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Preface

The Seventh International Conference on Data Mining and Big Data (DMBD 2022) was
held in Beijing, China, during November 21–24, 2022. DMBD serves as an international
forum for researchers to exchange latest advantages in theories, models, and applications
of data mining and big data as well as artificial intelligence techniques. DMBD 2022was
the seventh event after the successful first event (DMBD2016) on Bali Island, Indonesia,
the second event (DMBD 2017) in Fukuoka, Japan, the third event (DMBD 2018) in
Shanghai, China, the fourth event (DMBD2019) in ChiangMai, Thailand, the fifth event
(DMBD 2020) in Belgrade, Serbia, and the sixth event (DMBD 2021) in Guangzhou,
China.

These two volumes (CCIS vol. 1744 and CCIS vol. 1745) contain the papers pre-
sented at DMBD 2022 covering some major topics of data mining and big data. The
conference received 135 submissions. The Program Committee accepted 62 regular
papers to be included in the conference program with an acceptance rate of 45.92%.
Each submission received at least 3 reviews in an double-blind process. The proceed-
ings contain revised versions of the accepted papers. While revisions are expected to
take the referees comments into account, this was not enforced and the authors bear full
responsibility for the content of their papers.

DMBD 2022 was organized by the International Association of Swarm and Evo-
lutionary Intelligence (IASEI). It was co-organized by the Computational Intelligence
Laboratory at Peking University, the Advanced Institute of Big Data, Beijing, the Key
Laboratory of Information System Requirement, the Science and Technology on Infor-
mation Systems Engineering Laboratory, and the Southern University of Science and
Technology and technically co-sponsored by Research Reports on Computer Science
(RRCS), the City Brain Technical Committee of the Chinese Institute of Command and
Control (CICC), the International Neural Network Society, the Nanjing Kangbo Intel-
ligent Health Academy, Springer, Entropy, MDPI Electronics, and the Beijing Xinghui
High-Tech Co. The conference would not have been such a success without the support
of these organizations, and we sincerely thank them for their continued assistance and
sponsorship.

We would also like to thank the authors who submitted their papers to DMBD
2022, and the conference attendees for their interest and support. We thank the Orga-
nizing Committee for their time and effort dedicated to arranging the conference. This
allowed us to focus on the paper selection and deal with the scientific program. We
thank the Program Committee members and the external reviewers for their hard work
in reviewing the submissions; the conference would not have been possible without their
expert reviews. Furthermore, this work is partially supported by the National Natural
Science Foundation of China (Grant No. 62076010 and 62276008), and also partially
supported by the Science and Technology Innovation 2030 - New Generation Artificial
Intelligence Major Project (Grant Nos.: 2018AAA0102301 and 2018AAA0100302).
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Finally, we thank the EasyChair system and its operators, for making the entire process
of managing the conference convenient.

November 2022 Ying Tan
Yuhui Shi
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Abstract. Heterogeneous Multi-unit control is one of the most con-
cerned topic in multi-agent system, which focuses on controlling agents
of different type of functions. Methods that utilize parameter or replay-
buffer sharing are able to address the problem of combinatorial explo-
sion under isomorphism assumption, but may lead to divergence under
heterogeneous setting. This work use curriculum learning to bypass the
barrier of a needle in a haystack that is faced by either joint-action
learner or independent learner. According to the experiment on hetero-
geneous force combat engagements, the independent learner outperforms
the baseline learner by 10% of evaluation metrics with curriculum learn-
ing, which empirically shows that curriculum learning is able to discover
a novel learning trajectory that is not followed by conventional multi-
agent learners.

Keywords: Heterogeneous control · Curriculum learning · Multi-agent
system

1 Introduction

A series of benchmark has been proposed for determining the performance of
multi-agent reinforcement learning, with more agents, more complex agent archi-
tecture and sparser rewards indicating better algorithm needed to solve the prob-
lem. The StarCraft Multi-Agent Challenge (SMAC [33]) based on the StarCraft
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II Learning Environment (SC2LE [45]) is currently one of the most wildly used
benchmark for multi-agent reinforcement learning algorithms, as shown in Fig. 1
However, the performance on SMAC is mostly determined by micromanagement
of every single agent rather than collaborative joint actions. Moreover, the agents
are with similar action spaces, move and attack, with difference only in attack-
ing range and defense. Yet such setting is still too weak for realistic applications
because isomorphism is often violated and requires collaborative joint actions
of heterogeneous agents. Besides, tasks are multi-stage and multi-target rather
than simply defeating the opponent by elimination.

Fig. 1. A snapshot of 27m vs. 30 m challenge in SMAC

Recently more complex and realistic environments that focuses on hetero-
geneous agents are being aggressively explored to develop algorithms for poli-
cies that are more robust to the dynamics of environment. Different from envi-
ronments with isomorphism agents, heterogeneity indicates decision structures
with little similarity among agents. Agents have different observation spaces and
action spaces, thus, neural networks with fixed sizes of input and output can not
be directly applied. Furthermore, the optimal parameters and network structures
are unique for every agent, which means that a normal technique that tries to
reduce the computational cost by sharing information among agents may fail.
For example, as shown in Fig. 2, in a heterogeneous force combat engagement
task, the view of a tank may be blocked by a nearby forest, and it is only able
to move along the facing direction or turn. However, a helicopter is with higher
motility and different action space, a control structure different from that of a
tank is needed.

Conventional methods like parameter sharing are reconsidered [41–43] since
the assumption of similar decision structures is violated under heterogeneous
settings. With carefully redesign of the observation spaces, action spaces and
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Fig. 2. A tank and a helicopter are heterogeneous agents

neural network structures among all agents, the technique of parameter sharing
is able to applied under heterogeneous setting. Meanwhile, this reveals the fact
most techniques that developed under the assumption of isomorphism agents
failed to directly generalize to heterogeneous setting. As a consequence, methods
that fit those benchmarks well are needed to reconsidered if it is over-fitted to
isomorphism agents.

2 Related Works

A series of methods is developed under the widely used framework of centralized
training and decentralized execution (CTDE [27]). These methods are classified
in mainly two classes based on their optimization method, value decomposition
or policy gradient.

Value based methods try to fit a value function Q(s,a) that is able to eval-
uate the accumulative rewards of an immediate joint action a, by iterating the
bellman equation, that is

Q(s,a) ← r + γ max
a′

Q(s′,a′) (1)

which is a direct utilization of value iteration in single agent reinforcement learn-
ing. However, Q function suffers from the curses of dimensions with the increase
of the number of agents. To address this problem, alternatives of decomposing
the centralized value function are aggressively explored. Linear decomposition
[38] assumes that the centralized value function is equal to a linear summation
of functions on all agents. QMix [32] consider the monotonic aggregation based
on the Individual-Global-Max (IGM) condition. QTRAN [36] claims that mono-
tonic aggregation is not necessary condition for IGM and proposed a method
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based on affine transformation, showing better adaptation on complex games.
WQMix [31] claims that QMix may lead to divergence or underestimation, and
therefore proposed a weighted version of QMix. QPLEX [46] decomposes the
value function with dueling structure, and claims that it is able to learn every
decomposable value function satisfying the IGM condition.

While policy gradient method optimizes the parameters directly from an
estimation of accumulative rewards. To formalize, the gradient of neural network
weights

∇J(θ) = R(τ)∇P (τ |θ) ≈ 1
N

N∑

n=1

R(τn)∇ ln P (τn|θ) (2)

yet it is also necessary to decompose the gradients onto every agent, which is
also known as a credit assignment problem [25]. MADDPG [22] uses a central-
ized critic network to distribute gradients among training agents. COMA [7]
introduces counterfactual baseline to reduce the variance of gradients. MAPPO
[51] generalizes proximal policy optimization (PPO [35]) to multi-agent environ-
ments with 5 proposed techniques. MATRPO [19] generalizes trust region policy
optimization (TRPO [34]) to multi-agent environments to acquire a better the-
oretical guarantee multi-agent reinforcement learning algorithm.

However, methods based on CTDE framework is often assumed that the
agents are isomorphism. Although in benchmarks like SMAC there are multiple
races or units in an environment, the goals of the challenges and the decision
structures of agents are of little difference. Thus algorithms with significant
empirical results on these benchmarks may fail under heterogeneous settings.
Thus alternatives focus on avoiding the assumption of isomorphism are widely
explored.

Some consider independent training of every agent so that heterogeneous
agents don’t interfere each other. IQL [39] is proposed to learn individual Q
function directly from iterating bellman equation independently on every single
agent. IPPO [49] applies PPO algorithm directly to multi-agent environments
and shows better empirical results than QMix and IQL on several challenges in
SMAC. MA2QL [37] applies a minimal modification on IQL to acquire the theo-
retical guarantee on converging to a Nash Equilibrium [26]. MABCQ [14] exploits
value deviation and transition normalization to modify the transition probability
to derive an offline decentralized multi-agent algorithm. Yet the assumption of
independence may lead to divergence or rather low sample complexity [22], thus
these algorithm may lose scalability to the number of agents.

Some applies modern techniques in reinforcement learning or deep learn-
ing to address the problem of heterogeneous agents. Graph neural networks
[9,50,53] are introduced to describe the relationships between heterogeneous
agents, and HMAGQ-Net [23] proposed a graphical description of multi-agent
system. Communication [2,20,24] is introduced to stabilize the training of inde-
pendent learners, which builds channels between agents to achieve better collab-
oration. DDDQN [5] introduces 3 techniques in reinforcement learning to solve
a heterogeneous traffic light control problem. These methods bypass the prob-
lem of heterogeneous agents by more expressive neural structures or training
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methods, but may introduce more computational cost or training difficulty that
requires carefully fine tuning.

Some methods are inspired by population based training [6,10,16,21,40,52,
54]. League training [44] is introduced to find weakness of policies. IQ-algorithm
[29] introduces an imitation learner to solve a heterogeneous multi-agent prob-
lem. Role based learning [47,48] introduces roles to break isomorphism. These
methods address directly to the problem of heterogeneous agents, but may
requires prior knowledge of the environment. Others focuses on quantifying het-
erogeneity. Model-free conventions [17] are considered in heterogeneous settings
to encourage exploration. FMQ [15] algorithm is proposed to learn to coordi-
nate heterogeneous agents. And communication heterogeneity [3] is considered
to provide an analysis tool to describe and quantify heterogeneity during com-
munication.

3 Method

Here we describe an alternative to address the problem of heterogeneous agents
by curriculum learning.

3.1 Preliminaries

Consider how a human student learn skills from class. She starts with learning
basic concepts and practicing by solving simple problem. As she gets familiar to
the newly learnt knowledge, she turns to practice with more difficult problems
to become an expert. This is how Curriculum Learning [1] works. To formalize,
the preferred curriculum learning is to search for a task selection function [28]
D : H → T where H contains information about past interactions and T is the
target task, the objective

Obj : max
D

∫

T∼Ttarget

PN
T dT (3)

indicates the outcome of curriculum learning, where Ttarget denotes the distri-
bution of target tasks, N denotes the number of training steps and PN

T denotes
the fitness on task T after training N steps.

The way to choose a task selection function is one of the most central problem
of curriculum learning. The task selection function can be viewed as a control
of training trajectory, as shown in Fig. 3, on the skill potential landscape the
two training trajectories A and B are of the same starting and target points.
However, trajectory A tries to climb through the cliff, which means a rapid
increase on training task. This will result in the agent is not prepared to solve the
upcoming problem thus getting stuck at the valley. While trajectory B looks for a
tortuous path but with slowly ascending difficulty. Therefore although trajectory
B is geometrically longer than trajectory A, it is more training friendly. In
particular, when the agent is trained directly from the target task, it means to
jump vertically from the starting point to the target and is usually the most
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Fig. 3. Different training trajectory means different learning difficulty [13]

difficult trajectory. Therefore, there are tasks that are nearly impossible to learn
even with long training time, but can be solved by curriculum learning.

Alternatives to select tasks along training process are broadly explored [28].
BARC [11] determines the initial states to control the difficulties. The reward
function is also considered for exploration [4], guidance [8] or intrinsic goals [12].
Others may also consider changing the goal [18,30] during training, which is also
known as multi-goal learning.

3.2 Curriculum Learning by Adjusting Opponents

In this work, a curriculum learning task selection by modifying the behaviour
of opponents is used, since in heterogeneous force combat engagement problem
there are naturally two competitive teams. The difficulty of the task of defeating
the opponent can be slowly shifted by interfering the behaviour. Intuitively,
consider a talented coach trying to train a teammate by sparring, the coach can
conceal his skill in early days and make it all-out when the teammate is trained.
Here we proposed two methods that can control the strength of the opponent.

The first method is to blur the observation of the opponent by a vanishing
noise, as shown in Fig. 4. To be specific, let the observation of the opponent to
be o and now is the j-th round of training, we feed observation

o′ = o +
N(0, σ)

j
(4)

as the input of the opponent. As the decision of the opponent is misled by the
noise, it will no longer be a fatal threat that prevents the learner to learn even
the basic rules of the game.

Theorem 1. For a task with continuous action spaces, consider a perfectly
trained linear controller G. Under the blurred observation, the distance between
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Fig. 4. Control opponent action by blurring observation

the actual behaviour and the best reaction is proportion to a Gaussian with mean
0 and variance σ

j2 .

Proof.
||G(o) − G(o′)||1 = ||G(o − o′)||1 ∼ ||o − o′|| ∼ N(0,

σ

j2
)

which indicates that we are able to control an opponent with ascending strength.
The second method is to randomly interfere the action commands of the

opponent, which prevent the opponent from acting correctly. For a task with
continuous action spaces, the output action a is added by a vanishing Gaussian
noise, that is

a′ = a +
N(0, σ)

j
(5)

For a task with discrete action spaces, the action commands are randomly drop
with refer to a probability inversely proportion to the number of rounds trained,
that is

drop(a) =
1
j

(6)

so we derives a method of interfering the behaviour of the opponent, with
descending noise away from the best reaction.

4 Experiments

To evaluate the effectiveness of curriculum learning, we adopt the heterogeneous
force combat engagements environment.
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4.1 Environment and Settings

The task of heterogeneous force combat engagements is to defeat the opponent
by destroying the command post. There are multiple agent types including radar,
GBAD, destroyer, fighter plane, jammer, bomber and scout. As shown in Fig. 5,
agents are highly heterogeneous and the observation is complex.

Fig. 5. A snapshot of the environment

Due to limited speed of the simulator, we utilize distributed training with a
cluster of 8 GPUs, with each GPU we collect data from 8 parallel environments.
And we compare the performance between the backbone multi-agent reinforce-
ment learning algorithm with or without curriculum learning.

To examine the effectiveness of the two proposed methods of curriculum
learning, two sets of contrast experiments are carried out. A hierarchical decision
framework with high level instructions from the neural network controller and
low level execution by a rule based controller is used. Two sets of rules of the
executor are used respectively in two experiments to dispel the effects of rule-
based controllers.

4.2 Evaluation

To evaluate the performance of the proposed methods, four metrics summarized
from the training process are used.

– asymptotic expected rewards Vπ∗(S0)
– maximum expected rewards maxt Vπt

(s0)
– time to converge t∗
– time to reach a threshold of rewards λ, tλ

concepts of the four metrics are visualized in Fig. 6.
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Fig. 6. The metrics used to evaluate an algorithm

4.3 Results

This work first did an experiment on blurring the observation of the opponent.
Figure 7 shows the training curves of the baseline algorithm based on rule set
A, where 7(a) shows the loss function of PPO and 7(b) shows the expected
accumulative rewards.

Fig. 7. The loss curve (a) and accumulative rewards (b) of baseline algorithm

As a contrast, Fig. 8 shows the training curves of the curriculum learning
based on observation blurring, which also uses the rule set A for its low-level
controller. According to the accumulative rewards, the four metrics are summa-
rized in Table 1, where the threshold λ = 4.7.
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Fig. 8. The loss curve (a) and accumulative rewards (b) of observation blurring

Table 1. Comparison of baseline and observation blurring

Metrics Vπ∗ maxVπt t∗ tλ

Baseline 4.8 4.9 68 62

OB 5.6 5.75 45 18

The second part of the experiment consists of evaluating curriculum learning
based on action interference. Figure 9 shows the training curves of the baseline
algorithm based on rule set B.

Fig. 9. The loss curve (a) and accumulative rewards (b) of baseline algorithm

While Fig. 10 shows the training curves of curriculum learning based on
action interference, which also uses rule set B for low-level control. Table 2 sum-
marizes the metrics of both training process, where λ = 5.

4.4 Discussion

The experiments reveal that both implementations of curriculum learning, obser-
vation blurring and action interference, outperforms the baseline algorithm in
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Fig. 10. The loss curve (a) and accumulative rewards (b) of action interference

Table 2. Comparison of baseline and action interference

Metrics Vπ∗ maxVπt t∗ tλ

Baseline 4 7 2000 2000

AI 5 10 2000 1000

policy performance, convergence and sample efficiency. Firstly, as shown in the
comparison of max Vπt

, curriculum learning found policies that gains rewards
10% more than the baseline algorithm. This shows that curriculum learning is
able to find better policy, as we are trying to exploit reinforcement learning
to find an optimal controller for the problem. Secondly, the comparison of Vπ∗

and t∗ also reveals that curriculum learning outperforms the baseline algorithm
in asymptotic performance, no matter in convergent point or time to converge.
Thirdly, the comparison of tλ reveals that curriculum learning boosts the sample
efficiency for at least 10%. This also in line with expectation, since curriculum
learning leverage the training trajectory that is more suitable all along the train-
ing process. To sum up, the experiments show a 10% boosting on performance
and in turn support the claims this work mentioned above.

5 Conclusion

In this work we proposed an curriculum learning method based on interfering
the opponent to solve an heterogeneous force combat. According to the empirical
results, the two proposed interfering alternative, observation blurring and action
dropping, are both able to achieve a 10% boosting on evaluation metrics.

Although the empirical results show the effectiveness of this method, the
theoretically understanding of applying curriculum learning to heterogeneous
multi-agent learning problem is still unclear, which we will leave as a future
work.
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Abstract. This paper considers a new variant of the pursuit-evasion
problem, called the cooperative target defense problem with three agents
(attacker, targeter, and defender) in a 3D space. The targeter tries to
fly as quickly as possible from a starting point to the terminal, while the
defender seeks to protect it from the attacker. The problem is difficult
to solve under traditional game theory methods, while deep reinforce-
ment learning (DRL) has shown strong adaptability in these complex
and higher-dimensional tasks. Inspired by the successful applications of
Proximal Policy Optimization (PPO), this paper proposes a PPO-based
algorithm for the problem, intending to derive the optimal behavioral
policies for both sides. We design the corresponding state space, action
space, and rewards of the agents. Three kinds of reward functions are pro-
posed for the attacker and compared by experimental results. Our study
provides a good foundation for the cooperative target defense problem.

Keywords: Pursuit-evasion game · Differential game · Deep
reinforcement learning · Cooperative target defense

1 Introduction

The pursuit-evasion problem is an important problem in the fields of game theory
and artificial intelligence, widely used in aerospace technology, robotics, police
security, cyber security, and other fields [6,10]. It has many variants, one of them
is Targeter-Attacker-Defender Game (TAD Game) [9]. In this game, there are
three agents including an attacker, a targeter, and a defender. The attacker aims
to pursue the targeter protected by a defender, while the targeter tries to move
from a starting point to a terminal point as soon as possible.

For this game, Von Moll [17], Liang [8,9], and Zhou [19] have solved it based
on differential game theory. And later, Fu et al. [3], and Lin et al. have gone
further with other methods [10]. But in more complex situations, it becomes
difficult or even unworkable for these conventional methods to solve the problem
[13,15].
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Reinforcement learning is one of the main paradigms of machine learning,
which uses rewards to guide the learning process [14]. As an important tool for
multistage decisions, it has been used for the pursuit-evasion problem and its
variants [4]. Motivated by the prominent representation ability of deep learning
[7], deep reinforcement learning (DRL), a unified framework of reinforcement
learning and deep learning, has been widely studied since 2015 [11]. In recent
years, deep reinforcement learning has been successfully applied in video games
[16], robots [1], and other various fields [2]. Since deep Q-learning was proposed
[11], many popular deep reinforcement learning algorithms have been proposed.
Among them, the Proximal Policy Optimization (PPO) algorithm [12] is very
promising.

In this paper, we consider a special Targeter-Attacker-Defender Game (TAD
Game) in which all agents stay in a three-dimensional environment, which is
studied for the first time. There are still bottlenecks in the exploration of strate-
gies and the chain reaction caused by the rising dimensionality. To deal with such
a complex problem, we design a PPO-based algorithm by taking into account the
fundamental characteristics of the agents. Particularly, we propose three ways
of reward setting for the attacker. The effectiveness of reward settings and the
algorithm is studied according to experimental results.

The remaining of this paper is structured as follows. In Sect. 2, we present the
basic process of PPO and MAPPO [18] which is an effective multi-agent version
of PPO. In Sect. 3, the formal description of the 3D TAD problem is presented.
In Sect. 4, we present the detail of our algorithm. In Sect. 5, the experimental
study is presented. The main results are summarized in Sect. 6.

2 Background

The basic process of our algorithm is based on PPO. As reinforcement learning
is usually described by a Markov decision process, an agent selects an action at

in its policy π to interact with the environment under the state st. Then it gets
a feedback reward rt and steps into the next state. π is assigned a parameter
θ. The training purpose is achieved by using a policy πθ′ , which has a small
difference from πθ, to collect data as a demonstration to update θ.

The concept of deep learning was introduced in 2006 by G.E. Hinton et al.
[5]. It is suggested that Deep Neural Networks (DNN) structure can be used in
training sample data, which makes it easier to realize our learning tasks. The
classical Actor-Critic network is adopted, in which the actor network outputs
actions according to the state; the critic network outputs the value, which is
used to evaluate the actions outputted by the actor network.

Thus, for a trajectory τ = {s1, a1, s2, a2, . . . , st, at}, the probability of its
occurrence is described as pθ(τ). The return can be calculated by Eq. 1 where γ
is the discount factor:

R(τ) =
T∑

t=t0

γt−t0rt. (1)
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The advantage function is described as

Aθ (st, at) =
Tn∑

t=t0

(R (τn) − b) =
T∑

t=t0

γt−t0rt − b, (2)

where the baseline b is usually regarded as the value function.

Jθk

PPO(θ)

≈ min
(

pθ (at | st)
pθk (at | st)

Aθk

(st, at) , clip

(
pθ (at | st)
pθk (at | st)

, 1 − ε, 1 + ε

)
Aθk

(st, at)
)

.

(3)
In order to optimize the objective function of the PPO-clip in Eq. 3, the next

step is to update the AC network by backward the loss functions which are

lossActor = −min(
pθ (at | st)

pθk (at | st)
Aθk

(st, at) , clip(
pθ (at | st)

pθk (at | st)
, 1 − ε, 1 + ε)Aθk

(st, at)),

lossCritic = (Gt − V alue)2 ,

(4)

where Gt is the actual discounted return.
Similar to the PPO algorithm, a centralized value function network is

designed in the MAPPO algorithm. With centralized training and decentralized
execution, agents are able to interact with each other through a global value
function. And some additional techniques are used to improve the efficiency of
the algorithm [18].

3 The Problem Description

In this section, we formally describe the cooperative target defense problem. In
a three-dimensional environment, there are three agents, namely Attacker(A),
Targeter(T), and Defender(D). The task of A is to attack T which attempts
to reach a terminal point safely under the protection of D. A demo scenario is
shown in Fig. 1.

In this game, these agents play under the following rules:

– A, T, D move with constant velocity magnitudes vA, vT , vD (vA = vD > vT )
respectively. But each agent can control its yaw and pitch angle to change the
moving direction. The change of the yaw and pitch angle must be less than
π/2 and π/4. The turning radius is determined by its axis length and angle
change.

