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Abstract. User alignment aims to identify accounts of one natural
person across networks. Nevertheless, different social purposes in mul-
tiple networks and randomness of following friends form the diverse
local structures of the same person, leading to a high degree of non-
isomorphism across networks. The edges resulting in non-isomorphism
are harmful to learn consistent representations of one natural person
across networks, i.e., the structural “noisy data” for user alignment. Fur-
thermore, these edges increase the time complexity, compromising the
model’s efficiency. To this end, we propose a network structure denoising
framework to learn an alignment driven structure heuristically. Specif-
ically, under the guidance of alignment driven loss, parameter sharing
encoder and graph neural network for structure denoising are learned
using an iterative learning schema. Experiments on real-world datasets
demonstrate the outperformance of the proposed framework in terms of
efficiency and transferability.

Keywords: User alignment + Graph neural networks - Graph
structure learning - Structure denoise

1 Introduction

Social network alignment aims to identify accounts of one natural person across
multiple online social platforms. Aligning users across networks benefits the data
transfer between standalone social networks and alleviates the “data isolation”
issue in several data mining tasks, including information diffusion, recommenda-
tion, etc. Recently, graph representation learning (GRL) algorithms have demon-
strated their superior performance on this task attributed to their ability to
represent users without manual efforts.

Generally speaking, graph representation learning algorithms attempt to rep-
resent nodes by preserving the structural proximity. Specifically, according to
the structure across networks, several studies [16,17,30-32,34] are proposed to
learn the representations of users by aggregating and combing features of their
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neighbors. Based on the learned representations, nodes across networks can be
aligned using the similarity of representations [28,35]. The aforementioned pro-
cesses indicate that the network structure plays a critical role in user represen-
tation, and thus influences the precision of downstream alignment.

Nevertheless, people usually join multiple platforms for different social pur-
poses. Therefore, the random nature of users’ behavior in following friends is
unavoidable across social networks. These factors result in the diverse local struc-
ture topologies across social networks for the same person, i.e., a high degree of
non-isomorphism between multiple networks. Different from representing users
within a single network, the non-isomorphism between the network structure
brings structural “noisy data” for representing users across networks, compro-
mising the effectiveness of the user alignment task. For the GRL algorithms,
these “noisy data” will trigger a cascade of negative influences in their aggrega-
tion and combination process. Moreover, due to the presence of the “noisy data”,
high time and space complexities are unavoidable as many GRL algorithms are
exponential growth with the increase in the scale of the network.
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Fig.1. A toy example for explaining why structural “noisy data” compromises the
representation learning across networks.

Figure 1 illustrates an example to illustrate the key ideas of why the structural
“noisy data” compromises the GRL across social networks. In Fig. 1, G5 and G;
are two networks. A and A’ are labeled anchor (accounts belonging to the same
person). E and E’ are the potential anchors (nodes to be aligned). Due to the
diverse social purposes in multiple networks, £’ and E’ may follow different users
in separated networks such as B, D in G, and F in G;. This phenomenon results
in a really dense but non-isomorphism local structure around E and E’, such
as edges {a,b,c,d} in G5 and edges {e, f,g} in Gs. According to the structure
preserving objective of GRL [14,23,24,26], nodes with dense connectivity will
be close in the embedding space. Therefore, B, E, and D will be close due to the
existence of edges {b, c,d} and F, E' and H will be close due to the existence of
edges {f, g}. Nevertheless, the “overly-close” embedding space compromises the
alignment task as potential anchors are hard to be aligned preciously, especially
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with many non-anchor nodes (such as F and B) around them. Therefore, we name
the edges {b,c,d, g, f} as alignment task oriented “structural noisy data”. To
address this issue, we attempt to design a strategy that can denoise the structure
heuristically. As shown in the right part of Fig. 1, we hope the structures G; and
G} can be learned. Compared to the original network structure, E and E’ can be
close due to their connectivity to anchor A. Meanwhile, B and D can be far away
from them due to the absence of edge {b, ¢, d, f, g}, facilitating the downstream
user aligning module.

