then Yα(l) = ∑l
r=0 Xα(r)Zα(l − r).

Theorem 5 If y(ϑ) = ϑr then Yβ(l) = δ(l − r
β
) where δ(l) =

{
1 for l = 0

0 for l 	= 0
.

Theorem 6 If φ(ϑ) = T ϑ0
β (y(ϑ)), for 0 < β ≤ 1, then Φβ(l) = β(l + 1)Yβ(l + 1).

Theorem 7 If φ(ϑ) = T ϑ0
β (y(ϑ)), for s < β ≤ s + 1, then

Φβ(l) = Yβ

(
l + β

α

)
= Γ (lα + β + 1)

Γ (lα + β − s)
.
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2 Modified Conformable Fractional Differential Transform
Method (CFDTM)

Case I: If T t0
β y = φ(y) where φ(y) is nonlinear function of y. In this case we will

derive some consequential relation of our expected algorithm, for this we consider
the nonlinear function φ(y) which is approximated by

φ(y) =
∞∑

η=0

Aη, (2.1)

where the Aη are defined [1] as

Aη = 1

η!

[
dη

dση

[

φ

( ∞∑

i=0

σi yi

)]]

σ=0

, η = 0, 1, . . .

Adomian polynomials of φ(y) are organized as

A0 = φ (y0)

A1 = y1φ
(1) (y0) ,

A2 = y2φ
(1) (y0) + 1

2! y
2
1φ

(2) (y0)

A3 = y3φ
(1) (y0) + y1y2φ

(2) (y0) + 1

3! y
3
1φ

(3) (y0)

...

(2.2)

The DT components of φ(y) are computed using the characteristics of CFDTM and
may be indicted as follows:

Φ(0) = φ(y(0))

= φ(Yβ(0))

Φ(1) = d

dϑ
φ(y(ϑ))

∣
∣
∣
∣
ϑ=0

= y′(0)φ(1)(y(0))

= Yβ(1)φ(1)(Yβ(0)),

Φ(2) = 1

2!
(
y′′(0)φ(1)(y(0)) + (

y′(0)
)2

φ(2)(y(0))
)

= Yβ(2)φ(1)(Yβ(0)) + 1

2! (Yβ(1))2φ(2)(Yβ(0)),

Φ(3) = Yβ(3)φ(1)(Yβ(0)) + Yβ(1)Yβ(2)φ(2)(Yβ(0)) + 1

3! (Yβ(1))3φ(3)(Yβ(0))

...

(2.3)
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Case II: If Tβ y = ψ(y(β)), whereψ(y(β)) is nonlinear function of y(β). HereAdomian
polynomials of the nonlinear function ψ

(
y(β)

)
are given as follows:

A0 = ψ
(
y(β)

0

)

A1 = y(β)

1 ψ(1)
(
y(β)

0

)
,

A2 = y(β)

2 ψ(1)
(
y(β)

0

)
+ 1

2!
(
y(α)
1

)2
ψ(2)

(
y(β)

0

)
,

A3 = y(β)

3 ψ(1)
(
y(β)

0

)
+ y(β)

1 y(β)

2 ψ(2)
(
y(β)

0

)
+ 1

3!
(
y(β)

1

)3
ψ(β) (y0)

A4 = y(β)

4 ψ(1)
(
y(β)

0

)
+

(
y(β)

1 y(β)

3 + 1

2!
(
y(β)

2

)2
)

ψ(2)
(
y(β)

0

)

+ 1

2!
(
y(β)

1

)2
y(β)

2 ψ(β)
(
y(β)

0

)
+ 1

4!
(
y(β)

1

)4
ψ(4)

(
y(α)
0

)

...

(2.4)

The fractional power series expansion of order α of nonlinear function ψ
(
y(β)

)
is

given as

ψ
(
y(β)

) =
∞∑

l=0

Ψ (l)ϑlα

= ψ

( ∞∑

l=0

Yβ(l)ϑlα

)

,

where Yβ(k) denotes the CFDT of y(β). We may then use the characteristics of the
fractional differential transform to arrive at a solution:

Ψ (0) = ψ
(
y(β)(ϑ)

)∣∣
ϑ=0

= ψ
(
Yβ(0)

)

= ψ

(
Γ (β + 1)Yβ

(
β

α

))

Ψ (1) = Yβ(1)ψ(1)
(
Yβ(0)

)

= Γ (α + β + 1)

Γ (α + β − m)
Yβ

(
1 + β

α

)
ψ(1)

(
Γ (β + 1)Yβ

(
β

α

))

Ψ (2) =Yβ(2)ψ(1)
(
Yβ(0)

) + 1

2!
(
Yβ(1)

)2
ψ(2)

(
Yβ(0)

)
.

Similarly,
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= Γ (2α + β + 1)

Γ (2α + β − m)
Yβ

(
2 + β

α

)
ψ(1)

(
Γ (β + 1)Yβ

(
β

α

))

+ 1

2!
(

Γ (α + β + 1)

Γ (α + β − m)
Yβ

(
1 + β

α

))2

ψ(2)
(

Γ (β + 1)Yβ

(
β

α

))

Ψ (3) = Γ (3α + β + 1)

Γ (3α + β − m)
Yβ

(
3 + β

α

)
ψ(1)

(
Γ (β + 1)Yβ

(
β

α

))

+ Γ (α + β + 1)

Γ (α + β − m)
Yβ

(
1 + β

α

)
Γ

(
β + 1 + 2

α

)

Γ
(
1 + 2

α

) Yβ

(
2 + β

α

)
ψ(2)

(
Γ (β + 1)Yβ

(
β

α

))

+ 1

3!
(

Γ (α + β + 1)

Γ (α + β − m)
Yβ

(
1 + β

α

))3

ψ(3)
(

Γ (β + 1)Yβ

(
β

α

))

Ψ (4) = Γ (4α + β + 1)

Γ (4α + β − m)
Yβ

(
4 + β

α

)
ψ(1)

(
Γ (β + 1)Yβ

(
β

α

))

+
(

Γ (α + β + 1)

Γ (α + β − m)
Yβ

(
1 + β

α

)
Γ (3α + β + 1)

Γ (3α + β − m)
Yβ

(
3 + β

α

)

+ 1

2!
(

Γ (α + β + 1)

Γ (α + β − m)
Yβ

(
1 + β

α

))2
)

ψ(2)
(

Γ (β + 1)Yβ

(
β

α

))

+ 1

2!
(

Γ (α + β + 1)

Γ (α + β − m)
Yβ

(
1 + β

α

))2 (
Γ (2α + β + 1)

Γ (2α + β − m)
Yα

(
2 + β

α

))

× ψ(3)
(

Γ (β + 1)Yβ

(
β

α

))

+ 1

4!
(

Γ (α + β + 1)

Γ (α + β − m)
Yβ

(
1 + β

α

))4

ψ(4)
(

Γ (β + 1)Yβ

(
β

α

))

.

.

.

(2.5)
Case III: If Tβ y = ϕ

(
y, y(β)

)
, where ϕ

(
y, y(β)

)
.

Consider the nonlinear CFDE as

Tβ y = ϕ
(
y, y(β)

)
,

where ϕ
(
y, y(β)

)
denotes a nonlinear function. Here ϕ

(
y, y(β)

)
is analytic in y,

and with regard to the provided circumstances differential transform, its Adomian
polynomials are analytic. Now, by comparing Eqs. (2.2) with (2.3) and Eqs. (2.4) with
(2.5), withal by superseding each yl and Tγ yl in the Al by Yγ(l) and

Γ (lα+γ+1)
Γ (lα+γ−m)

Yγ(l +
γ/α), respectively, the formulae for Ãl are obtained as follows:

Γ (lα + γ + 1)

Γ (lα + γ − m)
Yγ(l + γ/α) = Ãl . (2.6)

In particular, if γ = α, then Eq. (2.6) becomes

γ(l + 1)Yγ(l + 1) = Ãl . (2.7)
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The following are some of the advantages and benefits of employing this approach
or methodology to evaluate the FDT of nonlinear terms. When we compare this
method to Caputo, conformable, classical approach, and many other algorithms pro-
posed by various authors in [4–6, 12], we can see that it is superior. This strategy
required less computational effort, according to our findings. Because this method
is based on the algebraic recurrence relation, it does not require integration. This
enables for simple series solution calculation while also allowing this approach to
calculate additional series solution terms as needed.

3 Applications of CFDTM

In this part, we’ll look at how the proposed CFDTM works with Adomian polyno-
mials and solve some fractional differential equations with different types of nonlin-
earity.

Example 1 Consider the nonlinear FDE

Tβ y + ey = 0, 0 < β ≤ 1, y(0) = 0. (3.1)

We apply Theorem6 and Eq. (2.7) to Eq. (3.1), then we get the recurrence relations
shown below:

{
β(l + 1)Yβ(l + 1) = − Ãl , l = 0, 1, 2, . . .
Yβ(0) = 0,

(3.2)

where the Ãl are obtained from the Al of the ey as follows:

A0 = ey0 Ã0 = eYβ (0)

A1 = y1ey0 Ã1 = Yβ(1)eY (0)

A2 =
(
y2 + (y1)2

2

)
ey0 Ã2 =

(
Yβ(2) + (Yβ (1))2

2

)
eYβ (0)

A3 =
(
y3 + y1y2 + (y1)3

3!
)
ey0 Ã3 =

(
Yβ(3) + Yβ(1)Yβ(2) + (Yβ (1))3

3!
)
eYβ (0)

.

.

.
.
.
.

Nowbyusing these values of Ãl in Eq. (3.2), we obtained the following differential
transformcomponents:Yβ(1) = −1

β
, Yβ(2) = 1

2β2 , Yβ(3) = − 1
3β3 , . . .. Therefore

approximate solution of (3.1) is as follows:

y(ϑ) = −ϑ

β
+ ϑ2β

2β2
− ϑ3β

3β3
+ ϑ4β

4β4
− ϑ5β

5β5
+ ϑ6β

6β6
− · · ·
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(a) Graph of solution of 3.1 for dif-
ferent value of α by FDTM.

(b) Graph of solution of 3.1 for dif-
ferent value of α by CFDTM.

Fig. 1 Comparison of the fourth iteration approximate solutions of CFDTM with the FDTM

If β → 1 then we get the Taylor series of the precise y(ϑ) = −(1 + ln ϑ). y(ϑ) =
−ϑ + ϑ2

2 − ϑ3

3 + ϑ4

4 − ϑ5

5 + ϑ6

6 − ϑ7

7 + · · · (Fig. 1).
Example 2 Consider the fractional Riccati equation

Tβ y = 1 − y2, 0 < β ≤ 1, y(0) = 0. (3.3)

We apply Theorem6 and Eq. (2.7) to Eq. (3.3), then we get the following recur-
rence relations: {

β(l + 1)Yβ(l + 1) = δ(l) − Ãl, ∀ l
y(0) = 0,

(3.4)

where the Ãl of y2 are as follows:

A0 = y02 Ã0 = (Yβ(0))2

A1 = 2y1y0 Ã1 = 2Yβ(1)Yβ(0)
A2 = y12 + 2y0y2 Ã2 = (Yβ(1))2 + 2Yβ(0)Yβ(2)
A3 = 2y0y3 + 2y1y2 Ã3 = 2Yβ(0)Yβ(3) + 2Yβ(1)Yβ(2)
.
.
.

.

.

.

Nowbyusing these values of Ãl in Eq. (3.4), we obtained the following differential
transform components:

Yβ(1) = 1

β
, Yβ(2) = 0, Yβ(3) = − 1

3β3
, Yβ(4) = 0, Yβ(5) = 2

15β15
, . . .
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(a) Graph of solution of 3.4 for dif-
ferent value of β by FDTM.

(b) Graph of solution of 3.4 for dif-
ferent value of β by CFDTM.

Fig. 2 Comparison of the fourth approximate solutions of (3.4), by CFDTM with the FDTM

Therefore approximate solution of (3.3) is as follows:

y(ϑ) = 1

β
− ϑ3β

3β3
+ 2ϑ5β

15β5
− · · · .

As β → 1, then we have (Fig. 2).

y(ϑ) = ϑ − ϑ3

3
+ 2ϑ5

15
− 17ϑ7

315
+ · · · .

Example 3 Consider the nonlinear FDE

Tβ y = sec y, 0 < β ≤ 1, y(0) = 0. (3.5)

We apply Theorem6 and Eq. (2.7) to Eq. (3.5), then we get

{
β(l + 1)Yβ(l + 1) = Ãl, k = 0, 1, 2, . . .
Yβ(0) = 0,

(3.6)
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where the Ãl for the sec y is as follows:

A0 = sec(y0) Ã0 = sec(Yβ(0))
A1 = sec(y0) tan(y0)y1 Ã1 = sec(Yβ(0)) tan(Yβ(0))Yβ(1)

A2 = 1
2 sec(y0)(sec(y0))

2(y1)2 + (tan(y0))2(y1)2 + 2 tan(y0)y2

Ã2 = 1
2 sec(Yβ(0))(sec(Yβ(0)))2(Yβ(1))2 + (tan(Yβ(0)))2(Yβ(1))2 + 2 tan(Yβ(0))Yβ(2)

A3 = 1

6
sec(y0)(sec(y0))

2(y1)
2(5 tan(y0)(y1)

3 + 6y1y2) + tan(y0)((tan(y0))
2(y1)

3

+6 tan(y0)y1y2 + 6y3)

Ã3 = 1

6
sec(Yβ(0))(sec(Yβ(0)))2(Yβ(1))2(5 tan(Yβ(0))(Yβ(1))3 + 6Yβ(1)Yα(2))

+ tan(Yβ(0))((tan(Yβ(0)))2(Yβ(1))3 + 6 tan(Yα(0))Yβ(1)Yβ(2) + 6Yβ(3))

...

Now by using these values of Ãl in Eq.3.6, we obtained the following con-
formable differential transform components: Yβ(1) = 1

β
, Yβ(2) = 0, Yβ(3) =

1
6β3 , Yβ(4) = 0, . . ..

If we take the series solution’s limit as β → 1, we obtain (Fig. 3)

y(ϑ) = ϑ + 0.166667ϑ3 + 0.075ϑ5 + 0.0446429ϑ7 + · · · .

Example 4 Consider the nonlinear FDE

Tβ y + 2

x
y′ + ey = 0, 1 < β ≤ 2, (3.7)

subjected to y(0) = 0, y′(0) = 0.

We apply Theorem7, Eq. (2.6) and α = β
2 , then we get the following recurrence

relations:

⎧
⎨

⎩

Γ
(
β (l+1)

2 +1
)

Γ
(
β (l+1)

2 −1
)Yβ(l + 1) + 2(l + 1)Yβ(l + 1) + Ãl−1 = 0, l = 1, 2, . . .

Yβ(0) = 0, Yβ(1) = 0,
(3.8)
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(a) Graph of solution of 3.5 for dif-
ferent value of β by FDTM.

(b) Graph of solution of 3.5 for dif-
ferent value of β by CFDTM.

Fig. 3 Comparison of the fourth approximate solutions of CFDTM with the FDTM

where the Ãl of ey is as follows:

A0 = ey0 Ã0 = eYβ (0)

A1 = y1ey0 Ã1 = Yα(1)eY (0)

A2 =
(
y2 + (y1)2

2

)
ey0 Ã2 =

(
Yβ(2) + (Yβ (1))2

2

)
eYβ (0)

A3 =
(
y3 + y1y2 + (y1)3

3!
)
ey0 Ã3 =

(
Yβ(3) + Yβ(1)Yβ(2) + (Yβ (1))3

3!
)
eYβ (0)

.

.

.
.
.
.

Now by using these values of Ãl in Eq. (3.8), we obtained the following differen-
tial transform components:

Yβ(1) = 0, Yβ(2) = − Γ (β − 1)

Γ (β + 1) + 4Γ (β − 1)
, Yβ(3) = 0,

Yβ(4) = Γ (β − 1)

Γ (β + 1) + 4Γ (β − 1)

Γ (2β − 1)

Γ (2β + 1) + 8Γ (2β − 1)
. . .

As β → 2, we obtain (Fig. 4)

y(ϑ) = − 1

3 × 2!ϑ
2 + 1

5 × 4!ϑ
4 − 8

21 × 6!ϑ
6 + · · ·

Example 5 Consider the nonlinear FDE

Tβ y + 2

x
y′ + y2 = 0, 1 < β ≤ 2, (3.9)
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(a) Graph of solution of 3.7 for dif-
ferent value of β by FDTM.

(b) Graph of solution of 3.7 for dif-
ferent value of β by CFDTM.

Fig. 4 Comparison of the fourth approximate solutions of CFDTM with the FDTM

subjected to the
y(0) = 1, y′(0) = 0.

We apply Theorem7, Eq. (2.7) and α = β
2 , then we get the following recurrence

relations:

⎧
⎨

⎩

Γ
(
β (l+1)

2 +1
)

Γ
(
β (l+1)

2 −1
)Yβ(l + 1) + 2(l + 1)Yβ(l + 1) + Ãl−1 = 0, l = 1, 2, . . .

Yβ(0) = 1, Yβ(1) = 0,
(3.10)

where the Ãl of y2 are as follows:

A0 = y02 Ã0 = (Yβ(0))2

A1 = 2y1y0 Ã1 = 2Yβ(1)Yβ(0)
A2 = y12 + 2y0y2 Ã2 = (Yβ(1))2 + 2Yβ(0)Yβ(2)
A3 = 2y0y3 + 2y1y2 Ã3 = 2Yβ(0)Yβ(3) + 2Yα(1)Yβ(2)
.
.
.

.

.

.

Now by using these values of Ãl in Eq. (3.10), we obtained the following differ-
ential transform components:

Yβ(0) = 1, Yβ(1) = 0, Yβ(2) = − Γ (β−1)
Γ (β+1)+4Γ (β−1) , Yβ(3) = 0,

Yβ(4) = 2Γ (β−1)
Γ (β+1)+4Γ (β−1)

Γ (2β−1)
Γ (2β+1)+8Γ (2β−1) , . . .
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(a) Graph of solution of 3.9 for dif-
ferent value of β by FDTM.

(b) Graph of solution of 3.9 for dif-
ferent value of β by CFDTM.

Fig. 5 Comparison of the fourth approximate solutions of CFDTM with the FDTM

As β → 2, then we have (Fig. 5)

y(ϑ) = 1 − 1

6
ϑ2 + 2

120
ϑ4 − · · ·

4 Conclusion

In this paper, we discussed the concepts of redesign of the conformable fractional
differential transform method with Adomian polynomials for finding nonlinear frac-
tional differential equations. By using this new approach, we solved some nonlinear
and singular Lane–Emden equations. A nonlinear fractional differential equation has
been put ahead and examined by adopting CFDTM with Adomian polynomials. In
the Caputo and conformable fractional touch, we firstly determine the DT of the
nonlinear term, but, in this new technique, we replace such calculation by recurrence
relation in its Adomian polynomial. The dependent components are eventually sub-
stituted for the same index’s equivalent FDT. As Adomian polynomials are suited
in any nonlinear analytic function, this emphasizes the usefulness and applicability
of the CFDTM. A suggested approach is a combination of the DTM and ADM.
This method’s strength is that it effectively combines these two powerful strategies
for generating approximate series solutions. Furthermore, the solutions computed
by using CFDTM with Adomian polynomials for some fractional order are corre-
lated with solutions obtained for the same fractional order by adopting FDTM. The
solution was analyzed graphically by using Python software.
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6. ünal, E., Gökdoğan, A.: Solution of conformable fractional ordinary differential equations via
differential transform method. Optik, 264–273 (2017)

7. Podlubny I.: Fractional Differential Equations. Academic, USA (1999)
8. Khalil, R., Al Horani, M., Yusuf, A., Sababhed, M.: A new definition of fractional derivative.

J. Comput. Appl. Math. 264, 65–70 (2014)
9. Marasi, H.R., Sharifi, N., Piri, H.: Modified differental transform method for singular lane

Emden equations in integer and fractional order. TWMS J. App. Eng. Math. 5(1), 124–131
(2015)

10. Millar, K.S.: An Introduction to Fractional Calculus and Fractional Differential Equations.
Wiley, New York (1993)

11. Teppawar, R.S., Ingle, R.N., Thorat, S.N.: Some results and applicatios on conformable frac-
tional Kamal transform. J. Math. Comput. Sci. 11(5), 6581–6598 (2021)

12. Zhou, J.K.: Differential Transformation and Its Applications for Electrical Circuits. Huazhong
University Press, Wuhan, China (1986). In Chinese

http://arxiv.org/abs/1612.00214


Generalized Results on Existence &
Uniqueness with Wronskian and Abel
Formula for α-Fractional Differential
Equations

R. A. Muneshwar, K. L. Bondar, V. D. Mathpati, and Y. H. Shirole

Abstract R. A. Muneshwar et al. has proposed a new α-fractional derivative notion
basedon the limit. This topicwill be continued in this article, and someconclusions on
existence and uniqueness theorems for linear α-fractional differential equations will
be discussed. Moreover, we derived the Wronskian determinant formula and Abel’s
formula for α-fractional differential equations. In addition, we provide applications
of the obtained results.

Keywords Fractional derivative · Existence and uniqueness theorems · Abels
formula

1 Introduction and Preliminaries

The idea of fractional derivation has gained prominence inmathematical study during
the last few decades. There is no known method for obtaining an exact solution to
fractional differential equations [12, 13, 17], however there are approximate and
numerical solutions. For defining the fractional derivative, there is no standard form.
However, the Riemann-Liouville and Caputo definitions of fractional derivatives are
the most often utilised. Some writers have recently suggested a revised definition of
the fractional derivative [11]. Later, many authors studied this new theory, which can
be found in [1–3, 10]. Several investigations on this theory and the application of
fractional differential equations based onHadamard, Riemann-Liouville, andCaputo
derivatives have been found in the literature [5, 6, 14, 15, 17].
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2 α-Fractional Derivative

Muneshwar et al. [16] introduced the concept of α-fractional derivative and integral
by doing some appropriate modification in the traditional definition of a derivative,
which is

Definition 1 (Modifiedα-Fractional Derivative [16]) If ϑ > 0 with ∀α ∈ (0, 1] and
Ψ : [0,∞) → R then modified α-fractional derivative of order α is given by

Tα(Ψ (ϑ)) = lim
μ→0

Ψ (ϑeμϑ1−α
) − Ψ (ϑ)

μ

Remark Throughout this paper it is not explicitly mention that the underlying ele-
ments ξ & ξ0 is satisfies ξ & ξ0 ≥ a > 0 and I = (a, b).

By using this definition we deduce the following results which can be found in
[16].

Theorem 1 ([16]) If Ψ is a α-differential function at ϑ > 0, then

TαΨ (ϑ) = ϑ2−α dΦ(ϑ)

dϑ

Definition 2 ([16]) If γ ∈ [0,ϑ) then new α-fractional integral of Φ is defined by

I γ
αΦ(ϑ) =

∫ ϑ

γ

Φ(μ)

μ2−α
dμ,

if integral exists.

Following results is obtained by using the Definition 1.

Theorem 2 ([16]) If Φ and Ψ are α-differentiable functions at point ϑ > 0 then

1. Tα(βΦ) = βTα(Φ), ∀ β ∈ R.

2. Tα(Φ + Ψ )(ϑ) = Tα(Φ)(ϑ) + Tα(Ψ )(ϑ).

3. Tα(ΦΨ )(ϑ) = ΦTα(Ψ )(ϑ) + Ψ Tα(Φ)(ϑ).

4. Tα

(
Φ
Ψ

)
(ϑ) =

(
Ψ (ϑ)TαΦ(ϑ)−Φ(ϑ)TαΨ (ϑ)

Ψ (ϑ)2

)
.

5. Tα

(
1
Ψ

) = − TαΨ
Ψ 2 .

6. Tα(Φ ◦ Ψ )(ϑ) = TαΦ(Ψ (ϑ))TαΨ (ϑ).

Theorem 3 ([16]) If 0 < α ≤ 1 and c ∈ R then, by using Theorem 1, we have

1. Tα(ϑn) = nϑn+1−α

2. Tα

(
1

α−1 t
α−1

) = 1
3. Tα(β) = 0, ∀ β ∈ R

4. Tα(ect ) = ect ct2−α
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5. Tα(sin ct) = ct2−α cos(ct)
6. Tα(cos ct) = −ct2−α sin(ct)
7. Tα(logt) = t1−α

8. Tα(at ) = (atloga)t2−α

9. Tα(tan t) = t2−α sec2 t
10. Tα(cot t) = −t2−α csc2 t.

3 Existence and Uniqueness Theorems

Consider a fractional differential equation of order nα,

nDαγ + pn−1(ξ)
n−1Dαγ + · · · + p2(ξ)

2Dαγ + p1(ξ)Dαγ + p0(ξ)γ = 0, (3.1)

where Dαγ = DαDα . . . Dαγ.Corresponding, non-homogeneous case is as follows.

nDαγ + pn−1(ξ)
n−1Dαγ + · · · + p2(ξ)

2Dαγ + p1(ξ)Dαγ + p0(ξ)γ = f (ξ).
(3.2)

We define an nth order differential operator as follows.

Lα[γ] = nDαγ + pn−1(ξ)
n−1Dαγ + · · · + p2(ξ)

2Dαγ + p1(ξ)Dαγ + p0(ξ)γ = 0.
(3.3)

Theorem 4 Let ξα−2 p(ξ), ξα−2q(ξ) ∈ C(I ) are continuous functions defined on I .
If γ is the α-differentiable and α ∈ (0, 1], then the IVP

Dαγ + p(ξ)γ = q(ξ) (3.4)

γ(ξ0) = γ0,

has a only one solution on I, where ξ0 ∈ I.

Proof Consider the IVP as,

Dαγ + p(ξ)γ = q(ξ)

⇒ ξ2−αγ
′ + p(ξ)γ = q(ξ)

⇒ γ
′ + ξα−2 p(ξ)γ = ξα−2q(ξ). (3.5)

Proof is follows from classical theories of existence and uniqueness.

Theorem 5 Let ξα−2 pn−1(ξ), . . . , ξ
α−2 p1(ξ), ξα−2 p0(ξ), ξα−2q(ξ) ∈ C(I ), are

continuos functions defined on I . If γ be n times α-differentiable function and
α ∈ (0, 1], then a solution γ(ξ) of the IVP
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nDαγ + pn−1(ξ)
n−1Dαγ + · · · + p2(ξ)

2Dαγ + p1(ξ)Dαγ + p0(ξ)γ = q(ξ),
(3.6)

γ(ξ0) = γ0, Dαγ(ξ0) = γ1, . . . ,
n−1Dαγ(ξ0) = γn−1, a < ξ0 ≤ b

is exists on I and it is unique, for ξ0 ∈ I.

Proof We begin by changing the variables as follows:

ν1 = γ, ν2 = Dαγ, ν3 = 2Dαγ, . . . , νn = nDαγ.

Therefore, we have

Dαν1 = ν2

Dαν2 = ν3
...

Dανn−1 = νn−1

Dανn = −pn−1νn − · · · − p2ν3 − p1ν2 − p0ν1 + q(ξ).
Now, in matrix form, we can rewrite the supplied IVP as follows:

Dα

⎡
⎢⎢⎢⎢⎢⎣

ν1
ν2
...

νn−1

νn

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0 0 · · · 0
0 0 −1 0 · · · 0
...

...
...

... · · · ...

0 0 0 0 · · · −1
p0 p1 p2 p3 · · · pn−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ν1
ν2
...

νn−1

νn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
q(t)

⎤
⎥⎥⎥⎥⎥⎦

Dαϑ(ξ) + P(ξ)ϑ(ξ) = Q(ξ),

ϑ
′
(ξ) + ξα−2P(ξ)ϑ(ξ) = Q(ξ)ξα−2. (3.7)

As ξ0 ∈ I, then proof is follows from classical theories of existence and uniqueness
[8].

Theorem 6 If {γi }2i=1 be set of n times α-differentiable and c1, c2 are arbitrary
numbers then Lα is linear.

Proof If {γi }2i=1 be set of n times α-differentiable and c1, c2 ∈ R then by the
Definition 1, we have,

Lα[c1γ1 + c2γ2] = nDα(c1γ1 + c2γ2) + pn−1(t)
n−1Dα(c1γ1 + c2γ2) + · · ·

+ p1(ξ)Dα(c1γ1 + c2γ2) + p0(ξ)(c1γ1 + c2γ2)

= c1(
nDαγ1 + pn−1(ξ)

n−1Dαγ1 + · · · + p0(ξ)γ1)

+ c2(
nDαγ2 + pn−1(ξ)

n−1Dαγ2 + · · · + p0(ξ)γ2).
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We have
Lα[c1γ1 + c2γ2] = c1Lα[γ1] + c2Lα[γ2].

Theorem 7 If γ1(ξ), γ2(ξ), . . . , γn(ξ) be the solutions of equation Lα[γ] = 0 then
there linear combination

γ = c1γ1 + c2γ2 + · · · + cnγn (3.9)

is also solution of Lα[γ] = 0, where ck, k = 1, . . . , n, are arbitrary constants.

Proof Let {γi }ni=1 be set of solutions of Lα[γ] = 0 and let us consider,

γ = c1γ1 + c2γ2 + · · · + cnγn,

where ck, for k = 1, . . . , n, are arbitrary constants then by Theorem 6, we have,

Lα(γ) = c1Lα(γ1) + c2Lα(γ2) + · · · + cnLα(γn) = 0.

Hence, we are through.

Definition 3 Let γ1(ξ), γ2(ξ), . . . , γn(ξ) are at least (n − 1) times α-differentiable
functions. If α ∈ (0, 1], then determinant

Wα(γ1, γ2, . . . , γn)(ξ0) =

∣∣∣∣∣∣∣∣∣

γ1 γ2 · · · γn
Dαγ1 Dαγ2 · · · Dαγn

...
...

...
...

n−1Dαγ1
n−1Dαγ2 · · · n−1Dαγn

∣∣∣∣∣∣∣∣∣
(3.10)

is called α-Wronskian of the functions γ1(ξ), γ2(ξ), . . . , γn(ξ).

Definition 4 Any set {γi }ni=1 of n solutions of Lα(γ) = 0, is called as a fundamental
set if any solution γ satisfies the Eq. (3.9).

Theorem 8 Let {γi }ni=1 be set of n solutions of Lα(γ) = 0. If there exists ξ0 ∈ I ,
such that

Wα(γ1, γ2, . . . , γn)(ξ0) �= 0, (3.11)

then {γi }ni=1 is a fundamental set of solutions.

Proof As {γi }ni=1 be set of n solutions of Lα(γ) = 0, on I , then

γ =
n∑

i=1

ciγi

is also a solution of Lα[γ] = 0. Now it is sufficient to find the constants, ck, for
1 ≤ k ≤ n. The system of linear equations may be written as follows:
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c1γ1(ξ0) + c2γ2(ξ0) + · · · + cnγn(ξ0) = γ(ξ0)

c1Dαγ1(ξ0) + c2Dαγ2(ξ0) + · · · + cnDαγn(ξ0) = Dαγ(ξ0)

...
...

...

c1
n−1Dαγ1(ξ0) + c2

n−1Dαγ2(ξ0) + · · · + cn
n−1Dαγn(ξ0). = n−1Dαγ(ξ0) (3.12)

By using Cramer’s rule, we obtain

ck = Wk
α(ξ0)

Wα(ξ0)
, 1 ≤ k ≤ n. (3.13)

As Wα(ξ0) �= 0, then it follows that the constants c1, c2, . . . , cn, are exist.

Theorem 9 Let ξα−2 pn−1(ξ), . . . , ξ
α−2 p1(ξ), ξα−2 p0(ξ) ∈ C(I ) are continuos

functions and {γi }ni=1 be set of solutions of Lα[γ] = 0 on I . If ξ0 ≥ a > 0 then
the set {γi }ni=1 be the fundamental set of solutions of Lα[γ] = 0.

Proof Let ξα−2 pn−1(ξ), . . . , ξ
α−2 p1(ξ), ξα−2 p0(ξ) ∈ C(I ) are continuos functions

and {γi }ni=1 be set of solutions of Lα[γ] = 0 on I & ξ0 ∈ I. Now we consider the
following n IVPs,

Lα[γ] = 0, γ(ξ0) = 1, Dαγ(ξ0) = 0, . . . , n − 1Dαγ(ξ0) = 0

Lα[γ] = 0, γ(ξ0) = 0, Dαγ(ξ0) = 1, . . . , n − 1Dαγ(ξ0) = 0

...

Lα[γ] = 0, γ(ξ0) = 0, Dαγ(ξ0) = 1, . . . , n − 1Dαγ(ξ0) = 1.

From [8], it gives that there is the solution γk of kth IVP, ∀ k. As

Wα(ξ) =

∣∣∣∣∣∣∣∣

1 0 · · · 0
0 1 · · · 0
0 0 · · · 0
0 0 · · · 1

∣∣∣∣∣∣∣∣
= 1 �= 0.

Then by the Theorem 8, the set {γi }ni=1 be the fundamental set.

Theorem 10 If {γi }ni=1 be set of n solutions of equation Lα[γ] = 0 on I and a ≥
a0 > 0 then following are holds

1. Wα(ξ) is satisfies the differential equation

DαW + Pn−1(ξ)W = 0.
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2. If ξ0 ∈ I then

Wα(ξ) = Wα(ξ0)e
− ∫ ξ

ξ0
να−2(Pn−1(ν))dν.

Moreover, if Wα(ξ0) �= 0 then Wα(ξ) �= 0, for all ξ ∈ I.

Proof Let {γi }ni=1 be set of n solutions of equation Lα[γ] = 0 on I . Nowwe introduce
new variables

ν1 = γ, ν2 = Dαγ, ν3 = 2Dαγ, . . . , νn = nDαγ. (3.14)

then, as shown below, we may rewrite these differential equations in matrix form.

Dα

⎡
⎢⎢⎢⎢⎢⎣

ν1
ν2
...

νn−1

νn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

... · · · ...

0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ν1
ν2
...

νn−1

νn

⎤
⎥⎥⎥⎥⎥⎦

(3.15)

⇒ Dαϑ(ξ) = P(ξ)ϑ(ξ)

⇒ DαWα(ξ) = (p11 + p22 + · · · + pnn)Wα(ξ).

⇒ DαWα(ξ)

Wα(ξ)
= −pn−1(ξ)

⇒ ln(Wα(ξ)) − ln(Wα(ξ0)) = −να−2(pn−1(ξ))

⇒ Wα(ξ) = Wα(ξ0)e
− ∫ ξ

ξ0
να−2(pn−1(ν))dν

. (3.16)

If Wα(ξ0) �= 0 then by Eq.3.16, we have, Wα(ξ) �= 0, for all ξ ∈ I.

Theorem 11 Let ξα−2 pn−1(ξ), . . . , ξ
α−2 p1(ξ), ξα−2 p0(ξ) ∈ C(I ) are continuos

functions. If {γi }ni=1 is a fundamental set of solutions of Lα[γ] = 0, on I then
Wα(ξ) �= 0, for all ξ ∈ I.

Proof If ξα−2 pn−1(t), . . . , ξα−2 p1(ξ), ξα−2 p0(ξ) ∈ C(I ) and suppose that ξ0 be any
point in I and ξ0 ≥ a > 0, then by Theorem 5, ∃ a unique solution γ(ξ) of the IVP,

Lα[γ] = 0, γ(ξ0) = 1, Dαγ(ξ0) = 0, . . . , n−1Dαγ(ξ0) = 0. (3.17)

As {γi }ni=1 is a fundamental set of solutions then ∃ unique constants c1, c2, . . . , cn,
such that
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c1γ1(ξ) + c2γ2(ξ) + · · · + cnγn(ξ) = γ(ξ)

c1Dαγ1(ξ) + c2Dαγ2(ξ) + · · · + cnDαγn(ξ) = Dαγ(ξ)

...
...

...

c1
n−1Dαγ1(ξ) + c2

n−2Dαγ2(ξ) + · · · + cnDαγn(ξ) = Dαγ(ξ), (3.18)

for all ξ ∈ I . In particular, if ξ = ξ0, then we obtain the system

c1γ1(ξ0) + c2γ2(ξ0) + · · · + cnγn(ξ0) = γ(ξ0)

c1Dαγ1(ξ0) + c2Dαγ2(ξ0) + · · · + cnDαγn(ξ0) = Dαγ(ξ0)

...
...

...

c1
n−1Dαγ1(ξ0) + c2

n−1Dαγ2(ξ0) + · · · + cn
n−1Dαγn(ξ0) = Dαγ(ξ0). (3.19)

This system has a unique solution

ck = Wk
α

Wα(ξ0)
, 1 ≤ k ≤ n. (3.20)

Here, for every k

Wk
α =

⎡
⎢⎢⎢⎣

γ1(ξ0) · · · γk−1(ξ0) 1 γk+1(ξ0) · · · γn(ξ0)
Dαγ1(ξ0) · · · Dαγk−1(ξ0) 0 Dαγk+1(ξ0) · · · Dαγn(ξ0)

...
...

...
...

...
...

...
n−1Dαγ1(ξ0) · · · n−1Dαγk−1(ξ0) 0 n−1Dαγk+1(ξ0) · · · n−1Dαγn(ξ0)

⎤
⎥⎥⎥⎦

As Wα(ξ0) �= 0 then c1, c2, . . . , cn, are exist and by Theorem 10, we conclude that
Wα(ξ) �= 0, for all ξ ∈ I.

Theorem 12 If ξα−2 pn−1(ξ), . . . , ξ
α−2 p1(ξ), ξα−2 p0(ξ) ∈ C(I ) are continuos

functions then the set {γi }ni=1 is a fundamental set of solutions of equation Lα[γ] = 0
on I iff the set of solutions {γi }ni=1 is linearly independent.

Proof Suppose that {γi }ni=1 is a fundamental set then by Theorem 11, it follows that
∃ ξ0 ∈ I such that Wα(ξ0) �= 0. Assume that

c1γ1(ξ) + c2γ2(ξ) + · · · + cnγn(ξ) = 0, (3.21)

for all ξ ∈ I. By repeated α-differentiation of the Eq.3.21, we can find unique con-
stants c1, c2, . . . , cn, such that



Generalized Results on Existence & Uniqueness … 371

c1γ1(ξ) + c2γ2(ξ) + · · · + cnγn(ξ) = 0

c1Dαγ1(ξ) + c2Dαγ2(ξ) + · · · + cnDαγn(ξ) = 0

...
...

...

c1
n−1Dαγ1(ξ) + c2

n−1Dαγ2(ξ) + · · · + cn
n−1Dαγn(ξ) = 0.

By Cramer’s rule, we have, ci = 0, ∀ i. Thus, set of solutions {γi }ni=1 is linearly
independent.

Conversely, suppose {γi }ni=1 is a linearly independent set.
Claim: {γi }ni=1 is a fundamental set of solutions.

If possible, {γi }ni=1, is not a fundamental set of solutions then, by Theorem 8,
we get Wα(ξ) = 0, for all ξ ∈ I. If we choose any ξ0 ∈ I then Wα(ξ0) = 0. But as
Wα(ξ0) �= 0 then the matrix

⎡
⎢⎢⎢⎣

γ1(ξ0) γ2(ξ0) · · · γn(ξ0)
Dαγ1(ξ0) Dαγ2(ξ0) · · · Dαγn(ξ0)

...
...

...
...

n−1Dαγ1(ξ0)
n−1Dαγ2(ξ0) · · · n−1Dαγn(ξ0)

⎤
⎥⎥⎥⎦ (3.22)

is not invertible which means that there exist c1, c2, . . . , cn with c21 + c22 + · · · + c2n
�= 0, such that

c1γ1(ξ0) + c2γ2(ξ0) + · · · + cnγn(ξ0) = 0

c1Dαγ1(ξ0) + c2Dαγ2(ξ0) + · · · + cnDαγn(ξ0) = 0
...

...
...

c1
n−1Dαγ1(ξ0) + c2

n−1Dαγ2(ξ0) + · · · + cn
n−1Dαγn(ξ0) = 0.

Now, let
γ(ξ) = c1γ1(ξ) + c2γ2(ξ) + · · · + cnγn(ξ), (3.23)

for all ξ ∈ I. Then γ(ξ) is the solution of the differential equation and

γ(ξ0) = Dαγ(ξ0) = · · · = n−1Dαγ(ξ0) = 0.

However, the IVP’s solution is the zero function. According to Theorem 5,

c1γ1(ξ) + c2γ2(ξ) + · · · + cnγn(ξ) = 0,

for all ξ ∈ I with constants csi not all equal to zero then {γi }ni=1 are linearly dependent
set, a contradiction.
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Theorem 13 If {γi }ni=1 be LI solutions of the equation Lα[γ] = 0 on I and a ≥
ξ0 > 0, then the general solution of the equation is

γ = c1γ1 + c2γ2 + · · · + cnγn

where ck, ∀ k.

Proof Let {γi }ni=1 be the set of LI solutions of Lα[γ] = 0 on I . Particular solution
at any ξ = ξ0 is obtained by using initial conditions as follows,

γ(ξ0) = λ0, Dαγ(ξ0) = λ1, . . . ,
n−1Dαγ(ξ0) = λn−1, (3.24)

where ξ0 ∈ I andλ0,λ1,λ2, . . . ,λn−1 are arbitrary constants. If we choose constants
c1, c2, . . . , cn, which satisfy the conditions (3.24), then proof is completed. To do
so, we can use the set of equations below.

c1γ1(ξ0) + c2γ2(ξ0) + · · · + cnγn(ξ0) = λ0

c1Dαγ1(ξ0) + c2Dαγ2(ξ0) + · · · + cnDαγn(ξ0) = λ1

...
...

...

c1
n−1Dαγ1(ξ0) + c2

n−1Dαγ2(ξ0) + · · · + cn
n−1Dαγn(ξ0) = λn−1. (3.25)

Above system of equation can be written as follows,

⎡
⎢⎢⎢⎣

γ1(ξ0) γ2(ξ0) · · · γn(ξ0)
Dαγ1(ξ0) Dαγ2(ξ0) · · · Dαγn(ξ0)

...
...

...
...

n−1Dαγ1(ξ0)
n−1Dαγ2(ξ0) · · · n−1Dαγn(ξ0)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1
c2
...

cn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

λ0

λ1
...

λn−1

⎤
⎥⎥⎥⎦ . (3.26)

As {γi }ni=1 are linearly independent solutions of Lα[γ] = 0, then Wα(ξ0) �= 0 and
hence system (3.25) has a only one solution.

Theorem 14 Let γp be PI of Lα[γ] = q(ξ). If {γi }ni=1, be a fundamental set of
solutions of Lα[γ] = 0, then the general solution of Lα[γ] = q(ξ) is

γ = c1γ1 + c2γ2 + · · · + cnγ(n) + γp, (3.27)

where ck, for k = 1, . . . , n, are arbitrary constants.

Proof LetΥ (ξ) and γp(ξ) be the general solution and PI of Lα[γ] = q(ξ). If u(ξ) =
Υ (ξ) − γp(ξ), then we have

Lα[u] = Lα[Υ (ξ) − γp(ξ)] = Lα[Υ (ξ)] − Lα[γp(ξ)] = q(ξ) − q(ξ) = 0.
(3.28)
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This implies that u(ξ) is a solution of Lα[γ] = 0. Therefore by Theorem 7, we have,

u(ξ) =
n∑

i=1

{ciγi (ξ)}

And so

Υ (ξ) − γp(ξ) =
n∑

i=1

{ciγi (ξ)}

⇒ Υ (ξ) =
n∑

i=1

{ciγi (ξ)} + γp(ξ) (3.29)

be the general solution of Lα[γ] = q(ξ).

Theorem 15 Let ξ ∈ (a, b) and consider the fractional differential equation,

DαDαγ + P(ξ)Dαγ + Q(ξ)γ = 0. (3.30)

where P(ξ), Q(ξ) be continuous functions defined on (a, b). If γ1, γ2 be two linearly
independent solutions of (3.30) existing on (a, b) then Wα[γ1, γ2] = e−Iα(P)

Proof We apply the operator Dα on Wα to get

Dα(Wα[γ1, γ2]) = Dα(γ1Dαγ2 − γ2Dαγ1)

= Dαγ1Dαγ2 + γ1DαDαγ2 − Dαγ2Dαγ1.

But, γ1 and γ2 satisfies (3.30). Hence

DαDαγ1 = −P(ξ)Dαγ1 − Q(ξ)γ1

and
DαDαγ2 = −P(ξ)Dαγ2 − Q(ξ)γ2.

Therefore

Dα(Wα[γ1, γ2]) = −P(ξ)(γ1Dαγ2 − γ2Dαγ1)

= −P(ξ)Wα[γ1, γ2].

Thus
Dα(Wα[γ1, γ2])
Wα[γ1, γ2] = −P(ξ).

Consequently,
Wα[γ1, γ2] = eIα(−P(ξ)) (3.31)



374 R. A. Muneshwar et al.

This completes the proof.

Theorem 16 Let P1(ξ), P2(ξ), . . . , Pn(ξ) are the continuous functions in

nDα + P1(x)
n−1Dα + · · · + Pn(ξ)Dα = 0, (∗)

where ξ ∈ (a, b). If {γi }ni=1, be the set of n linearly independent solutions of above
equation existingon (a, b) containingapoint ξ0 thenW (γ1, γ2, . . . , γn) = ceIα(−P1(ξ))

Proof Let

Wα(γ1, γ2, . . . , γn) =

∣∣∣∣∣∣∣∣∣

γ1 γ2 · · · γn
Dαγ1 Dαγ2 · · · Dαγn

...
...

...
...

n−1Dαγ1
n−1Dαγ2 · · · n−1Dαγn

∣∣∣∣∣∣∣∣∣
.

We apply the operator Dα on Wα is a sum of n determinants.

DαWα = A1 + A2 + · · · + Ak, . . . , An,

where Ak differs from Wα only in the kth rows and kth row of Ak is obtained by
applying Dα on the kth row of Wα. Thus

Dα(Wα(ξ)) =

∣∣∣∣∣∣∣∣∣∣∣

Dαγ1 Dαγ2 · · · Dαγn
Dαγ1 Dαγ2 · · · Dαγn
2Dαγ1

2Dαγ2 · · · 2Dαγn
...

...
...

...
n−1Dαγ1

n−1Dαy2 · · · n−1Dαγn

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

Dαγ1 Dαγ2 · · · Dαγn
2Dαγ1

2Dαγ2 · · · 2Dαγn
2Dαγ1

2Dαγ2 · · · 2Dαγn
...

...
...

...
n−1Dαγ1

n−1Dαγ2 · · · n−1Dαγn

∣∣∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣∣∣

γ1 γ2 · · · γn
Dαγ1 Dαγ2 · · · Dαγn
2Dαγ1

2Dαγ2 · · · 2Dαγn
...

...
...

...
nDαγ1

nDαγ2 · · · nDαγn

∣∣∣∣∣∣∣∣∣∣∣
.

The first n − 1 determinants A1, A2, . . . , An−1 are all zero, since they each have two
identical rows. Thus
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Dα(Wα(ξ)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 γ2 · · · γn
Dαγ1 Dαγ2 · · · Dαγn
2Dαγ1

2Dαγ2 · · · 2Dαγn
...

...
...

...
n−1Dαγ1

n−1Dαγ2 · · · n−1Dαγn
nDαγ1

nDαγ2 · · · nDαγn

∣∣∣∣∣∣∣∣∣∣∣∣∣

(∗∗)

Now, as γ1, γ2, . . . , γn are solution of equation (*), we have

nDαγk + n−1Dαγk + · · · + Dαγk = 0 ∀ k = 1, 2, . . . , n.

⇒ nDαγk = −n−1Dαγk − · · · − Dαγk = 0 ∀ k = 1, . . . . , n.

Putting k = 1, 2, . . . , n in above equation, we get nDαγ1,
nDαγ2, . . . ,

nDαγn and
substitute these values in Eq. (**), we have

Dα(Wα(ξ)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 · · · γn
Dαγ1 · · · Dαγn
2Dαγ1 · · · 2Dαγn

...
...

...
n−2Dαγ1 · · · n−2Dαγn

−P1n−1Dαγ1 − · · · − PnDαγ1 · · · −P1n−1Dαγn − · · · − PnDαγn

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now we multiplying first row by Pn , the second row by Pn−1,…, the (n − 1)th row
by P2 and adding these to the last row, we have

Dα(Wα(ξ)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 γ2 · · · γn
Dαγ1 Dαγ2 · · · Dαγn
2Dαγ1

2Dαγ2 · · · 2Dαγn
...

...
...

...
n−2Dαγ1

n−2Dαγ2 · · · n−2Dαγn
−P1n−1Dαγ1 −P1n−1Dαγ2 · · · −P1n−1Dαγn

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Thus
Dα(Wα(ξ)) = −P1Wα(ξ)

⇒ Dα(Wα(x))

Wα(ξ)
= −P1

⇒ lnW − lnC = Iα(−P1(ξ))

⇒ Wα(ξ) = ce− ∫ ξ
ξ0

P1(ξ)dξ

⇒ Wα(γ1, γ2, . . . , γn)(ξ) = ce− ∫ ξ
ξ0

P1(ξ)dξ
.
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4 Abel’s Formula

We’ll start with fractional differential equations.

Dαγ + a(ξ)γ = b(ξ), (4.1)

where, 0 < α ≤ 1.
Multiply (4.1) by eI (a), we get

eI (a)Dαγ + eI (a)a(ξ)γ = eI (a)b(ξ).

As a result, using the results on conformable fractional derivatives from [4], we have

Dα(eI (a)γ) = eI (a)b(ξ).

Hence
γ = e−I (a) Iα(eI (a)b(ξ)), (4.2)

is a solution of (4.1).
Now, think about γ1 to be an solution of (3.30). Our goal is to seek out a second

solution γ2 of Eq. (3.30).
From (3.31), we have Wα[γ1, γ2] = eIα(−P(ξ)), from which we get

γ1Dαγ2 − γ2Dαγ1 = eIα(−P(ξ))

and so

Dαγ2 − γ2
Dαγ1

γ1
= eIα(−P(ξ))

γ1
. (4.3)

Equation (4.3) is a fractional linear equation, with a(ξ) = Dαγ1
γ1

, and b(ξ) = eIα(−P(ξ))

γ1
.

Hence, using the fact

Iα

(
Dαγ1

γ1

)
= lnγ1,

and by using formula (4.2), we get

γ2 = γ1 Iα

(
e−Iα(P)

γ2
1

)
(4.4)
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5 Applications

Example 1 Consider the fractional differential equation

D 1
2
D 1

2
γ + ξD 1

2
γ = 0.

Clearly, γ1 = 1 is a solution of such equation. Using formula (4.4) and the definition
of I 1

2
(Φ) to get

γ2 = γ1 I 1
2

(
e−Iα(P)

γ2
1

)
= I 1

2
(e−2

√
ξ).

Clearly, γ2 satisfies the above equation.

Example 2 Consider the fractional differential equation

D3/2D3/2γ + 1

2
tan

√
ξD3/2γ = 0.

Clearly, γ1 = 1 is a solution of such equation, noting that D2/31 = 0. Hence using
formula (4.4), to get

γ2 = γ1 I3/2

(
e−Iα(P)

γ2
1

)
= I3/2

(
e−I3/2(

1
2 tan

√
ξ)
)

.

We get γ2 = I3/2(cos
√

ξ). Using integral again we see that such γ2 is a solution of
the equation.

Example 3 Consider the fractional differential equation

D3/2D3/2γ + 1

2
cot

√
ξD3/2γ = 0.

Clearly, γ1 = 1 is a solution of such equation. Using formula (4.4) and the definition
of Iα(Φ) to get

γ2 = γ1 I3/2

(
e−I3/2(P)

γ2
1

)
= I3/2(e

−ξ).

γ2 = I3/2(sin
−1(

√
ξ)).



378 R. A. Muneshwar et al.

6 Conclusion

In this study, we provide some results on linear α-fractional differential equations’
existence and uniqueness theorems. It has been revealed that the outcomes of this
research are identical to those of the standard instance. In addition, theAbel’s formula
and Wronskian determinant of α-fractional differential equations were developed.
In addition, we provide applications of the obtained results.
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Method of Directly Defining the Inverse
Mapping for Nonlinear Ordinary
and Partial Fractional-Order Differential
Equations

Dulashini Karunarathna and Mangalagama Dewasurendra

Abstract Weextend theMethodofDirectlyDefining the inverseMapping (MDDiM)
to determine approximate solutions for fractional-order ordinary and partial differ-
ential equations. The Riccati, Abel, and time-fractional Rosenau-Hyman equations
were solved here. TheMDDiMwas utilized for the first time to solve fractional-order
ordinary and partial differential equations. By considering the sum of the initial three
terms of the series solution, we were able to get approximate solutions for the frac-
tional Riccati ordinary differential equation and the time-fractional Rosenau-Hyman
equation.We also used the fourth-order series solution to get an approximate solution
for the Abel differential equation. By determining the ideal option of the convergence
control value for quick convergence, as well as alternative fractional orders on solu-
tions, we were able to achieve solution graphs and minimum errors.

Keywords Fractional-order differential equation · Method of directly defining the
inverse mapping · Riccati differential equation · Abel differential equation ·
Rosenau-Hyman equation

1 Introduction

TheMethod of Directly Defining inverseMapping (MDDiM) has been used to tackle
mathematical and real-world problems involving nonlinear ordinary and partial dif-
ferential equations [1, 3, 4, 8, 10, 11]. We used our innovative method so-called
MDDiM to solve nonlinear fractional-order ordinary and partial equations in this
study.

We used theMDDiM that we extended to solve fractional-order Riccati equations
in the first case. The fractional-order ordinary Riccati differential equations are a type
of nonlinear differential equation that may be used for a wide range of problems in
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electrical networks, chemical physics, engineering, acoustics, and material science
[9]. The MDDiM was used for the first time to solve fractional-order ordinary and
partial differential equations.Wewere able to produce estimated three-term solutions,
solution graphs, and minimum error of the solution by determining the best choice
of h for fast convergence, and different fractional order α on the solution.

In the second example, we solved a fractional-order Abel differential equation
using MDDiM. This equation has a long history in many areas of pure and applied
mathematics [6]. Here, we obtained approximate solutions by getting the sum of
the initial four terms of the series solution. The solution graphs and minimum error
values were determined by choosing the best value of h for fast convergence, and
different α values.

The time-fractional Rosenau-Hyman equation, which was discovered as a math-
ematical model to research pattern creation of nonlinear dispersion in liquid drops,
was solved within the third example. The MDDiM was utilized for the first time to
solve a fractional partial differential equation. By summing the first three terms of the
series solution, we were able to get approximate answers. For validation, we com-
pared the MDDiM solution to the solution found in the literature. The primary goal
of this research is to demonstrate that the MDDiM may be used to derive analytical
solutions to fractional-order differential equations.

2 Methodology

Extension of MDDiM for partial differential equations of fractional order
We use the differential equation of this type as an example,

N [Dα
t u(x, t)] − g(x, t) = 0 (1)

where N is the fractional nonlinear operator, Dα
t denote the fractional derivative, x

and t are independent variables, g is a known function, and u is an unknown function.
To apply the MDDiM, the higher order deformation equation is constructed as

(1 − q)L[ϕ(x, t; q) − u0(x, t)] = qh
(
N [Dα

t ϕ(x, t; q)] − g(x, t)
)
, q ∈ [0, 1]

(2)

where L is an auxiliary linear operator, and h �= 0 is an auxiliary parameter.
When q = 0 and q = 1, Eq. (2) can be reduced to

ϕ(x, t; 0) = u0(x, t), ϕ(x, t; 1) = u(x, t) (3)

respectively [2]. Then, the MDDiM solution ϕ(x, t; q) will vary from the u0(x, t)
to the solution u(x, t).
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Taylor series expansion of ϕ(x, t; q) is given as

ϕ(x, t; q) = u0(x, t) +
∞∑

m=1

um(x, t)qm (4)

where

um(x, t) = 1

m!
∂mϕ(x, t; q)

∂qm
|q=0. (5)

we obtain themth-order deformation equation by differentiating the Eq. (2)m-times
with respect to q and dividing it by m! and finally considering q = 0,

L[um(x, t) − χmum−1(x, t)] = hRm[−→u m−1(x, t)] (6)

where

χm =
{
1, when m > 1,
0, otherwise.

(7)

Rm[−→u m−1(x, t)] = 1

(m − 1)!
( ∂m−1

∂qm−1

(
N

[
Dα

t ϕ(x, t; q)
]

− g(x, t)
))

|q=0. (8)

Define the solution space function as

S =
+∞∑
k=0

ψk(x, t). (9)

Define the approximate solution space and the space for the initial guess respectively
as

S∗ =
μ∑

k=0

ψk(x, t) (10)

and

Ŝ =
+∞∑

k=μ+1

ψk(x, t) (11)
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so that S = Ŝ ∪ S∗. Finally, we directly define the inverse mapping J . We obtain
the final version of the higher order deformation equation for the MDDiM:

um(x, t) = χmum−1(x, t) + hJ [Rm[um−1(x, t)]] +
μ∑

n=1

am,nϕn(x, t). (12)

We define the square residual error function E(h) to find the error of the MDDiM
solution and h values which give the optimal errors,

E(h) =
∫

Ω

(N [Dα
t u(x, t)] − g(x, t))2dx dt. (13)

3 Example 01: MDDiM Solutions for Fractional Riccati
Differential Equation

Consider the fractional-order ordinary Riccati differential equation [9],

dαy

dxα
= −y2 + 1, 0 < α ≤ 1, (14)

with initial condition y(0) = 0. Many scholars are interested in Riccati differential
equations. The variational iteration approach was used to generate approximate solu-
tions to the ordinary Riccati differential equation for certain of them. In this study,
we use MDDiM to solve the ordinary Riccati differential equation.

Consider an nth-order nonlinear differential equation N [Dα
x y(x)] − f (x) = 0,

and the deformation Eq. (12) of MDDiM for this example:

yk(x) = χk yk−1(x) + hJ [Rm−1[y(x)]] + ak,0 + ak,1x for k ≥ 1. (15)

By considering

N [Dα
x y(x)] − f (x) = dαy

dxα
+ y2 − 1 (16)

with initial condition y(0) = 0, we came up with an initial prediction of y0(x) = x .
We have a lot of freedom in MDDiM to create an inverse linear mapping directly.
For this example, we chose

J [xk] = xk+1

Ak3 + 1
. (17)

Here, A is an arbitrary constant.
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3.1 Results and Discussion

The sum of the first three term solution can be written as

y(x) = y0(x) + y1(x) + y2(x). (18)

Taking A = 100, we obtained terms for Eq. (18) by considering different values of
α, and MDDiM solution when α = 0.9 included for Eq. (19).

y(x) = x + 2hx2

101
+ h

(
0.955579096 x

11
10 + x3

801
− x

)
+ · · · (19)

Here, the optimal value of h is determined by minimizing the residual error of
the sum of three term solution, and it was h = −1.0727831. Then, we can say
that 3rd order MDDiM solution is accurate enough with the squared residual error
7.190345 × 10−5. For various α, we also got MDDiM solutions and convergence
control parameter values. Squared residual errors of MDDiM solutions and conver-
gence control parameter values with various α values are shown in Table1. Figure1
shows the graph of MDDiM solution versus x for various α values.

We utilized MDDiM to solve the fractional Riccati differential equation in the
first case. When a minimum error was reached, we obtained approximate answers

Table 1 Squared residual errors and convergence control parameter values for different α

α values Square residual error E(h) h values

0.9 7.190345 × 10−5 −1.072783

0.8 2.789923 × 10−5 −0.016020

0.7 3.101696 × 10−5 −0.270407

Fig. 1 MDDiM solution graphs for different values of α. Curve 1: α = 0.9; Curve 2: α = 0.8;
Curve 3: α = 0.7
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by examining only the first three terms. The comparability of the MDDiM solutions
with the fractional variation iteration approach [9] was investigated to assess the
correctness of the MDDiM solutions. The MDDiM solutions would be acceptable
to us. MDDiM may therefore be used to solve ordinary and partial fractional-order
differential equations.

4 Example 02: MDDiM Solutions for Abel Differential
Equation

To solve anAbel differential equation,we use theMDDiM,which is a semi-analytical
approach. The Abel differential equations appear in N. H. Abel’s work on elliptic
function theory. The Riccati equation is a natural generalization of the first kind of
Abel’s differential equations.

Consider the nonlinear fractional-order Abel differential equation [6],

dαy

dxα
= −y3 sin x − xy2 + x2y − x3, 0 < α ≤ 1, (20)

with initial conditions y(0) = 0. Many studies have been performed on solutions of
the Abel differential equations. Some of them such as Optimal Homotopy Analysis
Method [12] have been used to solve fractional Abel differential equation. In this
study, we solve the fractional Abel differential equation using MDDiM.

Consider the fractional-order nonlinear differential equationN [Dα
x y(x)] − f (x)

= 0, and the higher order deformation equation of MDDiM given by

yk(x) = χk yk−1(x) + hJ [Rm−1[y(x)]] +
μ∑

n=1

ak,nφn for k ≥ 1. (21)

Here, J is the inverse linear mapping, and N is the fractional nonlinear operator.
The convergence control parameter, h, needs to be found. By applyingMDDiM [11]
to Eq. (21), we obtained higher order deformation equation (20):

yk = χk yk−1 + hJ [Rm−1[y(x)]] + ak,0 + ak,1x for k ≥ 1. (22)

By considering N [Dα
x y(x)] − f (x) = dαy

dxα
+ y3 sin x + xy2 − x2y + x3, with

initial condition y(0) = 0,we obtained an initial guess as y0(x) = 0. In this method,
we have great freedom to choose an inverse linear mapping [8]. For this example, we

chose the inverse mapping as J [xk] = xk−1

Ak + 1
. Here, A is an arbitrary constant,

and Maple 16 package was used to attain the following results.
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Table 2 Squared residual errors and convergence control parameter values for different α

α values Square residual error E(h) h values

0.4 6.688762 × 10−21 −0.623904

0.50 2.173158 × 10−21 −0.974734

0.60 1.756642 × 10−24 −0.684494

0.70 2.702231 × 10−24 −0.498490

0.80 5.410933 × 10−24 −0.285775

0.90 1.250342 × 10−23 −0.323124

0.98 7.573952 × 10−23 −0.170613

4.1 Results and Discussion

The first four term solution can be written as

y(x) = y0(x) + y1(x) + y2(x) + y3(x). (23)

Taking A = 100, we obtained terms for Eq. (23) by considering different values of
α, and MDDiM solution when α = 0.98 included for Eq. (5):

y(x) = hx2

2
+ h2

(
0.2454090594x

1
50 + x3

20

)
+ · · · (24)

Fig. 2 Squared residual
error curves of MDDiM
solution for different values
of α with fixed x = 0.5.
Curve 1: α = 0.40;
Curve 2: α = 0.98;
Curve 3: α = 0.50;
Curve 4: α = 0.60;
Curve 5: α = 0.70;
Curve 6: α = 0.80;
Curve 7: α = 0.90
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Fig. 3 MDDiM solution for
different values of α. Curve
1: α = 0.40;
Curve 2: α = 0.50;
Curve 3: α = 0.60;
Curve 4: α = 0.70;
Curve 5: α = 0.90;
Curve 6: α = 0.50;
Curve 7: α = 0.98

Here, values of h are made out by minimizing the residual error of the obtained
MDDiM solution and it was h = −0.1706131. The corresponding MDDiM approx-
imation shows to be accurate enough with the squared residual error 7.5739522 ×
10−23. Table2 represents squared residual errors of MDDiM solutions and conver-
gence control parameter values with various α values. Figure3 represents the graph
of the approximation MDDiM solutions for different values of α (Fig. 2).

5 Example 03: MDDiM Solutions for Time-Fractional
Rosenau-Hyman Equation

We use the MDDiM semi-analytical approach to solve the time-fractional Rosenau-
Hyman equation. The Rosenau-Hyman equation is a mathematical model for study-
ing pattern generation in liquid droplets with nonlinear dispersion. This is the
first time a fractional-order partial differential equation has been studied using the
MDDiM.

Consider the time-fractional Rosenau-Hyman equation [5],

∂αu

∂tα
= u

∂3u

∂x3
+ u

∂u

∂x
+ 3

∂u

∂x

∂2u

∂x2
, (25)

t > 0 and 0 < α ≤ 1 subject to the initial condition u(x, 0) = −8c

3
cos2

( x
4

)
. The

exact solution to this problem is given as follows [5]:
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u(x, t) = −8c

3
cos2

( x − ct

4

)
, (26)

where c is an arbitrary constant. The nonlinear operator and higher order deformation
equation are defined separately:

N [Dα
t u(x, t)] − f (x, t) = ∂αu

∂tα
− u

∂3u

∂x3
− u

∂u

∂x
− 3

∂u

∂x

∂2u

∂x2
. (27)

uk(x, t) = χkuk−1(x, t) + hJ [Rm−1[u(x, t)]] + ak,0 + ak,1x for k ≥ 1. (28)

By considering a nonlinear operator with a given initial condition u(x, 0) = −8c

3

cos2
( x
4

)
, we implemented initial guess as u0(x, t) = −8c

3
cos2

( x
4

)
. Using the

freedom of directly defining the inverse mapping [8], we chose

J = xk+1

Ak + 0.8
(29)

where A is an arbitrary constant.

5.1 Results and Discussion

We choose an approximation solution by examining the sum of three term solution
with A = 1 :

u1(x, t) = 5

4
ht

(8
3
c2 cos2

( x
4

)
sin

( x
4

)
− 4c cos

( x
4

)
sin

( x
4

)(
− 1

3
c cos2

( x
4

)))
.

(30)

u2(x, t) = u0(x, t) + 2u1(x, t) + 5h2c2

12

(5
2
t sin

( x
2

)
+ ctα+1

0.8 + α
cos

( x
2

))
. (31)

MDDiMsolutions and residual errorswere obtained anddisplayedby establishing the
proper suited values for h. Because we were able to obtain enough accurate residual
error as shown in Table3, we just analyzed three terms of the series solution. Figure4
displays the MDDiM solution of u(x, t) versus time t for various α values.



388 D. Karunarathna and M. Dewasurendra

Table 3 Squared residual errors and convergence control parameter values for different α

α values E(h) values h values

0.25 1.93078226 × 10−5 −0.93171114

0.50 7.34478224 × 10−6 −0.93984369

0.75 2.80931060 × 10−4 −0.92866480

Fig. 4 MDDiM solution plot for different α when x = π
13 , c = 1 and h = −1.02. Curve 1: α = 1;

Curve 2: α = 0.75; Curve 3: α = 0.25; Curve 4: α = 0.50

6 Conclusions

We have expanded the Method of Directly Defining inverse Mapping in this work
to solve nonlinear fractional-order ordinary and partial differential equations with
applications in science and engineering. These examples show how to use extended
MDDiM to solve fractional-order ordinary and partial differential equations. All
computations related to the aforementioned examples are worked out in this paper
using the Maple 16 package.

We usedMDDiM to solve the fractional Riccati differential equation and the Abel
differential equation in the first and second examples, respectively. By examining
only the first three terms and four terms where the smallest error occurs, we were
able to derive approximate answers. Comparisons using the fractional variation iter-
ation technique and Homotopy Analysis Method solutions were done to validate
the MDDiM solutions of the Riccati differential problem and the Abel differential
equation.

We used extendedMDDiM to solve the time-fractional Rosenau-Hyman equation
in the third problem. In the approximation series solutions, we achieved approxi-



Method of Directly Defining the Inverse Mapping … 389

mate solutions with less complicated terms, reducing calculation time. The MDDiM
is particularly good at handling solutions of a class of nonlinear partial differential
equations of fractional order, according to our findings. Comparisons with q-HAM
solutions [5] for different fractional orders were made to validate the MDDiM solu-
tions. The MDDiM solutions are something we could agree on. We also found the
MDDiM solutions with the lowest errors and the optimal choice of h for quick con-
vergence, as well as the impact of various fractional order α on the solution (see
Fig. 4). In addition, this unique technique can be utilized to examine increasingly
complex models in the future.
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Existence Results for Nonlocal Impulsive
Fractional Neutral Functional Integro
Differential Equations with Bounded
Delay

M. Latha Maheswari and R. Nandhini

Abstract Weconsider the impulsiveneutral fractional functional integro-differential
equation under bounded delay with nonlocal condition in the Banach spaces. The
existence condition for the solution of this problem is studied usingDarboSadovskii’s
fixed point theorem with Hausdorff’s measure of noncompactness.

Keywords Nonlocal condition · Fractional integro-differential equation · Neutral
functional integro-differential equation

1 Introduction

Motivated by the paper of Suresh [12], we provide the impulsive neutral fractional
functional integro—differential equation under bounded delay with nonlocal condi-
tion in Banach space

c Dβ [y(δ) + f (δ, y(δ), yδ)] = A(δ)y(δ) +
∫ δ

0
G(δ, r)g (r, y(r), yr ) dr, (1)

y0 = Φ + hl(y), (2)

�y
∣∣
δ=δk

= Ik
(
y(δ−

k )
)
, (3)

where δ ∈ [0, a] in Eq. (1), A = A(δ) is the bounded linear operator defined on D(A)
which is dense in the Banach space Y and for y ∈ C([0, a]; Y ), ‖A(δ)‖ ≤ m, and yδ :
[−μ, 0] → Y defined by yδ (θ) = y (δ + θ ) for θ ∈ [−μ, 0]; g, f : [0, a] ×
Y × C([ −μ, 0] ; Y ) → Y, G : [ 0, a ] × [ 0, a] → (0,+∞), hl : C( [0, a] ; Y ) →
C( [−μ, 0] ; Y ) and 0 < δ1 < δ2 < · · · < δp < a, I j : Y → Y, j = 1, 2, . . . p,
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are suitable functions, y(δ+
k ) = limt→0+ y(δk + t) denote the right limit and y(δ−

k ) =
limt→0− y(δk + t) denote the left limit of y(δ) at δ = δk, �y

∣∣
δ=δk

= y(δ+
k ) − y(δ−

k ),

a, m,μ, p > 0 and 0 < β < 1 are suitable constants.

2 Preliminaries

Here Y denotes the Banach space associated by the norm ‖.‖. C([m, n], Y ) is a
Banach space which has all continuous Y—valued functions on [m, n] associated
with the norm

‖y‖[m,n] = supy∈[m,n]{‖y(r)‖} ∀ y ∈ C([m, n], Y ).

Proposition 1 ([5]) For β1,β2 > 0 and f as a suitable functions we have,

(i) c Dβ1
0+ f (y) = I 1−β1

0+ D f (y) = I 1−β1
0+ f ′(y), 0 < β1 < 1.

(ii) c Dβ1
0+ c Dβ2

0+ f (y) 
= c Dβ1+β2
0+ f (y).

(iii) c Dβ1
0+ c Dβ2

0+ f (y) 
= c Dβ2
0+ c Dβ1

0+ f (y).

From the above conditions, it is clear that the differential operator does not satisfy
the semigroup and commutative properties.

For convenience, we assume c Dβ
0+ as c Dβ .

Lemma 1 ([6]) Let ξV (.) denote Hausdorff’s measure of noncompactness and the
bounded sets E1, E2 ⊂ V (real Banach space) meet the following properties.

(1) E1 is pre-compact iff ξV (E1) = 0.
(2) ξV (E1) = ξV (Ē1) = ξV (conv E1) where conv E1 denote the convex hull of E1.
(3) ξV (E1) ≤ ξV (E2) where E1 ⊆ E2.
(4) ξV (E1 + E2)≤ξV (E1) + ξV (E2) where E1 + E2 ={y + z ; y ∈ E1, z ∈ E2}.
(5) ξV (E1 ∪ E2) ≤ max{ξV (E1), ξV (E2)}.
(6) ξV (λ E1) = |λ|ξV (E1) for any λ ∈ R.
(7) For any E1 ⊆ D(T ), Banach space Z and constant k > 0, the condition

ξZ (T E1) ≤ kξV (E1), holds whenever the map T : D(T ) ⊆ V → Z is Lips-
chitz continuous.

(8) ξV (E1)= in f {dY (E1, E2) : E2 ⊆ V be precompact} = in f {dY (E1, E2) :
E2 ⊆ V be finite valued} where dY (E1, E2) indicate the non symmetric (or
symmetric) Hausdorff distance between E1 and E2 in V .

(9) If {Un}+∞
n=1 is a ↓ sequence of bounded closed non empty subsets of V and

limn→+∞ξV (Un)=0, then ∩+∞
n=1 Un is non empty and compact in V .

Lemma 2 ([12]) If U ⊆ C([0, a]; Y ) is bounded, then

ξ(U (δ)) ≤ ξc(U ),

∀ δ ∈ [0, a], where U (δ) = {w(δ);w ∈ U } ⊆ Y . In addition, if U is equicontinuous
on [0, a], then ξU (δ) is continuous on [0, a] and
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ξc(U ) = sup{ξ(U (δ)), δ ∈ [0, a]}.

Lemma 3 ([12]) If {wn}∞n=1 ⊂ L1((a, b); Y ) is uniformly integrable, then
ξ
({wn(δ)}∞n=1

)
is measurable and

ξ

({∫ t

a
wn(r)dr

}∞

n=1

)
≤ ϕ

∫ t

a
ξ
({wn(r)}∞n=1

)
dr,

where ϕ = 1 if {wn} is equicontinuous and ϕ = 2 if {wn} is not equicontinuous.

Lemma 4 ([12]) If U ⊆ C([0, a]; Y ) is bounded and equicontinuous, then ξ(U (r))

is continuous and

ξ

(∫ δ

0
U (r)dr

)
≤

∫ δ

0
ξ(U (r))dr,

∀ δ ∈ [0, a] where,

∫ δ

0
U (r)dr =

{∫ δ

0
w(r)dr : w ∈ U

}
.

3 Existence Theorem

The integral equation of (1)–(3) is defined as,

y(δ) = [
Φ(0) + hl (y)(0) + f (0, Φ(0) + hl (y)(0),Φ + hl (y))

] − f (δ, y(δ), yδ)

+ 1

Γ (β)

∑
0<δi <δ

∫ δi

δi−1

(δi − r)β−1A(r)y(r)dr + 1

Γ (β)

∫ δ

δi

(δ − r)β−1A(r)y(r)dr

+ 1

Γ (β)

∑
0<δi <δ

∫ δi

δi−1

(δi − r)β−1
∫ r

0
G(r, h)g (h, y(h), yh) dhdr

+ 1

Γ (β)

∫ δ

δi

(δ − r)β−1
∫ r

0
G(r, h)g (h, y(h), yh) dhdr +

∑
0<δi <δ

Ii

(
y(δ−

i )
)

, (4)

where 0 ≤ δ ≤ a.

From the ideology ofHausdorff’smeasure of noncompactness and its applications
in Banach Spaces, we consider the following hypotheses:

(H1) g : [0, a] × Y × C ([−μ, 0]; Y ) → Y satisfies the cartheodory—type con-
dition.
i.e. g(., y, Φ) : [0, a] → Y is measurable, ∀ (y, Φ) ∈ Y × C([−μ, 0]; Y )

and
g(δ, .) : Y × C ([−μ, 0]; Y ) → Y is continuous, for a.e. δ ∈ [0, a].
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(H2) ∃ an integrable function α : [0, a] → [0,+∞) and a non-decreasing func-
tion which is continuous and denoted by Ω : [0,+∞) → [0,+∞) �,

||g (δ, y, Φ)|| ≤ α(δ)Ω
(‖y‖ + ‖Φ‖[−μ,0]

)

∀ (δ, y, Φ) ∈ [0, a] × Y × C ([−μ, 0]; Y ) .

(H3) ∃ an integrable function τ : [0, a] → [0,+∞) �,

ξ (g(δ, H1, H2)) ≤ τ (δ) (ξ(H1)) + sup−μ≤θ≤0 ξ (H2(θ)),

for a.e. δ ∈ [0, a] and any bounded subset H1 ⊂ Y and H2 ⊂ C ([−μ, 0];
Y ), where H2(θ) = {v(θ) : v ∈ H2}.