– T’s initial position is T0 (xT0 , yT0 , zT0), while ter( xter, yter, zter) is its ter-
minal point. The distance between them is denoted as |T0 − ter|, and the
gaming time is limited within Γ = |T0−ter|

VT
× 2.
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Fig. 1. Schematic diagram of the three dimensional Targeter-Attacker-Defender prob-
lem

– A can capture T within the distance of |VA| around it. T will be captured
if the current At (xAt

, yAt
, zAt

) and Tt (xTt
, yTt

, zTt
) satisfies |At − Tt| ≤ VA.

Similarly, D’s capture range and terminal spherical are defined.
– If A captures T or dispels T away from the terminal within the time limit

of the game, the game ends and A wins; if T enters the terminal in time or
D captures A before T is captured, the game ends and the TD team wins.

At time t, let dAT (t), dDA(t), and dTter(t) denote the distance between A and T,
the distance between D and A, the distance between T and terminal respectively.
In order to win the game, A tries to minimize JA which is defined as follows:

JA = wA1dAT (t) − wA2dDA(t), (5)

where wA1 and wA2 are two positive weights.
In order to win the game, the TD team tries to minimize JT and JD which

are defined as follows:

JT = wT1dTter(t) − wT2dAT (t),
JD = dDA(t),

(6)

where wT1 and wT2 are two positive weights.

4 The Proposed Algorithm

For the attacker, a PPO algorithm is proposed for policy optimization. Since the
targeter and defender are cooperative, a multi-agent PPO [12] is proposed for
policy optimization.

4.1 State and Action Space

In the coordinate system o − xyz, the motion of each agent can be decom-
posed into the xoy and yoz planes (see a demo of T in Fig. 2). Then the action
space (ϕi, θi) is defined by (ϕi ∈ [0, 2π), θi ∈ [−π/2, π/2]) where i ∈ {T,A,D}.
ϕ, θ are the yaw and pitch angle respectively. The state of each agent is
(At,Dt, Tt, ϕAt, θAt, ϕDt, θDt, ϕTt, θTt).
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Fig. 2. Illustration of Targeter’s action space.

4.2 Reward Functions

For the attacker, the basic idea to define the reward is to encourage it to stay
away from the defender and get close to the targeter. Three methods are sug-
gested to define the reward for the attacker according to different considerations.

1) method 1: the reward is defined according to whether A’s behavior is favor-
able for capturing T and avoiding D. Define ΔAT = |At−1−Tt−1|−|At−Tt|,
ΔAD = |At−1 − Dt−1| − |At − Dt|.

rA =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

45/Γ if ΔAT > 0.1 ∧ ΔAD ≤ 0.1
30/Γ if ΔAT > 0.1 ∧ ΔAD > 0.1
3/Γ if ΔAT ≤ 0.1 ∧ ΔAD ≤ 0.1
0 if ΔAT ≤ 0.1 ∧ ΔAD > 0.1

. (7)

2) method 2: At the current time, let −→σA and −→σA
∗ be A’s actual and refer-

ence direction respectively where the reference direction is calculated by the
velocity of targeter at the last timestep. The angle between them is written
as ΔσA. σa stands for the acceptable angular offset. The reward is defined
according to the magnitude of ΔσA.

rA =

⎧
⎪⎨

⎪⎩

max(2 − ΔσA/σa, 1)/Γ × 30 if ΔσA ≤ σa

max(2 − ΔσA/σa, 0)/Γ × 30 if σa < ΔσA ≤ 2σa

max(1 − ΔσA/σa,−2)/Γ × 30 if ΔσA > 2σa

. (8)

3) method 3: Define λt as the distance between At and the predicted collision of
A and T at time t. To penalize the occurrence of over-chasing, set a counter
C to record the times of the situation. The reward is defined according to
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whether λt becomes smaller in contrast to λt−1.

rA =

{
min(2|λt − λt−1| + 1, 2)/Γ × 10 if λt−1 − λt ≥ 0.05
−max(−2|λt − λt−1|,−1)/Γ × 10 − γC if λt−1 − λt < 0.05

. (9)

For the targeter, the reward is given as follows:

rT = wT1dTter(t) − wT2dAT (t). (10)

For the defender, the reward rD is given as follows:

rD = dDA(t). (11)

5 Experimental Results and Analysis

Experiments are conducted in a simulation environment based on Python ver-
sion 3.7. The initial angles are ϕi = θi = 0(i ∈ {T,A,D}), speeds are
|VA| = |VD| = 0.18, |VT | = 0.13, axis lengths are L = 0.1 and terminal point is
(0, 0, 0). The training process is stopped when the maximum number of episodes
reaches 10,000. Take wT1 to be 0.6, wT2 to be 0.4, and γ to be 1.08. When
training the attacker, the defender moves towards the attacker and the targeter
moves close to the terminal while avoiding the attacker. After that, the TD team
is trained.

5.1 The Experimental Study on the Reward Methods
for the Attacker

At first, we compare the three methods of defining reward for the attacker. Each
model (i.e., each method) is tested for 100 rounds. The winning percentages are
shown in Table 1. As seen from Table 1, the attacker trained by method 2 can
complete the task the best, while the agent trained by method 1 performs the
poorest.

Some policies that attacker had taken are given in Fig. 3. As seen from
Fig. 3(a), Fig. 3(b), and Fig. 3(c), once in a safe area, a smart A would purely pur-
sue T (i.e., without considering D). Especially, due to the condition of |vA > vT |
and the limit in turning angle, as shown in Fig. 3(a) and Fig. 3(b), A cannot
capture T directly through the shortest distance, instead it outflanks T. Also,
a smart A can try its best to pursue T, avoiding flying near D when there is a
threat from D, like the policies shown in Fig. 3(d), Fig. 3(e), and Fig. 3(f).

Table 1. A’s winning percentage obtained by the three reward methods.

Method 1 Method 2 Method 3

Winning percentage 0.4800 0.6253 0.5763
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Fig. 3. Several snapshots where attacker successfully completes the task

5.2 The Experimental Study on the Behavior of Defender
and Targeter

Figure 4 shows some of the policies the TD team had adopted. According to
Fig. 4, when T moves straight toward the terminal (see Fig. 4(a) and Fig. 4(b))
or D intercepts A (see Fig. 4(c)), the whole team can win the game. It is obvious
that the agents learn the trick that if both of them try their best to complete
their own tasks, the chances of winning can be improved. So they also perform as
shown in Fig. 4(d), Fig. 4(e), and Fig. 4(f). Moreover, in Fig. 4(c), the TD team
is smart enough to cooperatively win the game. In detail, T lures A to fall into
D’s capture region.
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Fig. 4. Several snapshots where the TD team successfully completes the task

6 Conclusion

This paper studies the cooperative target defense problem for the first time.
Since this problem is very difficult, we design a Proximal Policy Optimization
based algorithm with the aim of obtaining the optimal behavioral policies. For
every agent in the game, we design their corresponding state space, action space,
and rewards. Moreover, for the attacker, we propose three kinds of reward func-
tions. The experimental results show that method 2 is the best. Moreover, the
effectiveness of the proposed algorithm is analyzed.
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In the future, it may be interesting to use various reinforcement learning
algorithms to deal with the cooperative target defense problem. In addition, it
may be better to use the self-play technique to improve the behaviors of these
agents.
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Abstract. With the vigorous development of computer-related tech-
nology, the “perception + decision” paradigm of the combination of
deep learning and reinforcement learning has become a research hotspot.
Nowadays, deep reinforcement learning algorithms have been successfully
applied to the fields of games, industry and commerce. However, deep
reinforcement learning algorithms often fall into the dilemma of “explo-
ration” and “exploitation”, and the effect of these algorithms is easily
affected by the quality of hyperparameters. In order to make up for the
defects mentioned above, this paper introduces the particle swarm based
reinforcement learning framework (PRL). Compared with the standard
reinforcement learning algorithms, this framework greatly improves the
exploration ability and obtains better scores in a series of gym experi-
mental tests.

Keywords: Reinforcement learning · Particle swarm optimization ·
Twin delayed deep deterministic policy gradients

1 Introduction

Reinforcement learning (RL) is about an agent interacting with the environment
to learn optimal policies through trial and error. It has been widely used to solve
a great variety of sequential decision-making problems [16]. Currently, the rise
of deep learning has accelerated progress in reinforcement learning, and enabled
reinforcement learning to scale to problems that were previously intractable. The
research work combining deep learning and reinforcement learning has led to the
emergence of various powerful deep reinforcement learning systems, algorithms
and agents, which has made remarkable achievements. Such systems not only
surpass the capabilities of most classical and non-DL-based reinforcement learn-
ing agents, but also excel at tasks that are considered to require extreme human
intelligence, creativity, and planning skills [2].

In the field of DRL [6], there are two outstanding classic success stories. The
first was the beginning of the DRL revolution, which could learn to play a series
of Atari 2600 video games at superhuman levels directly from image pixels [12].
The second prominent success was the development of the hybrid DRL system
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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AlphaGo, which defeated the human Go world champion in March 2016 [15].
Unlike the handcrafted rules that dominate chess systems, AlphaGo contains
neural networks trained by supervised learning and reinforcement learning, com-
bined with traditional heuristic search algorithms. DRL’s end-to-end ”percep-
tion + decision” system paradigm is very close to the human learning method,
has strong universality and gives the intelligent machines strong adaptability.
Based on the above unique advantages, deep reinforcement learning technology
has been quickly applied to the fields of automatic driving [11], robot control
tasks [7], industrial resource scheduling [17] and multi-agent cooperation [13].
However, there are still two major defects in the practical application of deep
reinforcement learning: the dilemma of “exploration and exploitation” and frag-
ile convergence properties

A very suitable method to solve these two defects in theory is to integrate RL
with heuristic algorithms such as evolutionary algorithm. Shauharda Khadka [9]
introduced a scalable framework named Evolutionary Reinforcement Learning
which combined RL with neuroevolution and outperforms standard RL algo-
rithms in a range of continuous control benchmark experiments. Besides, evolu-
tionary reinforcement learning [10] and CEM-RL [14] have also been proposed to
improve the performance of reinforcement learning algorithms. Cheng [1] used a
heuristic algorithm to enrich the experience buffer to accelerate the convergence
speed of reinforcement learning algorithms.

Compared with other heuristic algorithms, particle swarm optimization
spends less computing resources, and the concept of global optimal solution
can just be used as the final network of the whole framework, which is very con-
sistent with the idea of population-based in this paper. So this paper introduces
a Particle Swarm Based Reinforcement Learning framework (PRL) (see Fig. 1).
Particle swarm optimization [8] is popular swarm intelligence. [18] Inspired by
Khadka’s work [9], this framework uses a group of reinforcement learning learn-
ers with different temporal horizons to explore the solution space. Then, the
sampling frequency of each learner will be dynamically allocated by a task man-
ager to improve the exploitation efficiency of solution space. All experiences
gained from the interaction between each learner and population are saved in
the collective experience replay buffer for all learners to use together. At the
same time, the design of particle swarm optimization does not need to add spe-
cific hyperparameters that change with the environment, which makes the PRL
framework have good universality and stability, and makes up for the defects of
reinforcement learning algorithm to a great extent.

2 Background

2.1 Reinforcement Learning Overview

Reinforcement learning is a machine learning method for understanding and
automatic processing of goal-oriented decision-making problems [4]. Figure 2
describes the basic process of the interaction between agents and environments:
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Fig. 1. The overall structure of PRL.

at a certain time t, the agent observes the current state st and selects an action
at according to the strategy π. The environment updates the new state st+1

according to the action at of the agent and gives reward feedback r. The agent
modifies its action selection strategy π according to the reward feedback and
selects a new action at the next time. As a popular reinforcement learning,
Twin Delayed Deep Deterministic Policy Gradients (TD3) [19] is chosen as a
representation of reinforcement learning in this paper.

Fig. 2. Interaction process between agent and environment.

2.2 Twin Delayed Deep Deterministic Policy Gradients

TD3 has the following three core points [20]:

– TD3 learns two Q functions at the same time by minimizing the mean square
deviation. The two value functions use one Q-target function, and the smaller
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value given in the two Q functions is used to update the Q-target, which
effectively suppresses the overestimation of DDPG.

– TD3 introduces the idea of smoothing and adds Gaussian noise when selecting
the action. By estimating the value from similar states and actions, the change
of Q function along actions is smoothed, which helps to make the strategy go
smoothly.

– TD3 adopts a delayed strategy to update parameters. The research of Fuji-
moto et al. [5] shows that synchronous training action network and evaluation
network will lead to a very unstable training process. However, with the fixed
action network, the evaluation network can often converge to the correct
results. Therefore, TD3 updates the action network with a lower frequency,
which helps to solve the over fitting problem of deterministic policies.

2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a simple algorithm for solving optimization
problems inspired by the cooperative predation behavior of birds. Each particle
has three attributes: position xi, velocity vi and fitness value. The particle swarm
optimization [3] encodes a set of solutions through the positions of N particles
in the search space, and updates the solutions (see Eq. 1 and Eq. 2) by tracking
the individual optimal solution Pi and the group optimal solution Pg through
the incomplete random search of the calculation method described as follows.

vk+1
id = wvk

id + c1r1(pkid − pkid) + c2r2(pkgd − pkgd). (1)

xk+1
id = xk

id + vk+1
id . (2)

The learning factors c1 and c2 are updated by the method shown in Eq. 3.
In the iterative process, c1 decreases and c2 increases. Its goal is to strengthen
the global search ability of particles in the early stage and promote particle
convergence in the later stage.

ci = (cie − cis)
CurIter

MaxIter
+ cis, i = 1, 2. (3)

Due to the advantages of simple implementation, high precision and fast con-
vergence speed, PSO has demonstrated its superiority in solving many practical
problems [18].

3 The Proposed Algorithm

3.1 Overall Framework

In this paper, we choose PSO and TD3 to demonstrate how to implement PRL.
Algorithm 1 shows the overall pseudo code of the PRL framework.
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Algorithm 1: PRL
Initialize Archives AR with q learners and allocation A uniformly;
Initialize particle swarm of k actors swarm π; Initialize an empty collective
experience replay buffer;
Initialize collective experience replay buffer R and set A = [ ];
Initialize transfer period o ;
for generation = 1 to ∞ do

Perform PSO according to Algorithm 4 ;
Rank the particles based on fitness scores;
for learner L ∈ AR do

score, R = Evaluate(Lπ, R);
v′

i = α · score + (1 − α) · vi;

end
T = environment steps taken this generation;
for t = 1 to T do

for learner L ∈ AR do
Perform TD3 learner according to Algorithm 3;

end

end
Compute the UCB scores U and update v according to Eq. 5 and Eq. 4;
Normalize U to be within [0, 1) and fill up A based on U;
if generation mod o = 0 then

Copy the weakest RL actor into particles;
end

end

Algorithm 2: Function Evaluate
fitness = 0;
Reset environment and get initial state s0 ;
Initialize an empty collective experience replay buffer R;
while environment is not done do

Select action with Gaussian noise;
Execute action at and observe new state st+1and reward rt ;
Append transition (st, at, rt, st+1) to R;
fitness = fitness + rt;
s = st+1;

end
return fitness, R

PRL integrates multiple learners’ learning results, and all learners are opti-
mized independently in different discounts of Markov processes. The experiences
explored by each learner will be regularly stored in the collective experience
replay buffer and reused by all learners, which ensures that each learner can
collect not only the samples collected by itself, but also the samples collected by
other learners or particles, so as to improve the sampling efficiency and explo-
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ration ability. The task manager monitors this process by dynamically reallocat-
ing computing resources, which is conducive to better learners.

3.2 Module Details

Collective Experience Replay Buffer: As shown in Fig. 3, The collective
experience replay buffer will collect transitions from any learner or particle.
When the collective experience buffer is full, it will throw away the old experi-
ences to save the new experiences. During iterations, learners will sample expe-
riences in batches from the collective experience replay buffer, repeatedly train
the model and update parameters according to these experiences.

Fig. 3. Working process of collective experience replay buffer.

Learner: Each learner is a standard TD3 algorithm (see Algorithm 3) but
discount γ is different, that is, there are differences in the evaluation criteria
of each learner. All learners saved in Archives AR build and use the collective
experience replay buffer together. In addition, the sampling and updating of each
learner are completely independent.

PSO: In the PRL framework, each particle represents an actor network, and
all parameters of the actor network are sequentially packaged into a high-
dimensional vector as the position information of each particle. The process
of updating the position of particles is the parameter updating process of neu-
ral networks. The overall pseudo code of particle swarm optimization is shown
in Algorithm 4. Particle swarm optimization only updates the neural network
through the four fundamental operations of arithmetic, so as to avoid redundant
calculation.
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Algorithm 3: TD3 Learner
Set discount rate = γ, count = 0 and valuev = 0;
Initialize critic network Qθ1 , Qθ2 and actor network CΦ with random
parameters θ1,θ2 and Φ;

Initialize target networks θ
′
1 ← θ1, θ

′
2 ← θ2, Φ

′ ← Φ;
Initialize collective experience replay buffer R;
T = environment steps taken this generation;
for t = 1 to T do

Sample a random minibatch of T transitions (st, at, rt, st+1) from R;
Update the critic network Qθ1 , Qθ2 by the Bellman update;
if t mod d then

Update the actor network CΦ by the deterministic policy gradient;
Soft update target networks:
θ′

i ← τ · θi + (1 − τ) · θ′
i;

Φ′ ← τ · Φ + (1 − τ) · Φ′;
end

end

Algorithm 4: PSO
Initialize the number of particles n, inertia factor w and learning factors
c1s, c1e, c2s and c2e;
Initialize the position xi and velocity vi of every particle;
Initialize the best personal position pi and the best personal fitness fibest of
each particle;
Initialize the best group position pg and the best group fitness fg ;
Initialize maximum number of iterations Tmax;
for t = 1 to Tmax do

for i = 1 to n do
fi, R = Evaluate(π, R, noise=None);
if fi is bigger than fibest then

Update fibest, pi;
Update pg and fg (if fi is bigger than fg);

end
Update vi according to Eq. 1 and xi according to Eq. 2

end
Update c1 and c2 according to Eq. 3

end

Task Manager: The PRL framework sets up multiple learners, and the task
manager will dynamically allocate the sampling frequency for the model. In the
initial state, the number of initial sampling rounds Ai of each learner is the same.
Each learner will store its cumulative number yi of sampling rounds from the
past to the present and a sampling revenue vi the sampling revenue is obtained
by calculating the weighted sum of cumulative returns obtained from interaction
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with the environment and updated according to Eq. 4:

v
′
i = α · fitness + (1 − α) · vi. (4)

After the update of each generation, task manager will calculate the confi-
dence score U according to the cumulative number of sampling rounds yi and
sampling income vi (see Eq. 5)

Ui = vn
i + c ·

√
log(

∑
yi)

yi
. (5)

Then normalize U to obtain a probability distribution function, and obtain
sampling allocation table A according to this probability distribution. The value
in allocation table A is the number of sampling rounds of each learner in the next
round. Obviously, the higher the confidence score of a learner, the greater the
probability of sampling. The existence of task manager improves the exploration
and development efficiency of the whole system.

4 Results

4.1 Domain and Metric

This paper selects the standard experiments on the OpenAI gym platform to
test the performance of the PRL framework and compares the performance of
the PRL framework with a standard TD3 algorithm. Each algorithm is tested
three times regularly in the training process, and the average value is calcu-
lated as the algorithm performance result. Figure 4 shows the scores of the PRL
framework and standard TD3 in four experimental environments: “Cartpole-v1”,
“lunarlander-v2”, “Humanoid-v2” and “Pong-v1”.

4.2 Discussion

The results in Fig. 4 show that the performance of PRL exceeds a single TD3
algorithm in four experiments. The advantages of PRL are very obvious in con-
tinuous environments and sparse reward environments. While PRL does not
change any hyperparameters in the tests, it has obtained very good results in
multiple environments, which undoubtedly helps to improve the universality of
reinforcement learning. In addition, it is obvious that particle population gives
PRL stronger exploration ability in the environment of sparse reward, so it can
get better benefit value in iterations; Secondly, the combination with particle
swarm optimization also helps PRL to enhance its development ability at the
end of iterations, so that PRL can get a convergent solution in most cases. How-
ever, PRL introduces more neural networks, which leads to the operation of PRL
algorithm, which needs more computing resources than standard reinforcement
learning algorithms. But the cost is acceptable with improved performance.
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Fig. 4. Comparison results of PRL and TD3.

5 Summary and Future Work

In this paper, particle swarm optimization and TD3 algorithm are used to build
the PRL framework. On the one hand, PRL can achieve excellent results in
Gym tests without needing the carefully adjustments of hyperparameters, and
improve the convergence vulnerability of reinforcement learning. On the other
hand, PRL also obviously increases the exploration and exploitation ability of
reinforcement learning, and urges agents to find better strategies with good
stability. In the future, we will extend PRL to other heuristic algorithms and
reinforcement learning algorithms to explore the optimal combination of heuris-
tic algorithms and reinforcement learning algorithms, and apply PRL to more
complex environments to test its performance.
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Abstract. In general, multiple domain cyberspace security assessments are very
important for data center security and can be implemented by reasoning user’s
permissions. However, while existing methods include some information from the
physical and social domains, they do not provide a comprehensive representation
of cyberspace. Existing reasoning methods are also based on expert given rules,
resulting in inefficiency and a low degree of intelligence. To address this challenge,
we create aKnowledgeGraph (KG) ofmultiple domain cyberspace in order to pro-
vide a standard semantic description of themultiple domain cyberspace. Following
that, we proposed a user’s permissions reasoning method based on reinforcement
learning. All permissions in cyberspace are represented as nodes, and an agent is
trained to find all permissions that user can have according to user’s initial permis-
sions and cyberspace KG. We set 10 reward setting rules based on the features of
cyberspaceKG in the reinforcement learning of reward information setting, so that
the agent can better locate user’s all permissions and avoid blindly finding user’s
permissions. The results of the experiments showed that the proposed method can
successfully reason about user’s permissions and increase the intelligence level of
the user’s permissions reasoning method. At the same time, the F1 value of the
proposed method is 6% greater than that of the Translating Embedding (TransE)
method.

Keywords: Knowledge graph ·Multiple domain cyberspace · Reinforcement
learning · Data center · Big data

1 Introduction

Data center security has always been a key issue for cloud services in the era of big
data. Artificial intelligence has long been a hot topic for identifying and mitigating
cyberspace attacks in data center. Because of the complexity and variety of cyberspace
threats, collaborative modeling based on domain expertise has become the standard way
to identify them. However, while the component provides physical and social domain
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knowledge, the present approach lacks cyberspace to complete modeling, making it
difficult to correctly infer the user’s intent.

At this time, the physical domain, information domain, network domain and social
domain in cyberspace are mostly described 1. The physical domain is used to represent
spatial information such as cities, regions, buildings, rooms, and so on. The typical
information of cyberspace is the network domain. The social domain in cyberspace
mostly refers to interpersonal relationships. For example, if an attacker and a company’s
cyberspace administrator were once classmates, the attacker will have an easier time
obtaining cyberspace permissions than other attackers. The information domain, which
primarily represents digital information such as a user name, password, information.

The main goal of the Knowledge Graph (KG) based description of multiple domain
cyberspace is to extract semantic information from the design and configuration of mul-
tiple domain cyberspace and to determine the negative effects of event and configuration
changes on the security state of cyberspace. The event described in cyberspace to the real
quantity and entity relationship and the influence of the properties, as well as the change
of entity and entity relationship’s influence on the relationship between user permissions,
can be defined as firstorder logic corresponding reasoning rules, the event described in
cyberspace to the real quantity and entity relationship and the influence of the features,
and the change of entity and entity relationship’s influence on the relationship between
user’s permissions, can all be defined as firstorder logic corresponding reasoning rules.
Therefore a formal description of the impact of cyberspace security events can be cre-
ated. The primary goal of this method is to understand how different multiple domain
cyberspace attacks interact. Existing reasoning methods, on the other hand, are founded
on rules. Firstorder logic defines rules, and the corresponding reasoning rules must be
given by experts. However, it has some limitations, such as a low level of intelligent. As
a result, determining how to automatically extract user’s final permissions from the KG
of multiple domains in order to achieve intelligent reasoning of user’s final permissions
is an issue that merits more investigation.