To this end, we first leverage a parameter sharing graph encoder to obtain
the primary embedding of every node. To further denoise the original network
structure, a graph neural network is adopted for determining which edges can be
removed. Under the guidance of the designed alignment-oriented loss and struc-
ture regularization, we perform the aforementioned process iteratively for param-
eter learning. Finally, the denoised networks can be obtained via the learned
graph neural networks. The denoised networks also can be transferred to other
state-of-the-art (SOTA) alignment models for efficient learning.

Our main contributions are summarized as follows:

— We propose a network structure denoising framework for the user alignment
task. With the guidance of the alignment-oriented loss, a parameterized graph
neural network is learned to denoise the network structure.

— We investigate the transferability of the learned network structure. We pro-
vide evidence that, beyond the graph encoder adopted in the framework, the
denoised structure can boost several SOTA network alignment algorithms.

— We evaluate the proposed framework by applying it to several state-of-the-art
models. The experimental results on three real-world datasets demonstrate
the effectiveness of the proposed framework.

2 Related Work

2.1 Network Alignment

Network alignment aims to identify different accounts of one natural person.
Recently, graph representation learning algorithms demonstrate their superior
performance. Compared to classification based [15] and matrix factorization
based algorithm [22], it learns user representations via preserving structural prox-
imity without manual efforts, and the Stochastic Gradient Descent and sampling
strategy adopted in the learning process guarantees its effectiveness. Generally
speaking, the related studies can be categorized into supervised and unsupervised
according to the existence of labeled anchors.

For supervised algorithms, IONE [17] learns representations of users via pre-
serving second order structure proximity and leverages cosine similarity to iden-
tify the potential anchors. PALE [20] learns node embedding in the separated net-
work and further leverage a shallow neural network to conduct the user alignment.
DeepLink [35] and DCIM [21] further adopt deep neural networks for constructing
the mapping function. Besides, SNNA [16] leverages a generate adversarial net-
work to train a mapping function. Different from the above studies that focus on
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constructing mapping functions, some works investigate the structure consistency
across networks. NextAlign [31] studies the correlation between graph convolu-
tional networks and the assumption of network consistency adopted in the tradi-
tional alignment model. cM2NE [28] proposes an end-to-end contrastive learning
framework to model the inconsistency across social networks. Also, several studies
attempt to learn better representation to facilitate the mapping functions. MGCN
[2] uses convolution on both local and hypergraph network structure to learn net-
work embedding. iMap [27] iteratively constructs sub-graphs and adopts graph
neural network to learn the representations.

Under the condition of the absence of the labeled anchors, the unsupervised
models are designed based on the consistency assumption across networks [3]. In
general, structural and attributes representations are learned simultaneously to
complement each other [10,34]. To align users from the distribution perspective,
UAGA [1] and WAlign [7] try to perform the alignment according to the dis-
tributions of the entire embedding space. After learning the embeddings across
networks, they adopt Wasserstein distance to measure the discrepancy of nodes’
distributions to identify potential anchors.

The aforementioned methods demonstrate their outperformance in the net-
work alignment task. However, these methods are learned using networks that
may contain structural “noisy data” for the alignment task. As we introduced
in Fig.1, structural “noisy data” will compromise the learning efficiency and
performance, which motivates our proposed denoising framework.

2.2 Graph Structure Learning

As the network grows in size, the graph representation learning algorithms faced
several challenges, including noisy data, training efficiency, etc. To this end,
graph structure learning algorithms are proposed to learn a proper network
structure for representation learning. Primary studies attempt to learn network
structure based on the similarities between nodes. Gidaris et al. [8] construct
K nearest neighbor graph based on structure similarity via setting a threshold.
Wang et al. [25] adopt graph neural network learn node representations. They
further calculate the similarity between nodes to construct the network structure.
Rather than the single similarity mentioned above, Jonathan et al. [9] leverages
the multiple similarities to learn the network structure, where weak similarities
between nodes are also incorporated into the network construction. Chen et
al. [4] propose an iterative learning schema for learning graph networks. They
learn the network structure using a parameterized adjacency matrix.