(H4) ∃ a 0 < γ < 1, � f is Yγ—valued, (A)γ f (.) is continuous and ∃ c1 >

0, c2 > 0 and L f > 0 �,

‖(A)γ f (δ, y, Φ)‖ ≤ c1
(‖y‖ + ||Φ‖[−μ,0]

) + c2,

and

∥∥(A)γ f (δ, y1, Φ1) − (A)γ f (δ, y2, Φ2)
∥∥ ≤ L f

(‖y1 − y2‖ + ||Φ1 − Φ2‖[−μ,0]
)
,

∀ δ ∈ [0, a], y, y1, y2 ∈ Y and Φ, Φ1, Φ2 ∈ C ([−μ, 0] : Y ) .

(H5) hl : C ([0, a]; Y ) → C ([−μ, 0]; Y ) is Lipschitz continuous satisfying the
following criteria:
∃ a Lh > 0 �,

‖hl(y1) − hl(y2)‖[−μ,0] ≤ Lh ‖y1 − y2‖[0,a] ,

∀ y1, y2 ∈ C ([0, a], Y ) .

(H6) hl is bounded uniformly. (i.e.) ∃ a Nε > 0 �

‖hl(y)‖[−α,0] ≤ Nε,

∀ y ∈ C ([0, a]; Y ) .

(H7) ∃ constants d j > 0 �,

‖I j (y)‖ ≤ d j , j = 1, 2, . . . p,

where d = max{d j }, j = 1, 2, . . . , p.

(H8) I j : Y → Y is continuous and ∃ constants l j �,
∥∥I j (y1) − I j (y2)

∥∥ ≤ l j ‖y1 − y2‖ ,

j = 1, 2, . . . p ∀ y1, y2 ∈ Y.
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(H9) For each δ ∈ [0, a], G(δ, .) is measurable on [0, δ] and

G(δ) = ess sup {|G(δ, r)| : 0 ≤ r ≤ δ}

is bounded on [0, a],
(H10) The map δ �→ Gδ is continuous from [0, a] to L∞([0, a]; R+),

here Gδ(r) = G(δ, r).

(H11) The following holds

m
[
2c1 + aβ

Γ (β+1)

]
+ Gaβ+1

Γ (β+1)

∫ a
0 α(r)dr lim in fk→∞ Ω(2k)

k < 1,

where G = sup0≤δ≤aG(δ).

Theorem 1 Consider the hypotheses H1−H11 holds, then ∀ Φ ∈ C ([−μ, 0]; Y ) ,

Eqs. (1)–(3) has atleast a solution provided,

L0 + 4akla

Γ (β)

∫ a

0
τ (δ)dδ < 1.

Proof Consider the mapping
Λ : C ([−μ, a]; Y ) → C ([−μ, a]; Y ) defined as Λ = Λ1 + Λ2, where

Λ1y(δ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ(δ) + hl (y)(δ), for δ ∈ [−μ, 0],
Φ(0) + hl (y)(0) + f (0, Φ(0) + hl (y)(0),Φ + hl (y)) − f (δ, y(δ), yδ)

+ 1
Γ (β)

∑
0<δi <δ

∫ δi
δi−1

(δi − r)β−1 A(r)y(r)dr

+ 1
Γ (β)

∫ t
δi

(δ − r)β−1 A(r)y(r)dr + ∑
0<δi <δ Ik

(
y(δ−

k )
)
, for δ ∈ [0, a],

and

Λ2 y(δ) =

⎧⎪⎨
⎪⎩
0, for δ ∈ [−μ, 0],

1
Γ (β)

∑
0<δi <δ

∫ δi
δi−1

(δi − r)β−1
∫ r
0 G(r, h)g (h, y(h), yh) dhdr

+ 1
Γ (β)

∫ δ
δi

(δ − r)β−1
∫ r
0 G(r, h)g (h, y(h), yh) dhdr , for δ ∈ [0, a].

It is easy to see thatΛ is well defined in C([−μ, 0]; Y ). Furthermore,Λ is contin-
uous by the usual methodology involving the hypotheses (H1)–(H6). We show that
the fixed point of Λ is the solution of (1)–(3).

First to prove Λ(Bk) ⊂ Bk, for k ∈ Nε. Contrarily suppose ∀ k ∈ Nε, ∃ yk ∈ Bk

and δk ∈ [0, a] � ∥∥Λyk(δk)
∥∥ > k,

If δk ∈ [−μ, 0] then,

k <
∥∥Λyk(δk)

∥∥ ≤ ∥∥Λ1yk(δk)
∥∥ + ∥∥Λ2yk(δk)

∥∥
≤ ∥∥Φ(δk) + hl(yk)(δk)

∥∥
≤ ‖Φ‖[−μ,0] + Nε. (5)

If δk ∈ [0, a] then,

k <
∥∥Λyk(δk)

∥∥ ≤ ∥∥Λ1yk(δk)
∥∥ + ∥∥Λ2yk(δk)

∥∥ . (6)
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Consider
∥∥Λ1yk(δk)

∥∥ ,

∥∥∥Λ1yk(δk)

∥∥∥ ≤ ‖Φ(0)‖ +
∥∥∥hl(yk)(0)

∥∥∥ +
∥∥∥ f

(
0, Φ(0) + hl(yk)(0),Φ + hl(yk)

)∥∥∥
+

∥∥∥g
(
δk , yk(δk), yk

δk

)∥∥∥

+ 1

Γ (β)

∑
0<δk

i <δk

∫ δk
i

δk
i−1

(δk
i − r)β−1 ‖A(r)‖

∥∥∥yk(r)

∥∥∥ dr

+ 1

Γ (β)

∫ δk

δk
i

(δk − r)β−1 ‖A(r)‖
∥∥∥yk(r)

∥∥∥ dr

+
∑

0<δk
i <δk

∥∥∥Ii

(
yk(δk−

i )
)∥∥∥

≤ ‖Φ(0)‖ + Nε + 2m [c1 (‖Φ(0)‖ + Nε + k) + c2]

+ aβmk

Γ (β + 1)
+ d (7)

Similarly, consider
∥∥Λ2yk(δk)

∥∥ ,

∥∥∥Λ2yk (δk )

∥∥∥ ≤ 1

Γ (β)

∑
0<δk

i <δk

∫ δk
i

δk
i−1

(δk
i − r)β−1

∫ r

0

∥∥∥G(r, h)g
(

h, yk (h), yk
h

)∥∥∥ dhdr

+ 1

Γ (β)

∫ δk

δk
i

(δk − r)β−1
∫ r

0

∥∥∥G(r, h)g
(

h, yk (h), yk
h

)∥∥∥ dhdr

≤ aβ+1

Γ (β + 1)
GΩ(2k)

∫ δ

0
α(r)dr (8)

Substituting (7) and (8) in (6), we get

k <
∥∥Λyk(δk)

∥∥
≤ ‖Φ(0)‖ + Nε + 2m [c1 (‖Φ(0)‖ + Nε) + c2] + d

+ km

[
2c1 + aβ

Γ (β + 1)

]
a(β+1)

Γ (β + 1)
G

∫ δ

0
α(r)drΩ(2k). (9)

Let the right hand side of Eq. (9) be represented as Lk then,

k <
∥∥Λyk(δk)

∥∥ ≤ Lk . (10)

Hence, from (5) and (9), we obtain

k < max
(‖Φ‖[−μ,0] + Nε, Lk

)
.
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Divide the above equation by k, and take lim in fk→∞, we have

1 < 2mc1 + aβ

Γ (β + 1)
m + a(β+1)m

Γ (β + 1)
G

∫ δ

0
α(r)drlim in fk→∞

Ω(2k)

k

which contradicts H11.
∴ ∃ a k ∈ Nε, � Λ(Bk) ⊂ Bk . Now, we restrict Λ on such Bk .

Next to justify that Λ is a ξv—contraction.
For,

‖Λ1y1(δ) − Λ1y2(δ)‖ = ‖hl(y1)(δ) − hl(y2)(δ)‖
≤ Lh ‖y1 − y2‖[0,a], for δ ∈ [−μ, 0], (11)

and

‖Λ1y1(δ) − Λ1y2(δ)‖ ≤ Lh ‖y1 − y2‖[0,a]
+ mL f [2Lh ‖y1 − y2‖] + m

[L f ‖y1 − y2‖ + Lh‖y1 − y2‖
]

+ 2
aβ

Γ (β + 1)
m ‖y1 − y2‖ + LI ‖y1 − y2‖

≤ L0 ‖y1 − y2‖ , for δ ∈ [0, a]. (12)

From (11) and (12) it follows that

‖Λ1y1 − Λ1y2‖ ≤ L0 ‖y1 − y2‖[−μ,a].

∴ Λ1 is Lipschitzian with Lipschitz constant L0.

By applying Lemmas 2–4, ∀ bounded subset U ⊂ C([−μ, a]; Y ) and any ε > 0,
we can consider {yn}∞n=0 ⊂ U �

ξv(U ) ≤ 2ξc
({yn}∞n=0

) + ε

≤ 4Gala

Γ (β)
ξv(U )

∫ a

0
τ (r)dr + ε.

Since ε > 0 is arbitrary, from the theorem, we obtain

ξv(ΛU ) = ξv(Λ1U ) + ξv(Λ2U )

≤
(
L0 + 4Gala

Γ (β)
∈ δω

0 τ (r)dr

)
ξv(w).

We conclude that Λ is a ξv—contraction. Hence from the Darbo Sadovskii’s fixed
point theorem, any fixed point y of Λ is an integral equation of (1)–(3). ��
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4 Conclusion

In this work, usingDarbo Sadovskii’s fixed point theoremwithHausdorff’s measures
of noncompactness, the existence condition for the solution of the impulsive neu-
tral fractional functional integro—differential equations under bounded delay with
nonlocal condition in Banach spaces is studied. In future, we shall study about the
stability of solution of the above problem with interval impulse condition.
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An Application of Conformable
Fractional Differential Transform
Method for Smoking Epidemic Model

G. Tamil Preethi , N. Magesh , and N. B. Gatti

Abstract The nonlinear differential system of tobacco smoking model is proposed
and discussed in the current work by making use of conformable fractional dif-
ferential transform method. The fractional approximation of Taylor’s power series
expansion is used to provide the result. The logical approach of the fractional order
of differential transform method is discussed through stimulation technique. Maple
software is used for computational tasks in order to find additional iteration.

Keywords Tobacco smoking model · Conformable fractional differential
transform method · ζ-differentiable

1 Introduction

Infectious disease modelling has been used to investigate the mechanisms of spread
of disease, time of an epidemic and example techniques for controlling a lethal dis-
ease [12, 34]. Daniel Bernoulli, a physics specialist who devised a mathematical
formula for sickness in 1760, produced the first mathematical model of disease dis-
semination. To protect the method of inoculating against smallpox [17], a model
was developed. In the twentieth century, William Hamer [16] and Ronald Ross
[26] used mass action regulation to provide an alternative to armed conflict. The
rise of compartmental models was recognised in the 1920s. The epidemic models
of Kermack-McKendrick [21] and Reed-Frost (1928) both elaborates the interac-
tion prevailing among inclined, inflamed and a community of healthy people. The
Kermack-McKendrick epidemiological model had a lot of success in predicting the
outcome of outbreaks that were quite similar to those found in numerous historical
pandemics [7, 21].
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Stochastic and deterministic models are two types of epidemic models. Stochastic
refers to the state of being or having a random variable. A stochastic version is to
predict probability distributions of capacity outcomes over time using random ver-
sion in one or many inputs. The stochastic utilisation of chance changes in the threat
of inhalation, disease and other contamination processes. Stochastic approaches can
be used to determine statistical agent-level illness distribution for smaller or to large
populations [14, 15]. Deterministic or compartmental mathematical models are com-
monly utilised in dealing with large populations, contingent upon tuberculosis. In a
deterministic variant, peoples are divided into compartments, where each simulating
a different level of the scourge. The costs of switching classes are technically defined
as derivatives, hence the model is based on Differential Equations. When creating
styles, it is necessary to assume that the count of population in a compartment varies
with time where the epidemic technique is predictable. Alternatively, using the sim-
plest history that was used to develop the model, the fluctuations in population of a
compartment can be computed [7, 28].

The tobacco industry switched its marketing efforts to primitive and emerging
countries in Africa, the former Soviet Union, Asia, the Middle East and Latin Amer-
ica as the cost of smoking reduced in the traditional markets of North America and
Western Europe. Due to the typically shaky regulatory climate in certain nations,
it was also recommended that the company target populations there [9]. If current
trends continue, tobacco use will kill around 11 million people every year in some
part of the world by 2020, with 70% of these fatalities occurring in developing
and underdeveloped countries. According to the WHO, smoking causes 275 mil-
lion deaths among children and adolescents each year, with more than 15 million
people expected to die from smoking-related diseases by 2030 [34]. High blood pres-
sure, discoloured enamel, bad breath and coughing are the most common short-term
smoking adverse effects. Long-term smoking is now the leading cause of morbid-
ity, oropharyngeal, esophageal cancer, corneal ulcer, heart disease and gum disease.
As a result, smoking is a major health issue that affects people all over the world.
Smoking spreads through social interaction in a similar way to many infectious dis-
eases [5, 8, 31, 35–37]. Mathematical modelling has been widely utilised to study
the effects of smoking. In 2000, Castillo-Garsow et al. began working with a basic
mathematical model for tobacco use, recovery and relapse. He divided the entire
population into three categories: smokers (S), potential smokers (P) and quitters
(Q). As a new phenomenia, many researcher are much interested in proceedings of
smoking mathematical model with different classes like snuffing class, regular and
irregular smokers, temporarily quit smokers and permently quit smokers, etc.

Guillaume de l’Hopital, a French Mathematician who came out with the idea of
fractional calculus and his first textbook on infinitesimal calculus gives the ideas
of differential calculus and its applications. His name is strongly connected with
l’Hopital’s rule for calculating limits involving indeterminate forms. A ridiculous
idea for conformable fractional derivative was proposed by Khalil et al. [19]. The
definitions and properties of conformable derivatives are illustrated in [24], where in
establishing all the properties of fractional derivation, offered the chain rule defini-
tion, which was applied to the base of the series.
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It was first introduced by Zhou in 1986 that a semi analytical-numerical tech-
nique called Differential Transform Method (DTM) could be used in order to solve
differential equation (linear and nonlinear) problems that could be used in electric
circuits. For differential equations, this approach generates an analytical polynomial
solution. It is not the same as the traditional high-order Taylor series approach, which
requires symbolic computations of the data functions necessary derivatives. It takes
a lengthy time to compute higher orders using the Taylor series method. The DTM
is a method for getting analytical Taylor series solutions to differential equations
using an iterative process [23, 25, 32]. Acan provided a new conformable fractional
reduced differential transform method as well as a conformable variation iteration
methodology based on the novel specified fractional derivative [2]. It is apparent that
more research and explanations on this conformable fractional derivative approach
are possible. In this paper we analysed CFDTM for different orders of ζ. For more
details and basic properties one can refer [4, 6, 18, 23, 29].

The epidemiology purposed is to comprehend and to control the spread of disease
(if possible). We divided the overall population into five categories in this study.
At time ′t ′, number of population consist of (1) p(t), smokers who might be inter-
ested (potential smokers), (2) o(t), smokers who only smoke on occasion (occa-
tional smokers), (3) s(t), smokers, (4) q(t), smokers who have temporarily stopped
smoking (temporarily quit smokers), (5) l(t), smokers who have made a permanent
decision to stop smoking (permanently quit smokers). The suggested smokingmodel
is proposed in [3, 33] with initial conditions

d p(t)

dt
= χ − α p(t) s(t) − ϑ p(t),

d o(t)

dt
= α p(t) s(t) − (λ1 + ϑ) o(t),

d s(t)

dt
= λ1 o(t) + λ2 s(t) q(t) − (ϑ + μ) s(t),

d q(t)

dt
= −λ2 s(t) q(t) − ϑ q(t) + μ(1 − ν) s(t),

d l(t)

dt
= ν μ s(t) − ϑ l(t).

(1)

2 Conformable Fractional Differential Transform Method

We describe the fundamental definition and properties of the conformable fractional
one-dimensional differential transform method incorporated and analysed by Ünal
and Gökdoğan, H. M. Srivastava and Hatira Günerhan in order to expand the analyt-
ical and continuous function f (t) in terms of a fractional power series [30, 32].
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Definition 1 ([30, 32]) If we assume that f (t) is an infinitely ζ−differentiable
function for some ζ ∈ (0, 1], then the conformable fractional differential transform
of f (t) is

Fζ(p) = 1

ζ p p!
[(

T t0
ζ f

)(p)
(t)

]
t=t0

, (2)

where
(
T t0

ζ f
)(p)

(t) signifies the fractional derivative’s pth iteration
(
T t0

ζ f
)
(t) for

a function f : (t0, ∞) → R given by

(
T t0

ζ f
)
(t) := lim

ε→0

{
f
(
t + ε (t − t0)1−ζ

) − f (t)

ε

}
, t > t0 ≥ 0; 0 < ζ ≤ 1.

(3)

Definition 2 ([30, 32]) If Fζ(p) indicates the conformable fractional differential
transform of the function f (t) established by Definition 1, then Fζ(p)’s inverse
fractional differential transform is characterised by

f (t) =
∞∑
p=0

Fζ(p)(t − t0)
ζ p =

∞∑
p=0

1

ζ p p!
[(

T t0
ζ f

)(p)
(t)

]
t=t0

(t − t0)
ζ p. (4)

Definition 3 follows from the application of Definitions 1 and 2.

Definition 3 ([30, 32]) For integer-order derivatives, the conformable fractional
differential transform (CFDT) of the initial conditions is defined as follows:

Fζ(p) =

⎧⎪⎨
⎪⎩

1
(ζ p)!

[
dζ p{ f (t)}

dtζ p

]
t=t0

; ζ p ∈ N

0; ζ p /∈ N,

for p = 0, 1, . . . ,

[
n

ζ

]
− 1, (5)

where n is the order of the associated fractional differential equation and N is the set
of positive integers. For properties one can refer [23, 24, 32].

3 Conformable Fractional Tobacco Smoking Model
Mathematical Modelling

The following conformable fractional differential system provides a conformable
fractional model of the genuine development of an infectious outbreak in a large
population.
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tζ p(t) = χ − α p(t) s(t) − ϑ p(t),
Tζ o(t) = α p(t) s(t) − (λ1 + ϑ) o(t),
Tζ s(t) = λ1 o(t) + λ2 s(t) q(t) − (ϑ + μ) s(t),
Tζ q(t) = −λ2 s(t) q(t) − ϑ q(t) + μ (1 − ν) s(t),
Tζ l(t) = ν μ s(t) − ϑ l(t),

(6)

with the initial conditions p(0) = p0, o(0) = o0, s(0) = s0, q(0) = q0, l(0) = l0.

3.1 Application of Conformable Fractional Differential
Transform Method

By using the properties of discussed in Sect. 2, Eq. (6) can be revised as follows:

ζ( p + 1 )Pζ ( p + 1 ) = χ δ(p) − α
p∑

r=0
Pζ (r) Sζ (p − r) − ϑ Pζ (p),

ζ( p + 1 )Oζ ( p + 1 ) = α
p∑

r=0
Sζ (r) Pζ (p − r) − (λ1 + ϑ) Oζ (p),

ζ( p + 1 )Sζ ( p + 1 ) = λ1 Oζ (p) + λ2

p∑
r=0

Sζ (r) Qζ (p − r) − (ϑ + μ) Sζ (p),

ζ( p + 1 )Qζ ( p + 1 ) = −λ2

p∑
r=0

Qζ (r) Sζ (p − r) − ϑ Qζ (p) + μ (1 − ν) Sζ (p),

ζ( p + 1 )Lζ ( p + 1 ) = ν μ Sζ (p) − ϑ Lζ (p).

(7)

With commencing values p(0) = P(0) = 40, o(0) = O(0) = 10, s(0) = S(0) =
20, q(0) = Q(0) = 10, l(0) = L(0) = 5 and parameters values from the above table
applying in (7), we obtain the series for the classical order ζ = 1, upto certain order
by inverse DTM as follows (Table1):

p (t) =
∞∑
p=0

Sζ(p)t
pζ = 40 − 113.0 t + 207.1690000 t2 + · · ·

o (t) =
∞∑
p=0

Oζ(p)t
pζ = 10 + 111.4800000 t − 207.2424800 t2 + · · ·

s (t) =
∞∑
p=0

Sζ(p)t
pζ = 20 − 16.48000000 t + 7.284480000 t2 + · · · (8)

q (t) =
∞∑
p=0

Qζ(p)t
pζ = 10 + 15.0 t − 7.136000000 t2 + · · ·

l (t) =
∞∑
p=0

Lζ(p)t
pζ = 5 + 1.850000000 t − 0.6129500000 t2 + · · ·
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Table 1 Parameter values and its descriptions

Parameters Descriptions Values

χ The pace of recruitment in s 1

α Contact rate between s and p 0.14

ϑ Death rate due to natural causes 0.05

λ1 Percentage of occasional change to regular smokers 0.002

λ2 Smokers and temporary quitters relapse to smoking with
higher contact rate

0.0025

μ Quitting smokers rate 0.8

ν A small percentage of smokers who has given up
smoking for good

0.1

4 Result and Discussion

An important and productive way to recognise epidemological problems is by graph-
ical methods (Figs. 1, 2, 3, 4, 5 Tables2, 3, 3, 4, 5, 6).

As the time increases the potential smokers learn the habit of smoking very fastly
where an occasional smokers initially feel hard to quit smoking but gradually, they try
to reduce their smoking habit. As a third part, smokers who have the habit of smoking
will have the passion of smoking, sometimes they try to quit smoking but they actually

Fig. 1 Plots of CFDTM for
potential smokers p(t) at
different values of ζ
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Fig. 2 Plots of CFDTM for
occasional smokers o(t) at
different values of order ζ

Fig. 3 Plots by CFDTM for
s(t) for different values of
order ζ
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Fig. 4 Plots by CFDTM for
q(t) for different values of
order ζ

Fig. 5 Plots of CFDTM
solution for quit smokers l(t)
at different values of order ζ
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Table 2 Numerical solutions by CFDTM for potential smokers p(t) for different values of order ζ

p(t) ζ = 0.8 ζ = 0.9 ζ = 1

t = 0 40 40 40

t = 0.1 25.74439 28.24708 30.77169

t = 0.2 25.67126 24.61943 25.68676

t = 0.3 33.24419 26.79993 24.74521

t = 0.4 46.85714 34.11128 27.94704

t = 0.5 65.65487 46.16542 35.29225

t = 0.6 89.08462 62.69775 46.78084

t = 0.7 116.75113 83.51082 62.41281

t = 0.8 148.35345 108.44879 82.18816

t = 0.9 183.65234 137.38393 106.10689

t = 1.0 222.45156 170.20864 134.16900

Table 3 Numerical solutions by CFDTM for occasional smokers o(t) at different values of order
ζ

o(t) ζ = 0.8 ζ = 0.9 ζ = 1

t = 0 10 10 10

t = 0.05 20.00159 17.19205 15.05589

t = 0.10 23.95158 21.53886 19.07557

t = 0.15 24.98654 24.04824 22.05904

t = 0.20 23.79569 24.97880 24.00630

t = 0.25 20.73104 24.47119 24.91734

t = 0.30 16.01388 22.61818 24.79217

t = 0.35 9.79929 19.48730 23.63079

t = 0.40 4.20349 15.13090 21.43320

t = 0.45 1.68228 9.59122 18.19939

t = 0.50 0.28400 2.90347 13.92938

don’t. People those who temporarily stopped smoking have more chances of quitting
the habit of smoking permanently. It can be seen that the result of the epidemic
system of Eq. (6) fully agrees with the result obtained by the conformable fractional
differential transform method by tabular values and in given figures for different
fractional order ζ.
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Table 4 Numerical solutions by CFDTM for s(t) for different values of order ζ

s(t) ζ = 0.8 ζ = 0.9 ζ = 1

t = 0 20 20 20

t = 0.1 17.02102 17.83730 18.42484

t = 0.2 15.18220 16.19461 16.99537

t = 0.3 13.79554 14.83357 15.71160

t = 0.4 12.73006 13.70102 14.57351

t = 0.5 11.92306 12.76993 13.58112

t = 0.6 11.33692 12.02332 12.73441

t = 0.7 10.94620 11.44928 12.03339

t = 0.8 10.73243 11.03887 11.47806

t = 0.9 10.68144 10.78505 11.06842

t = 1.0 10.78200 10.68207 10.80448

Table 5 Numerical solutions by CFDTM for q(t) for different values of order ζ

q(t) ζ = 0.8 ζ = 0.9 ζ = 1

t = 0 10 10 10

t = 0.1 12.69159 11.95858 11.42864

t = 0.2 14.32495 13.42918 12.71456

t = 0.3 15.53215 14.63096 13.85776

t = 0.4 16.43465 15.61330 14.85824

t = 0.5 17.09091 16.40147 15.71600

t = 0.6 17.53613 17.01138 16.43104

t = 0.7 17.79415 17.45426 17.00336

t = 0.8 17.88236 17.73855 17.43296

t = 0.9 17.81410 17.87091 17.71984

t = 1.0 17.60000 17.85679 17.86400

5 Conclusion

We wish to discuss the fractional order equations which are more approximate for
biological modelling. The proposed model depends on time and rapid growth of
smoking habits among populations. In the present work, we calculated the estimated
solutions by an analyticalmethod called conformable fractional differential transform
method for the current trending epidemological smoking model. We illustrated the
competence and validity of the suggested model based on smoking. The obtained
results are shown as fractional order series. The importance and logical approach of
the fractional order differential transform method is explained by the tabular values
and pictorial depiction. The manifest of considered model shows the productivity
and well-structured behaviour of fractional order. Following our results, the current
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Table 6 Numerical solutions by CFDTM solution for quit smokers l(t) at different values of order
ζ

l(t) ζ = 0.8 ζ = 0.9 ζ = 1

t = 0 5 5 5

t = 0.1 5.34244 5.24678 5.17887

t = 0.2 5.56519 5.44113 5.34548

t = 0.3 5.74310 5.60891 5.49983

t = 0.4 5.88996 5.75569 5.64192

t = 0.5 6.01224 5.88423 5.77176

t = 0.6 6.11380 5.99624 5.88933

t = 0.7 6.19718 6.09292 5.99465

t = 0.8 6.26425 6.17514 6.08771

t = 0.9 6.31641 6.24359 6.16851

t = 1.0 6.35476 6.29882 6.23705

situationwill continue for approximately years together. Our estimates give a number
of the order may increase, but to bring under control there are many precautions and
rehabilitation centres to overcome the smoking habits. Our graphical representation
gives us the clear picture that smoking habit can gradually decrease.
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Solvability of Infinite System of Volterra
Integral Equations in the Tempered
Spaces

Rahul and N. K. Mahato

Abstract In this paper, we discuss the existence solution of an infinite system of
Volterra integral equations with n-variables in the tempered sequence space, using
Hausdorff measure of noncompactness through Meir-Keeler condensing operator.
At the end, we have provided a suitable example to verify obtained result.

Keywords Measure of noncompactness (MNC) · Hausdorff MNC · Condensing
operators · Tempered space · Fixed point

1 Introduction

The initiality of MNC was done by Kuratowsi [1] in 1930. After that researchers
resolved various type of integral or differential equations, using MNC and Meir-
Keeler fixed point theory. In literature different type of MNC is defined in metric and
topological space, for example Hausdorff MNC, Kuratowski MNC, Istratescu MNC
(see [2]). The Hausdorff MNC was first introduced by Goldstein et al. [3] in 1957
and further studied was done by Goldenstein and Markus [4].

Recently, Banas and Krajewska [5] have introduced a new sequence space called
tempered sequence space. These tempered sequence spaces are constructed from the
known classical spaces with the help of a tempering sequence. For example, if we
take the classical space l p and the tempering sequence βn , then the new sequence
space �

β
p is understood as the space of all sequences (xn) such that the sequence

(βnxn) is in l p. It is worthwhile to mention that the initial sequence (xn) may or may
not be in l p, but after tempering the new sequence (βnxn) is in l p.
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After that Das and Hazarika [6] proved MNC in the tempered sequences and has
application on infinite systems of fractional differential equations. Recently, Reza
et al. [7] proved solutions of infinite systems of integral equations (IE) in n-variables
in the tempered sequence spaces cβ

0 and �
β
1 . So, motivated by Reza et al. [7], in this

work, we have studied the solution of infinite system of Volterra IE in n-variables in
the space of tempered sequence �

β
p, for 1 < p < ∞ by using MNC and Meir Keeler

condensing operator.

2 Preliminaries and Definitions

In this paper, we have used these notations, definitions, and preliminaries facts.
Let (E, ‖ . ‖) be real Banach space and B̄(ν0, ρ) be the closed ball with centered

ν0 and radius ρ. Let X̄ and ConvX are the closure and convex closure of X, for any
nonempty subsetX ofE. Also, letME is the set of all nonempty and bounded subsets
of E and NE is subsets of ME having all relatively compact sets. The definition of
MNC was introduced by Banas and Lecko [10].

Definition 1 A function Π : ME → [0,∞) is called a MNC if it satisfies:

(Π1) The family ker Π = {X ∈ ME : Π (X) = 0} �= φ and ker Π ⊂ NE.

(Π2) X ⊂ Y =⇒ Π (X) ≤ Π (Y) .

(Π3) Π
(
X̄
) = Π (X) .

(Π4) Π (ConvX) = Π (X) .

(Π5) Π (λX + (1 − λ)Y) ≤ λΠ (X) + (1 − λ)Π (Y) for λ ∈ [0, 1] .
(Π6) IfXn ∈ ME, Xn = X̄n, Xn+1 ⊂ Xn forn = 1, 2, 3, . . . and lim

n→∞ Π (Xn) =0,

then
⋂∞

n=1 Xn �= ∅.

Definition 2 ([8]) Amapping S onX is called aMeir-Keeler contraction if for given
ε > 0, we can find δ > 0 in such way that

ε ≤ d(u, v) < ε + δ =⇒ d (Su,Sv) < ε ∀u, v ∈ X.

Definition 3 ([9]) An operator S : X → X is a Meir-Keeler condensing (MKC)
operator if for given ε > 0, search δ > 0 s. t.

ε ≤ Π (X) < ε + δ =⇒ Π (S (X)) < ε,

for every nonempty, bounded subset X of E.

Theorem 1 ([9]) A continuous MKC operator S : C → C has at least one FP for
any nonempty, bounded, closed, and convex (NBCC) subset of E.
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3 Hausdorff MNC in Tempered Space

The norm on �
β
p for 1 < p < ∞ is define as

‖ h ‖
�
β
p
=
( ∞∑

i=1

βi |hi |p
) 1

p

.

The Hausdorff MNC χ is defined as

χ
�
β
p
(D) = lim

n→∞

⎡

⎣ sup
h(σ1,σ2,...,σn)∈D

(
∑

k≥n

βk |hk(σ1,σ2, . . . ,σn)|p
) 1

p

⎤

⎦ ,

whereh(σ1,σ2, . . . ,σn) = (hi (σ1,σ2, . . . ,σn))
∞
i=1 ∈ �

β
p for each (σ1,σ2, . . . ,σn) ∈

R
n+ and D ∈ M

�
β
p
.

Consider the following infinite system of IE

hn(σ1, . . . , σn)

= fn

(
σ1, . . . , σn,

a1(σ1)∫

0

, . . . ,

an (σn )∫

0

gn (σ1, . . . , σn, τ1, . . . , τn, h(τ1, . . . , τn)) dτ1, . . . , dτn,

h(σ1, . . . , σn)

)
, (1)

whereh(σ1,σ2, . . . ,σn) = (hi (σ1,σ2, . . . ,σn))
∞
i=1 , (σ1,σ2, . . . ,σn) ∈ R

n+, n ∈ N.

4 Solvability of the Infinite System of Volterra IE in the �
β
p

Space

We begin with the following assumptions to establish the solvability of (1) under the
following assumptions:

(a) a1, a2, . . . , an : R+ → R+ are continuous functions.
(b) fn : Rn+ × R × �

β
p → R (n ∈ N) are continuous functions along with

∑

n≥1

βn

∣∣ fn
(
σ1,σ2, . . . ,σn, 0, h

0(σ1,σ2, . . . ,σn)
)∣∣p → 0,

for any σ1,σ2, . . . ,σn ∈ R+ and h0(σ1,σ2, . . . ,σn) = (
h0n(σ1,σ2, . . . ,σn)

)∞
n=1

∈ �
β
p, where h0n(σ1,σ2, . . . ,σn)=0 ∀n ∈ N.Also, ∃ αn, γn : Rn+ → R+ (n ∈ N)

are continuous functions such that
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{∣∣∣∣ fn

(
σ1, . . . ,σn, p(σ1, . . . ,σn), h(σ1, . . . ,σn)

)

− fn

(
σ1, . . . ,σn, q(σ1, . . . ,σn), h̄(σ1, . . . ,σn)

)∣∣∣∣

p} 1
p

≤
(

αn(σ1, . . . ,σn)

∣∣
∣∣hn(σ1, . . . ,σn) − h̄n(σ1, . . . ,σn)

∣∣
∣∣

p) 1
p

+
(

γn(σ1, . . . ,σn)

∣∣∣∣p(σ1, . . . ,σn) − q(σ1, . . . ,σn)

∣∣∣∣

p) 1
p

,

where p, q : Rn+ → R, h(σ1, . . . ,σn) = (hi (σ1, . . . ,σn))
∞
i=1 , h̄(σ1, . . . ,σn) =

(
h̄i (σ1, . . . ,σn)

)∞
i=1 ∈ �

β
p.

(c) gn : Rn+ × �
β
p → R (n ∈ N) are continuous functions and Qk is defined as

Qk

= sup

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

n≥k

⎛

⎜
⎝βn

∣
∣
∣∣
∣∣
∣
γn (σ1, . . . , σn )

a1(σ1)∫

0

, . . . ,

an (σn )∫

0

gn (σ1, . . . , σn , τ1, . . . , τn , h(τ1, . . . , τn )) dτ1, . . . , dτn

∣
∣
∣∣
∣∣
∣

p⎞

⎟
⎠

1
p
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Also, as (σ1, . . . ,σn) → ∞,

[∑

n

{
βn

∣
∣
∣∣γn(σ1, . . . ,σn)

a1(σ1)∫

0

, . . . ,

a1(σn)∫

0

[
gn

(
σ1, . . . , σn, τ1, . . . , τn, h(τ1, . . . , τn)

)

− gn

(
σ1, . . . , σn, τ1, . . . , τn, h̄(τ1, . . . , τn)

)]
dτ1, . . . , dτn

∣
∣
∣∣

p}] 1
p = 0.

(d) Let an operator S on R
n+ × �

β
p to �

β
p as (σ1, . . . ,σn, h(σ1, . . . ,σn)) → (Sh)

(σ1, . . . ,σn), where

(Sh) (σ1, . . . ,σn)

= (β1 f1(σ1, . . . ,σn, v1(h), h(σ1, . . . ,σn)),β2 f2(σ1, . . . ,σn, v2(h), h(σ1, . . . ,σn)), . . . , ) ,

where vn(h) =
a1(σ1)∫

0

, . . . ,

an(σn)∫

0

gn (σ1, . . . ,σn, τ1, . . . , τn, h(τ1, . . . , τn))

dτ1, . . . , dτn .
(e) As k → ∞, Qk → 0, sup

k∈N
{Qk} = Q and sup {αn(σ1, . . . ,σn) : σ1, . . . ,σn

∈ R+, n ∈ N} = α, s. t. 0 < 2pα < 1 and for any σ1, . . . ,σn ∈ R+, γ =
supn

{
∑

n
βnγn(σ1, . . . ,σn)

}
< ∞.
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Theorem 2 The infinite system (1) with the assumptions (a)–(e) have at least one
solution h(σ1, . . . ,σn) = (hi (σ1, . . . ,σn))

∞
i=1 ∈ �

β
p for all σ1, . . . ,σn ∈ R+.

Proof Byusing (1) and applying assumptions (a)-(e), we have for everyσ1, . . . ,σn ∈
R+,

‖h(σ1, . . . , σn) ‖p

�
β
p

=
∑

n≥1

βn

∣
∣∣
∣ fn

(
σ1, . . . , σn ,

a1(σ1)∫

0

, . . . ,

an (σn )∫

0

gn(σ1, . . . , σn , τ1, . . . , τn , h(τ1, . . . , τn))dτ1, . . . , dτn , h(σ1, . . . , σn)

)∣∣∣
∣

p

≤ 2p
∑

n≥1

βn

∣∣
∣∣ fn

(
σ1, . . . , σn

a1(σ1)∫

0

an (σn )∫

0

gn

(
σ1, . . . , σn , τ1, . . . , τn , h(τ1, . . . , τn)

)
dτ1, . . . , dτn , h(σ1, . . . , σn)

)

− fn(σ1, . . . , σn , 0, h
0(σ1, . . . , σn))

∣
∣
∣∣

p

+ 2p
∑

n≥1

βn

∣
∣
∣∣ fn(σ1, . . . , σn , 0, h

0(σ1, . . . ,σn))

∣
∣
∣∣

p

≤ 2p
∑

n≥1

{
αn(σ1, . . . ,σn)βn

∣∣
∣
∣hn(σ1, . . . ,σn)

∣∣
∣
∣

p

+ 2p
∑

n≥1

γn(σ1, . . . , σn)βn

∣
∣∣
∣

a1(σ1)∫

0

, . . . ,

an (σn )∫

0

gn(σ1, . . . , σn , τ1, . . . , τn , h(τ1, . . . , τn))dτ1, . . . , dτn

∣
∣∣
∣

p}

≤ 2pα
∑

n≥1

βn

∣∣
∣
∣hn(σ1, . . . ,σn)

∣∣
∣
∣

p

+ 2p Q

= 2pα ‖ h(σ1, . . . ,σn) ‖ �β
p + 2p Q

i.e., (1 − 2pα) ‖ h(σ1, . . . ,σn) ‖ �
β
p ≤ 2pQ

⇒‖ h(σ1, . . . ,σn) ‖ �
β
p ≤ 2p Q

1−2pα
= ρp(say).

Therefore, we get ‖ h(σ1, . . . ,σn) ‖
�
β
p
≤ ρ. Let B̄ = B̄

(
h0(σ1, . . . ,σn), ρ

)
be the

closed ball having center h0(σ1, . . . ,σn) and radius ρ, so B̄ is NBCC subset of �
β
p.

Suppose an operator S = (Si ) on BC
(
R

n+, B̄
)
defined as, for every σ1, . . . ,σn ∈

R+,

(Sh) (σ1, . . . , σn) = {(βiSi h) (σ1, . . . ,σn)}∞i=1 = {βi fi (σ1, . . . , σn , vi (h), h(σ1, . . . , σn))}∞i=1 ,

where h(σ1, . . . ,σn) = (hi (σ1, . . . ,σn)) ∈ B̄ and ∀i ∈ N.
Since for every (σ1, . . . ,σn) ∈ R

n+, so by assumption (d) that

⎛

⎝
∑

i≥1

βi |(Si h) (σ1, . . . ,σn)|p
⎞

⎠

1
p

=
⎛

⎝
∑

i≥1

βi | fi (σ1, . . . ,σn, vi (h), h(σ1, . . . ,σn))|p
⎞

⎠

1
p

< ∞.

Hence, (Sh) (σ1, . . . ,σn) ∈ �
β
p.

Therefore, ‖ (Sh) (σ1, . . . ,σn) − h0(σ1, . . . ,σn) ‖
�
β
p
≤ ρ, so S is self mapping on

B̄.

Next, we have to prove that S is continuous mapping on B̄.
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Let ε > 0 and any hx (σ1, . . . ,σn) = (
hxi (σ1, . . . ,σn)

)∞
i=1 , h(σ1, . . . ,σn) =

(hi (σ1, . . . ,σn))
∞
i=1 ∈ �

β
p s. t. ‖ hx − h ‖

�
β
p
< ε

21/pα1/p .

We claim that ‖ (Shx ) (σ1, . . . ,σn) − (Sh) (σ1, . . . ,σn) ‖
�
β
p
→ 0. Then we will

prove thatβn| (Snhx ) (σ1, . . . ,σn) − (Snh) (σ1, . . . ,σn)|�β
p
→ 0. For (σ1, . . . ,σn) ∈

R
n+, we have

βn |(Snhx )(σ1, . . . , σn) − (Snh)(σ1, . . . , σn)|p
= βn | fn(σ1, . . . , σn, vn(hx ), hx (σ1, . . . , σn)) − fn(σ1, . . . , σn, vn(h), h(σ1, . . . , σn))|p
≤ βnα

∣
∣hxn (σ1, . . . , σn) − h(σ1, . . . , σn)

∣
∣p + γnβn(σ1, . . . , σn) |vn(hx ) − vn(h)|p

= αβn
∣
∣hxn (σ1, . . . , σn) − h(σ1, . . . , σn)

∣
∣p

+ γn(σ1, . . . , σn)βn

∣
∣∣
∣

a1(σ1)∫

0

, . . . ,

an (σn)∫

0

[
gn(σ1, . . . , σn, τ1, . . . , τn, hx (τ1, . . . , τn))

− gn(σ1, . . . , σn, τ1, . . . , τn, h(τ1, . . . , τn))

]
dτ1, . . . , dτn

∣∣
∣
∣

p

By assumption (c), we choose T > 0 as max (σ1, . . . ,σn) > T,

(∑

n

{
γn(σ1, . . . ,σn)βn

∣∣
a1(σ1)∫

0

. . .

an(σn)∫

0

[
gn (σ1, . . . ,σn, τ1, . . . , τn, hx (τ1, . . . , τn))

− gn(σ1, . . . ,σn, τ1, . . . , τn, h(τ1, . . . , τn))

]
dτ1, . . . , dτn

∣∣p
}) 1

p

<
εp

2
.

Hence,

(
∑

n

βn |(Snhx ) (σ1, . . . ,σn) − (Snh) (σ1, . . . ,σn)|p
) 1

p

≤ α
∑

n

βn

∣∣hxn (σ1, . . . ,σn) − h(σ1, . . . ,σn)
∣∣p + εp

2

< α
εp

2α
+ εp

2

i.e., ‖ (Shx) (σ1, . . . ,σn) − (Sh) (σ1, . . . ,σn) ‖
�
β
p
< ε. For σ1, . . . ,σn ∈ [0, T ], let

A1 = sup {a1(σ1) : σ1 ∈ [0, T ]} ,

...

An = sup {an(σn) : σn ∈ [0, T ]} and



Solvability of Infinite System of Volterra Integral … 419

g = sup

{
|gn(σ1, . . . , σn , τ1, . . . , τn , hx (τ1, . . . , τn))

− gn(σ1, . . . , σn , τ1, . . . , τn , h(τ1, . . . , τn))|, σi ∈ [0, T ] , τi ∈ [
0, Ai

]
, i = 1, 2, . . . , n

}
.

Then,

∑

n
βn |(Snhx ) (σ1, . . . , σn) − (Snh) (σ1, . . . ,σn)| <

εp

2
+ gp A1

p, . . . , An
p
∑

n
βnγn(σ1, . . . , σn)

<
εp

2
+ γgp A1

p, . . . , An
p .

Since gn is continuous on [0, T ]×, . . . ,× [0, T ] × [0, A1]×, . . . ,× [0, An]
× B̄, we have g → 0 as ε → 0, therefore we have

∑

n
βn

|(Snhx ) (σ1, . . . ,σn) − (Snh) (σ1, . . . ,σn)|p → 0 as ‖ hx (σ1, . . . ,σn) − h(σ1, . . . ,

σn) ‖ �
β
p → 0. Thus, S is continuous on B̄ ⊂ �

β
p.

Now, we have to show that S is a MKC operator.
Given ε > 0, search δ > 0 s. t. ε ≤ χ

(
Ē
)

< ε + δ =⇒ χ
(
S
(
Ē
))

< ε.
We have

χ(S
(
Ē
)
)

= lim
n→∞

[
sup

h(σ1,...,σn )∈Ē

⎧
⎨

⎩

∑

k≥n

βk | fk(σ1, . . . ,σn , vk (h), h(σ1, . . . ,σn))|p
⎫
⎬

⎭

1/p ]

≤ lim
n→∞

[
sup

h(σ1,...,σn )∈Ē

{
2p
(∑

k≥n

βk

(
αk (σ1, . . . ,σn) |hk (σ1, . . . ,σn)|p

+ γk(σ1, . . . ,σn)

∣∣
∣∣∣∣

a1(σ1)∫

0

, . . . ,

an (σn )∫

0

gk (σ1, . . . ,σn , τ1, . . . , τn , h(τ1, . . . , τn)) dτ1, . . . , dτn

∣∣
∣∣∣∣

p ))}1/p]

≤ lim
n→∞

⎡

⎣ sup
h(σ1,....,σn )∈Ē

{
2p

⎛

⎝α
∑

k≥n

βk |hk(σ1, . . . ,σn)|p
⎞

⎠ + 2pQn

}1/p
⎤

⎦ .

Observe that
χ
(
S
(
Ē
)) ≤ 2α1/pχ(Ē) < ε ⇒ χ

(
Ē
)

<
ε

2α1/p
,

which gives

sup
(σ1,...,σn)∈Rn+

{
χ
(
S
(
Ē
)) }≤ 2α1/p sup

(σ1,...,σn)∈Rn+

{
χ(Ē)

}
< ε ⇒ sup

(σ1,...,σn)∈Rn+

{
χ
(
Ē
) }

<
ε

2α1/p ,

i.e., χBC(Rn+,B̄)

(
S
(
Ē
)) ≤ 2α1/pχBC(Rn+,B̄)(Ē) < ε ⇒ χBC(Rn+,B̄)

(
Ē
)

< ε
2α1/p .

If δ = ε(1−2α1/p)
2α1/p , then we have

ε ≤ χBC(Rn+,B̄)

(
Ē
)

< ε + δ.
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Hence, S is a MKC operator on the set B̄ and fulfills all requirement of Theorem 1,
therefore S have a FP in B̄. Hence, Eq. (1) have a solution in B̄.

Example 1 Consider the following IE for any σ,σ1,σ2,σ3 ∈ R+

hn(σ1,σ2,σ3)

= sin(σ2
1 + σ3

2 + σ4
3)

3
hn(σ1,σ2,σ3) + 1

eσ1σ2σ3

σ1∫

0

σ2∫

0

σ3∫

0

cos

( ∞∑
i=1

hi (τ1, τ2, τ3)

)

5n + sin (hn(τ1, τ2, τ3))
dτ1dτ2dτ3,

where n ∈ N here a1(σ) = a2(σ) = a3(σ) = σ, and

fn(σ1,σ2,σ3, vn(h(σ1,σ2,σ3)), h(σ1,σ2,σ3))

= sin(σ2
1 + σ3

2 + σ4
3)

3
hn(σ1,σ2,σ3) + 1

eσ1σ2σ3
vn(h(σ1,σ2,σ3)),

vn(h(σ1,σ2,σ3)) =
σ1∫

0

σ2∫

0

σ3∫

0

gn (σ1,σ2,σ3, τ1, τ2, τ3, h(τ1, τ2, τ3)) dτ1dτ2dτ3, and

gn (σ1,σ2,σ3, τ1, τ2, τ3, h(τ1, τ2, τ3)) =
cos

( ∞∑

i=1
hi (τ1, τ2, τ3)

)

5n + sin (hn(τ1, τ2, τ3))
.

If h(σ1,σ2,σ3) ∈ �p, then

∞∑

n=1

| fn(σ1,σ2,σ3, vn(h(σ1,σ2,σ3)), h(σ1,σ2,σ3))|p

≤
(
2

3

)p ∞∑

n=1

∣
∣sin(σ2

1 + σ3
2 + σ4

3)hn(σ1,σ2,σ3)
∣
∣p + 2p

(σ1σ2σ3

eσ1σ2σ3

)p ∞∑

n=1

1

n
.

≤
(
2

3

)p

‖ h(σ1,σ2,σ3) ‖p
�p

+
(
2

e

)p ∞∑

n=1

1

n
.

Therefore ( fn(σ1,σ2,σ3, vn(h(σ1,σ2,σ3)), h(σ1,σ2,σ3))) /∈ �p.

If h(σ1,σ2,σ3) ∈ �
β
p, where βn = 1

n , then we have
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∞∑

n=1

βn | fn(σ1,σ2,σ3, vn(h(σ1,σ2,σ3)), h(σ1,σ2,σ3))|p

≤
(
2

3

)p ∞∑

n=1

βn

∣∣sin(σ2
1 + σ3

2 + σ4
3)hn(σ1,σ2,σ3)

∣∣p + 2p
(σ1σ2σ3

eσ1σ2σ3

)p ∞∑

n=1

βn

(
1

n

)

≤
(
2

3

)p

‖ h(σ1,σ2,σ3) ‖p

�
β
p
+
(
2

e

)p ∞∑

n=1

βn

(
1

n

)
.

Therefore ( fn(σ1,σ2,σ3, vn(h(σ1,σ2,σ3)), h(σ1,σ2,σ3))) ∈ �
β
p.

Now, if hx (σ1,σ2,σ3) = (
hxi (σ1,σ2,σ3)

) ∈ �
β
p, then

βn

∣∣∣
∣ fn(σ1,σ2,σ3, vn(hx(σ1,σ2,σ3)), hx (σ1,σ2,σ3))

− fn(σ1,σ2,σ3, vn(hy(σ1,σ2,σ3)), hy(σ1,σ2,σ3))

∣∣∣∣

p

≤
(

2

3n

)p ∣∣
∣∣hxn (σ1,σ2,σ3) − hyn (σ1,σ2,σ3)

∣∣
∣∣

p

+ 2p

n pepσ1σ2σ3

∣∣∣∣vn(hx(σ1,σ2,σ3)) − vn(hy(σ1,σ2,σ3))

∣∣∣∣

p

.

Here αn(σ1,σ2,σ3) = (
2
3n

)p
, γn(σ1,σ2,σ3) = 2p

n pepσ1σ2σ3 . Also, α = (
2
3

)p
.

We get 0 < 2pα < 1 and
∑

n≥1 βn

∣∣ fn
(
σ1,σ2,σ3, τ1, τ2, τ3, 0, h0(σ1,σ2,σ3)

)∣∣
goes to zero for every σ1,σ2,σ3 ∈ R+. Again, we get

∑

n≥k

βn |γn(σ1,σ2,σ3)vn(hx(σ1,σ2,σ3))|p

≤
(
2σ1σ2σ3

epσ1σ2σ3

)p ∑

n≥k

1

np+1

≤
(
2

e

)p ∑

n≥k

1

np+1
.

Also, Qk ≤ sup
n

{(
2

e

)p ∑

n≥k

1

np+1
: σ1,σ2,σ3, τ1, τ2, τ3 ∈ R+

}

.

As k → ∞ we get
∑

n≥k

1
np+1 → 0. Thus, Qk → 0 as k → ∞ and Q = (

2
e

)p
Bp.

Now, we have
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∑

n
βn

∣
∣∣
∣γn(σ1, σ2,σ3)

σ1∫

0

σ2∫

0

σ3∫

0

[
gn (σ1,σ2, σ3, τ1, τ2, τ3, hx (τ1, τ2, τ3))

− gn
(
σ1, σ2, σ3, τ1, τ2, τ3, hy(τ1, τ2, τ3)

) ]
dτ1dτ2dτ3

∣
∣∣
∣

p

≤
(
2σ1σ2σ3
epσ1σ2σ3

)p ∑

n

1

n p+1

≤
(
2σ1σ2σ3
epσ1σ2σ3

)p
Bp .

As σ1,σ2,σ3 → ∞, we have

lim
σ1,σ2,σ3→∞

∑

n

βn

∣∣∣∣γn(σ1, σ2, σ3)

σ1∫

0

σ2∫

0

σ3∫

0

[
gn (σ1, σ2, σ3, τ1, τ2, τ3, hx (τ1, τ2, τ3))

− gn
(
σ1, σ2, σ3, τ1, τ2, τ3, hy(τ1, τ2, τ3)

) ]
dτ1dτ2dτ3

∣∣∣∣

p

= 0.

If for any σ1,σ2,σ3 ∈ R+, we have γ = supn

{
∑

n
βnγn(σ1,σ2,σ3)

}
≤ (

2
e

)p
Bp <

∞.

Hence, fn and gn are continuous functions and satisfied all the assumptions of
Theorem 2. Hence, Eq. (1) has a solution in �

β
p.

5 Conclusions

The present study focuses on a new sequence space called �
β
p tempered space. First,

we established the existence results for infinite system of Volterra IE of n-variables
in �

β
p space, using MNC and MKC operator. At the end, an example is constructed

to support the newly achieved result.
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On Generalizations of Integral
Inequalities and Its Applications

S. G. Latpate and S. V. Babar

Abstract Thepresent researchpaper obtains nonlinear generality of integral inequal-
ities established by Pachpatte in [1]. These nonlinear integral inequalities are ser-
viceable to study solutions of certain differential and integral equations. The discrete
analogues of the main results are also given. Few applications are given to convey
the significance of our results.

Keywords Differential and integral equations · Discrete analogues · Explicit
bound · Integral inequality

1 Introduction

Integral inequalities perform a crucial role in the development of mathematical sci-
ences. Most of integral inequalities are useful to study qualitative properties of solu-
tions of differential and integral equations. To acquaint with the Gronwall–Bellman
inequality [2, 3], the study of qualitative properties of the solutions of certain dif-
ferential equations has been significant in the study of mathematical science. Many
other results on its generalizations may be seen in [1, 4–12].

In this paper, we obtain nonlinear generalizations of integral inequalities estab-
lished by Pachpatte in [1], which can be practicable to study the qualitative properties
of solutions of specific differential and integral equations. Mere applications are also
given to convey the significance of our results. HereR denotes the set of real numbers
andR+ := [0,∞) is a subset ofR. The following lemma is a main tool in our paper.

Lemma 1 If x ≥ 0, y ≥ 0 and 1
p + 1

q = 1 with p > 1, then
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x
1
p y

1
q ≤ x

p
+ y

q

with equality holds if and only if x = y.

2 Main Results

Here, we state and prove nonlinear integral inequalities, which can be utilized in the
analysis of properties of solutions of some differential and integral equations.

Theorem 1 Let u, x, y, g, and h be nonnegative real-valued continuous functions
defined on R+ and l ≥ m ≥ 1, where l and m are real constants. If

ul(p) ≤ x (p) + y (p)
∫ p

0

[
g(s)ul(s) + h(s)um(s)

]
ds (1)

for p ∈ R+, then

u(p) ≤
(
x (p) + y (p)

∫ p

0

[
g(s)x(s) + h(s)

(
l − m

l
+ mx(s)

l

)]

× exp

(∫ p

s
y(σ)

(
g(σ) + mh(σ)

l

)
dσ

)
ds

) 1
l

(2)

for p ∈ R+.

Proof We define z as follows:

z(p) =
∫ p

0

[
g(s)ul(s) + h(s)um(s)

]
ds, p ∈ R+. (3)

Subsequently z(0) = 0 and (1) becomes

ul(p) ≤ x (p) + y (p) z(p). (4)

Applying Lemmas (1)–(4), we get

um(p) ≤
(
l − m + mx(p)

l

)
+ my(p)z(p)

l
. (5)

Differentiating (3) and using (4) and (5), we get

z′(p) = g(p)ul(p) + h(p)um(p)
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and

z′(p) ≤ y(p)

(
g(p) + mh(p)

l

)
z(p) + g(p)x(p) + h(p)

(
l − m + mx(p)

l

)
.

(6)

Inequality (6) gives

z′(p) − y(p)

(
g(p) + mh(p)

l

)
z(p) ≤ g(p)x(p) + h(p)

(
l − m + mx(p)

l

)
.

Equivalently,

⎡
⎢⎢⎣ z(p)

exp

(∫ p

0
y(s)

(
g(s) + mh(s)

l

)
ds

)
⎤
⎥⎥⎦

′

≤ g(p)x(p) + h(p)

(
l − m + mx(p)

l

)
× exp

(
−
∫ p

0
y(s)

(
g(s) + mh(s)

l

)
ds

)
,

which yields

z(p)

exp

(∫ p

0
y(s)

(
g(s) + mh(s)

l

)
ds

)

≤ z(0)

+
∫ p

0

[
g(s)x(s) + h(s)

(
l − m + mx(s)

l

)]
× exp

(
−
∫ s

0
y(σ)

(
g(σ) + mh(σ)

l

)
dσ

)
ds.

Since z(0) = 0, we obtain

z(p) ≤
∫ p

0

[
g(s)x(s) + h(s)

(
l − m + mx(s)

l

)]

× exp

(∫ p

s
y(σ)

(
g(σ) + mh(σ)

l

)
dσ

)
ds. (7)

Now inequality (2) is easily obtained from (4) and (7).

Theorem 2 Let u, y, g, and h be nonnegative real-valued and continuous functions
on R+ and l ≥ m ≥ 1, where l and m are real constants. Let c be a positive real-
valued continuous and nondecreasing function on R+. If

ul(p) ≤ cl (p) + y (p)
∫ p

0

[
g(s)ul(s) + h(s)um(s)

]
ds (8)

for p ∈ R+, then
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u(p) ≤ c(p)

(
1 + y(p)

∫ p

0

[
g(s) + h(s)cm(s)

cl(s)

]
(9)

× exp

(∫ p

s
y(σ)

(
g(σ) + mh(σ)cm(σ)

l

)
dσ

)
ds

) 1
l

(10)

for p ∈ R+.

Proof From (8), we have

(
u(p)

c(p)

)l

≤ 1 + y(p)
∫ p

0

[
g(s)

(
u(s)

c(s)

)l

+ h(s)cm(s)

cl(s)

(
u(s)

c(s)

)m
]
ds. (11)

Applying Theorems (1)–(11), we get

u(p)

c(p)
≤
(
1 + y(p)

∫ p

0

[
g(s) + h(s)cm(s)

cl(s)

(
l − m

l
+ m

l

)]

× exp

(∫ p

s
y(σ)

(
g(σ) + mh(σ)cm(σ)

lcl(σ)

)
dσ

)
ds

) 1
l

.

Hence

u(p) ≤ c(p)

(
1 + y(p)

∫ p

0

[
g(s) + h(s)

cl−m(s)

]
× exp

(∫ p

s
y(σ)

(
g(σ) + mh(σ)

lcl−m(σ)

)
dσ

)
ds

) 1
l

.

Thus, the proof is complete.

Theorem 3 Let u, x, y, g, and h be nonnegative real-valued continuous functions
defined on R+ and l ≥ m ≥ 1, where l and m are real constants. Let k(·, ·) and
its partial derivatives ∂

∂ p k(p, s) be nonnegative real-valued continuous functions
defined for 0 ≤ s ≤ p < ∞. If

ul(p) ≤ x (p) + y (p)
∫ p

0
k(p, s)

[
g(s)ul(s) + h(s)um(s)

]
ds (12)

for p ∈ R+, then

u(p) ≤
{
x (p) + y (p)

∫ p

0
B(σ)exp

(∫ p

σ

A(τ )dτ

)
dσ

} 1
l

(13)

for p ∈ R+, where

A(p) := k(p, p)y(p)

(
g(p) + mh(p)

l

)
+
∫ p

0

∂

∂ p
k(p, s)y(s)

(
g(s) + mh(s)

l

)
ds (14)

and
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B(p) := k(p, p)

(
g(p)x(p) + h(p)

(
l − m + mx(p)

l

))

+
∫ p

0

∂

∂ p
k(p, s)

(
g(s)x(s) + h(s)

(
l − m + mx(s)

l

))
ds. (15)

Proof We denote z(p) by

z(p) =
∫ p

0
k(p, s)

[
g(s)ul(s) + h(s)um(s)

]
ds. (16)

So z(0) = 0 and (12) becomes

ul(p) ≤ x (p) + y (p) z(p). (17)

Making use of Lemmas (1)–(17), we obtain

um(p) ≤
(
l − m + mx(p)

l

)
+ my(p)z(p)

l
. (18)

Differentiating (16) and using (14), (15), (17), and (18), we obtain

z′(p) ≤ A(p)z(p) + B(p).

Equivalently,

⎛
⎜⎜⎝ z(p)

exp

(∫ p

0
A(τ )dτ

)
⎞
⎟⎟⎠

′

≤ B(p) exp

(
−
∫ p

0
A(τ )dτ

)
.

This gives

z(p)

exp

(∫ p

0
A(τ )dτ

) ≤ z(0) +
∫ p

0
B(σ)exp

(
−
∫ σ

0
A(τ )dτ

)
dσ. (19)

Now, Inequality (19) implies the estimate

z(p) ≤
∫ p

0
B(σ)exp

(∫ p

σ

A(τ )dτ

)
dσ. (20)

Substituting (20) in (17), we get (13) and hence proof is complete.



430 S. G. Latpate and S. V. Babar

3 Discrete Analogues

Now, we state and prove discrete analogues of inequalities from Sect. 2. Let N0 :=
{p0, p0 + 1, p0 + 2, . . .}, where p0 ∈ N0. For a function u : N0 → R+, we define an
operator Δ by Δu(p) = u(p + 1) − u(p), p ∈ N0 and for a function k : N2

0 → R+,
we define an operator Δ1 by Δ1k(p, s) = k(p + 1, s) − k(p, s) for p, s ∈ N0 with
p0 ≤ s ≤ p. For an empty set φ, we let

∑
s∈φ u(s) = 0 and

∏
s∈φ u(s) = 1.

Theorem 4 Let u, x, y, g, and h be nonnegative real-valued continuous functions
defined on N0 and l ≥ m ≥ 1 be a real constants. If

ul(p) ≤ x (p) + y (p)
p−1∑
q=p0

[
g(q)ul(q) + h(s)um(q)

]
(21)

for p ∈ N0, then

u(p) ≤
(
x (p) + y (p)

p−1∑
q=p0

[
g(q)u(q) + h(q)

(
l − m + mx(q)

l

)]

×
p−1∏

σ=q+1

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]⎞
⎠

1
l

(22)

for p ∈ N0.

Proof Denoting z(p) by

z(p) =
p−1∑
q=p0

[
g(q)ul(q) + h(q)um(q)

]
for p ∈ N0, (23)

we obtain z(p0) = 0 and

ul(p) ≤ x(p) + y(p)z(p). (24)

Applying Lemmas (1)–(24), we obtain

um(p) ≤
(
l − m + mx(p)

l

)
+ my(p)z(p)

l
. (25)

Using (24) and (25), we can write from (23) as follows:
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z (p + 1) − z (p)

≤ g(p) [x(p) + y(p)z(p)] + h(p)

[
l − m + mx(p) + my(p)z(p)

l

]

= g(p)x(p) + g(p)y(p)z(p) + h(p)

(
l − m + mx(p)

l

)
+ mh(p)y(p)z(p)

l

= y(p)

(
g(p) + mh(p)

l

)
z(p) + g(p)x(p) + h(p)

(
l − m + mx(p)

l

)
.

This gives

z(p + 1) −
(
1 + y(p)

(
g(p) + mh(p)

l

))
z(p) ≤ g(p)x(p) + h(p)

(
l − m + mx(p)

l

)
.

(26)

Multiplying both sides of (26) by
∏p−1

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1
, we obtain

z(p + 1)
p−1∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

− z(p)
p−2∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

≤
[
g(p)x(p) + h(p)

(
l − m + mx(p)

l

)]
×

p−1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

.

Taking p = s

z(s + 1)
s−1∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

− z(s)
s−2∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

≤
[
g(s)x(s) + h(s)

(
l − m + mx(s)

l

)]
×

s−1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

.

By summing over s from p0 to p − 1, we get

z(p0 + 1)
p0−1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

− z(p0)
p0−2∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

≤
[
g(p0)x(p0) + h(p0)

(
l − m + mx(p0)

l

)]
×

p0−1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1
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z(p0 + 2)
p0∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1
− z(p0 + 1)

p0−1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

≤
[
g(p0 + 1)x(p0 + 1) + h(p0 + 1)

(
l − m + mx(p0 + 1)

l

)]

×
p0∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)
.

]−1

z(p0 + 3)
p0+1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1
− z(p0 + 2)

p0∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

≤
[
g(p0 + 2)x(p0 + 2) + h(p0 + 2)

(
l − m + mx(p0 + 2)

l

)]

×
p0+1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

and so on.

z(p)
p−2∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

− z(p − 1)
p−3∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

≤
[
g(p − 1)x(p − 1) + h(p − 1)

(
l − m + mx(p − 1)

l

)]

×
p−2∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

.

Adding all these inequalities, we get

z(p)
p−2∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

− z(p0)

≤
p−1∑
s=p0

[
g(s)u(s) + h(s)

(
l − m + mx(s)

l

)]
×

s−1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

.

Putting z(p0) = 0, we get

z(p)
p−2∏

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

≤
p−1∑
s=p0

[
g(s)u(s) + h(s)

(
l − m + mx(s)

l

)]
×

s−1∏
σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]−1

.
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Multiplying both sides by
∏p−2

σ=p0

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]
on both sides, we

obtain

z(p) ≤
p−1∑
s=p0

[
g(s)u(s) + h(s)

(
l − m + mx(s)

l

)]
×

p−2∏
σ=s

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]
.

Replace σ by σ − 1, we have

z(p) ≤
p−1∑
s=p0

[
g(s)u(s) + h(s)

(
l − m + mx(s)

l

)]
×

p−1∏
σ=s+1

[
1 + y(σ)

(
g(σ) + mh(σ)

l

)]
.

(27)

Using (27) in (24), we get the required inequality (22).

Theorem 5 Let u, b, w, h be nonnegative real-valued continuous functions defined
on N0 and c be a positive real-valued nondecreasing function defined on N0. Let l
and m be real constants such that l ≥ m ≥ 1. If

ul(p) ≤ cl (p) + b (p)
p−1∑
s=p0

[
w(s)ul(s) + h(s)um(s)

]
(28)

for p ∈ N0, then

u(p) ≤ c(p)

(
1 + b(p)

p−1∑
s=p0

[
w(s)u(s)

c(s)
+ h(s)cm(s)

cl(s)

]

×
p−1∏

σ=s+1

[
1 + b(σ)

(
w(σ) + mh(σ)cm(σ)

lcl(σ)

)]) 1
l

. (29)

Proof From (28), we have

(
u(p)

c(p)

)l

≤ 1 + b(p)
p−1∑
s=p0

[
w(s)

(
u(s)

c(s)

)l

+ h(s)cm(s)

cl(s)

(
u(s)

c(s)

)m
]

. (30)

An application of Theorems (4)–(30) yields

u(p)

c(p)
≤
(
1 + b(p)

p−1∑
s=p0

[
w(s)u(s)

c(s)
+ h(s)cm(s)

cl(s)

(
l − m + m

l

)]

×
p−1∏

σ=s+1

[
1 + b(σ)

(
w(σ) + mh(σ)cm(σ)

lcl(σ)

)]) 1
l

.
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This gives

u(p) ≤ c(p)

(
1 + b(p)

p−1∑
s=p0

[
w(s)u(s)

c(s)
+ h(s)cm(s)

cl(s)

]

×
p−1∏

σ=s+1

[
1 + b(σ)

(
w(σ) + mh(σ)cm(σ)

lcl(σ)

)]) 1
l

.

Hence, the proof.

Theorem 6 Let u, a, b, g, and h be nonnegative real-valued functions on N0 and
k(p, s) andΔ1k(p, s) be nonnegative real-valued continuous functions for p, s ∈ N0

with p0 ≤ s ≤ p. Let l and m be real constants such that l ≥ m ≥ 1. If

ul(p) ≤ a(p) + b(p)
p−1∑
s=p0

k(p, s)
[
g(s)ul(s) + h(s)um(s)

]
(31)

for p ∈ N0, then

u(p) ≤
(
a(p) + b(p)

p−1∑
σ=p0

B̄(σ)

p−1∏
τ=σ+1

[
1 + Ā(τ )

]) 1
l

(32)

for p ∈ N0, where

Ā(p) := k(p + 1, p)b(p)

(
g(p) + mh(p)

l

)
+

p−1∑
s=p0

Δ1k(p, s)b(s)

(
g(s) + mh(s)

l

)

(33)

and

B̄(p) := k(p + 1, p)

[
g(p)a(p) + h(p)

(
l − m + ma(p)

l

)]

+
p−1∑
s=p0

Δ1k(p, s)

[
g(s)u(s) + h(s)

(
l − m + ma(s)

l

)]
. (34)

Proof Define a function z(p) by

z(p) =
p−1∑
s=p0

k(p, s)
[
g(s)ul(s) + h(s)um(s)

]
, p ∈ N0. (35)

Then z(p0) = 0 and (31) can be written as
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ul(p) ≤ a(p) + b(p)z(p). (36)

Applying Lemma (1)–(36), we obtain

um(p) ≤ l − m

l
+ ma(p)

l
+ mb(p)z(p)

l
. (37)

Using (33), (34), (36), and (37), we can write from (35) as follows:

z(p + 1) − z(p) ≤ Ā(p)z(p) + B̄(p).

This gives

z(p + 1) − [
1 + Ā(p)

]
z(p) ≤ B̄(p). (38)

Multiplying both sides of (38) by
∏p−1

σ=p0

[
1 + Ā(σ)

]−1
, we obtain

z(p + 1)
p−1∏

σ=p0

[
1 + Ā(σ)

]−1 − z(p)
p−2∏

σ=p0

[
1 + Ā(σ)

]−1 ≤ B̄(p)
p−1∏

σ=p0

[
1 + Ā(σ)

]−1
.

Taking p = s we get

z(s + 1)
s−1∏

σ=p0

[
1 + Ā(σ)

]−1 − z(s)
s−2∏

σ=p0

[
1 + Ā(σ)

]−1 ≤ B̄(s)
s−1∏

σ=p0

[
1 + Ā(σ)

]−1
.

Putting s = p0, p0 + 1, p0 + 2, . . . , p − 1 and taking summation for all inequalities,
we get

z(p)
p−2∏

σ=p0

[
1 + Ā(σ)

]−1 − z(p0) ≤
p−1∑
s=p0

B̄(s)
s−1∏

σ=p0

[
1 + Ā(σ)

]−1
.

Since z(p0) = 0, we have

z(p)
p−2∏

σ=p0

[
1 + Ā(σ)

]−1 ≤
p−1∑
s=p0

B̄(s)
s−1∏

σ=p0

[
1 + Ā(σ)

]−1
.

Multiplying both sides by
∏p−2

σ=p0

[
1 + Ā(σ)

]
, we get

z(p) ≤
p−1∑
s=p0

B̄(s)
p−2∏
σ=s

[
1 + Ā(σ)

]
.
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That is,

z(p) ≤
p−1∑

σ=p0

B̄(σ)

p−1∏
τ=σ+1

[
1 + Ā(τ )

]
. (39)

Now, using (39) in (36), we get (32) and the proof is complete.

4 Applications

Example 1 Consider the nonlinear differential inequality

u6(p) ≤ p2 + p3
∫ p

0

[
1

(1 + s)
u5(s) + 1

(1 + s)3
u4(s)

]
ds, p ∈ R+, (40)

where u is a nonnegative real-valued continuous function on R+.
Suppose that solution of (40) exists onR+. Then making use of Theorem 1 yields

u(p) ≤
(
p2 + p3

∫ p

0

[
1

6(1 + s)
+ 5s2

6(1 + s)
+ 1

3(1 + s)3
+ 2s2

3(1 + s)3

]

× exp

(∫ p

s
σ3

(
5

6(1 + σ)
+ 2

3(1 + σ)3

)
dσ

)
ds

} 1
6

(41)

for p ∈ R+. The right-hand side of (41) gives an exact bound on the solution of (40).

Example 2 Consider the nonlinear integral inequality

y8(p) ≤ g(p) +
∫ p

0
k(p, s)D(s, y(s))ds, p ∈ R+, (42)

where y and g are positive real-valued nondecreasing continuous functions defined
on R+ such that |g(p)| ≤ p8 and D, D are nonnegative real-valued continuous
functions defined on R+ × R+ such that |D(s, y(s))| ≤ s4|y6(s)| + s6|y4(s)| and
|K (p, s)| ≤ 1.

Suppose that solution of (42) exists on R+. Then (42) becomes

|y8(p)| ≤ p8 +
∫ p

0

[
s4|y6(s)| + s6|y4(s)|] ds.

Now, application of Theorem 2 yields
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|y(p)| ≤ p

(
1 + 2

∫ p

0
s2 × exp

(∫ p

s

(
3σ2

4
+ σ2

2

)
dσ

)
ds

) 1
8

≤ p

(
1 + 2

∫ p

0
s2 × exp

(
5(p3 − s3)

12

)
ds

) 1
8

≤ p

(
1 + 8

5

(
exp

5(p3 − s3)

12
− 1

)) 1
8

for p ∈ R+. This gives an explicit bound for the solution of (42).
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Solving Multi-objective Chance
Constraint Quadratic Fractional
Programming Problem

Berhanu Belay and Adane Abebaw

Abstract In this manuscript, the method of multi-objective chance constraint
quadratic fractional programming problem is presented. A multi-objective chance
constraint quadratic fractional programming problem is formulated by assuming
some parameters as continuous random variables following logistic distribution. In
the proposed mathematical model, only the right-hand side parameters are assumed
to be random variables following logistic distribution. The chance constraints are
handled by the concept of cumulative distribution function. After changing the pro-
posed stochastic model into an equivalent deterministic model, the lexicography
approach is used to get the Pareto optimal solution of the proposed model. The
resulting single-objective quadratic fractional programming problem is solved by
Dinkelbach algorithm together with LINGO 14.0 software. Finally, an example is
provided to illustrate the proposed method.

Keywords Multi-objective optimization · Stochastic programming · Fractional
programming · Quadratic programming · Lexicography method

1 Introduction

Many decision-making problems have multiple and conflicting objectives in real-
life problems which is termed as multi-objective programming (MOP) problem.
Some examples of multi-objective programming problem are maximizing profit and
minimizing cost, maximizing production and minimizing risk, maximizing quality
and minimizing cost in purchasing a car, etc. In an MOP problem, if the func-
tions to be optimized are the ratio of affine functions, then the problem is termed as
multi-objective linear fractional programming (MOLFP) problem. But if either of the
objective function is not linear, then theMOFPproblem is calledmulti-objective non-
linear fractional programming problem. Quadratic fractional programming (QFP)
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problem is a nonlinear fractional programming problem where the objective func-
tion is quadratic function having a set of linear equality or inequality constraints.
MOP problems may be uncertain due to randomness. In this case, the MOP problem
is called multi-objective chance constrained programming (MOCCP) problem.

2 Literature Review

InMOCCPproblem, it is challenging to get best compromise solutionwithout finding
its deterministic equivalent. To overcome this problem, [8] solved MOCCP problem
using a fuzzy programming method where the parameters follow continuous dis-
tribution. Reference [7] suggested genetic algorithm for stochastic fuzzy problems,
[3] derived the deterministic of the chance constraint, [12] explained fuzzy multiple
objective programming and its solution, [11] suggested an approach for probabilis-
tic programming by considering the data as a uniform random variable. Reference
[5] solved MOCCP problem when the parameters follow generalized distribution.
Reference [2] proposed a method for fuzzy probabilistic model with multiple objec-
tives that involve log normal random variables. Reference [10] solvedMOCCP prob-
lem by assuming the uncertain parameters as Weibull random variable. Reference
[14] obtained solution of MOP problems that have uncertain random variables. Ref-
erence [6] proposed parametric approach for both nonlinear and linear fractional
problem. Reference [9] proposed parametric approach for quadratic fractional pro-
gramming problem. Reference [13] presented the application of fractional program-
ming problem in economical and non-economical areas. Reference [1] proposed the
methodology for fractional programming with uncertain parameters, [4] proposed a
method for fuzzy fractional programming.