This process can be divided into three steps: firstly, through theoretical analysis,
hierarchical entity features are constructed according to top-down and bottom-up meth-
ods, mainly covering various entities in physical domain, information domain, network
domain and social domain; Secondly, after determining various entities, it is necessary
to sort out the relationships between entities, which are mainly divided into inclusion
relationship, dependence relationship, dominance relationship, trust relationship and
other types. Finally, after the entities and their relationships are determined, the multi-
ple domain cyberspace KG is constructed to achieve a unified semantic description of
multiple domain cyberspace.

By establishing good multiple domain cyberspace semantic information, can be
defined first-order logic corresponding reasoning rules, the event described in cyberspace
to the real quantity and entity relationship and the influence of the properties, as well
as the change of entity and entity relationship’s influence on the relationship between
user permissions, found that the user is obtained than they should have permissions.
So as to achieve the formal description of the impact of network security events. The
fundamental purpose of thismethod is to grasp the interrelation betweenmultiple domain
cyberspace attacks. However, the existing reasoning methods are rule based reasoning.
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Rules are defined by first-order logic, and the corresponding reasoning rules need to be
specified by experts. Therefore, it has certain limitations, that is the level of intelligence
is low. Therefore, how to automatically reason user’s final permissions from the multiple
domain cyberspace KG, so as to realize intelligent reason of user’s final permissions is
a challenge.

To address this challenge, this paper uses the extraction of multiple domain
cyberspace entities and relationship information for the constructionof amultiple domain
cyberspace KG, the KG to uniformly describe themultiple domain cyberspace. Based on
multiple domain cyberspace KG, we proposed a user’s permissions reasoning meth-od
based on reinforcement learning to realize the user’s final permissions, learn how multi-
ple domain cyberspace configuration and cyberspace entity relationships affect the final
permissions obtained by users, as well as intelligent reasoning to determine whether the
user deserves the permissions. If user’s final permissions are more than initial permis-
sions. This indicates that cyberspace configuration has vulnerabilities, and the goal of
the proposedmethod is to increase cyberspace security by further optimizing cyberspace
setup.

2 Related Works

KG is essentially a knowledge representation and a semantic network that reveals the
relationships between entities [2]. It belongs to the semantic network category and con-
tains real world entities, relationships and events. KG is a knowledge representation, a
semantic network that displays relationships between entities, it falls under the semantic
network category, which comprises entities, relationships, and events in the actual world.

External objective facts are referred to as information, while external objective rules
are inferred and summarized as knowledge.Knowledge is the ability tomake connections
between entities based on data. To put it another way, objects are made up of information
that is represented as a subject predicate object. The KG operates in this way. Previously,
the most common method for creating KG was to work from the top down, establishing
theKGontologies anddata schemabefore adding things to the knowledgebase.However,
as a fundamental knowledge base, this creation approach must use an already organized
knowledge base [3].

2.1 Construction Cyberspace KG

In general, the construction of knowledge atlas in cyberspace mainly includes ontology
construction, information extraction [4] and knowledge storage [5]. In reference [6], an
ontology is developed to model attacks and related entities, and the proposed ontology
is only for attacks. In order to represent the concepts and entities related to the field of
cyberspace security, reference [7] proposed a cyberspace security ontology based on the
ontology of reference [6]. They extend the ontology to provide model relationships that
capture the schema structure and security utilization concepts of the U.S. National Vul-
nerability Database. The ontology includes 11 entity types such as vulnerability, product,
means and consequence. Reference [8] extends the ontology proposed in reference [6]
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and adds rules into the reasoning logic. Their ontology consists of three basic categories:
methods, results, and goals.

Information extraction is mainly oriented to open data and can extract usable knowl-
edge units through automation technology.Knowledge unitmainly includes three knowl-
edge elements, entity, relation and feature, and forms a series of high quality fact expres-
sion on this basis, which lays a foundation for the construction of the upper pattern
layer.

There are two main approaches to information extraction: one is a knowledge-based
engineering approach, which relies heavily on extraction rules but allows the system to
deal with domain-specific information extraction problems. Most of the early informa-
tion extraction systems are based on extraction rules. However, the main disadvantage
is that it requires the participation of experts. Therefore, the accuracy of extraction sys-
tem is high. At present, many information extraction systems are based on knowledge
engineering [9].

The second main method is based on machine learning [10]. With the rise of artifi-
cial intelligence and machine learning, this method has become the mainstreammethod.
The basic steps involve training an information extraction model with a large amount of
training data, and then using the information extraction model to extract relevant infor-
mation. The advantage of this method is that there is no need for experts to define rules
in advance and the intelligence level is improved, but a large amount of training data is
needed to achieve better experimental results. Reference [11] proposes a system that can
identify relevant entities from unstructured text, which mainly solves the problems of
network attacks and software vulnerabilities. Reference [12] developed a framework for
detecting and extracting vulnerability and attack information from network texts, and
then trained a support vector machine to identify potential vulnerabilities. The classifier
uses a standard one-word packet vector model. Once potential vulnerability descriptions
are identified, the framework uses standard named entity recognition tools to extract
security-related entities and concepts. The above methods all describe machine learning
methods for automatically extracting relevant information from unstructured text. How-
ever, the method cannot accurately identify relevant entities until sufficient training data
are obtained.

At the same time, the relationship between information units after information extrac-
tion is flat, lacking hierarchy and logic, and there are a lot of redundant or even wrong
information fragments. Knowledge storage is the process of integrating knowledge from
multiple knowledge bases to form a knowledge base. In this process, the main technolo-
gies include reference resolution, entity disambiguation and entity linking. Different
knowledge base collects different key knowledge for the same entity, some knowledge
base may focus on the description of its own some respects, some knowledge base may
focus on the description of the entity and other entities, the relationship between the
different knowledge base of knowledge storage of the real purpose is to describe the
integration, in order to gain the complete entity description.

2.2 Reasoning Method Based on Knowledge

The practice of reasoning about unknown information based on current knowledge is
known as knowledge reasoning. From individual to generic, by starting with known
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information and extracting new facts from it, or by drawing inferences from a big body
of current knowledge. Symbol-based reasoning and statistics-based reasoning are two
types of knowledge-based reasoning 13. Symbol-based reasoning is generally based on
classical logic (first-order predicate logic or propositional logic) or versions of classical
logic in artificial intelligence, such as default logic. Symbolic reasoning can discover
logical conflicts between items as well as derive relationships between new entities
from existing ones utilizing rules. Machine learning methods are commonly used in
statistics-based reasoning approaches to discover new entity associations from KG.

The goal of knowledge reasoning is to figure out how instances and connections in
KG are connected. To forecast the type of instances, reference [14] provides an SDType
approach that leverages a statistical distribution of characteristics connected by triples
or predicates. The approach can be used to create a knowledge graph from a single data
source, but it can’t be used to reason knowledge across several data sets. Researcher
approach has been presented as a tool for automatically inserting entities in the reference
[15], whereas linked related datasets [16] employ unique abstract data to extract instance
types using specified schema. However, because this method relies on structured text
data, it cannot be applied to other databases.

Information refers to external objective facts, and knowledge is the induction and
summary of external objective laws. Building connections between entities based on
information can be called “knowledge”. In other words, objects are made up of knowl-
edge, each of which is represented as a Subject Predicate Object (SPO). This is how the
knowledge graph works. Previously, the popular approach to building knowledge graphs
was a top-down approach, defining ontologies and data schemas for the knowledge graph
before adding entities to the knowledge base. However, this construction method needs
to utilize some existing structured knowledge base as its basic knowledge base.

3 Methods

3.1 Unified Description of Multiple Domain Cyberspace Semantic Information
Based on KG

In the construction of traditional knowledge atlas of cyberspace, most studies focus
on network domain and information domain, which refers to network equipment and
processing of network data traffic, and rarely involve physical domain, social domain and
other fields. However, with the deepening of the research on cyberspace, academia and
the industry have realized that cyberspace not only exists in the domain of cyberspace
and digital domain, but also is affected by multiple domain behavior. To address this
challenge, we propose a unified semantic information description method based on
KG in multiple domain cyberspace. In reference [1], cyberspace should be integrated
into physical domain, information domain, network domain, social domain and other
domains, so it can be seen that cyberspace has the characteristics of multiple regions.

Firstly, the domain and scope of cyberspace entities are determined, and the rele-
vant data of multi-domain cyberspace are integrated and standardized, providing a top-
level model for constructing multiple domain cyberspace knowledge atlas. Second, after
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determining the scope of related entities, reuse of existing related entities is beneficial
to improve construction efficiency.

(1) Entity information extraction
In this paper, we propose that there are 7 types of entity information to be collected,
namely: space entity, device entity, port entity, service entity, file entity, information
entity and personnel entity.

Space entity belong to physical domains and are used to represent spatial infor-
mation such as cities, campuses, buildings and rooms.At the same time, the physical
domain also has device entities, namely physical entities. Device entity include not
only network terminals, such as switches, routers, servers, and user terminals, but
also related physical entities, such as keys and access cards. A port entity is located
in a network domain and represents the physical ports of various network devices.
It also contains not only physical ports but also virtual network ports. The service
entity is also located in the network domain and represents the open services on
the device, such as HTTP, FTP, and email services. File entity are located in the
information domain and represent information entities and digital files, etc. Digi-
tal files can also represent digital files stored on terminals or servers. Information
entity are located in information domains and are used to represent various types of
information, such as user names, passwords, keys, and messages. Personnel entity
represent the information of people involved in the network, including attackers,
common users and administrators in the social domain.

(2) Semantic information extraction and construction
The KG pulls semantic information from multiple domain cyberspace configu-
ration information to provide a unified semantic description of multiple domain
cyberspace. This research focuses on the semantic information while extracting the
semantic information of cyberspace setup. The lower level semantic information
facilitates the straightforward description of the semantic information of cyberspace
configuration, although the model is huge and complex. The extracted fundamen-
tal semantic information in the unified description of multiple domain cyberspace
based on KGmostly contains entity and relation. The following principles are used
to generate the KG from the retrieved data:

Rule A: Group entities into a domain, and then group entities into the appropriate
entity type;
Rule B: Extract relationships from cyberspace;
Rule C: Connect related entities with wires and represent their relationships.

3.2 User’s Permissions Reasoning Method Based on Reinforcement Learning

We first introduce the basic elements of the RL framework in KG reasoning, including
environment, state, action, and reward. As shown in Fig. 1, the input of the agent is a
state composed of head and tail entities. The output is the next relationship predicted by
the agent.

First, we should collect the following user permissions, including space access per-
mission, device use permission, device control permission, port use permission, port
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Fig. 1. The reasoning method

control permission, service access permission, service control permission, file control
permission, and information known permission.

Space access permission, device use permission, and device control permission
belong to the user’s permissions ’of the physical domain. Space access permissionmeans
that the user can enter the physical space, device use permission means that the user has
the device use permission, and device control permission means that the user can control
the device. The difference between device use permission and device control permission
is that the former means that users can only use the device based on the configured status
and cannot modify the configuration parameters of the device, while the latter means
that users can modify the configuration parameters of the device, such as the firewall
configuration and access control rights. Port access permission, port control permis-
sion, and service access permission. Service control permission refers to the network
domain permission. Port control permission means that users can use the port to access
the service, and port control permission means that users can change the port status
or configuration. Service access means that the service request traffic will access the
service, but it does not mean that the service can be used normally. The service control
permissionmeans that the user can pass the security authentication of the service and use
the service normally. For example, the user can use the email service after being authen-
ticated by the email server. File control permission and information known permission
refer to information domain permissions. File control permission means that users can
read, delete, and modify configuration files. Information known permission means that
users know internal secret digital information such as pass-words and keys.

Agent’s search for permissions reasoning path is a process of trial and error. The
application of reinforcement learning in KG reasoning is based on the assumption that
as long as the agent can reach the tail entity Pt from the head entity P1 within a certain
number of steps, we can regard this path as a potential reasoning path. DeepPath [17]
first introduced reinforcement learning into KG reasoning. The main task is to find the
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path from head to tail entity in the KG. In this method, the KG is sampled, the policy
network is trained, and then the policy network is trained by the artificially designed
reward function.We perform reasoning tasks through the agent, and every time the agent
takes an action, a state transition will occur and a corresponding reward will be given to
it. Our proposed method is consistent with the situational concept in DeepPath. But our
method has different with DeepPath in the following details:

(1) In DeepPath, the states are the entities and relations in a KG are naturally discrete
atomic symbols. But in our proposed method, the states are the permissions that
agent has. In Fig. 1, if agent has P1 permission, the state is agent located in P1; If
agent takes action a1 to has permission P2, the state is agent located in P2. (2) In
DeepPath, the main task is to find the path from head to tail entity in the KG. In
our proposed method, we limit the length of the path to n. In general, if agent has
permission Pt, the permissions it’s most likely to obtain are the permissions agent
closest to finding. For example, in Fig. 1, if user only have permission P1, we use
reinforcement learning to find P1’s optimal policy (optimal path), and we set n =
5, so we can reason if user has permission P1, he will have permission P2.

(2) In DeepPath, the main task is to find the path from head to tail entity in the KG. In
our proposed method, we limit the length of the path to n. In general, if agent has
permission Pt, the permissions it’s most likely to obtain are the permissions agent
closest to finding. For example, in Fig. 1, if user only have permission P1, we use
reinforcement learning to find P1’s optimal policy (optimal path), and we set n =
5, so we can reason if user has permission P1, he will have permission P2.

(3) InDeepPath, the rewardwill be given by specialist’s experiences. In general, reward
has a bigger contribute to the quality of the paths found by the agent. To encourage
the agent to find optimal paths, we set the reward based on cyberspace KG, not by
specialist’s experiences. It is described in detail in the following. And this is our
proposed method major innovation.

Next, we will cover each part of reinforcement learning in detail.
Environment: The entire user’s permissions is considered to be an environment. This

environment will remain unchanged throughout agent training. The environment also
defines the interaction between agent and environment. That is, agent will change to a
new state by interacting with the environment.

State: State encodes the position of agent in the environment with a vector of fixed
length, that is, the position information of agent in the permissions graph.

Action: Our model treats each relationship type as an action. In permissions graph,
permissions in graph are discrete atomic symbols. Due to the existing actual permissions,
we simulate the symbolic atoms in all states. In our method, each state is the agent‘s
position in the KG. The agent will then move from one entity to another when the
operation is performed. The two are linked by action only taken by the agent.

We define the action space, where indicates whether the action i is taken, 1 indicates
that the action is taken, and 0 indicates no. The agent starts with the head entity, uses the
policy network to take the most likely action in the current state, and further searches
the path until it reaches the tail entity. The policy function maps the state vector to the
probability distribution of all possible actions of A, namely:
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where, θ is calculated by the neural network and represents the parameters of the
model.

Rewards: Rewards have always been the hardest part of reinforcement learning to set
up. Most previous studies have assumed that the model only gets the final reward when
it completes the relevant round, and that there is no single step reward. In this method, in
addition to the final reward, we also set up different rewards for actions taken at different
locations. We call this a KG reward guidance. In general, the reward is related to the
length and distance of the path to the head entity. If the weight of path-1 is generally
higher than that of path-2. Although both approaches work, the model focuses more
on learning from approach 1. Actions taken in close proximity to the target entity have
greater impact than actions taken previously. The agent reward set-tings are as follows:

The detail setting is following:

(1) If a user can enter one space and not be prevented by the security rules of that space
and another space permission, he can have entered another space permissions.
Therefore, the reward between the two permissions is setting r = 1;

(2) If a user has access to a space permission, it has device use permission to all devices
in that space. Therefore, the reward between the two permissions is setting r = 1;

(3) If a user has the permission to use a device, it can have the permission to use all
ports on the device. Therefore, the reward between the two permissions is setting
r = 1;

(4) If a user has the permission to use a port, he can have the permission using the
port to access services accessible to the port. Therefore, the reward between the
two permissions is setting r = 1;

(5) If a user has the service reachability of a service permission, and he has the
password for the service or the service does not have the password, he can obtain
the permission control of the service. Therefore, the reward between the two
permissions is setting r = 2;

(6) If a user has control a service permission, he can have control the files from that
service permission. Therefore, the reward between the two permissions is setting
r = 3;

(7) If a user has controlled a service permission, he can have the permissionwhich con-
trolling the information he gets from that service. Therefore, the reward between
the two permissions is setting r = 5;

(8) If a user has controlled a file permission, he can have control the information
permission in that file. Therefore, the reward between the two permissions is
setting r = 10;

(9) If a user has access to a file permission and has the decryption key or the file is
not encrypted, he can have the decrypted file permission. Therefore, the reward
between the two permissions is setting r = 10;

(10) If a user has controlled a service permission, he can control devices managed by
that service. The device can be used and all ports on the device can be controlled.
Therefore, the reward between permissions is setting r = 10.

We set the reward information according to the above rules, and at the same time
agent takes other actions, we set agent’s reward r = 0.
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Policy network: We use a fully connected neural network to parameterize the policy
function to map the state vector to the probability distribution of all possible actions.
The neural network consists of two hidden layers, and the activation function uses ReLU
function. The output layer uses SoftMax for normalization functions.

4 Experiments

4.1 Data Sets

Fig. 2. Experiment environment

The experimental data comes from the real environment of an enterprise network. In
this environment, the outermost space is the entire external environment, representing
a region, which can refer to campus, company, building, building, etc. Terminal T1 is
in room 1, terminal T2 is in room 3, room 2 is in room D1, and room 4 is in room
server. Two firewalls, FW1 in room 1, FW2 in room 4, router in room 4, switch in room
4, and two servers, S1 and S2 respectively, are located in room 4. Figure 2 shows the
connections between devices.

Method A: Path Ranking Algorithm (PRA) [18]. This method makes use of the
characteristics of graph structure, andmakes use of the path relationship between entities
to perform inference calculation, so as to directly estimate the relationship between two
entity nodes. This method basically starts with a single entity node, where you are faced
with two choices: either move to a randomly selected node or return to the starting node.
The algorithm has only one parameter: restart probability R. Stability is achieved after
iteration through countless random walks. The stabilized probability vector contains the
score of all nodes in the network to the initial node, that is, the closeness between entity
nodes. The node with the highest score is the entity node that can be reasoning.

Method B: Reasoning method Based on Rules (BOR) [1]. Since there are no public
permissions reasoning data sets in the previous research, we adopt the rule-based rea-
soning method based on BOR to conduct user permissions reasoning for the training
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data sets, and obtain the user’s finally permissions. Although reasoning method based
on rules has its limitations, but the accuracy rate and recall rate of expert rule making
are both 100%, as described in BOR.

Method C: TransE algorithm, whose core idea is to find a mapping function to
transform each node in the graph into a low-dimensional dense embedded representation,
requiring similar nodes in the graph to have the same distance in the low-dimensional
space. The obtained representation vector can be used for downstream tasks, such as node
classification, link prediction, visualization, etc. It is also essentially a knowledge-based
approach.

Method D: User permissions reasoning based on KG reward guidance reinforcement
learning (KGRGRL), which is proposed in this paper.

BOR is a rule-based reasoningmethod, inwhich experts specify rules, so its accuracy
rate and recall rate are 100%. The main advantage of our proposed method lies in its
intelligence and refinement, and there is no public data for user’s permissions reasoning.
Therefore, the user’s permissions reasoning of BOR method is used as training data of
other methods to compare its effect.

4.2 Evaluation Criteria

Our judgment criteria for judging the correctness of reasoning are generally divided into
two kinds: accuracy rate and recall rate. The definition formula is as follows:

P = TP

TP + FP

R = TP

TP + FN

(1)

TP is the number of positive samples predicted as positive ones, FP is the number of
samples predicted as positive ones, andFN is the number of samples predicted as negative
ones.

4.3 Results

The device of our experiment is Intel X Power CPU, 64 GB memory, 2 pieces of Nvidia
2080 Ti GPU, and the operating system is Ubuntu 18.04. The experimental data sets are
written by Python 3.6. We set up 5000 users, give them different initial permissions, and
then get the corresponding end user permissions through BOR method (Table 1).

From the experimental results, the proposed method of accuracy and recall rate is
not equal to zero, shows the proposed method can reason out the user’s permissions, and
permission to automated reasoning, and not rely on experts given rules, so our proposed
method compared with BOR higher intelligent level, has a wider applicability. It can
abandon the method of formulate reasoning rules by experts, and let the machine learn
rules and features bymachine learning, so as to achieve the purpose of user’s permissions
reasoning.

At the same time, comparedwith PRAmethod, the recall rate of the proposedmethod
is greater than that PRAmethod, and the accuracy and recall rate of the proposedmethod
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Table 1. Experiment results

Method P R F1

PRA 30.57% 47.63% 37.24%

TransE 44.56% 56.89% 49.97%

KGRGRL 50.85% 62.08% 55.9%

BOR 100% 100% 100%

are better than PRA method in the data set, indicating that the proposed method has a
good effect and can improve the accuracy of existing reasoning methods.

Through the analysis of the experiment results, it was discovered that the user’s
permissions reasoning based on KG to reason out the user in all possible permissions
ability under the current cyberspace configuration, can be based on existing knowledge,
reasoning the user’s final permissions, abandon the traditional set of reasoning rules
through the expert mode, solve the problem of its limited scope of application, and
greatly improve the efficiency of reasoning.

5 Conclusion

This paper proposes a unified representation method and a user’s permissions reason-
ing method based on reinforcement learning in multiple domain cyberspace based on
KG. Through KG, entities and entity relations in multiple domain cyberspace can be
described, so that entities in different domains of cyberspace can be described and
expressed uniformly. Through to unify the existing multiple domain cyberspace seman-
tic information description, thus effectively grasp the connection between the multi-
ple domain cyberspace, based on this, reasoning the user’s permissions. The reasoning
method is to abandon the traditional expert formula mode of reasoning rules in advance,
can let the machine learn automatic reasoning rules, reasoning the intelligence of the
user’s permissions. It has wider applicability and maneuverability and provides a new
idea for intelligent reasoning of user’s permissions reasoning. Through the experiment of
simulation cyberspace environment, it is proved that this method can effectively deduce
the user’s final permissions under the current cyberspace configuration, and realize the
intelligent reasoning of user’s permissions. Therefore, the method proposed in this paper
is feasible and effective.

This paper proposes a unified semantic description and reasoning method for mul-
tiple domain cyberspace based on KG, which can describe the information of different
domains in cyberspace, so as to effectively describe and express the whole situation
of cyberspace. But at the same time, our experiments are based on small-scale simula-
tion cyberspace environment, and have not been effectively verified in large-scale real
cyberspace environment. Next, we hope to be able to verify the correctness and validity
of our proposed method in a large real cyberspace.
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Abstract. In multi-agent systems, deep reinforcement learning policy
gradient algorithms can converge excessively slowly or even fail to con-
verge if the agent size as well as the state information quickly grows.
We consequently present a policy gradient algorithm for generalised cen-
tralised training and decentralised execution (CTDE) based on the prin-
ciple of masking. We transform the global state information of the critic
network in the original (MADDPG) algorithm to the state information
of local random agents as the input of the critic network. In addition, we
have changed the way Polyak updates the target network so that it can
dynamically and adaptively update the target network. Under the new
framework, our approach considerably decreases the training strain on
the critic network while taking into consideration the efficiency of agent
sample learning and speeding up the multi-agent discovery of superior
strategies. Combining these two improvements, our suggested approaches
can be extended to any other CTDE-based multi-agent deep reinforce-
ment learning algorithms, rather than being limited to the MADDPG
conventional multi-agent reinforcement learning algorithm. We made
the code publicly available at https://github.com/ZVEzhangyu/SMPG-
master.

Keywords: Multi-agent · Reinforcement learning · Masked MADDPG

1 Introduction

With the ongoing inventive development of deep reinforcement learning [12]
(RL), strong multi-agent systems have been successfully constructed in many
tough fields and attained to beyond human level: AlphaStar [17] attained the
level of beating human professional players in StarCraft 2, while AlphaZero [14]
achieved the spectacular feat of beating top human players in other chess games
after breaking through the Go domain.