Rather than learning network structure only, some studies are proposed to
learn network structure and model of the target task simultaneously. AneesKazi
et al. [13] learn node representations using a graph neural network. They further
construct a graph generator to learn a proper network structure under the guid-
ance of the predictions of a downstream GNN. Zheng et al. [33] propose a graph
structure learning algorithm to sparse the network structure, where a deep neural
network is adopted to model the network sparsing process. Luca et al. [6] pro-
pose a probabilistic graph generator where edges are learnable parameters. The
generator is optimized with the task driven graph neural networks simultaneously.
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Jiang et al. [11] proposed a framework consisting of two components, the first one
to learn graph structure, and the second one is a graph convolutional network. Jin
et al. [12] learn network structure under the principle that the learned network has
certain characteristics, including sparsity and low rank.

Different from the aforementioned studies which may add and remove edges
for optimizing graph structure, we focus on denoising (only removing) the net-
work structure for efficient graph representation learning across networks. Fur-
thermore, rather than learning structure within the single network, we specifi-
cally design an alignment-oriented loss for network denoising.

3 Preliminaries

In this section, we provide brief descriptions of the notions and definitions.

Network: We use G = (V, A) to denote the network, where V' is the set of the
nodes. Every node v; € V represents one user. A is the adjacency matrix of G.
a;; = 1 when there is a relationship between v; and vj;, a; ; = 0 otherwise.

Anchors: The anchors denote the identities across networks of one natural
person. Given two networks G and G;. vs € Vi, v € V; are one anchor if they
belong to one person.

Network Alignment: Given two networks G, and G;, the network alignment
aims to learn a function f (us,u;) € {0,1} to determine whether vy and v,
are the anchor pair, where u; and u; are the embeddings/features that can be
learned by graph representation learning algorithms.

Network Denoise: Given one network G = (V, A), network denoise aims to
learn a mask generator Mask = g(V, A) that determines which edges can be
removed for the user alignment. Based on the Mask, we can obtain the denoised
network G* = (V, A*). Rather than removing nodes, we only remove edges as
removing nodes may exclude potential anchors in the network, which is inadvis-
able for the network alignment task.

4 Model Framework

To design a structure denoising framework for the network alignment task, we
propose to learn a parameterized mask generator based on the network represen-
tations across networks. As shown in Fig. 2, our proposed framework consists of
three components. The first is a graph encoder across networks that learns the ini-
tial representations according to the network structure. The second is the param-
eterized graph neural network that acts as the mask generator. The third is the
network regularizer and the alignment loss calculated by the graph encoder.

4.1 Graph Encoder Across Networks

The graph encoder in this paper serves two purposes. The first is to learn ini-
tial embeddings for nodes across networks. The second is to learn embeddings
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Fig. 2. Model framework

of denoised networks for calculating the alignment loss. Rather than design-
ing a graph representation learning algorithm, our goal is to design a denoising
framework for networks. To this end, we adopt IONE [17] as our graph encoder
attributed to its learning efficiency in the iterative learning process. First, we
denote the learned initial embedding as X SI/"t” € Rns/exd

X;'nit’ X{nlt = E’I’LCOde'r(gsu gt) (1)

where ng/; are the number of nodes in G, 4, d is the dimension of learned embed-
dings. We believe that the learned embeddings contain structural features of
nodes across networks, and properly utilizing them can benefit the learning of
the mask generator.

4.2 Parameterized Mask Generator

Given the initial embeddings learned by the graph encoder, we further leverage
a graph neural network to determine which edges to remove for the alignment
task. Here we use GAT [23] for this task attributed to its powerful ability in
modeling the structure and features simultaneously, shown as Eq. (2).