3 Mathematical Model of MOCC Quadratic Fractional

In any mathematical model if the objective function is the product of two affine
functions, then the programming problem is called linear factorized quadratic pro-
gramming problem. In anMOP problem if more than one quadratic fractional objec-
tives are optimized at the same time subject to given constraints, then it is called
multi-objective quadratic fractional programming problem. We consider a mathe-
matical model where the fractional objective functions are quadratic, multiple, in
commensurable and conflicting with each other. A multi-objective chance constraint
quadratic fractional programming (MOCCQFP) problem occurs when the quadratic
fractional objective functions are to bemaximized orminimized subject to probabilis-
tic constraints. Consider the following multi-objective chance constraint nonlinear
fractional programming problem:
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max : Zk = Nk(X)

Dk(X)
(1)

subject to
P(AX ≤ b) ≥ η (2)

0 < η < 1 (3)

X ≥ 0, (4)

where Nk(X) and Dk(X) are nonlinear functions. The probabilistic programming
problem given in (1)–(4) is said to beMOCCQFP problem, if either Nk(X) or Dk(X)

are quadratic functions. The objective function of QFP problem can be formulated
in different models. Among these functions, linear factorized quadratic function is
mostly knownandmathematically expressed as Nk (x j )

Dk (x j )
= (ct1k X+αk )(ct2k X+βk )

(dt
1k X+δk )(dt

2k X+ωk )
. Therefore

the MOCCQFP problem can be expressed as

max : Zk = (ct1k X + αk)(ct2k X + βk)

(dt
1k X + δk)(dt

2k X + ωk)
(5)

subject to
P(AX ≤ b) ≥ η (6)

0 < η < 1 (7)

X ≥ 0, (8)

where c1k , c2k , d1k , d2k ∈ Rn ,αk ,αk ,αk ,αk ∈ R, A ∈ Rmxn , η, b ∈ Rm and the factors
ct1k X + αk , ct2k X + βk , dt

1k X + δk , dt
2k X + ωk �= 0.

4 Deterministic Model

Let the random variable b follow logistic distribution with two parameters μ and γ

which are location and scale parameters, respectively. The deterministic equivalent of
the chance constrained is obtained by using probability distribution function (PDF).
The PDF of b is expressed as

f (b) = e
−

(
b−μ

γ

)

γ

(
1 + e

−
(

b−μ

γ

))2 (9)

− ∞ < b < ∞,−∞ < μ < ∞, γ > 0. (10)
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Now, to find the deterministic equivalent of the chance constraint, consider the fol-
lowing expression:

P

⎛
⎝

n∑
j=1

ai j x j ≤ bi

⎞
⎠ ≥ ηi (11)

P

⎛
⎝bi ≥

n∑
j=1

ai j x j

⎞
⎠ ≥ ηi . (12)

Let

yi =
n∑
j=1

ai j x j .

Then the probabilistic constraint (12) is written as

1 − P(bi ≤ yi ) ≥ ηi (13)

1 −
∫ yi

−∞
e
−

(
b−μi

γi

)

γi

(
1 + e

−
(

b−μi
γi

))2 dbi ≥ ηi , i = 1, 2, . . . ,m (14)

using integration by substitution and substituting the limit of integrations, we have

1 − 1

1 + e
−

(
yi−μi

γi

) ≥ ηi (15)

which is simplified as

e
−

(
yi−μi

γi

)
≥ ηi

1 − ηi
. (16)

Solving for yi , we have

yi ≤ −ln

(
ηi

1 − ηi

)
γi + μi (17)

⇒
n∑
j=1

ai j x j ≤ −ln

(
ηi

1 − ηi

)
γi + μi . (18)

Substituting (18) in (6), the deterministic equivalent of problems (5)–(8) is expressed
as follows:

max : Zk = (ct1k x j + αk)(ct2k x j + βk)

(dt
1k x j + δk)(dt

2k x j + ωk)
(19)
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subject to
n∑
j=1

ai j x j ≤ −ln

(
ηi

1 − ηi

)
γi + μi (20)

0 < ηi < 1 (21)

x j ≥ 0. (22)

5 Solution Procedure

Since theMOP problem given in (5)–(8) involves uncertain parameter, several objec-
tives, and fractional objectives, it is challenging to solve directly. The efficient solu-
tion is obtained by converting MOCCQFP problem into deterministic equivalent
MOQFP problem. Then Lexicography approach is applied to get the efficient solu-
tion of deterministic MOQFP problem. Lexicography is used as it is simple to use
and preferences are imposed by ordering the objective functions according to their
importance rather than assigning weights. Hence we use Dinkelbach algorithm for
finding solution of single-objective QFP problem. The algorithm is directly applied
to solveQFP problems. Parametric approach is themost well-knownmethod for frac-
tional programming problem (not necessarily linear). It is developed by Dinkelbach
[6]. The Dinkelbach algorithm for QFP problem is explained as follows. Consider
the single-objective QFP problem

max : Z = N (X)

D(X)
(23)

subject to
AX ≤ b (24)

X ≥ 0 (25)

suppose that
F(λ) = max{N (X) − λD(X)}, λ ∈ R. (26)

According to Dinkelbach’s vector X is an optimal solution of the programming
problem given in (23)–(25) if

F(λ∗) = max
x∈S {N (X) − λ∗D(X)} = 0, (27)

where S denotes the feasible set and λ∗ = N (X∗)
D(X∗) .
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The algorithm of Dinkelbach is described as follows:

step 0. Take x0 ∈ S as a starting solution, compute λ1 = N (x0)
D(x0) , set k = 1.

step 1. Determine xk = max{N (X) − λk D(X)}, X ∈ S.
step 2. If F(λk) = 0, then X∗ = Xk is an optimal solution, then stop the algorithm.

In this case, the optimal solution is solvedbyusing lingo software. The pseudocode
for Lingo is expressed as follows:
Start:// Model:// max /min = objective f unction;// evaluate the constraints;//
set the non negativity criteria;// end;//

step 3. Let λk+1 = N (Xk )

D(Xk )
, Set k = k + 1, go to step 1.

6 Numerical Example

Consider the following MOPQFP problem:

max Z1 = (2x1 + x2 + 1)(2x1 + x2 + 2)

2x1 + 2x2 + 2
(28)

max Z2 = (−8x1 − 4x2 − 4)(6x1 + 3x2 + 6)

5x1 + 5x2 + 5
(29)

subject to
P(x1 + 2x2 ≤ b1) ≥ 0.85 (30)

P(3x1 + x2 ≤ b2) ≥ 0.95 (31)

x1, x2 ≥ 0, (32)

where b1 and b2 are random variables that follow logistic distribution with known
parameters μ(b1) = 8, γ (b1) = 2, μ(b2) = 14, γ (b2) = 3.

Now, using Eqs. (19)–(22) the deterministic equivalent of the MOPQFP problem
is expressed as follows:

max Z1 = (2x1 + x2 + 1)(2x1 + x2 + 2)

2x1 + 2x2 + 2
(33)

max Z2 = (−8x1 − 4x2 − 4)(6x1 + 3x2 + 6)

5x1 + 5x2 + 5
(34)
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subject to
x1 + 2x2 ≤ 4.531 (35)

3x1 + x2 ≤ 5.167 (36)

x1, x2 ≥ 0. (37)

Apply lexicographymethod to obtain the efficient solution of the given programming
problem. Now, optimize the first objective function Z1 as follows:

max Z1 = (2x1 + x2 + 1)(2x1 + x2 + 2)

2x1 + 2x2 + 2
(38)

subject to
x1 + 2x2 ≤ 4.531 (39)

3x1 + x2 ≤ 5.167 (40)

x1, x2 ≥ 0. (41)

Now, let’s apply the Dinkelbach algorithm for QFP problem as follows:

step 0: Take X0 = (x1, x2) = (0, 0) as a starting point which is the feasible solu-
tion and compute λ1 = N (X∗)

D(X∗) , i.e., λ
1 = 1.

step 1: Determine max{N (X) − λ1D(X)}, X ∈ S. This step is expressed as fol-
lows:

F(λ1) = max(2x1 + x2 + 1)(2x1 + x2 + 2) − λ1(2x1 + 2x2 + 2) (42)

subject to
x1 + 2x2 ≥ 4.531 (43)

3x1 + x2 ≤ 5.167 (44)

x1, x2 ≤ 0. (45)

step 2: Check F(λ1) is zero or not. Hence solving (42)–(45) using LINGO, we
have X1 = (1.1606, 1.6852) and F(λ1) = 20.37884 �= 0.

step 3: Repeating steps 1 and 2 until max{N (X) − λk D(X)}, X ∈ S = 0. There-
fore optimize the following programming problem:

F(λ2) = max(2x1 + x2 + 1)(2x1 + x2 + 2) − λ2(2x1 + 2x2 + 2), λ2 = N (X1)

D(X1)
= 3.909517

(46)
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subject to
x1 + 2x2 ≥ 4.531 (47)

3x1 + x2 ≤ 5.167 (48)

x1, x2 ≤ 0. (49)

Again solving (46)–(49) using LINGO, we have X2 = (1.72233, 0) and F(λ2) =
2.913712 �= 0.
Proceeding the same procedure we obtain X5 = (1.722333, 0) and F(λ5) = 0.

Therefore, the optimal solution of the programming problem (38)–(41) is (x1, x2)
= (1.722333, 0) and the value of Z1 is 4.444666. Similarly, optimize the second
objective function subject to the original constraint and the maximization of the
prior objective function max Z1(x) is considered as one of the constraints in addition
to the original constraints.

max Z2 = (−8x1 − 4x2 − 4)(6x1 + 3x2 + 6)

5x1 + 5x2 + 5
(50)

subject to
x1 + 2x2 ≤ 4.531 (51)

3x1 + x2 ≤ 5.167 (52)

(2x1 + x2 + 1)(2x1 + x2 + 2)

2x1 + 2x2 + 2
≥ 4.444666 (53)

x1, x2 ≥ 0. (54)

Here (2x1+x2+1)(2x1+x2+2)
2x1+2x2+2 ≥ 4.444666 is included in the constraint. Apply the Dinkel-

bach algorithm to find the optimal solution of the QFP problem (50)–(54).

step 0: Take X0 = (x1, x2) = (1.722333, 0) as a starting solution which is the
feasible solution and compute λ1 = N (X0)

D(X0 , i.e., λ1 = −21.33439668.

step 1: Determine max{N (X) − λ1D(X)}, X ∈ S. This step is expressed as fol-
lows:

F(λ1) = (−8x1 − 4x2 − 4)(6x1 + 3x2 + 6) − λ1(5x1 + 5x2 + 5) (55)

subject to
x1 + 2x2 ≤ 4.531 (56)

3x1 + x2 ≤ 5.167 (57)
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(2x1 + x2 + 1)(2x1 + x2 + 2)

2x1 + 2x2 + 2
≥ 4.444666 (58)

x1, x2 ≥ 0. (59)

step 2: Check F(λ1) is zero or not. Hence solving (55)–(59) using LINGO, we
have X1 = (1.722333, 0) and F(λ1) = −0.1633400E − 05 �= 0.

step 3: Repeating steps 1 and 2 until max{N (X) − λk D(X)}, X ∈ S = 0. There-
fore optimize the following programming problem:

F(λ2) = (−8x1 − 4x2 − 4)(6x1 + 3x2 + 6) − λ2(5x1 + 5x2 + 5), λ2 = N (X1)

D(X1)
= −21.33439668

(60)
subject to

x1 + 2x2 ≤ 4.531 (61)

3x1 + x2 ≤ 5.167 (62)

(2x1 + x2 + 1)(2x1 + x2 + 2)

2x1 + 2x2 + 2
≥ 4.444666 (63)

x1, x2 ≥ 0. (64)

Again solving (46)–(49) using LINGO, we have X2 = (1.72233, 0) and F(λ2) =
−0.1633400E − 05 �= 0.
Proceeding the same procedure we obtain the same value Xk = (1.722333, 0)
and F(λk) = −0.1633400E − 05, k = 2, 3 . . .

Therefore, the optimal solution of the programming problem (50)–(54) is (x1, x2) =
(1.722333, 0) and the value of Z2 is −21.3343968.

This gives one of the efficient solutions for the original MOPQFP problem which
is x1 = 1.722333, 0, with max Z1 = 4.444666., max Z2 = −21.3343968.

In any multi-objective QFP problem, there exist number of good efficient solu-
tions. These efficient solutions are equally acceptable. Choosing the efficient solution
depends on the situation that decision-makers preferred. The preference of decision-
maker depends on different conditions like budget, rowmaterial, resource, time limit,
etc. Therefore, having more efficient solution to multi-objective QFP problem is nec-
essary for decision-makers to select the best solution among the given alternatives
which satisfies their need and capacity.

Hence, one can find more than one efficient solution for the above programming
problem by applying the above procedure. In this case, first choose the second objec-
tive function and optimize it subject to the given constraints. Finally, optimizing the
first objective function Z1 subject to the original constraint and the maximization
of the prior objective function max Z2(x) is considered as one of the constraints in
addition to the original constraints.
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7 Conclusion

In the manuscript, MOCCQFP problem is solved by finding the deterministic equiv-
alent using cumulative distribution function. An MOCCQFP problem is formulated
by taking the parameters in right-hand side as random variables following logistic
distribution. In this model, randomness has been used in the right-hand side parame-
ters and not in the objective functions, nor as the coefficient present in the constraints.
The resulting MOQFP problem is directly solved by lexicography method. This is
important for decision-makers to make a good decision by considering all the possi-
ble directions. The theoretical implication of the proposed method is that it is used
to get alternative non-dominated solutions for which the decision-maker can eas-
ily select the best compromise solutions. Besides this theoretical implication, the
method has managerial implication for real-life problems. The single-objective QFP
problem is solved by Dinkelbach algorithmwhich is easy to find the optimal solution
of fractional optimization problem. Once the Dinkelbach algorithm is applied, then
Lingo is applied to find the optimal solution of the crisp problem. The method can
be extended to multi-objective fuzzy probabilistic quadratic fractional programming
problems.
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Higher Order Variational Symmetric
Duality Over Cone Constraints

Sony Khatri and Ashish Kumar Prasad

Abstract The prime objective of our discussions moves around the higher order
variational symmetric dual pairs for which constraints are defined over cones and
to explore relevant duality relations for the constructed duals. Making use of higher
order η-invexity, we derive appropriate duality results and validate the obtained
results with the help of numerical examples. Further, we discuss the static case of
the considered dual problems.

Keywords Higher order η-invexity · Symmetric duality · Cone constraints ·
Variational problem

1 Introduction

Variational principles provide a broad spectrum of mathematical theory for solving
modeling problems studied in dynamical systems that have developed along with the
study of optimization, stability, and control theory. Initially, it started with the expe-
dition of variations around a point within the bounds specified by constraints. Several
investigations were extensively made which required notions of generalized differ-
entiability. The development of nonsmooth analysis opened various new dimensions
rooted in the basic variational principles requiring duality results to be established
for such problems.

Dantzig [3] was the first to introduce the concept of symmetric duality by extend-
ing the work of Dorn [4] to such problems. Bazaraa and Goode [1] examined these
results taking convex and concave functions. Mangasarian [12] studied the duals

S. Khatri · A. K. Prasad (B)
Vellore Institute of Technology, Vellore, TN 632014, India
e-mail: ashishprasa@gmail.com

S. Khatri
e-mail: sony.khatri2019@vitstudent.ac.in

A. K. Prasad
Presidency University, Bangalore 560064, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
B. Rushi Kumar et al. (eds.), Mathematics and Computing, Springer Proceedings in
Mathematics & Statistics 415, https://doi.org/10.1007/978-981-19-9307-7_37

453

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9307-7_37&domain=pdf
mailto:ashishprasa@gmail.com
mailto:sony.khatri2019@vitstudent.ac.in
https://doi.org/10.1007/978-981-19-9307-7_37


454 S. Khatri and A. K. Prasad

formulated by superimposing second-order as well as higher order terms with view-
point of obtaining closer bounds. Mond and Weir [13] introduced the concept of
another type of dual for nonlinear programming problems where both primal and
dual were akin to each other. Chen [2] established duality results by incorporat-
ing support functions to deal higher order multiobjective programming problems.
Khurana [11] examined the results needed to study dual relations for Mond–Weir-
type multiobjective symmetric programming problems over arbitrary cones. Kaseem
[8, 9] investigated the multiobjective nonlinear programming problems containing
first-order symmetric dual program constraining the functions to be convex and
concave and proposed all the three duality results over cone constraints utilizing
F-convexity. Jayswal et al. [7] constructed a dual pair consisting of second-order
multiobjective symmetric variational control problems. Prasad et al. [14] focused on
second-order fractional variational problems and derived several duality theorems.
Yang [17] focused on duality results for the first-order symmetric dual program with
the help of invexity and derived suitable criteria for dual constructions.

Gupta and Gulati [5] studied higher order symmetric dual problems where con-
straints are defined over cones. Recently, Jayswal et al. [6] magnified the work to
fractional symmetric dual model, whereas Suneja and Louhan [15] elongated the
same using higher order cone invexity. Furthermore, Verma et al. [16] introduced a
novel approach to study higher order multiobjective symmetric dual problems using
cone invexity. Sharma and Kaur [10] focused on higher order symmetric fractional
multiobjective problems over cones and explored various theorems of dual formula-
tions with the help of higher order (φ, ρ) cone convex function.

In the next few sections, we concentrate on higher order variational symmetric
problems constructed over cone constraints and introduce well-suited duality results
using higher order η-invexity. The planning of the article is as per the following
scheme. In Sect. 2, we compile the higher order η invex function and some definitions
based on which our investigations are carried out. A numerical example is also
constructed in order to authenticate the definition used in this article. In Sect. 3, we
get into a higher order variational symmetric fractional problems where constraints
are depicted over cones and extract compulsory duality results and conclusions in
the last two sections.

2 Preliminaries

R
n denotes ordered n-tuples of reals and R

n+ denotes the set of all elements of Rn

whose each component is nonnegative. We use subscript “T” to denote transpose of
a matrix.

Definition 2.1 A subset C ⊂ R
n characterized by

0 ≤ λ ∈ R, π ∈ C ⇒ λπ ∈ C

is known as a cone.
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Definition 2.2 For any cone C, its polar cone C∗ is mathematically represented as

C∗ = {π̃ : πT π̃ � 0, ∀ π ∈ C}.

Definition 2.3 The functional
∫ τ2
τ1

f (t, �, �̇) dt is known to be higher order η-invex
at ϑ ∈ R

n w.r.t. h : I × R
n × R

n �→ R provided there exists a suitable function η :
I × R

n × R
n �→ R

n satisfying

∫ τ2

τ1

f (t, �, �̇) dt −
∫ τ2

τ1

f (t, ϑ, ϑ̇) dt −
∫ τ2

τ1

h(t, ϑ, ϑ̇, p)dt +
∫ τ2

τ1

pt∇ph(t, ϑ, ϑ̇, p)dt

�
∫ τ2

τ1

[η(t, �, ϑ)T {∇� f (t, ϑ, ϑ̇) + D∇�̇ f (t, ϑ, ϑ̇) + ∇ph(t, ϑ, ϑ̇, p)}]dt.

Now, we display a suitable example in order to show the existence of higher order
η-invex functions that is not second-order η-invex.

Example 2.1 Let ℵ ⊂ R
2+ and π = (π1, π2) ∈ ℵ, ω = (ω1, ω2) ∈ ℵ and a = (a1,

a2) ∈ R
2. Define f : I × ℵ × ℵ �→ R by f (t, π, π̇) = cosπ1 + cosπ2;, η : I ×

ℵ × ℵ �→ R
2 by η(t, π, ω) = (π1ω1 − 1, π2ω2 + 1) and h : I × ℵ × ℵ �→ R by

h(t, ω, ω̇, p) = −p2
1eω1 − p2

2eω2 . We take ω = (0, 0); a = (1, 1) and I = [0, 1].

∫ 1

0
f (t, π, π̇) dt −

∫ 1

0
f (t, ω, ω̇) dt −

∫ 1

0
h(t, ω, ω̇, p)dt +

∫ 1

0
pt∇ph(t, ω, ω̇, p)dt

−
∫ 1

0
[η(t, π, ω)T {∇π f (t, ω, ω̇) − D∇π̇ f (t, ω, ω̇) − ∇ph(t, ω, ω̇, p)}]dt

=
∫ 1

0
(cosπ1 + cosπ2 − cosω1 − cosω2)dt −

∫ 1

0
(−p2

1eω1 − p2
2eω2)

+(p1, p2)

[−2p1eω1

−2p2eω2

]

dt

=
∫ 1

0
(cosπ1 + cosπ2 − cosω1 − cosω2)dt −

∫ 1

0
(−3p2

1eω1 − 3p2
2eω2)dt

=
∫ 1

0
(cosπ1 + cosπ2)dt + 4 ≥ 0,

which agrees that f is indeed higher order invex. The following discussion makes it
clear that f is not second-order invex.
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∫ 1

0

(

f (t, π, π̇) − f (t, ω, ω̇) + 1

2
pT ∇ππ f (t, ω, ω̇)p − η(t, π, ω)T (∇π f (t, ω, ω̇)

+∇ππ f (t, ω, ω̇)p)

)

dt

=
∫ 1

0
(cosπ1 + cosπ2 − cosω1 − cosω2) + 1

2
(p1, p2)

[− cosω1 0
0 − cosω2

] [
p1

p2

]

− (π1ω1 − 1, π2ω2 + 1)

[− sinω1

− sinω2

]

+
[− cosω1 0

0 − cosω2

] [
p1

p2

]

=
∫ 1

0
(cosπ1 + cosπ2 − cosω1 − cosω2) + 1

2
[−p1

2 cosω1 − p2
2 cosω2]

−(π1ω1 − 1, π2ω2 + 1)

[
sinω1 − p1 cosω1

sinω2 − p2 cosω2

]

=
∫ 1

0
(cosπ1 − cosπ2 − 3)dt

≤ 0, ∀ π ∈ ℵ.

In the coming sections, let us consider C1 and C2 stand for closed convex cones
in R

n and R
m , respectively, having nonempty interiors. Let ℵ1 ⊂ R

n and ℵ2 ⊂ R
m

be open sets such that C1 × C2 ⊂ ℵ1 × ℵ2. Also, η1 : I × ℵ1 × ℵ1 �→ R
n and η2 :

I × ℵ2 × ℵ2 �→ R
m .

3 Higher Order Variational Symmetric Dual Formulations

In the present paper, we investigate the following order symmetric variational dual
problem where constraints are defined over cones.

(VSP) Min
∫ τ2

τ1

( f (t, δ, δ̇, �, �̇) + h(t, δ, δ̇, �, �̇, p) − pT ∇ph(t, δ, δ̇, �, �̇, p))dt

s.t
δ(τ1) = 0 = δ(τ2), δ̇(τ1) = 0 = δ̇(τ2),

�(τ1) = 0 = �(τ2), �̇(τ1) = 0 = �̇(τ2),

∇� f (t, δ, δ̇, �, �̇) − D∇�̇ f (t, δ, δ̇, �, �̇) + ∇ph(t, δ, δ̇, �, �̇, p) ∈ C∗
2 , (1)
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�T [∇� f (t, δ, δ̇, �, �̇) − D∇�̇ f (t, δ, δ̇, �, �̇) + ∇ph(t, δ, δ̇, �, �̇, p) ≥ 0, (2)

δ(t) ∈ C1, t ∈ I.

(VSD) Max
∫ τ2

τ1

( f (t, ϑ, ϑ̇, σ, σ̇ ) + g(t, ϑ, ϑ̇, σ, σ̇ , q) − qT ∇q g(t, ϑ, ϑ̇, σ, σ̇ , q)) dt

s.t
ϑ(τ1) = 0 = ϑ(τ2), ϑ̇(τ1) = 0 = ϑ̇(τ2),

σ (τ1) = 0 = σ(τ2), σ̇ (τ1) = 0 = σ̇ (τ2),

− [∇δ f (t, ϑ, ϑ̇, σ, σ̇ ) − D∇δ̇ f (t, ϑ, ϑ̇, σ, σ̇ ) + ∇q g(t, ϑ, ϑ̇, σ, σ̇ , q)] ∈ C∗
1 , (3)

ϑT [∇δ f (t, ϑ, ϑ̇, σ, σ̇ ) − D∇δ̇ f (t, ϑ, ϑ̇, σ, σ̇ ) + ∇q g(t, ϑ, ϑ̇, σ, σ̇ , q)] ≤ 0, (4)

σ(t) ∈ C2, t ∈ I,

where
(i) f : I × ℵ1 × ℵ1 × ℵ2 × ℵ2 → R+,
(ii) h, g : I × ℵ1 × ℵ1 × ℵ2 × ℵ2 × R

m �→ R are differentiable functions, and
(iii) p ∈ R

m and q ∈ R
n .

In order that the problem is suitably defined, we enforce nonnegativity on numerators
and positivity on denominators.

4 Duality Results

In the present section, we derive the relevant duality relations for the dual pair con-
sidered in this paper.

Theorem 1 (WeakDuality)Let (δ, �, p)and (ϑ, σ, q)be solutions feasible to primal
(VSP) and dual (VSD), respectively. Further, hypothesize the following conditions:

(a)
∫ τ2
τ1

( f (t, ., ., σ (t), σ̇ (t)) dt is higher order invex at ϑ(t) w.r. t. η1 and

g(t, ϑ, ϑ̇, σ, σ̇ , q),
(b) − ∫ τ2

τ1
f (t, δ(t), δ̇(t), ., .) dt is higher order invex at �(t) w.r.t. η2 and

−h(t, δ, δ̇, �, �̇, p),
(c) (η1(t, δ(t), ϑ(t)) + ϑ)T ∈ C1,∀ δ(t) ∈ C1, t ∈ I,
(d) (η2(t, σ (t), �(t)) + �)T ∈ C2,∀ σ(t) ∈ C2, t ∈ I.

Then
∫ τ2
τ1

( f (t, δ, δ̇, �, �̇) + h(t, δ, δ̇, �, �̇, p) − pT ∇ph(t, δ, δ̇, �, �̇, p))dt

�
∫ τ2
τ1

( f (t, ϑ, ϑ̇, σ, σ̇ ) + g(t, ϑ, ϑ̇, σ, σ̇ , q) − qT ∇q g(t, ϑ, ϑ̇, σ, σ̇ , q)) dt .
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Proof Let (δ, �, p) and (ϑ, σ, q) be solutions feasible to (VSP) and (VSD). Using
constraint (3) in condition (c), we get

−(η1(t, δ, ϑ) + ϑ)T [∇δ f (t, ϑ, ϑ̇, σ, σ̇ ) − D∇δ̇ f (t, ϑ, ϑ̇, σ, σ̇ ) + ∇q g(t, ϑ, ϑ̇, σ, σ̇ , q)] � 0.

On account of relation (4), the above relation turns out to be

(η1(t, δ, ϑ))T [∇δ f (t, ϑ, ϑ̇, σ, σ̇ ) − D∇δ̇ f (t, ϑ, ϑ̇, σ, σ̇ )

+ ∇q g(t, ϑ, ϑ̇, σ, σ̇ , q] � 0. (5)

Using supposition (d) and constraint (1), we arrive at

(η2(t, σ, �) + �)T [∇� f (t, δ, δ̇, �, �̇) − D∇�̇ f (t, δ, δ̇, �, �̇) + ∇ph(t, δ, δ̇, �, �̇, p)] � 0,

which by the virtue of (2) becomes

(η2(t, σ, �))T [∇� f (t, δ, δ̇, �, �̇) − D∇�̇ f (t, δ, δ̇, �, �̇)

+ ∇ph(t, δ, δ̇, �, �̇, p)] � 0. (6)

Since
∫ τ2
τ1

f (t, ., ., σ, σ̇ )dt be higher order η1 − invex atϑ for fixedσ(t)with respect
to g, the above inequality yields

∫ τ2

τ1

f (t, δ, δ̇, σ, σ̇ )dt −
∫ τ2

τ1

f (t, ϑ, ϑ̇, σ, σ̇ )dt −
∫ τ2

τ1

g(t, ϑ, ϑ̇, σ, σ̇ , q)dt

+
∫ τ2

τ1

qT ∇q g(t, ϑ, ϑ̇, σ, σ̇ , q)dt � 0. (7)

Similarly,

∫ τ2

τ1

f (t, δ, δ̇, �, �̇)dt −
∫ τ2

τ1

f (t, δ, δ̇, σ, σ̇ )dt +
∫ τ2

τ1

h(t, δ, δ̇, �, �̇, p)dt

−
∫ τ2

τ1

pT ∇ph(t, δ, δ̇, �, �̇, p)dt � 0. (8)

From the inequalities (7) and (8) mentioned above, we get∫ τ2
τ1

( f (t, δ, δ̇, �, �̇) + h(t, δ, δ̇, �, �̇, p) − pT ∇ph(t, δ, δ̇, �, �̇, p))dt �
∫ τ2
τ1

( f (t, ϑ, ϑ̇, σ, σ̇ ) + g(t, ϑ, ϑ̇, σ, σ̇ , q) − qT ∇q g(t, ϑ, ϑ̇, σ, σ̇ , q)) dt .
This configures the proof of the statement.

Theorem 2 (Strong Duality) Assume (δ̄, �̄, p̄) be a solution locally optimal to
(VSP). Presume the following conditions:
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(i) ∇δh(t, δ̄, ˙̄δ, �̄, ˙̄�, 0) = ∇q g(t, δ̄, ˙̄δ, �̄, ˙̄�, 0),

∇δ′ h(t, δ̄, ˙̄δ, �̄, ˙̄�, 0) = ∇q ′ g(t, δ̄, ˙̄δ, �̄, ˙̄�, 0),

∇δ′′ h(t, δ̄, ˙̄δ, �̄, ˙̄�, 0) = ∇q ′′ g(t, δ̄, ˙̄δ, �̄, ˙̄�, 0)…

∇δ(2n) h(t, δ̄, ˙̄δ, �̄, ˙̄�, 0) = ∇q(2n) g(t, δ̄, ˙̄δ, �̄, ˙̄�, 0).

(i i) the specified matrix ∇pph(t, δ̄, ˙̄δ, �̄, ˙̄�) is negative definite or positive definite,
(i i i) (∇� f − D∇�

′ f + ∇ph) �= 0,
(iv) for choosen p̄ ∈ R

m,

p̄T (∇� f − D∇�
′ f + ∇ph) = 0

implies p̄ = 0, and
(v)

D
[
(∇δ′ f + ∇q ′ g) + D2(∇δ′′ f + ∇q ′′ g) − D3(∇δ′′′ f + ∇q ′′′ g) + · · · +

D2n(∇δ(2n) f + ∇q(2n) g)
]

= 0.

Then (δ̄, �̄, q̄ = 0) is a solution feasible to (VSD) and both objectives produces equal
output. If, in addition, the conditions of Theorem 1 are fulfilled, for every solution
feasible to (VSP) and (VSD), then (δ̄, �̄, p̄ = 0) and (δ̄, �̄, q̄ = 0) is a solution
globally optimal to (VSP) and (VSD), respectively.

Proof Since (δ̄, �̄, p̄) is an absolute maximal or minimal solution to (VSP), there
exists α ∈ R, β ∈ R, γ ∈ C2 and ξ ∈ R satisfying Fritz John optimality criteria at
the point (�̄(t), δ̄(t), p̄(t)) given below:

β
[
(∇δ f + ∇δh − p̄T ∇pδh) − D(∇δ′ f + ∇δ′ h − p̄T ∇pδ′ h) + D2(∇δ′′ f + ∇δ′′ h − p̄T ∇pδ′′ h)

− D3(∇δ′′′ f + ∇δ′′′ h − p̄T ∇pδ′′′ h) + · · · + D2n(∇δ(2n) f + ∇δ(2n) h − p̄T ∇pδ(2n) h)
]

+(γ − ξ �̄)T
[
(∇�δ f − D∇�′δ f + ∇pδh) − D(∇�δ′ f − D∇�′δ′ f + ∇pδ′ h)

+ D2(∇�δ′′ f − D∇�′δ′′ f + ∇pδ′′ h) − D3(∇�δ′′′ f − D∇�′δ′′′ f + ∇pδ′′′ h) + . . .

+ D2n(∇�δ2n f − D∇�′δ2n f + ∇pδ2n h)
]
(δ(t) − δ̄(t)) � 0, t ∈ I,∀ δ ∈ C1, (9)

β
[
(∇� f + ∇�h − p̄T ∇p�h) − D(∇�′ f + ∇�′ h − p̄T ∇p�′ h) + D2(∇�′′ f + ∇�′′ h − p̄T ∇p�′′ h)

− D3(∇�′′′ f + ∇�′′′ h − p̄T ∇p�′′′ h) + · · · + D2n(∇�2n f + ∇�2n h − p̄T ∇p�2n h)
]
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+ (γ − ξ �̄)T
[
(∇�� f − D∇�′� f + ∇p�h) − D(∇��

′ f − D∇�′� f + ∇p�
′ h)

+ D2(∇��
′′ f − D∇�′′� f + ∇p�

′′ h) − D3(∇��
′′′ f − D∇�′′′� f + ∇p�

′′′ h) + . . .

+ D2n(∇��2n f − D∇�2n� f + ∇p�2n h) − ξ(∇� f − D∇�′ f + ∇ph)
]

= 0,

t ∈ I, ∀� ∈ R
n, (10)

α = 0, t ∈ I, (11)

(γ − ξ �̄ − β p̄)T ∇pph = 0, t ∈ I, (12)

γ T (∇� f − D∇�′ f + ∇ph) = 0, t ∈ I, (13)

− ξ �̄T (∇� f − D∇�′ f + ∇ph) = 0, t ∈ I, (14)

(α, β, γ, ξ) �= 0, α > 0, γ ∈ C2, ξ ≥ 0. (15)

From the hypothesis (i i), Eq. (12) turns out to be

(γ − ξ �̄ − β p̄) = 0. (16)

We ascertain that β �= 0. In case, if β = 0, relation (16) produces

γ = ξ �̄ (17)

and Eq. (10) returns
ξ(∇� f − D∇�′ f + ∇ph) = 0, (18)

which by hypothesis (i i i) yields ξ = 0 and, from Eq. (17), we get γ = 0 and, hence,
from Eq. (11), we have α = 0. Thus, we get (α, β, γ, ξ) �= 0, t ∈ I contradicting
Eq. (15). Hence, β > 0. On subtracting Eq. (14) from Eq. (13), we have

(γ − ξ �̄)T (∇� f − D∇�′ f + ∇ph) = 0.

Using Eq. (16) along with β �= 0, the relation above settles down to

p̄T (∇� f − D∇�′ f + ∇ph) = 0.

By the hypothesis (iv), we have p̄ = 0. Using this in Eq. (16), we obtain γ = ξ �̄,
which further gives γ ∈ C2. Using the fact γ = ξ �̄, in Eq. (9), we arrive at

β
[
(∇δ f + ∇δh) − D(∇δ′ f + ∇δ′ h) + D2(∇δ′′ f + ∇δ′′ h) − D3(∇δ′′′ f + ∇δ′′′ h)
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+ · · · + D2n(∇δ(2n) f + ∇δ(2n) h)
]T

(δ(t) − ¯δ(t)) ≥ 0,∀δ ∈ C1. (19)

From assumption (i) along with p̄ = 0, the inequality (19) returns

[
(∇δ f + ∇q g) − D(∇δ′ f + ∇q ′ g) + D2(∇δ′′ f + ∇q ′′ g) − D3(∇δ′′′ f + ∇q ′′′ g)

+ · · · + D2n(∇δ(2n) f + ∇q(2n) g)
]T

(δ(t) − ¯δ(t)) ≥ 0. (20)

Suppose δ(t) ∈ C1 so that δ(t) + ¯δ(t) ∈ C1. Hence, Eq. (20) implies

[
(∇δ f + ∇q g) − D(∇δ′ f + ∇q ′ g) + D2(∇δ′′ f + ∇q ′′ g) − D3(∇δ′′′ f + ∇q ′′′ g)

+ · · · + D2n(∇δ(2n) f + ∇q(2n) g)
]T

δ(t) ≥ 0,∀ ∈ C1.

Using a property of polar cone, we obtain

−
[
(∇δ f + ∇q g) − D(∇δ′ f + ∇q ′ g) + D2(∇δ′′ f + ∇q ′′ g) − D3(∇δ′′′ f + ∇q ′′′ g)

+ · · · + D2n(∇δ(2n) f + ∇q(2n) g)
]

∈ C1
∗.

Let δ(t) = 0 and δ(t) = 2 ¯δ(t) in Eq. (20), we have

¯δ(t)
T
[
(∇δ f + ∇q g) − D(∇δ′ f + ∇q ′ g) + D2(∇δ′′ f + ∇q ′′ g) − D3(∇δ′′′ f + ∇q ′′′ g)

+ · · · + D2n(∇δ(2n) f + ∇q(2n) g)
]

= 0. (21)

Now, using assumption (v) in above equation, we get

¯δ(t)
T
(∇δ f + ∇q g) = 0. (22)

Thus, it becomes clear that (δ̄(t), �̄(t), p̄(t) = 0) is a solution feasible to (VSD) giv-
ing equal output. Also, under additional conditions stated inTheorem1, (δ̄, �̄, p̄ = 0)
and (δ̄, �̄, q̄ = 0) becomes a solution globally optimal to (VSP) and (VSD), respec-
tively.

Theorem 3 (Converse Duality)Assume (ϑ̄, σ̄ , q̄) denotes a solution locally optimal
to (VSP). Presume the following conditions:

(i) ∇�h(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ, 0) = ∇pg(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ, 0),

∇�′ h(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ, 0) = ∇p′ g(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ, 0),
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∇�′′ h(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ, 0) = ∇p′′ g(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ, 0),…

∇�(2n) h(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ, 0) = ∇p(2n) g(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ, 0).

(i i) the specified matrix ∇qq g(t, ϑ̄, ˙̄ϑ, σ̄ , ˙̄σ) is negative definite or positive definite,
(i i i) (∇δ f − D∇δ

′ f + ∇q g) �= 0,
(iv) for choosen q̄ ∈ R

n,

q̄T (∇δ f − D∇δ
′ f + ∇q g) = 0

implies q̄ = 0, and
(v)

D(∇�′ f + ∇p′ g) + D2(∇�′′ f + ∇p′′ g) − D3(∇�′′′ f + ∇p′′′ g)

+ · · · + D2n(∇�(2n) f + ∇p(2n) g) = 0.

Then (ϑ̄, σ̄ , p̄ = 0) is a solution feasible to (VSD) and both objectives yields equal
output. Additionally, if postulates of Theorem 1 are satisfied for feasible solutions
(VSP) and (VSD), then (ϑ̄, σ̄ , q̄ = 0) and (ϑ̄, σ̄ , p̄ = 0) represent the absolute opti-
mal solution of (VSP) and (VSD), respectively.

5 Static Symmetric Dual Program

Dropping down the time co-ordinate in problem considered in this paper, the problem
transforms into the given form:

(VSP∗) Min ( f (δ, �) + h(δ, �, p) − pT ∇ph(δ, �, p))

s.t
∇� f (δ, �) − D∇�̇ f (δ, �) + ∇ph(δ, �, p) ∈ C∗

2 ,

�T [∇� f (δ, �) − D∇�̇ f (δ, �) + ∇ph(δ, �, p)] � 0,

δ(t) ∈ C1.

(VSD∗) Max ( f (ϑ, σ ) + g(ϑ, σ, q) − qT ∇q g(ϑ, σ, q))

s.t

−[∇δ f (ϑ, σ ) − D∇δ̇ f (ϑ, σ ) + ∇q g(ϑ, σ, q)] ∈ C∗
1 ,

ϑT [∇δ f (ϑ, σ ) − D∇δ̇ f (ϑ, σ ) + ∇q g(ϑ, σ, q)] � 0,

σ (t) ∈ C2.
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The weak and strong duality results can be easily established. One can refer for
details Jayswal et al. [6].

6 Conclusions

In this paper, higher order η-invexity is mechanized to establish the duality results
for a dual pair of higher order symmetric variational programs where constraints are
defined over more general settings having cones. Also, we derived the results needed
for dual formulationswith thehelpof higher order invexity. In the future, thiswork can
be extended to multiobjective problems and also to a nondifferentiable problem by
additionally adjoining support functions in the objective making it nondifferentiable.
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On Generalized Energy Inequality
of the Damped Navier–Stokes Equations
with Navier Slip Boundary Conditions

Subha Pal and Duranta Chutia

Abstract In this article, we deal with a damped Navier–Stokes equations in IR3 with
slip boundary conditions. Sufficient conditions for the existence of the solutions to
the Navier–Stokes system are established in a bounded domain Ω ⊂ IR3. Further,
we show that the solutions derived by Rothe’s method are satisfying the local energy
inequality.

Keywords Navier–Stokes equation · Damping · Rothe method · Navier slip
boundary condition

1 Introduction

Let us consider the following system of Navier–Stokes (N-S) equations with suffi-
ciently smooth boundary in a simply connected bounded domain Ω of IR3

∂t u − Δu + u · ∇u + ϑ|u|β−1u + 1

ρ
∇ p = f in Ω × (0, T ), (1)

div u = 0 in QT , (2)

2D(u)ν · τ + ξu · τ = 0 on ∂Ω (3)

u = u0 in Ω × {0}, (4)

where D(u) is the stress tensor of the form 1
2

[∇u + (∇u)T
]
and ξ(x) (> 0) is defined

on the boundary ∂Ω with continuous differentiability. Here the unknown function u
corresponds to the velocity of the flow and p is used to denote the pressure. ϑ|u|β−1u
is the damping term and ϑ > 0 and β ≥ 1 are the scalars appeared in the expression.
Here u0 is the initial velocity, f represents the external force and ρ is the density of
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the fluid. τ and ν are unit tangent vector and unit exterior normal to the boundary.
The Eq. (3) reflects the Navier slip boundary condition. We discuss slip boundary
conditions in detail in [9].

The Navier–Stokes equations describe the motion of the fluid flows ranging from
lubrication of ball bearings to large-scale atmospheric motions and reflect the con-
servation of mass as well as momentum. The system (1), in the case of no slip
condition, has been studied by many authors in [3, 8, 11, 12, 15, 16]. We discuss
the N–S equations with damping terms in detail in [8].

The results of Caffarelli et al. [2] and Scheffer [7] was regarding the partial
regularity for the Navier–Stokes equations and they also introduced Suitable Weak
Solution (SWS) which becomes more important in the theory of N–S equations. The
following identity is satisfied by the weak solutions obtained by Leray and Hopf in
a weak sense:

∫ ∞

0
(u, ∂tφ) − (∇u,∇φ) − ((u · ∇)u,φ)dt = −(u0,φ(0)),

for all smooth, periodic, and divergence-free function φ, such that φ(t, x) = 0. The
following energy inequality is also satisfied by the velocity u :

1

2
‖u(t)‖2 +

∫ T

0
‖∇u(s)‖2ds ≤ 1

2
‖u0‖2 ∀t ∈ [0, T ]

In this short paper, we explore the requisite ideas to tackle the time discretization
in the context of the construction of solutions to the system (1)–(4) satisfying the
local energy inequality.

We organize the article in the following way. The assumptions and preliminar-
ies are discussed in Sect. 2. In Sect. 3, we discuss the approximate solutions. The
existence of the solutions is proved in Sect. 4. We show that the solution obtained in
Sect. 4 satisfies local energy inequality in Sect. 6.

2 Assumptions and Preliminaries

Let us assemble some fundamental results, definitions, and notations from Sohr [10]
and Temam [14], that are used in the remaining sections of the article. Throughout
this article,Ω denotes a connected bounded domain in IR3 having sufficiently smooth
boundary and C∞

0 (Ω) stands for the set of all C∞ vector functions φ with compact
support in Ω . Let L p(Ω) (1 ≤ p ≤ ∞) be the usual Lebesgue space and Hr (Ω)

be the usual Sobolev space. We use (·, ·) to denote the usual L2-inner product and
define ((·, ·)) by

((v,w)) =
n∑

i=1

(Div, Diw). (5)
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The notation ‖ · ‖ is used to denote the norm corresponding to the inner-product
defined in (5). Motivated by Kelliher [5], we consider the following function spaces:

V = {w ∈ H 1(Ω) : ∇ · w = 0 in Ω, w · ν = 0 on ∂Ω},
H = {w ∈ L2(Ω) : ∇ · w = 0 in Ω, w · ν = 0 on ∂Ω},
W = {w ∈ V ∩ H 2(Ω) : 2D(w)ν · τ + ξw · τ = 0 on ∂Ω}.

For each u1, u2 ∈ V we define the operator A as [5]

(Au1, u2) = 2((u1, u2)) +
∫

∂Ω

ξ(u1 · τ )(u2 · τ ). (6)

Let b be the trilinear form defined by

b(u1, u2, u3) =
∫

Ω

(u1 · ∇u2) · u3, ∀u1, u2, u3 ∈ V . (7)

For u1, u2 ∈ V , define B(u1, u2) by

(B(u1, u2), u3) = b(u1, u2, u3), ∀u3 ∈ V .

We put B(u1) = B(u1, u1) ∈ V ′ , ∀u1 ∈ V . So,

(Bu1, u2) =
∫

Ω

(u1 · ∇u1) · u2. (8)

The following Lemmas will be used to establish our main result.

Lemma 1 ([4, Lemma 2.1, p. 759]) Let u1, u2, u3 ∈ H 1(Ω). Then

|b(u1, u2, u3)| ≤ C‖u1‖
1
4

L2(Ω)
‖u1‖

3
4

H 1(Ω)
‖u2‖H 1(Ω)‖u3‖

1
4

L2(Ω)
‖u3‖

3
4

H 1(Ω)
. (9)

Lemma 2 ([14, III Lemma 3.1]) Let u1 ∈ L2(0, T ; V ) and d ≤ 4, where d =
dimension of the space. Let the function Bu1 defined as follows:

(Bu1(t), u2) = b(u1(t), u1(t), u2), ∀u2 ∈ V . (10)

Then Bu1 ∈ L1(0, T ; V ′) and satisfies

‖Bu1‖V ′ ≤ K‖u1‖2H 1 , ∀u1 ∈ V . (11)

Let us state the following result, proved in [9, Lemma 2.2] which gives the exis-
tence of an orthonormal basis for H.

Lemma 3 ([9, Lemma 2.2, p. 1631]) There exists a basis, {vn} ⊂ H 3(Ω) for V,

also acts as an orthonormal basis for H satisfying (3).
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3 The Approximate Solutions

In this section, we study whether the approximate solutions by numerical methods of
the damped Navier–Stokes equations (1)–(3) with Navier slip boundary conditions
can give solutions when the limit of the mesh size going to be zero [1]. Our main
aim is the time discretization and using finite difference we approximate the time
derivative. Let M be an integer, later that will go to infinity and we put k = T/M . We
define a family of elements {um , 1 ≤ m ≤ M} from V in a recursive way. Suppose
u0, u1, . . . , uM , where um , 1 ≤ m ≤ M is an approximation of the function u. Our
objective is to find u on the interval mk < t < (m + 1)k. We define the elements
f 1, . . . , f M of V ′ as

f m = 1

k

∫ mk

(m−1)k
f (t)dt, m = 1, . . . , M; f m ∈ V ′. (12)

We start with u0 = u0, the given initial data; when u0, . . . , um−1 are known and we
define um as an element of V which satisfies

um − um−1

k
+ Aum + Bum + ϑ|um |β−1um = f m . (13)

We use the following finite-difference approximation to approximate the time-
derivative

∂t u ∼ dtu
m := um − um−1

k
, on (tm−1, tm).

For every m, we associate pressure pm [1] to um . We associate the function
(wM , uM , qM) defined in [0, T ], as follows for m = 1, . . . , M

wM(t) = um−1 + t−tm−1

k (um − um−1) for t ∈ [tm−1, tm),

wM(t) = uM for t = tM ,

uM(t) = u0 for t = t0,
uM(t) = um for t ∈ (tm−1, tm],
qM(t) = pm for t ∈ (tm−1, tm],

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(14)

We also assume that wM(t) = uM(t), for all m = 0, ..., M .

4 Weak Solutions

Now, we establish a global existence to the solutions for the Navier–Stokes system.
First, we give the definition of weak solutions.

Definition 1 Suppose w ∈ Lβ+1(0, T ; Lβ+1(Ω)) ∩ L∞(0, T ; H) ∩ L2(0, T ; V )

for T > 0, and w satisfies the weak formulation of (1), i.e
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(w′, v) + 2((w, v)) + b(w,w, v) + (ϑ|w|β−1w, v) +
∫

∂Ω
ξ(w · τ )(v · τ )dS = ( f, v) ∀ v ∈ V .

(15)
Then w is a weak solution of the Navier–stokes system.

Theorem 1 Suppose that f ∈ L2(0, T ; V ′) and u0 ∈ H. Then for any positive T ,
there is a solution w and pressure q to the Navier–Stokes system, such that

w ∈ L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ Lβ+1(0, T ; Lβ+1(Ω)), (16)

w′ ∈ L2(0, T ; V ′), (17)

q ∈ L5/3(0, T ; L5/3). (18)

Further, wM and uM both converges to u and qM converges to q whenever k → 0.

We prove the following lemmas to complete the proof of the main Theorem. The
idea of the proof is based on Temam [14] and Berselli and Spirito [1].

Lemma 4 There exists at least one um satisfying

um − um−1

k
+ Aum + Bum + ϑ|um |β−1um = f m, (19)

for fixed k and m ≥ 1. Moreover

‖um‖2L2 − ‖um−1‖2L2 + ‖um − um−1‖2L2 + 3k‖um‖2H 1 + 2ϑ‖um‖β+1
Lβ+1 ≤ k‖ f m‖2V ′ .

(20)

Proof Now (13) can be written as

(um, v) + 2k((um, v)) + (ϑ|um |β−1um, v) + kb(um, um, v)

+ k
∫

∂Ω

ξ(um · τ )(v · τ )dS = (um−1 + k f m, v) ∀v ∈ V . (21)

We apply the Galerkin method. We choose a sequence of elements z1, z2, . . . , zi , ·
from Z , where Z = {u ∈ D(Ω),∇ · u = 0}. Since Z is dense in V and separa-
ble, so element zi are linearly independent and spans V . For each r , we find an
element φr

φr (x, t) =
r∑

i=1

αi,r (t)zi , (22)

where αi,r (t) are to be determined. Putting φr in (21), we obtain

(φr , v) + 2k((φr , v)) + kb(φr , φr , v) + (ϑ|φr |β−1φr , v)

+ k
∫

∂Ω
ξ(φr · τ )(v · τ )dS = (um−1 + k f m , v), ∀v ∈ sp(z1, . . . , zr ). (23)

We put v = φr in (23) and obtain
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(φr − um−1,φr ) + 2k‖φr‖2H 1 + ϑ‖φr‖β+1
Lβ+1 + k

∫

∂Ω

ξ(φr · τ )2dS = k( f m,φr ).

(24)
We note that |a1 − a2|2 + |a1|2 − |a2|2 = 2(a1 − a2, a1), ∀a, b ∈ H . Using these in
(24), we get

‖φr‖2L2 + ‖φr − um−1‖2L2 + 4k‖φr‖2H 1 + 2ϑ‖φr‖β+1
Lβ+1 + 2k

∫

∂Ω

ξ(φr · τ )2dS

= ‖um−1‖2L2 + 2k( f m,φr )

≤ ‖um−1‖2L2 + 2k‖ f m‖V ′ ‖φr‖L2 ≤ ‖um−1‖2L2 + k‖ f m‖2V ′ + k‖φr‖2H 1 . (25)

Hence

‖φr‖2L2 + ‖φr − um−1‖2L2 + 3k‖φr‖2H 1 + 2ϑ‖φr‖β+1
Lβ+1 ≤ ‖um−1‖2L2 + k‖ f m‖2V ′ .

(26)
From (26), we get the boundedness of sequenceφr in V as r → ∞. So, we can extract
a subsequence φr ′ satisfying the following convergence weakly in V: φr ′ → φ, as
r ′ → ∞. We pass the limit in (23) and hence prove φ = um satisfies (21). Taking
v = um in (21), we obtain the lower limit in (25). Thus

‖um‖2L2 − ‖um−1‖2L2 + ‖um − um−1‖2L2 + 3k‖um‖2H 1 + 2ϑ‖um‖β+1
Lβ+1

≤ k‖ f m‖2V ′ . (27)

This completes the proof.

Lemma 5 Suppose u0 ∈ H. We have the following bounds for C1 and C2:

‖um‖L∞(0,T ;H)∩L2(0,T ;V )∩Lβ+1(0,T ;Lβ+1(Ω)) ≤ C1, (28)

‖pm‖L5/3(0,T ;L5/3) ≤ C2. (29)

Proof Summing up (27) over m = 1, . . . , M , we get

‖uM‖2L2 +
∑

1≤m≤M

‖um − um−1‖2L2 + 3k
∑

1≤m≤M

‖um‖2H 1 + 2ϑ
∑

1≤m≤M

‖um‖β+1
Lβ+1

≤ ‖u0‖2L2 + 2k
∑

1≤m≤M

‖ f m‖V ′ . (30)

It follows from the last inequality that um ∈ L∞(0, T ; H) ∩
L2(0, T ; V ) ∩ Lβ+1(0, T ; Lβ+1(Ω)) and using the interpolation result we obtain
um ∈ L10/3(0, T ; L10/3). We combine pressure pm to um by De Rham’s theorem.
Since ∇ · um = 0, we get from (1)
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− Δpm = ∇ · (um · ∇)um =
3∑

i, j=1

∂

∂xi

∂

∂xi
umi u

m
i , m = 1, . . . , M. (31)

Using the fact umi u
m
j ∈ L5/3(0, T ; L5/3) and the unique solution pm , we obtain from

(31) that
pm ∈ L5/3(0, T ; L5/3). (32)

This can be seen by inverting the Laplace operator. This completes the proof.

Lemma 6 Suppose f m = 1
k

∫ mk
(m−1)k f (t)dt, m = 1, . . . , M, f m ∈ V ′. We have

k
M∑

m=1

‖ f m‖2V ′ ≤
∫ T

0
‖ f (t)‖2V ′dt. (33)

Proof Using Schwarz inequality, we get

‖ f m‖2V ′ = 1

k2

∥
∥∥∥

∫ mk

(m−1)k
f (t)dt

∥
∥∥∥

2

V ′
≤ 1

k

∫ mk

(m−1)k
‖ f (t)‖2V ′dt. (34)

Then (33) can be obtained by taking summation over the inequalities for 1 ≤ m ≤ M.

Lemma 7 The approximate solution um has the following estimates:

‖um‖2L2 ≤ d1, m = 1, . . . , M, (35)

k
∑

1≤m≤M

‖um‖2H 1 ≤ d1, (36)

∑

1≤m≤M

‖um − um−1‖2L2 ≤ d1, (37)

∑

1≤m≤M

‖um‖β+1
Lβ+1 ≤ d1, (38)

where d1 depends only on the data

d1 = ‖u0‖2L2 +
∫ T

0
‖ f (s)‖2V ′ds. (39)

Proof Now we summing the inequality (27) for m = 1, . . . , M . We get
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‖uM‖2L2 +
∑

1≤m≤M

‖um − um−1‖2L2 + 3k
∑

1≤m≤M

‖um‖2H 1 + 2ϑ
∑

1≤m≤M

‖um‖β+1
Lβ+1

≤ ‖u0‖2L2 + k
∑

1≤m≤M

‖ f m‖2V ′ . (40)

Again we take the summation over (27) form = 1, . . . , r and removing ‖um‖2H 1 and

‖um‖β+1
Lβ+1 , we get for r = 1, . . . , M.

‖ur‖2L2 ≤ ‖u0‖2L2 + k
∑

1≤m≤r

‖ f m‖2V ′ ≤ ‖u0‖2L2 + k
∑

1≤m≤M

‖ f m‖2V ′ , (41)

We can obtain (35) from (40)–(41) and using Lemma (6). In the similar way, we can
obtain (36), (37), and (38).

Lemma 8 We have k
∑M

m=1 ‖ um−um−1

k ‖2V ′ ≤ C3. Where C3 is a positive constant and
not dependent on k.

Proof We can write (13) in such a way that

∥∥∥
∥
um − um−1

k

∥∥∥
∥

2

V ′
≤ c1‖Aum‖2V ′ + ‖Bum‖2V ′ + ‖ f m‖2V ′

≤ c2(‖ f m‖2V ′ + ‖um‖2V + ‖Bum‖2V ′). (42)

for some positive constant c1, c2. From (35) and (9), we get

‖Bum‖2V ≤ c3‖um‖2L2‖um‖2H 1 ≤ c4‖um‖2H 1 , (43)

for some positive constant c3 and c4. We finally get

k
M∑

m=1

∥∥∥∥
um − um−1

k

∥∥∥∥

2

V ′
≤ c5k

M∑

m=1

(‖ f m‖2V ′ + ‖um‖2H 1), (44)

and we complete the proof using (36) and Lemma 6.

Lemma 9 We have the following estimate:

‖uM − wM‖2L2(0,T ;H) = k

3

M∑

m=1

‖um − um−1‖2. (45)

Proof From (14), we have

wM(t) − uM(t) = t − tm−1

k
(um − um−1) + um−1 − um, ∀t ∈ (tm−1, tm]. (46)
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Then

∫ T

0
‖wM − uM‖2dt =

M∑

m=1

∫ tm

tm−1

‖wM(t) − uM(t)‖2dt

=
M∑

m=1

‖um − um−1‖
∫ tm

tm−1

(
t − tm−1

k
− 1

)2

dt

= k

3

M∑

m=1

‖um − um−1‖2. (47)

Lemma 10 The function uM and wM bounded in L∞(0, T ; H) ∩ L2(0, T ; V ) ∩
Lβ+1(0, T ; Lβ+1(Ω)) and w′

M is bounded in L2(0, T ; V ′). Further

uM − wM → 0 in L2(0, T ; H) as M → ∞. (48)

Proof We have‖um‖2L2 ≤ d1, and k
∑M

m=1 ‖um‖2H 1 ≤ d1 and
∑M

m=1 ‖um‖β+1
Lβ+1 ≤ d1

from Lemma (7). Using the above relations, we can conclude that the function
uM andwM bounded in L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ Lβ+1(0, T ; Lβ+1(Ω)). Using
Lemma (8), we ensure the boundedness of w′

M in L2(0, T ; V ′). Now we can obtain
(48) from (37) and the Lemma (9).

Lemma 11 For t ∈ [(m − 1)k,mk], and m = 1, . . . , M, we define fM(t) = f m,
then fM → f in L2(0, T ; V ′) as M → ∞
Proof The transformation fM → f is a linear averaging mapping in L2(0, T ; V ′).
By Lemma 6, this mapping is continuous. From there, we can say that ‖ fM‖V ′ ≤
‖ f ‖V . Now

‖ fM − f ‖V ′ ≤ 2‖ f ‖V < K . (49)

So, fM → f in L2(0, T ; V ).

5 Proof of Theorem 1

Proof From Lemma 10, we extract a subsequence uM ′ which satisfying uM ′ → u
weakly in L2(0, T ; V ), uM ′ → u weak-star in L∞(0, T ; H), and uM ′ → u weakly
in Lβ+1(0, T ;Ω). We want to prove that u is a solution. For passing the limit in
(13), We need a strong convergence of uM . The function wM will help for this. We
have wM ′ → u∗ weakly in L2(0, T ; V ), wM ′ → u∗ weak-star in L∞(0, T ; H) and,
dwM ′
dt → u′∗ weakly in L2(0, T ; V ′). Because of (48), u = u∗. From [14, III Theorem

2.1], it follows that wM ′ → u in L2(0, T ; H) strongly, thus by (48), uM ′ → u in
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L2(0, T ; H) strongly. Using Lemma 3.2 [[14], Lemma III.3.2] and Lemma 2, we
can say BuM ′ → Bu in L2(0, T ; V ) weakly. The Eq. (13) can be written as, for any
v ∈ V

(
dwM

dt
, v

)
+ ((uM , v)) + b(uM , uM , v) + (ϑ|uM |β−1uM , v)

+
∫

∂Ω

ξ(uM(t) · τ )(v · τ )dS = ( fM , v), (50)

where for each t ∈ [(m − 1)k,mk) the function fM is defined by fM(t) = f m, for
m = 1, . . . , M. For φ ∈ C∞

0 (0, T ), we get

∫ T

0
φ(t)

{(
dwM

dt
, v

)
+ ((uM , v)) + b(uM , uM , v) + (ϑ|uM |β−1uM , v) (51)

+
∫

∂Ω

ξ(uM(t) · τ )(v · τ )dS − ( fM , v)

}
= 0

Passing the limit in (50), we obtain

∫ T

0
φ(t){(dw

dt
, v) + ((u, v)) + b(u, u, v) + (ϑ|u|β−1u, v) (52)

+
∫

∂Ω

ξ(u(t) · τ )(v · τ )dS − ( f, v)} = 0.

Since wM ′(0) = u0, we get u(0) = u0. From (32), we can say qM is uniformly
bounded in L5/3(0, T ; L5/3). We get a subsequence qM which converges weakly in
L5/3(0, T ; L5/3). That is, we prove that u is a weak solution of the damped Navier–
Stokes equations with combined pressure q. This completes the proof.

6 Energy Inequality

We prove the following energy inequality for the solutions to the damped Navier–
Stokes system. The idea of the proof is based on [1].

Theorem 2 For all positive φ ∈ C∞(Ω × [0, T ]) and φ(x, 0) = 0, the solutions
(w, q) obtained by Theorem 1 satisfies the local energy inequality

2
∫ T

0

∫

Ω

|∇w|2φdxdt ≤
∫ T

0

∫

Ω

[
|w|2(Δφ + ∂tφ) + (|w|2 + 2q)w · ∇φ

+ 2( f · w)φ
]
dxdt + 2

∫ T

0
φ′

∫

Ω

|w|β+1dxdt. (53)
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Proof We will proof that (w, q) satisfies the energy inequality. We multiply the
equation

dwM

dt
− ΔuM + uM · ∇uM + ϑ1|uM |β−1uM + ∇q = fM (54)

by uMφ, where φ be a non-negative smooth function with compact support in Ω ×
(0, T ). We estimate the first term as follows:

∫ T

0
(∂twM , uMφ)dt =

∫ T

0
(∂twM , (wM − wM + uM)φ)dt (55)

=
∫ T

0
(∂twM , wM)φdt +

∫ T

0
(∂twM , (uM − wM)φ)dt = I1 + I2. (56)

Let us consider the first term I1. First, we split the interval over [0, T ] with the sum
of integrals over [tm−1, tm]. Applying integration by parts, we get

∫ T
0 (∂twM , wMφ)dt = ∑M

m=1

∫ tm
tm−1

(∂twM , wMφ)dt = ∑M
m=1

∫ tm
tm−1

( 1
2∂t |wM |2,φ)

dt

= 1
2

∑M
m=1

[
(|um |2,φ(x, tm)) − (|um−1|2,φ(x, tm−1))

] − ∑M
m=1

∫ tm
tm−1

( 1
2 |wM |2, ∂tφ

)
dt

where we used that ∂twM(t) = um−um−1

k for t ∈ [tm−1, tm). Also, we get

∫ T

0
(∂twM , wMφ)dt

= 1

2
(|uM |2,φ(x, T )) − 1

2
(|u0|2,φ(x, 0)) −

M∑

m=1

∫ tm

tm−1

(
1

2
|wM |2, ∂tφ

)
dt

= −
∫ T

0

(
1

2
|wM |2, ∂tφ

)
dt. (57)

Since wM → w in L2(0, T ; H) strongly, we get

lim
M→∞

∫ T

0

∫

Ω

∂twMwMφdxdt = −1

2

∫ T

0

∫

Ω

|w|2∂tφdxdt. (58)

Now, we consider I2. Due to uM is constant in [tm−1, tm), we can write

∫ T

0
(∂twM , (uM − wM )φ) =

M∑

m=1

∫ tm

tm−1

(∂t (wM − uM ), (wM − uM )φ)dt

= −
M∑

m=1

∫ tm

tm−1

(

∂t

(
|wM − uM |2

2

)

,φ

)

dt =
M∑

m=1

∫ tm

tm−1

(
|wM − uM |2

2
, ∂tφ

)

dt.
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Since uM(tm) = wM(tm) ∀m = 0, . . . , M , all boundary terms are vanishes in the last
line. Since uM − wM converge to 0 strongly in L2(0, T ; H), we obtain that I2 → 0
as M → ∞. Now we have

−
∫ T

0

∫

Ω

ΔuMuMφdxdt =
∫ T

0

∫

Ω

|∇uM |2φdxdt + 1

2

∫ T

0

∫

Ω

∇|uM |2∇φdxdt

=
∫ T

0

∫

Ω

|∇uM |2φdxdt − 1

2

∫ T

0

∫

Ω

|uM |2Δφdxdt.

Since φ ≥ 0 and norm is lower semi-continuous, we obtain

lim
M→∞

∫ T

0

∫

Ω

|∇uM |2φdxdt ≥
∫ T

0

∫

Ω

|∇w|2φdxdt, (59)

by using the strong convergence in L2(0, T ; H), we deduce that

lim
M→∞

1

2

∫ T

0

∫

Ω

|uM |2Δφdxdt = 1

2

∫ T

0

∫

Ω

|w|2Δφdxdt. (60)

We applying integration by parts for our nonlinear term. We obtain

∫ T

0

∫

Ω

(uM · ∇)uMuMφdxdt = 1
2

∫ T
0

∫
Ω

∇|uM |2uMφdxdt (61)

= − 1
2

∫ T
0

∫
Ω

|uM |2uM∇φdxdt. (62)

As uM converges to w strongly in L2(0, T ; H), we obtain

lim
M→∞

∫ T

0

∫

Ω

(uM · ∇)uMuMφdxdt = −1

2

∫ T

0

∫

Ω

|w|2w∇φdxdt. (63)

For the damping term after passing limit, we get

lim
M→∞

∫ T

0

∫

Ω

uMuMφdxdt = −
∫ T

0
φ′

∫

Ω

|w|β+1dxdt. (64)

Finally, We integrated by parts our pressure term and passing the limit. We get

lim
M→∞

∫ T

0

∫

Ω

∇qMuMφdxdt =
∫ T

0

∫

Ω

qw∇φdxdt. (65)

Using Lemma 11, we get

lim
M→∞

∫ T

0

∫

Ω

fMuMφdxdt =
∫ T

0

∫

Ω

f · wφdxdt. (66)
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We finally prove that

2
∫ T

0

∫

Ω

|∇w|2φdxdt ≤ ∫ T
0

∫
Ω

[
|w|2(Δφ + ∂tφ) + (|w|2 + 2q)w · ∇φ

+2( f · w)φ
]
dxdt + 2

∫ T
0 φ′ ∫

Ω
|w|β+1dxdt. (67)

7 Conclusion

We have established the existence of weak solutions of the system (1)–(4) in IR3

by semi-discretization. Further, we have shown that the weak solution derived in
Theorem 1 satisfies the generalized energy inequality (53).

Funding S. Pal was partially funded by National Board for Higher Mathematics (grant no—
02011/9/2019NBHM(R.P.)/R & D II/1324).

References

1. Berselli, L.C., Spirito, S.: Weak solution to the Navier-Stokes equations constructed by semi-
discretization are suitable. Commun. Contemp. Math. 666, 85–97 (2016)

2. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the
Navier-Stokes equations. Comm. Pure Appl. Math 35(6), 771–831 (1982)

3. Cai, X., Jiu, Q.: Weak and strong solutions for the incompressible Navier-Stokes equations
with damping. J. Math. Anal. Appl. 343, 799–809 (2008)

4. Kashiwabara, T.: On a strong solution of the non-stationary Navier-Stokes equations under slip
or leak boundary conditions of friction type. J. Differ. Eqs. 254(2), 756–778 (2013)

5. Kelliher, J.P.: Navier-Stokes equations with Navier boundary conditions for a bounded domain
in the plane. SIAM J. Math. Anal. 38(1), 210–232 (2006)

6. Navier, C.L.M.H.: Sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. Fr. 6,
389–440 (1827)

7. Scheffer, V.: Hausdorff measure and the Navier-Stokes equations. Comm. Math. Phys. 55(2),
97–112 (1977)

8. Pal, S., Haloi, R.: Existence and uniqueness of solutions to the dampedNavier-Stokes equations
with Navier boundary conditions for three dimensional incompressible fluid. J. Appl. Math.
Comput. 66, 307–325 (2021)

9. Pal, S., Haloi, R.: On solution to the Navier-Stokes equations with Navier-slip boundary con-
dition for three dimensional incompressible fluid. Acta Math. Sci. 39(6), 1628–1638 (2019)

10. Sohr, H.: The Navier-Stokes equations. An elementary functional analytic approach, Modern
Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel (2001)

11. Song, X., Hou, Y.: Attractors for the three dimensional incompressible Navier-Stokes equations
with damping. Discret. Contin. Dyn. Syst. 31, 239–252 (2012)

12. Song, X., Hou, Y.: Uniform attractors for three dimensional incompressible Navier-Stokes
equation with nonlinear damping. J. Math. Anal. Appl. 422, 337–351 (2015)



478 S. Pal and D. Chutia

13. Necas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2012)
14. Temam, R.: Navier-Stokes Equations. North-Holland, Amsterdam (1979)
15. Zhang, Z., Wu, X., Lu, M.: On the uniqueness of strong solution to the incompressible Navier-

Stokes equation with damping. J. Math. Anal. Appl. 377, 414–419 (2011)
16. Zhou, Y.: Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with

damping. Appl. Math. Lett. 25, 1822–1825 (2012)



The Diathermic Oils Over a Thin Liquid
Film with MOS2 Nano Particles: AModel
with Analysis of Shape Factor Effects

S. Suneetha , K. Subbarayudu , and P. Bala Anki Reddy

Abstract A mathematical model is envisioned to depict and search out the report
for different shapes of MOS2 nanoparticles in a Casson nanofluid over an unsteady
exponentially stretching sheet. The solid nanoparticles of Molybdenum disulphide
are employed in different geometries such as bricks, cylinders, platelets, and blades in
a porous medium. Also, Diathermic oil finds a remarkable application in mechanical
engineering and industrial fields. By considering a non-uniform heat source/sink, it
is possible to improve the rate of transferring of heat in diathermic oils, primarily
Kerosene oil (KO) and Engine oil (EO). MATLAB’s bvp4c function is used to
compute the dimensionless forms of regulating flow expressions numerically. The
role of relevant parameters on the fluid flow and heat transfer are debated by graphs
and tables. It is significant that the heat transfer rate is more for blade-shaped MOS2
nanoparticles when compared to other shapes.
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1 Literature Assessment

Heat transmission problem over a thin liquid film flow on an extending surface which
is not steady has got vast applications in diverse fields like engineering, medical, and
industrial themes such as wire varnishing, fiber coating, biophysics, films of tear
in a human’s eye, and also the condition of flow in a human’s lungs and lubrication
problems, are all unpredictable. Wang [1] was the first to discuss flow over a thin film
on an extended sheet. Later, Andersson et al. [2, 3] adapted it for numerous physical
natures of power-law fluid. However, Magyari and Keller [4] studied the effects of
a stretching sheet on the flow field and boundary layers with exponentially rising
velocity and temperature. As a result, many problems on an exponentially stretching
sheet have been done bymany investigators [5–8]. Nanofluid has nano-sized particles
made of non-metallic or metallic materials and these fluids became a crucial item
for researchers in many fields such as nano-drug delivery, microelectronics, nuclear
power plants, heat exchanger, etc. The study of the mixed bag of fluid flow and elec-
tromagnetism is acknowledged as magneto-hydrodynamics (MHD), which is mainly
used in the medical field, geophysics, designing MHD pumps, etc. Some motivating
works on these nanofluids can be found in [9–11]. Molybdenum disulfide (MOS2) is
an inorganic compound made of layer by layer of molybdenum and sulphur atoms.
Moreover, it is used in many mechanical applications due to its lubrication ability,
slight frictional property, and robustness. Thermophysical properties depend on the
size, shape, and volume fraction of nanoparticles and base fluid. Here four dissim-
ilar nanoparticle shapes specifically cylinder, platelet, blade, and brick of MOS2 are
used. Hamilton and Crosser [12] observed an adequate amount of enhancement in
the thermal conductivities with different nanoparticle shapes. Some other attempts
onMOS2 nanofluids with different shape effects are those made by [13–17]. In some
chemically reacting processes like ignition, biochemical structures, explosion of fire-
works, digestion of food, catalysis, and so forth homogeneous and heterogeneous
reactions arise. Merkin [18] did the initial study on these reactions. Many scholars
fed light on such type of reactions and are cited in Refs. [19–21].

Motivated by the above-cited literature, an effort has been made on a liquid thin
film with EO and KO as the base fluids. MOS2 nanoparticles of various shapes like
cylinder, platelet, blade, and brick are appended in two separate individual source
fluids. The model is resolved in MATLAB using the RK4S approach-bvp4c codes.
The final results are displayed with graphs and tabular forms. This review extends
the earlier studies and is also useful for different nanoparticle shape effects studies.

2 Formulation

In this work, a 2D porous nano liquid film of Magneto hydrodynamic nanofluid past
an unsteady exponentially stretching sheet is considered. Here, MOS2 is treated as a
based nanoparticle. The stretching sheet switches on from a thin slot which is traced
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Fig. 1 Flow framework

at the initial point of a two-dimensional coordinates system (x, y). The sheet stretches
in the x-direction with velocity Uw = cx

1−αt e
x
l wherein c and α are not changeable

and positive c denotes expanding rate and αt < 1. The plane stretches erect to the
y-axis. A magnetic field of strength B(t) = B0

(1−αt)
1
2
is applied perpendicularly to

the sheet on the outside as revealed in Fig. 1. Reynolds number is very small so
the induced magnetic field is insignificant. The sheet temperature is designed as

Tw = T0 +Tre f
(

cx2

2υ f

)
(1 − αt)−

3
2 e

x
2l ,where υ f = μ f

ρ f
is the kinematic viscosity and

f— the base fluid.
Chemical concentrations in the border flow for homogeneous and heterogeneous

activities are assumed to be A** and B**.
A ∗∗+ 2B ∗∗ → 3B ∗∗, rate = kcab2, A ∗∗ → B ∗∗, rate = ksa, where

kc and ks are the rate constants, a and b are the chemical species concentrations, and
Isothermal reactions are supposed for both processes.

The flow with the above attention is in the form

∂u

∂x
+ ∂v

∂y
= 0 (1)

ρn f

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= μn f

(
1 + 1

β

)
∂2u

∂y2
− u

(
σn f B

2(t) + μn f

k∗
)
, (2)

(
ρCp

)
n f

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= kn f

∂2T

∂y2
+ k f Uw

xυ f



482 S. Suneetha et al.

(
A ∗ (Tw − T0) f

′ (η) + B ∗ (T − T0)
)

(3)

(
∂a

∂t
+ u

∂a

∂x
+ v

∂a

∂y

)
= DA

(
∂2a

∂x2
+ ∂2a

∂y2

)
+ DT

T∞

(
∂2T

∂x2
+ ∂2T

∂y2

)
− k1ab

2 (4)

(
∂b

∂t
+ u

∂b

∂x
+ v

∂b

∂y

)
= DB

(
∂2b

∂x2
+ ∂2b

∂y2

)
+ DT

T∞

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ k1ab

2 (5)

under the boundary conditions

u = Uw, v = V = 0, T = Tw, DA
∂a

∂y
= −DB

∂b

∂y
= ks at y = 0 (6)

∂u

∂y
= ∂T

∂y
= 0 , a = a0, b = 0 at y = H, v = ∂H

∂t
at y = H(t) (7)

here, H(t) is the thickness of the fluid film.
Practically, the nanoparticle concentration of MOS2 is little. With the help of

Taylor’s series, the nanofluid constants are

μn f

μ f
= 1

(1 − 2.5χ)
,

ρn f

ρ f
= 1 − χ + χϒ,

(
ρCp

)
n f(

ρCp
)
f

= 1 − χ + χd,

kn f
k f

= 1 + 3(k − 1)χ

(k + 2)
,

σn f

σ f
= 3(σ − 1)χ

(σ + 2) − (σ − 1)χ
+ 1

where ¡ = ρsd

ρf
, d =

(
ρCp

)
sd(

ρCp
)
f

, k = ksd
kf

, σ = (σ)sd

(σ)f
(8)

In the present investigation, the effective thermal conductive kn f can be estimated
as [18]

kn f
k f

= ksn + (m − 1)k f + (m − 1)
(
ksn − k f

)
φ

ksn + (m − 1)k f − (
ksn − k f

)
φ

Here, k f and ksn are the thermal conductivities offluid andnanoparticles, respectively.
The shape factor values are given in Table 1 (Table 2).