These world-beating accomplishments are attributable to the success of dis-
tributed training methodologies for RL algorithms such as IMPALA [2] and
self-play [14]. The biggest barrier in the application of MARL algorithms to
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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real-life production is that the multi-agent systems used in real-world problems
need to have fast training speed, stable training process, autonomous learn-
ing, and generalization capabilities, which are part of the problem that can be
perfectly solved when the number of multi-agent systems is small. Since the
number of multi-agent systems in real-world problems is massive, existing policy
RL algorithms face difficulties in sampling and poor sample learning utilisation,
so off-policy-based reinforcement learning frameworks have been used in recent
MARL literature to address these problems, such as MADDPG [6], COMA [3],
MAA2C [1], and others. Variants of each distinctive and enhanced method have
been presented within this framework, delivering advanced outcomes in a wide
range of multi-agent benchmarking scenarios.

In this paper, we revisit the generality of these algorithms on multi-agent pol-
icy gradients by investigating the performance of the classical CTDE’s off-policy
RL algorithm MADDPG in several well-known MARL benchmark environment
experimental settings within the multi-agent particle-world environment (MPE)
[6]. To compare our experimental results with benchmark MADDPG perfor-
mance, we experimentally focus on totally cooperative as well as cooperative-
competitive mixed super-multi-agent tasks.

Our proposed method achieves the benchmark performance of the original
MADDPG paper in all test scenarios, including simple-spread, simple tag, and
basic MARL relation case scenarios. Holding all parameters constant, we con-
ducted ablation experiments, and the resultant return convergence curves were
all greater than those of the benchmark MADDPG algorithm, and gave practi-
cal ideas and improvements for research on CTDE-based policy gradient algo-
rithms. We refer to the modified MADDPG as the Soft-Masked Policy Gradient
(SMPG).

Our contributions are summarized as follows:

1. We show that SMPG has minimum parameter and network framework modifi-
cations, no domain-specific algorithmic framework as well as hyper-parameter
changes. It achieves performance beyond the benchmark MADDPG in all
three of the overwhelming number of multi-agent benchmark scenarios.

2. We analyze and obtain the sources of high bias in the value function of MAD-
DPG in a super-multi-agent scenario and the reasons for the lag of soft-polyak
in the late stages of multi-agent training. Better performance in policy explo-
ration can be achieved by adaptively updating the target network through
masking.

3. We show the influence of each enhancement on the multi-agent strategy under
the SMPG ablation experiment. The ablation experiments show that both of
our proposed changes have a considerable increase in the capabilities of the
multi-agent learning strategy and are more effective when used in combina-
tion.
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2 Related Work

MARL algorithms typically lie between two frameworks: centralised and decen-
tralised learning. Centralised learning extends to the combined actions of numer-
ous agents by learning a common strategy; decentralised learning focuses on
optimising each agent separately, treating the other agents as part of the envi-
ronment. These approaches have good performance in general game problems.
However, in some special game problems, even with low problem complexity,
both of the above approaches can introduce instability into multi-agent systems.
Recent work has been divided into two main lines to remedy the respective
shortcomings of the two frameworks: centralised training decentralised execution
(CTDE) and value-based decomposition (VD). The CTDE-based approaches
such as MADDPG [6], COMA [3] and MAA2C [1] combine the advantages of
centralised and decentralised RL through the actor and critic (AC) framework,
which greatly improves the joint strategy of multi-agents in free-model environ-
ments VD usually uses Q-functions as the core of the framework of the algorithm
to propose a solution to the credit allocation problem among multiple agents,
and has since spawned many excellent value function decomposition algorithms:
VDN [16] for linear summation of local Q-functions to global Q-functions, QMIX
[10] for fitting global Q-functions to supernetworks, QTRAN [15] for decompos-
ing Q-functions on a larger scale based on Value functions while satisfying the
IGM (Individual-Global-Max) condition, and QPD [18] based on Q-value path
decomposition, etc.

Although many of the single-agent policy gradient algorithms already exist
(e.g. PPO [5,13]) have long achieved a level of performance beyond that of
humans in continuous tasks. However, the biggest problem to be solved in migrat-
ing them to a multi-agent RL framework is the communication exchange between
multiple agents and the assignment of credit. MAVEN [7] exploits the mutual
information between potential variables of hierarchical control to maximise the
learning of a range of different policy behaviours; IPPO [19] & MAPPO [19] have
achieved better results in SMAC [11] using decentralised training of independent
PPO; FACMAC [9] introduces the idea of value decomposition without mono-
tonic constraints from QMIX to MADDPG. The idea of value decomposition
without monotonic constraints in QMIX is introduced into the critic network
of MADDPG to avoid the dimensional explosion problem and thus better solve
non-monotonic tasks; The communication-based MAIC [20] model improves the
efficiency of communication transfer between multiple agents by learning to pre-
dict the action choices of teammates and adding regular terms to constrain
information transfer.

It is not difficult to see that many existing works have investigated the details
of the implementation of PG algorithms for multi-agent in the field of continuous
control. After examining the above literature, we find that much of it largely
ignores the problem of high variance accumulation due to excessive information
input during multi-agent training, which allows multi-agent learning to fall into
poorer local optimum solutions, and this is one of the main reasons for including
it in our experiments in this paper.
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3 Algorithm

3.1 Masked Multi-agent Actor Critic

The Masked Autoencoder (MAE) [4] is He’s proposed architecture for a self-
supervised learning-based image generation algorithm that, as a denoising
autoencoder, corrupts the input signal and learns to reconstruct the original,
uncorrupted signal in the process of reducing redundant image block informa-
tion, as illustrated in Fig. 1(a).

Fig. 1. In (a), it describes the overall network architecture of the MAE. In (b), the
critical input retains the state of the agent corresponding to its own actor network
and all agent action information, while the state information of other agents will be
randomly masked.

The algorithm of MAE can be described as follows: the main operation of
mask is to chunk the input image, mask out some of it at random, and stitch the
remaining blocks into the encoder in order. The encoder and decoder sections use
an asymmetric encoder-decoder architecture, with the encoder encoding only the
unmasked blocks and the decoder encoding the masked blocks as input, resulting
in an image the size of the original image. This makes the decoder architecture
very lightweight and allows researchers to efficiently train large models as mask-
ing out a large proportion of the image blocks (e.g. 75%) results in significant
and meaningful self-supervised tasks, with experimental results showing a 3x
or more speedup in training large model generation tasks and The accuracy on
the self-supervised generation task outperformed that of all Vision Transformers
(ViT) variants.

This paper combines the main ideas of MAE to propose a multi-agent deep
reinforcement learning algorithm for MADDPG based on information masking.
To address the problems that exist in the process of multi-agent collaboration:
1) low learning efficiency 2) a tendency for the training performance of the algo-
rithm to decline significantly as the number of agents increases. Our improvement
starts with the design of the collaboration model architecture, which is imple-
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mented as follows: First, some of the agent state information is masked randomly
according to the masking rate; secondly, the action information of all agents is
not masked, mainly because the action information is visible to all agents, and
the state information is private information of the agents, so the state informa-
tion is masked as in Fig. 1(b); the input critic The state information of the critic
network is kept in its original order, and the actor network and critic network
are updated in the same way as the benchmark MADDPG.

It can be seen that the critic network input to the original MADDPG algo-
rithm is a special case of the SMPG masking rate of 0 in this paper. However, a
masking rate of 0 means that the critic network will input private state informa-
tion of all agents, which is unimaginable in a realistic problem of communication
channel consumption between a large number of intelligences, which is one of
the problems that MADDPG suffers from. Secondly, although all sampled state
information is the true unbiased estimate, MADDPG’s over-reliance on all state
information leads to a high variance accumulation phenomenon, which in turn
makes it exponentially less likely that the agents will update in the correct gradi-
ent direction, making it difficult for the algorithm to explore a better strategy. In
contrast, SMPG can reduce the variance accumulation of the samples, although
it requires sacrificing some of the agents’ state information visibility as a cost,
i.e. increasing the sampling bias, but as the number of agent iterations increases,
the data bias generated in the random masking process will eventually cancel
each other out, so it does not affect the convergence of the algorithm. Third,
the role played by the random masking approach of SMPG proposed in this
paper is similar to that of experience pool replay, i.e., it breaks the problems of
data correlation and static distribution between each agent, making the agent
model more stable and increasing the spatial dimension of agent exploration,
and reducing the phenomenon of agent overfitting.

3.2 Adaptive Polyak Update

Polyak Average Target Update. The Polyak Average Parameter Update
was first applied in the Proritized DQN [12] article, which dates back to 2015.
For DQN [8], the loss function of its network is through Q-Learning: From the
loss function

Eπω

[
r + γ max

a′
Q (s′, a′, ω) − Q(s, a, ω)

]
. (1)

the predicted Q-value Q(s, a, ω) and the target Q-value Q (s′, a′, ω)of the DQN
use the same network parameters ω and model, which results in an overesti-
mation of the target Q when the predicted Q occurs. Due to the instability of
the sample data collected by the agent, it is bound to cause fluctuations in the
agent learning process, which to a certain extent increases the chance of oscil-
lation and divergence in the agent strategy model. To solve the overestimation
problem, Prioritized DQN proposed an update method for Polyak average soft
update target network. Specifically, the weights of the target value network ω′

are updated by slowly tracking the weights of the current value network ω:

ω′ = τω + (1 − τ)ω′. (2)
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where 0 ≤ τ ≤ 1. The Polyak average update method can effectively control the
magnitude of each target Q value update and improve the stability of the agent
in learning the optimal policy.

Polyak average updates are not only used in the DQN classical framework,
but also in the PG-based policy gradient framework, including the MADDPG
studied in this paper. From the explanation of the Polyak average update method
in the previous section, it is clear that the real stability of the agent in learning
optimal policy can be improved by setting the parameters manually, and that
the setting of the parameters is constant throughout the training process. This
can easily prove that the stability of the whole algorithm is very useful in the
early training period, but for the later training, when the Q value of the value
function tends to converge locally. Because the τ (usually 0.01) is too small, the
parameter θ′ of the target network is excessively dependent on the old parameters
of the target network, which makes the target network parameters still take a
long time to transition to the optimal prediction network parameters when the
prediction network parameters. Later experiments show that this phenomenon
will greatly delay the convergence speed of the entire algorithm. Although this
is a very conservative and safe practice, it will become more obvious for solving
the actual complex proxy environment problems because of this conservative
operation.

The limitation of using fixed parameter τ to update target network parame-
ters for the Polyak average update method mentioned above. The disadvantage
is that the weighted average update of target network parameters using adaptive
Polyak is improved. The following formula is used to calculate the value of τ .

τ = 1 − eratio − e−ratio

eratio + e−ratio
, where ratio =

1
batch

batch-1∑
i=0

(|Qi| /
∣∣QT

i

∣∣). (3)

In the above equation, we can see that ratio describes the absolute mean
difference ratio between the prediction network Qi and the target network QT

i .
When the target network is relatively correct, if the prediction network is overes-
timated, the ratio value will also increase. When both the target network and the
prediction network tend to converge, the ratio will approach 1, and when the pre-
diction network are relatively correct. If the predicted network is underestimated,
the ratio will decrease by less than 1. So ratios can easily describe the estimated
state of the prediction network. Next, the value comes from 1 − tanh(ratio),
because the tanh function maps any input to any real number between (−1, 1)
and ratios are always positive real numbers, so the tanh(ratio) output is always
any real number between (0, 1), which satisfies the definition of the Polyak mean
update method, 0 ≤ τ ≤ 1.

Of course, all of this is based on the premise of relatively stable estimation of
the target network and does not require the estimation state of the target net-
work. Even if overestimation or underestimation occurs, it is obvious that with
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the update of the Strategic Gradient Method, according to the Policy Improve-
ment Theorem,

Theorem 1 (Policy Improvement Theorem). For any action taken at any
state s, if qπ(s, π′(s)) ≥ vπ(s) is true, a larger value function can be obtained,
then π′ is better than or equivalent to π.

It can be simply proved that the temporal-difference estimates of both the
target networkQT

i and the prediction networkQi will tend to be optimal. So
even if the target network is not an accurate estimation, it will not affect the
convergence of the whole proxy policy and the convergence of the value function.

4 Experiments

Baseline Comparison and Experimental Settings. We compare SMPG
with MADDPG in two fully cooperative and fully competitive relationship envi-
ronments in MPE, including simple-spread and simple-tag to make a fair com-
parison, we follow the same tuning process as SMPG in reimplementing the set
of hyperparameters such as learning rate, optimizer and network framework. We
also tested various implementation techniques specifically to make the MAD-
DPG implementation match or exceed the performance of the original paper.
Full details can be found in our open source code.

Each experiment was conducted on a server configured with 36 GB of RAM,
a 32-core CPU, and a single GeForce RTX 3090 GPU for forward propagation
and training updates. The results of each experiment were averaged over five
separate experiments to obtain the final results.

4.1 Contrast MADDPG

We first tested the simple spread in a scenario where the number of agents was
increased from the original 3 to 7. We used DDPG and MADDPG as reference
experiments to compare with our SMPG. All network hyperparameters as well
as the network model size remain consistent with the benchmark MADDPG,
except for three algorithm-specific parameters. We plot the average convergence
curves of independent experiments over 50,000 episodes for the various methods
in Fig. 2(a).

In the MADDPG citation, the authors analyse that multi-agent reinforce-
ment learning shows an exponentially decreasing trend in the probability of an
agent obtaining the correct update direction for a policy gradient when the
number of agents is increased significantly. It is therefore not difficult to explain
that the algorithm performance of MADDPG in Fig. 2(a) is essentially the same
as that of the multi-agent version of DDPG when the number of intelligences
is increased significantly, or even shows poorer performance during training. In
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Fig. 2. In (a), we show the average reward convergence curves of three different meth-
ods under simple spread. SMPG shows better performance than the other two methods
during training, while MADDPG’s performance basically drops to the level of DDPG
because of the variance accumulation problem. In (b), it can be seen from the reward
convergence curve of three SMPGs with different masking rates in simple spread that
proper masking can bring better a convergence curve.

contrast, SMPG was able to make the high variance accumulation problem some-
what alleviated after masking certain agent state information, and obtained a
better strategy than MADDPG at a later stage. And we also used the benchmark
comparison method.

As shown in Table 1, we show the average number of collisions per episode,
the average agent distance to the landmark, and the average number of times the
agent reaches the landmark for the five independent randomised experiments of



58 Y. Zhang et al.

Table 1. In the simple spread environment, the average distance, average collision
times and average times of reaching landmarks of each agent in each episode.

Agentπ Average dist Collisions Occupied landmark

SMPG 9.130 4.187 1.540

MADDPG 9.755 4.209 1.380

DDPG 9.761 4.276 1.320

simple spread for the three methods. The lower the average number of collisions,
the shorter the average agent distance, and the higher the number of landmarks
reached, the better the performance of the algorithm.

Masking Rate. In order to find a better masking ratio, Fig. 2(b) shows the
effect of different masking ratios on the agent’s exploration strategy. We use
30% as the interval, and start with 10% as the exploratory experiment for three
successive masking ratios. 40% is the masking ratio that leads to a better strategy
for the agent in our experiment, but there are still better masking ratios, but
due to the time and cost constraints of the experiment, we will use 40% masking
ratio as the final baseline result in this paper. In Table 2, we can see more
intuitively how the data compare with different masking ratios in the simple
spread environment.

Table 2. In the simple spread environment, under different masking rates, the average
distance, average collision times and average times of reaching landmarks of each agent
in each episode.

Agentπ Average dist Collisions Occupied landmark

SMPG01 9.542 4.130 1.500

SMPG04 9.130 4.187 1.540

SMPG07 11.748 4.193 0.954

4.2 Ablation Experiments

Similar conclusions emerged for the simple tag task: in Table 3, we clearly show
the average number of successful predations obtained for each agent after five
independent random experiments using different strategy algorithms. When we
change the number of hunters and prey in the environment from the original 3/1
to 7/4 and 7/7, the SMPG-dominated hunter agent is always more able to catch
the MADDPG or DDPG-dominated prey agent. And when the hunter/prey
number changes to 4/7, it is easy to conclude that prey agents with SMPG as
their main agent are better able to escape hunters with the other two methods
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Table 3. In the simple tag environment, different Hunter/prey ratios were compared.
SMPG shows excellent strategies both as hunter and prey.

Adversary agentπ Good agentπ A/G(4/7) A/G(7/7) A/G(7/4)

SMPG SMPG 2.79 3.20 4.58

SMPG MADDPG 4.85 2.61 6.99

MADDPG SMPG 2.52 2.31 3.75

MADDPG MADDPG 3.33 2.53 4.27

Table 4. The SMPG ablation experiment was conducted in a simple spread envi-
ronment. The average distance, average collision times, and average times of reaching
landmarks of each agent in each episode are displayed below.

Agentπ Average dist Collisions Occupied landmark

SMPG 9.130 4.187 1.540

SMPG-s 9.274 4.251 1.484

SMPG-m 9.245 4.157 1.445

as their main agent. Therefore, using SMPG as a hunter agent or a prey agent
is much more successful than the other two methods.

To compare the extent to which the two improvements contribute to SMPG,
we conducted ablation experiments for both in the simple spread environment.
As Table 4 demonstrates, the MADDPG with only the addition of masking can
have a tendency to get a better strategy later on, but the training time is unac-
ceptable. For the MADDPG with only the adaptive Polyak update target net-
work added, it can be of some help in exploring better strategies while speed-
ing up the convergence of the algorithm. In summary, the comparative analysis
shows that the masking technique can provide agents with the possibility of bet-
ter strategy exploration; adaptive Polyak can discard the conservative way of
updating the target network in the past, allowing agents to learn more quickly.

5 Conclusions and Future Work

In this paper, we borrow the idea of masked autocoding (MAE) to locally and
randomly mask the global state information of the critic network in the original
MADDPG algorithm, making it possible for each critic network to be assigned
the state information of other agents. In addition, we used the adaptive polyak
algorithm to update the target network, and SMPG with adaptive polyak con-
verged nearly 1000 episodes faster on average than the original parameter-fixed
polyak update in the MPE environment. Our future work focuses on implement-
ing the SMPG improvements partially in other CTDE-based policy gradient
algorithms with adaptive updates of the masking ratio to reduce the adjustment
of the masking ratio during migration from different training environments.
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Overall, the SMPG improvements yielded robust results that can be opti-
mised by applying them to a wide range of MARL algorithms based on the AC
framework, and combined with distributed algorithms to enable the training of
large-scale agents.
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1. Chu, T., Wang, J., Codecà, L., Li, Z.: Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Trans. Intell. Transp. Syst. 21(3), 1086–1095
(2019)

2. Espeholt, L., et al.: Impala: scalable distributed deep-RL with importance weighted
actor-learner architectures. In: International Conference on Machine Learning, pp.
1407–1416. PMLR (2018)

3. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual
multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32 (2018)

4. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

5. Heess, N., et al.: Emergence of locomotion behaviours in rich environments. arXiv
preprint arXiv:1707.02286 (2017)

6. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-
agent actor-critic for mixed cooperative-competitive environments. In: Advances
in Neural Information Processing Systems, vol. 30 (2017)

7. Mahajan, A., Rashid, T., Samvelyan, M., Whiteson, S.: Maven: multi-agent vari-
ational exploration. In: Advances in Neural Information Processing Systems, vol.
32 (2019)

8. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

9. Peng, B., et al.: FACMAC: factored multi-agent centralised policy gradients. In:
Advances in Neural Information Processing Systems, vol. 34 (2021)

10. Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.:
QMIX: monotonic value function factorisation for deep multi-agent reinforcement
learning. In: International Conference on Machine Learning, pp. 4295–4304. PMLR
(2018)

11. Samvelyan, M., et al.: The starcraft multi-agent challenge. arXiv preprint
arXiv:1902.04043 (2019)

12. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv
preprint arXiv:1511.05952 (2015)

13. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

14. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

15. Son, K., Kim, D., Kang, W.J., Hostallero, D.E., Yi, Y.: QTRAN: learning to fac-
torize with transformation for cooperative multi-agent reinforcement learning. In:
International Conference on Machine Learning, pp. 5887–5896. PMLR (2019)

16. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017)

17. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature 575(7782), 350–354 (2019)

http://arxiv.org/abs/2111.06377
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1902.04043
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1706.05296


SMPG: Adaptive Soft Update for Masked MADDPG 61

18. Yang, Y., et al.: Q-value path decomposition for deep multiagent reinforcement
learning. In: International Conference on Machine Learning, pp. 10706–10715.
PMLR (2020)

19. Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., Wu, Y.: The surpris-
ing effectiveness of PPO in cooperative, multi-agent games. arXiv preprint
arXiv:2103.01955 (2021)

20. Yuan, L., et al.: Multi-agent incentive communication via decentralized teammate
modeling (2022)

http://arxiv.org/abs/2103.01955


Attentive Relational State Representation
for Intelligent Joint Operation Simulation

Renlong Chen1, Ling Ye2, Shaoqiu Zheng2(B), Yabin Wang2, Peng Cui2,
and Ying Tan1,3,4,5(B)

1 School of Intelligence Science and Technology, Peking University,
Beijing 100871, China

ytan@pku.edu.cn
2 Nanjing Research Institute of Electronic Engineering, Nanjing 210007, China

zhengshaoqiu1214@foxmail.com
3 Key Laboratory of Machine Perceptron (MOE), Peking University,

Beijing 100871, China
4 Institute for Artificial Intelligence, Peking University, Beijing 100871, China

5 Nanjing Kangbo Intelligent Health Academy, Nanjing 211100, China

Abstract. In the multi-agent task, due to the constant changes in the
location and state of each agent, the information considered by each
agent when making decisions is also constantly changing. This makes it
difficult to model cooperatively among agents. Previous methods mainly
used average embedding to model feature aggregation. However, this
aggregation has the problem of losing permutation invariance or exces-
sive information loss. The feature aggregation method based on attentive
relational state representation establishes an insensitive state representa-
tion to permutation and problem scale. In our experiments on Intelligent
Joint Operation Simulation, experimental results show that attentive
relational state representation improves the baseline performance.

Keywords: Multi-agent · Intelligent joint operation simulation ·
Information aggregation · Attention mechanism

1 Introduction

A lot of real-world robotic tasks involve multiple agents with partial observability
and limited communication [2]. Agents have capability to extract useful features
from neighboring agents to make optimal decisions and cooperation emerges
in the group. Typical examples include the swarm robotics [22], traffic signal
control [21], collaborative filter [3], and social network analysis [24].
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For the learning paradigms in multi-agent systems, a centralized controller
[5] is theoretically feasible but counters many problems, such as the curse of
dimensionality and nonexistence of a possible centralized controller in some real
tasks like intelligent transportation systems [10]. Therefore, we focus on a decen-
tralized protocol in multi-agent reinforcement learning (MARL), where agents
are connected by a time-varying topology structure, and they aggregate informa-
tion from all their neighbors. This also promotes the scalability and robustness
of multi-agent systems.

However, when decentralized artificial intelligence (AI) agents are trained in
an interactive environment, it is tricky to handle the state representation issue
because the neighborhoods are highly flexible and scalable. One of the previous
approaches to represent the aggregated state is fixing the number of local team
members and simply concatenating the information received from neighboring
agents, as the input dimension must be invariant in neural-network policies and
other machine-learning models. We argue that these formulations lack flexibility.
Another popular protocol is pooling embedding, such as max-pooling and mean-
pooling. Even though pooling method secures invariant input dimension, it loses
much information among neighboring agents.

In this article, we utilize an attention based aggregation method called Atten-
tive Relational State Representation (ARE) to efficiently aggregate information
from neighboring agents. By modeling the attention between different neighbors,
ARE can actively select relevant information discriminately. By pooling, it con-
structs a unified state representation for learning policies. With this embedding,
we condition the policy and train them simultaneously by deep reinforcement
learning (DRL). The compact representation makes the learned policy robust
to the changes in the multi-agent system and also reduces the search space for
the policy learning method. Enabling learning in this framework opens up the
possibility of applying learning-based methods to multi-agent interacting envi-
ronments where neighbors need to be modeled explicitly and both the quantity
and identity are changeable over time.