Z = GAT(X, A; O) 2)

where A is the adjacency matrix for one network and X is the corresponding
learned initial embedding. Z is the latent representation learned by GAT and ©
is the learnable parameter.

After obtaining the latent representation Z, we try to norm the representation
Znorm to avoid the influence of the value scale, shown in Eq. (3).

Vs
Znorm =

- LU, VD, eeny U; cz” 3
max([urlla, @) 10 U v i )

where || ||2 is the Ly norm. And we set € = le — 12 to avoid the zero values in
the denominator.
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Algorithm 1. The Learning Algorithm of the Proposed Framework

Input: A training set of anchors V,, the network alignment encoder Encoder, The
original networks Gs = (V5, As) and G, = (V4, A¢). The number of negative samples
Npeg. The number of iterations Iter

Output: Learned parameters for mask generator ©. Denoised network G7, G;

1: Sample Npey negative nodes from all nodes as Speqg

2: Calculate node embedding using encoder )(SI""’S7 X{"“ = Encoder(Gs, Gt)

3: for i =0;i < Iter;i =1+ 1 do

if i == 0 then X, = X" X, = x/"

end if

Calculate Znorm according to Egs. (2) and (3).

Calculate A; and A; according to Egs. (4) and (5). Then get the structure g;, g;
Calculate node embedding matrix using encoder X, X; = Encoder(g;, Q;)
9: Calculate Lyeq and Liqsr according to Egs. (6) and (7).

10: Update © using the Adam optimizer

11: end for .,

12: G7, G;/=G,,G,

Based on the normalized representation, we try to learn the mask of the
adjacency matrix, shown in Eq. (4).

Mask = 0(Zporm X ZL ) O A (4)

where o is the sigmoid activation function, and ® is the Hadamard product.
Then the values in 0(Z,orm X ZL.,,) denote the importance scores of all node
pairs. We further use the adjacency matrix A to filter the m;; € Mask to
ensure the corresponding users v; and v; have an edge. After that, we can select

denoised network A’ based on a hyper-parameter R, given as Eq. (5).
A" = top(Mask; R) (5)

where top(Mask; R) means ranking all elements in the Mask matrix and then
retaining the top R largest elements. We performs the above processes on G, =
(Vo, As), Gr = (Vi, Ay) separately to obtain A, and A;. Then we feed them to
the graph encoder across networks to calculate the loss. We repeat it for the
parameter learning of the mask generator until a stable performance is achieved.

4.3 Design of the Loss Function

To guide the learning of the parameter © in the mask generator, we design an
alignment-oriented loss function. Specifically, we try to achieve two objectives.

Objective 1: Given the denoised networks, we hope the embedding of anchors
should be as close as possible. Meanwhile, the anchor node should be apart from
other nodes as far as possible. We define the loss function L5 as Eq. (6).

Liask(vs,ve) = [cos(Xs, X¢)| — [cos(Xs e, X[7)] (6)
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where X /; is the embedding learned by the graph encoder when feeding the
denoised network to it in each iteration. The th/ig is the embeddings of the
nodes in the opposite network sampled according to the degree distribution.

Objective 2: In addition to objective 1, to ensure the robustness of the denoised
network, we hope the denoised network retains some characteristics of the origi-
nal network. We use line-wise cosine similarities of embeddings learned from the
denoised and the original networks, shown in Eq. (7).

creg(X*,XI"it) _ COS(X*,XInit) (7)

Finally, we combine the above objective functions £ = L5k + Lyeg to guide
the optimization of the parameters in the proposed framework. Algorithm 1
provides a detailed description of the learning process.