Table 1 Nanoparticle’s
shape factor (m)

Nanoparticles type Shape factor (m)

Cylinders 4.9

Bricks 3.7

Blades 8.6

Platelets 5.7
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Table 2 Shows the
numerical values of the base
fluids and nanoelements [21]

Physical properties MOS2 EO KO

Cp (J/kg K) 397.21 2048 2090

κ (W/m K) 904.4 0.1404 0.15

σ(s/m) 2.09 × 10–4 55 × 10–6 21 × 10–6

ρ (kg/m3) 5060 863 783

Unveiling the dimensionless variables as

η = y e
x
2l

(
c

υ f (1 − αt)

) 1
2

, ψ = β1

(
c

1 − αt

) 1
2

f (η)e
x
2l , φ = a

a0
, h = b

a0

u = β1
c

1 − αt
x f ′(η)e

x
l , v = −β1

(
cυ f

1 − αt

) 1
2

f (η)e
x
2l , T = T0

+ Tref

(
cx2

2υ f

)
(1 − αt)−

3
2 θ(η)e

x
2l , (9)

Adopting Eqs. (8, 9) in Eqs. (1–5), we have

φ1 f
′′′
(
1 + 1

β

)
+ φ2(β1)

2
[
f f ′′ − (

f ′)2 − S
(
f ′ + η

2
f ′′

)]
− φ3M f ′ − Df ′ = 0

(10)

φ4θ
′′ − φ5 Pr(β1)

2

[
2 f ′θ − f θ ′ + 3

2
Sθ + 1

2
Sηθ ′

]
+ A ∗ f ′ + B ∗ θ = 0 (11)

1

Sc

(
φ′′ + 1

NAT

(
θ + θ ′′)

)
+ f φ′ − Sφ′ η

2
− Kφh2 = 0 (12)

δ

Sc

(
h′′ + 1

NAT

(
θ + θ ′′)

)
+ f h′ − Sh′ η

2
+ Kφh2 = 0 (13)

at η = 0 → f (0) = 0, f ′(0) = 1, θ(0) = 1, φ′(0) = Ksφ(0), δh′(0)
= −Ksφ(0) (14)

at η = 1 → f (1) = β1 S

2
, f ′′(1) = 0, θ ′(1) = 0, φ(1) = 1, h(1) = 0 (15)

where

φ1 = (μ)n f

(μ) f
, φ2 = ρn f

ρ f
, φ3 = σn f

σ f
, φ4 = kn f

k f
, φ5 =

(
ρCp

)
n f(

ρCp
)
f

,
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K = a20k1
(1 − αt)

c
, Ks = ks

DA a

(
c

υ f (1 − αt)

)− 1
2

,

S = α

c
, M = σ f B2

0

cρ f
, D = υ

ρ f k∗
(1 − αt)

c
, Pr =

(
μCp

)
f

k f
, δ = DB

DA
,

NAT = DA a0
DT
T∞ (Tw − T∞)

, (16)

Thus, δ = 1 for DA and DB is equal φ(η) + h(η) = 1,
Equations (12) and (13) under this assumption decomposed to

1

Sc

(
φ′′ + 1

NAT

(
θ + θ ′′)

)
+ f φ′ − Sφ′ η

2
− Kφ(1 − φ)2 = 0 (17)

related boundary conditions: η = 0 → φ′(0) = Ks φ(0), η = 1 → φ(1) = 1
The quantities of the engineering curiosity drag force on the surface and Nusselt

number at local are given as

C f = τw

ρ f U 2
w

, Nu = qwx

k f (Tw − T0)
(18)

where τw (wall skin friction), and qw (wall heat flux) are given as

τw = μn f

(
1 + 1

β

)(
∂u

∂y

)

y=0

, qw = −kn f

(
∂T

∂y

)

y=0

(19)

In view of Eqs. (9) and (19) in Eqs. (18), we acquire

C f = (Rex )
−1
2

(
1 + 1

β

)
1

(1 − 2.5χ)
f ′′(0), Nux = −(Rex )

1
2
−1

β1

kn f
k f

φ′(0) (20)

where Rex = Uwx
υ f

signifies the local Reynolds number.

3 Plan of Solution

By transforming partial differential expressions into ordinary differential equations
by using suitable transformations, which results highly nonlinear Eqs. (10), (11) and
(17) which cannot be solved analytically. Therefore, we employ the famous shooting
technique with RKF method. The set of coupled nonlinear ODEs is renovated into
the system of differential equations of the first order as follows:

f = P1, f ′ = P2, f ′′ = P3, f ′′′ = P ′
3, θ = P4, θ ′ = P5, θ

′′ = P ′
5, φ = P6, φ′
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= P7, φ
′′ = P ′

7,

P ′
3 =

⎛
⎝ 1

φ1

(
1 + 1

β

)
⎞
⎠(−φ2(β1)

2P1P3 − P2
2 − S(P2 + 0.5ηP3)

) + φ3MP2 + DP2

P ′
5 = 1

φ4

[
φ5 Pr(β1)

2

(
2P2P4 − P1P5 + 3

2
SP4 + 1

2
SηP5

)
+ A ∗ P2 + B ∗ P4

]

P ′
7 = − 1

NAT

(
P4P

′
5

) + Sc
(−P1P7 + 0.5SηP7 + K P6(1 − P6)

2
)

Associated boundary conditions are

P1(0) = 0, P2(0) = 1, P4(0) = 1, P7(0) = KsP6(0), P1(1) = β1S

2
, P3(1) = 0,

P5(1) = 0, P6(1) = 1

For solving boundary layer flow problems, this technique is very much useful.
Assume two guesses f ′′(0) and −θ ′(0) to get an approximate solution. For all cases,
the step size is 0.001, and the convergence criterion is 10−6.

4 Discussion

This portion designates momentous features of tangled flow parameters on velocity,
temperature and nano particle concentration, the rate of heat transfer, surface drag
force, and local convectional transmission coefficient. Computer codes have been
propelled for these numerical results and are incited with graphs and tables assuming
the default values for all the physical parameters Sc = 0.5, K = 0.5, β1 = 1.0, q =
0.5,

φ1 = 1.0, φ2 = 1.0, S = 0.5, θw = 1.5, M = 0.5, Pr = 0.72, A∗ =
0.05, B∗ = 0.05, NAT = 1.0, and Ks = 10.0are fixed. At this juncture, two
cases: MOS2 + KO and MOS2 + EO are examined.

The upshot of the unsteadiness parameter S on flow and thermal is displayed in
Figs. 2 and 3. It is reported that the upgrading values of S degrade the velocity and
temperature profiles for two cases. It should also be noticed that MOS2 + KO leads
to better outcomes for the boundary layers of thermal and momentum than for the
concentration. This is due to the influence of buoyancy on the fluid flow shrinks for
escalating values of S. This results in a decrement in all three boundary layers.

Figure 4 fed light on the velocity variations for different porosity D on thin
nanoliquid film. It is observed that velocity hikes as D hikes. The porosity should be
increased slightly as the thickness of thefilm is very little, that is D → ∞ corresponds
to the case in which there does not exist any porous medium. The growing values of
D stand for the massive opening of the permeable gap, resulting in the retardation
of the flow with elevated velocity.
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Fig. 2 f ′ (η) for S

Fig. 3 θ (η) for S

Fig. 4 f ′ (η) for D



The Diathermic Oils Over a Thin Liquid Film with MOS2 Nano … 487

Concentration variations are displayed in Figs. 5 and 6 for changing the scale
of the reactions K and Ks. As K and Ks values mounted a decrement in concen-
tration is inferred from the figures. When the strength of homogeneous reactions
is increased, the consumption of chemical reactants improves as well, resulting in
a large chemical reaction and, as a result, a smaller concentration distribution. For
various base fluids, the thickness of the solutal boundary layer decreases. Because the
heterogeneous reaction parameter Ks has an opposite relation with mass diffusivity,
the concentration falls.

Figure 7 displays the outcome of Sc on concentration. Sc refers to simultaneous
momentum and mass diffusion convection in a fluid flow. Sc is the proportion of the
rates of viscous diffusion to molecular diffusion. Low concentration for high Sc is
noted. This is due to the fact that strong diffusion species have a greater retarding
impact on the concentration.

Fig. 5 φ (η) for K

Fig. 6 φ (η) for Ks
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Fig. 7 φ (η) for Sc

Figure 8 illustrates how the temperature distribution is affected by the space-
dependent heat source/sink parameter A*. The boundary layer generates energy if
A* > 0 (heat source), which boosts the liquid’s thermal nature. The border layer
absorbs energy for A* < 0 (absorption), consequences a drop in temperature. In
Fig. 9, the effect of B* on temperature is shown. As energy is discharged into the
fluid, a hike in fluid temperature is noticed when B* > 0, and a negativity is noted,
i.e., a declivity in heat as the energy is taken up by the fluid when B* < 0.

Figure 10 emphasizes the variation in Surface drag force for different D. It brings
out that escalating D the drag force is added for MOS2 + KO and MOS2 + EO.
The consequence of S on drag force is shown in Fig. 11. It is uncovered that rising
S raises the drag force for both cases.

Figure 12 exemplifies the consequence of heat flux on A ∗ . It is viewed from the
figure that a rise in A∗ has a plunge in the heat flux. It is detected from Fig. 13 that
the heat flux reduces with B ∗ . The increment for MOS2 + EO is further with MOS2
+ KO.

Fig. 8 θ (η) for A∗



The Diathermic Oils Over a Thin Liquid Film with MOS2 Nano … 489

Fig. 9 θ (η) for B∗

Fig. 10 f ′′ (η) for D

Fig. 11 f ′′ (η) for S

For different shapes of MOS2 nanoparticles, the rate of heat transfer and volume
fraction in kerosene oil is debated in Fig. 14. Here, the heat transfer rate amplifies
with φ. The heat transfer rate of the nanofluid with particles of blade-shapes is
bigger than brick, cylinder, and platelet shapes for the same volume fraction. The
heat transfer rate with particles of blade shapes is 12.70, 23.93, and 34.07% greater
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Fig. 12 −θ ′ (η) for A∗

Fig. 13 −θ ′ (η) for B∗

than brick, cylinder, and platelet shapes in kerosene oil-based nanofluids. MOS2 is
more conductive when compared to other metals because of its special arrangement
with diamagnetic nature. However, the heat transfer rate is low.

Figure 15 is displayed to report the increment percentage of unlike shapes ofMOS2
nanoparticles with Engine oil as a base fluid. The figure shows that the particles of
blade shapes have the highest variation succeeded by brick, cylinder, and platelet
shapes. Also, spotted that the thermal transfer rate of EO has been enhanced by
33.04% with blade-shaped particles. Also noted that 17.05%, 21.52%, and 24.28%

Fig. 14 −θ ′ (η) for φ with
different shapes on MOS2 +
KO
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increment of the thermal transfer rate of EO with brick, cylinder, and platelet-shaped
nanoparticles, respectively. Table 3 shows a deviancy of surface drag force for various
denominations of M, D, S, and β1. The drag force hastens with M, D, S and
decelerates along β1.The increment of the rate of heat transfer with dissimilar shaped
nanoparticles in EO andKOwith divergent volume fractions are displayed in Tables 4
and 5. The blade-shaped particles show the utmost deviation caught on by brick,
cylinder, and platelet-shaped particles in both base fluids.

Fig. 15 −θ ′ (η) for φ with
different shapes on MOS2 +
EO

Table 3 The values of surface drag force for various parameters

f ′′(0)
M D S β1 MOS2 + KO MOS2 + EO

0.5 0.5 0.5 0.5 1.2284 0.9716

1.0 0.5 0.5 0.5 1.5398 1.1278

1.5 0.5 0.5 0.5 1.7988 1.2653

2.0 0.5 0.5 0.5 2.0253 1.3894

0.5 0.7 0.5 0.5 1.2699 1.0234

0.5 0.9 0.5 0.5 1.3102 1.0729

0.5 1.1 0.5 0.5 1.3492 1.1201

0.5 0.5 1.0 0.5 1.2602 1.0131

0.5 0.5 1.5 0.5 1.2901 1.0514

0.5 0.5 2.0 0.5 1.3814 1.0870

0.5 0.5 0.5 1.0 0.7967 0.6901

0.5 0.5 0.5 1.5 0.6746 0.6106

0.5 0.5 0.5 2.0 0.6150 0.5692
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Table 4 φ for −θ ′(0) and percent enhancement with bricks, cylinders, platelets, and blades on
MOS2 + EO

φ −θ ′(0) %

Bricks Cylinders Platelets Blades Bricks Cylinders Platelets Blades

0 1.2061 1.2061 1.2061 1.2061 – – – –

0.04 1.2766 1.2978 1.3116 1.3589 5.84529 7.60302 8.7472 12.6689

0.08 1.3451 1.3841 1.4087 1.4900 11.5248 14.7583 16.7979 23.5387

0.12 1.4118 1.4657 1.4989 1.6046 17.055 21.5239 24.2766 33.0404

Table 5 φ for −θ ′(0) and percent enhancement with bricks, cylinders, platelets, and blades on
MOS2 + KO

φ −θ ′(0) %

Bricks Cylinders Platelets Blades Bricks Cylinders Platelets Blades

0 1.1752 1.1752 1.1752 1.1752 – – – –

0.04 1.2434 1.2642 1.2777 1.3244 5.80327 7.57318 8.72192 12.6957

0.08 1.3106 1.3493 1.3740 1.4564 11.5214 14.81450 16.91630 23.9278

0.12 1.3771 1.4315 1.4655 1.5756 17.1801 21.80910 24.70220 34.0708

5 Conclusions

The central concluded points are as follows:

• The MOS2 nanoparticle is more active in EO than KO.
• The non-spherical elements (Platelet and Cylinder) within EO–KO-based fluids

conclude better viscosity owing to their configuration and will intensely increase
the heat transport capacity.

• The Surface drag force is high for high Porosity parameter.
• Heat transfer rates of EO having blade-shaped particles are 12.67, 23.54, and

33.04%; superior to the regular fluid with volume fraction φ = 0.04, 0.08 and
0.12, respectively.

• The heat transfer rate of EO-based nanofluid suspended blade-shaped MOS2
nanoparticles is 33.04, 17.05, 21.52, and 24.28%; bigger than brick, cylinder,
and platelet-shaped nanoparticles.

Graphical Trends

(See Figs. 2 to 15. Table 2 to 5).
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Nomenclature

ei j (I, j)th element of the deformation rate
B0 Applied magnetic flux
f (η) Dimensionless velocity
EO Engine oil
qw Heat flux from the surface
q Dimensionless parameter
Ks Heterogeneous reaction strength
K Homogeneous reaction strength
Uw Stretching velocity in X direction (m s-1)
V Stretching velocity in Y direction (m s-1)
H(t) Film size (m)
Tw Temperature of the fluid near the wall (K)
T0 Initial temperature of the fluid (K)
KO Kerosene oil
C fx Local skin friction in dimensionless form along x-direction
Nux Local Nusselt number
Rex Local Reynolds number
M Magnetic field parameter
Pr Prandtl number
p Pressure (kg m-1s-2)
D Porosity parameter
Tref Refered temperature of the fluid (K)
T Temperature (K)
Cp Specific heat at constant pressure (J kg-1K-1)
Ts Temperature of the fluid over surface (K)
t Time (s)
c Stretching rate (s-1)
k Thermal conductivity (m2 s-1)
S Unsteadiness parameter
Sc Schmidt number
u Velocity component along x-axis (m s-1)
v Velocity component along y-axis (m s-1)
x x− Coordinate (m)
y y− Coordinate (m)

Greek Symbols

α Constant (s-1)
πc Critical value of the product of the deformation rate by itself
ρ Density (kg m-3)
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ψ Physical stream function (m2 s-1)
δ Ratio of diffusion coefficient
β1 Dimensionless fluid thickness parameter
υ Kinematic viscosity (m2 s-1)
φi (i = 1 − 5) -Nanofluids constants
τw Surface shear stress (kg m-1s-2)
η Similarity variable
σ Electrical conductivity
θ(η) Dimensionless temperature
φ Nano particles volume fraction of MOS2

Subscripts

f Base fluid
∞ Fluid properties at ambient flow
n f Nanofluid
s Surface
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Wave Energy Dissipation by Multiple
Permeable Barriers in Finite Depth
Water

Biman Sarkar and Soumen De

Abstract A wave energy dissipation problem is solved for multiple permeable bar-
riers in the water of finite depth. Applying Havelock’s inversion formulae, this prob-
lem reduces to a set of first kind Fredholm integral equations involving potential
differences across the barriers. The methodology utilized in this study is multi-term
Galerkin’s technique with a set of basis functions involving Chebychev’s polynomi-
als. A linear system has been solved for numerical estimations of the transmission
and reflection coefficients. Dynamic wave force and wave energy dissipation have
been computed both analytically and numerically. Also, at the end of the permeable
barriers, square-root singularity of fluid velocity is tactfully handled. The numeri-
cal results for wave energy dissipation, dynamic wave force and reflection coeffi-
cients are depicted against wave numbers considering various values of parameters.
Excellent ratification between previous results in the literature and present results is
demonstrated.

Keywords Partially immersed permeable barriers · First kind fredholm integral
equations · Galerkin’s technique ·Wave energy dissipation · Horizontal wave force

1 Introduction

Dissipation of wave energy over offshore platforms and harbours is a vital issue for
researchers and ocean engineers. Different breakwater configurations have been built
to defend coastal areas from the rough sea. Employing complex variable technique, an
explicit solution of water wave scattering problems associated with an impermeable,
thin barrier for normal incidence surfacewaves had been found for the first time in the
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literature of Dean [1]. In the context of permeable breakwater, Sollitt and Cross [2]
first investigated the problem of wave scattering by a thick rectangular porous bar. In
the past fewdecades,many researchworks (Yu [3],Karmakar et al. [4], Karmakar and
Soares [5], Lee and Chwang [6], Chanda and Bora [7] and the literature cited therein)
had been carried out on permeable breakwaters. Recently, Sarkar et al. [8, 9] studied
the non-uniform permeable barriers by considering different barrier configurations
and revealed that this type of permeable barriers made a crucial impact on breakwater
constructions.

In this paper, wave energy dissipation by multiple partially immersed thin vertical
permeable barriers in thewater of finite depth is explored by using inversion formulae
of Havelock’s and reducing the BVP into a set of Fredholm-type integral equations
involving potential differences. Then Galerkin’s approximation along with polyno-
mials (Chebychev’s) as basis has been used to obtain the solutions of these integral
equations. Numerical results for wave energy dissipation, dimensionless wave force,
reflection and transmission coefficients are depicted againstwavenumber by adopting
different parametric values. For the correctness of our numerical results, we validate
our results with the existing results [6, 10, 11].

2 Mathematical Formulation

Considering the linearized water wave theory and irrotational fluid motion, the math-
ematical problem is to solve φ(x, y) which satisfies

∇2φ = 0, y ∈ [0, h], (depth of the water) (2.1)

Kφ + φy = 0 on y = 0, x ∈ (−∞, 0) ∪ (0,∞), (2.2)

φx = −ik0G j [φ(∓s j + 0, y) − φ(∓s j − 0, y)] on y ∈ (0, d j ); ( j = 1, 2), (2.3)

where G j represents porous effect parameter,

r1/2∇φ is bounded in the vicinity of the submerged sharp ends, (2.4)

φy = 0 on y = h (2.5)

and

φ(x, y) ∼
⎧
⎨

⎩

Tφinc(x, y) as x → −∞,

φinc(x, y) + Rφinc(−x, y) as x → ∞.

(2.6)
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Fig. 1 Geometry of the problem

Here Re{φinc(x, y)e−iσ t } represents velocity potential in the fluid region, T and R
represent transmission and reflection coefficients and σ denotes angular frequency of
waves. Also, φinc(x, y) = φ0(y)e−ik0(x−s2), here φ0(y) = cosh k0(h−y)

cosh k0h
. The transcen-

dental equation K = k tanh kh have a unique +ve real root k0 and infinitely many
purely imaginary roots ikn .

The barriers are arranged symmetrically with respect to the y-axis as shown
in Fig. 1 and submerged parts occupy lines S j∓ = {x = ∓s j ; y ∈ l j } ( j = 1, 2)
such that S = S2− ∪ S1− ∪ S1+ ∪ S2+. So, the velocity potential can be split into
symmetric and anti-symmetric parts follows:

φ(x, y) = φsm(x, y) + φam(x, y) (2.7)

where
φsm(x, y) = φsm(−x, y), φam(x, y) = −φam(−x, y). (2.8)

Thus, we consider x ≥ 0 region so that φsm,am(x, y) satisfies

∇2φsm,am = 0, x, y ∈ (0,∞),

Kφsm,am + φsm,am
y = 0 on x ∈ (0,∞), y = 0,

together with (2.3), (2.4), (2.5) and

φsm
x (0, y) = 0, φam(0, y) = 0, y ∈ (0, h). (2.9)
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3 Method of Solution

At infinity, φsm,am(x, y) satisfies

φsm,am(x, y) ∼ 1

2
{φinc(x, y) + Rsm,amφinc(−x, y)} as x → ∞ (3.1)

where Rsm,am are connected with T and R by

T, R = Rsm ∓ Ram

2
. (3.2)

φsm(x, y) expands as

φsm(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Asm
0 cos k0x φ0(y) +

∞∑
n=1

Asm
n cosh knx φn(y) x ∈ (0, s1), y ∈ (0, h),

(Bsm
0 eik0x + Csm

0 e−ik0x )φ0(y) +
∞∑
n=1

(Bsm
n ekn x + Csm

n e−kn x )φn(y) x ∈ (s1, s2), y ∈ (0, h)

φinc(x, y) + Rsmφinc(−x, y) −
∞∑
n=1

Dsm
n e−kn (x−s2)φn(y) x ∈ (s2,∞), y ∈ (0, h).

(3.3)
Here φn(y) = cos kn(h − y).

Let
psmj (y) = φsm

x (s j , y), j = 1, 2 (3.4)

and
qsm
j (y) = φsm(∓s j + 0, y) − φsm(∓s j − 0, y), y ∈ (0, h). (3.5)

Thus
psmj (y) = −ik0G j q

sm
j (y), y ∈ l j , j = 1, 2 (3.6)

Employing Havelock’s inversion formulae on qsm
j (y) and using (3.6), we get

− k0A
sm
0 sin k0s1φ0(y) +

∫ d1

0
qsm1 (u)U sm

11 (y, u)du +
∫ d2

0
qsm2 (u)U sm

12 (y, u)du = −ik0G1qsm1 (y)

(3.7)

− ik0(1 − Rsme2ik0s2 )φ0(y) +
∫ d1

0
qsm1 (u)U sm

21 (y, u)du +
∫ d2

0
qsm2 (u)U sm

22 (y, u)du = −ik0G2q
sm
2 (y).

(3.8)
Here

U sm
11 (y, u) = −

∞∑

r=1

krδr h
−1e−αr s1 sinh αr s1φr (u)φr (y) (3.9a)
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U sm
12 (y, u) = U sm

21 (y, u) = −
∞∑

r=1

krδr h
−1e−αr s2 sinh αr s1φr (u)φr (y) (3.9b)

U sm
22 (y, u) = −

∞∑

r=1

krδr h
−1e−αr s2 sinh αr s2φr (u)φr (y) (3.9c)

and

δr = 4krh

2krh + sin 2krh
(r = 1, 2, . . .) (3.10)

Setting

Xsm
1 = 0, Xsm

2 = −1, Y sm
1 = −iAsm

0 sin k0s1, Y sm
2 = −Rsme2ik0s2 (3.11)

Introducing the step function χ j (y) defined as

χ j (y) =
{
0, y ∈ l j ,
1, y ∈ l j , j = 1, 2

(3.12)

where l j = (0, h) - l j .
Also, let

qsm(u) = ik0h
2Fsm(u)(Xsm − Ysm) (3.13)

where qsm(u) = (
qsm
1 (u), qsm

2 (u)
)T

,Xsm = (
Xsm
1 , Xsm

2

)T
,Ysm = (

Y sm
1 ,Y sm

2

)T
,

Fsm(u) =
(
Fsm
jl (u)

)

4×4
.

Now, using (3.11) to combine the Eqs. (3.7) and (3.8) and then utilizing (3.12),
the ranges of the combined equation converted into (0, h) and further using (3.13) to
put it into a matrix form as follows:

φ0(y)χχχ(y) + h2
∫ h

0
χχχ(y)Usm(y, u)χχχ(u)Fsm(u)du = −ik0h

2GGGχχχ(y)Fsm(y), y ∈ (0, h)

(3.14)
where χχχ(y) = diag

(
χ j (y)

)

2×2, Usm(y, u) = (U sm
jl (y, u)

)

2×2, GGG = diag
(G j

)

2×2.
Further employing Havelock’s inversion formulae on qsm

j (y), we get

i csc k0τ
(
iAsm

0 sin k0s2 + 1 − Rsme2ik0s2
)

= δ0

h

∫ d1

0
qsm
1 (y)φ0(y)dy (3.15a)

i csc k0τ
(

− iAsm
0 sin k0s1 − eiμτ + Rsme2ik0s2e−ik0τ

)
= δ0

h

∫ d2

0
qsm
2 (y)φ0(y)dy

(3.15b)
where τ = s2 − s1 and δ0 = 4k0h cosh2 k0h

2k0h+sinh 2k0h
.
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Again using (3.11) to combine above equations and then using (3.13) to write the
combined equation in matrix form as follows:

[
ZsmXsm − Z

sm
Ysm

]
= δ0k0h sin k0τ Lsm(Xsm − Ysm) (3.16)

where

Lsm =
∫ h

0
χχχ(u)Fsm(u)φ0(u)du, (3.17)

Zsm =
( sin k0s2

sin k0s1
−1

−1 eik0τ

)

and Z
sm

is the conjugate transpose of Zsm .

By interchanging sin k0s j , sinh k0s j ( j = 1, 2)by cos k0s j , cosh k0s j ( j = 1, 2),
respectively, in (3.3), we can get the corresponding expressions for φam(x, y). If we
findFsm,am(y) by solving (3.14) numerically, thenLsm,am are determined from (3.17)
and hence numerical estimates for Rsm,am . Finally, |T | and |R| can be derived from
(3.2).

4 Galerkin’s Method

We consider (N + 1)-term approximation by Galerkin’s method to solve (3.14) for
Fsm,am(y) as

Fsm,am
jl (u) 


N∑

n=0

a(n)sm,amψ
(n)
j (u), u ∈ (0, d j ). (4.1)

We choose the suitable basis functions ψ
(n)
j (u) as

ψ
(n)
j (u) = − d

du

[
e−Ku

∫ d j

u
ψ̂

(n)
j (t)eKtdt

]
, u ∈ (0, d j ) ( j = 1, 2) (4.2)

with

ψ̂
(n)
j (t) = 2(−1)n

π(2n + 1)hd j
(d2

j − t2)
1
2U2n

( t

d j

)
( j = 1, 2) (4.3)

where U2n(x) is the 2n order Chebychev’s polynomial.
Using (4.1)–(4.3) in Eq. (3.14) and introducing usual Kronecker delta function

δ jl ( j, l = 1, 2), we get
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δ jlχ j (y)φ0(y) + h2χ j (y)
[ N∑

n=0

2∑

k=1

a
(n)sm,am
kl

∫

lk
U sm,am
jk (y, t)ψ(n)

k (t)dt
]

= −ik0h
2G jχ j (y)

N∑

n=0

a
(n)sm,am
jl ψ

(n)
j (y), y ∈ (0, h)

(4.4)

Multiplying (4.4) by ψ
(m)
j (y) and integrating over l j ( j = 1, 2), respectively, and

then substituting the values of U sm,am
jl (y, u) from (3.9), we get the following system

of equations:

N∑

n=0

2∑

l=1

a(n)sm,am

lk V ( jl)sm,am
mn = −δlkW ( j)sm,am

m , ( j, k = 1, 2), (4.5)

where

V ( j j)sm
mn = −

∞∑

r=1

δr kr h sinh kr s j cos2(krh)

ekr s j (krh)2
J2m+1(krd j )J2n+1(krd j )

+ ik0h
2G j

∫

l j

ψ
(m)
j (y)ψ(n)

j (y)dy,

(4.6a)

V ( jl)sm
mn = −

∞∑

r=1

δr kr h sinh kr s1 cos2(krh)

ekr s2(krh)2
J2m+1(krd j )J2n+1(krdl), ( j �= l)

(4.6b)

V ( j j)am
mn = −

∞∑

r=1

δr kr h cosh kr s j cos2(krh)

ekr s j (krh)2
J2m+1(krd j )J2n+1(krd j )

+ ik0h
2G j

∫

l j

ψ
(m)
j (y)ψ(n)

j (y)dy,

(4.6c)

V ( jl)am
mn = −

∞∑

r=1

δr kr h cosh kr s1 cos2(krh)

ekr s2(krh)2
J2m+1(krd j )J2n+1(krdl), ( j �= l)

(4.6d)

W ( j)sm,am
m = (−1)m

I2m+1(k0d j )

k0h
. (4.6e)

Now substituting (4.1) into (3.17) and assumingLsm,am = {Lsm,am
jl }2×2, we deter-

mine Lsm,am
jl as

Lsm,am
jl 


N∑

n=0

a(n)sm,am

jl

∫

l j

ψ
(n)
j (t)φ0(t)dt =

N∑

n=0

a(n)sm,am

jl W ( j)sm,am
n (4.7)



504 B. Sarkar and S. De

Equations (4.5) and (4.7) together imply the matrix Lsm,am as

Lsm,am = WWW sm,am(VVV sm,am)−1(−WWW sm,am)T (4.8)

where Lsm,am =
(
Lsm,am

jl

)

2×2
, WWW sm,am = diag

(WWW ( j)sm,am
)

2×2, VVV sm,am =
(VVV ( jl)sm,am

)

2×2 , WWW ( j)sm,am = {W ( j)sm,am

0 , W ( j)sm,am

1 , . . . , W ( j)sm,am

N },VVV ( jl)sm,am =
(V ( jl)sm,am

mn
)

(N+1)×(N+1).
If Lsm can be obtained from (4.8), then Rsm can also be formulated from (3.16)

and (3.11). In a similar manner, we also determine Ram too.

5 Wave Energy Dissipation and Wave Force

Employing Green’s integral theorem, the energy relation for permeable walls can be
obtained as follows:

|R|2 + |T |2 + J = 1 (5.1)

J (amount of wave energy dissipsation) = δ0

2

2∑

j=1

∫

l j
�(G j )

{|qsmj (y)|2 + |qamj (y)|2}dy (5.2)

The horizontal wave force exerting upon the barriers as follows (cf. Li et al. [14])

F = 2iρσ

2∑

j=1

∫

l j

q(am)
j (y)dy. (5.3)

Thus, the non-dimensionless wave force is represented by

WF = |F |
F0

, (5.4)

F0 = ρgσ

k0
tanh k0h. (5.5)

6 Results and Interpretations

In this section, the numerical estimates are graphically represented. We consider
N = 2 in Galerkin’s approximation for the whole section.

Considering parametric values as a1
h = a2

h = 0.2, b1
h = 0.3, b2

h = 0.301,G j = 0
so that our barrier-configuration becomes almost Das et al’s [10] configuration of
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Table 1 Numerical results of Das et al.’s [10] results for R1 and R2 and Present results for R with
a1
h = a2

h = 0.2, b1
h = 0.3, b2

h = 0.301,G j = 0

Kh R1 R2 R

0.2 0.031799 0.032341 0.0315049

0.8 0.088445 0.089049 0.0871078

1.4 0.126188 0.128896 0.125453

Table 2 Numerical results of Mandal and Dolai’s [11] results for R1 and R2 and Present results
for R with a1

h = a2
h , b1

h = 0.001, b2
h = 0.0011,G j = 0

a
h R1 R2 R

0.2 0.0176 0.0176 0.0172221

0.4 0.0712 0.0713 0.0716796

0.6 0.174 0.174 0.175369

0.8 0.3482 0.3521 0.361113

two barriers. Table1 shows the correctness of our numerical results up to 2–3 decimal
places.

To validate the present result with Mandal and Dolai [11], the parameters are
taken as a1

h = a2
h , b1

h = 0.001, b2
h = 0.0011,G j = 0. An accuracy of 2–3 decimal

places has been achieved in Table2.
In Fig. 2, we recover figures of Lee and Chwang [6] for a single partially

immersed barrier with G j = 0.25, 1. Other non-dimensional parameters are cho-
sen as a1

h = a2
h = 0.5, b1

h = 0.001, b2
h = 0.0011. This establishes the exactness of

the present result.
Figure3 is plotted for single barrier, two-barrier and four-barrier configurations

with G j = 0.5. From Fig. 3, we confirm that increase in number of barriers helps to
reduce more wave energy.

The effect of different modulus of permeability parameter is shown in Fig. 4
with G j = 0.5, 1, 1 + i. We assume the other parametric values as a1

h = 0.25, a2
h =

0.45, b1
h = 3.5, b2

h = 4.5. It is observed from Fig. 4 that non-dimensionless wave
force exerted upon the barriers decreases as the modulus of G j increases.

The influence of porosity upon the reflection coefficients is demonstrated in
Fig. 5 with different values of G j . So, we consider parameters as a1

h = 0.15, a2
h =

0.35, b1
h = 3.5, b2

h = 6.0. This figure shows increase inmagnitude of porosity implies
the decrease in |R|.
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Fig. 2 |R| versus Kh for
a1
h = a2

h = 0.5,
b1
h = 0.001, b2

h = 0.0011

Fig. 3 J versus Kh for
four, two and single barriers
with G j = 0.5
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Fig. 4 WF versus Kh for
a1
h = 0.25, a2

h = 0.45,
b1
h = 3.5, b2

h = 4.5

Fig. 5 |R| versus Kh for
a1
h = 0.15, a2

h = 0.35,
b1
h = 3.5, b2

h = 6.0

7 Conclusions

In the present study, we consider the problem of wave energy dissipation by thin
multiple partially immersed vertical porous barriers in the water of uniform finite
depth. Some excellent conclusions are explored in our present work. The conclusions
are recapitulated as follows:
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1. Rise in the number of barriers is a major reason for the dissipation of more wave
energy. This phenomenon signifies the crucial importance of themultiple partially
immersed thin vertical porous barriers for constructing the breakwaters of various
geometrical configurations.

2. It is also noticed that as the modulus of permeability parameter increases, dimen-
sionless wave force reduces. Thus, the porosity of barriers helps to diminish wave
load upon the barriers.

3. It is observed that |R| decreases as the magnitude of permeability increases. This
incident occurs in view of the wave energy dissipation by the holes of perforated
barriers.
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Thermal Stress Analysis of
Inhomogeneous Infinite Solid to 2D
Elasticity of Thermoelastic Problems

Abhijeet Adhe and Kirtiwant Ghadle

Abstract This paper is developed to study an analytical solution of thermal stresses
to the plane elasticity of thermoelastic problems for inhomogeneous materials with
internal heat generation. Here, the original problems are reduced to set the governing
equations by use of the method of direct integration. Further using the iteration
techniques, the governing equations are reduced to integral equations. The numerical
calculations have been performed with the aid of the iterative method, which gives
the rapid convergence. The distribution of Young’s modulus and shear modulus, and
the dimensionless stresses, are shown graphically. An explicit solution is derived
which will be more useful for analysis of stress field in an isotropic inhomogeneous
solid.

Keywords 2D elasticity problems · Thermoelastic problems · Inhomogeneous
solid · Direct integration method · Iterative technique · Analytical solution · Exact
solution

1 Introduction

Thermoelasticity comprises the theory of heat conduction and the theory of stress
and strain due to heat flow, when coupling of temperature and strain field takes place.
Also, it contains the study of temperature distribution, stress, and strain developed
in a material. A study of thermal stresses is essential in many applications. Thermal
stresses in a material are one of the prime factors, which affect the life of a material.
The determination of thermal stresses caused by an involvement in a medium is
classical problem. The interest of researchers to study elasticity and thermoelastic
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problems has grown very fast due to their wide applications to the real world. Among
various inhomogeneous solids, FGM have fascinated academicians and researchers.
Except for few particular cases, it is impossible to get the analytical solution. To
get the better of this struggling, we need some clarification. FGM’s have many
applications in various fields of engineering sciences.

Gaikwad et al. [1] studied heat conduction problems in the case of nonhomoge-
neous hollow circular-type disk. Jafari et al. [3] discussed the stress analysis in an
orthotropic infinite plate with a circular hole. Authors used a complex variable tech-
nique for the two-dimensional thermoelastic problem. Kalynyak [4] used a method
of direct integration of equation of equilibrium and continuity in terms of stresses
for inhomogeneous cylindrical bodies. A novel study by Kaminski [5] for hyperbolic
heat conduction equations for nonhomogeneous materials.

Chien-ching Ma et al. [6] developed a fruitful analytical method for a full-field
solution in an anisotropic multi-layered media. They have analyzed the steady-state
temperature and heat conduction in each layer on the surfaces using Fourier trans-
form and series expansion method to get the explicit solution in series form of the
discussed problem. Manthena et al. [7] emphasized on the temperature distribution,
displacement, and thermal stress of nonhomogeneous rectangular plate. Porter [9]
discussed the procedure of the solution to integral equations with difference kernels
applied on finite intervals. Rychachivskyy [10], Tokovyy et al. [16, 17] emphasized
on solution of the 2D elasticity and thermoelasticity problems for inhomogeneous
planes and semi-planes. Tanigawa et al. [12, 13] derived the basic equations for three-
dimensional thermoelasticity problems with nonhomogeneous properties. Tokovyy
et al. [14, 15, 19] extended the direct integration method for three-dimensional
temperature and analysis of thermal stress in inhomogeneous solids. The same tech-
nique to study the construction of solution of the plane quasistatic thermoelasticity
problems for cylindrically anisotropic hollow cylinders and disks satisfying inhomo-
geneous properties used by Tokovyy et al. [18].

Youssef et al. [23] developed a new model of three-dimensional generalized ther-
moelasticity by using the classic theory of Lord-Shulman. The double Fourier trans-
form and Laplace technique had been applied to the governing equations subjected to
rectangular traction-free surface, with the study of the temperature analysis, stresses,
strain, and displacement in a three-dimensional half-space. Vigak [20, 22] and his
followers in [21] developed a method to find solution of the elasticity and thermoe-
lasticity problems using the method of direct integration.

Many engineering problems are concerned with the evaluation of the amount of
heat transferred through surfaces and stresses due to coupling of temperature and
strain field in a solid [8].

In this research article, we have extended our own work [2]. We considered an
inhomogeneous half-plane and determined the explicit form analytical solution to
the steady-state distribution of temperature, using the method of direct integration.
The main focus of the present article is to determine the stress field for an infinite
plane due to the generation of internal heat in inhomogeneous solids under steady-
state temperature. Here, we have considered an isotropic inhomogeneous solid in an
infinite plane.
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The key points of this article are as below:
(a) The governing heat conduction problem for plane R is formulated as a boundary
value problem [8].
(b) The method of direct integration is applied to find the solution of the stated
thermoelastic problem.
(c) Making use of iterative method, analytical solution to thermal stresses of an
isotropic inhomogeneous solid is derived.
(d) The rapid convergence of iterations exists to solve the aforementioned problems.
(e) An explicit solution is derived which serves as better tool for analysis of stress
field in an isotropic inhomogeneous solid.

2 Problem Formulation

Consider, an isotropic inhomogeneous solid in a plane R = {(x, y) ∈ (−∞,∞) ×
(−∞,∞)}. Thermoelastic equilibrium of plane R is ruled by the following equilib-
rium equations:

∂σx
∂x + ∂σxy

∂y = X
∂σxy

∂x + ∂σy

∂y = Y,
(1)

strain-compatibility equations:

∂2τy

∂x2
+ ∂2τx

∂y2
= ∂2τxy

∂x∂y
, (2)

stress–strain relations:

τx = σx
E1(x)

− V1(x)σy

E1(x)
− d1 + α∗(x)T (x, y),

τy = − σy

E1(x)
− V1(x)σx

E1(x)
− d1 + α∗(x)T (x, y),

τxy = σx y
G(x) .

(3)

Here, σx , σy , and σxy are the stress–tensor components; τx , τy , and τxy denotes
the strain components; X = X (x, y), and Y = Y (x, y) are the stress-dimensional
projections of forces in dimensionless cartesian coordinates (x, y), respectively.

The steady temperature T (x, y) can be found from following equation [2]:

∂2T

∂x2
+ ∂2T

∂y2
= −W (x, y), (4)

under the condition
T (x, y) = T0(y), at x = 0; (5)
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whereW (x, y) = q(x,y)
k and q(x, y) denoting the heat generated due to internal heat

generated in R, T0(y) is known function, k is coefficient of thermal conductivity,

E1 = E

1 − v2
, f or plain strain,

= E, f or plain stress,

V1 = v

1 − v
, f or plain strain,

= v, f or plain stress,

β1 = β(1 + v), f or plain strain,

= β, f or plain stress,

d1 = vd, f or plain strain,

= 0, f or plain stress,

where E = E(x) and v = v(x) are Young’s modulus and Poisson’s ratio, respec-
tively; d is the out-of-plane strain, which is treated as constant; S = S(x) is shear
modulus fulfilling the following equation:

S = E

2(v + 1)
= modulus of rigidi t y (6)

By Hooke’s law,
Ed = σz − v(σx + σy) + βET, (7)

where σz is the plane stress and T = T (x, y) is the distribution of temperature.
Boundary conditions imposed at boundary x = 0,

σx (0, y) = m(y), σxy(0, y) = n(y). (8)

Using equilibrium condition (1), the second condition (8) for shear stress for normal
stress is reduced to

∂σy

∂y
= Y (0, y) − ∂σxy(0, y)

∂x
, (9)
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at x = 0. With the aid of stress–strain relation (3) and Eq. (1), we can express Eq. (2)
as

Δ

(
σ

E1
+ β1T

)
= σx

d2

dx2

(
1

2S

)
+ d2e1

dx2
+ X

d

dx

(
1

S

)
+ 1

2S

(
∂X

∂x
+ ∂Y

∂y

)

(10)
where the total stress is σ = σx + σy and;

Δ = ∂2

∂x2
+ ∂2

∂y2

denotes the two-dimensional Laplace differential operator. Expression (10) repre-
sents the compatibility equation of stresses for a homogeneous solid. The stress
components in plane R are found by problems of heat conduction in terms of stresses,
which is given by Eqs. (1) and (10).

3 Composition of Solution

To find the solution of the formulated problem, apply the Fourier Transform [11]
w.r.t. y

F̂(s) = ∫ ∞
−∞ f (y)exp(−isy)dy,

f (y) = 1√
2π

∫ ∞
−∞ F̂(s)exp(isy)ds,

(11)

where i2 = −1, f is an arbitrary function and s is a parameter. We choose σx and σ
to be the governing functions.

We use Eq. (10) to determine the governing stresses.

Δσx = ∂2σ

∂y2
+ ∂X

∂x
− ∂Y

∂y
. (12)

Applying direct integral transform (11) to Eq. (12) yields

(
d2

dx2
− s2

)
σ̂x = −s2σ̂ − isŶ + d X̂

dx
(13)

The particular solution to Eq. (13) in R can be given as

σ̂x = |s|
2

∫ ∞
−∞ σ̂(ρ)exp(−|s||x − ρ|)dρ + 1

2|s|
∫ ∞
−∞(

dσ̂(ρ)
dρ − isŶ (ρ))exp(−|s||x − ρ|)dρ,

(14)
where |.| denotes the absolute value function.

Applying Fourier transform (11) to Eq. (10), we get
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( d2

dx2 − s2)( σ̂
E1

+ β1T̂ ) = σ̂x
2

d2

dx2 (
1
S ) + √

2πδ(s) d
2d1
dx2 + X̂ d

dx (
1
S ) + 1

2S (
d X̂
dx + isŶ ), .

(15)
where δ(.) is the Dirac delta function.

The perticular solution to aformentioned Eq. (15) is

σ̂ = E1[−β1T̂ − 1
2|s|

∫ ∞
−∞(X̂(ρ) d

dρ ( 1S ) + 1
2S(ρ)

(isŶ (ρ) + d X̂(ρ)
dρ ))exp(−|s||x − ρ|)dρ)

− 1
4|s|

∫ ∞
−∞ σ̂x (ρ) d2

dρ2
( 1
S(ρ)

)exp(−|s||x − ρ|)dρ

− πδ(s)
|s|

∫ ∞
−∞

d2

dρ2
d1(ρ)exp(−|s||x − ρ|)dρ].

(16)
Now, using the value of σ̂x of Eq. (14) into expression (16), we get the following
integral equation:

σ̂ = E1

[
−β1T̂ + θ − γ − 1

8

∫ ∞

−∞
σ̂(ρ1)P(x, ρ1)dρ1

]
, (17)

where

θ = 1
2|s|

∫ ∞
−∞ X̂(ρ) d

dρ
( 1
G(ρ)

) + 1
2S(ρ)

(isŶ + d X̂(ρ)

dρ
))exp(−|s||x − ρ|)dρ

− 1
8s2

∫ ∞
−∞

∫ ∞
−∞(

d X̂(ρ1)
dρ1

− isŶρ1))
d2

dρ2
( 1
S(ρ)

)exp(−|s|(|ρ1 − ρ| + |x + ρ1|))dρ1dρ,

γ = πδ(s)

|s|
∫ ∞

−∞
d2

dρ2
d1(ξ)exp(−|s||x − ρ|)dρ,

and

P(x, ρ1) =
∫ ∞

−∞
d2

dρ2
(

1

S(ρ)
)exp(−|s|(|ρ − ρ1| + |x − ρ1|))dρ.

To find the solution of Eq. (17), let us consider a limit

σ̂ = lim
n→∞ σ̂n, (18)

where

σ̂n = E1

[
−β1T̂ + θ − γ1, n − 1

8

∫ ∞

−∞
σ̂n−1(ρ1)P(x, ρ1)dρ1

]
(19)

σ̂0 ≡ 0 and n = 1, 2, . . .
Here,

σ̂1 = E1[−γ1T̂ + θ]

We can represent Eq. (19) for the nth iteration as
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σ̂n = σ̂1 + ŝn−1,

where

Ŝn−1 = −E1

8

∫ ∞

−∞
σ̂n−1(ρ1)P(x, ρ1)dρ1.

Let us consider

β1 = 0.

The function Ŝn−1 is based on (n − 1)th approximation, and it represents the result
of nth approximation after the successful implementation of the first iteration.

The stress σx in a plane R can be found by using expression (12). Then the stress
σy is given by

σy = σ − σx .

The shear stress can be determined from first Eq. (1).

σ̂xy = −i

s

[
∂σ̂x

∂x
− X̂

]
.

Making use of Eq. (14) for plane R, we get

σ̂xy = i

s

[
X̂ − 1

2

∫ ∞
−∞

s2σ̂

(
ρ − isŶ + d X̂(ρ)

dρ

)
exp(−|s||x − ρ|)sgn(x − ρ)dρ

]
. (20)

The expression (17) represents an analytic explicit solutions of the mentioned ther-
moelastic problem in R.

4 Numerical Examples

To find the thermal stress of R stressed by external boundary conditions,

p = ρ0, |y| ≤ y0,
= ζ0, y1 ≤ |y| ≤ y2
= 0, otherwise,

(21)

where ρ0, ζ0 = constant, q = 0 and 0 < yi is constant, where, i = 0, 1, 2. For this
loading condition, we have considered temperature distribution T = 0 and body
forces equals to zero.

Equation (21) fulfils the condition in Appendix 4 satisfying the relation
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ζ0 = y0ρ0
y2 − y1

.

We observed that the boundary condition (21) and the essential integral condition
mentioned in Appendix 2, 3 are fulfilled by the stresses.

4.1 Exact Solution

An exact solution can be found by considering the inhomogeneity case for

E = E0 f (x),

where

f (x) =
1

1+ax , f or x ≤ 1
a ,

1
2 , f or x > 1

a .

E0 = constant, a < 0 = constant. We have a relation

S = S0 f (x)

where

S0 = E0

2(1 + v)

The distribution of Young’s and shear modulus is depicted for a = 1 and a = 5 (see
Fig. 1).

The x-distribution of the stresses σx and σy , respectively, is shown (see Fig. 2a,
b) for homogeneous and inhomogeneous properties in cross section y = 0. It is
seen that the stress σy is exponentially increasing along y-axis in homogeneous and
inhomogeneous regions. We notice the effect of material on the stresses which is
stronger for σy .

The y-distribution of the shear stress σxy in the cross section of x = 1 is shown
(see Fig. 3). we can see that y-distribution of σxy is an exponential nature.

4.2 Case of Young’s Modulus

Let us consider
E = E∞

[
1 − a exp(−bx)

]
(22)

of exponential form. Here, E∞, a, b are positive constants and v is also a con-
stant, which gives, E = E∞ for x tends to ∞. At x = 0, E = E0 is constant, where
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Fig. 1 The Young’s and shear modulus distribution

(a) x-distribution of σx. (b) x-distribution of σy.

Fig. 2 x-distribution of the stresses

E0 = E∞(1 − a). The shear modulus is appeared as

S = S∞
[
1 − a exp(−bx)

]

where

S∞ = E∞
2(1 + v)

.
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Fig. 3 y-distribution of the stresses σxy/ξ0

Fig. 4 Dimensionless distribution for b = 1, 5
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Elastic distribution of Young’s and shear moduli for a = 1 and two different values
of b (b = 1, 5), which obey property (22) in the calculation of Eq. (19) (see Fig. 4).
The result shows that the first iteration gives much accuracy in finding the total stress.

5 Conclusions

We construct an analytical solution to the 2D thermoelastic problems for inhomo-
geneous plane, making use of the direct integration method. The stresses have been
found using the Fourier Integral Transform. The original problems are reduced in
the form of integral equations. Further, an iterative technique is used to find their
solutions.

The speedy convergence exists, which can be described by the successful trial of
the first iteration.

So, the iterations set out an almost exact solution. The results show the vital
outcome on stress distribution of solid of inhomogeneous material. It is essential
for the analysis of stresses by taking material dependence properties into account.
Due to its explicit nature, the formulated solution serves as better tool in solving
thermoelastic problems, and also for verification of results by numerical or analytical
meaning. The constructed solutions can be used for thermal stress field analysis on
elastic solid having isotropic properties.

6 Appendix

The relations for the stresses and force in R
1. Stress–tensor relations:

σx =
∫ ∞

−∞

(
∂σxy(ζ, y)

∂y
+ X (ζ, y)

)
sgn(x − ζ)dζ,

σy =
∫ ∞

−∞

(
∂σxy(x, ρ)

∂x
+ X (ζ, y)

)
sgn(y − ρ)dρ,

σxy =
∫ ∞

−∞

(
∂σy(ζ, y)

∂y
+ Y (ζ, y)

)
sgn(x − ζ)dζ,

σxy =
∫ ∞

−∞

(
∂σx (x, ρ)

∂x
+ X (x, ρ)

)
sgn(y − ρ)dρ.
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2. The equilibrium conditions:

∫ ∞

−∞
σx dy =

∫ ∫
R

X (ζ, y)sgn(x − ζ) dζ .dy,
∫ ∞

−∞
σydx =

∫ ∫
R

Y (x, ρ)sgn(y − ρ) dρ .dx,

∫ ∞

−∞
σxydy =

∫ ∫
R

Y (ζ, y)sgn(x − ζ) dζ .dy,
∫ ∞

−∞
σxydx =

∫ ∫
R

X (x, ρ)sgn(y − ρ) dρ .dx .

3. The resultant forces conditions:
∫ ∫

R

σx dx .dy =
∫ ∫

R

x X dx .dy,
∫ ∫

R

σy dx .dy =
∫ ∫

R

yY dx .dy,

∫ ∫
R

σxy dx .dy =
∫ ∫

R

Xy dx .dy =
∫ ∫

R

xY dx .dy.

4. Equilibrium conditions for body forces:

∫ ∫
R

X dx .dy =
∫ ∫

R

Y dx .dy = 0,
∫ ∫

R

yX dx .dy =
∫ ∫

R

xY dx .dy.
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Study of Non-Newtonian Models for 1D
Blood Flow Through a Stenosed Carotid
Artery

Mahesh Udupa and Sunanda Saha

Abstract In this work, blood flow in human arteries is studied by considering differ-
ent geometrical configurations and mechanical properties of the arteries. The arteries
such as coronary, carotid, aorta, etc., are the main areas of focus that are carriers
of oxygen and nutrients to or from the vital organs. Comparison of various non-
Newtonian models is conducted for a better understanding of the effect of stenosis.
In addition, variation in pressure waveform is observed numerically for the physi-
cally stenosed arteries. In the stenosed artery, the extent of stenosis, along with its
length and position, have been treated as variables, amongst which, extent or degree
of the stenosis is observed to be the predominant factor. Numerical schemes of Lax
Friedrichs’ scheme and HLL scheme have been used to obtain the solution. For clin-
ical purposes, the present work can be used as an indicative index for pressure drop
under stenotic conditions.

Keywords Non-Newtonian · Carotid artery · HLL scheme · Stenosis

1 Introduction

The cardiovascular system of humans is a highly complex system, performing tasks
that form the basis for the life form to exist. Its main function being, the supply of
oxygen and nutrients to all parts of the body, it also removes carbon dioxide and other
toxin products from our system. So, any subtle changes, either in the channel or in the
fluid, affects the other. This interdependencemight eventually influence the evolution
of severe cardiovascular pathology such as atherosclerosis. Atherosclerosis refers to
the buildup of plaque, within the arteries causing an increase in wall thickness, and
thus narrowing of the arteries, which is called Stenosis. Even a stenosis in its mild
stage can develop arterial deformity, changing the regional blood rheology [1] and
reaching its severity, it may even rupture the arterial walls under certain physiological
conditions resulting in a stroke or heart attack and can prove even to be fatal [2, 3].
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Thus understanding the stenotic flow becomes very crucial for clinical purposes.
Deshpande et al. [4] have made numerical predictions on flow field due to the effect
of stenosis in a cylindrical domain by making an assumption for the flow to be steady
and laminar. Even, Smith [5] has made a similar assumption, for the flow to be steady
and laminar, and has compared the obtained analytical solutions with the existing
experimental data. But the blood flow is indeed unsteady for it is pulsatile in nature.
Zendehbudi et al. [6] have compared numerical results of the physiological pulsatile
flow, under the assumption that blood is Newtonian, with a simple pulsatile flow,
having the same stroke volume, with no-slip boundary condition. On the contrary,
Biswas et al. [7] have considered velocity slip condition at the stenotic wall, with
the Newtonian assumption for the fluid, and have investigated the variations in flow
parameters due to the effect of body acceleration, with its biological consequences.
Zhong et al. [8] have performed numerical simulations of blood flow through steno-
sis by FFR (Fractional Flow Reserve) technique and have discussed their clinical
implications with a variance in length, position, and degree of the stenosis.

In the above-mentioned works, blood is treated as Newtonian fluid, which is true
for most part of the cardiovascular circuit. But the natural constrictions caused by
the stenosis in the arteries narrow the path for fluid in the arteries, thus making its
dimensions comparable to that of RBCs (Red Blood Corpuscles) that is majorly
suspended in blood plasma, which consists of 90% of water. Under these conditions,
opting for non-Newtonian models for blood flow is provoked for better accurate
readings. Johnston et al. [9] have examined the contrast between classic Newtonian
model and five non-Newtonian models of blood viscosity. Mandal et al. [10] have
worked with the generalised power-law model with consideration of both shear-
thinning and shear-thickening behaviours of blood through the stenosed geometry.
Similarly, variations in flow parameters due to the asymmetric stenosis have been
analysed bySankar et al. [11]wherein they havemodelled bloodflowusingHerschel–
Bulkley model.

Stenosis usually occurs in various arteries throughout our body, only few of which
that require medical attention, based on their proximity to the vital organs, such as
heart or brain. So, the focus is on arteries such as coronary, carotid, aorta, etc., as
they perform the tasks of providing oxygen and nutrients to or from the vital organs.
In the present work, carotid artery has been considered as the domain of interest.
Onaizah et al. [12] by experimental setup, have thoroughly analysed changes in
the mechanical properties of the Carotid artery due to the formation of plaques
and have also performed a theoretical study on Lumped Parameter or LP models,
concluding with the reduction in flow due to stenosis. Zhang et al. [13] by adapting
the FFR (Fractional Flow Reserve) technique of coronary artery, have performed
CFD simulations by observing the ratio of distal pressure over proximal pressure
in the stenosed carotid artery and showing a fine correlation with their invasive
pressure-wired measurements.

The clinical implications have been the most important consequence of the study
of blood flow in the above-mentioned arteries. In recent years, one-dimensional (1D)
blood flow has been an efficient and valid model for averaged blood flow features.
Upon a close examination made by Xiao et al. [14] of 1D and 3D models of blood
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flow, they have concluded 1D model provides a good approximation for the 3D
model and, for the purpose of computational cost, 1D model for blood flow has been
preferred. Hence, in the present work, 1D model for blood flow has been consid-
ered. Further, numerical settings have been opted with a couple of finite difference
schemes, namely Lax Friedrichs [15] and Harten–Lax–Leer or HLL scheme [16].
Mathematical formulation of these schemes will be investigated in more detail in
Sect. 5. Given to the best of author’s knowledge, there has been no work done on
1D blood flow for a stenosed carotid artery (cosine shaped) considering the real
physiological conditions with the numerical setting of the HLL scheme.

This article has been organised as follows. In Sect. 2, the mathematical formula-
tion of 1D blood flow has been presented. In Sect. 3, non-Newtonian models along
with the Newtonian model have been compared for different arterial domains. In
Sect. 4, numerical results of Lax Friedrich’s scheme have been compared with the
results obtained by Mynard and Nithirasu [17], where they have considered locally
conservative Galerkin or LCG method. In Sect. 5, the numerical model used to solve
the problem has been presented. In Sects. 6 and 7, along with the geometry of the
stenosed artery, variance in pressure parameter has been presented for different con-
ditions of stenosis in the carotid artery and the results have been discussed.

2 Mathematical Modelling of Blood Flow

The one-dimensional system of hyperbolic partial differential equations, for blood
flow [17], derived from the Navier–Stokes equations in terms of (A, u) is

∂A

∂t
+ ∂(uA)

∂x
= 0,

∂u

∂t
+ ∂

∂x

(
u2

2

)
= −1

ρ

∂ p

∂x
+ f,

(1)

where A(x, t): Cross-sectional area of the artery; u(x, t): Velocity of the fluid; p:
Pressure related to A via a non-linear elastic wall law; ρ: density of the fluid; f :
Source term.

Now, the system of equation can be written in the vector form as

∂U

∂t
+ ∂F(U )

∂x
= B(U ), (2)

where

U =
[
A
u

]
, F(U ) =

⎡
⎣ uA
u2

2
+ p(A)

ρ

⎤
⎦ , B(U ) =

[
0
f

]
.
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The above system of equations has two equations and three variables; thus, use of
an extended relation [18] between pressure, p, and Area, A, has been given below:

p(A) = pext + β
(√

A − √
A0

)
, (3)

where pext is the external pressure; A0 = A(x, 0), is the initial area; β accounts for
physical and mechanical characteristics of vessel and is given as

β =
√

πhE

A0(1 − σ2)
, (4)

where h is the thickness of the arterial wall; E is its Young’s modulus; σ is its
Poisson’s ratio, that has been considered to be 0.5 (wall material has been assumed
to be incompressible). The source term on RHS of the Eq. (2) is given by

f = −8πμ

ρ

u

A
. (5)

In Eq. (5), μ represents the viscosity of the fluid, which refers to the internal
friction between parallel layers of the fluid. The classification of fluids is done based
on constancy andvariability of this intrinsic property. Thefluids inwhich the viscosity
is independent of the stress applied, and hence remains constant, are calledNewtonian
fluids. Its stress–strain relation is given by

τ = μγ̇, (6)

where τ is the stress on the fluid, γ̇ is the shear rate, and μ is the constant of propor-
tionality, called to be the Viscosity of the fluid. On contrary, in non-Newtonian fluid,
the dependency of shear stress is neither linearly proportional nor can be said to be
directly proportional to shear rate. The case, in which it is directly proportional, is
called shear-thinning fluid and the case of inverse proportionality is shear-thickening
fluid. There are very few fluids that fall in the latter category, and the fluid of interest,
that is blood, amongst many other non-Newtonian fluids, falls in the former category.
The mathematical crux of non-Newtonian fluid can be given as

τ = μ(γ̇)γ̇, (7)

where μ is a function of shear rate and is deterministic based on the non-Newtonian
model considered. Here, in this article, the main emphasis has been given to four
different types of non-Newtonian models [19], wherein the effective viscosity of
each being different from the other has been presented in the table below, along with
the standard Newtonian model.
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Here, μ0 and μ∞ represent the viscosity at low and high shear rates, respectively,
np represents the flow consistency, K is the flow behaviour index, λ represents the
relaxation time constant, n represents the power index. τ0 is the yield stress, η is the
Casson rheological constant, �c represents the critical shear rate, that indicates the
onset of shear thinning, and nc is the cross-rate constant. The values assumed for the
above variables are listed in Table2.

3 Comparison of Non-Newtonian Models

In this section, five different arteries have been considered, with varied settings in
their lengths, cross-sectional area and elasticity of the vessel walls. Each of which
has its own significance in capturing the viscous effect, and thus determining the
true nature of pressure waveform across the arterial domain. The considered arteries
with their properties [20] have been mentioned in Table3. The pressure has been
evaluated fromEq. (1) by using a 3-point scheme, namely Lax Friedrich scheme. This
scheme is suitable for solving Hyperbolic PDEs due to its less computational cost.
The step lengths in time and space have been chosen carefully without violating the
Courant–Friedrichs–Lewy or CFL condition [21]. Unit velocity and cross-sectional
area corresponding to r0 given in Table3 have been considered for the initial values.
A pressure waveform has been considered at the inlet, which is generated by a
Fourier series [22] with a time period of 0.9 s. Method of characteristics has been
implemented to calculate the other variable at the inlet. Non-reflecting boundary
conditions [23] have been implemented at the outlet.

For each arterial vessel mentioned in Table3, each of the blood flow model men-
tioned in Table1 has been considered, and the pressure waveform has been captured
at the midsection of the artery and plotted against single time period. Since the uni-
form vessel length in humans are naturally short for the given speed that the blood
flows with, the pressure measured at any given time throughout the arterial length is
not of much interest, as it will almost be a flat line, representing a certain constant
value. Thus, pressure vs time graphs have been plotted (Table2).

Table 1 .

Model Effective viscosity

Newtonian μ = 0.0035 Pa.s

Power law μ = K (γ̇)n p−1

Carreau model μ = μ∞ + (μ0 − μ∞)[1 + (λγ̇)2](n−1)/2

Casson model μ = τ0

|γ̇| +
√

τ0η

|√γ̇| + η

Cross law μ = μ∞ + (μ0 − μ∞)

[
1 +

( |γ̇|
�c

)nc]
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Table 2 Parametric values for the non-Newtonian models

Parameters Values

μ0 0.056 Pa.s

μ∞ 0.0035 Pa.s

K 0.017 Pan

n p 0.708

λ 3.313 s

n 0.3568

τ0 0.005 Pa

η 0.035 Pa.s

�c 2.63 s−1

nc 1.45

Table 3 .

Vessel L (cm) r0 (cm) h (cm) E 106 (dyne/cm2)

Ascending aorta 4.0 1.470 0.163 4.0

Left carotid 13.9 0.6 0.063 7.0

Left coronary 3.0 0.259 0.08 8.0

Left femoral 44.3 0.314 0.05 8.0

Left interosseous 7.9 0.1 0.28 14.0

Given the amount and the rate at which the blood is pumped from the heart, wall
of the arteries in the proximity of the heart, with evolutionary, are of naturally high
thickness and very elastic in nature. These are classified into elastic arteries, contrary
to the ones that are away from the heart, which are classified to be muscular arteries.
Ascending aorta, given its huge diameter, allows blood to behave as a Newtonian
fluid. Thus, it can be observed in Fig. 1 that even all the other general non-Newtonian
models reduce to simple Newtonian models. But for the other four arterial domains,
the Carreau model uniquely captures the viscous effect. Significantly, in the femoral
vessel due to its long length, the viscous force becomes comparable with the inertial
force, whereas, in the coronary vessel despite its cross-sectional area being less than
that of femoral’s, the inertial force dominates well over the viscous force, due its very
short domain length. The interosseous vessel, one of the arteries that happens to be at
the farther end and well away from the heart, is highly muscular in nature. This is due
to high Young’s modulus value of its walls and low radius. Thus, it can capture the
viscous effect to a great extent. But usually, the arteries away from the heart or any
vital organ, heal from stenosis over time with a bypass grafting that grows over the
artery affected by stenosis, naturally and thus preventing any kind of hindrances to
the blood flow. Hence, radiation treatments or bypass surgeries are typically known
for coronary or carotid arteries. So, in the next section of this article, validation of
the numerical scheme used to solve the equations has been carried out, following
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Fig. 1 Variation of Pressure waveform captured at the mid-section of the respective arteries

which, carotid artery has been considered to observe the effects of stenosis on the
pressure waveform and thus the blood flow.
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4 Pulse Propagation in a Single Uniform Vessel

In this section, the work of Mynard and Nithirasu [17] has been validated, by con-
sidering a Gaussian pulse as the input pressure wave through a domain of length 20
cm for 0.1 s. An initial area of 1cm2 has been considered. A pulse width of 0.03 s
with amplitude of 103 dyne/cm2 has been considered for the inlet pressure wave-
form. Assumption of Young’s modulus as 106 dyne/cm2 and the thickness of the
walls as 0.096 cm has been made. Lax Friedrich’s Scheme has been considered for
the numerical framework.

The red line in Fig. 2 represents an inviscid case, where the viscosity is zero, the
graph in black represents the Newtonian case where the viscosity is non-zero and its
value has been taken from Table3, which captures the viscosity to a certain extent.
The same work has been extended in this article, wherein the real physiological
conditions of the vessels have been accounted with its measured physical variables.
The work has been done with stenosed artery, that has been caused by a buildup of
plaque (atherosclerosis) inside the artery wall, thus narrowing the region for blood
flow. Carotid artery has been specifically chosen for this, which is referred as ‘Carotid
stenosis’. It is the narrowing of the carotid arteries, the two major arteries that carry
oxygen-rich blood from the heart to the brain. Thus, narrowing of the artery results
in the reduction of blood flow to the brain and hence studying Stenosis has been
very pivotal since they block the bridge connecting the vital organs. Working with
a stenosed geometry, due to its non-uniformity in the dimensions of the domain,
demands for a more stable numerical setting, thus the following scheme has been
considered for improved results.
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5 HLL Scheme

HLL schemewas introduced byHarten, Lax, van Leer [16] in the 1980s, is an upwind
Riemann Solver.

Un+1
i = Un

i − Λ(Fn
i+1/2 − Fn

i−1/2),

Fi+1/2 =

⎧⎪⎨
⎪⎩
Fi 0 < SL
FHLL
i+1/2 SL < 0 < SR

Fi+1 0 > SR

where Λ = Δt/Δx; SL & SR are approximations of the smallest and the largest wave
velocities at the interface xi+1/2.

In the case when SL < 0 < SR , the flux function can be derived to be

FHLL
i+1/2 = S+

R Fi − S−
L Fi+1 + S−

L S
+
R (Ui+1 −Ui )

S+
R − S−

L

,

where S+
R = max(SR, 0); S−

L = min(SL , 0). Due to its upwind nature, HLL Scheme
has been very much suitable for hyperbolic problems even with discontinuity in its
initial data.

Upon considering toworkwith this scheme, certain improvements have been done
with regard to method of the characteristic. In hyperbolic PDEs, for the boundary
values, linear extrapolation has been implemented. This involves extrapolating the
boundary values at the current nth time level from the previous (n − 1)th time level,
based on the speed of the wave (information) travelling at the boundary at nth time
level. This when multiplied with ‘Δt’ gives a dimension of distance, whose value
corresponds to the location of the wave on the spacial domain at (n − 1)th time level.
But, while numerically determining the solution, this may not be straightforward,
as the linearly extrapolated position or distance might not be one of the discrete
grid values. So, to resolve this, a simple enough technique has been developed,
wherein, if the value falls in between, i th and (i + 1)th node, then its distance from
the i th node, becomes the weightage for the value at (i + 1)th node and vice versa,
resulting in a precisely weighted average of the two values. So, in the next section,
with the introduction and description of the stenosis model, this scheme has been
implemented.

6 Stenosis Model

The geometry of a stenosed uniform vessel of radius r at zero transmural pressure
and the arterial wall under zero stress has been expressed as (Fig. 3)
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Fig. 3 One-dimensional
model of stenosis

r(x) = r0 − rmin

2

[
1 − cos

(
2π

x − Lm − Ls/2

Ls

)]
, (8)

for (Lm − Ls/2) < x < (Lm + Ls/2).

where rmin denotes the mid-region of the stenosis where the arteries are narrowed the
most, thus representing the region with the least radius. It is expressed as rmin = r0
(S/100), with S representing the severity of stenosis in percentage. The constant radius
in the unstenosed region is denoted by r0. Lm represents the centre of the stenosis
along the vessel, with Ls being the length of the stenosis. In this study, the presence of
thrombus and the variation of the wall thickness has been ignored. Furthermore, the
variation of Young’s modulus has been estimated to follow a similar pattern as that
of change in radius, due to the fact that change in radius is due to the accumulation
of the hard plaques, thus hardening the arteries near the stenosis.

E(x) = E0 + Em

2

[
1 − cos

(
2π

x − Lm − Ls/2

Ls

)]
, (9)

for (Lm − Ls/2) < x < (Lm + Ls/2).

where Em denotes themaximum increment in Young’s modulus and correspondingly
the hardness in the arterial walls, hence affecting the value of β. It is expressed as
Em = (α − 1)E , where α is a constant determining the stiffness variation and α > 1
for hard plaques and chosen to be a real number very close to unit.

Now with all the variables defined, the three factors that mainly decide the effect
of stenosis are the position of the stenosis (Lm), length of the stenosis (Ls) and
mostly the severity of stenosis (S). An extensive work has been carried out on these
three variables considering both Newtonian and non-Newtonian effects on the blood
flow through a stenosed carotid artery and given the period of the cycle, i.e. T =
0.9 s, the beginning and the peak of the systole have been recorded to be 0.1 s and
0.25 s, respectively.

In Figs. 4, 5 and 6, while the length of the stenosis (LS) has been kept constant
(10% of the total length of the artery), the position of the stenosis (Lm) has been
varied and thus its effects on the pressure has been observed, both in the beginning
and during the peak of systole. It can be clearly seen that after a certain time, the
position of the stenosis doesn’t alter the variations in pressure waveform, as for the
elapsed time in reaching the peak of systole, the flow would have developed. But,
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Fig. 4 For 10% stenosis for varied positions of centre of stenosis (Lm )
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Fig. 5 For 25% stenosis for varied positions of centre of stenosis (Lm )

for the initial time, the stenosis in the beginning of the domain, i.e. at 0.25Lm , has an
evident effect on the increase of pressure, along with extent of decrease in pressure
in the stenosed region. With these findings, and the clinical readings, a prediction
can be made as to where the stenosis is located in the given artery. The same can be
observed in Figs. 7, 8 and 9, where the parameter change has been made in the initial
setting with Ls , the length of the stenosis has been considered to be 20% of the total
length of the domain and the rest has been carried out the same way. Similar results
have been observed here as before, although to some small extent there has been
an additional dip in the pressure waveform around the stenosed region, which has
been specifically worked with and shown in Fig. 14. Here, the position of stenosis,
Lm is centred and maintained constant and in each case, keeping the percentage of
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Fig. 6 For 50% stenosis for varied positions of centre of stenosis (Lm )
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Fig. 7 For 10% stenosis for varied positions of centre of stenosis (Lm )

stenosis, S as constant, the length of the stenosis, Ls has been treated as the variable,
by considering, 10%, 30% and 50% of the total length of the domain. All the readings
here have been taken at the peak of the systole.

It can be observed that with the increase in the percentage of the stenosis, the
accountability of variations in the length of the stenosis, becomes less significant.
This is because in each of the three sub-cases, with the variations in Ls , the ratio of
distal pressure over the proximal pressure is almost the same.Whereas, over the three
cases, wherein the percentage of stenosis, S has been varied, the same ratio seems
to change and decrease. So, the percentage of the stenosis, S taking the prominence,
its variations and thus its implication can be seen through Figs. 10, 11, 12 and 13.
Position of the stenosis, Lm is maintained constant and the reading has been taken at
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Fig. 8 For 25% stenosis for varied positions of centre of stenosis (Lm )
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Fig. 9 For 50% stenosis for varied positions of centre of stenosis (Lm )

the peak of the systole, and a comparison has been drawn between Newtonian and
Carreaumodels for blood flow. It can be observed that theCarreaumodel compared to
the Newtonianmodel, offers a smoother transition of pressure waveform between the
pre-stenosis region and post-stenosis region, which presents, the distal and proximal
pressure waveform.
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Fig. 10 Length of Stenosis (Ls) is 5% of total length for varied percentage of stenosis (S)
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Fig. 11 Length of Stenosis (Ls) is 10% of total length for varied percentage of stenosis (S)

7 Conclusion

In this paper, the importance of non-Newtonian models for studying blood flow
has been investigated, depending on the dimensions of the physical arteries they
have been transmitted through. It has been observed that length, diameter and the
stiffness factor of the artery play a combined role in determining the appropriate
non-Newtonian model for the flow. Based on the inference drawn from this work, a
suitable non-Newtonianmodel that ofCarreau, has been chosen for understanding the
effect of stenosis in the carotid artery.Upon further analysiswith carotid artery,which
has been a major region of concern for stenosis amongst the arteries, three assigned
variables to stenosis and their impact on pressure waveform have been compared.
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Fig. 12 Length of Stenosis (Ls) is 20% of total length for varied percentage of stenosis (S)
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Fig. 13 Length of Stenosis (Ls) is 40% of total length for varied percentage of stenosis (S)
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The importance of extent of stenosis (S), being predominant over the position (Lm)
and the length of the stenosis (Lm) has been observed by numerically computing
the blood flow through the stenosed geometry using the HLL Scheme. It has been
observed that the Carreau model provides a smoother solution compared to that
provided by the Newtonian model. A much smoother solution can be expected with
the implementation of finite element method, and also an investigation of stenosis
in the coronary arteries is also equally vital, which are considered to be part of the
future works. As for clinical application, the present work forms an indicative index
for pressure drop under stenosis in the carotid artery.
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Two-Layered Flow of Ionized Gases
Within a Channel of Parallel Permeable
Plates Under an Applied Magnetic Field
with the Hall Effect

M. Nagavalli, T. LingaRaju, and Peri K. Kameswaran

Abstract When a strong magnetic field and Hall currents are present, the flow
of ionized gases between two parallel permeable plates in a horizontal channel is
explored. Electrical conductivity and incompressibility are also expected of the two
fluids. Analytical solution to the governing differential equations using the specified
boundary and interface restrictions yields exact answers for velocity distributions—
primary/secondary distributions in two locations. Their numerical findings for several
sets of governing parameter values are derived to visually illustrate them and are
examined.

Keywords MHD flows · Immiscible flow · Plasma · Hall effect · Porous plates
(Non-Conducting and Conducting)

1 Introduction

Several experimental and theoretical studies on two-phase /or two-layered flow of
classical hydrodynamic problems have been undertaken in the past by many investi-
gators, including Zuber [1], Packham and Shail [2], Golding andMah [3], Oshinowo
and Charles [4], Jones and Zuber [5], Shipley [6], and many more. However, the
need for current technology has increased interest in magnetohydrodynamic two-
phase/two-layered flow research due to its vast applications in the industry linked
to different energy conversion systems. As an example, fusion reactors and MHD
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power producers are being explored on a conceptual level demanding an accurate
and reliable knowledge of the thermohydraulic mechanics of two-phase/two-layered
flow in the presence of an applied magnetic field. MHD two-phase flow phenomena
have rapidly become an important subject of study for both academic and scientific
groups, MHD power generation model, and so on [see 7–20].