In our experiments, we apply ARE to Intelligent Joint Operation Simulation,
which is a confrontation simulation game. In game setting, the blue side is the
defensive side and red side is the offensive side. The blue side relies on the ground,
sea and air three-dimensional air defense fire to defend the key targets of the
two command posts on your island. While the red side comprehensively uses
sea and air assault and supports supporting forces to break through the blue
air defense system and destroys the key targets of two command posts of the
blue side. Experimental results show that ARE helps decision making progress
and outperforms baseline algorithm which indicates that ARE is a more efficient
information aggregation method than conventional methods (Fig. 1).
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Fig. 1. Joint operation simulation

2 Related Work

2.1 Multi-agent Reinforcement Learning

Learning in the multi-agent system is essentially more difficult than in the
single-agent cases, as multiple agents not only interact with the environment
but also with each other [1,4,17]. Directly applying the single-agent RL algo-
rithms to the multi-agent system as a whole is a natural approach, which is called
the centralized MARL (also called joint action learner [5]). Centralized MARL
models the interaction between agents by tightly coupling everything inside the
model. Although feasible in execution, it suffers from the curse of dimensionality
[4] due to the large-scale joint input space and action space. Thus, decentral-
ized structure has more advantages toward scalability, robustness, and speedup
[7,14,18,26].

In the decentralized MARL, a lot of attention has been given to the problem
of modeling other agents [1]. In this article, we focus on how to aggregate the
information collected from multiple agents, and we make a short survey on the
information aggregation approaches in MARL.

2.2 Feature Aggregation in MARL

Concatenation. Concatenation is the simplest and most popular approach in
multi-agent RL. By concatenating other features, the augmented state contains
all necessary information for decision making. MADDPG [11] constructs the
critic for each agent by concatenating other agents’ observations and actions,
from which the agents can effectively train their actors. A centralized critic
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is also used in COMA [6], to implement difference reward by comparing with
a counterfactual baseline. These methods are under the paradigm of central-
ized learning with decentralized execution [6,11,12,14,20] which is inspired from
DEC-POMDPs [13]. However, concatenation will make the dimension increase
linearly, which scales poorly to the large size system. Also, the agent number
and identities must be fixed, which is impractical in changeable environments.

Mean Embedding (ME). ME is a workable approach when dealing with a
variable dimension problem. By calculating a mean representation, the output
has an invariant dimension no matter how many agents are involved. CommNet
[19] learns the communication model by rescaling the communication vector by
the number of agents to aggregate information. [25] introduced the mean-field
theory to MARL. The interactions within the group are approximated by those
between a single agent and the average effect from the overall population or
neighboring agents. [9] also used the ME method to tackle the representation
learning problem in the swarm system. The ME has the advantage of scalability,
including dimension and permutation invariance. However, the mean compu-
tation is isotropic. The agent has no knowledge of each of its neighbors when
pooling averagely around its local view, which may cause ambiguous estima-
tion in many multi-agent tasks where pairwise interactions are important for
cooperative decision making.

3 Method

In this section, we first introduce background and give the definition of notations,
then introduce ARE structure.

3.1 Background and Notations

We consider multiple agents operating in a partially observable stochastic envi-
ronment, modeled as a partially observable Markov decision process (POMDP).
A stochastic game G is defined by a tuple < S,U, P, r, Z,O,N,A, γ >, where N
agents, A = {a1, a2, . . . , aN}, are in an interactive environment. s ∈ S is the true
state of the environment. At each time step, all agents simultaneously execute
actions yielding a joint action u ∈ U then receive observation {oi} determined
by observation function O(s, u) : S × U → Z, and rewards r(s, u) : S × U → R

for profits.P (s′ | s, u) : S × U × S → [0, 1] is the state transition probability
function, and γ is the discount factor. We denote joint quantities over agents
in bold, joint quantities other than a specific agent a with the subscript a, i.e.,
u = [ua,u−a]. All agents take the goal of maximizing the discounted reward
of rt.

We consider the parameter-sharing decentralized control [8]. For simplicity
and focusing on the representation problem, we assume that each agent can
perceive the features of its neighbors in a local sensing range, and there is no
other communication protocols.
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3.2 Attentive Relational Encoder

An overview of the inference flow is illustrated in Fig. 2. All agents may behave in
a possibly time-varying relation network Gt = (A,Et), where Et stands for the set
of neighborhood links connecting agents at the time t. In an agent-centric view,
we denote the neighboring feature set for the agent i as Ni = {oj}j∈Gi where Gi

is the sub-graph of G induced by all agents adjacent to agent i (we leave out t
for brevity). Therefore, our task is to design a function f with trainable weights
θ to map the neighborhood feature set to a fixed size of aggregated high-level
features, y : yi = f (Ni, θ), where i ∈ 1, 2, . . . , N .

Fig. 2. Overview of the ARE in policy inference.

We utilize a compact neural-network-based architecture, ARE, to aggregate
the information from neighboring agents group, whose size is changeable either
due to the join or quit of agents. The basic idea of our ARE module is to
learn an attention score for each neighbor’s feature in the entire neighborhood
set. The learnt score can be regarded as a credit that automatically selects
useful latent features. For example, within a team of robots moving toward their
separate goals, one robot may not care about some neighbors which are behind
its moving direction although they are very close. The selected features are then
pooled across all elements of the set to aggregate the information and finally
served as the state representation for the subject agent.

Figure 3 illustrates the main components of our approach and its execution
flow. ARE consists of three encoders, Ef , Ec, and Ea, where {f, c, a} stand
for feature embedding, communication embedding, and attention embedding. In
particular, as shown in Fig. 3, we first feed all the original features (self-feature
as well as neighboring features) into two shared encoders Ef and Ec. Ef can
be regarded as an intrinsic encoder, which keeps valuable latent features for
constructing representation, while Ec is an extrinsic encoder, which reserves
the crucial information for interactive relation modeling. Thus, we obtain two
streams of latent vectors, ef and ec:

ef
i = Ef (oi) (1)

ec
i = Ec (oi) (2)

Second, ARE computes attention scores using the latent vectors ec for each
corresponding neighboring agent through Ea, taking the self feature ec

i , the cor-
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Fig. 3. ARE module on aggregating neighboring features.

responding neighbor’s feature ec
j , as well as an Mean Embedding for other neigh-

boring agents in Gi other than the agents i and j

ea
ij = Ea

(
ec
i , e

c
j , e

c−ij

)
(3)

ēc
−ij =

∑
k∈Gi−{i,j} ec

k

‖Gi − {i, j}‖ (4)

It is worth emphasizing that the self feature is also included in the neighboring
feature set in ARE to evaluate the attention score for each agent itself.

We add another channel of ME ec−ij besides pairwise features, in order to
model the other neighbors’ effect on the pairwise interaction. The output of the
function Ea is a set of learnt attention activations

{
ea
ij

}
j∈Gi

. This procedure is
similar to the query-key system [23].

eij ∝ φ
(
eT
i WT

k Wqej

)
(5)

where each sender broadcasts a key transformed by Wk, while the receiver broad-
casts a query transformed by Wq. The multiplication of these two parts interprets
the relevance or utility of the message. However, we implement this by a neural
layer Ea, where the high-level hidden state in neural net can model more abun-
dant interactions between two agents than the query-key system, and generate
the attention scores for aggregation.

Third, the learnt attention activations are normalized across the neighbor-
hood set computing a set of attention weights −→ai = {aij}j∈Gi

. We choose softmax
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as the normalization operation, so the attention weight for the j-th neighboring
feature is

aij =
exp

(
ea
ij

)

∑
k∈Gi

exp (ea
ik)

(6)

Subsequently, the computed attention weights are multiplied by their corre-
sponding intrinsic latent features in ef , generating a new set of deep weighted
features. Finally, these weighted features are pooled by summing up across the
neighborhood set, producing a fixed size of aggregated features which are then
fed into a shared decoder to the downstream control policy, as illustrated in
Fig. 2.

yi =
∑

j

aije
f
j (7)

πi = decoder (yi) (8)

In essence, as the weighted features can be parallelly computed and pooled,
the output of the ARE module yi is permutation invariant with regard to the
input order.

We here highlight the specific form of the attention weight. In 3, the attention
embedding is generated in the scalar value form. To model complex interaction,
we can design ea

ij as vector. Therefore, the attention score aij in 6 is also vector
and 7 is revised

yi =
∑

j

(aij · Wa) � ef
j (9)

where we first unify the dimension by multiplying a matrix Wa, then do the
Hadamard product with ef

j . For simplicity, we set the dimension of the attention
vector aij to be the same with ef

j , thus Wa becomes an identity matrix, and can
be ignored.

Design Discussion. In terms of the flexibility in multi-agent state represen-
tation learning, the ARE architecture is designed with the following desirable
properties and advantages over existing approaches.

– Computational Efficiency: ARE is computationally high efficient since all
operations are parallelizable across the neighboring pairs and all modules
are shared.

– Quantity Invariance: Although the size of the neighboring feature set can
be arbitrary, the output representation is still irrelevant as sum pooling is
utilized. This property makes ARE scalable to the changeable and dynamic
interactive environments

– Differentiation Ability: Our method is capable of differentiating the utility
of multiple neighbors. By feeding each neighbor’s feature together with self
feature to the attention module and applying the attention mechanism on
these features, ARE is able to attach importance to more relevant neighbors’
features.
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3.3 Training: Proximal Policy Optimization

The ARE module is trained end-to-end by reinforcement learning. The utilized
training backend algorithm is Proximal Policy Optimization (PPO) [16].

Proximal Policy Optimization, or PPO, is a policy gradient method for rein-
forcement learning. The motivation was to have an algorithm with the data
efficiency and reliable performance of TRPO [15], while using only first-order
optimization.

Let rt(θ) denote the probability ratio rt(θ) = πθ(at|st)
πθdd

(at|st)
, so r (θold ) = 1.

TRPO maximizes a “surrogate” objective:

LCPI(θ) = Êt

[
πθ (at | st)

πθdd
(at | st)

)
Ât

]
= Êt

[
rt(θ)Ât

]
(10)

where CPI refers to a conservative policy iteration. Without a constraint, max-
imization of LCPI would lead to an excessively large policy update; hence, PPO
modifies the objective, to penalize changes to the policy that move rt(θ) away
from 1:

JCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1 − ε, 1 + ε) Ât

)]
(11)

where ε is a hyperparameter, say, ε = 0.2.

4 Experiment

We test our method on Joint Operation Simulation, which is a military operation
scenario with red and blue sides which need players to make decisions to achieve
intended goals respectively. We will first introduce the task and then give the
comparison of our method and baseline algorithm on Joint Operation Simulation.

4.1 Joint Operation Simulation

Scenario Background. The Blue side has long occupied the Red side’s islands
and recently harassed the Red side’s ships for daily operations at sea. In order to
swear sovereignty and protect their own interests, joint air and sea combat forces
are deployed to strike the Blue side’s key targets on the islands to establish a
basis for subsequent retaking of the islands. Blue side target (defensive side):
rely on ground, sea and air three-dimensional anti-aircraft firepower, guard their
own island 2 command post key targets. Red side objective (offensive side): to
use a combination of air and sea assault and support forces to break through the
blue side’s air defense system and destroy the blue side’s 2 key command post
targets.
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Fig. 4. Comparison of ARE and mean embedding baseline on joint operation simula-
tion.

Scenario Settings. For the characteristics of the two sides, a reasonable set
of force composition to confront the idea of rehearsal. Each side has only one
airfield, and each airfield has only one runway for the takeoff and landing of
combat aircraft. When an aircraft takes off and occupies the runway, no other
aircraft can land, and when an aircraft lands, no other aircraft can take off.
Through the airport takeoff and landing density to control the speed of force
release, to achieve the control of AI available force, consider the tournament
against compact, set the minimum interval of aircraft takeoff and landing (by
the simulation platform internal control).

Table 1. Comparison of force composition of both sides

Bomber AWACS Jammer Fighter Frigate Radar Airport Camp CC

Red 18 1 1 24 2 1 1 - -

Blue 10 1 - 20 2 - 1 3 2

Table 1 shows the force composition of both sides. Red side as the offensive
side consists of 18 Bombers, 1 AWACS, 1 Jammer, 24 Fighters, 2 Frigates, 1
Radar and 1 Airport. Blue side has a different setting, which consists of 10
Bombers, 1 AWACS, 2 Radars, 20 Fighters, 2 Frigates, 3 Camps, 1 Airport and
2 Command Centers.

For reward settings, all enemy units share 10 points, blue side has a bonus for
keeping Command Centers alive, 1 point for each Command Center. Considering
the requirement of retaining own units, we also punish unit loss on each side.

Figure 7 gives the composition of entity features, including positions, side,
type, speed, direction, damage, alive, weapon, locked. last mission type. ARE
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aggregates information from each entity, and yields an aggregated and embedded
feature containing neighbors’ information, which helps a better decision making.

4.2 Results

Fig. 5. Comparison of bomber loss of both sides

Fig. 6. Comparison of fighter loss of both sides

Both ARE and baseline use PPO as a training backend in our experiments. The
red side is set to use RL training algorithms while the blue side is set to use
a fixed rule-based method. Figure 4 shows that ARE helps PPO to achieve a
higher episode reward throughout the whole training progress. Then more detail
comparisons will be given.
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Fig. 7. Composition of entity features.

As is shown in Fig. 5a, ARE based algorithm achieves more average blue side
bomber loss during the training progress. The red side bomber loss in Fig. 5b
reflects the radical level how a strategy to use bombers, where both ARE and
ME baseline vary a lot in different training phases.

Figure 6 shows that ARE outperforms ME baseline by a large margin for a
higher damage to blue side and lower red side loss in fighters. It indicates that
ARE helps fighters to coordinate with ally units to formulate a more efficient
strategy than ME does.

Fig. 8. Comparison of action count per episode.

More actions usually mean more cost in real battles. We also count the action
numbers per episode of both methods in Fig. 8. ARE uses significant less actions
per episode than ME baseline method, which means ARE helps algorithm learn
a much more efficient strategy.
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5 Conclusion

In this paper, we analyze the information aggregation problems in multi-agent
systems and utilize a computational efficient, quantity invariant and differen-
tiable aggregation method, ARE in a highly simulated joint operation game.
Experimental results show that ARE helps decision making progress and out-
performs baseline algorithm which indicates that ARE is a more efficient infor-
mation aggregation method than conventional methods.
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Abstract. In recent years, the problem of traffic flow prediction in
the urban environment has been widely concerned. However, the traf-
fic flow prediction has not been effectively solved for the next period
between the origin-destination region pair. In addition, multiple spatial-
temporal traffic dependencies exist between the origin-destination area
pairs. In this paper, three types of traffic dependencies between origin-
destination region pairs were considered: the same origin dependency,
same destination dependency, and transfer to dependency. This paper
proposed a spatial-temporal forecasting framework for traffic flow pre-
diction between pairs of urban regions with multi-view graphs. This work
mainly considered the construction of spatial-temporal deep learning net-
works under three kinds of multi-view graphs. Finally, the prediction
results under the three dependence relationships are fused to get the final
prediction results. Comprehensive experiments on two datasets showed
that the proposed framework has very high prediction performance, and
outperforms the baseline model by more than 6%.

Keywords: Multi-view · Spatial-temporal deep learning · Flow
prediction

1 Introduction

Urban region-level traffic flow prediction is one of the hottest topics in recent
years [6,7,12,29]. If we can predict the traffic flow between two regions in a
city accurately. It can not only help city managers understand regional pedes-
trian activity and prevent sudden safety problems but also enhance managers’
understanding of the relationship between various regions in the city.

The first work was to predict the motion of a single object based on its
historical location [5,14,17], which mainly predicted the future location of mil-
lions or even billions of mobile users, rather than the population aggregation
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traffic of a region. This requires substantial computing resources and has little
significance for the overall study of a region. Other researchers aim to predict
driving speed or traffic flow on a single road [1], and study individual or multi-
ple sections of the road rather than city-wide areas. Recently, researchers have
focused on the prediction of region flows within cities [6,18,29]. Specifically, they
predict the inflow and outflow of each area, which is very helpful to grasp the
dynamics of urban public security. To address the complex spatial and tempo-
ral dependencies in traffic flow, the ST-ChebNet graph neural network model
was proposed for traffic flow prediction to capture the spatial-temporal features,
which can ensure accurate traffic flow prediction [24]. Ahmad et al. [2] advised
that weather conditions and surrounding point-of-interest (POI) distribution are
the most difficult aspect of predicting crowd flows movement and they developed
a unified dynamic deep Spatial-temporal neural network model based on con-
volutional neural networks and long short-term memory, termed as (DHSTNet)
to simultaneously predict crowd flows in every region of a city. For the problem
of flow prediction in the Internet of Things (IoT) environment, Youcef et al.
[4] combined graph optimization and prediction in a single pipeline to investi-
gate an innovative convolutional graph-based neural network for urban traffic
flow prediction in an edge IoT environment. However, their research object is
the flow of a single area, which is still different from the flow between the area
pairs studied in this paper. Another category is origin-destination flow predic-
tion [3,11,21,26], their origin or destination point usually is a certain place, such
as a road intersection. In this study, both the origin point and the destination
point belong to the regional level, and the flow between the starting and ending
points is also a coarse-grained aggregate value, regardless of the specific road
flow.

The inter-regional flow prediction problem faces more challenges than the
regional inflow/outflow prediction problem, which mainly includes time depen-
dence and spatial flow dependence. Among them, spatial flow dependency mainly
includes three types, namely same origin dependency (sod), same destination
dependency (sdd), and transfer to dependency (ttd). In this work, sod, sdd, and
ttd are regarded as three graphs respectively. The sod refers to the mutual influ-
ence of flow between the origin and destination regions when the same origin
region corresponds to multiple pairs of origin and destination regions. The sdd
refers to the mutual influence of traffic between origin-destination areas when
the same end area corresponds to multiple origin-destination area pairs. The tdd
refers to that the end area of one origin-destination area pair is the starting area
of another origin-destination area pair, and the traffic of the previous origin-
destination area pair has an impact on the traffic of the later origin-destination
area pair.

In order to solve the above challenges, for time dependence, this paper car-
ries out multi-time scale extraction of datasets and combines the data under
different time scales into the overall features. For traffic dependence, three
views are designed in this paper to deal with three traffic dependencies respec-
tively. Different dependencies are constructed into different representations in the
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corresponding views, and different deep learning frameworks are used to deal
with them. In this paper, we designed a general multi-view learning framework
for traffic prediction between all origin-destination areas in a city.

The previous works of origin-destination flow prediction belong to the inter-
section level, but in this study, the origin-destination flow prediction task belongs
to the grid regional level. In order to solve this new problem, this paper explores
the traffic dependence between the origin and destination zones. Based on the
three dependencies, a multi-view Spatial-temporal deep learning framework is
proposed, and each dependency corresponds to a Graph (or as a graph view).
To sum up, the contribution of this work is as follows:

Firstly, in this paper, we proposed the problem of predicting the flow between
origin and destination areas in a city. This prediction mission provides a unique
analysis perspective for the relationship between regions within a city.

Secondly, a general multi-view learning framework model is proposed for flow
prediction between all origin and destination regions in a city to fully address the
above challenges. In this framework, three flow dependencies are specifically con-
sidered, graphs from three perspectives are constructed for the three dependen-
cies, and a personalized spatial-temporal deep learning network is constructed
for them. In the temporal relationship modeling stage of the spatial-temporal
deep learning network, this paper uses the attention mechanism to fully explore
the contribution degree of different temporal scales to flow prediction.

Lastly, the proposed model is validated on two benchmark datasets. The
experimental results show that the prediction accuracy of the proposed model is
6% higher than that of the baseline method, which fully proves the effectiveness
of the proposed model.

The rest of the paper is organized as follows: First, we introduce the prob-
lem descriptions in Sect. 2. We then present essential preliminaries in Sect. 3.
Section 4 presents the overall framework of our multi-view spatial-temporal
model followed by the detail on how to generate the dependency graph. Section 5
evaluates the performance of our method. We conclude this paper in the final
section.

2 Problem Descriptions

This paper focuses on the problem of interregional flow prediction. Different
regions have different static attributes (such as location, size, and shape),
dynamic attributes (such as population, weather, and flow), and functional
attributes. We believe that the successful prediction of the flow between the
origin and destination regions can also indirectly obtain the predicted flow
in/out of the region. The origin-destination inter-zone traffic prediction problem
can be transformed into the inflow/outflow traffic prediction problem. However,
the reverse transformation process is difficult to achieve. Therefore, the origin-
destination inter-zone traffic prediction problem faces more challenges than the
inflow/outflow traffic prediction problem of a zone, as follows:
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A. Time Dependence. In this paper, time dependence mainly refers to time prox-
imity and time periodicity. Time proximity means that the traffic flow between
the starting point and the ending point is affected by the adjacent time period.
For example, the traffic jam between 8:00 am and 9:00 am will affect the inter-
regional traffic flow between 9:00 am and 10:00 am. Time periodicity means that
the traffic between the origin-destination area will be affected by the periodicity
of different scales, such as the cycle of a day, a week, a year, and so on.

B. Flow Dependency. The flow dependency between different origin-destination
region pairs mainly includes the same origin dependency, same destination
dependency, and transfer to dependency. The same origin dependency refers
to the mutual influence of flows between the origin and destination areas when
the same origin area corresponds to multiple origin and destination area pairs.
Same destination dependency refers to the mutual influence of traffic between
the origin and destination areas when the same destination area corresponds to
multiple origin and destination area pairs. Transfer to dependency refers to that
when the end area of a origin-destination area pair is the starting area of another
origin-destination area pair, the flow of the previous origin-destination area pair
will have an influence on the flow of the later origin-destination area pair.

To address the above main challenges, for time dependence, this paper
extracts the data set at multiple time scales and combines the data at different
time scales into a global feature. For traffic dependency, this paper designs three
views to deal with three traffic dependencies respectively, and different depen-
dencies are constructed into different representations in the corresponding views
and processed by different deep learning frameworks.

3 Essential Preliminaries

Here we first give some basic definitions as follows:

Definition 2.1 (Grid Region). In this work, along the two directions of
longitude and latitude, we set the grid side length as � = 1km and divided the
city into several grids, each of which represents a region, and all grids constitute
the grid map M(�) of the city.

Definition 2.2 (Time Slot). Time solt refers to a period of time as a unit of
time. The length of each period φ is user-defined, and the t-th time solt can be
defined as a tuple tl = (ts, te), where ts and te are the start time and end time
of this slot respectively. In this paper, we denote the time slot set of the dataset
by T.

Definition 2.3 (Trip). A trip is a journey from one place to another. A trip tr
can be defined as a four-tuple: tr = (os, ds, oe, de), where os and ds are the start
and end coordinates of tr respectively, oe and de are the start and end time of
tr respectively. For simplicity, we use tr.o and tr.d to denote the departure and
destination of the trip tr, respectively. The grid of tr.os is denoted as tr(go). The
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grid of tr.ds is denoted as tr(gd). The time slot of tr.oe and tr.de are respectively
denoted as tr(to) and tr(td). In this paper, we denote the trip set of the dataset
by TR.

Definition 2.4 (Origin-destination Region Pairs). For any trip tr, tr(go)
and tr(gd) form a origin-destination region pair, denoted as rp. The origin region
and destination region can also be denoted as rop and rdp respectively.

Fig. 1. Transform from a regional grid to a dependency graph.

Definition 2.5 (Flow Dependency Graph). In this paper, the flow depen-
dency between different origin-destination region pairs mainly includes the same
origin dependency(denotes as sod), same destination dependency(denotes as
sdd), and transfer to dependency(denotes as ttd). In this article, we build topol-
ogy for each dependency, namely Gsod, Gsdd, and Gttd. As shown in Fig. 1, these
three dependencies are modeled as three dependency graphs. The three depen-
dency features, sod, sdd, and ttd, have a topology at each time slot.