5 Experiment and Analysis

5.1 Datasets and Evaluation Metrics

To evaluate the performance of the proposed framework, we conduct extensive
experiments on three public datasets. The first Foursquare-Twitter [17,29,35],
the second is ACM-DBLP [31,35] and the third is DBLP [18]. Foursquare and
Twitter are two social networks. The labeled anchors are obtained by finding
users who provide their Twitter accounts in Foursquare profiles. ACM and DBLP
are two academic social networks, where identical authors in both ACM and
DBLP are the anchors. DBLP are two academic social networks, where authors
are split into different co-author networks by filtering publication venues of their
papers.Table 1 lists out the statistics of the datasets.Table 1 lists out the statistics
of the datasets.

Table 1. Statistics of datasets.

Networks | #Nodes | #Edges | #Anchors
Foursquare | 5313 54233 | 1609

Twitter 5120 130575
ACM 9872 39561 | 6325
DBLP 9916 44808
DBLP_DM | 11526 47326 1295
DBLP_ML | 12311 | 43948

We use a widely adopted metric Precison@QN [5,17,19,35-37] to evaluate
the performances of the above three datasets, shown in Eq. (8).

|CorrUser@QN |X + |CorrUser@QN|Y
|UnM appedAnchors| x 2

PrecisionQN = (8)
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where |CorrUser@N]| is the number of anchors that can be identified among
the top-N candidate list defined by the cosine similarity. |UnM apped Anchors|
is the number of all testing anchors. We report the averaged Precison@QN by
considering one network as the source and the target network respectively. For
the configurations of the baseline models, the default settings of the open source
codes provided by the authors are utilized.

5.2 Baseline Methods
We evaluate our framework based on three state-of-the-art models.

— IONE [17] is an embedding sharing based algorithm. It learns a unified latent
space for the alignment via preserving the second-order proximity.

— DEEPLINK ([35] is an embedding mapping based algorithm. It learns repre-
sentation learned using random walk and skip-gram algorithms, deep neural
networks and dual learning are leveraged to align users.

— NeXtAlign [31] proposes a RelGCN-U model and a scoring function to learn
user embeddings. This model achieves a good trade-off between alignment
consistency and alignment disparity,

5.3 Performance Comparison

We first investigate the performance when deleting different ratios of edges.
Figure 3 and Fig. 4 illustrate the Precision@l — 30 performance under training
ratio 50% and 60%, where the network encoder is IONE [17] attributed to its
training efficiency. And the ratios (the parameter R in Eq. (5) of deleted edges are
set as [5%, 15%, 30%, 50%]. We observed that even if we delete 15% edges of the
original network, the performance of the proposed framework does not decrease
on all datasets, indicating the effectiveness of the proposed framework. Under
the training ratio of 60% of the ACM-DBLP dataset, the model on the denoised
network still shows comparable performance when we deleted 30% edges.

(a) ACM-DBLP (b) Foursquare-Twitter (c) DBLP

Fig. 3. Precision@1-30 performance under training ratio of 50%.
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(a) ACM-DBLP (b) Foursquare-Twitter (c) DBLP

Fig. 4. PQ@Q1-30 performance under training ratio of 60%.

(a) ACM-DBLP (b) Foursquare-Twitter (c) DBLP

Fig. 5. Comparison with randomly deleting edges under training ratio of 50%.

(a) ACM-DBLP (b) Foursquare-Twitter (c) DBLP

Fig. 6. Comparison with randomly deleting edges under training ratio of 60%.

To prove the effectiveness of the mask generator for the alignment task,
we compare our framework with a method that randomly deletes 15% edges,
illustrated in Fig.5 and Fig.6. Compared with randomly deleting 15% edges,
our framework shows a significant increment under the Precision@1 —30 metric.
This phenomenon means that heuristically selecting edges for the alignment task
is crucial, randomly removing edges may break the characteristics of the original
network, compromising the performance of alignment. The increment indicates
that our proposed framework can heuristically remove the edges for the network
alignment task.