All of the above-mentioned tests do not take Hall currents into account. Hall
currents must be taken into consideration that the magnetic field is extremely strong,
as is widely known in the literature. Ohm’s law must be modified to account for
these effects. There are numerous studies that have looked into the effects of Hall
currents under the control of a powerful magnetic field on specific single-fluid flow
systems [see 21–28]. According to Sato’s [29] research, The effects of Hall currents
on the viscous flow of an ionized gas between two parallel walls under the influence
of an applied transverse magnetic field were investigated by LRaju and Rao [30].
LRaju’s recent work [31] demonstrates that with Hall currents, MHD heat transfer
of two-ionized fluids flowing between two parallel plates is possible. Accordingly,
this work makes an attempt to solve the problem of two-layered ionized gas flow
along a horizontal channel contained by two parallel porous plates and subjected to
an applied transverse strongmagnetic field by taking into account Hall currents in the
light of what has been said thus far. An application in Hall accelerators, pumps and
flowmeters,MHDpower generators, plasma jets and space craft, as well as in nuclear
reactor cooling, is anticipated from the aforementioned theoretical investigation.

2 Formulation of the Problem

Using Hall currents, we model a “two-fluid, magnetohydrodynamic (MHD) two-
dimensional steady flow of an ionize gas impelled by a common constant gradient
of pressure −∂p/

∂x in a horizontal channel surrounded by two parallel porous
plates” that extend along both x and z directions (Fig. 1). A constant “suction v0
is applied normal to both plates, thus if (ui , vi , wi ), ( i = 1, 2 ), are the velocity
components in the two fluids, then the equation of continuity ∇.qi = 0 provides
vi = −v0(v0 > 0)”, where qi = (ui , vi , wi ). A constant magnetic field B0 is
applied in the “y-direction, that is, transverse to the flow field”. Parallel to channel
plates, the x-axis is measured in the direction of hydrodynamic pressure gradient,
but not flow. “The regions I and II refer to the upper and lower fluids” in the areas
0 ≤ y ≤ h1 and –h2 ≤ y ≤ 0. “Two immiscible electrically conducting incompress-
ible fluids occupy” regions I and II, each with a different density ρ1, ρ2, viscosity
μ1,μ2, and electrical conductivity σ01, σ02. The assumption is that the channel width
is much larger than the channel height. Aside from pressure, “all physical quan-
tities will be functions of y” alone. A flat, stress-free, and undisturbed contact is
assumed between the two immiscible fluids. The channel’s edges are immovable. A
low magnetic Reynolds number is also expected. To delineate the major equations
for the two-layered flow, it is taken that the “velocity Vi = (ui , v0, wi ), magnetic
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Fig. 1 Flow diagram
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field B = (0, B0, 0), current density Ji = (Jix , 0, Jiz), and the electric field as
Ei = (Eix , 0, Eiz), (i = 1, 2)” in basic equations.

3 Mathematical Study of the Problem

Themotion and current equations forMHD two-layered flow of neutral fully-ionized
gas legitimate under the suppositions above are simplified (Sato [29], LRaju and Rao
[30] and LRaju [31]) as follows:

Region-I

− [1 − s(1 − σ11

σ01
)]∂p

∂x
+ ρ1ν1

d2u1
dy2

− ρ1v0
∂u1
∂y

+ B0[−σ11(Ez + u1B0) + σ21(Ex − w1B0)] = 0 (1)

(
s
σ21

σ01

)
∂p

∂x
+ ρ1ν1

d2w1

dy2
− ρ1v0

∂w1

∂y

+ B0[σ11(Ex − w1B0) + σ21(Ez + u1B0)] = 0 (2)

Jx = σ11Ex − B0σ11w1 + σ21Ez + B0σ21u1 + sσ21

σ01B0

(
∂p

∂x

)
(3)

Jz = σ11

(
Ez

B0
+ u1

)
− σ21

(
Ex

B0
− w1

)
− s

B0

(
1 − σ11

σ01

)(
∂p

∂x

)
(4)



544 M. Nagavalli et al.

Region-II

−
[
1 − s

(
1 − σ12

σ02

)]
∂p

∂x
+ ρ2ν2

d2u2
dy2

− ρ2v0
∂u2
∂y

+ B0
[−σ12(Ez + u2B0) + σ22(Ex − w2B0)

] = 0 (5)

(
s
σ22

σ02

)
∂p

∂x
+ ρ2ν2

d2w2

dy2
− ρ2v0

∂w2

∂y

+ B0
[
σ12(Ex − w2B0) + σ22(Ez + u2B0)

] = 0 (6)

Jx = σ12Ex − B0σ12w2 + σ22Ez + B0σ22u2 + sσ22

σ02B0

(
∂p

∂x

)
(7)

Jz = σ12Ez + σ12B0u2 − σ22Ex + σ22B0w2 − s

B0

(
1 − σ12

σ02

)(
∂p

∂x

)
(8)

So, the boundary and interface conditions on u1, w1 and u2, w2 become

u1(h1) = 0, w1(h1) = 0, u2(−h2) = 0, and w2(−h2) = 0. (9)

u1(0) = u2(0) and w1(0) = w2(0). (10)

μ1
du1
dy

= μ2
du2
dy

and μ1
dw1

dy
= μ2

dw2

dy
at y = 0. (11)

Further to make Eqs. (1) to (8) and (9) to (11) dimensionless, the following
non-dimensional variables are used:

u•
1 = u1

u p
, u•

2 = u2
u p

, y•
i =

(
yi
hi

)
, w•

1 = w1

u p
, w•

2 = w2

u p
, u p =

(
−∂p

∂x

)
h21

ρ1ν1
,

k1 = 1 − s

(
1 − σ11

σ01

)
, k2 = −sσ21

σ01
,mix = Eix

B0u p
, miz = Eiz

B0u p
,

Ii x = Jix
σ0i B0u p

, h = h2
h1

, M2 = B2
0h

2
1

(
σ01

ρ1υ1

)
, λ = h1ρ1v0

μ1
,

α = μ1

μ2
, σ0 = σ01

σ02
, σ1 =

(
σ12

σ11

)
,

σ2 =
(

σ22

σ21

)
,

1

1 + m2
= σ11

σ01
,

m

1 + m2

= σ21

σ01
,m = we

/
(1/τ + 1/τe) , (i = 1, 2). (12)
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The “mean collision time between electron and neutral particles and electron and
ion” are given by the values of τ and τe, respectively. When τe approaches infinity,
the formula for Hall parameter m that is valid for partly ionized gas coincides with
the expression for completely ionize gas. These “equations are transformed into non-
dimensional forms by using the” transformations (12) and omitting asterisks for the
sake of convenience.

Region–I

k1 + d2u1
dy2

− λ
du1
dy

−
(

M2

1 + m2

)
(m1z + u1) +

(
mM2

1 + m2

)
(m1x − w1) = 0 (13)

k2 + d2w1

dy2
− λ

dw1

dy
+

(
M2

1 + m2

)
(m1x − w1) +

(
mM2

1 + m2

)
(m1z + u1) = 0 (14)

I1x = [m1x − w1 + (m1z + u1)m − sm/M2]
1 + m2

(15)

I1z = [m1z + u1 + (m1x − w1)m]
1 + m2

+ s

M2

(
1 − m

1 + m2

)
(16)

Region-II

β1αh
2 + d2u2

dy2
− ραhλ

du2
dy

−
(

1

1 + m2

)
ασ1h

2M2(m2z + u2)

+
(

m

1 + m2

)
ασ2h

2M2(m2x − w2) = 0 (17)

β2αh
2 + d2w2

dy2
− ραhλ

dw2

dy
+

(
1

1 + m2

)
ασ1h

2M2(m2x − w2)

+
(

m

1 + m2

)
ασ2h

2M2(m2z + u2) = 0 (18)

I2x =
(

σ0σ1

1 + m2

)
(m2x − w2) +

(
mσ0σ2

1 + m2

)
(m2z + u2) − sσ 2

0 σ2

M2

(
m

1 + m2

)
(19)

I2z =
(

σ0σ1

1 + m2

)
(m2z + u2) −

(
mσ0σ2

1 + m2

)
(m2x − w2) + sσ0

M2

(
1 − σ0σ1

1 + m2

)

(20)

where

k1 = 1 − m2s

1 + m2
, k2 = −ms

1 + m2
, β1 = 1 −

(
1 − σ0σ1

1 + m2

)
s, β2 = −σ0σ2ms

1 + m2
.

(21)
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Conditions become

u1(1) = 0, w1(1) = 0, u2(−1) = 0 and w2(−1) = 0. (22)

u1(0) = u2(0), w1(0) = w2(0) (23)

At y = 0:
du1
dy

= 1

αh

du2
dy

,
dw1

dy
= 1

αh

dw2

dy
(24)

4 Solution to the Problem

The “closed form solutions of the resulting governing differential Eqs. (13), (14),
(17) and (18) with the help of (15), (16) and (19), (20) subject to the boundary and
interface conditions (22), (24) for the primary and secondary velocities u1, u2 andw1,
w2, respectively, also their corresponding mean velocities”, viz., um1 , um2 and wm1 ,
wm2 , respectively, in the two regions are obtained. The “solution for the investigated
issue is attained in two cases as the plates are made up of non-conducting porous
material and the other one conducting type”.

4.1 Non-conducting Porous Plates

When the z-direction side plates are maintained far apart and are formed of “the non-
conducting porous material, the generated electric current does not exit the channel
but circulates inside the fluid”. In this way, a new non-dimensional condition for the
current is established.

by
1∫

0
I1zdy = 0 and

1∫

0
I2zdy = 0. “Insulation at large x is also assumed, other

relations are obtained as"
1∫

0
I1xdy = 0 and

1∫

0
I2xdy = 0, (see Sato [29]). Using

the above two requirements, we can derive “solutions for u1, u2 and w1, w2, I1 and
I2 also their corresponding mean velocity distributions um1 , um2 and wm1 , wm2 in the
two regions”. The “primary and secondary distributions”, as well as currents, are
represented by the combined form:
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Region-I

q1(y) = u1(y) + iw(y) =
A1(1 + m2)

M2(mi − 1)
b5

+ A2(1 + m2)

M2(σ1 − miσ2)
[b3e f1 y + (

b3e
f1− f2

)
e f2 y]

+ i N2b3(e
f1 y − e f y) + i N1[−b4e

f1 y + (
e− f2 + b4e

f1− f2
)
e f2 y + 1] (25)

Region-II

q2(y) = u2(y) + iw2(y) = A2(1 + m2)

M2(σ1 − miσ2)
[(b6 − b3b8)e

f3 y + b9e
f4 y + 1]

+ A1(1 + m2)

M2(mi − 1)
[(−b7 + b4b8)e

f3 y + b10e
f4 y]

+ i N2[(b6 − b3b8)e
f3 y + b11e

f4 y + 1] + i N1[(−b7 + b4b8)e
f3 y + b12e

f4 y] (26)

4.2 Case of Conducting Porous Plates

The “induced electric current flows out of the channel when the two plates are formed
of conducting porous materials and are short-circuited by an external conductor”.
There is no Electric Potential among the side plates in this situation. If “the electric
field is assumed as zero in both the x- and z-directions, we obtain mx = 0, mz =
0”. These two conditions determine the constants in the solution. The following are
the “solutions for u1, u2 and w1, w2 in the two regions, as well as, u1m, u2m and
w1m, w2m , I1 and I2”:

Region-I

q1(y) = u1(y) + iw1(y) = a1e
c7 y + a2e

c8 y + c6
c5

,where

u1(y) = q1 + q1
2

, w1(y) = q1 − q1
2i

(27)

I1 = I1x + iI1z =
(

1

1 + m2

)
(iu1 − w1) +

(
m

1 + m2

)
(u1 + iw1)

− s

M2

[
m

1 + m2
− i

(
1 − m

1 + m2

)]
(28)

Themean velocity is given by q1m = u1m +iw1m = ∫ 1
0 q1dy = a1a3+a2a4+ c6

c5

q1m = u1m + iw1m = ∫ 1
0 q1dy = a1a3 + a2a4 + c6

c5
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where

u1m = q1m + q1m
2

, w1m = q1m − q1m
2i

(29)

Region-II

q2(y) = u2(y) + iw2(y) = a5e
c12 y + a6e

c13 y + c11
c10

(30)

I2 = I2x + iI2z =
(

σ0σ1

1 + m2

)
(iu2 − w2) +

(
mσ0σ2

1 + m2

)
(u2 + iw2)

− sσ 2
0 σ2

M2

(
m

1 + m2

)
+ sσ 2

0 i

M2
− sσ 2

0 σ1i

(1 + m2)M2
(31)

q2m = a5a7 + a6a8 + c11
c10

, where u2m = q2m + q2m
2

, w2m = q2m − q2m
2i

. (32)

where the symbols A1, A2,…, c1, c2.., d1, d2.. are being utilized for simplicity, and
their expressions are “omitted here as they are too lengthy”.

5 Results and Discussion

The problem of two-fluid layering and transverse magnetic field effects on an ionize
gas flow through porous plates in a horizontal channel is studied analytically in
this paper under two cases “when the plates are made up of non-conducting and
conducting porous materials”. Differential “equations are solved to obtain closed-
form solutions for both primary and secondary” velocities distributions; “for various
sets of values of the governing parameters” are determined to represent their profiles,
as depicted in Figs. 2 through 13. We also discussed “the effect of flow parameters,
such as the Hartmann number M, Hall parameter m, porous parameter λ on the flow
fields”. Taken σ0 = 1, σ1 = 1.2, and σ2 = 1.5 ρ = 1 in all the numerical estimations,
the effect of other important parameters on the flow was analyzed. The solutions are
found to be independent of s = ratio of “electron pressure to the total pressure in
case of non-conducting porous plates and are dependent on ‘s’ when the plates are
conducting (i = 1, 2). The results coincide with those of LRaju [31] “when λ = 0
(non-porous plates) and the plates are non-conducting”.
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Fig. 2 Primary velocity
profile for various ‘M’ and α

= 0.333, h = 0.75, m = 2, ρ
= 1, σ0 = 1, σ1 = 1.2, σ2 =
1.5, λ = 2 (Non-Conducting
porous plates)
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Fig. 3 Scondary velocity
profile for various’M’ and α

= 0.333, h = 0.75, m = 2, ρ
= 1, σ0 = 1, σ1 = 1.2, σ2 =
1.5, λ = 2 (Non-Conducting
porous plates)
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5.1 Case of Non-conducting Porous Plates

Figures 2, 3, 4, 5, 6 and 7 show the distribution of velocity profiles. Changing the
Hartmann number M has a noticeable outcome on the velocity distribution in both
regions, even when all other parameters are held constant, as seen in Figs. 2 and
3. The primary velocity distributions improve with an increase in Hartmann M as
shown in the Figure. It can be expressed physically that with an increase in the
Hartmann number increases the magnetic field’s strength in both zones (as shown
in Fig. 2), while M > 8 reduces them (as shown). Figure 3 shows that secondary
velocity distributions increase in both areas when the Hartmann numberM augments
and decrease in both areas whenM > 11. Increasing M causes a shift in the channel’s
most primary and secondary distributions toward the region-I. These findings show
that the magnetic field has a stronger influence on the velocity profile.

Figures 4 and 5 display the impact of changing hall factor m on the distribution
of primary and secondary components. While in the first region, it seems to be
decreasing with an increase in ‘m’. Figure 4 shows that it is increasing in the second
zonewith a rise in ‘m’ up to a certain point, say 3, and then decreasing. The secondary
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Fig. 4 Primary velocity
profile for various ‘m’ and M
= 10, h = 0.75, ρ = 1, σ0 =
1,σ1 = 1.2, σ2 = 1.5, α =
0.333, λ = 2.
(Non-Conducting porous
plates)
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Fig. 5 Secondary velocity
profile for various ‘m’ and M
= 10, h = 0.75, ρ = 1, σ0 =
1,σ1 = 1.2, σ2 = 1.5, λ = 2,
α = 0.333 (Non-Conducting
porous plates)

-1.5

-1

-0.5

0

0.5

1

1.5

-0.02 0 0.02 0.04 0.06 0.08 0.1

y

w

m=0.5
m=1
m=2
m=3

Fig. 6 Primary velocity
profile for various λ and M =
10, m = 2, ρ = 1, σ0 = 1, σ1
= 1.2, σ2 = 1.5, α = 0.333, h
= 0.75 (Non-Conducting
porous plates)
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Fig. 7 Secondary velocity
profile for various λ and M =
10, m = 2, ρ = 1, σ0 = 1, σ1
= 1.2, σ1 = 1.5,α = 0.333, h
= 0.75 (Non-Conducting
porous plates)
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velocity distribution in Fig. 5 grows up to a value of 3 and then decreases, whereas
it increases when m raises up to 2, and after that decreases in the second zone. This
could be owing to the small retarding force caused by the interaction of the applied
magnetic field and the Hall current in electrically conducting fluids acting in the
y-direction.

Figures 6 and 7 show how the porosity parameter λ affects the “primary and
secondary velocity distributions” within the zones. Increases in primary velocities
in two areas up to porosity parameter λ = 5 are followed by decreases, as seen in
Fig. 6. It can be explained that when the porosity parameter increases, the fluid has
more space to move, and as a result, the velocity rises. With respect to the first area,
it is clear from Fig. 7 that increasing secondary velocity distribution diminishes the
same when λ > 3 in the first region, whereas in the second region it decreases as λ

increases.

5.2 Conducting Porous Plates

Figures 8 to 13 illustrate profiles for distributions (primary and secondary velocity
distributions) in circumstance, that is, when s = 0.

(i) When the ionization parameter s = 0.

Changing the Hartmann number M has a noticeable impact on the velocity distri-
bution in both sites, as seen in Figs. 8 and 9. Figure 8 shows that as M grows, the
major velocity distributions in the two zones become more skewed. Figure 9 shows
that when M grows, the secondary velocity distributions also expand in size.

Variations in the hall parameter ‘m’ affect velocity distributions for both sites
shown in Figs. 10 and 11. Figures 10 and 11 demonstrate that how increases in
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Fig. 8 Primary velocity
profile for various ‘M’ and h
= 0.75, m = 2, α = 0.333, ρ
= 1, σ0 = 1, σ1 = 1.2, σ2 =
1.5, λ = 2, s = 0
(Conducting porous plates)
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Fig. 9 Secondary velocity
profiles for various ‘M’ and
h = 0.75, m = 2, α = 0.333,
ρ = 1, σ0 = 1, σ1 = 1.2, σ2
= 1.5, λ = 2, s = 0
(Conducting porous plates)
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‘m’ improve the main and secondary velocity distributions in the two locations.
Two different locations are shown in Figs. 12 and 13 to demonstrate the impact
of adjusting the porosity parameter on velocity patterns. Two sites demonstrate an
increase in primary velocity distribution with an increase in porosity parameter. The
increased porosity parameter in Fig. 13 causes the secondary velocity to increase in
the top plate zone, but decreases everywhere else.

For (ii) when the ionization parameter s = 1/2.

It is observed that, when M grows, the main velocity distributions in both areas also
climb. A fall in the secondary distribution is seen for M > 8, while a growth in the
secondary velocity profile is shown for M > 8 in the first area. Variations in the hall
parameter ‘m’ have an impact on both the main and secondary velocity profiles.
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Fig. 10 Primary velocity
profile for various ‘m’ and M
= 10, h = 0.75, ρ = 1, σ0 =
1, σ1 = 1.2, σ2 = 1.5, α =
0.333, λ = 2, s = 0
(Conducting porous plates)
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Fig. 11 Secondary velocity
profile for various ‘m’ and M
= 10, h = 0.75, ρ = 1, σ0 =
1, σ1 = 1.2, σ2 = 1.5, α =
0.333, λ = 2, s = 0
(Conducting porous plates)
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Fig. 12 Primary velocity
profile for various λ and M
= 10, m = 2, ρ = 1,σ0 = 1,
σ1 = 1.2, σ2 = 1.5, α =
0.333,h = 0.75, s = 0
(Conducting porous plates)
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Fig. 13 Secondary velocity
profile for various λ and M
= 10, m = 2, ρ = 1, σ0 = 1,
σ1 = 1.2, σ2 = 1.5, α =
0.333, h = 0.75, s = 0
(Conducting porous plates)
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6 Conclusions

Hall Effect is used to investigate theoretically the MHD two-layered flow of ionized
gases within the horizontal channel restricted by two parallel permeable plates. Non-
conducting and conducting porous plates are assumed while solving the problem.
It is shown that the flow parameters “Hartman number, Hall parameter, and porous
parameter and the ratio of viscosities” have an impact on velocity fields in two liquid
areas. The following are some of the most important outcomes:

• While plates are non-conducting, the velocity distributions climb to a particular
value of Hartmann number before they begin to decline.

• Velocity profile increases in region-I as a result of increasing the Hall param-
eter value; in the second region, the profile increases and then decreases as this
parameter grows in value.

• With growth in porosity parameter, velocity (primary and secondary) distributions
rise initially but eventually fall.
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Influence of Heat Transfer, Chemical
Reaction and Variable Fluid Properties
on Oscillatory MHD Couette Flow
Through a Partially-Porous Channel

Sreedhara Rao Gunakala , Victor M. Job , and Jennilee Veronique

Abstract In thiswork,we investigate the oscillatorymagnetohydrodynamicCouette
flow of a fluid that is incompressible and viscous with variable physical proper-
ties along a partially-porous channel. The impacts of heat transfer and first-order
exothermic chemical reaction within the fluid are incorporated. We describe the flow
through the porous region using the Darcy-Brinkman-Forchheimer model, whereas
uniform wall suction/injection is considered. A numerical solution to the partial
differential equations that model the transfer of heat and fluid flow is obtained using
Galerkin’s finite element technique. The impact of time t, Frank-Kamenetskii param-
eter λ, viscosity variation parameter b, suction/injection parameter S, and thermal
conductivity variation parameter m on the flow velocity, wall shear stress, fluid
temperature, and Nusselt number are investigated.

Keywords Chemical reaction · Finite element method · MHD Couette flow ·
Partially-porous channel · Suction · and Injection

Nomenclature

Roman symbols Greek symbols

A Pre-exponential factor κ Thermal conductivity

B0 Magnetic field κ0 Thermal conductivity at
temperature T0

c Specific heat capacity μ Viscosity

cF Forchheimer coefficient φ0 Initial mass fraction
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(continued)

Roman symbols Greek symbols

A Pre-exponential factor κ Thermal conductivity

Ea Activation energy ρ Density

h Width of the channel σ Electrical conductivity

kr Reaction rate constant τL Shear Stress

K Permeability ω Oscillation Frequency

p Pressure

R Ideal gas constant Non-dimensional Parameters

Q Enthalpy of reaction b Viscosity variation parameter

T Temperature Da Darcy number

T0 Plate temperature Ha Hartmann number

t Time k Amplitude of pressure gradient

x Horizontal coordinate m Thermal conductivity variation
Parameter

u Velocity Pr Prandtl number

U0 Plate velocity Re Reynolds number

v0 Suction/injection velocity S Suction/injection parameter

z Vertical coordinate ε Activation energy parameter

μ0 Viscosity at temperature T0 λ Frank-Kamenetskii parameter

1 Introduction

Magnetohydrodynamics (MHD) focuses on the dynamics of magnetic fields in elec-
trically conducting fluids such as in liquid metals and plasma [1]. In particular, the
study of Couette flowswithmagnetic field effects is applicable tomany areas of engi-
neering and industry such as polymer technology, petroleum engineering, and the
development of MHD power generators [2, 3]. Job and Gunakala [4] examined the
time-dependent free convective magnetohydrodynamic Couette flow between two
plates under the effects of thermal radiation and viscous and Joule dissipations. It
was found that the Prandtl number and radiation parameter cause reductions in flow
velocity and temperature at small time, and increases in velocity and temperature for
large time. Also, when the Eckert number, Grashof number, and magnetic parameter
increase, the temperature and velocity increase.Mosayebidorcheh et al. [5] examined
heat transfer and time-dependent MHDCouette dusty fluid flowwhose viscosity and
electrical conductivity are temperature-dependent. The authors found that increasing
the viscosity parameter results in an increased temperature and flow velocity, and
increasing the Reynolds number causes the temperature to increase. Moreover, the
Nusselt number on the lower plate and skin friction coefficient decrease when the
magnetic field strength increases.
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MHD Couette flows under the effects of suction and injection is an area of vast
study among researchers. Attia [3] considered the unsteady MHD Couette flow that
includes uniform suction/injection and heat transfer. The results indicated that the
temperature of the fluid increases with increased magnetic field strength for small
time, whereas the temperature decreases when the magnetic field strength increases
for large time. Jha et al. [6] explored the time-dependent free convection MHD
Couette flow between two permeable plates including thermal radiation effects. It
was found that the fluid’s temperature and velocity increase when time and the
thermal radiation parameter increase. Uwanta and Hamza [7] examined the impacts
of injection and suction on the unsteady hydromagnetic chemically-reactive convec-
tive flow between porous vertical plates with the impacts of variable viscosity and
thermal diffusion. Their study showed that reaction consumption, thermal and solutal
buoyancy, suction and injection, and thermal diffusion have a strong influence on the
transport phenomena. The unsteady natural convective hydromagnetic Couette flow
through a permeable-walled channel with thermal radiation and Joule and viscous
dissipation effects was investigated by Job and Gunakala [8]. The results showed that
the fluid temperature and velocity are significantly influenced by variations in the
Grashof, Prandtl, radiation, Eckert numbers, and magnetic and suction parameters.
Gupta and Jain [9] conducted an analysis on the unsteady heat transfer and hydromag-
netic Couette flow along a horizontal rotating channel with wall suction/injection;
the authors used an analytical approach by applying the perturbation technique in
obtaining its solution. The study revealed that the influence of the rotation param-
eter, thermal slip, magnetic field, injection/suction, permeability, Prandtl number,
and heat generation/absorption has a considerable impact on the heat transfer and
hydromagnetic flow.

The complex phenomenon of mass transport in chemically reacting systems is
applicable to geothermal and oil reservoir engineering [10], and can involve the
consumption and production of chemically-reactant species at different reaction
rates. Makinde and Chinyoka [10] conducted a numerical study on the unsteady
reactive MHD Couette third-grade fluid flow having asymmetric convective cooling
and temperature-dependent viscosity. The results showed that the fluid temperature
and velocity are strongly impacted by the rate of reaction, viscous heating parameter,
fluid viscosity parameter, magnetic parameter, and non-Newtonian parameter. Veer-
aKrishna and Reddy [11] examined the unsteady hydromagnetic Couette flow of a
chemically-reactive second-grade fluid in a rotating channel and porousmedium. The
temperature dependence of fluid thermal conductivity was considered in their study.
It was found that the temperature within the channel increases when the reaction
rate parameter, magnetic parameter, rotation parameter, and Eckert number increase.
However, the temperature decreases with increasing thermal conductivity variation
parameters. Kareem and Gbadeyan [12] considered hydromagnetic Couette flow
through a horizontal channel with an exothermic two-step chemical reaction and
viscous dissipation. The impact of the Frank-Kamenetskii (reaction rate) parameter,
exothermic reaction parameters, activation energy parameter, and chemical kinetic
parameter on entropy generation and thermal criticality were investigated. Das et al.
[13] investigated the unsteady MHD oscillatory reactive flow of a viscous fluid
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within a porous rotating channel with convective heat transfer and chemical reaction
effects. It was determined that the flow characteristics in the channel are substantially
influenced by the magnetic field, rotation, suction/injection, and convective heating.

To the best of the authors’ knowledge, there is no existing work on unsteady reac-
tivemagnetohydrodynamic Couette flow along a partially-porous channel containing
uniform suction/injection and an oscillating pressure gradient. Therefore in the
present work, we investigate the MHD Couette flow of an incompressible viscous
fluid in a partially-porous channel under the influence of an oscillating pressure
gradient with heat transfer and a first-order exothermic chemical reaction. We
consider the thermal conductivity and viscosity of the fluid to be temperature-
dependent, and the Darcy-Brinkman-Forchheimer model is utilized for the fluid flow
through the porous region. The impacts of pertinent parameters on convective fluid
flow are explored.

2 Description of the Problem

The flow of an incompressible and viscous Newtonian fluid through two horizontal,
parallel, and infinitely-long plates is considered. The lower plate is located at z = −h
and is stationary with a constant temperature T0, whereas the upper plate is located at
z = h andmoveswith constant horizontal velocityU0 and temperature T0. The region
between the lower and upper plates is comprised of a porous region with a thickness
h p and an overlying free-fluid (non-porous) region. The fluid flow between the two
plates is also influenced by uniform injection from below, suction from above, and an
oscillating pressure gradient − ∂p

∂x in the x-direction. A constant magnetic field with
strength B0 is normal to the plates, and a first-order exothermic chemical reaction
occurs within the fluid (Fig. 1).

We assume a negligible magnetic Reynolds number, and the influence of viscous
dissipation and Joule dissipation and thermal radiation are neglected. The heat flux
and shear stress are considered to be continuous at the shared boundary of the porous
and free-fluid regions. Furthermore, we assume that the chemically-reacting species
within the fluid is dilute with a uniform volume fraction.

Fig. 1 Geometrical diagram of the physical system
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Following [10, 11], the fluid thermal conductivity and dynamic viscosity are
described (respectively) by the equations

μ(T ) = μ0e
−b(T−T0) (1)

κ(T ) = κ0e
m(T−T0) (2)

where μ0, κ0, b and m are (respectively) the viscosity at temperature T0, thermal
conductivity at temperature T0, viscosity variation parameter, and thermal conduc-
tivity variation parameter. We express the reaction rate constant by the Arrhenius
equation [14]

kr (T ) = Ae−Ea/RT (3)

where Ea is the activation energy, A is the pre-exponential factor and R is the ideal
gas constant.

Suppose that the flow velocity vector is −→u (z, t) = u(z, t)
−→
i + v0

−→
j . From the

above assumptions and problem description, the heat transfer and convective fluid
flow within the channel are described as follows [14–16]:

ρ

(
∂u

∂t
+ v0

∂u

∂z

)
= −∂p

∂x
+ ∂

∂z

(
μ(T )

∂u

∂z

)
−

(
σ B2

0 + 1

K

)
u − ρcF√

K

√
u2 + v2

0u

(4)

ρc

(
∂T

∂t
+ v0

∂T

∂z

)
= ∂

∂z

(
κ(T )

∂T

∂z

)
+ Qφ0kr (T ) (5)

where ρ, σ , cF , K , c, Q, and φ0 are the fluid density, electrical conductivity, Forch-
heimer coefficient, permeability, specific heat capacity, enthalpy of reaction, and
initial mass fraction of the chemically-reacting species respectively.

The initial condition is

u = 0, T = T0 at t = 0 (6)

and the boundary conditions are

u = 0, T = T0 at z = −h (7)

u = U0, T = T0 at z = h (8)

Equations (4) and (5) are non-dimensionalized by using the dimensionless
variables defined as:



562 S. R. Gunakala et al.

x̂ = x

h
, ẑ = z

h
, ĥ p = h p

h
, û = u

U0
, p̂ = p

ρU 2
0

, t̂ = tU0

h
,

T̂ = T − T0
T0

, b̂ = bT0, m̂ = mT0 (9)

On dropping all hats and taking the non-dimensional pressure gradient to be

−∂p

∂x
= k(1 − cos(ωt)) (10)

with amplitude k of the pressure gradient and frequency ω of oscillation, we get the
non-dimensional equations

∂u

∂t
+ S

∂u

∂z
= k(1 − cos(ωt)) + 1

Re

∂

∂z

(
e−bT ∂u

∂z

)

− 1

Re

(
Ha2 + 1

Da

)
u − cF√

Da

√
u2 + S2u (11)

∂T

∂t
+ S

∂T

∂z
= 1

RePr

∂

∂z

(
emT ∂T

∂z

)
+ λ

RePr
eεT/(1+T ) (12)

where S = v0
U0

is the suction parameter, Ha = B0h
√

σ
μ0

is the Hartmann number,

Re = ρhU0

μ0
is the Reynolds number, Da = K

h2 is the Darcy number, Pr = μ0c
κ0

is

the Prandtl number, ε = Ea
RT0

is the activation energy parameter and λ = Qφ0Ah2

κ0T0
e−ε

is the Frank-Kamenetskii parameter. The non-dimensionalized boundary conditions
and initial conditions are

u = T = 0 at t = 0 (13)

u = T = 0 at z = −1 (14)

u = 1, T = 0 at z = 1 (15)

The time-dependent shear stress and time-dependent Nusselt number on the
stationary lower plate (z = −1) are given by

τL(t) = ∂u

∂z
(−1, t) (16)

NuL(t) = ∂T

∂z
(−1, t) (17)
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3 Numerical Solution Methodology

The coupled non-linear system of Eqs. (11)–(12) is numerically solved by Galerkin’s
finite element technique [17] with the prescribed boundary and initial conditions
(13)–(15) to obtain the flow velocity, fluid temperature, shear stress on the lower
plate, and Nusselt number on the lower plate. Spatial discretization was performed
by finite element procedure with quadratic elements, and then the Crank–Nicholson
scheme was used to perform the time discretization. After assembly of the elements,
the resulting non-linear systemof equationswas iteratively solved using the computer
software MATLAB with a 10−4 relative error tolerance. The numerical solution was
obtained using 100 quadratic elements and 200 time steps.

4 Results and Discussion

The approximate solutions for the velocity, temperature, shear stresses, and
Nusselt numbers were calculated for differing viscosity variation parameter b,
suction/injection parameter S, thermal conductivity variation parameter m, Frank-
Kamenetskii parameter λ, and time t . The values S = 0, 0.5, 1, 2; b = 0, 2, 5, 10;
m = 0, 5, 15, 30; and λ = 0, 1, 2, 5 were used in analyzing the numerical results.
The parameters S, b, m, λ, Da, Re, Ha, h p, cF , k, ω, Pr , ε, and t are taken to be
1, 2, 5, 2, 0.1, 10, 1, 1, 0.06, 1, 2π , 6.2, 0.1, and 4 (respectively) throughout the
analysis unless otherwise stated.

Figures 2 and 3 display the velocity and temperature profiles with varying
suction/injection parameter S. These figures show that the flow velocity and
fluid temperature in the free-fluid and porous regions decrease with increased
suction/injection parameters.We also observe that the z values atwhich themaximum
velocity and maximum temperature occur are increased with an increase in the
suction/injection parameter; this occurs as a result of increased resistance to fluid
flow through the channel as the advection of fluid from the plate below to the plate
above is increased. These observations are consistent with the results obtained by
Attia [3] on the influence of suction and injection through parallel permeable plates.

In Figs. 4 and 5, the impact of the viscosity variation parameter b and thermal
conductivity variation parameter is shown. We observe (Fig. 4) that raising the
viscosity variation parameter causes the flow velocity to increase near the upper
plate (z > 0.65), and decrease slightly in the lower part of the channel (z <

0.65). Increasing the viscosity variation parameter lowers the fluid viscosity, which
enhances the flow velocity near the upper plate. Consequently, the drag on the fluid in
the lower part of the channel is increased and leads to the observed reduction in flow
velocity in this region. From Fig. 5, it is seen that raising the thermal conductivity
variation parameter causes a reduction in the maximum fluid temperature. A similar
result was obtained by VeeraKrishna and Reddy [11]. Furthermore, the value of z at
which the temperature is maximum decreases with increased thermal conductivity
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Fig. 2 Velocity profiles for
varying S

Fig. 3 Temperature profiles
for varying S

variation parameter. This is caused by an enhancement in the thermal conductivity
of the fluid and an associated reduction in thermal advection through the upper and
lower permeable plates.

Figures 6 and 7 display the fluid temperature and velocity for varying Frank-
Kamenetskii parameter λ. Based on Fig. 7, we determined that the temperature of the
fluid increases with increased Frank-Kamenetskii parameter as a result of enhanced



Influence of Heat Transfer, Chemical Reaction and Variable Fluid … 565

Fig. 4 Velocity profiles for
varying b

Fig. 5 Temperature profiles
for varying m

heat generation during the exothermic chemical reaction process. This finding is
consistent with the works of Kareem and Gbadeyan [12] and Das et al. [13]. We also
observe that the velocity of fluid near the upper plate (Fig. 6) increases with increased
Frank-Kamenetskii parameter; this is caused by a reduction in fluid viscosity as the
temperature within the channel increases.
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Fig. 6 Velocity profiles for
varying λ

Fig. 7 Temperature profiles
for varying λ

Figures 8 to 10 show the influence of viscosity variation parameter b,
suction/injection parameter S and Frank-Kamenetskii parameter λ on the shear stress
τL on the stationary lower plate over time t . From each of these figures, we see that
the shear stress τL achieves a periodic-steady state as time increases. Furthermore,
τL is decreased when the suction/injection parameter increases (Fig. 8), which is due
to a reduction in flow velocity through the channel. When the viscosity variation



Influence of Heat Transfer, Chemical Reaction and Variable Fluid … 567

parameter is increased (Fig. 9), the shear stress on the lower plate is reduced as a
result of decreased flow resistance within the fluid near the lower plate. We also note
that the shear stress τL decreases when the Frank-Kamenetskii parameter increases;
this is caused by reduced fluid viscosity, as well as a corresponding reduction in fluid
flow resistance near the stationary lower plate.

Fig. 8 Shear stress for
varying S

Fig. 9 Shear stress for
varying b
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Fig. 10 Shear stress for
varying λ

The effects of the suction/injection parameter S, thermal conductivity variation
parameter m and Frank-Kamenetskii parameter λ on the time variation of Nusselt
number NuL on the stationary lower plate are depicted in Figs. 11 to 13. We notice
that for each of these parameters, the Nusselt number achieves a steady state over
time. Figure 11 reveals a reduction in NuL when the suction/injection parameter
increases; this can be explained by a decrease in the loss of heat from the channel
through the lower plate as fluid suction into the channel is increased. When the
thermal conductivity variation parameter m (Fig. 12) increases, the Nusselt number
NuL on the lower plate is enhanced due to increased heat conduction within the fluid
near the stationary lower plate. It is also found (Fig. 13) that NuL increases when
the value of the Frank-Kamenetskii parameter is raised; this occurs as a result of
enhanced heat generation by the chemically-reacting species within the fluid.

5 Conclusions

The unsteady heat transfer and hydromagnetic Couette flow under the influence of an
oscillating pressure gradient, uniform suction/injection, and exothermic first-order
chemical reaction were investigated in this study. The effects of the suction/injection,
thermal conductivity variation, viscosity variation, and Frank-Kamenetskii parame-
ters on the temperature, velocity, shear stress on the lower plate, and Nusselt number
on the lower plate have been examined.

It was determined that the flow velocity through the channel can be enhanced
with an increased Frank-Kamenetskii parameter and decreasing the suction/injection
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Fig. 11 Nusselt number for
varying S

Fig. 12 Nusselt number for
varying m

parameter. The flow velocity near the upper plate can be enhanced by increasing the
viscosity variation parameter, whereas the flow velocity in the lower part of the
channel can be increased by lowering the viscosity variation parameter value. The
fluid temperature can be enhanced with increased Frank-Kamenetskii parameter,
and by decreasing the suction/injection parameter and thermal conductivity varia-
tion parameter. The shear stress on the stationary lower plate can be increased by
reducing the suction/injection parameter, viscosity variation parameter, and Frank-
Kamenetskii parameter. Furthermore, the Nusselt number on the stationary lower
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Fig. 13 Nusselt number for
varying λ

plate can be enhanced by increasing the thermal conductivity variation parameter
and Frank-Kamenetskii parameter and by reducing the suction/injection parameter.
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Effect of Heat Transfer on Peristaltic
Transport of Prandtl Fluid in an Inclined
Porous Channel

Indira Ramarao , Priyanka N. Basavaraju , and Jagadeesha Seethappa

Abstract A Prandtl fluid subjected to low Reynolds number and heat transfer is
assumed to be flowing in an inclined porous channel is considered. Peristaltic waves
are applied on the walls with the assumption of long-wave approximation. The equa-
tions governing the flow are highly non-linear and coupled. These are solved by the
application of the regular perturbation method. The solutions for velocity, pressure,
and temperature are obtained and numerically evaluated. The results are graphically
depicted. The temperature in the inclined channel is higher than the horizontal one
and the pressure gradient is less.

Keywords Peristalsis · Prandtl fluid · Heat transfer · Inclined channel ·
Perturbation

1 Introduction

Peristaltic pumping has a lot of industrial and biological applications. Transport
of physiological fluid-like food bolus, colonic material in the intestine, transport
of sperms, ovum, etc. is direct implications of peristaltic transport. Many studies
have been conducted in this regard. Latham [1], Shapiro et al. [2] have conducted
experimental studies and presented both theoretical and experimental results. Yin
et al. [3], Gupta et al. [4] have considered Newtonian fluid flow under peristalsis. A
power-law fluid was considered by Raju et al. [5]. A study on small blood vessels
was considered by Misra et al. [6]. Peristaltic transport with the MHD effect was
considered by Mekheimer et al. [7]. Kumari et al. [8] have studied heat transfer
and flow of Jeffrey fluid in a verticle porous channel subject to peristalsis. Eldabe
et al. [9] and Hayat et al. [10] have considered transport of power-law fluid under
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peristaltic motion with chemical reaction and heat transfer in an asymmetric channel.
Shabaan et al. [11] have considered porous concentric annulus and studied the effect
of MHD flow and heat transfer with peristalsis. Eldabe et al. [12] have considered
Jeffrey fluid in a verticle porous tube and analysed the MHD effect on peristalsis.
Selvi et al. [13] have conducted a study on the effect of heat transfer on Jeffrey
fluid flow under peristalsis. Pandey et al. [14] have presented an analytical model of
peristaltic transport of micropolar fluid in a porous medium. Tripathi [15] has studied
the peristaltic flow through a finite porous channel. Ahmed et al. [16] have carried out
a two-dimensional analysis of peristaltic transport of Jeffrey fluid in a curved channel
under the influence of a magnetic field in the radial direction. Pandey et al. [14] and
Ahmed et al. [16] have assumed the low Reynold’s number and long wavelength
approximations in their studies. Sreegowrav et al. [17] have considered peristaltic
flow in an asymmetric channel with a couple stress fluid, and Rashmi et al. [18] have
considered eccentric annulus. Nadeem et al. [19] have modeled the flow considering
fixed and wave frame references. Indira et al. [20] have considered the effect of heat
transfer on flow parameters considering flow of Prandtl fluid in a vertical annulus.
Vajravelu et al. [21] have studied the viscous fluid flow in an annular region under a
long-wavelength approximation.

The approach used by Selvi et al. [13] is adopted in the present study to understand
the effect of heat transfer in a Prandtl fluid flowing in a porous channel and under
peristaltic motion. The channel is considered to be inclined. The governing equations
are solved using the regular perturbation technique.

2 Mathematical Formulation

A two-dimensional inclined porous channel is considered as shown in Fig. 1 whose
walls are subjected to a sinusoidal wave motion is given by,

Y = η(x, t) = a + bcos

[
2π

λ
(x − ct)

]
(1)

where 2a—width of channel, λ—wavelength and b—amplitude.
The governing equations [see 19, 20] for a Prandtl fluid are given by,

�T = −P �I + �S, (2)

∇. �V = 0 (3)

ρ
d �V
dt

= ∇. �T + ρ �f , (4)
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cρ
d �T
dt

= k∇2 �T + μφ + μ

k0
v2, (5)

where �V—velocity, ρ—density, �T—Cauchy stress tensor, S—stress tensor.
Moving coordinates are introduced as:

p = P, u = U − c, v = V, x = X − ctandy = Y,

where V,U are velocity in the fixed coordinates and v, u are velocity components
in moving coordinates.

Non-dimensional parameters used in the analysis are:

x∗ = 2πx

λ
, φ = b

a
, ρ = a√

k
, y∗ = y

a
, δ = 2πa

λ
,

η∗ = η

a
, p∗ = 2πa2 p

μcλ
, v = μ

ρ0
, S∗ = a

μc
S, t∗ = 2πct

λ
,

T = θ(T1 − T0) + T0, Pr = μcp
k0

, Gr = αg(T1 − T0)a
3

v2
,

u∗ = u

c
, Re = ac

v
, G = Gr

Re
, v∗ = v

cδ
, Ec = c2

cp(T1 − T0)
,

N = EcPr, = Re

Fr
, Fr = c2

ag

(6)

where Pr—Prandtl number,Gr–Grashof number, N—perturbationparameter, Ec—
Eckert number and Fr—Froude number.

Following [19], the flow is assumed to be under the effect of a low Reynolds
number and long wavelength approximation δ → 0 is considered. Hence equation
becomes,

∂u

∂x
+ ∂u

∂y
= 0, (7)

−∂p

∂x
+ ∂

∂y

(
Sxy

) − σ 2(u + 1) + Gθ + f sinv = 0, (8)

Sxy = α
∂u

∂y
+ β

(
∂u

∂y

)3

, (9)

∂2θ

∂y
+ N

(
∂u

∂y

)2

+ Nσ 2(u + 1)2 = 0, (10)

where v—inclination angle and σ—permeability.
Boundary conditions are given by,
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at y = η(x), θ = +1 and u = −1, at y = 0,
∂θ

∂y
= 0and

∂u

∂y
= 0 (11)

where negative velocity is due to consideration of moving wave frame of reference
u = v − c

2.1 Method of Solution

The equations are coupled and non-linear. To overcome this problem a regular
perturbation is applied:

u = [u00 + βu01 + . . .] + N [u10 + βu11 + . . .],

θ = [θ00 + βθ01 + . . .] + N [θ10 + βθ11 + . . .],

p = [p00 + βp01 + . . .] + N [p10 + βp11 + . . .]

(12)

Applying the above perturbation to governing Eqs. (7)–(10) we get the following
zeroth and first-order equations and boundary conditions as given below.

2.1.1 Zeroth Order

∂2u00
∂y2

= 0 (13)

∂2u00
∂y2

− σ 2

α
(u00 + 1) +

[
G + f sinv

α

]
= 1

α

∂p00
∂x

(14)

Boundary conditions for zeroth order equations will be:

at y = η, θ00 = 1andu00 = −1, (15)

at y = 0,
∂θ00

∂y
= 0and

∂u00
∂y

= 0 (16)

2.1.2 First Order

∂2θ01

∂y2
= 0, (17)

−∂p01
∂x

+ α
∂2u01
∂y2

+
(

∂u00
∂y

)3

− σ 2u01 + Gθ01 = 0 (18)
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∂2θ10

∂y2
+

(
∂u00
∂y

)2

= 0 (19)

−∂p10
∂x

+ α
∂2u10
∂y2

− σ 2u10 + Gθ10 = 0,

Boundary conditions for the first-order equations are as follows:

at y = η, θ01 = 0, θ10 = 0, u01 = 0, u10 = 0, (21)

at y = η,
∂θ01

∂y
= 0,

∂θ10

∂y
= 0,

∂u01
∂y

= 0,
∂u10
∂y

= 0. (22)

Solving the above equation we can obtain the solution as follows,

θ00 = 1, (23)

u00 = − ∂p
∂z − G − f sinv

σ 2

⎡
⎣1 −

cosh
(

σ√
α

)
y

cosh
(

σ√
α

)
η

⎤
⎦ − 1, (24)

θ01 = 0, (25)

u01 = − 1

σ 2

∂p01
∂x

⎡
⎣1 −

cosh
(

σ√
α

)
y

cosh
(

σ√
α

)
H

⎤
⎦ − 9a311

32σ 2

[
sinh

(
σ√
α

)
y − tanh

(
σ√
α

)
Hcosh

(
σ√
α

)
y

]

+ a311
32σ 2

⎡
⎣ sinh

(
3σ√

α

)
η

cosh
(

σ√
α

)
η

− 12ση√
α

⎤
⎦cosh

(
σ√
α

)
y,

(26)

θ10 = −a211

⎡
⎣η2 − y2

4
−

cosh
(

2σ√
α

)
η − cosh

(
2σ√

α

)
y

8σ 2

α

⎤
⎦, (27)
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u10 = − 1

σ 2

∂p10
∂x

⎡
⎣1 −

cosh
(

σ√
α

)
y

cosh
(

σ√
α

)
η

⎤
⎦ − a211G(

24σ 4

α2

)
⎡
⎣1 −

cosh
(

2σ√
α

)
η

cosh
(

σ√
α

)
η

⎤
⎦

cosh

(
σ√
α

)
y + a211G(

8σ 2

α2

)cosh
(
2σ√

α

)
− a211G

8σ 2

⎡
⎣cosh

(
σ√
α

)
y

cosh
(

σ√
α

)
η

⎤
⎦ − a11G

16σ 2

(
y2 − 4η2 + 2

)

(28)

The volume flux can be obtained as,

Q =
∫ n

0
u(x, y)dy, (29)

and mean flow is given by,

F =
∫ n

0
u dy, (30)

where F = (F00 + βF01 + . . .) + N (F10 + βF11 + . . .).

Solving for F and rearranging to get the pressure gradient we obtain,

∂p00
∂x

= σ 2q00

−η + σ√
α
tanh

(
σ√
α

)
η

+ G + f sinv, (31)

∂p01
∂x

= σ 2q01 − σ 2a12

−η + σ√
α
tanh

(
σ√
α

)
η

(32)

∂p10
∂x

= σ 2(q10 + a13)

−η + σ√
α
tanh

(
σ√
α

)
η

(33)

Hence the pressure gradient is given by,

∂p

∂x
= σ 2q + (a11β + a13N )σ 2

−η + σ√
α
tanh

(
σ√
α

)
η

+ G + f sinv, (34)

The pressure rise is calculated as,

p =
∫ 1

0

∂p

∂x
dx . (35)
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The constants are listed in the appendix.
The above physical quantities are numerically evaluated and graphically depicted.

3 Results and Discussion

An inclinedporous channel is considered to haveperistaltic transport of aPrandtl fluid
subjected to the temperature gradient. The pressure gradient, velocity, and pressure
rise obtained from the regular perturbation are computed numerically and graphically
depicted for various parameters arising out of the study. Figures 2, 3, 4, 5, 6, 7
and 8 show the velocity profile, 9–14 show the pressure gradient, 15–19 show the
temperature profile, 20–24 depict the rise in pressure from the middle of the channel
to the boundary.

The velocity profile is obtained using the perturbationmethod assuming symmetry
and slip conditions at the boundaries. Velocity is influenced by heat transfer
(NandGr), inclination angle (v), amplitude (φ), permeability (σ ) and non-
Newtonian parameter β arising out of Prandtl fluid. The rate of flow Q is also a
factor influencing the flow. Figure 2 shows the variation of Axial velocity in y direc-
tion with flow rate Q. As Q increases velocity also increases which is an obvious
effect. Velocity shows parabolic nature between the middle of the channel and upper
boundary. The effect of Q is very significant.

The effect of inclination is analysed in Fig. 3 by taking v = 0 (horizontal), v = π
4

(inclined) and v = π
2 (verticle). The velocity is maximum when v = 0 i.e., the

Fig. 1 Physical configuration
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Fig. 2 Axial velocity versus
y

channel is horizontal and decreases with the inclination. The velocity in the verticle
channel is the least. The effect is predominant in the middle of the channel than
near the boundary of the channel. The effect of heat transfer is analysed by varying
perturbation parameter N. The effect on velocity is not very significant but shows a
decrease in velocity as N increase. The effect of G also analyses heat transfer effect
by variation of Grashof number and the effect is very insignificant. The velocity
shows a very slight increase as G increases.

Fig. 3 Axial velocity versus
y

Fig. 4 Axial velocity versus
y
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Fig. 5 Axial velocity versus
y

Figure 6 analyses the effect of amplitude of the sinusoid wave φ and again φ is
not an influencing factor. The velocity shows different effects at the middle of the
channel and at the wall. There is a slight decrease of velocity with increasing φ at
the middle of the channel but an increase in φ results in an increase in velocity near
the wall. The wall of the channel is under deformation due to the waveform where
this effect is neutralized around the middle of the channel. Figure 7 shows the effect
of the non-Newtonian parameter β which also has some effects similar to φ. As β

increases, the velocity decreases due to the effect of a non-linear parameter at the
middle of the channel. The effect almost becomes negligent at y = 0.8 and reverses
close to the wall. This is due to an increase in resistance to flow as β increases and
near the wall motion, the wall motion also affects.

Figure 8 showsvelocity profile in the axial directionwhich is similar to thepressure
gradient in geometry replicating sinusoidal waves. The effects of inclination and non-
Newtonian parameter β are analysed. As β increases, there is a significant decrease
in velocity and higher β signifies more resistance to flow. v = 0 represents horizontal
channel, v = π

2 represent verticle channel. Increase of v results in reduced velocity.
The effect is more evident for higher β than at β = 0.001. This also indicates the
resistance to flow enhances the effect of inclination on flow. Here we have taken the
following as standard values: ora → β = 0.001, v = 0, b → β = 0.001, v =
π
4 , c → β = 0.01, v = π

4 and a → β = 0.001, v = π
2 , e → β = 0.01, v =

0, f → β = 0.01, v = π
2 .

The effect of different parameters σ, Q, v, N , andφ on pressure gradient is anal-
ysed in Figs. 9, 10, 11, 12, 13 and 14. The effect of an increase in the rate of flow Q,
perturbation parameter N and Grashof number G is to increase pressure gradient.
The effect of these parameters is more significant. This is due to the fact that for
a given Q, velocity tries to be maintained by altering the pressure gradient. These
effects are observed in Figs. 9, 11 and 12 respectively.

Figure 10 shows the effect of inclination on the pressure gradient. The pressure
gradient was high for the horizontal than for the vertical channel. As v increases dp

dx
also increase. The amplitude φ influence pressure gradient significantly as compared
to velocity. The pressure gradient also varies as the sinusoidal wave propagates along
an axis, a similar wave pattern is seen. As φ increases dp

dx increases. This is evident in



582 I. Ramarao et al.

Fig. 13. The effect of β is seen in Fig. 14 which also influences in the same manner
as φ but to a lesser magnitude.

The effect of different parameters on temperature θ is shown in Figs. 15, 16, 17,
18 and 19. θ slowly decreases between the middle of the channel and y = 0.8 and
there is a decrease in θ near the boundary as the boundary is maintained at a constant
temperature. The fluid regulates the temperature hence more heat is carried towards
the middle. The effect of rate of flow is significant as Q increases, θ also increase
showcasing the effect of convection. The effect of inclination is small comparatively
and more heat transfer is affected in verticle channel than horizontal. These effects
are shown in Figs. 15 and 16 respectively.

Figure 17 shows the effect of the perturbation parameter N and Grashof number
G is analysed in Fig. 18. Both cases as N and G increases, θ also increases. The
effect of amplitude is analysed in Fig. 19 and the effect of φ is negligible and similar
to that of velocity.

Figures 20, 21, 22, 23 and24 showcase the rise of pressure along the channel versus
different parameters. Figure 20 shows a drop of pressure rise p with increasing
mean rate of slow. The effect of β and v are very insignificant on pressure rise. The
pressure rise versus β is shown in Fig. 21. As β increases,p also increases due to an
increase in resistance to flow. The effect of inclination is significant along increasing
β. Increasing β enhances the effect of inclination on pressure rise.

As permeability σ increases, pressure rise also more which is seen in Fig. 22.
The increase in permeability results in loss of fluid hence an increase in pressure.
The effect of amplitude is seen in Fig. 23. As φ increases p decreases. The same
effect is seen with increasing perturbation parameter N . The effect of heat transfer
on pressure rise is to decrease p and p also decreases from horizontal to verticle
channel.

Fig. 6 Axial velocity versus
y
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Fig. 7 Axial velocity versus
y

Fig. 8 Axial velocity versus
x

Fig. 9 Pressure gradient in
axial direction

3.1 Numerical Comparison

The table which is below showcases a comparison with a numerical solution. A
numerical solution is obtained for a particular case where the channel is horizontal
in absence of heat transfer. The wall motion is also absent as φ = 0. The shooting
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Fig. 10 Pressure gradient in
axial direction

Fig. 11 Pressure gradient in
axial direction

Fig. 12 Pressure gradient in
axial direction

method is adopted to solve the resulting equation: ∂
∂y

[
α ∂u

∂y + β
(

∂u
∂y

)3
]

= ∂p
∂x , A

similar curve from the present study by taking φ = 0,G = 0, N = 0 is also
compared and compared for β = 0.01, α = 0.5, Q = 2.0. The curves obtained are
shown in Table 1. There is some error seen due to truncation otherwise results are in
good agreement.
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Fig. 13 Pressure gradient in
axial direction

Fig. 14 Pressure gradient in
axial direction

Fig. 15 Temperature profile

4 Conclusions

The present study analyses the peristaltic flow and heat transfer in an inclined porous
channel with Prandtl fluid. The non-linear equations are effectively reduced using
the regular perturbation method. Analytical solutions are obtained and graphically
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Fig. 16 Temperature profile

Fig. 17 Temperature profile

Fig. 18 Temperature profile

depicted. A numerical approximate solution by shooting method for a particular case
of zero inclination is considered and the solution is compared. Velocity starts from−
1 due to the moving frame of reference and shows parabolic nature in y—direction



Effect of Heat Transfer on Peristaltic Transport of Prandtl Fluid … 587

Fig. 19 Temperature profile

Fig. 20 Rise in pressure
versus rate of flow

Fig. 21 Rise in pressure
versus non-newtonian
parameter

and pressure pulse is replicated in x—direction. The effect of heat transfer is not so
significant on velocity.
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Fig. 22 Rise in pressure
versus permeability

Fig. 23 Rise in pressure
versus inclination parameter

Fig. 24 Rise in pressure
versus perturbation
parameter

The effect of a non-linear term is to increase resistance to flow and also to enhance
the effects of inclination on velocity on velocity as well as heat transfer. The perturba-
tion parameter indicates the effect of θ on pressure gradient and velocity. The effect
of θ is more on pressure gradient than on velocity. As β → 0, the fluid becomes
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Table 1 Comparison of Perturbation and Exact solution

Q p (Perturbation
Solution) v = 0

p (Exact Solution)
v = 0

p (Perturbation

Solution) v = π
4

p(Exact Solution)

v = π
4

−2 2.49029 2.49029 2.34887 2.34887

−1 −0.19971 −0.19971 −0.341136 −0.341136

0 −2.8897 −2.8897 −3.03114 −3.03114

1 −5.5797 −5.5797 −5.72115 −5.72115

2 −8.2697 −8.2697 −8.4112 −8.4112

Newtonian. The physical quantities like velocity and pressure gradient show higher
values for the horizontal channel than the inclined channel. The effect of wall motion
is not so significant on the physical quantities.

Appendix

a11 = 1

σ 2

(
dp00
dx

− G − f sinv

) (
σ√
α

)

cosh
(

σ√
α
η
) , a12 = −9a113

32σ 2
b1 + a311

32σ 2
b2,

a11 = 1

σ 2

(
dp00
dx

− G − f sinv

) (
σ√
α

)

cosh
(

σ√
α
η
) , a12 = − 9a311

32σ 2
b1 + a311

32σ 2
b2,

b1 = σ√
α
cosh

(
σ√
α

η

)
− 1 − σ√

α
tanh

(
σ√
α

η

)
σ√
α
sinh

(
σ√
α

η

)
,

b2 =
⎧⎨
⎩
sinh

(
3σ√

α
η
)

cosh
(

3σ√
α
η
) − 12ση√

α

⎫⎬
⎭

σ√
α
sinh

(
σ√
α

η

)
, b4 = ηcosh

(
2σ√

α
η

)
,

b3 =
⎧⎨
⎩1 −

2cosh
(

2σ√
α
η
)

cosh
(

σ√
α
η
)

⎫⎬
⎭

σ√
α
sinh

(
σ√
α

η

)
, b5 = tanh

(
σ√
α

η

)
,

b6 = 11η3

3
− 2η, a13 = a211G

24 σ 4

α2

b3 − a211G

8 σ 4

α2

b4 + a211G

8 σ√
α

b5 − a11G

16σ 2
b6
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A Multiscale Model of
Stokes–Cahn–Hilliard Equations in a
Porous Medium: Modeling, Analysis
and Homogenization

Nitu Lakhmara and Hari Shankar Mahato

Abstract We consider a phase-field model for a mixture of two immiscible, incom-
pressible porous media flow including surface tension effects. At micro-scale, the
model comprises a strongly coupled system of Stokes–Cahn–Hilliard equations. An
evolving diffuse interface having finite width independent of the scale parameter
ε is separating the fluids in the considered model. In order to investigate the well-
posedness of system at micro-scale, we first derived some a-priori estimates. With
the help of two-scale convergence and unfolding operator technique we rigorously
derived the homogenized equations for the microscopic model. For our purpose, we
have used extensions theorems and well-known theories available in the literature
beforehand.

Keywords Phase-field model · Porous media flow · Stokes equations ·
Cahn–Hilliard equations · Existence of solution · Homogenization · Asymptotic
expansion method · Two-scale convergence · Periodic unfolding

1 Introduction

We study a binary-fluid model where the considered fluids are incompressible and
immiscible. The domain U ⊂ R

n , n = 2, 3 is occupied by the binary-fluid mixture.
On the time interval S = (0, T ), the model comprises a system of steady Stokes–
Cahn–Hilliard equations
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−μ�u + ∇ p = λw∇c in (0, T ) ×U, (1.1a)

∇.u = 0 in (0, T ) ×U, (1.1b)

∂t c + u.∇c = �w in (0, T ) ×U, (1.1c)

w = −�c + f (c) in (0, T ) ×U, (1.1d)

where u and w are the unknown velocity and chemical potential, respectively. μ is
the viscosity and λ is the interfacial width parameter. Here c represents microscopic
concentration of one of the fluids with values lying in the interval [−1, 1] in the
considered domain and (−1, 1) within the thin diffused interface of uniform width
proportional to λ. The term f (c) = F ′(c), where F is a homogeneous free energy
functional that penalizes the deviation from the physical constraint |c| ≤ 1. In our
work,we consider F to be a quadratic double-well free energy functional, i.e., F(s) =
1
4 (s

2 − 1)2. One can choose F as a logarithmic or a non-smooth (obstacle) free
energy functional, cf. [3, 4]. The nonlinear term c∇w in (1.1a) models the surface
tension effects, and the advection effect is modeled by the term u · ∇c in (1.1c). The
system (1.1a)-(1.1d) represent the steady Stokes equations for incompressible fluid
and Cahn–Hilliard equations, respectively.

1.1 The Model

We consider U as a bounded domain with a sufficiently smooth boundary ∂U in
R

n , n = 2, 3, S := (0, T ) denotes the time interval for any T > 0, and the unit
reference cell Y := (0, 1)n ⊂ R

n . Yp and Ys represent the pore and solid part of Y ,
respectively, which are mutually distinct, i.e., Ys ∩ Yp = ∅, also Y = Yp ∪ Ys . The
solid boundary of Y is denoted as �s = ∂Ys , see Fig. 1. The domainU is assumed to
be periodic and is covered by a finite union of the cells Y . In order to avoid technical
difficulties, we postulate that: solid parts do not touch the boundary ∂U , solid parts
do not touch each other and solid parts do not touch the boundary of Y . Let ε > 0

Fig. 1 (left) PorousmediumU = U ε
p ∪U ε

s as a periodic covering of the reference cellY = Yp ∪ Ys
(right). The blue interface � is the macroscopic interface between two fluids occupying the pore
space U ε

p
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be the scale parameter. We define the pore space U ε
p := ⋃

k∈Zn Ypk ∩U , the solid
part asU ε

s := ⋃
k∈Zn Ysk ∩U = U\U ε

p and�ε := ⋃
k∈Zn �sk , where Ypk := εYp + k,

Ysk := εYs + k and �sk = Ȳpk ∩ Ȳsk .
Let χ(y) be the Y -periodic characteristic function of Yp defined by

χ(y) =
{
1 y ∈ Y p,

0 y ∈ Y − Y p.
(1.2)

We assume thatU ε
p is connected and has a smooth boundary.We consider the situation

where the pore partU ε
p is occupied by the mixture of two immiscible fluids separated

by an evolving macroscopic interface� : [0, T ] → U represented by the blue part in
Fig. 1, and includes the effects of surface tension on the motion of the interface. We
model the flow of the fluid mixture on the pore-scale using a phase-field approach
motivated by the Stokes–Cahn–Hilliard system (1.1) in [2]. The velocity of the fluid
mixture is assumed to beuε = uε(t, x), (t, x) ∈ S ×U ε

p which satisfies the stationary
Stokes equation. The order parameter cε plays the role of microscopic concentration
and the chemical potential wε satisfies the Cahn–Hilliard equation. pε is the fluid
pressure. The term λcε∇wε models the surface tension forces which acts on the
macroscopic interface between the fluids. Fluid density is taken to be 1. Then, the
Stokes–Cahn–Hilliard system of equations is given by

−με2�uε + ∇ pε = −λcε∇wε S ×U ε
p, (1.3a)

∇.uε = 0 S ×U ε
p, (1.3b)

uε = 0 S × ∂U ε
p, (1.3c)

∂t c
ε + εuε.∇cε = �wε S ×U ε

p, (1.3d)

wε = −ε2�cε + f (cε) S ×U ε
p, (1.3e)

∂nc
ε = 0 S × ∂U ε

p, (1.3f)

∂nw
ε = 0 S × ∂U ε

p, (1.3g)

cε(0, x) = c0(x) U ε
p, (1.3h)

where ∂cε

∂n = ∂ncε and f (s) = s3 − s = F ′(s) = 1
4 (s

2 − 1)2 is the double-well free
energy. The above scaling for the viscosity is such that the velocity uε has a nontrivial
limit as ε goes to zero. Also, 0 ≤ α,β, γ ≤ 2 where α,β, γ ∈ R. We denote (1.3a)–
(1.3h) by (Pε).

2 Preliminaries and Notation

Let θ ∈ [0, 1] and 1 ≤ r, s ≤ ∞ be such that 1
r + 1

s = 1. Assume that
� ∈ {U,U ε

p,U
ε
s } and l ∈ N0, then as usual Lr (�) and Hl,r (�) denote the Lebesgue

and Sobolev spaces with their usual norms and they are denoted by ||.||r and ||.||l,r ,
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cf. [5]. The extension and restriction operators are denoted by E and R, respectively.
The symbol (., .)H represents the inner product on a Hilbert space H and ||.||H
denotes the corresponding norm. For a Banach space X , X∗ denotes its dual and
the duality pairing is denoted by 〈. , .〉X∗×X . By classical trace theorem on Sobolev
space H 1,2

0 (�)∗ = H−1,2(�). The symbols ↪→, ↪→↪→ and d
↪→ denote the continuous,

compact, and dense embeddings, respectively.
We define the function spaces:

H1(U ) = H 1(U )n, H1
0(U ) = H 1

0 (U )n ,
Uε := H1

div(U ) = {η : η ∈ H1
0(U ),∇ · η = 0},

Cε = {cε : cε ∈ L∞(S; H 1(U ε
p)), ∂t cε ∈ L2(S; H 1(U ε

p)
∗)},

Wε = L2(S; H 1(U ε
p)) and L2

0(U ) = {φ ∈ L2(U ) : ∫
U φ dx = 0.}.

We choose uε ∈ Uε, cε ∈ Cε,wε ∈ Wε and pε ∈ L2(S ×U ε
p). We will now state few

results and lemmas which are used in this paper and proofs of these can be found in
literature.

Lemma 1 Let E be a Banach space and E0 and E1 be reflexive spaces with E0 ⊂
E ⊂ E1. Suppose further that E0 ↪→↪→ E ↪→ E1. For 1 < p, q < ∞ and 0 < T <

1 define X := {u ∈ L p(S; E0) : ∂t u ∈ Lq(S; E1)}. Then X ↪→↪→ L p(S; E).

Lemma 2 (Restriction theorem) There exists a linear restriction operator Rε :
L2(S; H 1

0 (U ))d −→ L2(S; H 1
0 (U ε

p))
d such that Rεu(x) = u(x)|U ε

p
for u ∈

L2(S; H 1
0 (U ))d and ∇ · Rεu = 0 if ∇ · Rεu = 0 if ∇ · u = 0. Furthermore, the

restriction satisfies the following bound

||Rεu||L2(S×U ε
p)

+ ε||∇Rεu||L2(S×U ε
p)

≤ C(||u||L2(S×U ) + ε||∇u||L2(S×U )),

where C is independent of ε.

Similarly, one can define the extension operator from S ×U ε
p to S ×U , cf. [1, 8].

Definition 1 (Two-scale convergence) A sequence of functions (uε)ε>0 in L p(S ×
U ) is said to be two-scale convergent to a limit u ∈ L p(S ×U × Y ) if

lim
ε→0

∫

S×U
uε(t, x)φ

(
t, x,

x

ε

)
dx dt =

∫

S×U×Y
u(t, x, y)φ(t, x, y) dx dt dy

for all φ ∈ Lq(S ×U ;C#(Y )).

Lemma 3 For ε > 0, let (uε)ε>0 be a sequence of functions, then the following
holds:

(i) for every bounded sequence (uε)ε>0 in L p(S ×U ) there exists a subsequence
(uε)ε>0 (still denoted by same symbol) and an u ∈ L p(S ×U × Y ) such that

uε 2
⇀ u.
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(ii) let uε → u in L p(S ×U ), then uε 2
⇀ u.

(iii) let (uε)ε>0 be a sequence in L p(S; H 1,p(U )) such that uε w
⇀ u in

L p(S; H 1,p(U )). Then uε 2
⇀ u and there exists a subsequence uε

ε>0, still

denoted by same symbol, and an u1 ∈ L p(S ×U ; H 1,p
# (Y )) such that ∇xuε 2

⇀

∇xu + ∇yu1.
(iv) let (uε)ε>0 be a bounded sequence of functions in L p(S ×U ) such that ε∇uε is

bounded in L p(S ×U )n. Then there exist a function u ∈ L p(S ×U ; H 1,p
# (Y ))

such that uε 2
⇀ u, ε∇xuε 2

⇀ ∇yu.

Definition 2 (Periodic Unfolding) Assume that 1 ≤ r ≤ ∞. Let uε ∈ Lr (S ×U )

such that for every t , uε(t) is extended by zero outside ofU . We define the unfolding
operator T ε : Lr (S ×U ) → Lr (S ×U × Y ) as

T εuε(t, x, y) = uε
(
t, ε

[ x

ε

]
+ εy

)
for a.e. (t, x, y) ∈ S ×U × Y, (2.1a)

= 0 otherwise. (2.1b)

For the following definitions and results, interested reader can refer to [7] and
references therein.

Definition 3 Assume that 1 ≤ r ≤ ∞, uε ∈ Lr (S ×U ) and T ε is defined as in
Definition3. Then we say that:
(i) uε is weakly two-scale convergent to a limit u0 ∈ Lr (S ×U × Y ) if T εuε

converges weakly to u0 in Lr (S ×U × Y ).
(ii) uε is strongly two-scale convergent to a limit u0 ∈ Lr (S ×U × Y ) if T εuε

converges strongly to u0 in Lr (S ×U × Y ).

Lemma 4 Let (uε)ε>0 be a bounded sequence in Lr (S ×U ). Then the following
statements hold:

(a) if uε 2
⇀ u, then T εuε w

⇀ u, i.e., uε is weakly two-scale convergent to a u.
(b) if uε → u , then T εuε → u, i.e., uε is strongly two-scale convergent to u.

Lemma 5 Let (uε)ε>0 be strongly two-scale convergent to u0 in L
r (S ×U × �) and

(vε)ε>0 be weakly two-scale convergent to v0 in Ls(S ×U × �). If the exponents
r, s, ν ≥ 1 satisfy 1

r + 1
s = 1

ν
, then the product (uεvε)ε>0 two-scale converges to the

limit u0v0 in Lν(S ×U × Y ). In particular, for any φ ∈ Lμ(S ×U )with μ ∈ (1,∞)

such that 1
ν

+ 1
μ

= 1 we have

∫

S×U
uε(t, x)vε(t, x)φ(t, x) dx dt

ε→0−→
∫

S×U×Y
u0(t, x, y)v0(t, x, y)φ(t, x) dx dy dt.

Before we proceed with the weak formulation, we make the following assumptions
for the sake of analysis of (Pε).
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A1. for all x ∈ U , u0, c0 and w0 ≥ 0.
A2. u0 ∈ L∞(U ) ∩ H 1(U ), c0 ∈ L∞(U ) ∩ H 1(U ) and w0 ∈ L∞(U ) ∩ H 1(U )

such that supε>0 ||u0||L∞(U )∩H 1(U ) < ∞, supε>0 ||c0||L∞(U )∩H 1(U ) < ∞,

supε>0 ||w0||L∞(U )∩H 1(U ) < ∞.
A3. pε ∈ L2(S; H 1(U ε

p)) such that supε>0 ||pε||L2(S;H 1(U ε
p))

< ∞.

2.1 Weak Formulation of (Pε)

Let the assumptions A1–A4 be satisfied. A triple (uε, cε, wε) ∈ Uε × Cε × Wε

is said to be the weak solution of the model (Pε) such that (uε, cε, wε)(0, x) =
(u0, c0, w0)(x) for all x ∈ U , and

με2
∫

S×U ε
p

∇uε : ∇η dx dt = −λ

∫

S×U ε
p

cε∇wε · η dx dt, (2.2a)

∫

S
〈∂t c

ε,φ〉 dt − ε

∫

S×U ε
p

cεuε · ∇φ dx dt +
∫

S×U ε
p

∇wε · ∇φ dx dt = 0, (2.2b)

∫

S×U ε
p

wεψ dx dt = ε2
∫

S×U ε
p

∇cε · ∇ψ dx dt +
∫

S
〈 f (cε),ψ〉 dx dt, (2.2c)

for all η ∈ L2(S; H1
div(U

ε
p)) and φ, ψ ∈ L2(S; H 1(U ε

p)).
We are now going to state the two main theorems of this paper which are given

below.

Theorem 1 Let the assumptions A1–A4 be satisfied, then there exists a unique pos-
itive weak solution (uε, cε, wε) ∈ Uε × Cε × Wε of the problem (Pε) which satisfies

||uε||L4(U ε
p)

+ √
με||∇uε||L2(S×U ε

p)
+ ||wε||L2(S×U ε

p)
+ √

ελ||∇wε||L2(S×U ε
p)

+||cε||L∞(S;L4(U ε
p))

+
√

λ

2
||∇cε||L∞(S);L2(U ε

p))
+ ||∂t c

ε||L2(S;H 1(U ε
p)

∗)

≤ C < ∞ ∀ε, (2.3)

where the constant C is independent of ε.

Theorem 2 (Upscaled Problem (P)) There exists (u, c, w) ∈ U × C × W which
satisfies
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−μ�yu + ∇y p1(x, y) + ∇x p(x) = −λc
(∇xw(x) + ∇yw1(x, y)

)
, S ×U × Yp,

(2.4a)

∇y · u(x, y) = 0, S ×U × Yp,

(2.4b)

∇x · u(x) = 0, S ×U,

(2.4c)

u(x, y) = 0, S ×U × �s,

(2.4d)

∂t c(x, y) + ∇y · c(x, y)u(x, y) = �xw(x) + ∇x · ∇yw1(x, y), S ×U × Yp,

(2.4e)

w(x, y) = −�yc(x, y) + f (c(x, y)), S ×U × Yp,

(2.4f)

∇y · {∇xw(x) + ∇yw1(x, y)} = 0, S ×U × Yp,

(2.4g)

∇y · ∇yw(x) = 0, S ×U × Yp

(2.4h)

c(0, x) = c0(x), U.

(2.4i)

where κ̄(x) = 1
|Yp |

∫
∂Yp

κ(x, y) dy, x ∈ U denotes the mean of the quantity κ over
the pore space Yp.

The systems of equations (2.4a)–(2.4i) is the required homogenized (upscaled)
model of (1.3a)–(1.3h).