Definition 2.6 (Traffic Flow Between Origin and Destination). The
start-destination inter-area traffic flow refers to the number of trips from a start-
ing grid region vo

i to a destination grid region vd
i in time slot t. The traffic flow

between origin and destination is defined as f t
vo
i ,v

d
i

in time slot t.

4 Methodology

In this section, we first present the overall framework of our multi-view spatial-
temporal model followed by the detail of how to generate the dependency graph.
The framework developed in this article is shown in Fig. 2. At the bottom of the
figure, the city is divided into different grid areas, and three types of topological
maps are generated according to different dependencies (namely, Gsod, Gsdd,
and Gttd). After the spatial-temporal deep learning network is applied to these
three kinds of graphs in parallel, the generated results are fused together, and
then the final prediction result is obtained through the action of a multi-layer
perceptron. Next, we’ll elaborate on the various parts of the framework.
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Fig. 2. The overview of multi-view spatial-temporal model.

4.1 Dependency Graph Generation

Vertex Generation. After the city is divided into grid regions, this paper maps
the start and end points of the journey to the corresponding grid and obtains all
the origin-destination region pairs, and each origin-destination region pair will
correspond to a vertex in the topological graph. In order to speed up the calcu-
lation performance, this paper only counts once in the whole time range T of the
data set, that is, for a vertex in the graph corresponding to the origin-destination
region pair formed by ∀tr ∈ TR, tr(go) and tr(gd). In this case, the set V of vertices
is the same for the graph at any time period and under any dependence.

Edge Generation and Filtering. The edges in the graph are built based on
dependencies. That is, at any time period, there are connected edges between
vertices satisfying the same dependence relation (sod, sdd, or ttd). Specifically,
in time slot t, the adjacency matrix of the dependency graph under the three
dependencies is initialized as follows:

(Asod)
t
ij =

{
1 vo

i = vo
j ,

0 otherwise
(1)

(Asdd)
t
ij =

{
1 vd

i = vd
j ,

0 otherwise
(2)
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(Attd)
t
ij =

{
1 vd

i = vo
j ,

0 otherwise
(3)

Gsod and Gsdd are composed of disjoint directed complete subgraphs. For
a grid area of a city, there is almost always a journey between any two areas.
Therefore, the total number of edges in the graph can reach O(K3), where K is
the total number of raster regions. It is clear that the computational complexity
is very high. Therefore, the edges in the subgraph of Gsod and Gsdd should be
filtered.

The main idea of the filtering method adopted in this paper is to find the
vertices with similar but earlier traffic flow waveform patterns as the filtered
neighbors for any vertex. The filtering operation can not only reduce the number
of edges in the graph and reduce the computation overhead but also find more
important neighbor vertices for each vertex in the graph. Due to the generality of
origin-destination area pairs within cities, the Gttd graph still tends to converge
to a fully directed graph. Therefore, in this paper, the same filtering strategy is
used to screen the edges in the Gttd graph.

Vertex Feature Value Mapping. For the initial feature generation of each
vertex, the flow data between the origin-destination area pairs is mainly used
to generate features. In addition to generating time series features, history
records, weighted moving averages, and Fourier transforms amplitude & fre-
quency features, the distance between the region center points between the
origin-destination grid region pairs is also considered as a vertex feature. In
an effort to Gsod for example, in the graph Gsod of time slot t, the set of vertex
features can be formalized as follows (the same as to Gsdd and Gttd).

(Xsod)
t =

{
(xsod)

t
0 , . . . , (xsod)

t
N−1 | (xsod)

t
n ∈ R

F , n ∈ {0, 1, . . . , N − 1}
}

(4)

4.2 Multi-view Spatial-Temporal Model

Three graphs can be generated with three dependency views overall time slots.
In this subsection, the generated graph will be fed into the spatial-temporal deep
learning graph neural network under the respective view to get the preliminary
prediction results. The spatial-temporal deep learning network [15] developed in
this paper can be divided into two phases: the spatial relation modeling phase
and the temporal relation modeling phase.

Spatial Relationship Modeling. In the stage of spatial relationship capture,
this paper designs a spatial relationship feature extraction module, which is
serially composed of multiple Graph Attention layers (GAL) [25] and a full
connection layer, and the number of GAL is a variable parameter. The input
of the module is the graph of multiple historical periods, and the output is the
same graph, but the vertex features are updated, that is, the adjacency matrix is
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updated, and the values of the adjacency matrix are replaced by the new weight
values. Adjacency matrix updating formula is as follows:

etij = leakyReLU
(−→a � [

Wxt
i‖Wxt

j

])
(5)

At
ij = softmaxj

(
etij

)
=

exp
(
etij

)
∑

k∈Nj
exp

(
etkj

) (6)

where Nj denotes the set of neighboring vertices of vertex vj , W ∈ R
F×F repre-

sents the weight parameter matrix to be learned, and note ‖ denotes the concate
operation. After the edge weight is updated, we can further obtain the vertex
feature update operation, the formula is as follows:

(
xt
j

)′ = σ

⎛
⎝ ∑

i∈Nj

At
ijWxt

j

⎞
⎠ (7)

where W denotes the weight parameter matrix to be learned, σ(∗) represents
the activation function.

Temporal Relationship Modeling. In order to capture the temporal rela-
tionship, this paper designs a temporal prediction module to complete the pre-
diction of traffic flow. For example, in time slot t, the characteristics of tstep
historical time periods will be input into the temporal prediction module to pre-
dict the traffic flow between the origin-destination area of the whole city in time
slot t + 1.

In this paper, the time distance of proximity, daily degree, weekly degree,
monthly degree, and quarterly degree are respectively selected as inputs. For
example, we can set the length of the period ϕ = 1 h. If we want to predict the
traffic of all region pairs between 16:00 and 17:00 this Sunday (September 11,
2022), we also can choose γc = 4 adjacent graphs (i.e., the 15:00–16:00 graph,
the 14:00–15:00 graph, the 13:00–14:00 graph, and the 11:00–12:00 graph), and
the daily γd = 3 adjacent graphs (i.e., the 16:00–17:00 graph on September 11,
2022, and the graph on 10 September 2022). The adjacent graph from 16:00 to
17:00 on the day, the graph from 16:00 to 17:00 on September 04, 2022), the
graph from the weekly γw = 2 adjacent graphs (that is, the graph from 16:00
to 17:00 on September 11, 2022, and the graph from 16:00 to 17:00 on August
28, 2022), and the graph from the monthly γm = 1 adjacent graphs (that is,
adjacent graph from 16:00 to 17:00 on August 11, 2022), and the graph from a
quarterly γq = 1 adjacent graph (namely the figure from 16:00 to 17:00 on June
11, 2022). In this paper, we set tstep = γc + γd + γw + γm + γq.

The graph, corresponding to time slot tstep, will first go through the spatial
relationship modeling stage to update the vertex features, and then the feature
is input into a time series prediction module respectively. In order to extract
the temporal correlation, the time series prediction model selected in this paper
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is LSTM [27], which is a variant with the strongest expression ability of RNNs
[16]. The hidden layer status ht of LSTM is expressed as follows:

ht = (1 − ot) ∗ tanh (Ct) , where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ot = σ (Wo [ht−1, xt] + bo)
Ct = ft ∗ Ct−1 + it ∗ C̃t

C̃t = tanh (WC [ht−1, xt] + bC)
it = σ (Wi [ht−1, xt] + bi)
ft = σ (Wf [ht−1, xt] + bf )

(8)

where Wo, WC , Wi, Wf , bo, bC , bi, and bf are parameters to be learned. In
addition, this paper also calculates the attention weight for each hidden layer
state. This will make the feature weight value corresponding to the more impor-
tant historical slot larger. The weight of the LSTM hidden layer state corre-
sponding to the h ∈ {1, 2, ..., tstep} historical time slots is as follows:

eht = v� tanh
(
Whhh

t + bh

)
(9)

αh
t =

exp
(
eht

)
∑tstep

p=1 exp (ept )
(10)

where Wh and bh are parameters to be learned. The final time series prediction
results are as follows:

yt =
tstep∑
p=1

αp
th

p
t (11)

In this paper, the effect of dependency extraction can be adjusted by adjust-
ing the values of parameters such as the number of layers of the attention layer
in the figure and the size of hidden states in the attention layer in the graph
in the three dependency views. Since the spatiotemporal relationship extraction
and prediction results under the three dependent views are independent of each
other, the three spatiotemporal deep learning networks can be implemented in
parallel.

Information Fusion and Prediction Results. After obtaining the prediction
results of spatiotemporal deep learning networks under the three dependencies,
it is necessary to fuse the three results. The expression of information fusion is
as follows:

y = Wsod � ysod + Wsdd � ysdd + Wttd � yttd (12)

where notion � denotes the Hadamard product operation. Wsod, Wsdd, and
Wttd are parameters to be learned. Finally, the predicted values of all origin-
destination traffic flow are obtained through a multi-layer perceptron. This paper
uses the back-propagation algorithm to train the multi-layer perceptron.
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5 Performance Evaluations

This section mainly provides the experimental evaluation of the multi-view
spatial-temporal deep learning model for flow prediction developed above.

5.1 Experiment Settings

Datasets and Settings. In our experiments, we choose the most authoritative
benchmark datasets, TaxiNYC1 and BikeDC2. The TaxiNYC dataset is a New
York City taxi dataset. The TaxiNYC dataset collected data on yellow and green
taxis in the borough of Manhattan, New York City, for 91 days from January to
March 2016. The field elements of the TaxiNYC dataset include pick-up time,
drop-off time, pick-up location, and drop-off location. The BikeDC dataset is the
Washington bicycle dataset. The BikeDC dataset contains a total of 472 sites.
The field elements in the BikeDC dataset include trip duration, start time, end
time, start-stop, and end stop.

We split the TaxiNYC dataset for our experiments with 40,138 samples in
the training set, 5,734 samples in the validation set, and 1,1468 samples in the
test set. We split the BikeDC dataset for our experiments with 30,300 samples
in the training set, 4,328 samples in the validation set, and 8,659 samples in the
test set.

All experiments were compiled and tested on Dell Precision 7920 Platform, a
Linux Tower Server (CPU: Intel(R) Xeon(R) Gold 5218 CPU @2.30 GHz, GPU:
NVIDIA GeForce GTX 2080). Meanwhile, we terminated the training if the
validation loss does not decrease for 200 consecutive epochs. Furthermore, we
randomly shuffled the dataset to obtain the best training effect.

Metrics and Baselines. The root mean squared errors (RMSE) was used as
the evaluation metric. In this work, we compared our traffic flow method with
the following baselines:

VAR [8]: Vector Auto-Regressive model. VAR is a traditional time series
analysis method.

ARIMA [20]: Auto-Regressive Integrated Moving Average is a time series
analysis method for predicting mission. ARIMA is a traditional time series anal-
ysis method.

LSTM [22]: Long Short Term Memory network. The LSTM model can learn
long temporal dependencies. In this paper, experiments are carried out on six
LSTM variants, namely, STM-3, LSTM-6, LSTM-12, LSTM-24, LSTM-48, and
LSTM-336.

GRU [19]: The gated recurrent unit (GRU) model can be used to capture
long-term temporal dependence. There are also six variants of GRU in this test,
namely GRU-3, GRU-6, GRU-12, GRU-24, GRU-48, and GRU-336.

ST-DNN [28]: ST-DNN is a prediction model based on deep neural network
acting on spatiotemporal data.
1 https://www1.nyc.gov/site/tlc/about/tlc-triprecord-data.
2 https://www.capitalbikeshare.com/system-data.

https://www1.nyc.gov/site/tlc/about/tlc-triprecord-data
https://www.capitalbikeshare.com/system-data
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Preprocessing and Hyperparameters. In this paper, we filter the null values
and outliers of data sets, and then we segment them in time and space. In the
output of the model developed in this paper, tanh is used as the final activation
function, which ranges between −1 and 1. Therefore, this paper uses the Min-
Max normalization method to scale the data to [−1, 1]. In the evaluation, the
predicted value is rescaled back to the normal value and compared with the
real value. In this article, the parameters to be learned are initialized using the
Uniform distribution at the beginning. The size of the hidden layer state output
of the graph attention layer is set to 32× 32 and the size of the hidden layer
state output of the LSTM is set to 64× 64. This article uses Adam [9] as the
optimizer, with a batch size of 32. In this paper, 90% of the data was selected
as the training dataset and the remaining 10% as the test dataset.

Fig. 3. The size of hidden layer state in GAL and LSTM.

5.2 Results and Analysis

Experiments on Different Variants. In this subsection, we mainly present
experimental results of different variants of our developed model, including
changing network parameters, using different components, etc. The size of the
hidden layer state in GAL and LSTM. On the TaxiNYC dataset, the sizes of
hidden layer states in the temporal and spatial submodules are set to 16, 32, 64,
and 128, and the results are shown in Fig. 3. It can be seen from Fig. 3(a) that
when the size of GAL’s hidden layer state is set to 128, the prediction effect is
the best. This result shows that the larger the hidden layer is, the better the pre-
diction effect is. Figure 3(b) shows that the prediction error gradually decreases
with the increase of the hidden layer state size, which indicates that the larger
the hidden layer state is, the more favorable the performance of LSTM is.

Based on the TaxiNYC dataset, this paper conducted experiments on tstep
size, the side length of grid area, and the number of GAL, and the test results
were shown in Fig. 4. It can be seen from Figure Fig. 4(a) that selecting a his-
torical value has the worst effect, which is equivalent to using the characteristics
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Fig. 4. Effects of different parameter values on the RMSE.

of the current period to predict the flow of the next period. This situation will
lead to very little information that can be used.
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Fig. 5. Performance ranking of the models developed in this paper on the test dataset
of TaxiNYC.

As a result, LSTM can not capture any temporal dependencies. However, the
prediction error decreases with the increase of tstep value, and the best prediction
effect is when tstep is equal to 12. When tstep is greater than 12, the prediction
error is on the rise again. Figure 4(b) shows the influence of the side length of
the grid region on the performance. As can be seen from the figure, when the
side length of the grid is 200 m, the performance is the best, and when the side
length is 500 m, the performance is poor. This is because the edge length of the
grid area is too large, the number of grids is reduced, and there are too few edges
left after filtering in the topological graph, which greatly affects the capture of
spatial relations. Figure 4(c) shows the influence of the number of GAL. RMSE
does not show a monotonically decreasing or increasing effect with the value on
the horizontal axis. When the number of GAL is 2, the prediction error is the
lowest.



Flow Prediction via Multi-view Spatial-Temporal Graph Neural Network 89

AR
IM
A

VA
R

GR
U-
3

GR
U-
6

GR
U-
12

GR
U-
24

GR
U-
48

GR
U-
33
6

LS
TM

-3

LS
TM

-6

LS
TM

-12

LS
TM

-24

LS
TM

-48

LS
TM

-33
6

ST
-D
NN Ou

rs
10

12

14

16

18

20

22

24

BikeDC

R
M
SE

Fig. 6. Performance ranking of the models developed in this paper on the test dataset
of BikeDC.

Performance Results. In this subsection, the prediction accuracy of the model
is evaluated, that is, s historical observations are used to predict the origin-
destination flow at the next moment. Figure 5 and Fig. 6 show the RMSE values
on the TaxiNYC and BikeDC datasets, respectively. Specifically, on the dataset
TaxiNYC, compared with ARIMA, VAR, ST-DNN, LSTM, and GRU, the accu-
racy of the model designed in this paper is higher by 24.0%, 28.5%, 6.8%, 11.7%–
40.3%, and 13.0%–37.7%, respectively. In all the baseline models, ST-DNN uses
spatiotemporal CNNs and performs significantly better than the other baselines.
Although VAR uses the relationship between temporal/spatial information and
traffic, it is worse than ST-DNN because it only considers the recent temporal
information and uses spatial information in a general way without any distinc-
tion. In the temporal model, GRU and LSTM have similar RMSE because both
GRU and LSTM can capture long-term time dependencies. However, the per-
formance of both GRU-336 and LSTM-336 is very poor, which indicates that
RNN-based models cannot capture very long-term dependencies.

Limitations and Outlook. In this work, we only use three types of traffic
dependencies between origin-destination region pairs, and future work will inves-
tigate more traffic dependencies between area pairs to enrich the current work.
For the optimization of convolutional neural networks (CNNs)’ architectures,
there are no explicit functions to directly calculate the optimal architecture [10].
In order to solve the problems above, the concept of the neural architecture
search (NAS) is proposed for the optimization of the deep neural network. The
purpose of NAS is to automatically search for parameters such as the optimal
architectures of CNNs so that CNNs can outperform those that are hand-crafted
[23]. Moreover, the NAS can reduce the high cost of trial-and-error design. In
the future work, the NAS will be investigated for the traffic flow prediction
mission. Additionally, incorporating recent transformer-based backbones, i.e.,
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Spatial-temporal Transformer network [13] could further boost the performance
without compromising the simplicity.

6 Conlusion

The target of the traffic flow prediction mission is to predict the flow between
origin-destination area pairs in the next period. This paper considers that there
are three kinds of traffic dependencies between start-destination area pairs: the
same origin dependency, same destination dependency, and transfer to depen-
dency. This paper proposes a spatial-temporal framework for traffic flow predic-
tion, which considers the construction of spatial-temporal deep learning networks
under three kinds of dependencies. The final forecast result is obtained by the
fusion of the respective forecast results under the three kinds of dependence.
Large-scale experiments on two datasets show that the proposed framework
achieves very good prediction performance, outperforming the baseline model
by more than 6%.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China under Grant No. 72201275.
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Abstract. Knowledge graphs have been widely used in numerous AI applica-
tions. In this paper, we propose an efficient knowledge graph embedding model
called RotatSAGE by combining the RotatE model and the GraphSAGE model.
In the proposed model the RotatE model is used to learn the embedding vectors
of heterogeneous entities and relations in a knowledge graph. One problem of the
RotatE model is that it only can learn from a single triplet and cannot take advan-
tage of local information to learn embeddings. To solve this issue, we introduce
the GraphSAGE model into RotatE. The GraphSAGE model can use neighbor
information to improve the embedding of an entity by sampling a small and fixed
number of neighbors. We also propose a sampling strategy to further eliminate
redundant entity information and simplify the proposedmodel. In the experiments,
the link prediction task is used to evaluate the performance of embedding models.
The experiments on four benchmark datasets show the overall performance of
RotatSAGE is higher than baseline models.

Keywords: Knowledge graph embedding · Link prediction · Translation ·
Relational rotation · Complex space · Graph neural network · GraphSAGE

1 Introduction

Knowledge graphs such as is a knowledge base composed of entities and relations,
such as WordNet [1], Yago [2] and Freebase [3] have been widely applied in many AI
applications, such as relation extraction, link prediction, etc. A knowledge graph usually
consists of a large number of triplets. A triplet includes three parts which are head entity,
relation and tail entity. The relation defines the relationship between the head entity and
the tail entity. In general, a triplet is denoted as (h, r, t). Triplets are structured data,
which cannot be easily used in downstream tasks [4]. To solve this problem, knowledge
graph embedding (KGE) was proposed. KGE can learn continuous vectors of entities
and relations, which can be utilized in many applications, such as link prediction and
node classification.

The KGEmodels can be divided into two categories: a) Translational DistanceMod-
els, which use a distance-based scoring function to learn the embeddings of entities and
relations, such as TransE [5], TransH [6], TransR [7], TransD [8], TransSparse [9],
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and RotatE [10]. b) Graph Neural Networks (GNNs) [15], which apply neural network
techniques to learn the embeddings of nodes and edges in a graph, such as GCN [16],
GraphSAGE [17], and R-GCN [19].

Among translational distance models, RotatE has the best representation power,
which can model and infer various relation patterns such as symmetry/anti-symmetry,
inversion, and composition. In addition, RotatE can be efficiently trained using a novel
self-adversarial negative sampling technique. RotatE has achieves state-of-the-art per-
formance in many applications. However, one problem with RotatE is that it learns the
embeddings of entities and relations from a single triplet each step, and cannot use
more local information in a graph to improve the embeddings. To solve this issue, in this
paper we propose an embeddingmodel based onRotatE, called RotatSAGE. RotatSAGE
combines RotatE with GraphSAGE. Like RotatE, RotatSAGE uses complex vectors to
represent the embeddings of the heterogenous entities and relations, which can represent
all the three relation patterns. To utilize the local information for embedding learning, we
introduce GraphSAGE into RotatSAGE. GraphSAGE can learn embeddings by aggre-
gating features of nodes in a local neighborhood area. Therefore, compared with RotatE,
RotatSAGEcan use the local structure information of a graph to learn embeddings,which
improves the performance of RotatE. The experimental results show that the overall per-
formance of RotatSAGE is better than the baseline methods on four benchmark datasets,
which demonstrates the effectiveness of the proposed model.

The rest of this paper is organized as follow: Sect. 2 introduces basic notations and
discusses the related methods on KGE. In Sect. 3, we discuss the proposed knowledge
graph embeddingmodel. In Sect. 4, we show the experimental results on four benchmark
datasets for link prediction to demonstrate the effectiveness of our model. We conclude
our work and suggest future work in Sect. 5.

2 Related Work

2.1 Notations

The entity and relation in a knowledge graph can be regarded as nodes and edges in
a graph, and we alternatively use these terms in this paper. We define the following
notations. A boldface low-case letter x represents a vector. A boldface upper-case letter
X represents a matrix. The italic low-case letters represent the entity and relation in a
knowledge graph, for example h/t is the head/tail entity, and r is the relation between
two entities, and each fact is represented as a triplet (h, r, t). v(l)

i ∈ C
d (l)

denotes the
hidden representation of an entity vi at the l-th layer with dimension d (l) in the complex
vector space.

T (vi) denotes all the facts associated with vi. Tin(vi) is the set containing all the
incoming facts and Tout(vi) is the set containing all the outgoing facts. T k(vi) denotes
the subset of T (vi), where k is the size of subset, i.e., |T k(vi)| = k. The neighbors of an
entity vi can be represented as follows:

T (vi) = Tin(vi) ∪ Tout(vi)

Tin(vi) = {(vj, rh, vi)|∀vj and rh
(
vj, rh, vi

) ∈ T (vi)}
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Tout(vi) = {(vi, rh, vj)|∀vj and rh
(
vi, rh, vj

) ∈ T (vi)}
(×R

n → R
n) denotes the Hadamard product (element-wise product).

2.2 Translational Distance Models

TransE [5] is the most classical translational distance model. It represents both entities
and relations as vectors in the same space, such as Rd . As shown in Fig. 1(a), the basic
idea is that each relation is regarded as translation in the embedding space. For a fact
(h, r, t), the embedding of h is close to the embedding of t by adding the embedding
of r, i.e., h + r ≈ t. However, this assumption doesn’t satisfy 1-to-N, N-to-1, and N-
to-N relations. TransH [6] is proposed to solve this problem, which regards a relation
as a translating operation on a relation-specific hyperplane. As shown in Fig. 1(b), the
embeddings of h and t are first projected onto the hyperplane of relation r to achieve
h⊥and t⊥, then let h⊥ + r, equal t⊥. In this way, TransH can distinguish different entities
associated with the same relation. The idea of TransR [7] is very similar to TransH, but
it projects h and t into the aspects that relation r focuses on through a translation matrix.
TransD [8] simplifies TransR and uses two vectors to represent each entity and relation.
The first vector represents the meaning of an entity or a relation, and the second one
represents how an entity embedding is projected to a relation vector space. TransSparse
[9] simplifies TransR by enforcing the projection matrix to be sparse.

Fig. 1. Illustrations of sTransE, TransH, and RotatE

RotatE [10] represents the entities and relations using complex vectors. FromEuler’s
identity eiθ = cosθ + isinθ , a unitary complex number can be seen as a rotation in the
complex plane. Given a fact (h, r, t), RotatE makes hzr equal t, where |r| = 1,
as shown in Fig. 1(c). In complex space, RotatE can model and infer various relation
patterns including symmetry/anti-symmetry, inversion, and composition. In addition,
RotatE can be trained efficiently using self-adversarial negative sampling technique.
However, RotatE only learns from single fact, and cannot use local structural information
in a graph to improve embedding.