Further, to demonstrate that the mask generator can perform masking oper-
ations using all the commonly used graph convolution networks, we replace the
GAT [23] in the mask generator with GCN [14], which also achieves the simi-
lar results. Figure9 shows that using any GNN as the mask generator can be
obtained similar results.
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(a) ACM-DBLP (b) Foursquare-Twitter (c) DBLP

Fig. 7. Performance comparison when feeding the denosied network to DeepLink.

(a) ACM-DBLP (b) Foursquare-Twitter (c) DBLP

Fig. 8. Performance comparison when feeding the denosied network to NeXtAlign.

(a) ACM-DBLP (b) Foursquare-Twitter (c) DBLP

Fig. 9. Performance comparison when feeding the denosied network to NeXtAlign.

To further investigate the transferability of the denoised network, we feed
the learned networks with 15% edges removed to two STOA models, including
the DeepLink [35] and the NeXtAlign [31]. The performance are shown in Fig. 7
and Fig. 8. We observe that, compared with using the original network structure,
there is an increment when we feed the denoised network learned by IONE to
the DeepLink model. One possible reason for this is the powerful ability of the
deep neural networks in the DeepLink model. For the NeXtAlign model, we
observe a similar performance on the ACM-DBLP dataset compared with the
original network, while there is a significant increment on the Foursquare-Twitter
dataset. We notice that the ratio of anchors of ACM-DBLP is higher than it of
Foursquare-Twitter. It indicates that the denoising structure will benefit the
alignment model more when there are few anchors for supervision.

As illustrated in Table 2, we investigate the time consumption when feeding
the denoised network with 15% edges removed to the IONE model. We imple-
ment our model using PyTorch and run it on GeForce RTX 3090 GPU and
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Table 2. Time consumption on different datasets when deleted 15% edges

Dataset The original | The denosied | Time
network network saving (%)
ACM-DBLP 698 s 561s 19.6%
Foursquare-Twitter | 569 s 462 s 18.8%
DBLP 675s 807s 16.3%

Intel(R) Xeon(R) Silver 4210R CPU. We observe that the denoised network can
same time more than 15% on both the networks. The percentages of the time
saving are 19.6%,18.8% and 16.3% for ACM-DBLP, Foursquare-Twitter and
DBLP, respectively. It provides evidence that denoising the network structure
can benefit the alignment model for efficient learning.

O Anchor O Potential Anchor Other Graph Nodes ——  RawEdge Removed Edge

Fig. 10. Case study of the real-world dataset

5.4 Case Study

Figure 10 illustrates the structure of two subgraphs and the corresponding visu-
alization of embeddings in the Foursqure-Twitter dataset. We notice that the
potential anchor ((D,D’) has different local connectivities in the original net-
work, such as D’ connects to the anchor C’ in G; while D is not in Gs. Mean-
while, D and D’ connect several other nodes in separate networks, which are
the structural “noisy data” for the alignment. Thus we observe that the poten-
tial anchors are far from each other in the embedding space, compromising the
alignment task. After deleting 15% edges of the original network structure by
our proposed framework, illustrated in the right part of Fig. 10, we obtain a more
isomorphic local structure around the D and D’, i.e., the structural “noisy data”
are denoised. It results in a more properly distributed embedding space, where
the D and D’ are close in this space, making them easy to align.
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6 Conclusion

In this paper, we study the problem of denoising network structure for the user
alignment task. We proposed a framework based on graph structure learning.
Specifically, under the guidance of the specially designed alignment loss and
structure regularization, a graph encoder across networks and a parameterized
mask generator are learned in an iterative learning schema. Then whether one
certain edge can be removed is determined by the mask generator. We conduct
experiments from several perspectives, including performance, transferability,
and running time, and the visualization of learned space. Results demonstrate
the effectiveness of the proposed model. We hope this framework can provide a
way to deploy an alignment model in practice attributed to its ability to denoise
the structural “noisy data” and reduce the training complexity. Further studies
will include denoising network structure in dynamic environments and ingenious
GNNs for the mask generator.
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