3 Anticipated Upscaled Model via Asymptotic Expansion
Method

We consider the following expansions

uε =
∞∑

i=0

εiui, c
ε =

∞∑

i=0

εi ci , w
ε =

∞∑

i=0

εiwi and pε =
∞∑

i=0

εi pi , (3.1)

where each term ui, pi , ci and wi are Y -periodic functions in y-variable. We have
∇ = ∇x + 1

ε
∇y . After the substitution of uε, cε, wε, pε in the problem (Pε), we get

from (1.3a)
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ε−1(∇y p0) + ε0(−μ�yu0 + ∇x p0 + ∇y p1)

+ε[−μ{�yu1 + (∇x · ∇y + ∇y · ∇x )u0} + ∇x p1 + ∇y p2]
= ε−1{−λ(c0∇yw0)} + ε0[−λ{c1∇yw0 + c0(∇xw0 + ∇yw1)}] + O(ε). (3.2)

We use (3.1) in (1.3b) then

ε−1∇y · u0 + ε0(∇x · u0 + ∇y · u1) + ε(∇x · u1 + ∇y · u2) + ε2(. . .) = 0. (3.3)

From (1.3d), after plugging the expansions, we obtain

∂t (c0 + εc1) + ε0{∇y · (c0u0)} + ε{∇y · (c0u1) + ∇x · (c0u0) + ∇y · (c1u0)}
= ε−2�yw0 + ε−1{�yw1 + (∇x · ∇y + ∇y · ∇x )w0}

+ε0{�yw2 + (∇x · ∇y + ∇y · ∇x )w1 + �xw0} + O(ε). (3.4)

Next, we substitute the expansions for wε, cε in (1.3e) and use the Taylor series
expansion of f around c0 which leads to

w0 + εw1 = −�yc0 + ε1{−�yc1 − (∇x · ∇y + ∇y · ∇x )c0} + f (c0) + O(ε).
(3.5)

Nowwe substitute the expansions in the boundary conditions. From (1.3c), we obtain

u0 + εu1 + ε2u2 + · · · = 0 on (0, T ) × ∂U ε
p. (3.6)

From (1.3f) and (1.3g), we get

ε−1∇yc0 · n + ε0(∇xc0 + ∇yc1) · n + ε(∇xc1 + ∇yc2) · n + · · · = 0 (3.7)

and

ε−1∇yw0 · n + ε0(∇xw0 + ∇yw1) · n + ε(∇xw1 + ∇yw2) · n + · · · = 0 (3.8)

respectively.
We compare the coefficient of ε0 from (3.5) and integrate it over Yp, then using

(3.7) we get

w0(t, x, y) = f (c0(t, x, y)) in S ×U × Yp (3.9)

We equate the coefficient of ε0 from (3.4) and integrate it over Yp, then using (3.8)
we obtain

|Yp|{∂t c0 + u0 · ∇yc0} = ∇x ·
∫

Yp

{∇yw1 + ∇xw0} dy. (3.10)
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The coefficients of ε−2 and ε−1 from (3.4) give The coefficient of ε−1 from (3.4)
gives

�yw0 = 0 and ∇x · ∇yw0 + ∇y · {∇xw0 + ∇yw1} = 0 (3.11)

From (3.8) and (3.11) we observe that

w0 = w0(t, x). (3.12)

We equate the coefficients of ε−1 from (3.2), then using (3.12) we get

∇y p0 = 0 for y ∈ Yp. (3.13)

The coefficient of ε0 from (3.2) along with (3.12) gives

− μ�yu0 + ∇x p0 + ∇y p1 = −λ c0 (∇xw0 + ∇yw1). (3.14)

Again, using (3.3) and (3.6) one can deduce

∇x ·
∫

Yp

u0(x, y) dy = 0 in S ×U. (3.15)

Equating ε coefficient from (3.5) we get using (3.7)

|Yp|w1 = −∇x ·
∫

Yp

∇yc0 dy (3.16)

4 Proof of Theorem 2.1

4.1 A Priori Estimates

We put η = εuε, φ = λwε, ψ = λ∂t cε in (2.2), and using ∇(cεwε) = cε∇wε +
wε∇cε it yields

√
με||∇uε||L2(S×U ε

p)
+ √

λ||∇wε||L2(S×U ε
p)

+
√

λ

2
ε||∇cε||L∞(S;L2(U ε

p))
≤ C (4.1)

as ε
3
2 < ε for ε ∈ (0, 1).
Next, Young’s inequality gives
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∫

U ε
p

F(cε(t)) dx = 1

4

∫

U ε
p

((cε)2 − 1)2 dx ≤ C ⇒
∫

U ε
p

|cε|4 dx ≤ C ∀t

i.e., sup
ε>0

||cε||L∞(S;L4(U ε
p))

≤ C. (4.2)

We set ψ = 1 as a test function in (1.3e) and then using Poincare’s inequality, we get

||wε −
∫

U ε
p

wε dx ||L2(U ε
p)

≤ C ||∇wε||L2(U ε
p)

⇒ ||wε||L2(S×U ε
p)

≤ C. (4.3)

By Gagliardo–Nirenberg–Sobolev inequality for Lipschitz domain, ||uε||L4(Y ) ≤
C ||∇uε||L2(Y ), where C depend on n and Y . By imbedding theorem, ||uε||L2(Y ) ≤
C ||uε||L4(Y ) ≤ C . By a straightforward scaling argument, we obtain

||uε||L4(U ε
p)

≤ C. (4.4)

From (2.2b) we get,

||∂t c
ε||L2(S;H 1(U ε

p)
∗) ≤ C ∀ε > 0 (4.5)

From proposition III.1.1 in [10] and (2.2a), there exist a pressure pε := ∂t Pε ∈
W−1,∞(S, L2

0(U
ε
p)) such that

〈∇Pε(t), η〉 ≤ με2
∫

S
||∇uε||L2(U ε

p)
||∇ηε||L2(U ε

p)
dt +

∫

S
||cε||L4(U ε

p)
||∇wε||L2(U ε

p)
dt.

Thus by (4.1) and (4.2) it immediately follows that

〈∇Pε(t), η〉 ≤ C ||η||H 1
0 (U ε

p)
n ⇒ sup

t∈[0,T ]
||∇Pε(t)||H−1(U ε

p)
n ≤ C ∀ε > 0. (4.6)

Now, with the help of a-priori estimates from (2.3), the existence of solution of (Pε)

can be shown using Galerkin’s method, cf. [6] and references therein.

5 Proof of Theorem 2 (Homogenization of Problem (Pε))

We start with the construction of an extension of solution fromU ε
p toU in the lemma

below.

Lemma 6 There exists a positive constant C depending on c0, u0, n, |Y |, λ and μ
but independent of ε and extensions (c̃ε, w̃ε, ũε, P̃ε) of the solution (cε, wε, uε, Pε)
to S ×U such that
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||ũε||L∞(S;L2(U )n) + ||c̃ε||L∞(S;L4(U )) + ||w̃ε||L2(S;H 1(U )) + √
με||∇ũε||L2(S×U )n×n

+
√

λ

2
ε||∇ c̃ε||L∞(S;L2(U )n) + √

λ||∇w̃ε||L2(S×U )n + ||∂t c̃
ε||L2(S;H 1(U )∗)

+ sup
t∈[0,T ]

||P̃ε(t)||L2
0(U ) ≤ C.

(5.1)

Lemma 7 Let (uε, Pε, cε,wε)ε>0 be the extension of the weak solution from Lemma
6 (denoted by the same symbol). Then there exists some functions u ∈ L2(S ×
U ; H 1

# (Y ))n, w ∈ L2(S ×U ), P ∈ L2(S ×U × Y ), c, w1 ∈ L2(S ×U ; H 1
# (Y ))

and a subsequence of (uε, Pε, cε, wε)ε>0, still denoted by the same symbol, such
that the following convergences hold:

(i) (uε)ε>0 two-scale converges to u. (ii) (cε)ε>0 two-scale converges to c.
(iii) (wε)ε>0 two-scale converges to w. (iv) (Pε)ε>0 two-scale converges to

P.
(v) (ε∇xcε)ε>0 two-scale converges to ∇yc. (vi) (ε∇xuε)ε>0 two-scale converges

to ∇yu.
(vii) (∇xw

ε)ε>0 two-scale converges to ∇xw + ∇yw1.

Proof The convergences follow from the estimates (5.1), Lemmas3 and 4.

In the next lemma we will discuss the convergence of nonlinear terms for ε → 0.

Lemma 8 The following convergence results hold:

(i) (cε)ε>0 is strongly convergent to c in L2(S ×U ). Thus, T ε(cε) converges to c
strongly in L2(S ×U × Y ), i.e., (cε)ε>0 is strongly two-scale convergent to c.

(ii) T εuε is weakly convergent to u in L2(S ×U × Y )n, i.e., (uε)ε>0 is weakly
two-scale convergent to u.

(iii) T ε[ε∇xcε] converges to ∇yc weakly in L2(S ×U × Y )n, i.e., ε∇xcε is weakly
two-scale convergent to ∇yc.

(iv) The nonlinear terms f (cε), cε∇xw
ε and cεuε two-scale converge to f (c),

c(∇xw + ∇yw1) and cu.

Proof We will prove step by step. From estimate (5.1) for (cε)ε>0 and Theorem 2.1
in [9], there exists a subsequence of (cε)ε>0, still denoted by same symbol, such that
(cε)ε>0 is strongly convergent to a limit c. The rest of (i) and the proofs of (ii) and
(iii) follow from Lemma4. Following the similar arguments as in [2] we can prove
(iv).

Proof (Proof of Theorem 2) (i) We choose a test function φ in (2.2b) defined as
φ = φ(t, x, x

ε
) = φ0(t, x) + εφ1(t, x,

x
ε
), where the functionsφ0 ∈ C∞

0 (S ×U ) and
φ1 ∈ C∞

0 (S ×U ;C∞
# (Y )):

∫

S
〈∂t c

ε,φ〉 dt −
∫

S×U ε
p

cεuε · ε∇φ dx dt +
∫

S×U ε
p

∇wε · ∇φ dx dt = 0.
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We extend the solution to U and pass ε → 0 in the two-scale sense and get

−
∫

S×U
c(t, x, y)∂tφ0(t, x) dx dt −

∫

S×U
c(t, x, y)u(t, x) · ∇yφ0(t, x) dx dt

+
∫

S×U
{∇xw(t, x) + ∇yw1(t, x, y)} ·

(
∇xφ0(t, x) + ∇yφ1(t, x, y)

)
dx dt = 0.

(5.2)

Setting φ0 = 0 and φ1 = 0 in (5.2) yield, respectively,

∇y · {∇xw(t, x) + ∇yw1(t, x, y)} = 0, (5.3)

∂t c(t, x, y) + ∇y · c(t, x, y)u(t, x, y) = �xw(t, x) + ∇x · ∇yw1(t, x, y), (5.4)

in S ×U × Yp. Similarly, choosing a function ψ ∈ C∞
0 (S ×U ;C∞

# (Y )) in (2.2c)
and passing the limit gives

w(t, x, y) = −�yc(t, x) + f (c(t, x, y)) in S ×U × Yp. (5.5)

(ii) We choose the test functions η ∈ C∞
0 (U ;C∞

#) (Y ))n and ξ ∈ C∞
0 (S) and proceed

as in [2]. Then, using Lemmas7 and 8, and passing to the two-scale limit

lim
ε→0

∫

S×U ε
p

Pε(t, x)
{
∇x · η(x,

x

ε
) + 1

ε
∇y · η(x,

x

ε
)
}
∂tξ(t) dx dy dt

=
∫

S×U×Yp

P(t, x, y)∇y · η(x, y)∂tξ(t) dx dy dt

= 0 (5.6)

We get the y-variable independency of the two-scale limit of the pressure P
from (5.6). Further, we consider the function η ∈ C∞

0 (U ;C∞
# (Y ))n such that ∇y ·

η(x, y) = 0, so that

με2
∫

S×U ε
p

∇uε(t, x) : ∇η(x, y)ξ(t) dx dt +
∫

S×U ε
p

Pε(t, x)∇ · η(x, y)∂tξ(t) dx dt

= −λ

∫

S×U ε
p

cε(t, x)∇wε(t, x) · η(x, y)ξ(t) dx dt .

(5.7)

We use the extensions of solution to U (using the same notations), and pass to the
two-scale limit.
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−λ

∫

S×U×Yp

c(t, x, y){∇xw(t, x) + ∇yw1(t, x, y)} · η(x, y)ξ(t) dx dy dt

= μ

∫

S×U×Yp

∇yu(t, x, y) : ∇yη(x, y)ξ(t) dx dy dt

+
∫

S×U×Yp

P(t, x)∇x · η(x, y)∂tξ(t) dx dy dt . (5.8)

The existence of a pressure P1 ∈ L∞(S; L2
0(U ; L2

#(Yp))) and two-scale convergence
results are followed as in [2] for the final step of the upscaling of themodel equations.

∫

S×U×Yp
P(t, x)∇x · η(x, y)∂t ξ(t) dx dy dt +

∫

S×U×Yp
P1(t, x, y)∇y · η(x, y)∂t ξ(t) dx dy dt

+λ

∫

S×U×Yp
c(t, x, y){∇xw(t, x) + ∇yw1(t, x, y)} · η(x, y)ξ(t) dx dy dt

+μ

∫

S×U×Yp
∇yu(t, x, y) : ∇yη(x, y)ξ(t) dx dy dt

= 0.
(5.9)

for all η ∈ C∞
0 (U ;C∞

# (Y ))n and ξ ∈ C∞
0 (S).

From (5.9), we obtain

− μ�yu(x, y) + ∇x p(x) + ∇y p1(x, y) = −λ c(x, y) {∇xw(t, x) + ∇yw1(t, x, y)}
(5.10)

in S ×U × Yp.

6 Conclusion

A two fluids’ mixture in strongly perforated domain is considered in which the fluids
are separated by an interface of thickness of λ in the pore part. From the modeling
of such phenomena in the pore space, we got a strongly coupled system of Stokes–
Cahn–Hilliard equations. The surface tension effects have been taken into account
and the aforementioned interface is assumed to be independent of the scale parameter
ε. Several a-priori estimates are derived and the well-posedness at the micro-scale
is shown. Two-scale convergence, periodic unfolding, and the estimates after using
extension theorems on them, yield the homogenized model.
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Sensitivity and Directional Analysis
of Two Mutually Competing Plant
Population Under Allelopathy Using
DDE

Dipesh and Pankaj Kumar

Abstract In this paper, we studied the mutual competition of plant development,
with a focus on time-dependent change in concentrations. The effect of allelochemi-
cals on plant populations is investigated with the help of a mathematical model using
DDE. The effect of allelochemicals is studied by introducing the delay parameter in
the term involving mutual competition. Stability was examined about the non-zero
equilibrium point with the help of Routh-Hurwitz’s theorem. The addition of delay
distributed the system stability. The value τ = 0 signifies the absence of delay at these
points and keeps the system is stable. At τ < 6.9999, the value of delay decreases
from the threshold value, at this point the system shows asymptotic stability because it
loses its stability. At τ ≥ 6.9999, the system shows hopf-bifurcation, when it crosses
the threshold value. Directional and sensitivity analysis of the proposed model are
performed. MATLAB is used to provide graphical help for theoretical results.

Keywords Allelopathy · Competing species · Delay · Sensitivity analysis ·
Hopf-bifurcation · Stability

1 Introduction

Ecologists create mathematical models at various levels of complexity to investigate
ecosystems and plant populations dynamics. Models are constructed with inconsis-
tencies in the values of variables, the modeling of the ecosystem, or the selection of
mutually incompatible scenarios. Allelopathy is described as a plant’s allelochemi-
cals influence on another plant as a consequence of chemicals emitted into the envi-
ronment. However, there has been a lot of uncertainty and variance in the definition
and use of allelochemistry. The plan physiology analysis includes variations in plant
population densities under mutual competing. Changes in the external environment
of essential nutrients, as well as their interaction, are key variables that influence the
size and density of plant populations [1]. Thornley created mathematical modeling
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of certain plant growth stages, and his models have been used to a variety of plant
biology challenges [2]. Allelochemicals affect several physiochemical processes in
plants, including photosynthetic rates, metabolism, root reduction, and so on [3].
P.Y. et al. demonstrated that modeling of the rise of different impacts of the first
inter-competition on the significance of ecodiversity; competing between two phyto-
plankton species [4]. Tanveer et al. studied on Waste-land weeds in the fields that
have an allelopathic effect on crops via their leaf leachates and rhizospheric soils [5].
Shovonlal Roy et al. observed that allelopathy is thought to minimize competitive
exclusion and increase phytoplankton variety in aquatic environments where many
species compete for a set of resources [6]. Abbas et al. worked on a fractional model
for different phytoplankton species in which one species produced an allelochem-
ical, which is stimulatory for another species [7]. Peng et al. tell us the impacts of
secondary metabolites in plant invasion, and how we can save plant and remove the
allelopathic effect in plants [8]. Wang et al. worked on the fractional order delayed
model in paddy ecosystem and also analyzed the stability and hopf-bifurcation of
the system [9]. To correctly interpret the model output, it is necessary to have a clear
awareness of the sources of uncertainty that the methodology tackles. Saltelli et al.
studied on the role of sensitivity analysis in ecological modeling and also tell us
about the application of sensitivity analysis in ecological modeling [10]. Grzyb et al.
worked on the environmental factors which affect the crop residue and talk about the
application of crop residue [11]. Huang et.al examined a study of the global equi-
librium of the non-linear DDE method concerning population development [12].
The existence of the zeros of the empirical given polynomial was studied in detail
[13, 14]. Kalra and Kumar examined the effect of delay on plant maturing under
the impact of hazardous mineral and also tell us about the Impact of delay in plant
spreading [15, 16]. Russel andMincheva create a parametric sensitivity analyzing the
cyclic solution of DDE [17]. Rihan uses the adjoint equation and direct method for
sensitivity analysis for the dynamic system with delay when the value of parameters
change with time [18]. Even so, one of the most important aspects in nature known
as allelopathy, where a single plant species can create a pollutant in the atmosphere
affecting a plant species, received relatively little interest in its research.

2 Mathematical Model

2.1 Motivation of Work

The standard two-species Lotka-Volterra competitive system is led by a set of
nonlinear equations.
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dP1
dt

= P1(a1 − a2P1 − β1P2)

dP2
dt

= P2(b1 − b2P2 − β2P1)

Let P1 and P2 be the competing plant populations. Assume that not only one plant
species is in competition with each other and every plant species releases allelopathic
substance to the other, whenever the other is present. The excretion of allelochemicals
is not sudden, so some discrete time delay is needed for grown plants to develop. A
time delay is induced in the excretion of allelochemicals by the 1st plant population.
The model is given as:

dP1
dt

= a1P1 − a2P
2
1 − β1P1P2 + γ1P

2
1 P2 (1)

dP2
dt

= b1P2 − b2P
2
2 − β2P1(t − τ)P2 + γ2P1(t − τ)P2

2 (2)

where P1(0) > 0, P2(0) > 0∀t&P1(t − τ) = constantfortε[0, τ]
The parameters considered in the model are: a1, b1 are the rates of cell prolifer-

ation per hour, a2, b2 are the roots of intraspecific competition of 1st and 2nd plant
population resp., β1, β2 are the roots of interspecific competition of 1st and 2nd plant
population resp., γ1, γ2 are the allelochemical release of 1st and 2nd plant population
niche respectively. The units of a2, b2, β1, β2, andγ1, γ2 are per hour per cell and
unit of time is hours.

Equilibrium Point:

Various equilibrium points for the model (1)–(2) are E00,Ea0,E0a,E∗ existing with
no restrictions on the variables that make the systems

E00 : (0, 0)(zeroequilibriumpoint, unstable)

Ea0 :
(
a1
b1

, 0

)
(axialequilibrumpoint, unstable)

E0a :
(
0,

b1
b2

)
(axialequilibrumpoint, unstable)

E∗ : (
P∗
1,P

∗
2

)
(Non − zeroequilibriumpoint,Stable)

Further, we study and calculate the non-zero equilibrium point E∗(P∗
1,P

∗
2

)
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dP∗
1

dt
= 0 ⇒ a1P

∗
1 − a2P

∗2
1 − β1P

∗
1 P

∗
2 + γ1P

∗2
1 P∗

2 = 0

P∗
1 (a1 − a2P

∗
1 − β1P

∗
2 + γ1P

∗
1 P

∗
2 ) = 0

P∗
1 �= 0andP∗

1 = a1 − β1P∗
2

a2 − γ1P∗
2

(3)

P∗
1 is positive when a2 − γ1P∗

2 �= 0anda1 > β1P∗
2

And similarly, we can calculate P∗
2

P∗
2 = b1 − β2P∗

1

b2 − γ2P∗
1

P∗
2 is positive when b2 − γ1P∗

1 �= 0andb1 > β1P∗
1

P∗
1 , P∗

2 being the real time concentration of plant population, minimum they can
be zero but never be negative. This gives the idea of taking P∗

1 , P∗
2 always positive.

Put the value of P∗
2 in Eq. (3), we get the quadratic equation in the form of P∗

1

(γ1β2 − a2γ2)P
∗2
1 + (

a2b2 − γ1b1 + a1γ2 − β1β2
)
P∗
1 + (a1b2 − b1β1) = 0

P∗
1 = −(a2b2 − γ1b1 + a1γ2 − β1β2) ±

√
(a2b2 − γ1b1 + a1γ2 − β1β2)

2 − 4(γ1β2 − a2γ2)(a1b2 − b1β1)

2(γ1β2 − a2γ2)

Stability & Hopf-Bifurcation of E∗ (P∗
1,P

∗
2):

The dynamic behavior for equilibrium points E∗ (P∗
1 , P∗

2 ) of the system given
by Eqs. (1)–(2) is analyzed. The E∗ (P∗

1 , P∗
2 ) equilibrium empirical characteristics

equation is expressed as shown:

dP∗
1

dt
= a1P

∗
1 − a2P

∗2
1 − β1P

∗
1 P

∗
2 + γ1P

∗2
1 P∗

2 (4)

dP∗
2

dt
= b1P

∗
2 − b2P

∗2
2 − β2P

∗
1 (t − τ)P∗

2 + γ2P
∗
1 (t − τ)P∗2

2 (5)

With the aid of a system of Eqs. (4)–(5), the characteristics equation is given by:

λ2 + xλ + y + ze−λτ = 0 (6)

where x = 2b2P∗
2 − a1 − b1 + 2a2P∗

1 + β1P∗
2 − 2γ1P∗

1 P
∗
2

Putting all the parametric values in the above, we get

x = 2 × 0.08 × 26.2837 − 1 − 2 + 2 × 2 × 17.6500 + 0.05 × 26.2837

− 2 × 0.0008 × 17.6500 × 26.2837 = 72.4

Which shows that x = 72.4 > 0
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y = a1b1 − 2a1b1P
∗
2 − 2a2b2P

∗
1 + 4a2b2P

∗
1 P

∗
2 − β1b1P

∗
2

− 2β1b2P
∗2
2 − 4γ1b2P

∗
1 P

∗2
2 + 2β1γ1P

∗
2 P

∗
1

Putting all the parametric values in the above, we get

y = 2 × 1 − 2 × 2 × 0.08 × 26.2837 − 2 × 0.07

× 1 × 17.6500 + 4 × 0.07 × 1 × 26.2837 × 17.6500 − 0.05 × 26.2837 × 1 − 2

× 0.08 × 0.05 × 26.2837 × 26.2837 − 4 × 0.08 × 0.0008

× 17.6500 × 26.2837 × 26.2837 + 2 × 0.0008 × 0.05

× 17.6500 × 26.2837 = 111.14

Which shows that y = 111.14 > 0

z = P∗
1 P

∗
2 (β2γ1P

∗
1 + β1γ2 − β1β2 − γ1γ2P

∗
1 P

∗
2 )

Putting all the parametric values in the above, we get

z = 17.6500 × 26.2837(0.015 × 0.0008 × 17.6500 + 0.05 × 0.003 − 0.05

× 0.015 − 0.0008 × 0.003 × 17.6500 × 26.2837 = −0.7

And when add the value of .y + z = 110.44 > 0
When we put τ = 0 in Eq. (6), we get

λ2 + xλ + y + z = 0 (7)

With the help of Routh-Hurwitz criteria, root of Eq. (7) will be a negative real
part if:

(X1) : x > 0, (X2) : (y + z) > 0, Which is true from the above calculated value.
Now we’ll look at how the negative real elements of the roots shift towards the

positive real elements when the value of τ varies.
Let λ = iω be the root of equ of (6), then Eq. (6) becomes:

(iω)2 + x(iω) + y + ze−(iω)τ = 0

⇒ −ω2 + x(iω) + y + z(cosωτ − isinωτ) = 0

Separating real and imaginary parts we get:

ω2 − y = zcosωτ (8)

xω = zsinωτ (9)
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Squaring and adding (8) and (9), we get

ω4 + (
x2 − 2y

)
ω2 + (

x2 − z2
) = 0 (10)

Equation (10) has two roots:

ω2
1,2 =

(
2y − x2

) ±
√(

x2 − 2y
)2 − 4

(
x2 − z2

)
2

(11)

Putting the all-parametric value in Eq. (11), we get .ω2
1,2 = −5019.5±5017.4

2
None of the two roots ω2

1,2 is positive if:

(X3) : (
2y − x2

)
< 0and

(
x2 − z2

)
> 0or

(
x2 − 2y

)
< 4(x2 − z2)

(X3) : (
2 × 111.14 − (72.4)2

)
< 0 and

(
(72.4)2 − (−0.7)2

)
> 0 or

(
(72.4)2 − 2 × 111.14

)
< 4

(
(72.4)2 − (−0.7)2

)

(X3) : −5019.5 < 0and5241.3 > 0or5019.48 < 4(5241.27)

(X3) : −5019.5 < 0and5241.3 > 0or5019.48 < 20965.08

So, Eq. (11) doesn’t have + ve root if condition (X3) holds.
We have the following the lemma [13]

Lemma 1 If (X1) − (X2) hold, then all the roots of Eq. (6) have −ve real part
∀τ ≥ 0.

On the other hand, if

(X4) : (
x2 − z2

)
< 0or

(
2y − x2

)

> 0and(x2 − 2y)
2 = 4

(
x2 − z2

)

Then, the positive root of Eq. (8) is ω2
1. On the other hand, if

(X5) : (
x2 − z2

)
> 0or

(
2y − x2

)
> 0and(x2 − 2y)

2
> 4

(
x2 − z2

)

Then, Eq. (8) has two +ve roots which are ω2
1,2.

In both (X4)and(X5),Eq. (6) has a purely hypothetical rootwhen τ takes different
values. The threshold value τ±

j ofτ can be evaluated from (8)–(9), given by
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τ±
l = 1

ω1,2
cos−1

(
ω2
1,2 − b1

)
z

+ 2lπ

ω1,2
, l = 0, 1, 2, . . . (12)

The above knowledge can be described in the lemma [13].

Lemma 2 (i) If (X1) − (X2)and(X4) hold and τ = τ+
l , then Eq. (6) has a pair of

imaginary roots ±iω1.

(ii) If (X1) − (X2)and(X5) hold and τ = τ−
l (τ = τ+

l resp.), then Eq. (6) has a
pair of imaginary roots ±iω2(±iω1) respe.

Our hypothesis is that the negative real component of some equation roots will
move to the positive real component when τ > τ+

l & τ < τ+
l . Let us have a look at

this possibility:

τ±
l = μ±

l (τ ) + iω±
l (τ ); l = 0, 1, 2, 3 . . . .

The roots of Eq. (6) fulfil. μ±
l

(
τ±
l

) = 0, ω±
l

(
τ±
l

) = ω1,2

The preceding initial boundary criterion can be checked.

d

dτ

(
Reλ+

l

(
τ+
l

))
> 0and

d

dτ

(
Reλ−

l

(
τ−
l

))
< 0

It deduces that τ+
l are the bifurcating values. The distribution of the equation’s

(6) zeros is determined by the next hypothesis [Raun S.].

Theorem 1 Let τ+
l (l = 0, 1, 2, 3 . . . ) be defined by Eq. (12).

(1) If (X1), (X2) hold, then all of root (6) have a negative real part ∀τ ≥ 0.
(2) If (X1), (X2)and(X4) hold and when τε

[
0, τ+

0

)
, then all of root (6) have a

-ve element. When τ = τ+
0 , then (6) has a pair of hypothetical roots ±iθ1. When

τ > τ+
0 , (6) has at least one +ve real part root.

(3) If (X1), (X2)and(X5) hold, then the positive integer n such that 0 < τ+
0 <

τ−
0 < τ+

1 < τ+
1 . . . . . . . . . < τ−

n−1 < τ+
n and there are n switches from stability to

instability. Which show when τε
[
0, τ+

0

)
,
(
τ−
0 , τ+

1

)
. . . . . . ...(τ+

n−1, τ
+
n ) all the roots

of Eq. (6) have −ve actual parts, & τε
[
0, τ+

0

)
,
(
τ−
0 , τ+

1

)
. . . . . . ...(τ+

n−1, τ
−
n−1) and

τ > τ+
n , Eq. (6) has a minimum single root with actual parts.

3 Sensitivity Analysis

The ‘Direct Method’ is used to estimate that how the different sources of uncer-
tainty contribute in the model to overall uncertainty in the model. Assuming all the
parameters a2, b2, β1, β2, γ1, γ2 in the formulated system (1)–(2) to be constant,
further the solution’s partial derivatives with regard to each parameter. For example,
we assume β1, then partial derivatives of the solution (P1, P2) w.r.t. β1 give the
sensitivity equation:



612 Dipesh and P. Kumar

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Time t

Fig. 1 Time series graph between partial change in allelochemicals P1 for different value of
coefficient β1

dS1
dt

= (a1 − 2a2)S1 − P1S2(β1 − γ1P1) − P2S1(β1 − 2γ1) (13)

dS2
dt

= (b1 − 2b2 − β2P1(t − τ))S2 − 2γ2P1(t − τ)S2

− [β2P2S1(t − τ) + P2P1(t − τ)](1 + P2) (14)

whereS1 = ∂P1
∂β1

, S2 = ∂P2
∂β1

,

Further, we studied (13)–(14) with the original system (1)–(2) to solve the variable
(P1,, P2) w.r.t β1.

Sensitivity of Variable to Parameter β1.
In Fig. 1., the sensitivity analyses of P1 and P2 variables w.r.t to β1, putting all

parameters, are constant. When we change the value of β1 = 0.05toβ1 = 0.09, the
system becomes stable and remains stable.

Sensitivity of Variable to Parameter β2

In Fig. 2., the sensitivity analysis of P1 and P2 variables w.r.t to β2, putting all
parameters are constant. When we change the value of β2 = 0.017toβ2 = 0.021,
system become stable and remains stable.

4 Stability and Direction of Hopf-Bifurcating Solution

The result is a set of continued functions that bifurcate just at the threshold value of
the positive stable state. We examine the stability and periods of bifurcation at the
complex level, with the help of standard principals and different reduction given by
Hassard, Kazarion and Wan 1981.
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Fig. 2 Time series graph between partial change in allelochemicals P2 for different values of
coefficient β2

Letu1 = P1 − P∗
1 , u2 = P2 − P∗

2 , and normalizing the delay τ by time ascent,
t → t

τ
, altering into

du1
dt

= a1u1 + a1P
∗
1 − a1u

2
1 − a2P

∗2
1 − 2a2u1P

∗
1 − β1u1P

∗
2 − β1u2P

∗
1

− β1u1u2 + γ1P
∗
2 u

2
1 + γ1P

∗2
1 u2 + γ1u1u2

du2
dt

= b1u2 + b1P
∗
2 − b2u

2
2 − b2P

∗2
2 − 2b2u2P

∗
2 − β2u1(t − 1)P∗

2

− β2u1(t − 1)u2 + γ2P
∗
2 u1(t − 1) − γ2u1(t − 1)u2 (15)

In this section, we can covenantC = C
(
(−1, 0), R2+

)
.WLOG, denote the critical

value τ j byτ0. Let τ = τ0 + μ, thenμ = 0 is the value of Hopf-bifurcation of the
Eqs. (15–17). For the ease of sign, (15) then becomes

u′(t) = Lμ(ut ) + F(μ, ut ) (16)

where u(t) = (u1(t), u2(t), )
T ∈ R2, ut (θ) ∈ C is defined by ut (θ) = ut (t + θ),

and
Lμ : C → R, F : R × C → R are given, respectively, by

Lμ∅ = (τ0 + μ)

[
a1 − 2a2P∗

1 − β1P∗
2 −β1P∗

1 + γ1P∗2
1

0 b1

][
φ1(0)
φ2(0)

]

+ (τ0 + μ)

[
0 0

−β2P∗
2 + γ2P∗

2 0

][
φ1(−1)
φ2(−1)

]
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And .F(μ, ∅) = (τ0 + μ)

[
F1

F2

]

where F1 = b1φ1(0)φ2(0), F2 = (γ 2 − β2)φ1(0)φ2(0)
And ∅(θ) = (∅1(θ), ∅2(θ))T ∈ C((−1, 0), R).

According to the Riesz representation theorem, ∃ a function η(θ, μ) of bounded
variation for θ ∈ [−1, 0], s.t.

Lμ∅ = ∫ 0
−1dη(θ, 0)∅(θ) for ∅ ∈ C.

(θ, μ) = (τ0 + μ)

[
a1 − 2a2P∗

1 − β1P∗
2 −β1P∗

1 + γ1P∗2
1

0 b1

]
δ(θ)

+ (τ0 + μ)

[
0 0

−β2P∗
2 + γ2P∗

2 0

]
δ(θ + 1)

Here, δ is the Direct delta function, for φεC
(
[−1, 0], R2+

)
, define as A(μ)∅ ={

d∅(θ)

dθ
, θ ∈ [−1, 0)∫ 0

−1dη(θ, 0)∅(θ), θ = 0.
and R(μ)∅ =

{
0, θ ∈ [−1, 0)

F(μ, ∅) θ = 0.
&Eq. (16)

is identical to

u
′
(t) = A(μ)∅ + R(μ)utFor (17)

ψ ∈ C1
(
[−1, 0], R+2

)
, define

A∗ψ(s) =
⎧⎨
⎩

− dψ(s)
ds , s ∈ [−1, 0)

0∫
−1

dηT (−t, 0)ψ(−t), s = 0.
& bi − linear inner product

〈ψ(s),∅(θ)〉 = ψ(0)∅(0) − 0∫
−1

θ∫
ξ=θ

ψ(ξ − θ)dη(θ)φ(ξ)dξ (18)

A∗ andA = A(0) are computative operative & iω0 are eigen values ofA(0).As a
result, they are coefficients ofA∗. Admit that q(θ) = q(0)eiω0θ is an eigen vector of
A(0) analogous to the eigen state iω0. ThenA(0) = iω0q(θ). At θ = 0, we obtain.[

iω0 I − ∫ 0
−1dη(θ)eiω0θ

]
q(0) = 0, which option q(0) = (1, σ1, )

T

where σ1 = a1−2a2P∗
1 −β1P∗

2 +iω0

−β1P∗
1 +γ1P∗2

1

Similarly, we can verify that q∗(s) = D(1, σ2)eiω0τ0s is the eigen value of A∗
corresponding to −iω0,

where σ2 = a1−2a2P∗
1 −β1P∗

2 −iω0

−β1P∗
1 +γ1P∗2

1

In deeds < q∗(s), q(θ) >= 1, we examined the value of D.
Using Eq. (7), < q∗(s), q(θ) >
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= D(1, σ2)(1, σ1)
T −

∫ 0

−1

∫ θ

ξ=θ

D(1, σ2)e
−iω0τ0(ξ−θ)dη(θ)(1, σ1)

T eiω0τ0dξ

= D

{
1 + σ1σ2 −

∫ 0

−1
(1, σ2)θe

iω0τ0θ (1, σ1)
T

}
D

{
1 + σ1σ2 + τ0σ2P

∗
2 (γ2 − β2)e

iω0τ0
}

Hence

D = 1(
1 + σ1σ2 + ρ1ρ2 + τ0σ2P∗

2 (γ2 − β2)eiω0τ0
)

Such that < q∗(s), q(θ) >= 1,< q∗(s), q(θ) >= 0.
The method is proved by Hassard, B.D., Kazarinoff, N.D., Wan, Y.H and is used

to compute the parameters, C0 at μ = 0. Let ut be the return of Eq. (11) with μ = 0.
Describe

z(t) = 〈
q∗(s), ut (θ)

〉
,W (t, θ) = ut (θ) − 2Re(z(t)q(θ)) (19)

On the Centre manifold C0, W (t, θ) = W
(
z(t), z(t), θ

)
where W (z, z, θ) = W20(θ) z

2

2 + W11(θ)zz + W02(θ) z
2

2 + . . . ,

z and z are concordants for C0 in the direction of q∗ and q∗.And W is +ve if ut
is +ve and + ve results are taken. For solution ut ∈ C0 of Eq. (11), since μ = 0,

z
′
(t) = iω0τ0z+ < q∗(θ), F(0,W (z, z, θ) + 2Re(z(t)q(θ))) >

= iω0τ0z + q∗(0)F(0,W (z, z, 0) + 2Re(z(t)q(θ)))

≡ iω0τ0z + q∗(0)F0(z, z̄)

We rewrite this equation as

z′(t) = iω0τ0z(t) + g(z, z) (20)

where g(z, z) = q∗(0)F0(z, z)

g(z, z) = g20(θ)
z2

2
+ g11(θ)zz + g02(θ)

z2

2
+ g21(θ)

z2z

2
+ . . . (21)

Noticing.
As ut (θ) = (u1t , u2t ) = W (t, θ)+ zq(θ)+ zq(θ) and q(0) = (1, σ1)

T eiω0τ0θ , we
have.

u1t (0) = z + z + W20
(1)(0) z

2

2 + W11
(1)(0)zz + W02

(1)(0) z
2

2 + . . . ,

u2t (0) = σ1z + σ1z + W20
(2)(0) z

2

2 + W11
(2)(0)zz + W02

(2)(0) z
2

2 + . . . ,
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u1t (−1) = ze−iω0τ0 + zeiω0τ0 +W20
(1)(−1) z

2

2 +W11
(1)(−1)zz +W02

(1)(−1) z
2

2 +
. . . ,

u2t (−1) = σ1e−iω0τ0 z + σ1eiω0τ0 z + W20
(2)(−1) z

2

2 + W11
(2)(−1)zz +

W02
(2)(−1) z

2

2 + . . . ,
Explanatory variables are compared using an equation.

g20 = D(1, σ1) fz2 , g02 = D(1, σ1) fZ2

g11 = D(1, σ1) fZ Z , g21 = D(1, σ1) fz2Z

For calculating g21, The calculation of must be prioritized of W20(θ) and W11(θ).
From Eqs. (17) and (19):

W ′ = u
′
t − z′q − z

′
q =

{ AW − 2Re
[
q∗(0)F0q(θ)

]
, θ ∈ [−1, 0)

AW − 2Re
[
q∗(0)F0q(0)

] + F0, θ = 0

Let

W ′ = AW + H(z, z, θ) (22)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ H21(θ)

z2z

2
+ . . . (23)

But at the other side, on C0 close to the origin .W
′ = Wzz

′ + Wzz
′

We obtain by multiplying the above series by the variables.

[A − 2iω0 I ]W20(θ) = −H20(θ),AW11(θ) = −H11(θ) (24)

By (16), θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)F0q(θ) − q∗(0)F0q(θ) = −gq(θ) − gq(θ)

Comparing the coefficient with (19) we get for θ ∈ [−1, 0), that.
H20(θ) = −g20q(θ) − g02 q(θ), H11(θ) = −g11q(θ) − g11 q(θ).
From (22), (24) and definition of A we obtain

W20(θ) = 2iω0τ0W20(θ) + g20q(θ) + g02q(θ)

Solving for W20(θ):

W20(θ) = ig20
ω0τ0

q(0)eiω0τ0θ + i g02
3ω0τ0

q(0)e−iω0τ0θ + E1e
2iω0τ0θ ,
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And similarly

W11(θ) = −ig11
ω0τ0

q(0)eiω0τ0θ + i g11
ω0τ0

q(0)e−iω0τ0θ + E2

where E1 and E2 are the 3dim. vectors and examine by putting the θ = 0 in H.

H(z, z, θ) = −2Re
[
q∗(0)F0q(0)

] + F0, we have H20(θ) = −g20q(θ) − g02
q(θ) + Fz2 ,

H11(θ) = −g11q(θ) − g11 q(θ) + Fzz , Where F0 = Fz2
z2

2 + Fzzzz + Fz2
z2

2 + . . .

and adjust the defamation of A,
0∫

−1
dη(θ)W20(θ) = 2iω0τ0W20(0) + g20q(0) + g02 q(0) − Fz2 and.∫ 0

−1dη(θ)W11(θ) = g11q(0) − g11 q(0) − Fzz Notice that.[
iω0τ0 I − ∫ 0

−1e
iω0τ0θdη(θ)

]
q(0) = 0 and

[
−iω0τ0 I −

∫ 0

−1
e−iω0τ0θdη(θ)

]
q(0) = 0 ⇒

[
2iω0τ0 I − ∫ 0

−1e
2iω0τ0θdη(θ)

]
E1 = Fz2 and −

[∫ 0
−1dη(θ)

]
E2 = Fzz

Hence

[
2iω0 + a1 − 2a2P∗

1 − β1P∗
2 −β1P∗

1 + γ1P∗2
1

(−β2P∗
2 + γ2P∗2

2 )e−2iω0τ0θ b1 + 2iω0

]
E1 = −2

[
0

−P∗
2 (γ2 − β2)e−iω0τ0θ

]

[
a1 − 2a2P∗

1 − β1P∗
2 −β1P∗

1 + γ1P∗2
1

−β2P∗
2 + γ2P∗2

2 b1

]
E1 = −2

[
0

−P∗
2 (γ2 − β2)σ1e−iω0τ0θ

]

And g21 can be shows by the parameters.
On the basis of the above calculations, every gii can be calculated with the help

of parameters. And these quantities can be calculated:

C1(0) = i

2ω0τ0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2
andμ2 = − Re{C1(0)}

Re{λ′(τ0)} ,
β2 = Re{C1(0)}

T2 = − Im{C1(0)} + μ2 Im
{
λ′(τ0)

}
ω0τ0

(25)
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Theorem 2 The direction of Hopf-bifurcation is calculated by the value of μ2:
if μ2 > 0(μ2 < 0), then the hopf-bifurcation is saturated and there is a regular
bifurcation that endures for τ > τ0(τ < τ0).With the help of β2, we can calculate the
stability of the bifurcating solutions: the bifurcation cyclic solutions are asymptotic
if β2 > 0(β2 < 0). The T2 calculates the cycle of bifurcating cyclic solutions, as to
whether the cyclic increase or decease T2 > 0(T2 < 0).

5 Numerical Example

The computation is carried out using MATLAB to coordinate the analytic result
using a quantitative method. The system’s behaviour is illustrated for the following
value sets:

a1 = 2, a2 = 0.07, b1 = 1, b2 = 0.08, β1 = 0.05, β2 = 0.015,

γ1 = 0.0008, γ2 = 0.003,

ectional analysis of the Hopf-bifurcating has been accomplished.
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Fig. 3 The Equilibrium point E∗(P1, P2) is stable in the absence of delay i.e., τ = 0
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Fig. 4 At τ < 6.9999, the equilibrium point E∗(P1,P2) shows asymptotically stable
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Fig. 5 The equilibrium point E∗(P1, P2) loses its asymptotical stability and Hopf-Bifurcation
occurs at τ ≥ 6.9999

6 Conclusion

In this paper, a mathematical model is proposed to analyze the impact of allelochem-
icals on plant population development using delay differential equation. Stability
and hopf-bifurcation determined about non-zero equilibriums point using Routh-
Hurwitz’s criteria. In the absence of delay none of the population affect adversely
each other and grow at their normal rate, and the equilibrium point is stable as shown
in Fig. 3. The system loses its stability when the value of delay decreases from
the threshold value and goes for asymptotical stability, actually meaning if there is
a delay involved in the allelochemicals realizes that still the system grows at the
natural rate after few fluctuations in the beginning under the asymptotical stability
as shown in Fig. 4. It loses its asymptoticality when the value of delay exceeds than
the threshold value, where both the populations remain under the effect of allelo-
chemicals forever. A repetition of limit cycles will always occur after a particular
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time period showing that the hopf-bifurcation is often shown in Fig. 5. In this article,
the sensitivity of system variables w.r.t model parameters β1andβ2 is done using
the “Direct approach”. It demonstrates how the sensitivity functions allows one to
recognize particular parameters and enhance the view of the importance of the delay
played by different parameters of the model as shown Figs. 1 and 2. When we vary
the value of β1andβ2 parameters in the system it shows hopf-bifurcation and asymp-
totical stability and then it shows stability of the model as shown in Figs. 1 and 2.
As a result, the specific producer that explains the stability and dir
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Pore Scale Analysis and Homogenization
of a Diffusion-Reaction-Dissolution-
Precipitation Model

Nibedita Ghosh and Hari Shankar Mahato

Abstract A pore scale model is explored where two types of mobile species having
different non-constant diffusion coefficients react and then precipitate as crystals
on the solid boundary. The reaction is reversible so dissolution also happens and it
involves a discontinuous multivalued rate term. We start with establishing the exis-
tence of a unique positive global weak solution. After that, we derive the upscaled
equations by applying periodic homogenization techniques relying on two-scale con-
vergence and boundary unfolding operators.

Keywords Diffusion-reaction-dissolution-precipitation · Reactive transport ·
Porous media · Global weak solution · Periodic homogenization

1 Introduction

Transport through porous media is encountered in several engineering and biologi-
cal applications such as oil production, soil erosion, groundwater pollution, polymer
processing, filtration, tissue engineering and discussion of the dynamics of blood
flow. A porous media is heterogeneous having porosity θ � 1. It contains two parts:
one is the pore space and another one is the solid parts. The heterogeneities inside
the medium are smaller with respect to the size of the medium. Therefore to ana-
lyze what is happening within the domain we need to investigate the microscale
description of the domain although it’s not suited for numerical experiments due to
the heterogeneity. Therefore we need to upscale the model to the macroscale from
the microscale to study global behavior. Here we make an assumption that the solid
parts are not connected and distributed in a periodic way in the given medium. How-
ever, in a natural porous medium, solid parts are connected whereas this periodicity
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assumption appears to be a good approximation to the main domain. The pore space
contains the mobile species and the immobile species are present on the grain bound-
ary. The process of transportation of the mobile species is modeled by Fick’s law and
governed by diffusion, dispersion or advection. We assume that there is a “constant
activity” on the surface of the solids. We model the surface reaction phenomena with
the help of nonlinear Langmuir Kinetics and the dissolution process is described by
a monotone discontinuous multivalued rate term. We study the system for the case
of constant different diffusion coefficients in [7]. The main challenge in the analysis
here is to deal with the space and time-dependent different diffusion coefficients,
multivalued dissolution rate term and nonlinear surface reaction rate term.

We consider a bounded porous medium Ω ⊂ R
n(n ≥ 2), which consists a

pore space Ω p and the union of solid parts Ωs in a way that Ω := Ω p ∪ Ωs

where Ω̄s ∩ Ω p = φ. The exterior boundary of the domain is denoted by ∂Ω

and Γ ∗ represents the union of solid boundaries. We choose the representative
cell as Y := (0, 1)n ⊂ R

n such that Y = Y s ∪ Y p, where Y p is the pore part and
Y s is the solid part with boundary Γ so Ȳ s ∩ Ȳ p = Γ . For each multi-index
l ∈ Z

n , let be the shifted sets are Yl := Y + l, Y μ
l := Y μ + l for μ ∈ {p, s} and

Γl := Γ + l. Moreover, we make an assumption that Ω is ε-periodic where ε is
a positive small scaling parameter. That means the solid matrices in Ω are dis-
tributed periodically and the finite union of the representative cells Y can be the
cover of the domain Ω . The geometry stated above satisfies the assumptions that:
solid matrices never touch one another, solid matrices never touch the domain
outer boundary ∂Ω and solid matrices never touch the boundary of Y . Since Ω

is the finite union of translated version of εYl cells such that εYl ⊂ Ω where
l ∈ Z

n , that is Ω ⊂ ∪
l∈Zn

εYl , Ω p ⊂ ∪
l∈Zn

εY p
l , Ωs ⊂ ∪

l∈Zn
εY s

l and Γ ∗ ⊂ ∪
l∈Zn

εΓl . We

also defineΩ p
ε := ∪l∈Zn

{
εY p

l : εY p
l ⊂ Ω

}
,Ωs

ε := ∪l∈Zn

{
εY s

l : εY s
l ⊂ Ω

}
, Γ ∗

ε :=
∪l∈Zn {εΓl : εΓl ⊂ Ω} , ∂Ω p

ε := ∂Ω ∪ Γ ∗
ε , cf. Fig. 1. Let S := [0, T ) be the time

interval for T > 0. We also denote the volume elements in Y and Ω as dy, dx and

Fig. 1 Crystal dissolution
and precipitation on Γ ∗ and
mobile species in Ω p
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the surface elements as dσy and dσx on Γ and Γ ∗
ε . The characteristic function of

Ω p
ε in Ω is defined by,

χε(x) = χ(
x

ε
) =

{
1 when x ∈ Ω p

ε ,

0 otherwise.

1.1 The Model

We consider two types of mobile species denoted by I1 and I2 are present inΩ p
ε and

the immobile species I12 is present on Γ ∗
ε . Now let I1, I2 and I12 are connected via

following reaction:
I1 + I2 ↔ I12 on Γ ∗

ε . (1)

In our situation, there is no reaction happening among the mobile species but at the
outer boundary, we impose flux boundary conditions for the two mobile species. As
by (1), the dissolution process supplied I1 and I2 to Γ ∗

ε , therefore, the Neumann
boundary condition for I1 and I2 on Γ ∗

ε will be the same as the rate of change of
concentration of the mineral I12 on Γ ∗

ε . According to the relation (1), one molecule
of each I1 and I2 will provide one molecule of the crystal I12. We model the surface
reaction phenomena with the help of Langmuir kinetics. On other hand, I12 will
dissolve to produce I1 and I2. The dissolution process ismodeled by the idea adopted
from [9, 15]. Concerning dissolution at the surface of the solids, if the mineral is
present then the dissolution rate is constant. For the situation when the mineral is
absent, the dissolution rate can not be stronger than precipitation to mention the
positivity of the surface concentration. This gives rise to a multivalued dissolution
rate term rd(wε) ∈ kdψ(wε), such that

ψ(d) =

⎧
⎪⎨

⎪⎩

{0} when d < 0,

[0, 1] when d = 0,

{1} when d > 0.

(2)

Let uε, vε and wε be the concentrations of the species I1, I2 and I12, respectively.
Therefore, the mass-balance equations for I1, I2 and I12 are

∂uε

∂t
+ ∇.(−D̄ε

1∇uε) = 0 in S × Ω p
ε , (3a)

−D̄ε
1∇uε.�n = d1(t, x) on S × ∂Ω, (3b)

−D̄ε
1∇uε.�n = ε

∂wε

∂t
on S × Γ ∗

ε , (3c)

uε(0, x) = u0(x) in Ω, (3d)
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∂vε

∂t
+ ∇.(−D̄ε

2∇vε) = 0 in S × Ω p
ε , (4a)

−D̄ε
2∇vε.�n = d2(t, x) on S × ∂Ω, (4b)

−D̄ε
2∇vε.�n = ε

∂wε

∂t
on S × Γ ∗

ε , (4c)

vε(0, x) = v0(x) in Ω, (4d)

∂wε

∂t
= kd(r1(uε, vε) − zε) on S × Γ ∗

ε , (5a)

zε ∈ ψ(wε) on S × Γ ∗
ε , (5b)

wε(0, x) = w0(x) in Ω, (5c)

where r1 : R2 → [0,∞) is given by

r1(uε, vε) =
⎧
⎨

⎩
k

k1uεk2vε

(1 + k1uε + k2vε)2
if (uε, vε) ∈ [0,∞)2,

0 otherwise

and k = k f

kd
. k1 and k2 are the Langmuir constants for I1 and I2. The dissolution rate

rd = kdψ(wε), where kd is the dissolution rate constant. Let k f denote the forward
reaction rate constant. We represent the system (3a)–(5c) by (Sε).

1.1.1 Function Space Setup

Following the usual definitions of Lebesgue spaces (L p-spaces), Sobolev spaces
(H k,p-spaces) and Bochner spaces of time-space variables from [3, 14], we choose
our solution space as Uε := {uε ∈ L2(S; H 1,2(Ω p

ε )) : ∂uε

∂t ∈ L2(S; H 1,2(Ω p
ε )∗)} :=

H 1,2(S; H 1,2(Ω p
ε )∗) ∩ L2(S; H 1,2(Ω p

ε )), Vε := {vε ∈ L2(S; H 1,2(Ω p
ε )) : ∂vε

∂t ∈ L2

(S; H 1,2(Ω p
ε )∗)} := H 1,2(S; H 1,2(Ω p

ε )∗) ∩ L2(S; H 1,2(Ω p
ε )), Wε := {wε ∈ L2(S;

L2(Γ ∗
ε )) : ∂wε

∂t ∈ L2(S; L2(Γ ∗
ε ))} := H 1,2(S; H 1,2(Γ ∗

ε )), Zε := {zε ∈ L∞(S × Γ ∗
ε )

: 0 ≤ zε ≤ 1}, Xp(Ξ) := (H 1,q(Ω p
ε )∗, H 1,p(Ω p

ε ))1− 1
p ,p. The spaces L2(S × Ω p

ε ),

L2(S × Γ ∗
ε ) and H 1,2(Ω p

ε ) equipped with the norms ‖ζ‖2
(Ω

p
ε )T := ∫ T

0

∫
Ω

p
ε
|ζ|2dxdt,

‖ζ‖2
(Γ ∗

ε )T := ε
∫ T
0

∫
Γ ∗

ε
|ζ|2dσx dt and ‖ζ‖H 1,2(Ω

p
ε ) := ‖ζ‖Ω

p
ε

+ ‖∇ζ‖Ω
p
ε
, respectively.

Weak Formulation. A quadruple (uε, vε, wε, zε) ∈ Uε × Vε × Wε × Zε is called
weak solution of (3a)–(5c) if (uε(0), vε(0), wε(0)) = (u0, v0, w0) ∈ L2(Ω) ×
L2(Ω) × L2(Γ ∗) as well as
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〈∂uε

∂t
,φ〉

(Ω
p
ε )t + 〈D̄ε

1∇uε, ∇φ〉
(Ω

p
ε )t = −〈∂wε

∂t
, φ〉(Γ ∗

ε )t − 〈d1, φ〉(∂Ω)t , (6a)

〈∂vε

∂t
, θ〉

(Ω
p
ε )t + 〈D̄ε

2∇vε, ∇θ〉
(Ω

p
ε )t = −〈∂wε

∂t
, θ〉(Γ ∗

ε )t − 〈d2, θ〉(∂Ω)t , (6b)

〈∂wε

∂t
, η〉(Γ ∗

ε )t = kd 〈r1(uε, vε) − zε, η〉(Γ ∗
ε )t , zε ∈ ψ(wε) almost everywhere on (Γ ∗

ε )t ,

(6c)

for all (φ, θ, η) ∈ L2(S; H 1,2(Ω p
ε )) × L2(S; H 1,2(Ω p

ε )) × L2(S; L2(Γ ∗
ε )).Weneed

to make few assumptions to do the analysis of the model:
(A1.) u0, v0, w0 ≥ 0. (A2.) r1(uε, vε) = 0 for all uε ≤ 0, vε ≤ 0. (A3.) d1,

d2 ∈ L2(S × ∂Ω) and d1, d2 ≤ 0. (A4.) u0, v0 ∈ H 1,2(Ω) and w0 ∈
L∞(Ω). (A5.) r1 : R2 → [0,∞) is Locally Lipschitz inR2 with Lipschitz constant
L R > 0. (A6.) D̄ε

i = diag(Di (t,
x
ε
), Di (t,

x
ε
), . . . , Di (t,

x
ε
)) ∈ (L∞(S × Y ))n×n ,

i ∈ {1, 2} such that (Di (t, y)ζ, ζ) ≥ α|ζ|2 for every ζ ∈ R
n and for α > 0 is a con-

stant which does not depend on ε and for every (t, y) ∈ S × Y .

Lemma 1 For vεδ, uεδ ∈ H 1,2(Ω p
ε ) there exist extension ṽεδ, ũεδ to Ω such that

(i) ‖ṽεδ‖H 1,2(Ω) ≤ C‖vεδ‖H 1,2(Ω
p
ε ), ‖ũεδ‖H 1,2(Ω) ≤ C‖uεδ‖H 1,2(Ω

p
ε ).

Proof The proof of the above lemma can be found in Lemma 5 of [8].

Theorem 1 Suppose that the assumptions (A1.)–(A6.) are satisfied and (uε, vε, wε)

satisfy the following a-priori bounds

‖uε‖L2(S×Ω
p
ε )

+ ‖∇uε‖L2(S×Ω
p
ε )

+
∥∥∥∥

∂uε

∂t

∥∥∥∥
L2(S;H1,2(Ω

p
ε )∗)

+ ‖vε‖L2(S×Ω
p
ε )

+ ‖∇vε‖L2(S×Ω
p
ε )

+
∥∥∥∥

∂vε

∂t

∥∥∥∥
L2(S;H1,2(Ω

p
ε )∗)

+ ‖wε‖L2(S×Γ ∗
ε ) +

∥∥∥∥
∂wε

∂t

∥∥∥∥
L2(S×Γ ∗

ε )

≤ C, (7)

where C is a constant does not depend on ε and δ. Then there exists a unique positive
global weak solution (uε, vε, wε, zε) ∈ Uε × Vε × Wε × Zε of the system (Sε):

∂uε

∂t
+ ∇.(−D̄ε

1∇uε) = 0 in S × Ω p
ε , (8a)

−D̄ε
1∇uε.�n = d1(t, x) on S × ∂Ω, (8b)

−D̄ε
1∇uε.�n = ε

∂wε

∂t
on S × Γ ∗

ε , (8c)

uε(0, x) = u0(x) in Ω, (8d)

∂vε

∂t
+ ∇.(−D̄ε

2∇vε) = 0 in S × Ω p
ε , (9a)

−D̄ε
2∇vε.�n = d2(t, x) on S × ∂Ω, (9b)

−D̄ε
2∇vε.�n = ε

∂wε

∂t
on S × Γ ∗

ε , (9c)

vε(0, x) = v0(x) in Ω, (9d)



626 N. Ghosh and H. S. Mahato

∂wε

∂t
= kd(r1(uε, vε) − zε) on S × Γ ∗

ε , (10a)

zε ∈ ψ(wε) on S × Γ ∗
ε , (10b)

wε(0, x) = w0(x) in Ω. (10c)

2 Proof of Theorem 1

Lemma 2 (Positivity and L2-estimates) Under the assumptions (A1.)–(A6.) and
for a.e. t ∈ S the following estimates hold

(i) uε(t), vε(t), wε(t) ≥ 0 a.e. in Ω p
ε and on Γ ∗

ε , respectively.
(i i) (a) ‖uε(t)‖2Ω p

ε
≤ MueαT , ‖vε(t)‖2Ω p

ε
≤ MveαT , ‖wε(t)‖2Γ ∗

ε
≤ MweT a.e. in Ω p

ε

and on Γ ∗
ε , respectively.

(b) ‖∇uε‖2(Ω p
ε )t ≤ M̄ueαT , ‖∇vε‖2(Ω p

ε )t ≤ M̄veαT a.e. in Ω p
ε .

(c)
∥∥ ∂uε

∂t

∥∥2

L2(S;H 1,2(Ω
p
ε )∗) ≤ C,

∥∥ ∂vε

∂t

∥∥2

L2(S;H 1,2(Ω
p
ε )∗) ≤ C,

∥∥ ∂wε

∂t

∥∥2

L2(S×Γ ∗
ε )

≤ C a.e.

in Ω p
ε and on Γ ∗

ε , respectively.

Proof (i) We test (6a)–(6c) with (φ, θ, η) = (−[uε]−,−[vε]−,−[wε]−) and using
(A1.) − (A3.) get

‖[uε(t)]−‖2
Ω

p
ε

+ 2α‖∇[uε]−‖2
(Ω

p
ε )t ≤ 2 kd 〈zε, −[uε]−〉(Γ ∗

ε )t
︸ ︷︷ ︸

≤0

−2 〈d1, −[uε]−〉(∂Ω)t
︸ ︷︷ ︸

≥0

≤ 0.

That means, uε(t) is non-negative for almost everywhere t ∈ [0, T ). Likewise, we
get vε(t) is non-negative for almost everywhere t ∈ [0, T ). Now for the immobile
species we see that

‖[wε(t)]−‖2Γ ∗
ε

= ‖[w0]−‖2Γ ∗
ε︸ ︷︷ ︸

=0

+2 kd 〈r1(uε, vε),−[wε]−〉(Γ ∗
ε )t

︸ ︷︷ ︸
≤0

−2 kd 〈zε,−[wε]−〉(Γ ∗
ε )t

︸ ︷︷ ︸
=0

≤ 0.

Since uε and vε are non-negative, we get r1(uε, vε) = k k1k2uεvε

(1+k1uε+k2vε)2
≥ 0 and zε = 0

for wε ≤ 0. Hence, wε(t) is also non-negative for almost everywhere t ∈ [0, T ).
(i i) Let us consider the test function uε in the weak form (6a) and calculate to deduce
the estimate

‖uε(t)‖2Ω p
ε

+ 2α‖∇uε‖2(Ω p
ε )t ≤ ‖u0‖2Ω p

ε
+ 2kd |〈r1(uε, vε) − zε, uε〉(Γ ∗

ε )t | + 2|〈d1, uε〉(∂Ω)t |

=⇒ ‖uε(t)‖2Ω p
ε

+ (2α − 2Cγ − 2Cγ1)‖∇uε‖2(Ω p
ε )t ≤ Mu + (2Cγ + 2Cγ1)

∫ t

0
‖uε(s)‖2Ω p

ε
ds,

(11)
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where Mu = ‖u0‖2Ω p
ε

+ k2d T
2γ (1 + k

4 )
2 |Γ ||Ω|

|Y | + 1
2γ1

‖d1‖2(∂Ω)t as

r1(uε, vε) = k
k1k2uεvε

(1 + k1uε + k2vε)2
≤ k

4
. (12)

We use the trace theorem of Sect. 5.5 of [5] to estimate the boundary term and
Lemma 1. Therefore for γ = α

4C = γ1 we have

‖uε(t)‖2Ω p
ε

≤ Mu + α

∫ t

0
‖uε(s)‖2Ω p

ε
ds.

Gronwall’s inequality gives ‖uε(t)‖2Ω p
ε

≤ MueαT . Similarly, ‖vε(t)‖2Ω p
ε

≤ MveαT .
Next, η = wε in (6c) gives

‖wε(t)‖2Γ ∗
ε

≤ Mw +
∫ t

0
‖wε(s)‖2Γ ∗

ε
ds =⇒ ‖wε(t)‖2Γ ∗

ε
≤ MweT ,

where Mw = ‖w0‖2Γ ∗
ε

+ k2
d(1 + k

4 )
2T |Ω||Γ |

|Y | . With the choice of γ = α
4C = γ1, (11)

yields

‖∇uε‖(Ω
p
ε )t ≤ M̄ueαT ,

where M̄u = Mu
α
. Proceeding similarly for vε we have, ‖∇vε‖(Ω

p
ε )t ≤ M̄veαT , where

M̄v = Mv

α
. We obtain from (6a)

∥∥∥∥
∂uε

∂t

∥∥∥∥
H 1,2(Ω

p
ε )∗

≤
[

‖D1‖L∞(S×Y )‖∇uε‖Ω
p
ε

+ kd

( |Γ ||Ω|C
|Y |

) 1
2

+ C‖d1‖∂Ω

]

≤ C.

Squaring both sides and integrating w.r.t t we get

∥∥∥∥
∂uε

∂t

∥∥∥∥

2

L2(S;H 1,2(Ω
p
ε )∗)

≤ C.

In the same way as above, we can also show that

∥∥∥∥
∂vε

∂t

∥∥∥∥

2

L2(S;H 1,2(Ω
p
ε )∗)

≤ C.

Now we use the test function η = ∂wε

∂t in (6c) and get

∥∥∥∥
∂wε

∂t

∥∥∥∥

2

L2(S×Γ ∗
ε )

≤ k2
d T (1 + k

4
)2

|Γ ||Ω|
|Y | .
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2.1 Existence and Uniqueness

We tackle the multivalued dissolution rate term by introducing a regularization
parameter δ > 0 such that

ψδ(wε) =

⎧
⎪⎨

⎪⎩

0 if wε < 0,
wε

δ
if wε ∈ (0, δ),

1 if wε > δ.

Now the variational formulation of the regularized problem is

〈∂uεδ

∂t
,φ〉(Ω p

ε )T + 〈D̄ε
1∇uεδ,∇φ〉(Ω p

ε )T = −〈∂wεδ

∂t
,φ〉(Γ ∗

ε )T − 〈d1,φ〉(∂Ω)T , (13a)

〈∂vεδ

∂t
, θ〉(Ω p

ε )T + 〈D̄ε
2∇vεδ,∇θ〉(Ω p

ε )T = −〈∂wεδ

∂t
, θ〉(Γ ∗

ε )T − 〈d2, θ〉(∂Ω)T , (13b)

〈∂wεδ

∂t
, η〉(Γ ∗

ε )T = kd〈r1(uεδ, vεδ) − ψδ(wεδ), η〉(Γ ∗
ε )T , (13c)

for all (φ, θ, η) ∈ L2(S; H 1,2(Ω p
ε )) × L2(S; H 1,2(Ω p

ε )) × L2(S × Γ ∗
ε ).

We employ Rothe’s method to show the existence of solution of the PDEs. For
the ODE we consider (13c) along with the initial data wεδ(0, x) = w0(x), then as
r1(uεδ, vεδ) is constant in wεδ and ψδ(wεδ) is Lipschitz with respect to wεδ therefore
there exists a unique local solution by Picard-Lindelof theorem wεδ ∈ C1(0, T1(x))

of the problem (13c) where T1(x) ≤ T . Partial integration of the strong form of (13c)
and (12) gives

|wεδ(t, x)| ≤ ‖w0‖L∞(Ω) + kd(1 + k

4
)T, for all t and x .

This implies the solution of the immobile species exists globally for every t ∈ [0, T ).
We introduce two billinear forms on Ω p

ε such that b(uεδ,φ) = 〈D̄ε
1∇uεδ,∇φ〉Ω p

ε

and b(vεδ, θ) = 〈D̄ε
2∇vεδ,∇θ〉Ω p

ε
. Now for arbitrary uεδ ∈ Uε we have to find vεδ :

[0, T ] → H 1,2(Ω p
ε ) such that

〈∂vεδ

∂t
, θ〉

Ω
p
ε

+ b(vεδ, θ) = 〈 f (vεδ), θ〉Γ ∗
ε

− 〈d2, θ〉∂Ω, ∀θ ∈ H1,2(Ω
p
ε ) a.e. in [0, T ],

(14a)

vεδ |t=0 = v0,

(14b)

where f (vεδ) = kd(ψδ(wεδ) − r1(uεδ, vεδ)).
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2.2 Rothe’s Method

We take a partition {0 = t0 < t1 < · · · < tn−1 < tn = T } for the time interval [0, T ]
with step size h = (ti − ti−1) = T

n . Time discretization to (14a) leads to

〈vi − vi−1

h
, θ〉Ω p

ε
+ b(vi , θ) = 〈 f (vi−1), θ〉Γ ∗

ε
− 〈d2i−1, θ〉∂Ω, ∀i = 1, 2, . . . , n,

(15)

where f (vi−1) = kd(ψδ(wεδ) − r1(uεδ, vi−1)). Now we introduce two linear opera-
tors: one is Th : H 1,2(Ω p

ε ) → L2(Ω p
ε ) such that 〈Thv, θ〉Ω p

ε
= 1

2 〈v, θ〉Ω p
ε

+ b(v, θ)

and the other is 〈li−1, θ〉Ω p
ε

= 〈 f (vi−1), θ〉Γ ∗
ε

− 〈d2i−1, θ〉∂Ω + 1
2 〈vi−1, θ〉Ω p

ε
. Then

(15) can be rewritten as

〈Thv, θ〉Ω p
ε

= 〈li−1, θ〉Ω p
ε
, ∀θ ∈ H 1,2(Ω p

ε ).

As C1‖v‖2
H 1,2(Ω

p
ε )

≤ 〈Thv, v〉Ω p
ε

≤ C2‖v‖2
H 1,2(Ω

p
ε )
and li−1 is a bounded functional on

H 1,2(Ω p
ε ), so there exists a unique vi ∈ H 1,2(Ω p

ε ) byLax-Milgram lemma satisfying
(15). Next we define Rothe functions vn : [0, T ] → H 1,2(Ω p

ε ) by

vn(t) = vi

(
t − ti−1

h

)
− vi−1

(
t − ti

h

)

and the step function vn : [0, T ] → H 1,2(Ω p
ε ) such that vn(t) = vi , for all t ∈

(ti−1, ti ] and vn(0) = v0. We need to find out some a-priori bounds to establish
the convergence of Rothe’s function to a solution of the continuous equation (14a).

Lemma 3 The difference (vi − vi−1) satisfy the inequality

∥∥∥∥
vi − vi−1

h

∥∥∥∥

2

Ω
p
ε

+ 1

2h2
‖∇(vi − vi−1)‖2Ω p

ε
≤ C,

for all i = 1, 2, . . . , n.

Proof For i = 1 and θ = v1−v0
h from (15) we have

∥∥∥∥
v1 − v0

h

∥∥∥∥
2

Ω
p
ε

+ α

h
‖∇(v1 − v0)‖2

Ω
p
ε

≤ 〈 f (v0),
v1 − v0

h
〉Γ ∗

ε
− 〈d20,

v1 − v0

h
〉∂Ω − b(v0,

v1 − v0

h
).

Application of the trace inequality and assumption (A6.) and (12) leads to

(1 − Cγ − Cγ1)

∥∥∥∥
v1 − v0

h

∥∥∥∥

2

Ω
p
ε

+ (
α

h
− Cγ

h2
− Cγ1

h2
− γ2

h2
)‖∇(v1 − v0)‖2Ω p

ε
≤ C3,
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where C3 = k2d
4γ (1 + k

4 )
2 |Γ ||Ω|

|Y | + 1
4γ1

‖d20‖2∂Ω + 1
4γ2

‖∇v0‖2Ω p
ε
‖D2‖2L∞(S×Y ). Now

there are three cases to consider: (i)αh < 1, (i i)αh = 1 and (i i i)αh > 1. For the
first case we choose γ = αh

4C = γ1 and γ2 = αh
4 and for the remaining two cases tak-

ing γ = 1
4C = γ1 and γ2 = 1

4 we have our desired estimate. For j ≥ 2 we subtract

(15) for i = j from for i = j − 1 and test with θ = v j −v j−1

h to get

(1 − Cγ − Cγ1 − γ2)

∥∥∥∥
v j − v j−1

h

∥∥∥∥

2

Ω
p
ε

+ (
α

h
− Cγ

h2
− Cγ1

h2
)‖∇(v j − v j−1)‖2Ω p

ε

≤ C4 + 1

4γ2

∥∥∥∥
v j−1 − v j−2

h

∥∥∥∥

2

Ω
p
ε

,

where C4 = k2k2d
16γ

|Γ ||Ω|
|Y | + 1

4γ1
‖d j−1 − d j−2‖2∂Ω . Now if we take σ j =

∥∥∥ v j −v j−1

h

∥∥∥
2

Ω
p
ε

+
1
2h2 ‖∇(v j − v j−1)‖2Ω p

ε
and proceed like earlier then we have our required estimate

as an implication of Gronwall’s inequality.

Lemma 4 The following a-priori estimates hold for vi

(a)‖vi‖H 1,2(Ω
p
ε ) ≤ C,

∥∥ vi −vi−1

h

∥∥
Ω

p
ε

≤ C for all i = 1, 2, . . . , n.
For Rothe’s step functions this means

(b)‖v̄n(t)‖H 1,2(Ω
p
ε ) ≤ C,

∥∥∥ dvn(t)
dt

∥∥∥
Ω

p
ε

≤ C for almost everywhere t ∈ [0, T ].

Proof We see ‖vi‖Ω
p
ε

≤ ‖v0‖Ω
p
ε

+ h
∑i

j=1

∥∥∥ v j −v j−1

h

∥∥∥
Ω

p
ε

≤ C . We put θ = vi in (15)

and trace inequality in combination with (12) gives that

(α − Cγ − Cγ1)‖∇vi ‖2Ω p
ε

≤ k2d
4γ

(1 + k

4
)2

|Ω||Γ |
|Y | + σi

2
+ 1

4γ1
‖di−1‖2∂Ω + (Cγ + Cγ1 + 1

2
)‖vi ‖2Ω p

ε
.

So for γ = α
4C = γ1 we have, ‖∇vi‖Ω

p
ε

≤ C . Thus we get the first estimate. Other
estimates are a consequence of the Lemma 3.

Theorem 2 The sequence of Rothe’s function converges to the unique solution of
(14a).

Proof We get the estimates

‖vn(t) − vn(s)‖Ω
p
ε

≤
∫ t

s

∥∥∥∥
dvn(σ)

dσ

∥∥∥∥
Ω

p
ε

dσ
Lemma 4≤ C |t − s|

and ‖vn(t)‖H 1,2(Ω
p
ε ) ≤ C.

Hence we can apply Arcela-Ascoli theorem and it follows that there exists v ∈
H 1,2(Ω p

ε ) such that upto a subsequence vn → v in C([0, T ]; L2(Ω p
ε )). Now since

‖v̄n(t)‖H 1,2(Ω
p
ε ) ≤ C so upto a subsequence v̄n(t) ⇀ v̄(t) in H 1,2(Ω p

ε ), for all t ∈
[0, T ]. Now for t ∈ (ti−1, ti ]
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‖vn(t) − v̄n(t)‖2
Ω

p
ε

=
∫

Ω
p
ε

|vn(t) − v̄n(t)|2dx =
∫

Ω
p
ε

|vi−1 + vi − vi−1

h
(t − ti−1) − vi |2dx

≤ (t − ti )
2
∫

Ω
p
ε

∣∣∣∣
vi − vi−1

h

∣∣∣∣

2

dx ≤ h2C → 0 since h → 0

and so v̄(t) ≡ v(t) for all t ∈ [0, T ]. The next target is to show dvn
dt ⇀ dv

dt in
L2([0, T ]; L2(Ω p

ε )).
As we know

∥∥ dvn
dt

∥∥
Ω

p
ε

≤ C for almost everywhere t . Therefore dvn
dt is bounded in

the space L2([0, T ]; L2(Ω p
ε )). So we get upto a subsequence dvn

dt ⇀ η in L2([0, T ];
L2(Ω p

ε )). Claim: η = dv
dt in the sense of distribution

〈v,
∂φ

∂t
〉Ω p

ε
= lim

n→∞〈vn,
∂φ

∂t
〉Ω p

ε
= − lim

n→∞〈∂vn

∂t
,φ〉Ω p

ε
= −〈η,φ〉Ω p

ε
for all smooth φ

=⇒ η = dv

dt
in the sense of distribution.

Again since

‖vn(t)‖2Ω p
ε

+ ‖∇vn‖2(Ω p
ε )t +

∥∥∥∥
dvn

dt

∥∥∥∥

2

L2(S;H 1,2(Ω
p
ε )∗)

≤ C.