2.3 Graph Neural Networks

Graph Neural Network (GNN) was proposed by Gori et al. (2005) [11], then Scarselli
et al. (2009) [12] proposed a generalizedmodel that can directly deal with amore general
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class of graphs, e.g., cyclic, directed and undirected graphs. GNN consists of an iterative
process, which propagates the node states until a state of balance; followed by a neural
network, which generates an output for each node based on its state. Li et al. (2016)
[13] proposed to use gated recurrent units in the propagation step to further improve the
performance of GNN.

Based on the convolutional neural networks (CNNs) [14], Kipf et al. [16] proposed
the Graph Convolutional Network (GCN), which applies the convolution operation to
learn embeddings of nodes in a graph. GCN can learn the embedding of a node by aggre-
gating its neighbor information. GCN has been applied to different classification tasks,
and achieved good performance. The papers [18–20] also discussed how to improve the
performance of KGE models by aggregating its neighbor information.

The convolution operation uses an N ×N Laplacian matrix to update the embedding
of a node, and N is the number of nodes in a graph. Therefore, the space complexity
of GCN is unacceptable when the number of nodes in a graph is large. Besides, GCN
is transductive, which uses the information of all nodes to learn entity embeddings.
To solve this issue, GraphSAGE [17] was proposed. GraphSAGE is a general inductive
framework that can efficiently generate node embedding.Using node feature information.
GraphSAGE optimizes GCN from two aspects: First, GraphSAGE learns the embedding
of a nodeonly byuniformly sampling a small andfixednumber of its neighbors, instead of
aggregating all neighbors likeGCN. Second, GraphSAGE adopts some new aggregators,
such as mean/sum/pooling aggregator, to aggregate the feature information from its
neighbors. In this way large-scale graphs can be processed using GraphSAGE.

3 Proposed Model

From above discussion, we can see RotatE can effectively model all the three rela-
tion patterns: symmetric/antisymmetric, inversion, and composition. In addition, another
advantage of the RotatEmodel is that it canmodel heterogeneous graphs. In reality, most
graphs are heterogeneous graphs which contains different types of nodes and relations,
such as Freebase and WordNet. Compared with RotatE, GraphSAGE can only model
heterogeneous graphs. However, the advantage of GraphSAGE is that it can utilize local
information in a graph to learn embedding, while RotatE only learn from a single fact.

In our study we introduce GraphSAGE into RotatE, and propose the embedding
learningmodelGraphSAGE. InGraphSAGE, theRotatEmodel can utilize neighborhood
information to improve the embedding representation of a knowledge graph.

3.1 Methodology

WE firstly use RotatE to learn the embeddings of heterogeneous entities and relations.
In RoTatE, the entity and relation embeddings are represented as complex vectors. A
relation is defined as a rotation from the source entity to the target entity. For each triplet(
vj, rh, vi

) ∈ T (vi), the embeddings should satisfy Eq. (1).

v′(l)
i , v(l)

j r(l)
h ,

(
vj, rh, vi

) ∈ T k
in(vi) (1)
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In Eq. (1) v(l)
i , v(l)

j and r(l)
h ∈ C

d (l)
are the embeddings of vj, rh, and vi. |rh| = 1,

and ◦ denotes the Hadamard product. In this way, we transform heterogeneous neighbors
of a node into homogenous ones.

After getting the embeddings of the homogenous nodes, we introduce GraphSAGE
and use neighbors of vi to update the embedding of node vi. Usually, we perform a
convolution operation on the embeddings of neighbors to obtain the embedding of a
center node. The convolution operation is defined as Eq. (2) and (3).

m(l)
i =

∑

(vj,rh,vi)∈T (vi)

(
v(I)
j ◦ r(I)

h

)
(2)

v(l+1)
i = δ

(
m(l)

i + v(l)
i

k + 1

)

(3)

where m(l)
i ∈ C

d (l)
is the embedding of convoluted neighbors, which can deem as the

overall estimation of center entity embedding vi. Then, the embedding of vj at next layer

is the average of m(l)
i and v(l)

i (see Eq. (3)). In (3), δ is the activation function and k is
the number of neighbors of vi.

To further simplify our model, we only consider the embeddings of incoming neigh-
bors in Eq. (3), which is shown as Eq. (4). A directed graph can be looked as an informa-
tion network, a center node obtains information from its incoming neighbors and outputs
the received information to its outgoing neighbors. Collecting new information from the
incoming neighbors can affect the information status of a center node, on the contrary,
outputting information from a center node to its outgoing neighbors cannot affect the
information status of a center node. The center node still has the same information and
its information status does not change. Under this assumption, it is reasonable to only
consider incoming neighbors when calculating the embedding of a center node. In this
way, the embeddings of entities and relations can be learned more quickly.

Equation (2) is a sum function, therefore, m(l)
i strongly depends on the number of

neighbors of a center node. To solve this issue, for each center node, we randomly sample
k samples from its neighbors to calculate the embedding. To handle the problem that
some center nodes have no incoming neighbors, we propose a specific relation named
self-relation to create incoming neighbors of a center node. A self-relation is a relation
connecting the same two nodes. So, we make the following sampling strategy to choose
k incoming neighbors. For a given center node vi, assume it has n incoming neighbors.
If n ≥ k, we sample its neighbors k times without replacement; if 0 ≤ n ≤ k, sampling
with replacement; if n = 0, we create k self-relations for the center node, and choose all
neighbors. Figure 2 illustrates the sampling strategy when k = 3.

m(l)
i =

∑

(vj,rh,vi)∈T k
in (vi)

(
v(I)
j ◦ r(I)

h

)
(4)
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Fig. 2. The sample procedure of our proposed model with k = 3

3.2 Loss Function

When training the embedding model, two kinds of training sample are needed, positive
samples and negative samples. Usually, a knowledge graph only provides positive sam-
ples. Therefore, negative samples have to be produced. In our work, the self-adversarial
negative sampling technique [2] is used to generate to generate negative samples. The
principle of self-adversarial negative sampling is that the probabilities that different
negative samples are drawn as training data should be different, for samples that are
obviously false, and cannot provide any meaningful information, a small probability
value should be assigned. Therefore, a probability distribution p that a negative sample
is drawn as training data is defined as Eq. (5).

p
(
h

′
j, r, t

′
j |{(hi, ri, ti)}

)
=

exp
(
−α(dr

(
h

′
j, t

′
j

)
2
)
)

∑
i exp(−α(dr

(
h

′
i, t

′
i

)
2))

(5)

In (5) α is the temperature for sampling, dr(h, t) = |h ◦ r − t| is the distance func-
tion,

(
h

′
i, r, t

′
i

)
is the i th negative triplet. Usually, we define Sr = −|h ◦ r − t|2 as the

score function.
Then, the above probability can be used as the weight of the negative sample, and

the corresponding negative sampling loss function can be written as follows.

L = − log δ(γ − dr(h, t)) −
∑n

i=1
p
(
h

′
i, r, t

′
i

)
logδ

(
dr

(
h

′
i, t

′
i

)
− γ

)
(6)

In (6) γ is the fixed margin, and δ is the sigmoid function.
The proposed RotatSAGE algorithm is described as Fig. 3.
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Fig. 3. The algorithm of RotatSage

4 Experiment

4.1 Datasets

We evaluate our RotatSAGE model using two kinds of knowledge graphs. One is Word-
Net and the other is Freebase. For each kind of knowledge graphs, two different datasets
are collected. The statistics of each dataset is shown in Table 1. In Table 1 WN18 [5]
andWN18RR [23] are collected fromWordNet, and FB15k [5] and FB15k-237 [22] are
collect from Freebase.

The relation patterns in WN18 contain symmetry/anti-symmetry and inversion, and
the relation patterns inWIN18RRmainly include symmetry/anti-symmetry and compo-
sition patterns. The relations in FB15k contain symmetry/anti-symmetry and inversion
patterns, and the relations in FB15k-237 mainly include the symmetry/anti-symmetry
and composition patterns. In FB15k and WN18, many relation patterns are inverse
patterns.
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In our work, we perform link prediction on these four datasets. Link prediction aims
to predict the missing head entity or tail entity in a triplet (h, r, t). In this task, we need
to rank a set of candidate entities from the knowledge graph, instead of only giving the
best prediction result.

In our work the performance measures we use are Mean Rank (MR) of the correct
triplets, Mean Reciprocal Rank (MRR) of the correct triples, and Hits at N (Hit@N)
which measures the proportion of the correct triples in top-n candidate triplets. A good
link prediction model should has lower MR value or higher MRR and Hit@N values.
The best parameters for each prediction model are selected when Hit@10 achieves the
best value on the validation sets.

We follow the experiment setting in [5]. In testing phase, for each test triplet (h, r,
t), we replace the head/tail entity by all entities in the knowledge graph, and rank these
entities in descending order of similarity scores computed by score function.

In the proposed method Adam [24] is used to optimize the hyperparameters, and
these parameters include the dimension of entity and relation embedding d , the number
of sampled neighbors k, and α, γ in RotatE. The best parameters are also selected when
H@10 achieves the best values on the validation sets.

Table 1. Statistics of FB15k, WN18, FB15k-237, and WN18RR

Dataset #entity #relation #training #validation #test

FB15k 14,951 1,345 483,142 50,000 59,071

WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,134

4.2 Experimental Results

Wemake explements on four datasets. To fully evaluate the performance of the proposed
method, we compare it with the following baseline methods, TransE, RotatE, HRAN
[28], M-DCN [29],AutoKGE [25], Inverse Model [23], GAATs [26], and StAR [27].

Tables 2 and 3 show the evaluation results of different models on FB15kand WN18.
From the tableweobserve thatRotatSAGEoutperforms all the baselinemodels onWN18
datasets. On the FB15k dataset, RotatSAGE also performswell. It has the greatest Hit@3
value and the smallest MR value, and its performance values on other metrics are also
comparable to other methods.
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Table 2. Results of embedding models evaluated on FB15k (All results are cited from the
corresponding papers. Bolded means the best performance, underlined means the second place)

MRR MR HIT@1 HIT@3 HIT@10

TransE - 125 - - 0.471

RotatE 0.797 40 0.746 0.830 0.884

HRAN - - - - -

M-DCN 0.762 - 0.701 0.820 0.879

R-GCN 0.262 - 0.601 0.760 0.842

AuokKGE 0.861 - - - 0.914

Inverse Model 0.660 2501 0.658 0.659 0.660

RotatSAGE 0.779 29 0.701 0.841 0.897

Table 3. Results of embedding models evaluated on WN18 (All results are cited from the
corresponding papers. Bolded means the best performance, underlined means the second place)

MRR MR HIT@1 HIT@3 HIT@10

TransE - 263 - - 0.892

RotatE 0.949 309 0.944 0.952 0.959

HRAN - - - - -

M-DCN 0.950 - 0.946 0.954 0.958

R-GCN 0.561 - 0.697 0.929 0.964

AuokKGE 0.952 - - - 0.961

Inverse Model 0.963 740 0.953 0.964 0.964

RotatSAGE 0.968 170 0.954 0.981 0.989

Tables 4 and 5 give the experimental results on FB15k-237 and WN18RR. From the
table, we can see our model outperforms almost all the baseline models on WN18RR
for all metrics except MR, and also achieves better performance on FB15k-237.

From Tables 2, 3, 4, and 5, we can see our model outperforms RotatE on three
evaluation sets WN18, WN18RR and FB15k-237, and achieves similar performance as
RotatE on FB15k. Therefore, the overall performance of ourmodel is significantly higher
than that of RotatE. It shows that by introducing GraphSAGE into RotatE, RotatE can
aggregate neighbor features to learn the embedding of an entity, which can significantly
improve the representation ability of the embedding vector. The original GraphSAGE
model cannot learn the embeddings of relations.By combiningRotatEwithGraphSAGE,
the function of the original GraphSAGE is enhanced, which can learn both entity and
relation embeddings in a graph. Moreover, different form GrapgSAGE, the entities and
relations in RotatSAGE can be heterogeneous.
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Table 4. Results of embedding models evaluated on FB15k-237. (All results are cited from the
corresponding papers. Bolded means the best performance, underlined means the second place)

MRR MR HIT@1 HIT@3 HIT@10

TransE 0.294 - - - 0.465

RotatE 0.338 177 0.241 0.375 0.533

HRAN 0.355 156 0.263 0.390 0.541

M-DCN 0.345 - 0.255 0.380 0.528

R-GCN 0.249 - 0.151 0.264 0.417

GAATs 0.547 187 0.512 0.572 0.650

StAR 0.365 117 0.366 0.404 0.562

RotatSAGE 0.377 144 0.276 0.420 0.575

Table 5. Results of embedding models evaluated on WN18RR. All results are cited from the
corresponding papers. Bolded means the best performance, underlined means the second place.

MRR MR HIT@1 HIT@3 HIT@10

TransE 0.226 - - - 0.501

RotatE 0.476 3340 0.428 0.492 0.571

HRAN 0.479 2113 0.450 0.494 0.542

M-DCN 0.475 - 0.440 0.485 0.540

R-GCN - - - - -

GAATs 0.467 1270 0.424 0.525 0.604

StAR 0.401 51 0.243 0.491 0.709

RotatSAGE 0.631 2044 0.577 0.657 0.737

Compared with other baseline models, our model achieves the best performance on
WN18 for all the evaluationmetrics, and also achieves the best performance onWN18RR
for all metrics except MR. On FB15k and FB15k-237, our model also achieves better
performance and is comparable to the best models, such as GAATs. Therefore, the
overall performance of our model is also higher than that of the baseline models. The
R-GCN, GAATs, AutoKEG and StAR models all can utilize neighborhood information
to learn embedding vectors of entities and relations. Different from these models, our
model represents the embeddings of entities and relations in the complex space, which
can effectivelymodel all the three relation patterns: symmetric/antisymmetric, inversion,
and composition. Therefore, the representation ability of our model is relatively better
than that of other models.

The performance of the RotatSAGE model on WN18 and WN18RR is better than
that on FB15k and FB15k-237. We interpret it as follows.
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1. The number of relations in WN18 and WN18RR is significantly smaller than that in
FB15k and FB15k-237. The relationships between entities are not complex. There-
fore, it is relatively easy for our model to learn better embeddings from simple
relations.

2. The number of entities in WN18 and WN18RR is significantly bigger than that in
FB15k and FB15k-237. This results the entities in WN18 and WN18RR has more
neighbors. Compare with FB15k and FB15k-237, the neighbor entities inWN18 and
WN18RR can provide more local information to learn the embedding of an entity,
which can improve the representation ability of the embedding vector.

5 Conclusion

In this paper, we introduce GraphSage into RotatE and propose a novel knowledge graph
embeddingmodel, calledRotatSAGE. InRotatSAGEweuseRotatE to learn embeddings
of the heterogeneous entities and relations, and useGraphSAGE to aggregate the features
of local neighbors for embedding learning.We also propose a sampling strategy to further
remove redundancy information from local neighbors and improve model performance.
To evaluate the performance of the proposed model, we apply it to predict links in
two knowledge graphs. The experimental results show that the overall performance
of RotatSAGE is better than the baseline models, which shows that RotatSAGE can
effectively learn the embeddings of entities and relations in a knowledge graph.
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Abstract. User alignment aims to identify accounts of one natural
person across networks. Nevertheless, different social purposes in mul-
tiple networks and randomness of following friends form the diverse
local structures of the same person, leading to a high degree of non-
isomorphism across networks. The edges resulting in non-isomorphism
are harmful to learn consistent representations of one natural person
across networks, i.e., the structural “noisy data” for user alignment. Fur-
thermore, these edges increase the time complexity, compromising the
model’s efficiency. To this end, we propose a network structure denoising
framework to learn an alignment driven structure heuristically. Specif-
ically, under the guidance of alignment driven loss, parameter sharing
encoder and graph neural network for structure denoising are learned
using an iterative learning schema. Experiments on real-world datasets
demonstrate the outperformance of the proposed framework in terms of
efficiency and transferability.

Keywords: User alignment · Graph neural networks · Graph
structure learning · Structure denoise

1 Introduction

Social network alignment aims to identify accounts of one natural person across
multiple online social platforms. Aligning users across networks benefits the data
transfer between standalone social networks and alleviates the “data isolation”
issue in several data mining tasks, including information diffusion, recommenda-
tion, etc. Recently, graph representation learning (GRL) algorithms have demon-
strated their superior performance on this task attributed to their ability to
represent users without manual efforts.

Generally speaking, graph representation learning algorithms attempt to rep-
resent nodes by preserving the structural proximity. Specifically, according to
the structure across networks, several studies [16,17,30–32,34] are proposed to
learn the representations of users by aggregating and combing features of their
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Tan and Y. Shi (Eds.): DMBD 2022, CCIS 1744, pp. 105–119, 2022.
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neighbors. Based on the learned representations, nodes across networks can be
aligned using the similarity of representations [28,35]. The aforementioned pro-
cesses indicate that the network structure plays a critical role in user represen-
tation, and thus influences the precision of downstream alignment.

Nevertheless, people usually join multiple platforms for different social pur-
poses. Therefore, the random nature of users’ behavior in following friends is
unavoidable across social networks. These factors result in the diverse local struc-
ture topologies across social networks for the same person, i.e., a high degree of
non-isomorphism between multiple networks. Different from representing users
within a single network, the non-isomorphism between the network structure
brings structural “noisy data” for representing users across networks, compro-
mising the effectiveness of the user alignment task. For the GRL algorithms,
these “noisy data” will trigger a cascade of negative influences in their aggrega-
tion and combination process. Moreover, due to the presence of the “noisy data”,
high time and space complexities are unavoidable as many GRL algorithms are
exponential growth with the increase in the scale of the network.
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Fig. 1. A toy example for explaining why structural “noisy data” compromises the
representation learning across networks.

Figure 1 illustrates an example to illustrate the key ideas of why the structural
“noisy data” compromises the GRL across social networks. In Fig. 1, Gs and Gt

are two networks. A and A′ are labeled anchor (accounts belonging to the same
person). E and E′ are the potential anchors (nodes to be aligned). Due to the
diverse social purposes in multiple networks, E′ and E′ may follow different users
in separated networks such as B, D in Gs and F in Gt. This phenomenon results
in a really dense but non-isomorphism local structure around E and E′, such
as edges {a, b, c, d} in Gs and edges {e, f, g} in Gs. According to the structure
preserving objective of GRL [14,23,24,26], nodes with dense connectivity will
be close in the embedding space. Therefore, B, E, and D will be close due to the
existence of edges {b, c, d} and F , E′ and H will be close due to the existence of
edges {f, g}. Nevertheless, the “overly-close” embedding space compromises the
alignment task as potential anchors are hard to be aligned preciously, especially
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with many non-anchor nodes (such as F and B) around them. Therefore, we name
the edges {b, c, d, g, f} as alignment task oriented “structural noisy data”. To
address this issue, we attempt to design a strategy that can denoise the structure
heuristically. As shown in the right part of Fig. 1, we hope the structures G�

t and
G�

s can be learned. Compared to the original network structure, E and E′ can be
close due to their connectivity to anchor A. Meanwhile, B and D can be far away
from them due to the absence of edge {b, c, d, f, g}, facilitating the downstream
user aligning module.

To this end, we first leverage a parameter sharing graph encoder to obtain
the primary embedding of every node. To further denoise the original network
structure, a graph neural network is adopted for determining which edges can be
removed. Under the guidance of the designed alignment-oriented loss and struc-
ture regularization, we perform the aforementioned process iteratively for param-
eter learning. Finally, the denoised networks can be obtained via the learned
graph neural networks. The denoised networks also can be transferred to other
state-of-the-art (SOTA) alignment models for efficient learning.

Our main contributions are summarized as follows:

– We propose a network structure denoising framework for the user alignment
task. With the guidance of the alignment-oriented loss, a parameterized graph
neural network is learned to denoise the network structure.

– We investigate the transferability of the learned network structure. We pro-
vide evidence that, beyond the graph encoder adopted in the framework, the
denoised structure can boost several SOTA network alignment algorithms.

– We evaluate the proposed framework by applying it to several state-of-the-art
models. The experimental results on three real-world datasets demonstrate
the effectiveness of the proposed framework.

2 Related Work

2.1 Network Alignment

Network alignment aims to identify different accounts of one natural person.
Recently, graph representation learning algorithms demonstrate their superior
performance. Compared to classification based [15] and matrix factorization
based algorithm [22], it learns user representations via preserving structural prox-
imity without manual efforts, and the Stochastic Gradient Descent and sampling
strategy adopted in the learning process guarantees its effectiveness. Generally
speaking, the related studies can be categorized into supervised and unsupervised
according to the existence of labeled anchors.

For supervised algorithms, IONE [17] learns representations of users via pre-
serving second order structure proximity and leverages cosine similarity to iden-
tify the potential anchors. PALE [20] learns node embedding in the separated net-
work and further leverage a shallow neural network to conduct the user alignment.
DeepLink [35] and DCIM [21] further adopt deep neural networks for constructing
the mapping function. Besides, SNNA [16] leverages a generate adversarial net-
work to train a mapping function. Different from the above studies that focus on
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constructing mapping functions, some works investigate the structure consistency
across networks. NextAlign [31] studies the correlation between graph convolu-
tional networks and the assumption of network consistency adopted in the tradi-
tional alignment model. cM2NE [28] proposes an end-to-end contrastive learning
framework to model the inconsistency across social networks. Also, several studies
attempt to learn better representation to facilitate the mapping functions. MGCN
[2] uses convolution on both local and hypergraph network structure to learn net-
work embedding. iMap [27] iteratively constructs sub-graphs and adopts graph
neural network to learn the representations.

Under the condition of the absence of the labeled anchors, the unsupervised
models are designed based on the consistency assumption across networks [3]. In
general, structural and attributes representations are learned simultaneously to
complement each other [10,34]. To align users from the distribution perspective,
UAGA [1] and WAlign [7] try to perform the alignment according to the dis-
tributions of the entire embedding space. After learning the embeddings across
networks, they adopt Wasserstein distance to measure the discrepancy of nodes’
distributions to identify potential anchors.

The aforementioned methods demonstrate their outperformance in the net-
work alignment task. However, these methods are learned using networks that
may contain structural “noisy data” for the alignment task. As we introduced
in Fig. 1, structural “noisy data” will compromise the learning efficiency and
performance, which motivates our proposed denoising framework.

2.2 Graph Structure Learning

As the network grows in size, the graph representation learning algorithms faced
several challenges, including noisy data, training efficiency, etc. To this end,
graph structure learning algorithms are proposed to learn a proper network
structure for representation learning. Primary studies attempt to learn network
structure based on the similarities between nodes. Gidaris et al. [8] construct
K nearest neighbor graph based on structure similarity via setting a threshold.
Wang et al. [25] adopt graph neural network learn node representations. They
further calculate the similarity between nodes to construct the network structure.
Rather than the single similarity mentioned above, Jonathan et al. [9] leverages
the multiple similarities to learn the network structure, where weak similarities
between nodes are also incorporated into the network construction. Chen et
al. [4] propose an iterative learning schema for learning graph networks. They
learn the network structure using a parameterized adjacency matrix.

Rather than learning network structure only, some studies are proposed to
learn network structure and model of the target task simultaneously. AneesKazi
et al. [13] learn node representations using a graph neural network. They further
construct a graph generator to learn a proper network structure under the guid-
ance of the predictions of a downstream GNN. Zheng et al. [33] propose a graph
structure learning algorithm to sparse the network structure, where a deep neural
network is adopted to model the network sparsing process. Luca et al. [6] pro-
pose a probabilistic graph generator where edges are learnable parameters. The
generator is optimized with the task driven graph neural networks simultaneously.
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Jiang et al. [11] proposed a framework consisting of two components, the first one
to learn graph structure, and the second one is a graph convolutional network. Jin
et al. [12] learn network structure under the principle that the learned network has
certain characteristics, including sparsity and low rank.