Hence vn → v in C([0, T ]; H s(Ω p
ε )∗) ∩ L2((0, T ); H s(Ω p

ε )) for s ∈ (0, 1) and in
particular vn → v strongly in L2(Γ ∗

ε )t . Since f is Lipschitz, f (vn) → f (v) strongly
in L2(Γ ∗

ε )t and pointwisely in (Γ ∗
ε )t . Now passing the limit as n → ∞ in

∫ t

0
〈dvn(t)

dt
, θ〉Ω p

ε
dt +

∫ t

0
b(v̄n, θ)dt

=
∫ t

0
〈 f (v̄n−1), θ〉Γ ∗

ε
dt −

∫ t

0
〈d2i−1, θ〉∂Ω dt, ∀θ ∈ H 1,2(Ω p

ε ),

we get v is a solution of

∫ t

0
〈dv(t)

dt
, θ〉Ω p

ε
dt +

∫ t

0
b(v, θ)dt

=
∫ t

0
〈 f (v), θ〉Γ ∗

ε
dt −

∫ t

0
〈d2, θ〉∂Ω dt, for all θ ∈ H 1,2(Ω p

ε ).

Proceed in the same way we get the existence of uεδ .

Uniqueness: Let (u1
εδ, v

1
εδ, w

1
εδ) and (u2

εδ, v
2
εδ, w

2
εδ) be two solutions of the system

(13a)–(13c) and Wεδ = w1
εδ − w2

εδ ≥ 0, Vεδ = v1
εδ − v2

εδ ≥ 0 andUεδ = u1
εδ − u2

εδ ≥
0. Now from (13c) we see that Wεδ satisfy
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‖Wεδ(t)‖2Γ ∗
ε

≤ eT k2
d L2

R‖Uεδ + Vεδ‖2(Γ ∗
ε )t . (16)

Now we write (13a) for Uεδ and (13b) for Vεδ and adding up side by side leads to

〈 ∂

∂t
(Uεδ + Vεδ),φ〉Ω p

ε
+ 〈D̄ε

1∇Uεδ + D̄ε
2∇Vεδ,∇φ〉Ω p

ε
≤ 2

∣∣∣∣〈
∂Wεδ

∂t
,φ〉Γ ∗

ε

∣∣∣∣ .

We denote P(t) = Uεδ(t) + Vεδ(t) and test with φ = Uεδ + Vεδ and after simplifi-
cation we have

‖P(t)‖2
Ω

p
ε

≤ (4kd L RC + C2kd L R

μ
)‖P‖(Ω

p
ε )t .

Then we get by Gronwall’s inequality u1
εδ(t) = u2

εδ(t) and v1
εδ(t) = v2

εδ(t) and (16)
gives w1

εδ(t) = w2
εδ(t) for a.e. t ∈ S. So we get unique solution.

Now we send the regularization parameter δ → 0. By Corollary 4 and Lemma 9 of
[13] we get, for s ∈ (0, 1),

uεδ → uε strongly in L2(S; L2(Ω p
ε )),

uεδ → uε strongly in L2(S; H s,2(Ω p
ε )) ∩ C(S; H−s,2(Ω p

ε )),

vεδ → vε strongly in L2(S; L2(Ω p
ε )) and

vεδ → vε strongly in L2(S; H s,2(Ω p
ε )) ∩ C(S; H−s,2(Ω p

ε )).

After that, trace theorem (cf. Satz 8.7 of [16]) implies

uεδ → uε strongly in L2(Γ ∗
ε )t and vεδ → vε strongly in L2(Γ ∗

ε )t .

As r1 is Lipschitz therefore r1(uεδ, vεδ) → r1(uε, vε) in L2(Γ ∗
ε

t ) and pointwise
almost everywhere in (Γ ∗

ε )t . After that we follow the same arguments given in
Theorem 2.21 of [15] to obtain the Eqs. (8a)–(10c).

3 Homogenization

Lemma 5 There exists a positive constant C does not depend on ε such that

sup
ε>0

(‖uε‖L2(S×Ω) + ‖∇uε‖L2(S×Ω) + ‖χε∂t uε‖L2(S;H 1,2(Ω)∗) + ‖vε‖L2(S×Ω)

+‖∇vε‖L2(S×Ω) + ‖χε∂tvε‖L2(S;H 1,2(Ω)∗)
) ≤ C < ∞. (17)

Proof This comes from the Lemma 1 and the estimate (7). The details can be seen
in [11].
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Lemma 6 The bounds (17) and (7) gives the following convergence results

(i) uε ⇀ u in L2(S; H 1,2(Ω)), (i i) ∂t uε ⇀ ∂t u in L2(S; H 1,2(Ω)∗),
(i i i) vε ⇀ v in L2(S; H 1,2(Ω)), (iv) ∂tvε ⇀ ∂tv in L2(S; H 1,2(Ω)∗),
(v) uε → u in L2(S × Γ ∗

ε ), (vi) vε → v in L2(S × Γ ∗
ε ),

(vi i) There exists u ∈ L2(S; H 1,2(Ω)) and u1 ∈ L2(S × Ω; H 1,2
per (Y )/R) such that

uε
2

⇀ u and ∇uε
2

⇀ ∇x u + ∇yu1,
(vi i i) There exists v ∈ L2(S; H 1,2(Ω)) and v1 ∈ L2(S × Ω; H 1,2

per (Y )/R) such that

vε
2

⇀ v and ∇vε
2

⇀ ∇xv + ∇yv1,

(i x) wε
2

⇀ w in L2(S × Ω × Γ ), (x) ∂twε
2

⇀ ∂tw in L2(S × Ω × Γ ),

(xi) zε
2

⇀ z in L2(S × Ω × Γ ).

Proof The convergence (i)–(iv) comes from the estimate (17) and rest follows from
Proposition 1.14 of [1], Theorem 2.1 of [2] and Lemma 12 of [6].

Lemma 7 (a) The reaction rate term r1(uε, vε) → r1(u, v) in L2(S × Γ ∗
ε ). From

this we can deduce r1(uε, vε)
2

⇀ r1(u, v) in L2(S × Ω × Γ ).
(b) T b

ε (wε) → w in L2(S × Ω × Γ ).

Proof (a)Since r1 is Lipschitz and by the help of Minkowski’s inequality we get

‖r1(uε, vε) − r1(u, v)‖L2(S×Γ ∗
ε ) ≤ L R{‖uε − u‖L2(S×Γ ∗

ε ) + ‖vε − v‖L2(S×Γ ∗
ε )}

→ 0 as ε → 0, by (v) and (vi) of Lemma 6.

Then by Proposition 5.2 of [4] it follows that

T b
ε (r1(uε, vε)) → r1(u, v) in L2(S × Ω × Γ ),

=⇒ r1(uε, vε)
2

⇀ r1(u, v) in L2(S × Ω × Γ ).

(b) This comes from [11] and Theorem 5.1 of [10].

Theorem 3 Under the assumptions (A1.) − (A6.) there exist (u, v, w, z) ∈
L2(S; H 1,2(Ω)) × L2(S; H 1,2(Ω)) × L2(S; L2(Ω × Γ )) × L∞(S × Ω × Γ ) in
such a way that (u, v, w, z) is the unique solution of the problem

∂u

∂t
+ ∇.(−A1∇u) + P1(t, x) = 0 in S × Ω, (18a)

−A1∇u.�n = d1
|Y p| on S × ∂Ω, (18b)

u(0, x) = u0(x) in Ω, (18c)
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∂v

∂t
+ ∇.(−B1∇v) + P1(t, x) = 0 in S × Ω, (19a)

−B1∇v.�n = d2
|Y p| on S × ∂Ω, (19b)

v(0, x) = v0(x) in Ω, (19c)

∂w

∂t
= kd(r1(u, v) − z) in S × Ω × Γ, (20a)

z ∈ ψ(w) in S × Ω × Γ, (20b)

w(0, x) = w0(x) on Ω × Γ, (20c)

where

P1(t, x) =
∫

Γ

1

|Y p|
∂w

∂t
dσy .

The elliptic and bounded homogenized matrix A1(t, x) = (ai j )1≤i, j≤n and B1(t, x) =
(bi j )1≤i, j≤n are given by

ai j (t, x) = 1

|Y p|
∫

Y p

D1(t, y)

⎛

⎝δi j +
n∑

i, j=1

∂k j

∂yi

⎞

⎠ dy,

bi j (t, x) = 1

|Y p|
∫

Y p

D2(t, y)

⎛

⎝δi j +
n∑

i, j=1

∂k j

∂yi

⎞

⎠ dy.

Moreover, k j ∈ L∞(Ω; H 1,2
per (Y )) is the solutions of the cell problems

⎧
⎪⎨

⎪⎩

(div)y(−Di (t, y)(∇yk j + e j )) = 0 ∀y ∈ Y p,

−Di (t, y)(∇yk j + e j ).�n = 0 on Γ,

y �→ k j (y) is Y − periodic,

(21)

for j = 1, 2, . . . , n, i = 1, 2 and for a.e. x ∈ Ω .

Proof We utilize two-scale convergence to derive the macroscopic equations. First,
we test the PDEs (8a) and (9a) with �i (t, x, x

ε
) = ψi (t, x) + εφi (t, x, x

ε
) such that

ψi ∈ C∞
0 (S × Ω) andφi (t, x, x

ε
) ∈ C∞

0 (S × Ω; C∞
per (Y )), for i = 1, 2. Nowwe pass

the homogenization limit ε to 0 for the each term separately and combining all terms
we finally obtain

−
∫ T

0

∫

Ω

u(t, x)
∂ψ1

∂t
dxdt+ 1

|Y p |
∫ T

0

∫

Ω

∫

Y p
D1(t, y)(∇u(t, x) + ∇yu1(t, x, y))(∇xψ1 + ∇yφ1)dxdydt

+ 1

|Y p |
∫ T

0

∫

Ω

∫

Γ

∂w

∂t
ψ1dxdσydt = 0. (22)
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We set ψ1 ≡ 0 and choose u1(t, x, y) = ∑n
j=1

∂u
∂x j

(t, x)k j (t, x, y) + q(x) to obtain
the cell problem as (21) for i = 1. Now setting φ1 ≡ 0 we obtain the macro-
scopic equations for I1 as (18a)–(18c). Similarly, testing (9a) by �2 we have the
homogenized equation for I2 as (19a)–(19c). Finally, we consider the test function
ψ(t, x, x

ε
) ∈ C∞

0 (S × Ω; C∞
per (Y )) to test the ODE (10a) and using Lemmas 6 and 7

we get the strong form as

∂w

∂t
= kd(r1(u, v) − z) on S × Ω × Γ.

Lastly, we will characterize the two-scale limit of the multivalued dissolution rate
term. That can be seen in [12] and we obtain the homogenized equations for the ODE
as (20a)–(20c). The proof of uniqueness follows the same line of arguments as the
micro model.

Remark. We can get positivity and the same type of a-priori estimates for the macro-
model by imposing similar kinds of assumptions to themacromodel. The existence of
solution for the macromodel relies on Galerkin method as the source term P1(t, x) ∈
L2(S × Ω) since ‖P1(t, x)‖2L2(S×Ω)

≤ k2d
|Y p |2 (1 + k

4 )
2|Γ |2|Ω|T = constant.

4 Conclusion

We investigated a diffusion-reaction-dissolution-precipitation system. Having in
mind the special choice of the multivalued discontinuous dissolution term, we insert
a regularization parameter δ > 0 to show the existence of a unique positive global
weak solution. Further, we use homogenization techniques to obtain the upscaled
model. As future plans, we wish to work with a general model with rate term comes
from mass action kinetics.
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Mathematical Modeling and Computing
to Study the Influence of Quarantine
Levels and Common Mitigation
Strategies on the Spread of COVID-19 on
a Higher Education Campus

Raina Saha, Clarissa Benitez, Krista Cimbalista, Jolypich Pek,
and Padmanabhan Seshaiyer

Abstract In this work, we develop a mathematical model to study the COVID-19
dynamics on a higher education campus. The proposed model builds on successful
compartmental models that describe the dynamics of the spread of disease between
multiple student sub-populations within a closed environment. The model assumes
no vaccinations and includes three different levels of quarantine adherence to rep-
resent student behavior with the common mitigation strategies of face mask usage
and random testing. A detailed analysis of the model including boundedness and
positivity of the solutions along with a derivation of the basic reproduction number
for the model is presented. Additionally, we also create an interactive graphical user
interface through a dashboard for public use.

Keywords COVID-19 · Basic reproduction number · Compartmental models ·
SEIR · Quarantine

1 Introduction

In 2019, the first case of Coronavirus disease 2019 (COVID-19) was detected in
Wuhan, China [14]. In the following months, this infectious disease was found to
be present with (symptomatic) or without symptoms (asymptomatic) respectively
[3]. As the disease continued to spread, there have been a variety of mathematical
models proposed to understand the dynamics of COVID-19 [9].Most of thesemodels
build from foundational ideas involving compartments of sub-populations including
Susceptible, Exposed, Infected and Recovered (SEIR) dynamics [2]. Many of these
modified SEIR models have helped to provide insight into quantifying the spread,
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analyzing effective control strategies and developing measures to prevent the spread
of disease [7, 9].

This paper’s modified SEIR model looks specifically at the setting of higher level
education campuses. Because of the diversity of social and economic background
within the student body, the impact of student behavior on managing disease spread
is considered in this model. As schools began to reopen, the question of mitigation
strategy and enforcement had to be considered [5, 11].

Higher level education environments contain clear risks and rewards for coop-
erating in the form of grades, jobs, and projects. Because student risk perception
of COVID-19 and perceived personal barriers vary amonge the student body, so do
individual preventative measures. Thus, it is important to take into account differ-
ences in rule adherence to create a more accurate view of disease dynamics [1, 6,
12]. The purpose of this paper is therefore to develop a new model to accommodate
various quarantining levels and to analyze the effect of commonmitigation strategies
and student behaviors on disease spread. The presented model is focused on popu-
lations within schools and is flexible to different school environments by changing
the necessary parameter values. This model assumes a constant transmission rate
and uniform mask use for all wearing masks. This model also does not assumes
any comorbidities such as age or obesity which might affect the transmission rate or
behavior.

This paper is organized as follows. In Sect. 2, we develop a new mathematical
model which is a modified SEIR and include new compartments with justifications.
In Sect. 3, we present the mathematical analysis for the model developed and present
the derivation of the associated basic reproduction number using the next-generation
matrix approach. Next, in Sect. 4, we perform numerical simulations of the proposed
model to study a higher level education campus setup. Section5 presents an overview
of a graphical user interface (GUI) for this model. Finally, we conclude and present
some recommendations based on the created model and associated simulations in
Sect. 6.

2 Models and Methods

In this work, a modified SEIR compartmental model for understanding spread of
COVID-19 along with the effects of levels of quarantining is introduced. The pro-
posed model adds three infectious categories, asymptomatic semi-Quarantine, and
Symptomatic semi-Quarantine and asymptomatic. The model is organized around
the flow diagram in Fig. 1.

The total population N = S + E + I + A + I Q + Q + AQ + R is assumed to
be divided into the 8 mutually exclusive categories. We assume the only way for
an infectious individual to mitigate spread is to go into strict Quarantine (Q). In
our proposed model, the susceptible individuals (S) move into the exposed state (E)
after being transmitted the virus by one of the four infectious categories Symptomatic
(I ), asymptomatic (A), symptomatic semi-Quarantine (I Q), and asymptomatic semi-
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Fig. 1 Flow Diagram of Quarantine COVID-19 model

Quarantine (AQ). Transmission, α, of the virus is assumed equal and constant for
both asymptomatic and symptomatic infections. β, describes the rate Susceptible
individuals wear masks. Susceptible individuals in masks are assumed to be com-
pletely protected against the spread of the virus. Once infected, the newly infected
individuals move into the exposed category which represents the incubation time. A
proportion p and (1 − p) of exposed will move into symptomatic and asymptomatic,
respectively. The symptomatic and asymptomatic categories represent undetected
infectious groups. Both groups can be detected via random testing at the rate τ .
Symptomatic cases can also be detected at an additional rate of λ representing the
visual detection of symptoms. Of those who are detected to have the virus, a propor-
tion c will not self-isolate at all and will stay in their initial group. The rest, (1 − c),
will go into one of two quarantine categories available to them. Asymptomatic and
Symptomatic Semi-Quarantine represent quarantine behaviors where self-isolation
is only followed for part of the required time. Individuals in this group might break
quarantine because of a combination of their individual barriers for quarantining
and their perception of the infectiousness [12]. Strict Quarantine is assumed to be
the same for both groups and represents those who self-isolate for the entire recom-
mended time lastly, given students can transfer into a campus during the semester
we assume a recruitment of Λ. We also assume students may dropout or even die of
natural death denoted by μ. All five infected categories have a respective recovery
rate. The governing equations for the model is
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dS

dt
= Λ − α(1 − β)S

(
I + A + χI Q + ηAQ

N

)
− μS (1)

dE

dt
= α(1 − β)S

(
I + A + χI Q + ηAQ

N

)
− γE − μE (2)

d I

dt
= pγE − (τ + λ)I (1 − c) − δi I − μI (3)

d A

dt
= (1 − p)γE − τ A(1 − c) − δa A − μA (4)

dQ

dt
= τ (1 − c)νa A + (τ + λ)(1 − c)νi I − δq Q − μQ (5)

d I Q

dt
= (τ + λ)(1 − c)(1 − νi )I − δiq I

Q − μI Q (6)

d AQ

dt
= τ (1 − c)(1 − νa)A − δaq A

Q − μAQ (7)

dR

dt
= δiq I

Q + δaq I
Q + δq Q + δi I + δa A − μR (8)

The definitions of the parameters described in the system are given in Table1.

Table 1 Definition of parameters

Parameter Definition

α Transmission rate

β Proportion of susceptible individuals wearing masks

N Total population

χ Proportion of the infectious period that symptomatic individuals do not
self-isolate

η Proportion of the infectious period that asymptomatic individuals do not
self-isolate

p Proportion of Symptomatic cases

γ Duration of incubation period

τ Positive rate from a random test

λ Visual detection rate of the virus

c Proportion of individuals who do not self-isolate

νi Symptomatic individuals going into Symptomatic Semi-Quarantine

νa Asymptomatic individuals going into Asymptomatic Semi-Quarantine

δ j Recovery rate of Symptomatic (j = i), Asymptomatic (j = a), Strict
Quarantine (j = q)

δiq Recovery rate of Symptomatic Semi-Quarantine

δaq Recovery rate of Asymptomatic Semi-Quarantine

Λ Recruitment rate

μ Dropout rate
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3 Mathematical Analysis of the Model

In this section, we will show that the proposed system (1)–(8) is well-posed by
proving it is non-negative and bounded for all values of t . We will also derive the
basic reproduction number using the Next Generation Matrix approach.

3.1 Non-negativity of the Solution

Theorem 1 Let the initial conditions
{
S0, E0, I0, A0, Q0, I

Q
0 , AQ

0 , R0

}
≥ 0. Then

the solution to the system (1)–(8) is non-negative in [0,∞).

Proof Note that all the right-hand side terms of the system (1)–(8) are continuous
and locally Lipschitzian on IR.

The solution {S(t), E(t), I (t), A(t), Q(t), I Q(t), AQ(t), R(t)} with their initial
conditions exist and are unique in the interval [0,∞) [8].
From Eq. (1) we have

dS

dt
= Λ − S(μ + g(t)) (9)

where, g(t) = α(1 − β)

(
I + A + χI Q + ηAQ

N

)
Since S0 ≥ 0, by using an inte-

grating factor we can integrate both sides of above relation with respect to t , we
obtain

S(t1) ≥ e
−

⎛
⎝μt+

∫ t

0
g(s)ds

⎞
⎠ ∫ t1

0
Λ e

⎛
⎝μt+

∫ t

0
g(s)ds

⎞
⎠
dt

which proves S(t) > 0. Similarly, one can show E(t), I (t), A(t), Q(t), I Q(t),
AQ(t), and R(t) are also positive.

3.2 Boundedness of the Solution

Next, we prove that the system is bounded for all values of t.

Theorem 2 All solutions of the proposed system (1)–(8) are bounded inside the

region

{
X (t) ∈ R8 : 0 ≤ N (t) ≤ Λ

μ

}
.

Proof Since N (t) = S(t) + E(t) + I (t) + A(t) + Q(t) + I Q(t) + AQ(t) + R(t),
we have

dN

dt
= Λ − μN (10)
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Hence
dN

dt
+ μN = Λ. This implies, N (t) =

(
N (0) − Λ

μ

)
e−μt + Λ

μ
, where

N (0) = S0 + E0 + I0 + A0 + Q0 + I Q0 + AQ
0 + R0. Letting t → 0, we then get the

solution N (t) ⊂
[
0,

Λ

μ

]
.

3.3 Derivation of the Basic Reproduction Number

Next, wewill derive the basic reproduction number using theNext GenerationMatrix
[2]. The basic reproduction number R0 is a powerful tool for predicting disease
dynamics. An R0 < 1 indicates that an infection will die out and R0 > 1 indicates
that the disease will continue to spread.

Theorem 3 The R0 is given by

R0 = R1
0 + R2

0 + R3
0 + R4

0 (11)

where,

R1
0 = α(1 − β)S

N (γ + μ)

(
χ p γ (τ + λ) (1 − c) (1 − νi )

(δiq + μ) [(τ + λ)(1 − c) + δi + μ]

)

R2
0 = α(1 − β)S

N (γ + μ)

(
η(1 − p) γ τ (1 − c) (1 − νa)

(δaq + μ) [τ (1 − c) + δa + μ]

)

R3
0 = α(1 − β)S

N (γ + μ)

(
p γ

[(τ + λ)(1 − c) + δi + μ]

)

R4
0 = α(1 − β)S

N (γ + μ)

(
(1 − p) γ

[τ (1 − c) + δa + μ]

)

Proof Given the infectious states: E, I, A, I Q, AQ , we first create the vector repre-
senting the new infections flowing only into the exposed given by

F =
{
S

N
α(1 − β)(I + A + I Qχ + AQη), 0, 0, 0, 0

}

Along with the inflow, we also define the outflow from the five infectious groups:

V = {E(γ + μ),−pγE + (τ + λ)I (1 − c) + δi I + μI,

−(1 − p)γE + τ A(1 − c) + δa A + μA,−(τ + λ)(1 − c)(1 − νi )I

+δiq I
Q + μI Q,−τ (1 − c)(1 − νa)A + δaq A

Q + μAQ}
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Next, we find the Jacobian of vectors F and V which are given by: Next, we
compute the next-generation matrix FV−1 as

FV−1 =

⎡
⎢⎢⎢⎢⎣

E1,1E1,2E1,3E1,4E1,5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (12)

The R0 corresponds to the dominant eigenvalue of the matrix FV−1 in (12).

Remark 1 Note that for (11), each expression forR1
0,R2

0,R3
0, andR4

0 are products
of the transmission rate, the susceptible population and the inverse of the product of
total population and the sum of the natural death rate and the incubation period. This
product represents the movement from Susceptible to Exposed. The unique portion
of each expression represents the duration of stay and the flow into each respec-
tive infectious group. Thus, each expression represents the ability of symptomatic
semi-Quarantine, asymptomatic semi-quarantine, symptomatic and asymptomatic,
respectively, to infect the susceptible category.

Corollary 1 Suppose the parameters χ, η, β, c, μ, λ and τ are all equal to 0,

p = 1, δa = δi = δaq = δiq = δ. ThenR0 = αS

δN
which is the classic result [2]. By

decreasing α and increasing δ, one can control the R0.

4 Computational Experiments

In this section, we will present a series of numerical simulations to show the effect
of mitigation strategies and behaviors on the disease dynamics. For our simulations,
we chose to study a learning community of freshmen students within the campus in
one college within a higher education campus. We decided to choose this population
as these selected students within the learning communities tend to live together in
residence halls and engage with each other. Therefore, the opportunity for them
to interact is more. We considered a total population of 388. Of these, 378 were
assumed to be susceptible and 10 symptomatic. The other six compartments had an
initial value of 0. The simulations were run using fourth-order Runge-Kutta methods
in MATLAB. The parameter values were chosen as γ−1 = 5.1 days [3], δ−1

i = 13
days [4], δ−1

a = 10 days [4] δ−1
q = 13 days [4], δ−1

iq = 13 days [4], δ−1
aq = 10 days

[4], p = 0.6 [13], τ = 0.05 [11] and α = 0.07 [11]. The remaining parameters β,
νi , νa , λ, χ, c, and η have the chosen values 0.1, 0.3, 0.8, 0.5, 0.2, 0.85, and 0.6
because of lack of data respectively. Additionally, the parameters μ and Λ are set
to 0 for simplicity as the simulation was run over 90 days. Unless stated otherwise,
these numbers will remain the same for all numerical computations.
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4.1 Influence of the Parameters on R0

First, wewill analyze the effect of changing parameters on theR0. Understanding the
magnitude of effect of each parameter can help schools to decide what is important
to communicate and enforce. Looking at Fig. 3, we can see that the transmission rate
α and mask disuse rate (1 − β) causes the greatest changes in R0. Because of the
significance of these two parameters, knowing the values of α and (1 − β) that cause
an outbreak could be important for schools. Setting R0 = 1 and solving for α and
(1 − β) in Eq. (13), we can determine the mask disuse-transmission rate α(1 − β)

threshold. Rn∗
0 is Rn

0 from Eq. (11) divided by α(1 − β). Using the given parameters,
α(1 − β) must be less then 0.1625 to mitigate spread.

α(1 − β) = 1

R1∗
0 + R2∗

0 + R3∗
0 + R4∗

0

(13)

The interactions betweenα and (1 − β) onR0 along with the threshold values are
shown in Fig. 2. The portion above this threshold line represents disease propagation,
below this line there is none. Because of its low placement of this line with respect
to the peak value, we can determine that the R0 is sensitive to α and (1 − β).
Additionally, Fig. 2 shows that mask disuse and the transmission rate are directly
related and linear.

Next, wewill analyze the effect of disease status on quarantine behaviors in Fig. 3.
While not drastic, symptomatic quarantine behaviors tend to have a greater effect
on the R0 the asymptomatic behaviors. Both νi and νa have negative linear growth

Fig. 2 Influence of transmission rate (α) and mask usage (1 − β) on R0. The line at R0 = 1
represents the pandemic thresh hold
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Fig. 3 Influence of quarantine disobedience (c) onR0 (top most left), Influence of mask usage (β)
on R0 (top second left), Influence of Asymptomatic semi-Quarantine (η) on R0 (top second left),
Influence of Symptomatic semi-Quarantine (χ) onR0 (top most left), Influence of transmission rate
(α) onR0 (bottom right), Influence of Strict Symptomatic Quarantine (νi ) onR0 (bottom middle),
Influence of Strict Asymptomatic Quarantine (νi ) on R0 (bottom left)

with respect to theR0, however, νi has a greater effect. The difference in magnitude
could be because of both the greater probability of symptomatic disease and the
additional ability to visually detect the symptomatic cases. A similar difference was
found for χ and η. Both graphs have a linear and positive growth with respect to the
R0, however, χ has a greater effect. The greater effect of symptomatic quarantine
behaviors overall could indicate a greater importance of detecting visible symptoms
to prevent disease propagation. However because the difference in effect was not
sizable, reducing barriers for self-isolation, such as assignments/grades, could be
helpful in slowing spread.

Lastly looking at the third graph in the top panel of Fig. 3, we see a rapid positive
growth in the R0 as you increase c. At greater c values, Asymptomatic and Symp-
tomatic populations will grow larger. Because these categories are unrestricted in
their spread, they can infect Susceptible individuals faster.

4.2 Local and Global Sensitivity

Nextwewill analyze the normalized local andglobal sensitivity. Thenormalized local
sensitivity is the effect on R0 by changing a parameter by 1% in a fixed parameter
space. Values closer to 1 will be more significant. We can find the normalized local

sensitivity using SGR0
= ∂R0

∂G

G

R0
, where G is the interested parameter that is most

sensitive in regard to the R0. The derivation of the sensitivity relations of α and β
are shown below. The remaining parameters in R0 can be found the same way

Sα
R0

= ∂R0

∂α

α

R0
= 1 Sβ

R0
= ∂R0

∂β

β

R0
= − β

1 − β
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Fig. 4 The normalized local sensitivity of the model with respect to the parameters

By using the given parameter values inR0 (excluding μ), we can determine the nor-
malized local sensitivity for the fixed parameter space in Fig. 4. The student behaviors
parameters c, and α have a pronounced significance. The next most significant is β
by a great margin. Parameters c and β increase theR0 by 1.3% and 1% respectively.
β increases the R0 by −0.11%. The quarantine behaviors χ, η, νa , and νi are small
and do not vary to a significant degree. These results indicate the importance of
quarantining at least to some degree and a minimal significance of disease type on
quarantine. Next we will go over the global sensitivity of the system. The global
sensitivity looks at the sensitivity over the entire parameter space. The values were
calculated using the SOBOL or variance-based method in the Global Sensitivity
Analysis toolbox (GSAT) [10].

Figure5 shows the first order index, the effect of each parameter on the variance of
R0, and the total order, which is the sum of the first order index and the interactions
between parameters. Unlike the normalized local sensitivity, β, α, and c are the most
significant behavioral parameters respectively. The quarantine behavior parameters
retain a similar order as in the local sensitivity.

4.3 Dynamics of the State Variables

Finally, we illustrate the dynamics of the disease in Fig. 6 where we have used
parameter values as described earlier. While the computational results were done
for a learning community of 388 individuals, a similar approach can be done for
typical higher education campuses in the United States with about 40, 000 students.
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Fig. 5 The first order and total global sensitivity of the model

The dynamics of a greater population with an initial susceptibility of 39, 000 and
1, 000 infected is shown in Fig. 7. Despite having different initial values, the over-
all dynamics of the state variables remained the same as in Fig. 6. For both graphs,
the order of the peaks reflects the model in Fig. 1. Next, we analyzed the shape of
the resulting disease dynamics when changing quarantine behaviors. Figure 8 illus-
trates the shape of the resulting disease dynamics when changing c. The categories
exposed, Asymptomatic, Symptomatic, and Recovered have greater peaks for larger
c values. This results in a greater infection of Susceptible. Thus, student adherence
to quarantine procedure is a behavior schools should look at.

5 Graphical User Interphase (GUI)

In this section, we will briefly go over a dashboard that was created as a part of
our quarantine model. This Dashboard was created in MATLAB using Matlab’s
UI design environment GUIDE. This graphical interface allows users to analyze
disease dynamics visually in an interactiveway.Additionally, users can determine the
basic reproduction numberR0 for their chosen parameters, as shown in Fig. 9. This
straightforward dashboard allows users to interact and study the proposed model for
future decision-making. The dashboard was organized for user ease. Behaviors and
mitigation parameters, which include the parameters mask use and strict quarantine,
are given both sliders and text boxes for data entry. This is because of the variability
of behaviors across different school environments. Furthermore, this GUI allows
users to directly compare the effect of different parameters. This is done by allowing
users to save up to 3 sets of data. Users can then pick which saved data they want
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Fig. 6 Quarantine model dynamics for N = 388. Each categories is shown individually

to graph on the same plot by clicking hold checkboxes under the save buttons. An
example is shown in Fig. 10 where we compare the effect of variations of parameter
values on Symptomatic and Asymptomatic. The dashboard will calculate the basic
reproduction number R0 when the user clicks on the load, save, or graph buttons.
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Fig. 7 Quarantine model dynamics for N = 40, 000. Each categories is shown individually

6 Discussion and Conclusions

In this paper, we considered an extended SEIR model that includes three levels of
quarantine for understanding spread of COVID-19 within an upper-level education
campus. This paper also discussed common mitigation strategies seen in this type of
environment specifically applied to a learning community within a higher education
campus. Next we showed that this model is well-posed by proving the positivity
and boundedness of the system for all values of t . Then we calculated the basic
reproduction number R0 using the Next Generation Matrix. Next, we performed
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Fig. 8 Quarantine model dynamics for each category when changing the proportion of the popu-
lation who do not self-isolate (c) by 0.25

a series of numerical simulations and analysis to validate the model. Lastly, we
developed a user-friendly dashboard that can be public use.

In this model, we demonstrated the importance of adherence to COVID-19 reg-
ulations. The model showed that managing the outbreak requires not only the use
of mitigation strategies like masks and social distancing, but also the variance of
student behaviors toward COVID-19 regulations. A combination of both mitigation
strategies and student behaviors was found to be important in managing a pandemic.
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Fig. 9 GUImodel dynamics for the expandedSIRmodel. The calculated basic reproduction number
is shown on the right

Fig. 10 Comparison of three variations of the disease dynamics in regard to the Symptomatic and
Asymptomatic populations
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Future studies could include the effect of information transparency and incentives
in increasing compliance. Additionally, this model might be useful in predicting the
spread of other health concerns where adherence to regulations is pivotal.
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Numerical Solution of the Fredholm
Integral Equations of the First Kind by
Using Multi-projection Methods

Subhashree Patel, Bijaya Laxmi Panigrahi, and Gnaneshwar Nelakanti

Abstract The Fredholm integral equations (fies) of the first kind have been solved
by Legendre spectral multi-projection methods by using Tikhonov regularized meth-
ods. The theoretical analysis utilizing this method under a priori parameter selection
strategy has been explained and the best convergence rates obtained in L2-norm.
Next, in order to discover an appropriate regularization parameter, Arcangeli’s dis-
crepancy principle has been applied and the order of convergence has been deduced.
Numerical example has been furnished which validates our theoretical findings.

Keywords Fredholm integral equation of the first kind · Ill-posed problems ·
Tikhonov regularization method · Legendre polynomials · Multi-Galerkin
method · Arcangeli’s Discrepancy

1 Introduction

We define the following fies of the first kind:

∫ 1

−1
τ (u, v)x(v)dv = f (u), −1 ≤ u ≤ 1, (1)

where x is the unknown function in the Banach spaceX = L2[−1, 1] to be estimated,
and f and τ (., .) are known functions. These types of Eq. (1) appear in several
inverse problems in engineering and science such as geophysics (land-mining, oil
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exploration, etc.), signal processing, medical imaging, electromagnetic field, and
backward heat conduction problems (see [1, 7]).

Since the fies of the first kind (1) are ill-posed, conversion of ill-posed into
a well-posed equation is highly desirable. In the literature, several regularization
methods have been developed to handle the ill-posedness property and the Tikhonov
regularization method is mostly used regularization approach. In the regularization
methods, the choice of regularization parameters is the primary issue.

So, many works on the development of the regularization parameter have been
carried out by the researchers and well documented in [4, 5, 13] and reference
therein. In general, the regularized equations of the fies of the first kind (1) can not
be solved explicitly. As a result, it is essential to develop numerical approximation
methods for solving these regularized equations. Thus, the projection methods [10,
13], degenerate kernel method [6], multiscale methods [4], and wavelet methods [14]
have been developed in the literature.

In [10, 11, 15], the projection-based methods for the fies of the first kind (1)
utilizing Legendre polynomials to approximate the function space have been studied.
However, the multi-projection methods have been employed for fies of the first kind
in [12] and convergence analysis has been explained using infinity norm. In this
article, we approximate Eq. (1) by its Tikhonov regularized equation using multi-
projection method using similar approximation of function space as above. The
basis of approximation subspace Xn is the Legendre polynomials with a maximum
degree n. Legendre polynomials are iterative and can be constructed effortlessly,
as well as having the orthogonal characteristic. Thus, the computational cost to
calculate the matrix of the Tikhonov regularized equation of Eq. (1) is very less.
The accuracy O(δ

2ν
2ν+1 ) for ν ∈ (0, 1] in L2-norm has been established utilizing the

above approximation of function space techniques under both a priori and a posteriori
parameter strategies.

We denote c as a generic constant throughout the paper.

2 Legendre Spectral Multi-projection Methods

Let the integral operator A : L2[−1, 1] → L2[−1, 1] defined by

Ax(u) =
∫ 1

−1
τ (u, v)x(v) dv, −1 ≤ u ≤ 1,

where τ (., .) ∈ C([−1, 1] × [−1, 1]). Then the linear operator A on L2[−1, 1] is
compact. The operator equation of Eq. (1) is rewritten as

Ax = f. (2)
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Eq. (2) is ill-posed. The solution of Eq. (2) occurs iff f ∈ R(A). By taking help of
Moore–Penrose inverseA† : R(A) + R(A)⊥ → X (see [9], P.-146) of the operator
A, the generalized solution of Eq. (2) is x̂ = A† f .

The adjoint A∗ can be evaluated as A∗x(u) =
∫ 1

−1
τ (v, u)x(v)dv.

Denote

Gx(u) = A∗Ax(u) =
∫ 1

−1
τ (u, v)

[ ∫ 1

−1
τ (v, z)x(z)dz

]
dv =

∫ 1

−1
τ̃ (u, z)x(z)dz,

where τ̃ (u, z) = ∫ 1
−1 τ (u, v)τ (v, z)dv. It can be straightforwardly shown that G :

X → X is self-adjoint. We quote the following lemma from [9].

Lemma 1 ([9]) Then (G + αI) is invertible on L2[−1, 1] for every α > 0 and

‖(G + αI)−1‖L2 ≤ 1

α
, and ‖(G + αI)−1A∗‖L2 ≤ 1

2
√

α
,

where G is positive self-adjoint.

Let xα, α > 0 be the regularized solution then the Tikhonov regularized equation of
(2) is

(G + αI)xα = A∗ f. (3)

Let f̃ be the perturbed data such that ‖ f − f̃ ‖L2 ≤ δ. Let x̃α be the regularized
solution with respect to the perturbed data f̃ , then the Tikhonov regularized equation
of (2) is

(G + αI )̃xα = A∗ f̃ . (4)

We will now talk about the approximation method using Legendre polynomial
basis functions for Eq. (4). Let Xn represent the subspaces of X and the span of
Legendre orthonormal polynomials, i.e., Xn = span {φ0,φ1, . . . ,φn} and φi (s) =√

2i+1
2 Li (s), where Li ’s represent the Legendre polynomials of maximum degree i

on [−1, 1] for i = 0, 1, . . . , n.

The orthogonal projection Pn : X → Xn is then defined by Pnx = ∑n
j=0

〈
x,φ j

〉
φ j ,

x ∈ X, φ j ∈ Xn , where
〈
x,φ j

〉 = ∫ 1
−1 x(t)φ j (t)dt .

Lemma 2 ([2]) Then the following results of the orthogonal projection hold:

(i) ‖Pnx‖L2 ≤ p1‖x‖∞ for any x ∈ X, where p1 is a constant independent of n.
(ii) For any x ∈ Cr [−1, 1], there exists c > 0 independent of n such that
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‖Pnx − x‖L2 ≤ c n−r‖x (r)‖∞.

Define GM
n : X → X by

GM
n x = PnGx + GPnx − PnGPnx, x ∈ X. (5)

Next, we approximate the operator G by GM
n . Using GM

n , Eq. (4) is approximated as
to find x̃ M

α,n ∈ X such that

(GM
n + αI )̃xM

α,n = A∗ f̃ . (6)

This is the Legendre spectralmulti-projectionmethod for Eq. (4). To solve Eq. (6), we
applyPn and (I − Pn) on both sides of Eq. (6). Thenwe getPnGM

n x̃M
α,n + αPn x̃

M
α,n =

PnA∗ f̃ , i.e.,

PnG x̃ M
α,n + αPn x̃

M
α,n = PnA∗ f̃ (7)

and (I − Pn)(GM
n + αI )̃xM

α,n = (I − Pn)A∗ f̃ , i.e.,

x̃ M
α,n = Pn x̃

M
α,n − 1

α
(I − Pn)GPn x̃

M
α,n + 1

α
(I − Pn)A∗ f̃ , (8)

respectively. Substituting Eqs. (8) in (7), we get

Pn x̃
M
α,n = 1

α

[
Pn − 1

α
PnG(I − Pn)

]
A∗ f̃ − 1

α

[
Pn − 1

α
PnG(I − Pn)

]
GPn x̃

M
α,n.

This indicates that, we look for xM,1
n = Pn x̃ M

α,n from the following equation:

(SM
n G + αI)xM,1

n = SM
n A∗ f̃ , (9)

whereSM
n = Pn − 1

α
PnG(I − Pn). Now, by using Eq. (8), we can get x̃ M

α,n = xM,1
n +

xM,2
n , where xM,2

n = 1
α
(I − Pn)(A∗ f̃ − GxM,1

n ).

Theorem 1 Let τ (., .) ∈ C(r,r)([−1, 1] × [−1, 1]), r ≥ 1. Then the following out-
come is valid:

‖GM
n − G‖L2 = O(n−r ).

Proof We have

‖(GM
n − G)x‖L2 = ‖(I − Pn)G(I − Pn)x‖L2

≤ ‖G(I − Pn)x‖L2‖(I − Pn)‖L2 ≤ √
2(1 + p1) ‖G(I − Pn)x‖∞.
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Now, using orthogonality of (Pn − I), Lemma 2 and Cauchy–Schwarz inequality,
we get

‖G(Pn − I)x‖∞ = sup
u∈[−1,1]

∣∣∣
∫ 1

−1
τ̃ (u, z)(I − Pn)x(z)dz

∣∣∣
≤ sup

u∈[−1,1]
‖(I − Pn )̃τ (u, .)‖L2‖x‖L2

≤ c n−r sup
u∈[−1,1]

‖τ̃ (r,0)
u ‖∞‖x‖L2 ≤ B1c n

−r‖x‖L2 , (10)

where B1 = supu∈[−1,1] ‖τ̃ (r,0)
u ‖∞. Now, substituting estimate (10) in the above esti-

mate of (10), we obtain the required result.

We show that for sufficiently large n, and for every α > 0, GM
n + αI is invertible in

the next theorem.

Theorem 2 For n large enough and for every α > 0, the operator GM
n + αI :

L2[−1, 1] → L2[−1, 1] is invertible and the following outcomes are true:

‖(GM
n + αI)−1‖L2 ≤ 2

α
and ‖(GM

n + αI)−1A∗‖L2 ≤ 1√
α
.

Proof From Lemma 1, we have G + αI is invertible. Then, we can write

GM
n + αI = GM

n − G + G + αI = (G + αI)[I + (G + αI)−1(GM
n − G)].

Since from Theorem 1, ‖GM
n − G‖L2 converges to 0 as n → ∞ then, n choosen

as sufficiently large such that ‖GM
n − G‖L2 < α

2 . Now, using Lemma 1 and above
equation, we obtain

‖(G + αI)−1(GM
n − G)‖L2 ≤ ‖(G + αI)−1‖L2‖GM

n − G‖L2 ≤ 1

2
< 1. (11)

Therefore, I + (G + αI)−1(GM
n − G) is invertible. Thus, the invertibility of GM

n +
αI follows by using the invertibility of I + (G + αI)−1(GM

n − G). Now, using
Lemma 1 and estimate (11), we obtain

‖(GM
n + αI)−1‖L2 ≤ ‖[I + (G + αI)−1(GM

n − G)]−1‖L2‖(G + αI)−1‖L2

≤ ‖(G + αI)−1‖L2

1 − ‖(G + αI)−1‖L2‖GM
n − G‖L2

≤ 2

α
,

which proves the first inequality. In the similar manner, by using estimate (11) and
Lemma 1, we obtain ‖(GM

n + αI)−1A∗‖L2 ≤ 1√
α
. This completes the proof.
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3 Convergence Rates

Let xM
α,n be the solution of equation

(GM
n + αI)xM

α,n = A∗ f. (12)

Theorem 3 Then, for x̂ ∈ R((A∗A)ν) and α = d1 δ
2

2ν+1 , some constant d1 > 0 and
0 < ν ≤ 1, the following outcome is valid:

‖x̂ − x̃ M
α,n‖L2 = O(δ

2ν
2ν+1 ).

Proof Consider

x̂ − x̃ M
α,n = (̂x − xα) + (xα − xM

α,n) + (xM
α,n − x̃ M

α,n). (13)

Using Eqs. (3) and (12), we obtain

xα − xM
α,n = (G + αI)−1A∗ f − (GM

n + αI)−1A∗ f

= (GM
n + αI)−1(GM

n − G)(G + αI)−1A∗ f
= (GM

n + αI)−1(GM
n − G)(xα − x̂) + (GM

n + αI)−1(GM
n − G )̂x . (14)

Using G = A∗A, we get

(GM
n + αI)−1(GM

n − G )̂x = (GM
n + αI)−1(Pn − I)G(Pn − I )̂x

= (GM
n + αI)−1(Pn − I)A∗A(Pn − I )̂x . (15)

From estimate (11) for sufficiently large n and Theorem 2, we obtain

‖(GM
n + αI)−1‖L2‖GM

n − G‖L2 < 1. (16)

Combining estimates (14), (15) and (16), and Theorem 2, we obtain

‖xα − xM
α,n‖L2

≤ ‖(GM
n + αI)−1‖L2‖GM

n − G‖L2‖xα − x̂‖L2 + ‖(GM
n + αI)−1(GM

n − G )̂x‖L2

< ‖xα − x̂‖L2 + ‖(GM
n + αI)−1‖L2‖(I − Pn)A∗‖L2‖A(I − Pn )̂x‖L2

≤ ‖xα − x̂‖L2 + 2

α
‖(I − Pn)A∗‖L2‖A(I − Pn )̂x‖L2 . (17)

Using estimate (12) and Eq. (6) with Theorem 2 and ‖ f − f̃ ‖L2 ≤ δ, we obtain
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‖xM
α,n − x̃ M

α,n‖L2 = ‖(GM
n + αI)−1A∗( f − f̃ )‖L2 ≤ δ√

α
. (18)

Now, combining estimates (17) and (18) with (13), we obtain

‖x̂ − x̃ M
α,n‖L2 ≤ 2‖xα − x̂‖L2 + 2

α
‖(I − Pn)A∗‖L2‖A(I − Pn )̂x‖L2 + δ√

α
. (19)

Next, applying Lemma 2 and Cauchy–Schwarz inequality, we obtain

‖(Pn − I)A∗x‖L2 ≤ c n−r sup
u∈[−1,1]

∣∣∣
∫ 1

−1

∂r

∂ur
τ (v, u)x(v)dv

∣∣∣
≤ √

2c n−r‖τ (0,r)‖∞‖x‖L2 . (20)

Similarly, the use of orthogonality of (Pn − I), Cauchy–Schwarz inequality and
Lemma 2 yield

‖A(Pn − I )̂x‖L2 = √
2 sup
u∈[−1,1]

| < τ (u, .), (I − Pn )̂x(.) > |

≤ √
2 sup
u∈[−1,1]

‖(I − Pn)τ (u, .)‖L2‖(I − Pn )̂x‖L2

≤ c n−2r sup
u∈[−1,1]

‖τ (r,0)(u, .)‖∞‖x̂‖r,∞ ≤ B2c n
−2r‖x̂‖r,∞, (21)

where B2 = supu∈[−1,1] ‖τ (r,0)(u, .)‖∞. Hence, from estimates (20) and (21), we get

‖(I − Pn)A∗‖L2 = O(n−r ) and ‖A(I − Pn )̂x‖L2 = O(n−2r ),

respectively. Thus, by selecting n sufficiently large such that n−r < δ, we get

‖(Pn − I)A∗‖L2 ≤ c δ and ‖A(Pn − I )̂x‖L2 ≤ c δ2. (22)

Now, combining estimate (19) with (22), we obtain

‖x̂ − x̃ M
α,n‖L2 ≤ 2‖xα − x̂‖L2 + 2c δ3

α
+ δ√

α
.

We know from Theorem 4.15 of [9] that ‖xα − x̂‖L2 = O(αν) for x̂ ∈ R((A∗A)ν).
Then, we obtain

‖x̂ − x̃ M
α,n‖L2 ≤ c

(
αν + δ3

α
+ δ√

α

)
. (23)



662 S. Patel et al.

If α = d1 δ
2

2ν+1 for some d1 > 0 and 0 < ν ≤ 1 in estimate (23), we obtain

‖x̂ − x̃ M
α,n‖L2 ≤ c d1 δ

2ν
2ν+1 + c

d1
δ3−

2
2ν+1 + c√

d1
δ1−

1
2ν+1 ≤ c δ

2ν
2ν+1 .

This concludes the theorem’s proof.

Remark 1 Under a priori parameter strategy, we obtain the optimal accuracy

O
(
δ

2ν
2ν+1

)
by picking α = d1 δ

2
2ν+1 for some d1 > 0 and ν ∈ (0, 1] in Theorem 3.

4 Arcangeli’s Discrepancy Principle

To obtain the parameter α for the Tikhonov regularized Eq. (6), Arcangeli’s discrep-
ancy principle will be discussed and we will also evaluate the optimal accuracy in
L2 norm.

We choose α = α(δ, n) [3] which satisfy the equation

δ p

αq
= ‖GM

n x̃M
α,n − A∗ f̃ ‖L2 , p, q ∈ Q+, (24)

for large n. Let {γn|n ∈ IN} be a sequence of numbers such that γn → 0 as n → ∞,
and satisfy

‖GM
n − G‖L2 ≤ ‖(I − Pn)G(I − Pn)‖L2 ≤ d0 γn, 0 < d0 < 1. (25)

Theorem 4 Then there exists a constant δ0 > 0 such that, for all α = α(δ, n), n ≥
N (δ) ∈ IN and for each δ ∈ (0, δ0], the solution to Eq. (24) is unique.

Proof For n ∈ IN and δ > 0, we define g on
[

γn
d0
,∞

)
as

g(α) = αq‖GM
n x̃M

α,n − A∗ f̃ ‖L2 . (26)

So, it is enough to show that if n ≥ N and N ∈ IN and δ ∈ (0, δ0] for some δ0 > 0,
∃ a positive number α = α(δ, n) such that g(α) = δ p. Also, d4 < ‖A∗ f̃ ‖L2 ≤ d5,
where d4 and d5 are constants. Now, using Eq. (6) and Theorem 2, we get

‖GM
n x̃M

α,n − A∗ f̃ ‖L2 = ‖ − αx̃ M
α,n‖L2

= ‖ − α(GM
n + αI)−1A∗ f̃ ‖L2

≤ α‖(GM
n + αI)−1‖L2‖A∗ f̃ ‖L2 ≤ α

2

α
d5 = d ′. (27)



Numerical Solution of the Fredholm Integral Equations … 663

Next, consider ‖A∗ f̃ ‖L2 ≤ ‖(GM
n + αI)(GM

n + αI)−1A∗ f̃ ‖L2 which gives

‖(GM
n + αI)−1A∗ f̃ ‖L2 ≥ ‖A∗ f̃ ‖L2

(α + ‖GM
n ‖L2)

. (28)

Using estimate (28), we get

‖GM
n x̃M

α,n − A∗ f̃ ‖L2 = ‖αx̃ M
α,n‖L2 = ‖α(GM

n + αI)−1A∗ f̃ ‖L2

≥ α
‖A∗ f̃ ‖L2

(α + ‖GM
n ‖L2)

≥ αd4
α + d3

. (29)

Let N2 ≥ N1 and N2 be sufficiently large such that when n ≥ N2,

γn

d0
≤

(
δ p

d ′

) 1
q

. (30)

Now, using estimates (27) and (30), we get

g

(
γn

d0

)
=

(
γn

d0

)q

‖GM
n x̃M

α,n − A∗ f̃ ‖L2 ≤ δ p

d ′ d
′ = δ p. (31)

Now denote γ̂ = sup{γn|n ∈ IN}, d ′′ = γ̂d4
γ̂+d0d3

and α0 = max
{

γ̂
d0
,
(

δ p

d ′′
) 1

q

}
. Then

α0 ≥ γ̂
d0

and α
q
0 ≥ δ p

d ′′ .

Now, using estimate (29), we obtain

g(α0) = α
q
0‖GM

n x̃M
α,n − A∗ f̃ ‖L2 ≥ α

q
0

α0d4
α0 + d3

≥ δ p

d ′′

(
γ̂
d0
d4

γ̂
d0

+ d3

)
= δ p

d ′′

(
γ̂d4

γ̂ + d0d3

)
= δ p. (32)

Then, from estimates (31) and (32), we have g

(
γn

d0

)
≤ δ p ≤ g(α0), on

[
γn

d0
,α0

]
.

Since g is continuous on

[
γn

d0
,α0

]
, by the use of Intermediate Value Theorem (ivt),

∃ α ∈
(

γn

d0
,α0

)
such that g(α) = δ p. Thus, we obtain the desired result.

Theorem 5 Let the parameter α be selected using the discrepancy principle (24).
Then there is a constant d1 > 0 and N ′′ ∈ IN such that α ≤ d1δ

p
1+q and δ p

αq ≤ c δη,

where η = min
{

p
1+q , 1 + p

2(1+q)

}
.



664 S. Patel et al.

Proof Multiplying αq on both sides of Eq. (29) and then using Eq. (24), we obtain

αq+1 d4
α + d3

≤ αq‖GM
n x̃M

α,n − A∗ f̃ ‖L2 = δ p.

Since δ ∈ (0, δ0], we get αq+1 d4
α

(
1 + d3

α

) ≤ δ p ≤ δ
p
0 . This implies

αq ≤ 1

d4

(
1 + d3

α

)
δ
p
0 ≤ 2

d4
δ
p
0 for α > d3.

As a result, α is bounded by a constant that is independent of δ and n. Using Eqs.
(6) and (24), we now obtain

‖A∗ f̃ ‖L2 − δ p

αq
= ‖A∗ f̃ ‖L2 − ‖GM

n x̃M
α,n − A∗ f̃ ‖L2

≤ ‖GM
n ‖L2‖x̃ M

α,n‖L2

= ‖GM
n ‖L2

‖GM
n x̃M

α,n − A∗ f̃ ‖L2

α
= ‖GM

n ‖L2
1

α

δ p

αq
= ‖GM

n ‖L2
δ p

αq+1
.

Hence, we get ‖A∗ f̃ ‖L2 ≤ δ p

αq + ‖GM
n ‖L2

δ p

αq+1 = δ p

αq+1 [α + ‖GM
n ‖L2 ]. This implies

αq+1 ≤ δ p

‖A∗ f̃ ‖L2

[α + ‖GM
n ‖L2 ] ≤ α + d3

d4
δ p.

Hence, there is a constant d1 > 0 such that

α ≤ d1 δ
p

1+q , where d1 =
(

α + d3
d4

) 1
1+q

. (33)

Next, using Eq. (6) and estimate (19), and since ‖x̂‖L2 and ‖x̂ − xα‖L2 are bounded,
we obtain

δ p

αq
= ‖GM

n x̃M
α,n − A∗ f̃ ‖L2 ≤ α[‖x̂ − x̃ M

α,n‖L2 + ‖x̂‖L2 ]

≤ α

[
2‖xα − x̂‖L2 + 2

α
‖(I − Pn)A∗‖L2‖A(I − Pn )̂x‖L2 + δ√

α
+ ‖x̂‖L2

]

≤ c (α + ‖(I − Pn)A∗‖L2‖A(I − Pn )̂x‖L2 + δ
√

α). (34)

Using estimates (20) and (21), we see that ‖(I − Pn)A∗‖L2‖A(I − Pn )̂x‖L2 =
O(n−3r ) → 0 as n → ∞. Then, we select N ′′ sufficiently large such that when
n ≥ N ′′,
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‖(I − Pn)A∗‖L2‖A(I − Pn )̂x‖L2 ≤ c δη, where η =
{

p

1 + q
, 1 + p

2(1 + q)

}
.

(35)
Now, substituting estimates (35) and (33) in estimate (34), we obtain

δ p

αq
≤ c (α + δη + δ

√
α) ≤ c

(
δ

p
1+q + δη + δ1+

p
2(1+q)

)
≤ c δη,

where η = min
{
1 + p

2(1+q) ,
p

1+q

}
. Thus, we get the desired outcome.

Theorem 6 Assume α is chosen in accordance with the discrepancy principle (24).
If x̂ ∈ R((A∗A)ν), for some 0 < ν ≤ 1, p and q satisfy p

2(1+q) < 1, then there exists
δ0 < 1 such that δ ∈ (0, δ0] and a constant c > 0 and N3 ∈ IN such that

‖x̂ − x̃ M
α,n‖L2 ≤ c

(
δ

pν
1+q + δμ− p

1+q + δ1−
p

2(1+q)

)
,

where μ = min
{

p(ν+1)
1+q , 1 + p

2(1+q)

}
. In particular, if p

1+q = 2
2ν+1 , then

‖x̂ − x̃ M
α,n‖L2 = O(δ

2ν
2ν+1 ).

Proof We know from Theorem 4.15 of [9] that ‖xα − x̂‖L2 = O(αν) for x̂ ∈
R((A∗A)ν). Substituting ‖(Pn − I)A∗‖L2‖A(Pn − I )̂x‖L2 = O(n−3r ) = εn in
estimate (19), we obtain

‖x̂ − x̃ M
α,n‖L2 ≤ 2‖xα − x̂‖L2 + 2εn

α
+ δ√

α
≤ c

(
αν + εn

α
+ δ√

α

)
. (36)

Since εn → 0 when n → ∞, we pick N3 to be sufficiently large such that when
n ≥ N3,

εn ≤ c δμ, where μ =
{
p(ν + 1)

1 + q
, 1 + p

2(1 + q)

}
. (37)

Now, by combining estimates (33) and (37) with estimate (36), we get

‖x̂ − x̃ M
α,n‖L2 ≤ c

(
δ

pν
1+q + δμ− p

1+q + δ1−
p

2(1+q)

)
. (38)

If μ = p(ν+1)
1+q or μ = 1 + p

2(1+q) , then from estimate (38), we obtain

‖x̂ − x̃ M
α,n‖L2 ≤ c

(
δ

pν
1+q + δ1−

p
2(1+q)

)
. (39)
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If p
1+q = 2

2ν+1 in estimate (39), we obtain ‖x̂ − x̃ M
α,n‖L2 ≤ c

(
δ

2ν
2ν+1 + δ1−

1
2ν+1

)
≤

c δ
2ν

2ν+1 . Thus, we obtain the desired result.

5 Numerical Examples

An example has been included in this section that illustrates the theoretical study of
Eq. (6) in both a priori and a posteriori parameter strategies under L2-norm.

Example 1 ([8]) Consider the fie of the first kind:

Ax(u) =
∫ 1

0

(v + u)2√
1 + v2

x(v)dv = 0.266419u2 + 0.390524u + 0.153738, 0 ≤ u ≤ 1,

where the exact solution is given by x̂(v) = v2.

Here, A is self-adjoint and x̂ = (A∗A)1/2v. Thus, x̂ ∈ R((A∗A)1/2), i.e., ν = 1/2.

A priori parameter strategy: Here, we choose α = d1δ
2

2ν+1 = d1δ for ν = 1
2 and

d1 > 0. For given δ, we choose α = d1δ, where d1 = 0.8 and 0.55 in Table 1.
Table 1 demonstrates that the estimated convergence rate is O(δ

1
2 ) which agrees

to the theoretical conclusion in Theorem 3.

A posteriori parameter choice strategy: In Tables 2 and 3 we show the errors
between x̃ M

α,n and x̂ in L2-norm under Arcangeli’s discrepancy principle for various
choices of p and q, initial choice α0 = 1 and the tolerance ε =1.0e-04.

Table 1 Numerical results for α = 0.8 ∗ δ and α = 0.55 ∗ δ

δ = 0.12252 and α = 0.8 ∗ δ = 0.098016 δ = 0.117 and α = 0.55 ∗ δ = 0.06435

n ‖x̂ − x̃ Mα,n‖L2 ‖x̂ − x̃ Mα,n‖L2/δ1/2 ‖x̂ − x̃ Mα,n‖L2 ‖x̂ − x̃ Mα,n‖L2/δ1/2

5 2.726069e-01 0.77881331 2.529041e-01 0.73937199

6 2.240525e-01 0.64009801 1.759486e-01 0.51439046

7 7.183671e-02 0.20523100 5.905306e-02 0.17264320

Table 2 For δ = 7.101e-01, p = 1, q = 1, and k = 5 (convergence rate is δ1/4)

n α ‖x̂ − x̃ Mα,n‖L2 ‖x̂ − x̃ Mα,n‖L2/δ1/4 α/δ
p

1+q

3 7.677087e-01 6.666785e-01 0.726250 0.911038

4 7.718581e-01 6.534791e-01 0.711871 0.915962

5 8.168499e-01 5.225942e-01 0.569291 0.969354
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Table 3 For δ = 6.521e − 01, p = 2, q = 1 and k = 3 (convergence rate is δ0.5)

n α ‖x̂ − x̃ Mα,n‖L2 ‖x̂ − x̃ Mα,n‖L2/δ1/4 α/δ
p

1+q

3 5.993167e-01 6.574515e-01 0.814154 0.919056

4 6.035490e-01 6.394046e-01 0.791805 0.925546

5 6.508798e-01 4.624276e-01 0.572646 0.998128

The numerical findings in Tables 2 and 3 demonstrate that, for p = 2 and q = 1,
we get the optimal convergence rate δ

1
2 , which accords with our theoretical estima-

tions in Theorem 6. The outcomes further demonstrate that α ≤ d1 δ
p

1+q for some
d1 > 0, which coincide with the conclusion of Theorem 5.
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Local Convergence of a Family of
Kurchatov Like Methods for Nonlinear
Equations

Abhimanyu Kumar and Soni Kumari

Abstract The main purpose of this research paper is to establish the local con-
vergence analysis of k-step Kurchatov methods for solving nonlinear equations.
We have provided the sufficiently adequate convergence conditions for this purpose
which gives us the the better convergence results. To elaborate the study done by us,
we have also worked on a number of numerical examples.

Keywords Local convergence · Iterative methods · Kurchatov method ·
Nonlinear equations

1 Introduction

Consider the problem to approximate the nonlinear operator equation

H(r) = 0, (1)

where H : Ω0 ⊆ A → B. HereΩ0 specify the open convex domain of Banach space
A; B is also a Banach space. It is not possible to find the solution of (1) in closed
form always and therefore iterativemethods have been generally used to approximate
the solution. Many researchers [10, 23] have thus motivated towards this direction
and extensively written many research articles and monographs for this purpose.
They have also developed many iterative methods for this purpose. It is known that
for different types of problems, different iterative methods have been being used.
Convergence analysis of iterative methods are also important in order to ensure the
applicability of these methods. Several types of convergence analysis have also been
performed for this purpose. Semilocal and local convergence analysis are some of
them. In semilocal convergence analysis [1, 5, 15, 16], we develop the domain
from where the starting points can be chosen which ensures the convergence of the
method. In local convergence analysis [2, 6, 8, 19, 21, 22, 24, 27], we find the radii
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of convergence balls centered at the solution. Generally the radii of convergence balls
are found small and one always try to enlarge it.

However, one of the most popular quadratic convergence method is known as
Newton’s method which is used for solving (1) and is given by

rn+1 = rn − H ′(rn)
−1H(rn), (2)

Here r0 ∈ Ω0 is the starting point.

Remark 1 Here and throughout this paper, H ′(rn)
−1 denotes the inverse of the

whole operator (H ′(rn))
−1 and n denotes the integer starting from 0.

Many authors [4, 11, 12, 25] have developed the convergence analysis by weak-
ening the convergence criteria of (2). However, it has also some limitations as it
uses the Fréchet derivative at each iteration. Some researchers have used its alternate
Secant method [9, 28] to avoid the Fréchet derivative at each iteration. This method
is given by

rn+1 = rn − [rn−1, rn; H ]−1H(rn), (3)

Here r−1, r0 ∈ Ω0 is the starting point. It converges superlinear and it’s order of
convergence is 1+√

5
2 . Here [:, :, H ] is the divided difference and is defined by

[a, b; H ](a − b) = H(a) − H(b). Another method which uses the divided differ-
ences is known as Kurchatov’s method [26], given by

rn+1 = rn − [2rn − rn−1, rn−1; H ]−1H(rn). (4)

Here r−1, r0 ∈ Ω0 is the starting point. Many researchers have also studied (4) and
established the local and semilocal convergence analysis using different convergence
conditions. Many authors [2, 3, 7, 13, 17] have also constructed the multipoint
version of (2) and established the convergence analysis. However the convergence
analysis of some fixed version of (4) can be found in [18, 20, 26].

In this paper, we have established the multipoint version of (4) which generalizes
the above method. The method is given by,

r1n = r0n − [2r0n − r0n−1, r0n−1; H ]−1H(r0n )

r2n = r1n − [2r0n − r0n−1, r0n−1; H ]−1H(r1n )

...

rk
n = rk−1

n − [r0n − r0n−1, r0n−1; H ]−1H(rk−1
n ) (5)

where r0n+1 = rk
n . We have also developed the local convergence analysis of (5) in

the later on section of this paper.
Finally the paper is constructed as follows: Introduction forms Sect. 1. In Sect. 2,

some preliminaries and auxiliary results are presented. We have used some functions
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and estimated for the radii of convergence balls of (5) and then established the
convergence theorem for this. Some numerical examples are also given in Sect. 3.
Finally, conclusions and future scopes are included in Sect. 4.

2 Local Convergence Analysis

In this section, we present the local convergence of family of Kurchatov methods (5)
for solving (1). For this purpose, we have constructed some auxiliary nonnegative
parameters and constant that will be appear at the proof of main theorems. We start
with the introduction of some functions and parameters. Let L > 0, L∗ > 0 and
α > 0 be some nonzero and positive real numbers. We define a function f1(t, s) on

the interval
(
0, 1

4L∗

)
, given by

f1(t, s) = L(t + 2s)

1 − 2L∗(t + s)
, (6)

the function g1(t, s) is now defined by

g1(t, s) = f1(t, s) − 1.

For the instant, we have assumed that t = s as for the convenience of the proof of
our main theorem later. So that

g1(t) = f1(t) − 1

= 3Lt

1 − 4L∗t
− 1.

Weget that g1(0) = −1 < 0 and g1(
1

4L∗ )
− → ∞. This shows that using intermediate

value theorem that g1(t) has atleast one zero in
(
0, 1

4L∗

)
, we identify it as x1 and we

conclude that 0 < g1 < 1 in (0, x1). However, it may easily deduce that x1 = 1
3L+4L∗ .

Now, we define another function f2(t, s) on the interval (0, x1), given by

f2(t, s) = L((2 + f1(t, s))t + 2s)

1 − 2L∗(t + s)
, (7)

the function g2(t, s) is now defined by

g2(t, s) = f2(t, s) − 1.

For the instant, we have assumed that t = s as for the convenience of the proof of
our main theorem later. So that
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g2(t) = f2(t) − 1

= L((2 + f1(t))t + 2t)

1 − 4L∗t
− 1.

We get that g2(0) = −1 and g2(
1

4L∗ )
− → ∞. This shows using intermediate value

theorem that g2(t) has atleast one zero in
(
0, 1

4L∗

)
, we identify it as x2. Now, using

Mathematical induction on ′i ′, we define functions fi and gi on the interval (0, xi−1),
by

fi (t, s) = L((2 + f1(t, s) f2(t, s)... fi−1(t, s))t + 2s)

1 − 2L∗(t + s)
, and (8)

the function gi (t, s) is now defined by

gi (t, s) = fi (t, s) − 1.

For the instant, we have assumed that t = s as for the convenience of the proof of
our main theorem later. So that

gi (t) = fi (t) − 1

= L((2 + f1(t) f2(t)... fi−1(t))t + 2t)

1 − 4L∗(t)
− 1.

We get that gi (0) = −1 and gi (
1

4L∗ )
− → ∞. This shows using intermediate value

theorem that gi (t) has atleast one zero in
(
0, 1

4L∗

)
, we identify it as xi . Now, we take

x∗ = min{xi } for i = 1, 2, 3...

In this way, we assert that 0 < fi (t) < 1 on (0, x∗).

Remaining of our work here, we denote the open and closed balls centered at x
and radius y by U(x, y) and U(x, y), respectively throughout.

We are now in position to present our main theorem of local convergence analysis
here.

Theorem 1 Let H : Ω ⊂ A → B be a Fréchet differentiable operator. Suppose
there are some parameters L > 0, L∗ > 0, r∗ such that H(r∗) = 0 and it satisfy
the following conditions:
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H ′(r∗)−1 ∈ L(B, A),

‖H ′(r∗)−1 ([a, b; H ] − H ′(r∗)
) ‖ ≤ L∗(‖a − r∗‖ + ‖b − r∗‖), (9)

‖H ′(r∗)−1 ([a, b; H ] − [c, d; H ]) ‖ ≤ L(‖a − c‖ + ‖b − d‖). (10)

∀a, b, c, d ∈ Ω0 = Ω
⋂

U
(

r∗,
1

4L∗

)
.

Then the iteration (5) executed by r00 , r0−1 ∈ U(r∗, x∗) − r∗ is well defined, exist at
U(r∗, x∗) and converges to r∗. Moreover, the following estimates hold true.

‖r1n − r∗‖ ≤ f1(‖r0n − r∗‖, ‖r0n−1 − r∗‖)‖r0n − r∗‖ (11)

‖r i
n − r∗‖ ≤ fi (‖r0n − r∗‖, ‖r0n−1 − r∗‖)‖r i−1

n − r∗‖ for i ≥ 2. (12)

Where the functions f1, f2, ... are defined in (6), (7) and (8) . Furthermore r∗ is the
unique solution of (1) on U(r∗, x) where x < 1

L∗ and the uniqueness region can be

established in U(r∗, x)
⋂

Ω0 .

Proof We shall use the Mathematical induction on ′n′ and ′i ′ to prove the above
theorem. For this, we first abbreviate [2r0n − r0n−1, r0n−1; H ] as Cn . Now, using (9)
and triangle inequalities, we get

‖I − H ′(r∗)−1C0‖ = ‖H ′(r∗)−1(C0 − H ′(r∗))‖, (’I’ denotes here the identity operator on A)

= ‖H ′(r∗)−1([2r00 − r0−1, r0−1; H ] − H ′(r∗))‖
≤ L∗(‖2r00 − r0−1 − r∗‖ + ‖r0−1 − r∗‖)
= L∗(‖2r00 − 2r∗ − r0−1 + r∗‖ + ‖r0−1 − r∗‖)
≤ L∗(2‖r00 − r∗‖ + 2‖r0−1 − r∗‖) < 4L∗r∗ < 1.

Using Banach Lemma on invertible operators [14], we get that

‖C−1
0 H ′(r∗)‖ ≤ 1

1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) . (13)

Using (5), we have

r10 − r∗ = r00 − r∗ − [2r00 − r0−1, r0−1; H ]−1H(r00 )

= [2r00 − r0−1, r0−1; H ]−1 ([2r00 − r0−1, r0−1; H ](r00 − r∗) − H(r00 ) − H(r∗)
)

= [2r00 − r0−1, r0−1; H ]−1H ′(r∗)H ′(r∗)−1 ([2r00 − r0−1, r0−1; H ](r00 − r∗) − [r00 , r∗; H ](r00 − r∗)
)

= [2r00 − r0−1, r0−1; H ]−1H ′(r∗)H ′(r∗)−1 ([2r00 − r0−1, r0−1; H ] − [r00 , r∗; H ]) (r00 − r∗). (14)

Taking norm on both sides of (14), we have

‖r10 − r∗‖ ≤ ‖[2r00 − r0−1, r0−1; H ]−1H ′(r∗)‖‖H ′(r∗)−1 ([2r00 − r0−1, r0−1; H ] − [r00 , r∗; H ]) ‖‖r00 − r∗‖.
(15)
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From (10), (13) and (15), this provides

‖r10 − r∗‖ ≤ L(‖r00 − r0−1‖ + ‖r0−1 − r∗‖)
1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖)‖r00 − r∗‖

≤ L(‖r00 − r∗‖ + 2‖r0−1 − r∗‖)
1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖)‖r00 − r∗‖

= f1(‖r00 − r∗‖, ‖r0−1 − r∗‖)‖r00 − r∗‖.

This satisfies (11). Using the domain of our definition and hypothesis of the theorem
we have that f1(‖r00 − r∗‖, ‖r0−1 − r∗‖) < 1 and this gives ‖r10 − r∗‖ < ‖r00 − r∗‖.
This proves the theorem for n = 0 and i = 1. Now, we proceed the theorem for n = 0
and i = 2.

r20 − r∗ = r10 − r∗ − [2r00 − r0−1, r0−1; H ]−1H(r10 )

= [2r00 − r0−1, r0−1; H ]−1 ([2r00 − r0−1, r0−1; H ](r10 − r∗) − H(r10 ) − H(r∗)
)

= [2r00 − r0−1, r0−1; H ]−1H ′(r∗)H ′(r∗)−1 ([2r00 − r0−1, r0−1; H ](r10 − r∗) − [r10 , r∗; H ](r10 − r∗)
)

= [2r00 − r0−1, r0−1; H ]−1H ′(r∗)H ′(r∗)−1 ([2r00 − r0−1, r0−1; H ] − [r00 , r∗; H ]) (r10 − r∗). (16)

Taking norm on both sides of (16), we have

‖r20 − r∗‖ ≤ ‖[2r00 − r0−1, r0−1; H ]−1H ′(r∗)‖‖H ′(r∗)−1 ([2r00 − r0−1, r0−1; H ] − [r10 , r∗; H ]) ‖‖r10 − r∗‖.
(17)

From (10), (13) and (17), this provides

‖r20 − r∗‖ ≤ L(‖2r00 − r0−1 − r10‖ + ‖r0−1 − r∗‖)
1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖r10 − r∗‖

= L(‖2r00 − 2r∗ − r0−1 + r∗ − r10 + r∗‖ + ‖r0−1 − r∗‖)
1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖r10 − r∗‖

≤ L(2‖r00 − r∗‖ + ‖r10 − r∗‖ + 2‖r0−1 − r∗‖)
1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖r10 − r∗‖

≤ L((2 + f1(‖r00 − r∗‖, ‖r0−1 − r∗‖))‖r00 − r∗‖ + 2‖r0−1 − r∗‖)
1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖r10 − r∗‖

= f2(‖r00 − r∗‖, ‖r0−1 − r∗‖)‖r10 − r∗‖.

This satisfies (12). Using the domain of our definition and hypothesis of the theorem
we have that f2(‖r00 − r∗‖, ‖r0−1 − r∗‖) < 1 and this gives ‖r20 − r∗‖ < ‖r10 − r∗‖.
This proves the theorem for n = 0 and i = 2. Now using induction hypothesis, sup-
pose it is true for n = 0 and i = l − 1 which justifies ‖rl−1

0 − r∗‖ ≤ fl−1(‖r00 −
r∗‖, ‖r0−1 − r∗‖)‖rl−2

0 − r∗‖, fl−1(‖r00 − r∗‖, ‖r0−1 − r∗‖) < 1 and ‖rl−1
0 − r∗‖ <

‖rl−2
0 − r∗‖, to prove for i = l, we have
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rl
0 − r∗ = rl−1

0 − r∗ − [2r00 − r0−1, r0−1; H ]−1H(rl−1
0 )

= [2r00 − r0−1, r0−1; H ]−1
(
[2r00 − r0−1, r0−1; H ](rl−1

0 − r∗) − H(rl−1
0 ) − H(r∗)

)

= [2r00 − r0−1, r0−1; H ]−1H ′(r∗)H ′(r∗)−1
(
[2r00 − r0−1, r0−1; H ](rl−1

0 − r∗) − [rl−1
0 , r∗; H ](rl−1

0 − r∗)
)

= [2r00 − r0−1, r0−1; H ]−1H ′(r∗)H ′(r∗)−1
(
[2r00 − r0−1, r0−1; H ] − [rl−1

0 , r∗; H ]
)

(rl−1
0 − r∗). (18)

Taking norm on both sides of (18), we have

‖rl
0 − r∗‖ ≤ ‖[2r00 − r0−1, r0−1; H ]−1H ′(r∗)‖‖H ′(r∗)−1

(
[2r00 − r0−1, r0−1; H ] − [rl−1

0 , r∗; H ]
)

‖‖rl−1
0 − r∗‖. (19)

From (10), (13) and (19), this provides

‖rl
0 − r∗‖ ≤ L(‖2r00 − r0−1 − rl−1

0 ‖ + ‖r0−1 − r∗‖)
1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖rl−1

0 − r∗‖

= L(‖2r00 − 2r∗ − r0−1 + r∗ − rl−1
0 + r∗‖ + ‖r0−1 − r∗‖)

1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖rl−1
0 − r∗‖

≤ L(2‖r00 − r∗‖ + ‖rl−1
0 − r∗‖ + 2‖r0−1 − r∗‖)

1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖rl−1
0 − r∗‖

≤ L((2‖r00 − r∗‖ + fl−1(‖r00 − r∗‖, ‖r0−1 − r∗‖))‖rl−2
0 − r∗‖ + 2‖r0−1 − r∗‖)

1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖rl−1
0 − r∗‖

≤ L((2 + fl−1 . . . f1)‖r00 − r∗‖ + 2‖r0−1 − r∗‖)
1 − 2L∗(‖r00 − r∗‖ + ‖r0−1 − r∗‖) ‖rl−1

0 − r∗‖

= fl (‖r00 − r∗‖, ‖r0−1 − r∗‖)‖rl−1
0 − r∗‖.

This satisfies (12). Using the domain of our definition and hypothesis of the theorem
we have that fl(‖r00 − r∗‖, ‖r0−1 − r∗‖) < 1 and this gives ‖rl

0 − r∗‖ < ‖rl−1
0 − r∗‖.

This proves the induction hypothesis for all i and n = 0. Thus, it is proved here that
‖rk

0 − r∗‖ < ‖rk−1
0 − r∗‖ < . . . < ‖r00 − r∗‖. Now in order to prove the induction

for n, assume it is true for some n = g which in turn provides ‖rk
g − r∗‖ < ‖rk−1

g −
r∗‖ < . . . < ‖r0g − r∗‖ and ‖r i

g − r∗‖ ≤ fi ((‖r0g − r∗‖, ‖r0g−1 − r∗‖)‖r i−1
g − r∗‖.

‖I − H ′(r∗)−1Cg+1‖ = ‖H ′(r∗)−1(Cg+1 − H ′(r∗))‖
= ‖H ′(r∗)−1([2r0g+1 − r0g , r0g ; H ] − H ′(r∗))‖
≤ L∗(‖2r0g+1 − r0g − r∗‖ + ‖r0g − r∗‖)
= L∗(‖2r0g+1 − 2r∗ − r0g + r∗‖ + ‖r0g − r∗‖)
≤ L∗(2‖r0g+1 − r∗‖ + 2‖r0g − r∗‖)
< L∗(2‖r00 − r∗‖ + 2‖r0−1 − r∗‖) < 4L∗r∗ < 1.

It can be easily estimated using Banach lemma [14] that

‖C−1
g+1H ′(r∗)‖ ≤ 1

1 − 2L∗(‖r0g+1 − r∗‖ + ‖r0g − r∗‖) . (20)
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Now,

r1g+1 − r∗ = r0g+1 − r∗ − [2r0g+1 − r0g , r0g ; H ]−1H(r0g+1)

= [2r0g+1 − r0g , r0g ; H ]−1
(
[2r0g+1 − r0g , r0g ; H ](r0g+1 − r∗) − H(r0g+1) − H(r∗)

)

= [2r0g+1 − r0g , r0g ; H ]−1H ′(r∗)H ′(r∗)−1
(
[2r0g+1 − r0g , r0g ; H ](r0g+1 − r∗) − [r0g+1, r∗; H ](r0g+1 − r∗)

)

= [2r0g+1 − r0g , r0g ; H ]−1H ′(r∗)H ′(r∗)−1
(
[2r0g+1 − r0g , r0g ; H ] − [r0g+1, r∗; H ]

)
(r0g+1 − r∗). (21)

Taking norm on both sides of (21), we have

‖r1g+1 − r∗‖ ≤ ‖[2r0g+1 − r0g , r0g ; H ]−1H ′(r∗)‖H ′(r∗)−1
(
[2r0g+1 − r0g , r0g ; H ] − [r0g+1, r∗; H ]

)
‖r0g+1 − r∗‖. (22)

From (10), (20) and (22), this provides

‖r1g+1 − r∗‖ ≤ L(‖r0g+1 − r0g ‖ + ‖r0g − r∗‖)
1 − 2L∗(‖r0g+1 − r∗‖ + ‖r0g − r∗‖)‖r0g+1 − r∗‖

≤ L(‖r0g+1 − r∗‖ + 2‖r0g − r∗‖)
1 − 2L∗(‖r0g+1 − r∗‖ + ‖r0g − r∗‖))‖r0g+1 − r∗‖

= f1(‖r0g+1 − r∗‖, ‖r0g − r∗‖)‖r0g+1 − r∗‖.

This satisfies (11). Using the domain of our definition and hypothesis of the theorem
we have that f1(‖r0g+1 − r∗‖, ‖r0g − r∗‖) < 1 and this gives ‖r1g+1 − r∗‖ < ‖r0g+1 −
r∗‖. Using the similar lines and proceeding in the above manner, it can be easily
verified that

‖r2g+1 − r∗‖ ≤ f2(‖r0g+1 − r∗‖, ‖r0g − r∗‖)‖r1g+1 − r∗‖

and

‖r i
g+1 − r∗‖ ≤ fi (‖r0g+1 − r∗‖, ‖r0g − r∗‖)‖r i−1

g+1 − r∗‖ ∀ i ≥ 2.

Thus, using induction hypothesis this holds for all n. Now, we shall show the con-
vergence of the iterates {rl

n} where l = 1, 2, . . ., k, n = 0, 1, 2, . . .. For this,

‖rk
n+1 − r∗‖ ≤ fk(‖r0n+1 − r∗‖, ‖r0n − r∗‖)‖rk−1

n+1 − r∗‖
< fk‖rk−1

n+1 − r∗‖ < fk fk−1‖rk−2
n+1 − r∗‖

< . . . < fk fk−1 . . . f1‖r0n+1 − r∗‖

Proceeding in this manner, we arrive at

‖rk
n+1 − r∗‖ < ( fk fk−1 . . . f1)

n+1 ‖r00 − r∗‖



Local Convergence of a Family of Kurchatov Like Methods … 677

As each of fi < 1, so rk
n+1 → r∗ for each k as n → ∞. Now to show the uniqueness

part of the theorem. Suppose q∗ be the another solution of (1) so that H(q∗) = 0 and
H(r∗) = H(q∗) or [r∗.q∗; H ](r∗ − q∗) = 0. Now,

‖I − H ′(r∗)−1[r∗.q∗; H ]‖ = ‖H ′(r∗)−1(H ′(r∗) − [r∗.q∗; H ])‖
≤ L∗‖r∗ − q∗‖ < 1.

Using Banach lemma on invertible operators [14] that [r∗.q∗; H ] exists, nonzero and
therefore r∗ = q∗.

3 Numerical Examples

Example 1 Let A = B = C[0, 1] be the space on continuous functions defined on
[0, 1] and consider the integral equation

H(r)(s) = r(s) − λ

∫ 1

0

s

s + t
r2(t)dt, (23)

where r(s) is continuous function in C[0, 1] and t, s ∈ [0, 1]. Now,

H ′(r)u(s) = u(s) − 2λ
∫ 1

0
r(t)u(t)dt

and

‖H ′(r) − H ′(s)‖ ≤ ‖2λ
∫ 1

0

s

s + t
[r(t) − s(t)]‖dt

≤ |λ|2 max
s∈[0,1]

∣∣∣∣
∫ 1

0

s

s + t

∣∣∣∣ ‖r(t) − s(t)‖
≤ |λ|2log(2)‖r(t) − s(t)‖

‖[a, b, H ] − [c, d, H ]‖ ≤
∫ 1

0
‖[H ′(a(t) + θ(b(t) − a(t))) − H ′(c(t) + θ(d(t) − c(t)))]‖dθ

≤ 2|λ|log(2)
∫ 1

0
‖(a(t) + θ(b(t) − a(t))) − (c(t) + θ(d(t) − c(t)))‖dθ

= 2|λ|log(2)
∫ 1

0
‖(1 − θ)(a(t) − c(t)) + θ(b(t) − d(t))‖dθ

≤ λlog(2)(‖a − c‖ + ‖b − d‖)
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Table 1 List of constants appear in the examples

r∗ L L∗
Example-1(λ = 1) 0 log(2) log(2)

Example-2 0 e
2

e−1
2

Example-3 0 3 3
2

Table 2 Radii of convergence balls

Example-1 Example-2 Example-3

k = 1 0.206099291622195 0.133085149027196 0.066666666666667

k = 2 0.166867446157297 0.102555747111161 0.050157358847771

uniqueness ball 1.442695040888963 1.163953413738653 0.666666666666667

Example 2 Let A = B = R
3,Ω0 = U(0, 1), r∗ = (0, 0, 0)T . Define function H on

Ω for r = (r1, r2, r3)t by

H(r) =
(

er1 − 1,
e − 1

2
r2

2 + r2, r3

)t

H ′(r) =
⎛
⎝

er1 0 0
0 (e − 1)r2 0
0 0 1

⎞
⎠

Example 3 Let A = B = C[0, 1] and consider the integral equation

H(r)(s) = r(s) −
∫ 1

0
sur3(u)du,

where r(s) is continuous function in C[0, 1].
In order to find the numerical parameters appearing in the theorem, we follow the

same manner as shown in the first example and tabulated in Table 1. Now, using the
tabulated values of the parameters in Table 1, we present the radii of convergence
balls for the case k = 1 and k = 2 in Table 2.
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4 Conclusions and Future Scope

In this paper, we present and intended to present a family of Kurchatov’s likemethod.
We have established the convergence theorem for computing the radii of convergence
balls. In literature, we find the convergence theorems for this family of methods in
some special cases. However, we have presented for multipoint method and the
analysis found in the literature may be some special cases of our work. In this way,
we have generalized the method and presented the local convergence analysis.

Due to the page limitation, we were not be able to cover the more features of this
method. However, this is also a complete study for local convergence. More work
is to be done on this method. In future, we shall estimate the order of convergence
in each step and also found its computational order of convergence of this proposed
work.We shall also try to establish its semilocal convergence analysis. Using domain
of parameters, we will also try to enlarge its domain for the starting points.
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An Effective Scheme for Solving a Class
of Second-Order Two-Point Boundary
Value Problems

Saurabh Tomar, Soniya Dhama, and Kuppalapalle Vajravelu

Abstract A piecewise Adomian decomposition approach is presented in this work
to handle a class of nonlinear two-point boundary value problems effectively. The
suggested technique enables quick convergence and helps to overcome the limita-
tions of the traditional Adomian decomposition method in instances where it fails to
produce a reasonably decent approximate solution or when a significant number of
iterations are necessary to get a convergent series solution. Three numerical examples
are given to demonstrate the method’s applicability and efficacy.

Keywords Adomian decomposition method · Boundary value problems ·
Approximate solutions

1 Introduction

In thiswork, we consider the following nonlinear two-point boundary value problems
(TPBVPs)

u′′(x) − f (x, u(x), u′(x)) = 0, a ≤ x ≤ b, (1)

subject to
α1u(a) + α2u

′(a) = α, β1u(b) + β2u
′(b) = β, (2)
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whereα1,α2,β1,β2,α,β satisfy (α1β2 − β1α2 + α1β1(b − a)) �= 0 and f (x, u, u′)
is a continuous real valued function. These problems have a wide range of applica-
tions in applied science and engineering [13, 14, 20]. As a result of their relevance in
real-world applications, these types of problems have garnered considerable atten-
tion from academics and scientists. Due to their nonlinearity, closed-form solutions
to these problems are often hard to acquire. As a result, numerous analytical and
numerical approximation approaches have been developed. Some well-known tech-
niques such as shooting methods [24], finite difference techniques [9], finite element
schemes [8], collocation techniques [25], Galerkin methods [19], variational itera-
tionmethods [15, 17, 21], homotopy perturbationmethod [26] and other methods for
various boundary value problems are given in [1, 7, 10, 11, 16, 18, 22, 23, 27–30]
have been introduced to solve these problems.

The Adomian decomposition method (ADM) [2–5] is a well-known and power-
ful approach for tackling problems of ordinary, partial, integro differential equations,
and other types of problems using a direct recursive algorithm. As opposed to pertur-
bation techniques, ADM solves beginning and BVPs without needing assumptions
of linearization and the presence of a small parameter in physical problems. The
nonlinearity of the issue is addressed by decomposing the nonlinear operator into a
sequence of functions known as Adomian polynomials.

The primary purpose of this work is to develop a piecewise ADM (PADM) to get a
convergent approximation solution for the TPBVPs (1). The PADM works well and
improves the convergence rate for situations where the conventional ADM diverges,
slows, or requires a large number of series terms of the approximation solution to
achieve a convergent approximate series solution. The presented method’s major
goals are quick convergence and the use of a few terms to get a highly accurate
approximation solution to problems. In the PADM, the interval [a, b] is divided
into equal-sized sub-intervals, and then the ADM is applied to the sub-intervals.
The approximate analytical solution is then derived in terms of unknown constants
in each sub-interval. The computation of unknown constants is then calculated by
letting that u(x) and u′(x) are continuous on the boundary of each sub-interval,
and the system of nonlinear equations is then obtained by applying these imposed
continuity requirements. After that, the Newton-Raphson method is used to tackle
the nonlinear system.

The draft of this article is presented as follows, Sect. 2 gives the description of
standardADM is illustrated. In Sect. 3, the proposed technique to get the approximate
convergent series solution to (1) is given. In Sect. 4, numerical test examples are given
to validate the present work. Finally, Sect. 5 is dedicated to the conclusion.

2 Review of Standard ADM

In this part, we go through the basics of ADM’s problem-solving technique. Consider
the form as

L[u] + R[u] + N [u] = g(x), (3)
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where L represents an invertible linear operator and, in general, the highest order
differential operator, the linear operator that is a remainder of the problem’s linear
operator is denoted by R, the nonlinear operator is denoted by N , and the system
input is denoted by g.

Given that L is invertible, we use L−1 i.e. inverse linear operator to both sides of
(3) to obtain

u = h − L−1R[u] − L−1N [u] + L−1g, (4)

where h satisfies L[h] ≡ 0. InADM, the solution u is expressed by the decomposition
series and the nonlinear operator N [u] is decomposed in terms of the Adomian
polynomials as

u =
∞∑

n=0

un, and N [u] =
∞∑

n=0

An, (5)

where

An = 1

n!
dn

dλn

[
N

( n∑

j=0

λ j u j

)]

λ=0
, n ≥ 0.

Now inserting (5) into (4) leads to

∞∑

n=0

un = p − L−1R
[ ∞∑

n=0

un
]

− L−1An, (6)

here p = h + L−1g. From (6), we have the recursive formula as

u0 =p, un+1 = −L−1R[un] − L−1An, n ≥ 0.

The mth term approximate solution is given by

Um =
m−1∑

i=0

ui . (7)

For more detail see [6, 12].

3 Proposed Methodology

This section introduces a strategy for solving problem (1) efficiently. We do this by
rewriting (1) in the following operator form

L[u] = N [u], where L(.) = u′′ = d2

dx2
(.) and N [u] = f (x, u, u′). (8)
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Note that here L−1(.) = ∫ x
a

∫ x
a (.)dxdx . Next, we apply L−1 on the both side of

(8), after simplification we get

u = u(a) + (x − a)u′(a) + L−1N [u]. (9)

Now by combining (8) and (9) leads to

u0 = u(a) + (x − a)u′(a),

un+1 = L−1An, n ≥ 0. (10)

Here the values of u(a) and u′(a) are evaluated by imposing the corresponding
boundary conditions, and then themth termapproximate solution is givenby (7).Note
that (10) is the standardADM for (1).We note that the standardADM requires a large
number of iteration of the series solution to achieve reasonably good accuracy, slow
or diverges in some cases as depicted by given numerical examples. To address these
drawbacks,we provide a practicalmethod for dealingwith (1) by dividing the interval
[a, b] into M evenly spaced sub-intervals as h = (b − a)/M , xi = a + ih, 0 ≤ i ≤
M with a = x0 < x1 < · · · < xM−1 < xM = b.

Taking u(xi ) = ki and u′(xi ) = k ′
i with 0 ≤ i ≤ M − 1.Now, the following piece-

wise ADM on [xi , xi+1] is defined as follows according to (10).
For [x0, x1], the approach is defined as

u0,0 = u(x0) + (x − x0)u
′(x0) = k0 + (x − a)k ′

0, (11)

u1,n+1 = L−1An, (12)

where L−1(.) = ∫ x
x0

∫ x
x0
(.)dxdx and mth term approximate solution on [x0, x1] is

given by

U0,m =
m−1∑

i=0

u0,i .

For [xi , xi+1], 1 ≤ i ≤ M − 1, the scheme is constructed as

ui,0 = u(xi ) + (x − xi )u
′(xi ) = ki + (x − xi )k

′
i , (13)

ui,n+1 = L−1An, (14)

where L−1(.) = ∫ x
xi

∫ x
xi
(.)dxdx and mth term approximate solution on [xi , xi+1] is

given by

Ui,m =
m−1∑

i=0

ui,i , 1 ≤ i ≤ M − 1.
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Now by evaluating 2M unknown ki and k ′
i constants for 0 ≤ i ≤ M − 1, we

can find the solutions for each sub-interval. All of these approximate solutions then
matched together to generate a continuous solution on the interval [a, b] by assuming
the continuity of the solution and its derivative at the end points of the sub-intervals.
As a result, at the grid points if Ui,m(x) and U ′

i,m(x) have the same values, we can
achieve a continuous solution. As a result of the approximate solution of (1) across
the interval [a, b], the following nonlinear system of 2M equations is solved.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1U0,m(a) + α2U ′
0,m(a) = α,

Ui−1,m(xi ) = Ui,m(xi ), 1 ≤ i ≤ M − 1,

U ′
i−1,m(xi ) = U ′

i,m(xi ), 1 ≤ i ≤ M − 1,

β1UM−1,m(b) + β2U ′
M−1,m(b) = β.

(15)

Now by implementing the Newton-Raphson method on (15), the 2M unknowns
coefficients ki and k ′

i , 0 ≤ i ≤ M − 1 can be evaluated. Thus, the convergent series
solution of (1) on the entire interval [a, b] can be achieved.

4 Numerical Results

In this part, we look at three numerical test scenarios to show how successful the
proposed technique is.

Example 1 Consider the following problem [16]

u′′ = 1

2
(1 + x + u)3, u′(0) − u(0) = −1

2
, u′(1) + u(1) = 1, 0 ≤ x ≤ 1.

(16)
The exact solution of (16) is given by u(x) = 2

2−x − x − 1.

We solve Example 1 by using the standard ADM form = 4 and the proposed PADM
forM = 10 andm = 4. Table 1 demonstrates the absolute errors of these approaches.
It is clear fromTable 1 that the proposed PADMscheme is very effective and accurate.

Example 2 Consider the following nonlinear BVP [15]

u′′ = −(1 − θ2u′2), u(0) = 0, u(1) = 0, 0 ≤ x ≤ 1. (17)

The true solution of (17) is given by u(x) = 1
θ2
ln

(
cos θ(x− 1

2 )

cos θ
2

)
.

We solve Example 2 with different values of θ by using the standard ADM form = 6
and the proposed PADM for M = 20 andm = 6. The absolute errors are tabulated in
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Table 1 Absolute errors obtained by using the ADM and PADM approaches for m = 4 of
Example 1

x ADM PADM (M = 5) PADM (M = 10)

0.0 7.24e − 04 3.01e − 08 1.58e − 10

0.2 8.94e − 04 3.72e − 08 1.95e − 10

0.4 1.13e − 03 4.69e − 08 2.45e − 10

0.6 1.47e − 03 6.05e − 08 3.16e − 10

0.8 1.96e − 03 7.91e − 08 4.11e − 10

1.0 2.23e − 03 9.81e − 08 4.90e − 10

Table 2 Absolute errors obtained by using ADM and PADM approaches for m = 6 of
Example 2

x θ = 0.5 θ = 1.0 θ = 2.0

ADM PADM ADM PADM ADM PADM

0 0 0 0 0 0 0

0.2 3.65e − 05 1.30e − 12 1.04e − 03 1.91e − 10 9.29e − 02 3.67e − 07

0.4 7.19e − 05 1.92e − 12 1.32e − 02 2.26e − 10 1.63e − 01 3.18e − 07

0.6 1.03e − 05 1.88e − 12 1.86e − 02 2.12e − 10 2.31e − 01 2.69e − 07

0.8 1.11e − 05 1.30e − 12 1.96e − 02 1.57e − 10 2.54e − 01 2.05e − 07

1.0 0 0 0 0 0 0

Table 2 of these approaches. It is clear from Table 2 that the ADM approximation for
θ = 1, 2 leading to unsatisfactory results while the convergent results of the proposed
PADM can be observed.

Example 3 Consider the following nonlinear boundary value problem [7]

u′′ = 3

2
u2, u(0) = 4, u(1) = 1, 0 ≤ x ≤ 1. (18)

The true solution of (18) is given by u(x) = 4
(1+x)2 .

We solve Example 3 by using the standard ADM form = 4 and the proposed PADM
for M = 5, 10 and m = 4. The absolute errors are tabulated in Table 3 of these
approaches. It is clear from Table 3 that the ADM approximation for θ = 2 leading
to unsatisfactory results while the convergent results of the proposed PADM can be
observed.
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Table 3 Absolute errors obtained by using ADM and PADM approaches for m = 4 of
Example 3

x ADM PADM (M = 10) PADM (M = 20)

0.0 0 0 0

0.2 3.40e − 02 6.36e − 09 1.88e − 11

0.4 7.92e − 02 4.67e − 09 1.39e − 11

0.6 1.36e − 01 2.84e − 09 8.51e − 11

0.8 1.64e − 01 1.34e − 09 4.02e − 11

1.0 0 0 0

5 Conclusion

Standard ADM’s approximate solutions of the second-order nonlinear TPBVPs may
result in a sluggish convergence rate or a large number of iterative steps to reach a
reasonable accuracy. We address these flaws by introducing the PADM method, a
modified ADM that is both effective and efficient. The numerical findings show that
PADM is a good analytical technique for solving second-order nonlinear TPBVPs,
and it may be easily extended to other nonlinear problems.
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An Analytic Solution
for the Helmholtz-Duffing Oscillator
by Modified Mickens’ Extended Iteration
Procedure

M. M. Ayub Hossain and B. M. Ikramul Haque

Abstract The Helmholtz-Duffing oscillator is a special type of problem in the field
of nonlinear as well as engineering and science, due to its combined quadratic and
cubic nonlinear terms. The analytic solution of the Helmholtz-Duffing oscillator has
been obtained by modifying Mickens’ Extended Iteration Procedure. The Fourier
series has been used to find the solution. The second approximate frequencies show
a good harmony with the exact result. Some researchers presented the solutions to
the same oscillators by applying different methods. The obtained results have been
compared with some previously published results. Also, the approximate solution
obtained from the second iterated level gives extraordinary accuracy compared to the
exact solution.Although the presentmodifiedMickens’Extended IterationProcedure
has been applied to Helmholtz-Duffing Oscillator, it can be widely applicable to
related problems in science and engineering.

Keywords Extended iteration procedure · Helmholtz-Duffing oscillator ·
Nonlinearity · Nonlinear oscillations · Fourier series
AMS Subject Classification: 34A34 · 34B99

1 Introduction

The Helmholtz-Duffing oscillator is an asymmetric nonlinear differential equation
with two supplementary equations relevant in positive and negative orders. It has
been widely applied in the mathematical formulation of engineering domains such
as shallow arches, ship roll dynamics, electric circuits, panel absorber, symmetric
gyroscope, the human eardrum, dynamics of a moving particle in a cubic potential,
and one-dimensional structural systems [2, 3, 26, 27, 32]. The presence of quadratic
and cubic nonlinear terms and asymmetric behavior makes it the most attractive for
researchers. Perturbation Method [33, 34]; He’s Homotopy Perturbation Method [5,
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6]; Harmonic BalanceMethod [7, 25, 28]; IterativeMethod [12–23, 29–31]; Cubica-
tion Method [10]; He’s Max–Min Method [4], Rational Energy Balance Method [8];
Energy Balance Method [1, 24], He’s Energy Balance Method [9, 11] are the most
effectivemethods to solve nonlinear equations, especially for highly nonlinear terms.
A small number of researchers have done research on the Helmholtz-Duffing oscil-
lator using different methods. For instance, Leung and Guo [26, 27] have used the
homotopy perturbation method (HPM) and the iterative homotopy harmonic balance
method (IHHBM), Askari et al. [3] have used He’s energy balance method(HEBM)
and He’s frequency amplitude formulation (HFAF), Akbarzade et al. [32] have used
thefirst-order of theHamiltonian approach and coupled homotopy-variational formu-
lation, Alal et al. [2] have used Modified Harmonic Balance Method (MHBM) to
obtain the periodic solutions of the Helmholtz-Duffing oscillator.

In this paper, we have used modified Mickens’ extended iteration method
(MMEIM) to determine the approximate frequencies and periodic solutions of the
Helmholtz-Duffing oscillator. An extended iteration technique has been attained by
Mickens’. Later, the technique was developed by Lim, Hu Wu, and Haque. After
applying the modified method, we have acquired fantastic results.

2 The Methodology

1st Step: Suppose a nonlinear differential equation of the form

F(v̈, v) = 0 (1)

with the initial condition v(0) = a, v̇(0) = 0
Equation (1) can be rewritten as

v̈ + F1(v) = 0 (2)

2nd Step: Now the standard form of Eq. (2) is

v̈ + �2v = �2v − F1(v) = H(v,�) (3)

where the unknown symbol, � is the natural frequency.

3rd Step: The Iterative scheme of Eq. (3) is of the form

v̈k+1 + �2
kvk+1 = H(vk,�k); k = 0, 1, 2, · · · (4)
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v(t) = a cos(�t), (5)

And

vk+1(0) = a, v̇k+1(0) = 0, (6)

where v is the amplitude of the oscillator.

4th Step: The extended iteration scheme is of the form

v̈k+1 + �2
kvk+1 = H(vk, v̈k) + Hv(v0,�k)(vk − v0) (7)

where Hv = ∂H
∂v

and vk+1 satisfies the conditions (6)
v1(t), v2(t), v3(t)….and�0,�1,�2, · · · are the first, second, third,…… approx-

imate roots and corresponding frequencies of the oscillators respectively obtained
by avoiding the secular terms in each step.

3 Solution Procedure

Consider the governing nonlinear equation as

v̈ + v + (1 − β)v2 + β v3 = 0. with v(0) = a, v̇(0) = 0 (8)

where β is an asymmetric parameter. When β = 1 then Eq. (8) is a cubic-Duffing
oscillator and for β = 0, Eq. (8) is a Helmholtz oscillator with a single-well potential.
Due to the characteristics of an asymmetric oscillator, it is dissimilar in positive and
negative directions. That is why the Eq. (8) can be expediently considered in two
parts

v̈ + v + (1 − β)v2sg(v) + β v3 = 0, for v ≥ 0 (9)

v̈ + v − (1 − β)v2sg(v) + β v3 = 0, for v ≤ 0 (10)

For oscillation of the above system an asymmetric limit zone can be assumed as
[−b, a], for positive a and b. Both v = a and v = −b stand for the turning points
in which v̇ = 0, a and b are unknown initial amplitudes to be obtained.

Introducing �2v in Eq. (9), we have

v̈ + �2v = �2v − v − (1 − β)v2 − β v3 ∼= H(v, �) (11)
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where

F(v, �) = �2v − v − (1 − β)v2 − β v3 (12)

And

Hv = ∂H

∂v
= �2 − 1 − 2(1 − β)v − 3β v2 (13)

Applying the approximate technique (7), we get

v̈k+1 + �2
kvk+1 = (�2

kv0 − v0 − (1 − β)v2
0 − β v2

0)

+ (�2
k − 1 − 2(1 − β) v0 − 3β v2

0)(vk − v0). (14)

For first iteration, we get

v̈a1 + �2
a0va1 = �2

a0a cos θ − a cos θ − (1 − β)a2(cos θ)2 − β (a cos θ)3 (15)

Applying a suitable truncated Fourier series to make the right sides of Eq. (15) as
a combination of linear harmonics, we get

v̈a1 + �2
a0va1 = (�2

a0a − a − 0.84882636 a2(1 − β) − 0.75β a3) cos θ

− (0.16976527 (1 − β) a2 + 0.25β a3) cos 3θ

+ 0.02425218 a2 (1 − β) cos 5θ (16)

To avoid dominating terms, we obtain

�a 0 =
√
1 + 0.84882636 a (1 − β) + 0.75β a2 (17)

Without applying the repeating procedure, it can be achieved in the negative
direction for the trial function

vb(t) = b cos(�bt) as

�b0 =
√
1 + 0.84882636 b (β − 1) + 0.75β b2

The first approximate frequency of the oscillator is

�0 = �a0 + �b0

2
(18)

After simplification in Eq. (16) we have

v̈a1 + �2
ava1 = −(0.16976527 (1 − β) a2 + 0.25β a3) cos 3θ
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+ 0.02425218 a (1 − β) cos 5θ (19)

The particular solution of Eq. (9) is

v
p
a1(t) = (0.16976527 (1 − β) a2 + 0.25β a3)

8(1 + 0.84882636 a (1 − β) + 0.75β a2)2
cos 3θ

− 0.02425218 a2 (1 − β)

24(1 + 0.84882636 a (1 − β) + 0.75β a2)2
cos 5θ (20)

The complete solution is

va1(t) = c cos θ + (0.16976527 (1 − β) a2 + 0.25β a3)

8(1 + 0.84882636 a (1 − β) + 0.75β a2)2
cos 3θ

− 0.02425218 a2 (1 − β)

24(1 + 0.84882636 a (1 − β) + 0.75β a2)2
cos 5θ (21)

Using va1(0) = a then

va1(t) = (a + 0.828616212 (1 − β) a2 + 0.71875β a3)

(1 + 0.84882636 a (1 − β) + 0.75β a2)2
cos θ

+ (0.02122066 (1 − β) a2 + 0.03125β a3)

(1 + 0.84882636 a (1 − β) + 0.75β a2)2
cos 3θ

− 0.00101051 a2 (1 − β)

(1 + 0.84882636 a (1 − β) + 0.75β a2)2
cos 5θ (22)

The first approximate solution of (9) is

va1(t) = λa1 cos θ + λa2 cos 3θ − λa3 cos 5θ, (23)

where

λa 1 = (a + 0.828616212 (1 − β) a2 + 0.71875β a3)

(1 + 0.84882636 a (1 − β) + 0.75β a2)2

λa2 = (0.02122066 (1 − β) a2 + 0.03125β a3)

(1 + 0.84882636 a (1 − β) + 0.75β a2)2

λa3 = 0.00101051 a2 (1 − β)

(1 + 0.84882636 a (1 − β) + 0.75β a2)2

In case of a negative direction for the trial function vb(t) = b cos(�bt), we have

vb1(t) = (b + 0.828616212 (β − 1) b2 + 0.71875β b3)

(1 + 0.84882636 a (β − 1) + 0.75β a2)2
cos θ
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+ (0.02122066 (β − 1) b2 + 0.03125β b3)

(1 + 0.84882636 a (β − 1) + 0.75β b2)2
cos 3θ

− 0.00101051 b2 (β − 1)

(1 + 0.84882636 a (β − 1) + 0.75β b2)2
cos 5θ (24)

The first approximate solution of (10) is

vb1(t) = λb1 cos θ + λb2 cos 3θ − λb3 cos 5θ, (25)

where

λb 1 = (b + 0.828616212 (β − 1) b2 + 0.71875β b3)

(1 + 0.84882636 b(β − 1) + 0.75β b2)2

λb2 = (0.02122066 (β − 1) b2 + 0.03125β b3)

(1 + 0.84882636 b (β − 1) + 0.75β b2)2

λb3 = 0.00101051 b2 (β − 1)

(1 + 0.84882636 b (β − 1) + 0.75β b2)2

For the second iteration of the oscillator (9), we get

v̈a2 + �2
a1va2 = �2

a1va1 − va1 − 2(1 − β) va0va1 − 3β v2
a0va1

+ (1 − β) v2
a0 + 2β v3

a0 (26)

v̈a2 + �2
a1va2 = �2

a1(λa1 cos θ + λa2 cos 3θ − λa3 cos θ)

− (λa1 cos θ + λa2 cos 3θ − λa3 cos θ)

− 3β a2(cos θ)2(λa1 cos θ + λa2 cos 3θ − λa3 cos 5θ)

+ 2β a3 cos3 θ + (1 − β)a2 cos2 θ

− 2(1 − β) a cos θ(λa1 cos θ + λa2 cos 3θ − λa3 cos 5θ) (27)

Applying a suitable truncated Fourier series to make the right sides of Eq. (25) as
a combination of linear harmonics, we get

v̈a2 + �2
a1va2

= (�2
a1λa1 − λa1 + 1.5β a3 + 0.84882636 a2(1 − β) − 1.69765272 a (1 − β)λa1

− 2.25β a2λa1 − 0.33953054 a (1 − β)λa2 − 0.048504364 a (1 − β)λa3

− 0.75β a2λa2) cos θ + (�2
a1λa2 − λa2 + 0.5β a3 + 0.16976527 a2(1 − β)

− 0.33953054 a (1 − β)λa1 − 0.75βa2λa1 − 1.30961782a (1 − β)λa2

+ 0.040420304 a (1 − β)λa3 − 1.5βa2λa2 + 0.75βa2λa3) cos 3θ

+ (−�2
a1λa3 + λa3 − 0.02425218 a2(1 − β) + 0.04850436 a (1 − β)λa1
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− 0.40420304a (1 − β)λa2 + 1.28610056a (1 − β)λa3 − 0.75βa2λa2

+ 1.5βa2λa3) cos 5θ (28)

To avoid dominating terms, we obtain

�2
a1 = 1 + 1.69765272 a (1 − β) + 2.25β a2

+ (0.33953054 a (1 − β) + 0.75β a2)
λa2

λa1

+ 0.048504364 a (1 − β)
λa3

λa1

− (1.5β a3 + 0.84882636 a2(1 − β))
1

λa1
(29)

Without applying the repeating procedure, it can be achieved in the negative
direction

�2
b1 = 1 + 1.69765272 a (β − 1) + 2.25β b2

+ (0.33953054 b (β − 1) + 0.75β b2)
λb2

λb1

+ 0.048504364 b (β − 1)
λb3

λb1

− (1.5β b3 + 0.84882636 b2(β − 1))
1

λb1
(30)

In the second iterated level, the approximate frequency of the oscillator is

�1 = �a1 + �b1

2
(31)

After simplification in Eq. (28) we have

v̈a2 + �2
a1va2 = λa4 cos 3θ + λa5 cos 5θ (32)

where

λa4 = �2
a1λa2 − λa2 + 0.5β a3 + 0.16976527 a2(1 − β)

− 0.33953054 a (1 − β)λa1 − 0.75βa2λa1

− 1.30961782a (1 − β)λa2 + 0.040420304 a (1 − β)λa3

− 1.5βa2λa2 + 0.75βa2λa3 (33)
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λa5 = �2
a1λa3 − λa3 − 0.02425218 a2(1 − β)

+ 0.04850436 a (1 − β)λa1 − 0.40420304a (1 − β)λa2

+ 1.28610056a (1 − β)λa3 − 0.75βa2λa2 + 1.5βa2λa3 (34)

The second approximate solution of (9) is

va2(t) = 24�2
a1a + 3λa4 + λa5

24�2
a1

cos θ − λa4

8�2
a1

cos 3θ

− λa5

24�2
a1

cos 5θ (35)

For the negative direction, the second approximate solution of the oscillator (10) is

vb2(t) = 24�2
b1a + 3λb4 + λb5

24�2
b1

cos θ − λb4

8�2
b1

cos 3θ

− λb5

24�2
b1

cos 5θ, (36)

where

λb4 = �2
b1λb2 − λb2 + 0.5β b3 + 0.16976527 b2(β − 1)

− 0.33953054 b (β − 1)λb1 − 0.75β b2λb1

− 1.30961782 b (β − 1)λb2 + 0.040420304 b (β − 1)λb3

− 1.5β b2λa2 + 0.75βb2λb3 (37)

λb5 = �2
b1λb3 − λb3 − 0.02425218 b2(β − 1)

+ 0.04850436 b (β − 1)λb1 − 0.40420304b (β − 1)λb2

+ 1.28610056b (β − 1)λb3 − 0.75βa2λb2 + 1.5βb2λb3 (38)

4 Results and Discussions

We have applied a modified Mickens’ extended iteration method (MMEIM) to
achieve the approximate solutions of the Helmholtz-Duffing oscillator. Here we have
intended a sequence of the approximate frequencies and the corresponding analytical
solutions of the oscillator. All the obtained frequencies are shown in the following
Table 1. To compare with the approximate frequencies of the oscillator, we have also
shown the existing values of frequencies obtained by Alal et al. [2], Askari et al. [3],
Leung and Guo [26, 27]. Analyzing the results, we see that the percentage errors are
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lower for all small values of initial amplitude and almost the same for allmethods. But
the percentage errors are larger for large values of initial amplitude for all existing
methods [2, 3, 26, 27] except our proposed method. In our proposed method, the
percentage errors of the second approximate frequency are less for large values of
initial amplitude and all calculated values of the second approximate frequency are
proximate to the exact values. A comparison of errors is made between the proposed
method for a = 50, 100 together with the existing methods, which are shown in
Fig. 1. The compare between the second approximate solutions for the asymmetric
parameter β = 0.9 and the initial amplitude a = 10 together with the exact solutions
is presented in Fig. 2.

Fig. 1 Errors comparison among the proposed method for a = 50, 100 together with the existing
methods

Fig. 2 A Comparison
between the second-order
approximate solutions of the
Eq. (8) for β = 0.9 and
a = 10 together with the
corresponding exact
solutions
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5 Conclusion

After consideration of He’s energy balance method (HEBM), He’s frequency
amplitude formulation (HFAF), first-order of the Hamiltonian approach, coupled
homotopy-variational formulation, and Modified harmonic balance method
(MHBM), it can be clearly shown that the proposed method, modified Mickens’
extended iteration method (MMEIM), gives the excellent results that are very close
to the exact values of the approximate frequencies, especially the second approximate
frequency, and the obtained results are better than all existing results. Also, using
the proposed method, the periodic solutions of the oscillator are very simple, easy,
and straightforward compared to other existing methods. It is observed that a good
number of the researchers have concentrated to modify the method to achieve further
improvement of the solutions, but in our research, we have given concentration to
rearranging the principal oscillators with their own merit and taking appropriate
harmonic terms. It has been accomplished that the applied two themes of approach
are also a crucial issue for determining the better improvement of the analytical
solutions in an iteration method.
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Crank-Nicolson Finite Difference Scheme
for Time-Space Fractional Diffusion
Equation

Kalyanrao C. Takale and Veena V. Sangvikar (Kshirsagar)

Abstract This paper aims in developing theCrank-Nicolson type of finite difference
scheme for space-time fractional order diffusion equation (TSFDE)with a non-linear
term. The proof for scheme to be unconditionally stable and also convergent is been
discussed. Further, an application in terms of numerical solution is solved and graph
simulated using Mathematica.

Keywords Finite difference scheme · Caputo derivative · Space-time fractional
diffusion equation · Stableness of scheme · Convergence · Mathematica software

1 Introduction

Recently, fractional order partial differential equations have been widely used by
researchers to represent any physical phenomina and study its minute and diversed
applications in science and technology, fluid mechanics, control systems, biology,
viscoelasticity, physics, dynamical systems, etc. [4, 12, 14]. Major benefit that the
fractional derivatives provide is that of being a best estimate forminute elaboration of
memory as well as hereditary properties of different processes and involvedmaterials
[6, 9, 13]. But, it is very difficult to tackle partial differential equations of fractional
order for exact solution. Researchers find variety of essential dynamical systems,
exhibit fractional order behaviour which could change with space, time or both
space-time and hence the analytical solution becomes difficult. This provoked many
researchers to develop numerical methods.

We consider the space-time fractional heat-transfer/diffusion equation. The space-
time fractional equation of diffusion is obtained using the standard equation of dif-
fusion by replacing second order derivative in space variable by fractional derivative
of order β, 1 < β < 2 [3, 13] and the first order derivative in time variable by frac-
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tional derivative of order α, 0 < α < 1. Thus, we develop the time-space fractional
Crank-Nicolson finite difference scheme for diffusion equation with a non-linear
source term.

The following space-time fractional equation of diffusion (TSFDE) with a non-
linear term is considered.

∂αU (x, t)

∂tα
= d

∂βU (x, t)

∂xβ
+ f (U, x, t), 0 < x < L , t > 0 (1)

ini tial condition : U (x, 0) = φ(x), 0 ≤ x ≤ L (2)

boundary conditions : U (0, t) = UL , U (L , t) = UR, 0 ≤ t ≤ T (3)

where diffusion coefficient d > 0, 0 < α ≤ 1, 1 < β ≤ 2.
Below are few definitions of fractional derivatives which would be useful for our

subsequent development of scheme [7, 9–11, 13].

Definition 1.1 The definition of Caputo time fractional derivative of order α, (0 <

α ≤ 1) is

∂αU (x, t)

∂tα
=

⎧
⎨

⎩

1
�(1−α)

∫ t
0

∂U (x,t)
∂ξ

dξ

(t−ξ)α
, 0 < α < 1

∂U (x,t)
∂t , α = 1

Definition 1.2 The definition of Grunwald-Letnikov space fractional derivative of
order β, (1 < β ≤ 2) is

∂βU (x, t)

∂xβ
= 1

�(−β)
lim
N→∞

1

hβ

N∑

j=0

�( j − β)

�( j + 1)
U (x − ( j − 1)h, t)

where �(.) is the gamma function.

The paper is planned in the followingway: In Sect. 2, theCrank-Nicolson finite differ-
ence scheme is advanced for one dimensional time-space fractional order equation
of diffusion. The schemes stability is discussed in Sect. 3 and the convergence is
proved in Sect. 4. In the last session we have the numerical solution of the time-space
fractional equation of diffusion which is graphically represented using Mathematica
software.

2 Finite Difference Scheme

We now develop fractional order Crank-Nicolson type finite difference scheme for
time-space fractional equation of diffusion [8, 15–19]. We consider following time-
space fractional diffusion equation having non-linear term along with initial and
boundary conditions.
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∂αU (x, t)

∂tα
= d

∂βU (x, t)

∂xβ
+ f (U, x, t), 0 < x < L , t > 0 (4)

ini tial condition : U (x, 0) = φ(x), 0 ≤ x ≤ L (5)

boundary conditions : U (0, t) = UL and U (L , t) = UR, 0 ≤ t ≤ T (6)

where 0 < α ≤ 1; 1 < β ≤ 2 and d is diffusivity constant. For the implicit numerical
approximation scheme, we define h = (xR−xL )

N = L
N and τ = T

N the space and time
steps respectively, such that tk = kτ ; k= 0, 1,...,N be the integration time 0 ≤ tk ≤ T
and xi = xL + ih for i = 0,1, ..., N. Let U (xi , tk), i = 1, 2, ...N , k = 1, 2, ...n, be
the exact solution of the fractional partial differential equation (4)–(6) at the node
point (xi , tk). Let Uk

i be the numerical approximation to U (xi , tk). We discretise the
time fractional derivative of equation (4) by the following scheme:

∂αU (xi , tk+1)

∂tα
≈ 1

�(1 − α)

∫ tk+1

0

1

(tk+1 − ξ)α

∂U (xi , ξ)

∂ξ
dξ

= 1

�(1 − α)

k∑

j=0

U (xi , t j+1) −U (xi , t j )

τ

( j+1)τ∫

jτ

dξ

(tk+1 − ξ)α

= 1

�(1 − α)

k∑

j=0

U (xi , t j+1) −U (xi , t j )

τ

(k− j+1)τ∫

(k− j)τ

dη

ηα

= 1

�(1 − α)

k∑

j=0

U (xi , tk+1− j ) −U (xi , tk− j )

τ

( j+1)τ∫

jτ

dη

ηα

= τ 1−α

�(2 − α)

k∑

j=0

U (xi , tk+1− j ) −U (xi , tk− j )

τ
[( j + 1)1−α − j1−α]

∂αU (xi , tk+1)

∂tα
= τ−α

�(2 − α)
[U (xi , tk+1) −U (xi , tk)]+

τ−α

�(2 − α)

k∑

j=1

b j [U (xi , tk+1− j ) −U (xi , tk− j )]

where b j = ( j + 1)1−α − j1−α, j = 1, 2, ..., k.

For ∂βU (x,t)
∂xβ =0 Dβ

x U (x, t), we use the shifted Grünwald finite difference for-
mula at all time levels as follows
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∂βU (xi , tk+1)

∂xβ
= oDβ

x U (xi , tk+1)

= 1

hβ

i+1∑

j=0

gβ, jU [xi − ( j − 1)h, tk+1] + O(h2)

Here the Grünwald normalized weights are defined by

gβ,0 = 1, gβ, j = �( j − β)

�(−β)�( j + 1)
, j = 0, 1, ...

On substituting Grünwald estimates in the superdiffusion equation (4) to obtain
the Crank-Nicolson type numerical approximation, the obtained finite difference
equation is

τ−α

�(2 − α)
[Uk+1

i −Uk
i ] + τ−α

�(2 − α)

k∑

j=1

b j [Uk− j+1
i −Uk− j

i ] = d

2
(δβ,xU

k+1
i + δβ,xU

k
i ) + f ki

(7)
where f ki = f (Uk

i , xi , tk) and the above operator which is a fractional partial differ-
ential, is defined as

δβ,xU
k
i = 1

hβ

i+1∑

j=0

gβ, jU
k
i− j+1 (8)

Therefore, from (2.4) and (2.5) we get

τ−α

�(2 − α)
[Uk+1

i −Uk
i ] + τ−α

�(2 − α)

k∑

j=1

b j [Uk− j+1
i −Uk− j

i ] = d

2hβ
{
i+1∑

j=0

gβ, jU
k+1
i− j+1 +

i+1∑

j=0

gβ, jU
k
i− j+1} + f ki

Uk+1
i −Uk

i +
k∑

j=1

b j [Uk− j+1
i −Uk− j

i ] = dτα�(2 − α)

2hβ
{
i+1∑

j=0

gβ, jU
k+1
i− j+1 +

i+1∑

j=0

gβ, jU
k
i− j+1} + τα�(2 − α) f ki

Uk+1
i −Uk

i +
k∑

j=1

b j [Uk− j+1
i −Uk− j

i ] = r{
i+1∑

j=0

gβ, jU
k+1
i− j+1 +

i+1∑

j=0

gβ, jU
k
i− j+1} + τα�(2 − α) f ki

(9)

where r = dτα�(2 − α)

2hβ
f or i = 0, 1, 2, ...N , k = 0, 1, 2, ...

After further simplification, we get

(1 − rgβ,1)U
k+1
i − r

i+1∑

j=0, j �=1

gβ, jU
k+1
i− j+1 = (1 − b1 + rgβ,1)U

k
i +

k−1∑

j=1

(b j − b j+1)U
k− j
i

+ r
i+1∑

j=0, j �=1

gβ, jU
k
i− j+1 + bkU

0
i + τα�(2 − α) f ki
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The approximation to initial condition is asU 0
i = φ(xi ), i = 0, 1, 2, ... The approx-

imations to boundary conditions are asUk
0 = UL , Uk

N = UR, k = 0, 1, 2, ...Hence,
the complete discretised scheme to IBVP (4)–(6) is

(1 + βr)U1
i − r

i+1∑

j=0, j �=1

gβ, jU
1
i− j+1 = (1 − βr)U0

i + r
i+1∑

j=0, j �=1

gβ, jU
0
i− j+1 + τα�(2 − α) f 0i , f or k = 0

(10)

(1 + βr)Uk+1
i − r

i+1∑

j=0, j �=1

gβ, jU
k+1
i− j+1 = (1 − rβ − b1)U

k
i +

k−1∑

j=1

(b j − b j+1)U
k− j
i

+ r
i+1∑

j=0, j �=1

gβ, jU
k
i− j+1 + bkU

0
i + τα�(2 − α) f ki , f or k ≥ 1

(11)

ini tial condition : U 0
i = φ(xi ), i = 0, 1, 2, ... (12)

boundary conditions : Uk
0 = UL , Uk

N = UR, k = 0, 1, 2, .... (13)

where r = dτα�(2−α)

2hβ , gβ,0 = 1, gβ,1 = (−β), gβ, j = �( j−β)

�(−β)�( j+1) , and b j = ( j +
1)1−α − j1−α, j = 0, 1, 2, .., k.The finite-difference Eqs. (10) to (13) are expressed
in the matrix form as:

AU 1 = BU 0 + τα�[2 − α] f 0i (14)

AUk+1 = BUk +
k−1∑

j=1

(b j − b j+1)U
k− j + bkU

0 + τα�[2 − α] f ki + D (15)

where Uk = (Uk
1 ,Uk

2 , ...,Uk
N−1)

T , k = 0, 1, 2..., N A = (ai j ) is a (N − 1) ordered
square matrix of coefficients

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 + rβ) (−r)
(−r)gβ,2 (1 + rβ) (−r)
(−r)gβ,3 (−r)gβ,2 (1 + rβ) (−r)

...
...

. . .
. . .

. . .

(−r)gβ,m−1 (−r)gβ,m−2 (−r)gβ,m−3 · · · · · · (1 + rβ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B = (bi j ) is a (N − 1) ordered square matrix of coefficients
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B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 − b1 − rβ) r
rgβ,2 (1 − b1 − rβ) r
rgβ,3 rgβ,2 (1 − b1 − rβ) r

...
...

. . .
. . .

. . .

rgβ,m−1 rgβ,m−2 rgβ,m−3 · · · · · · (1 − b1 − rβ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and D is a constant column matrix given by

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

rgβ,2(Uk
0 +Uk+1

0 )

rgβ,3(Uk
0 +Uk+1

0 )

rgβ,4(Uk
0 +Uk+1

0 )

...

...

rgβ,N−1(Uk
0 +Uk+1

0 )

rgβ,N (Uk
0 +Uk+1

0 ) + r(Uk
N +Uk+1

N )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where r = dτα�(2−α)

2hβ , gβ, j = �( j−β)

�(−β)�( j+1) , b j = ( j + 1)1−α − j1−α, j =
0, 1, 2, .., k.

The system above is of algebraic equations which will be solved using some
mathematical software tool preferably Mathematica.

Next, we work on stability of solution that would be obtained from the developed
time-space fractionalCrank-Nicolsonfinite difference scheme (10)–(13) for the time-
space fractional diffusion equation (TSFDE) (4)–(6).

3 Stability

Lemma 3.1 For i = 1, 2, ..., N, k = 1, 2, ..., N, 0 < α ≤ 1, 1 < β ≤ 2 the coeffi-
cients b j and gβ, j f or j = 0, 1, 2, .... satisfy
(i) b j > b j+1, j = 0, 1, 2,...
(ii) b0 = 1, b j > 0, j = 0, 1, 2,...

(iii) gβ,0 = 1, gβ,1 = −β, gβ, j ≥ 0 ( j �= 1),
∞∑

j=0
gβ, j = 0

(iv) We have
n∑

j=1
gβ, j < 0, f or any posi tive integer n.
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Definition 3.1 For E0, being some initial rounding error arbitrarily, if there exists
c a positive number, independent of h and τ such that ‖Ek‖ ≤ c‖E0‖ or ‖Ek‖ ≤ c,
then the difference approximation is stable.

Theorem 3.2 Solution obtained from the Crank-Nicolson finite approximation
scheme defined by (10)–(13) is unconditionally stable.

Proof We assume that Ū k
i is a vector of exact solution of TSFDE (4)–(6). Denote,

Ek
i = Ū k

i −Uk
i for i = 0, 1, ...N ; k = 0, 1, ...N . where E0 = 0 and Ek =

(εk1, ε
k
2, ..., ε

k
N−1)

T . Furthermore, we assume that

|Ek
l | = max

1≤i≤N−1
|εki | = ‖Ek‖∞, f or l = 1, 2, ...

Therefore, from Eq. (10), we get

|E1
l | = |(1 + rβ)ε1i − r

i+1∑

j=0, j �=1

gβ, j ε
1
i− j+1|

≤ |(1 − rβ)||ε0i | + r
i+1∑

j=0, j �=1

gβ, j |ε0i− j+1| + τα�(2 − α)| f [U (xi , t0), xi , t0] − f [U0
i , xi , t0]|

≤ |ε0i | + τα�[2 − α]L|U (xi , t0) −U0
i |

≤ |ε0i | + τ L|ε0i |
≤ (1 + τ L)|E0

l |
⇒ ‖E1‖∞ ≤ (1 + τ L)‖E0‖∞

≤ eτ L‖E0‖∞

We assume that, |Ek
l | = ‖Ek‖∞ ≤ (1 + τ L)k‖E0‖∞ ≤ ekτ L‖E0‖∞.

From Eq. (11) we get

|Ek+1
l | = |(1 + rβ)εk+1

i − r
i+1∑

j=0, j �=1

gβ, j ε
k+1
i− j+1|

≤ |(1 − b1 − rβ)εki + r
i+1∑

j=0, j �=1

gβ, j ε
k
i− j+1 +

k−1∑

j=1

(b j − b j+1)ε
k− j
i + bkε

0
i +

τα�[2 − α] f [U (xi , tk ), xi , t0] − f [Uk
i , xi , t0]|

≤ (1 − b1)|εkl | + (b1 − bk )|εkl | + bk |εkl | + τ L|Ū k
i −Uk

i |
≤ (1 − b1 + b1 − bk + bk )|Ek

l | + τ L|Ek
l |

≤ (1 + τ L)|Ek
l |

≤ (1 + τ L)k+1‖E0‖∞
⇒ ‖Ek+1‖∞ ≤ eτ L(k+1)‖E0‖∞

Hence, by mathematical induction this shows that the Crank-Nicolson finite approx-
imation scheme defined by (10)–(13) is unconditionally stable.

Proceeding further to the next section, we discuss the convergence of the approx-
imate scheme.
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4 Convergence

Theorem 4.1 Let the problem (4)–(6) has smooth solution U (x, t)εC1+α,2+β
x,t (�).

Let Uk
i be the numerical approximate computed from (10)–(13). Then there exists

a positive constant C independent of i, k, h and τ such that |U (xi , tk) −Uk
i | ≤

cO(τ 2 + h2) for i = 1, 2...N − 1; k = 1, 2, ...N .

Proof Define eki = U (xi , tk) −Uk
i for i = 0, 1, ...N ; k = 0, 1, ...N . Where E0 =

0 and Ek = (ek1, e
k
2, ..., e

k
N )T . Furthermore, we assume that |ekl | = max

1≤i≤N−1
|eki | =

‖Ek‖∞, f or l = 1, 2, ... and T k
l = max

1≤i≤N−1
|T k

i | then using
∞∑

j=0
gβ, j = 0 and

i+1∑

j=1
gβ, j < 0, from Eq. (10), we get

|e1l | = |(1 + rβ)e1i − r
i+1∑

j=0, j �=1

gβ, j e
1
i− j+1|

≤ |(1 − rβ)||e0i | + r
i+1∑

j=0, j �=1

gβ, j |e0i− j+1|+

τα�(2 − α)| f [U (xi , t0), xi , t0] − f [U0
i , xi , t0]| + |T 1

i |
≤ |e0i | + τα�[2 − α]L|U (xi , t0) −U0

i | + |T 1
i |

≤ |e0i | + τ L|e0i | + |T 1
i |

≤ (1 + τ L)|e0l | + |T 1
l |

⇒ |e1l | ≤ (1 + τ L)|e0l | + c1O(τ 2 + h2)

⇒ ‖E1‖∞ ≤ (1 + τ L)‖E0‖∞ + cO(τ 2 + h2)

Assume that
‖Ek‖∞ ≤ (1 + τ L)k‖E0‖∞ + cO(τ 2 + h2)

From Eq. (11), we get

|ek+1
l | = |(1 + rβ)ek+1

i − r
i+1∑

j=0, j �=1

gβ, j e
k+1
i− j+1|

≤ (1 − b1 − rβ)|eki | + r
i+1∑

j=0, j �=1

gβ, j |eki− j+1| +
k−1∑

j=1

(b j − b j+1)|ek− j
i | + bk |e0i |+

τα�[2 − α]| f [U (xi , tk ), xi , tk ] − f [Uk
i , xi , tk ]| + |T k+1

i |
≤ (1 − b1)|εkl | + (b1 − bk )|εkl | + bk |εkl | + τ L|Ū k

i −Uk
i | + |T k+1

l |
≤ (1 − b1 + b1 − bk + bk )|Ek

l | + τ L|Ek
l | + |T k+1

l |
≤ (1 + τ L)|Ek

l | + c2O(τ2 + h2)

⇒ ‖Ek+1‖∞ ≤ (1 + τ L)k+1‖E0‖∞ + c1O(τ2 + h2) + c2O(τ2 + h2)

≤ (1 + τ L)k+1‖E0‖∞ + cO(τ2 + h2)
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Fig. 1 The diffusion profile with t = 0.05, h = 0.1, α = 0.7, β = 1.7(blue), α = 0.8, β =
1.8(red) and α = 0.9, β = 1.9(green)

Hence, by induction we prove ‖Ek‖∞ ≤ (1 + τ L)k‖E0‖∞ + cO(τ 2 + h2), for all
k = 1, 2, ...N .

Therefore, we observe that for any x and t, as (h, τ ) → (0, 0), Uk
i converges to

U (xi , tk). Hence proof completed (Fig. 1).

5 Numerical Solutions

We now obtain the numerical solution of one dimensional time-space fractional
diffusion equation by the discrete scheme developed in Eqs. (10)–(13). The following
time-space fractional diffusion equation with initial and boundary conditions and a
non-linear term is considered.

∂αU (x, t)

∂tα
= ∂βU (x, t)

∂xβ
+ sinU ; 0 < x < 1, 0 < α ≤ 1, 1 < β ≤ 2, t > 0

ini tial condition : U (x, 0) = sin πx, 0 ≤ x ≤ 1

boundary conditions : U (0, t) = UL = 0, U (1, t) = UR = 0, t > 0

with the diffusion coefficient d = 1.
The numerical solution is obtained at t = 0.05 by considering the parameters

τ = 0.005 and h = 0.1, which are simulated using Mathematica Software for three
different values of α and β that is, α = 0.7, β = 1.7(blue), next α = 0.8, β =
1.8(red) and next α = 0.9, β = 1.9(green) followed by the solution graphically.
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Conclusions
(i) We have successfully developed the Crank-Nicolson fractional order finite differ-
ence scheme for time-space fractional diffusion equation in a bounded domain.
(ii) We observe that the developed scheme is unconditionally stable.
(iii) Analysis shows clearly that the finite difference scheme is numerically stable
and the results are compatible with our theoretical analysis. Therefore, these solution
techniques can be applicable to other fractional partial differential equations.
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Gauss-Newton-Secant Method for the
Solution of Non-linear Least-Square
Problems Using ω-Condition

Naveen Chandra Bhagat, P. K. Parida, Chandresh Prasad,
Sapan Kumar Nayak, Babita Mehta, and P. K. Sahoo

Abstract The convergence of iterative process, based on the combination of Gauss-
Newton and Secant’s method, for the solution of nonlinear least-square problems in
Banach space under ω-condition for the first and second order divided difference and
first order derivative is provided. To demonstrate the efficiency of proposed method,
numerical experiments are carried out.

Keywords Least-square problems · Gauss-Newton-Secant method · ω-condition ·
Jacobian · Divided difference

1 Introduction

Finding the numerical solution of non-linear least square problems is one of the
important problems in computational mathematics. Non-linear least square prob-
lems are generally arise while solving nonlinear regression models, overdetermined
system of nonlinear equations, solving engineering problems etc. We consider the
least square problem of the type:

min
i∗∈D

1

2
P(i∗)T P(i∗) (1)

where P : D ⊂ R
m → R

n is nonlinear in i∗ and is continuously differentiable func-
tion, D is an open convex domain. Gauss-Newton’s method [1, 2] is the most used
technique for solving (1).
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In this study let us consider the least square problem

min
i∗∈D

1

2
(P(i∗) + Q(i∗))T (P(i∗) + Q(i∗)), (2)

where P is continuously differentiable and Q is continuous function. Also, P + Q
is nonlinear function which maps from R

m to R
n , n > m. The domain D is open

convex set in R
m and differentiablity of Q is not required. To solve (2), we propose

Gauss-Newton-Secant method [3] which is combination of Gauss-Newton [4, 5] and
Secant’s method [6].

i j+1 = i j − (N TN )−1N T (P(i j ) + Q(i j ))
N = P ′(i j ) + Q[i j , i j−1], j = 0, 1, 2, . . .

}
, (3)

where, P ′ is jacobian of P and Q[i j , i j−1] is first order divided difference of Q with
two arguments and i0, i−1 are given.

Relation (3) will reduce to Gauss-Newton-Kurchatov [7] method if we takeN =
P ′(i j ) + Q[2i j − i j−1, i j−1] andwill becomeGauss-Newton-potramethod [8]when
we take N = P ′(i j ) + Q[i j , i j−1] + Q[i j−2, i j ] − Q[i j−2, i j−1].

In this study, we useω-condition to provide a local convergence analysis of Gauss-
Newton-Secant’s method (3), where differentiablity of non-linear function is not
required in the solution.Numerical experiments are also provided to verify conditions
used in the convergence analysis of the method.

2 Conergence Analysis

In this section, by using sufficient conditions, we determine the local convergence
analysis of our method.

Let D is an open convex set in R
m . Let us define δD(i0, a∗) = {i∗ : ‖i∗ − i0‖ <

a∗} be an open ball with center i0 and radius a∗(a∗ > 0).
Let us assume the continuous function Q and continuously differentiable function

P in the domain D ⊂ R
m and P + Q : D ⊂ R

m → R
n is the given function. Further

we assume that ω0 : R+ → R+ is a non negative continuous function for which the
Fréchet derivative P ′ satisfies the condition.

‖P ′(m) − P ′(n)‖ ≤ ω0(‖m − n‖). (4)

Also, their exist a continuous non-negative function g : [0, 1] → R+ such that
ω0(t z) ≤ g(t)ω0(z) for t ∈ [0, 1] and z ∈ [0,∞) and T = ∫ 1

0 g(t)dt .
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Also, let ω1 : R+ → R+, a continuous non-negative function for which the func-
tion Q have first order divided difference, that satisfies the condition

‖[m, n; Q] − [p, q; Q]‖ ≤ ω1(‖m − p‖, ‖n − q‖). (5)

We now provide the following theorem under above assumptions, which gives the
sufficient condition for the local convergence of our iterative method.

Theorem 1 Assume that i∗ ∈ D is a solution of the problem and let for some i,
their exist (N )T (N )−1, where (N ) = P ′(i∗) + Q[i, i∗], such that ‖i − i∗‖ = λ > 0
and ‖((N )T (N ))−1‖ ≤ A. Moreover, ‖(N )‖ ≤ γ and their exist a∗ ∈ R+, such that
δD(i∗, a∗) ⊂ D and

α(a∗) + α̃(a∗) < 1, (6)

where

α(a∗) = A[2γ + ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)] × [ω0(a

∗) + ω1(0, a
∗) + ω1(a

∗ + λ, 0)],

and

α̃(a∗) = A[Tω0(a
∗) + ω1(0, a

∗)] × [γ + ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0].

Then, for each i0, i−1 ∈ D the iterative process is correctly defined and the sequence
{i j }, j = 0, 1, 2, . . . generated by this process belongs to δD(i∗, a∗) and converges
to the solution i∗. Further the following estimate holds for j ≥ 0

‖i j+1 − i∗‖ ≤ α̃(a∗)
1 − α(a∗)

‖i j − i∗‖. (7)

Proof The inequalities α(a∗) < 1 and α̃(a∗) < 1 holds, as α(a∗) + α̃(a∗) < 1 and
hence α̃(a∗)

1−α(a∗) < 1. As per our assumption i0, i−1 ∈ D. To prove the result we apply
mathematical induction.

For j = 0, we will have,

‖N0 − N∗‖ = ‖P ′(i0) + Q(i0, i−1) − P ′(i∗) − Q(ĩ, i∗)‖
≤ ‖N0 − N∗‖ + ‖Q(i0, i−1) − Q(i0, i

∗) + Q(i0, i
∗) − Q(ĩ, i∗)‖

≤ ω0(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖) + ω1(‖i0 − i∗‖ + ‖i∗ − ĩ‖, 0).
(8)

Therefore,
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‖N0‖ = ‖N∗ + N0 − N∗‖
≤ α + ω(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖) + ω1(‖i0 − i∗‖ + ‖i∗ − ĩ‖, 0).

(9)

Also,

‖I−(N T∗ N∗)−1N T
0 N0‖

≤ ‖(N T∗ N∗)−1‖‖N T∗ (N∗ − N0) + (N T∗ − N T
0 )(N0 − N∗) + (N T∗ − N T

0 )N∗‖
≤ A[2α + ω0(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖) + ω1(‖i0 − i∗‖ + ‖i∗ − ĩ‖, 0)]

× [ω0(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖) + ω1(‖i0 − i∗‖ + ‖i∗ − ĩ‖, 0)]
≤ A[2α + ω0(a

∗) + ω1(0, a
∗) + ω1(a

∗ + λ, 0)] × [ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)].

(10)

Using (10), we can have

‖(N T
0 N0)

−1‖ ≤ A{1 − A[2α + ω(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖)
+ ω1(‖i0 − i∗‖ + ‖i∗ − ĩ, 0)] × [ω(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖)
+ ω1(‖i0 − i∗‖ + ‖i∗ − ĩ, 0)]}−1

≤ A{1 − A[2α + ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)]

× [ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)]}−1. (11)

By using the equality P(i∗) + Q(i∗) = 0, we can show that i1 ∈ δD(i∗, a∗), as

‖i1 − i∗‖ = ‖i0 − i∗ + {−(N T
0 N0)

−1N T
0 (P(i0) + Q(i0))} + N T∗ (P(i∗) + Q(i∗))‖

≤ ‖ − (N T
0 N0)

−1‖‖ − (N T
0 N0)(i0 − i∗) + N T

0 (P(i0) + Q(i0))

− N T∗ (P(i∗) + Q(i∗))‖

≤ ‖ − (N T
0 N0)

−1‖‖ − N T
0 ‖‖N0 −

∫ 1

0
P ′(i∗ + t (i0 − i∗))dt − Q(i0, i

∗)‖‖i0 − i∗‖.
(12)

Now,

‖N0−
∫ 1

0
P ′(i∗ + t (i0 − i∗))dt − Q(i0, i

∗)‖

≤
∫ 1

0
‖P ′(i0) − P ′(i∗ + t (i0 − i∗))‖dt + ‖Q(i0, i−1) − Q(i0, i

∗)‖
≤ Tω0(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖). (13)

Using (11), (9) and (13) in (12), we get
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‖i1 − i∗‖ ≤ A{1 − A[2α + ω0(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖)
+ ω1(‖i0 − i∗‖ + ‖i∗ − ĩ‖, 0)] × [ω0(‖i0 − i∗‖) + ω1(0, ‖i−1 − i∗‖)
+ ω1(‖i0 − i∗‖ + ‖i∗ − ĩ‖, 0)]}−1 × [α + ω0(‖i0 − i∗‖)
+ ω1(0, ‖i−1 − i∗‖) + ω1(‖i0 − i∗‖ + ‖i∗ − ĩ‖, 0)] × [Tω0(‖i0 − i∗‖)
+ ω1(0, ‖i−1 − i∗‖)]‖i0 − i∗‖

≤ A{1 − A[2α + ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)]

× [ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)]}−1 × [α + ω0(a

∗) + ω1(0, a
∗)

+ ω1(a
∗ + λ, 0)]‖i0 − i∗‖

≤ a∗. (14)

This shows that i1 ∈ δD(i∗, a∗). Further we will show that in+1 ∈ δD(i∗, a∗). For
this, we find

‖Nn − N∗‖ ≤ ‖P ′(in) − P ′(i∗)‖ + ‖Q(in − in−1) − Q(in − i∗)‖ + ‖Q(in − i∗) − Q(ĩ, i∗)‖
≤ ω0(‖in − i∗‖) + ω1(0, ‖in−1 − i∗‖) + ω1(‖in − i∗‖ + ‖i∗ − ĩ‖, 0)
≤ ω0(a

∗) + ω1(0, a
∗) + ω1(a

∗ + λ, 0). (15)

Also,

‖I−(N T∗ N∗)−1(N T
n Nn)‖

≤ ‖(N T∗ N∗)−1‖[‖N T∗ ‖‖N∗ − Nn‖ + ‖N T∗ − N T
n ‖‖Nn − N∗‖ + ‖N T∗ − N T

n ‖‖N∗‖]
≤ A[2α + ‖Nn − N∗‖]‖Nn − N∗‖. (16)

Therefore,

‖(N T
n Nn)

−1‖ ≤ ‖(N T
∗ N∗)‖[1 − ‖(N T

∗ N∗)−1N T
n Nn − I‖]−1

≤ A{1 − A[ω0(‖in − i∗‖) + ω1(0, ‖in−1 − i∗‖
+ ω1(‖in − i∗‖ + ‖i∗ − ĩ‖, 0)] × [ω0(‖in − i∗‖)
+ ω1(0, ‖in−1 − i∗‖ + ω1(‖in − i∗‖ + ‖i∗ − ĩ‖, 0)]}−1

≤ A{1 − A[2α + ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)]

× [ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)]}−1. (17)

Therefore, iteration in+1 is correctly defined and the following estimate is true:-
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‖in+1 − i∗‖ = ‖in+1 − in + in − i∗‖
≤ ‖ − (N T

n Nn)
−1‖‖ − (N T

n Nn)(in − i∗) + N T
n (P(in) + Q(in))

− N T
∗ (P(i∗) + Q(i∗))‖

≤ ‖ − (N T
n Nn)

−1‖‖ − N T
n ‖‖Nn −

∫ 1

0
P ′(i∗ + t (in − i∗))dt

− Q(in, i
∗)‖‖in − i∗‖. (18)

Now,

‖Nn −
∫ 1

0
P ′(i∗ + t (in − i∗))dt − Q(in, i

∗)‖

≤
∫ 1

0
‖P ′(in) − P ′(i∗ + t (in − i∗))‖dt + ‖Q(in, in−1) − Q(in, i

∗)‖
≤ Tω0(‖in − i∗‖) + ω1(0, ‖in−1 − i∗‖). (19)

Also,

‖Nn‖ ≤ α + ω0(‖in − i∗‖) + ω1(0, ‖in−1 − i∗‖) + ω1(‖in − i∗‖ + ‖i∗ − ĩ, 0)‖.
(20)

Using inequalities (17), (19) and (20) in inequality (18), we have

‖in+1 − i∗‖ ≤ A{1 − A[2α + ω0(‖in − i∗‖) + ω1(0, ‖in−1 − i∗‖)
+ ω1(‖in − i∗‖ + ‖i∗ − ĩ‖, 0)] × [ω0(‖in − i∗‖) + ω1(0, ‖in−1 − i∗‖)
+ ω1(‖in − i∗‖ + ‖i∗ − ĩ‖, 0)]}−1 × [α + ω0(‖in − i∗‖)
+ ω1(0, ‖in−1 − i∗‖)ω1(‖in − i∗‖ + ‖i∗ − ĩ‖, 0)] × [Tω0(‖in − i∗‖)
+ ω1(0, ‖in−1 − i∗‖)]‖in − i∗‖

≤ A{1 − A[2α + ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)]

× [ω0(a
∗) + ω1(0, a

∗) + ω1(a
∗ + λ, 0)]}−1 × [α + ω0(a

∗) + ω1(0, a
∗)

+ ω1(a
∗ + λ, 0)] × [Tω0(a

∗) + ω1(0, a
∗)]‖in − i∗‖

≤ a∗. (21)

Thus, in+1 ∈ δD(i∗, a∗). Hence, by method of mathematical induction, we proved
the theorem.
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3 Numerical Examples

Example 1 Consider the system of equations

1
50 x

2 − 1
50 y

2 + 0.001 + 1
45 | x − 2 |= 0

1
25 xy + 1

25 y − 0.11 + 1
45 | y − 3 |= 0

}
. (22)

Here we take jacobian of differentiable part and taking max norm, we get
‖P ′(X) − P ′(U )‖ ≤ 1

25‖X −U‖,which satisfies the condition‖P ′(X) − P ′(U )‖ ≤
ω0(‖X −U‖). Again, we apply first order divided difference in non differentiable
part and takingmaxnorm,weget‖[s, t; Q] − [u, v; Q]‖ ≤ 2

45 ,which satisfy the con-
dition ‖[s, t; Q] − [u, v; Q]‖ ≤ ω1(‖s − u‖, ‖t − v‖). For the initial guesses (5, 5)
and (1, 1), we have the approximate solution (0.31776355, 1.42131035). Using these
results and taking a∗ = 0.2 we get, λ = 0.19849982 > 0, ω0(a∗) = 0.00444444,
ω1(0, a∗) = 0.04444444, ω1(a∗ + δ, 0) = 0.04444444, γ = 0.093873969, A =
4.268811885.Alsowegetα(a∗) = 0.1119890846, α̃(a∗) = 0.072811694 andhence
α(a∗) + α̃(a∗) = 0.1848007788 < 1. Thus all conditions of our theorem 1 is satis-
fied Eq. (22).

Example 2 Let us consider a non-linear integral equation

t (u) = 0.5 + 1

29

∫ 1

−1
K(u, v)

(
1

17
(t (v)

)2

+ | t (v) − 3 |)dv, u ∈ [−1, 1] (23)

Fig. 1 Approximate solution plot of (22)
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where the unknown function t is to be determined and the Green’s function K is
defined over [−1, 1] × [−1, 1]. Now, solvingEq. (23) is equivalent to solvingF(t) =
0, where F : C[−1, 1] → C[−1, 1], is a non-linear operator, given as

F(t (u)) = t (u) − 0.5 − 1

29

∫ 1

−1
K(u, v)

(
1

17
(t (v)

)2
+ | t (v) − 3 |), u ∈ [−1, 1]. (24)

Now, to approximate the integral part of the above equation we use Gauss-Legendre
quadrature formula with m-nodes and taking t (vi ) = ti and g(v(i)) = gi for i =
1, 2, . . .m, Eq. (24) can be transformed into system of non-linear equations of the
form:

Fi = ti − 0.05 −
m∑
j=1

ai j H(v j , t j ) = 0, i = 1, 2, . . .m, (25)

where, ti = (t1, t2, . . . tm)T , 0.5 = (0.5, 0.5, . . . 0.5)T , F : Rm → R
n ,

ai j = w jK(vi , v j ) =

⎧⎪⎨
⎪⎩

w j [1−e3vi+3][4−e3v j−3]
3e3v j [4e

3−3−3] , j ≤ i

w j ([1−e3v j+1][4−e3vi−3]
3v j [4e3−3−3] , j > i

Now for m = 4, by using jacobian and taking max norm to the differential
part we get, ‖P ′(t) − P ′(s)‖ ≤ 0.0018637809‖t − s‖, which satisfies the condi-

Fig. 2 Approximate solution plot of (24)



Gauss-Newton-Secant Method for the Solution … 719

tion ‖P ′(t) − P ′(s)‖ ≤ ω0(‖t − s‖), which leads to ω0(t z) ≤ tω0(z). Thus h(t) = t
and hence T = ∫ 1

0 tdt = 0.5.
Also by using divided difference and taking max norm to the non-differentiable

part we have, ‖[s, t; Q] − [p, q; Q]‖ ≤ 0.03168428. Taking initial guesses as
(2.0, 2.0, 2.0, 2.0) and (2.5, 2.5, 2.5, 2.5) we get the approximate solution
(0.064488, 0.080534, 0.071712, 0.059241). Using these results and taking a∗ = 0.1
weget,λ = 0.041219,ω0(a∗) = 0.000186378,ω1(0, a∗) = 0.03168428 = ω1(a∗ +
λ, 0), γ = 1.012913742, A = 1.001908274. Also we get p(a∗) = 0.133043984,
p̃(a∗) = 0.034272727 andhence, p(a∗) + p̃(a∗) = 0.167316711 < 1. Thus all con-
ditions of our theorem 1 is satisfied for thiss problem Eq. (24).

4 Conclusion

In this paper, we have studied Gauss-Newton-Secant method for solving non linear
least-square problems with non-differentiable function. We have used ω-condition
for convergence analysis of the proposed method. We have done some numerical
experiments to check the efficiency of the method, and found that our method is
suitable for these kind of problems.
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