Different from the aforementioned studies which may add and remove edges
for optimizing graph structure, we focus on denoising (only removing) the net-
work structure for efficient graph representation learning across networks. Fur-
thermore, rather than learning structure within the single network, we specifi-
cally design an alignment-oriented loss for network denoising.

3 Preliminaries

In this section, we provide brief descriptions of the notions and definitions.

Network: We use G = (V,A) to denote the network, where V is the set of the
nodes. Every node vi ∈ V represents one user. A is the adjacency matrix of G.
ai,j = 1 when there is a relationship between vi and vj , ai,j = 0 otherwise.

Anchors: The anchors denote the identities across networks of one natural
person. Given two networks Gs and Gt. vs ∈ Vs, vt ∈ Vt are one anchor if they
belong to one person.

Network Alignment: Given two networks Gs and Gt, the network alignment
aims to learn a function f (us,ut) ∈ {0, 1} to determine whether vs and vt

are the anchor pair, where us and ut are the embeddings/features that can be
learned by graph representation learning algorithms.

Network Denoise: Given one network G = (V,A), network denoise aims to
learn a mask generator Mask = g(V,A) that determines which edges can be
removed for the user alignment. Based on the Mask, we can obtain the denoised
network G� = (V,A�). Rather than removing nodes, we only remove edges as
removing nodes may exclude potential anchors in the network, which is inadvis-
able for the network alignment task.

4 Model Framework

To design a structure denoising framework for the network alignment task, we
propose to learn a parameterized mask generator based on the network represen-
tations across networks. As shown in Fig. 2, our proposed framework consists of
three components. The first is a graph encoder across networks that learns the ini-
tial representations according to the network structure. The second is the param-
eterized graph neural network that acts as the mask generator. The third is the
network regularizer and the alignment loss calculated by the graph encoder.

4.1 Graph Encoder Across Networks

The graph encoder in this paper serves two purposes. The first is to learn ini-
tial embeddings for nodes across networks. The second is to learn embeddings
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of denoised networks for calculating the alignment loss. Rather than design-
ing a graph representation learning algorithm, our goal is to design a denoising
framework for networks. To this end, we adopt IONE [17] as our graph encoder
attributed to its learning efficiency in the iterative learning process. First, we
denote the learned initial embedding as XInit

s/t ∈ R
ns/t×d

XInit
s ,XInit

t = Encoder(Gs,Gt) (1)

where ns/t are the number of nodes in Gs/t, d is the dimension of learned embed-
dings. We believe that the learned embeddings contain structural features of
nodes across networks, and properly utilizing them can benefit the learning of
the mask generator.

4.2 Parameterized Mask Generator

Given the initial embeddings learned by the graph encoder, we further leverage
a graph neural network to determine which edges to remove for the alignment
task. Here we use GAT [23] for this task attributed to its powerful ability in
modeling the structure and features simultaneously, shown as Eq. (2).

Z = GAT (X,A;Θ) (2)

where A is the adjacency matrix for one network and X is the corresponding
learned initial embedding. Z is the latent representation learned by GAT and Θ
is the learnable parameter.

After obtaining the latent representation Z, we try to norm the representation
Znorm to avoid the influence of the value scale, shown in Eq. (3).

Znorm =
vi

max(||vi||2, ε) , [v0, v1, v2, ..., vi] ∈ ZT (3)

where || ||2 is the L2 norm. And we set ε = 1e − 12 to avoid the zero values in
the denominator.



Denoise Network Structure for User Alignment Across Networks 111

Algorithm 1. The Learning Algorithm of the Proposed Framework
Input: A training set of anchors Va, the network alignment encoder Encoder, The
original networks Gs = (Vs, As) and Gt = (Vt, At). The number of negative samples
Nneg. The number of iterations Iter
Output: Learned parameters for mask generator Θ. Denoised network G�

s , G�
t

1: Sample Nneg negative nodes from all nodes as Sneg

2: Calculate node embedding using encoder XInit
s , XInit

t = Encoder(Gs,Gt)
3: for i = 0; i < Iter; i = i + 1 do
4: if i == 0 then Xs = XInit

s ,Xt = XInit
t

5: end if
6: Calculate Znorm according to Eqs. (2) and (3).

7: Calculate A
′
s and A

′
t according to Eqs. (4) and (5). Then get the structure G′

s,G
′
t

8: Calculate node embedding matrix using encoder Xs, Xt = Encoder(G′
s,G

′
t)

9: Calculate Lreg and Ltask according to Eqs. (6) and (7).
10: Update Θ using the Adam optimizer
11: end for
12: G�

s , G�
t =G′

s,G
′
t

Based on the normalized representation, we try to learn the mask of the
adjacency matrix, shown in Eq. (4).

Mask = σ(Znorm × ZT
norm) � A (4)

where σ is the sigmoid activation function, and � is the Hadamard product.
Then the values in σ(Znorm × ZT

norm) denote the importance scores of all node
pairs. We further use the adjacency matrix A to filter the mi,j ∈ Mask to
ensure the corresponding users vi and vj have an edge. After that, we can select
denoised network A′ based on a hyper-parameter R, given as Eq. (5).

A
′
= top(Mask;R) (5)

where top(Mask;R) means ranking all elements in the Mask matrix and then
retaining the top R largest elements. We performs the above processes on Gs =
(Vs, As),Gt = (Vt, At) separately to obtain A

′
s and A

′
t. Then we feed them to

the graph encoder across networks to calculate the loss. We repeat it for the
parameter learning of the mask generator until a stable performance is achieved.

4.3 Design of the Loss Function

To guide the learning of the parameter Θ in the mask generator, we design an
alignment-oriented loss function. Specifically, we try to achieve two objectives.

Objective 1: Given the denoised networks, we hope the embedding of anchors
should be as close as possible. Meanwhile, the anchor node should be apart from
other nodes as far as possible. We define the loss function Ltask as Eq. (6).

Ltask(vs, vt) = |cos(Xs,Xt)| − |cos(Xs/t,X
neg
t/s )| (6)
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where Xs/t is the embedding learned by the graph encoder when feeding the
denoised network to it in each iteration. The Xneg

t/s is the embeddings of the
nodes in the opposite network sampled according to the degree distribution.

Objective 2: In addition to objective 1, to ensure the robustness of the denoised
network, we hope the denoised network retains some characteristics of the origi-
nal network. We use line-wise cosine similarities of embeddings learned from the
denoised and the original networks, shown in Eq. (7).

Lreg(X�,XInit) = cos(X�,XInit) (7)

Finally, we combine the above objective functions L = Ltask + Lreg to guide
the optimization of the parameters in the proposed framework. Algorithm 1
provides a detailed description of the learning process.

5 Experiment and Analysis

5.1 Datasets and Evaluation Metrics

To evaluate the performance of the proposed framework, we conduct extensive
experiments on three public datasets. The first Foursquare-Twitter [17,29,35],
the second is ACM-DBLP [31,35] and the third is DBLP [18]. Foursquare and
Twitter are two social networks. The labeled anchors are obtained by finding
users who provide their Twitter accounts in Foursquare profiles. ACM and DBLP
are two academic social networks, where identical authors in both ACM and
DBLP are the anchors. DBLP are two academic social networks, where authors
are split into different co-author networks by filtering publication venues of their
papers.Table 1 lists out the statistics of the datasets.Table 1 lists out the statistics
of the datasets.

Table 1. Statistics of datasets.

Networks #Nodes #Edges #Anchors

Foursquare 5313 54233 1609

Twitter 5120 130575

ACM 9872 39561 6325

DBLP 9916 44808

DBLP DM 11526 47326 1295

DBLP ML 12311 43948

We use a widely adopted metric Precison@N [5,17,19,35–37] to evaluate
the performances of the above three datasets, shown in Eq. (8).

Precision@N =
|CorrUser@N |X + |CorrUser@N |Y

|UnMappedAnchors| × 2
(8)
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where |CorrUser@N | is the number of anchors that can be identified among
the top-N candidate list defined by the cosine similarity. |UnMappedAnchors|
is the number of all testing anchors. We report the averaged Precison@N by
considering one network as the source and the target network respectively. For
the configurations of the baseline models, the default settings of the open source
codes provided by the authors are utilized.

5.2 Baseline Methods

We evaluate our framework based on three state-of-the-art models.

– IONE [17] is an embedding sharing based algorithm. It learns a unified latent
space for the alignment via preserving the second-order proximity.

– DEEPLINK [35] is an embedding mapping based algorithm. It learns repre-
sentation learned using random walk and skip-gram algorithms, deep neural
networks and dual learning are leveraged to align users.

– NeXtAlign [31] proposes a RelGCN-U model and a scoring function to learn
user embeddings. This model achieves a good trade-off between alignment
consistency and alignment disparity,

5.3 Performance Comparison

We first investigate the performance when deleting different ratios of edges.
Figure 3 and Fig. 4 illustrate the Precision@1 − 30 performance under training
ratio 50% and 60%, where the network encoder is IONE [17] attributed to its
training efficiency. And the ratios (the parameter R in Eq. (5) of deleted edges are
set as [5%, 15%, 30%, 50%]. We observed that even if we delete 15% edges of the
original network, the performance of the proposed framework does not decrease
on all datasets, indicating the effectiveness of the proposed framework. Under
the training ratio of 60% of the ACM-DBLP dataset, the model on the denoised
network still shows comparable performance when we deleted 30% edges.

Fig. 3. Precision@1-30 performance under training ratio of 50%.
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Fig. 4. P@1-30 performance under training ratio of 60%.

Fig. 5. Comparison with randomly deleting edges under training ratio of 50%.

Fig. 6. Comparison with randomly deleting edges under training ratio of 60%.

To prove the effectiveness of the mask generator for the alignment task,
we compare our framework with a method that randomly deletes 15% edges,
illustrated in Fig. 5 and Fig. 6. Compared with randomly deleting 15% edges,
our framework shows a significant increment under the Precision@1−30 metric.
This phenomenon means that heuristically selecting edges for the alignment task
is crucial, randomly removing edges may break the characteristics of the original
network, compromising the performance of alignment. The increment indicates
that our proposed framework can heuristically remove the edges for the network
alignment task.

Further, to demonstrate that the mask generator can perform masking oper-
ations using all the commonly used graph convolution networks, we replace the
GAT [23] in the mask generator with GCN [14], which also achieves the simi-
lar results. Figure 9 shows that using any GNN as the mask generator can be
obtained similar results.
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Fig. 7. Performance comparison when feeding the denosied network to DeepLink.

Fig. 8. Performance comparison when feeding the denosied network to NeXtAlign.

Fig. 9. Performance comparison when feeding the denosied network to NeXtAlign.

To further investigate the transferability of the denoised network, we feed
the learned networks with 15% edges removed to two STOA models, including
the DeepLink [35] and the NeXtAlign [31]. The performance are shown in Fig. 7
and Fig. 8. We observe that, compared with using the original network structure,
there is an increment when we feed the denoised network learned by IONE to
the DeepLink model. One possible reason for this is the powerful ability of the
deep neural networks in the DeepLink model. For the NeXtAlign model, we
observe a similar performance on the ACM-DBLP dataset compared with the
original network, while there is a significant increment on the Foursquare-Twitter
dataset. We notice that the ratio of anchors of ACM-DBLP is higher than it of
Foursquare-Twitter. It indicates that the denoising structure will benefit the
alignment model more when there are few anchors for supervision.

As illustrated in Table 2, we investigate the time consumption when feeding
the denoised network with 15% edges removed to the IONE model. We imple-
ment our model using PyTorch and run it on GeForce RTX 3090 GPU and
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Table 2. Time consumption on different datasets when deleted 15% edges

Dataset The original
network

The denosied
network

Time
saving (%)

ACM-DBLP 698 s 561 s 19.6%

Foursquare-Twitter 569 s 462 s 18.8%

DBLP 675 s 807 s 16.3%

Intel(R) Xeon(R) Silver 4210R CPU. We observe that the denoised network can
same time more than 15% on both the networks. The percentages of the time
saving are 19.6%,18.8% and 16.3% for ACM-DBLP, Foursquare-Twitter and
DBLP, respectively. It provides evidence that denoising the network structure
can benefit the alignment model for efficient learning.

Visualization of Embeddings

Anchor Potential Anchor

Network Denoise

Other Graph  Nodes Raw Edge Removed Edge

Original SubGraph Network Structure

Visualization of Embeddings

Denoised SubGraph Network Structure

A'

D'
B'

C'

A

D B

C

A'

D'
B'

C'

A

D B

C

Fig. 10. Case study of the real-world dataset

5.4 Case Study

Figure 10 illustrates the structure of two subgraphs and the corresponding visu-
alization of embeddings in the Foursqure-Twitter dataset. We notice that the
potential anchor ((D,D

′
) has different local connectivities in the original net-

work, such as D′ connects to the anchor C ′ in Gt while D is not in Gs. Mean-
while, D and D′ connect several other nodes in separate networks, which are
the structural “noisy data” for the alignment. Thus we observe that the poten-
tial anchors are far from each other in the embedding space, compromising the
alignment task. After deleting 15% edges of the original network structure by
our proposed framework, illustrated in the right part of Fig. 10, we obtain a more
isomorphic local structure around the D and D′, i.e., the structural “noisy data”
are denoised. It results in a more properly distributed embedding space, where
the D and D′ are close in this space, making them easy to align.
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6 Conclusion

In this paper, we study the problem of denoising network structure for the user
alignment task. We proposed a framework based on graph structure learning.
Specifically, under the guidance of the specially designed alignment loss and
structure regularization, a graph encoder across networks and a parameterized
mask generator are learned in an iterative learning schema. Then whether one
certain edge can be removed is determined by the mask generator. We conduct
experiments from several perspectives, including performance, transferability,
and running time, and the visualization of learned space. Results demonstrate
the effectiveness of the proposed model. We hope this framework can provide a
way to deploy an alignment model in practice attributed to its ability to denoise
the structural “noisy data” and reduce the training complexity. Further studies
will include denoising network structure in dynamic environments and ingenious
GNNs for the mask generator.
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Abstract. One of the concepts that have attracted attention since
entering the big data era is graph-structured data. Distributed systems
for graph analysis are widely used to process large graphs. Graph par-
titioning is critical in parallel and distributed graph processing systems
because it can balance the computational load and reduce communi-
cation load. An efficient graph partitioning algorithm can significantly
improve the performance of large-scale graph data analysis and process-
ing. In this paper, we propose a new Optimized Label Propagation-based
distributed Graph Partitioning algorithm (OLPGP). OLPGP optimizes
the label propagation algorithm and considers the differences between
nodes. To improve computational efficiency, we implement OLPGP on
the open-source distributed graph processing framework Spark GraphX.
Conducted experiments on real-world networks indicate that OLPGP is
scalable and achieves higher partition quality than the state-of-the-art
label propagation-based graph partitioning algorithms.

Keywords: Graph partitioning · Label propagation · Distributed
computing · Spark GraphX

1 Introduction

With the rapid development of the information age, more and more big graph
datasets are generated from various domains, such as communication networks,
urban transportation, biological data, and social networks. Due to these graph
data’s huge scale and complex structure, it is hard to process and analyze
them in a single machine environment. Many research works focus on graph-
parallel computation in distributed systems, e.g., Giraph [1], PowerGraph [11],
GraphLab [23], Powerlyra [7] and GraphX [12]. Most graph processing systems
are developed based on a vertex-centric programming model called Think Like
A Vertex (TLAV) [24]. In this model, the graph structure is partitioned and
distributed over a cluster of workers. Each worker runs a user-defined function
recursively for its active vertices.
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The critical prerequisite for efficient computing in vertex-centric systems is
graph partitioning (GP). In general, a large graph should be split into k partitions.
Each partition is assigned to one of the k workers. The amount of communication
between workers depends on the number of edges across partitions. Furthermore,
the load of workers depends on the size (e.g., the number of vertices or the number
of edges) of the partition assigned to them. The aim of graph partitioning is to
balance the load of each worker and minimize their internal communication.

The graph partitioning problem is NP-complete [10], and there is no approx-
imation algorithm with a constant ratio factor for general graphs [6]. In recent
decades there have been many heuristic algorithms proposed. The most classic
approaches are multilevel algorithms like Metis [16]. These algorithms can get
high-quality partitions, but they consume a large number of resources and do
not scale with large graphs. Another approach of graph partitioning is streaming
graph partitioning algorithms [11,38,39], in which vertices or edges of the graph
are processed in a stream successively. These algorithms have low space complex-
ity, but the results are of less quality and depend on the order of vertices or edges
in the stream.

In recent works, Label Propagation (LP) has been adopted for graph par-
titioning due to its high computational efficiency [9,25,28]. In this approach,
changes in vertex labels represent partition migrations. LP-based partition algo-
rithms can achieve great results and are usually easy to parallelize, but there
are also some shortcomings: (1) Partitioning quality depends on the initial par-
titioning. If the initial partitioning has good locality, the subsequent algorithm
can converge faster and get better results, and vice versa. (2) The local optimum
problem of label propagation algorithm still exists, which may lead to lower par-
titioning quality. (3) These algorithms do not take into account the differences
between vertices. While in complex network theory, vertices have their unique
characteristics(e.g., node importance). Considering the uniqueness of these ver-
tices may bring more information to the choice of partitions.

To solve the above problems, we propose a new distributed graph partitioning
algorithm based on optimized label propagation (OLPGP) to producing high-
quality graph partitions. Our contributions in this paper can be listed as follows:

– An effective method for initial partitioning, which has good locality and can
improve the efficiency of label propagation algorithms.

– A label propagation-based graph partitioning algorithm, which can jump out
of local optima and adapt to synchronous parallel models.

– We implemented our algorithm on Apache Spark GraphX [12] so that it can
run in parallel in distributed systems.

– We conducted sufficient experiments on real-world large-scale graph datasets.
The experimental results demonstrates that our algorithm can get higher
partitioning quality and competitive time consumption than exist algorithms.

The rest of this paper is organized as follows: Related works on graph parti-
tioning are discussed in Sect. 2. The definitions and notations used in this paper
are presented in Sect. 3. Section 4 describes the proposed algorithm. The exper-
imental results are presented in Sect. 5. Finally, we draw our conclusions and
future perspectives in Sect. 6.
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2 Related Works

In the last decade, many researches have been devoted to developing efficient
graph partitioning algorithms. In this section, we classify graph partitioning
algorithms according to their properties and present recent work.

Multilevel partitioning is a classic partitioning strategy. It allows at any given
level to partition each partition into sub-partitions. The basic idea consists of
first reducing the size of the original graph by recursively collapsing vertices and
edges until a smaller graph is obtained. Then, it performs partitioning on the
smaller graph. During the refinement phase, the partition results are projected
onto a larger graph until the entire graph is covered.

A widely used algorithm for this approach is Metis [15,16]. In the coarsening
phase, the authors introduced the heavy edge matching strategy to collapse
the edges. In the partitioning phase, the authors used the Kernighan-Lin(KL)
Algorithm [18]. Finally, in the refinement phase, the result is projected back
through the graph by refining it with respect to each partition border. Other well-
known multi-level partitioning algorithms are KaHIP [33] and Scotch [30]. These
algorithms can get high-quality partitions, but are limited by high computation
time and are not suitable for large graphs. Their parallel versions ParMetis [17],
PT-Scotch [8] also face the problem of unbalance and poor partition quality [3].

The authors of [3] proposed a shared-memory parallel multilevel graph par-
titioning algorithm, which adopted parallel localized local search to ensure high
quality and balanced partitions. Cache-aware hash tables are used to reduce
memory consumption.

Another well-known approach is Stream-based partitioning [5,11,26,38,39].
These methods visit vertices of the graph in a stream successively. Each vertex
is assigned to a partition as soon as it is visited in the stream and will not
be changed afterward. The performance of this approach is high but has some
disadvantages: (1) The resulting graph partitioning depends on the order of the
vertices or edges in the stream [37]. The sensitivity to stream order leads to lower
partition quality. (2) These approach is usually difficult to parallelize [11,32]. (3)
There is no heuristic that approximates one-pass balanced graph partitioning in
o(n) [37].

Some works combine multiple graph partitioning strategies. The authors
of [14] attempted to use streaming graph partitioning algorithms within the mul-
tilevel framework. The authors adapted and parallelized LDG algorithm [38] for
both coarsening and refinement phases. And ultimately, a competitive partition
quality can be produced.

The label propagation algorithm was initially used in the field of commu-
nity detection. In recent years, it has been applied to graph partitioning due
to its lightweight mechanism. Compared to multilevel algorithms, it has lower
complexity and produces fewer intermediate results. Furthermore, LP method
is semantic-aware, given the existence of local closely connected substructures,
a label tends to propagate within such structures [9].

The Spinner algorithm [25] is one of the most successful of these algorithms.
It uses penalty function to ensure balanced partitioning and is implemented on
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Giraph [1] for parallel execution. However, it does not take into account the dif-
ferences of nodes and depends on the initial random partitioning of vertices. The
authors of [9] adopted a new initial partitioning method, and proposed two par-
titioning algorithms considering vertex balance and edge balance, respectively.

The authors of [35] proposed PuLP, which presents a three-phase partitioning
method. All of them are based on the label propagation algorithm. The output of
each phase is the initial partitioning of the next phase. Some of these constraints
and objectives are considered in each phase. The authors of [36] extend and
parallelize PuLP to handle large graphs.

The authors of [29] apply reinforcement learning for distributed graph parti-
tioning. Their algorithm, named Revolver, assigns an agent to each vertex. The
agent selects partitions for vertices in each round according to the probability
distribution and evaluates these choices through label propagation.

In this paper, we present a new distributed algorithm for graph partitioning
based on the label propagation algorithm and implement it on Spark GraphX.
Compared with existing algorithms, our method considers the differences of
nodes and optimizes the label propagation process. Moreover, we propose an
initialization algorithm to speed up convergence and improve partition quality.

3 Preliminaries

We first introduce the necessary notations. Assume that G = (V,E) is a graph
where V is the set of vertices and E is the set of edges such that an edge e ∈ E
is a pair (u, v) with u, v ∈ V . We denote the neighborhood of a vertex v by
N(v) = {u | u ∈ V, (u, v) ∈ E}, and the degree of v by deg(v) = |N(v)|. In a
k-way partitioning, we define L as a set of labels L = {l1, ..., lk} that essentially
correspond to the k partitions. φ is the labeling function φ : V → L such that
φ(v) = li (i ∈ [1, k]) if label li is assigned to vertex v.

3.1 Balanced K-Way Graph Partitioning

The purpose of balanced k-way graph partitioning is to find the set of partitions
P = {P1, P2, ..., Pk} on the vertices V that are pairwise disjoint and the union
of which is equal to V . These partitions are subject to two constraints:

The Cut-Edge. The first constraint is the cut-edge, which means minimizing
the number of edges between different partitions. Minimizing cut edges helps
reduce communication overhead in distributed systems. The constraint can be
formulated as:

min
P

|{e | e = (vi, vj) ∈ E, vi ∈ Px, vj ∈ Py, x �= y}| (1)
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The Partition Load. Another constraint takes into account load balancing in
distributed computing. Precisely speaking, the load of each partition is defined
as the sum of the degrees of all vertices in the partition, i.e.,

load(Pi) =
∑

v∈Pi

deg (v) , i ∈ [1, k] (2)

Our goal is to limit the ratio of maximum load to average load to a certain range,
which is formalized as follows:

max {load (Pi)}
1
k

∑k
i=1 load(Pi)

≤ ε (3)

where ε ≥ 1 is a constant number that identifies the acceptable imbalance.

3.2 Label Propagation Algorithm

The label propagation algorithm is a classical method in community discov-
ery [13,31]. It is widely used in the field of graph partitioning due to its
lightweight and intuitive mechanism. The original LP algorithm first randomly
assigns an initial label l to each vertex in the graph, where l ∈ [1, k]. Subse-
quently, every vertex iteratively propagates its label to its neighbors. During
this iterative process, a vertex acquires the label that is more frequent among its
neighbors. Specifically, every vertex v assigns a different score for a particular
label l which is equal to the number of neighbors assigned to label l

score (v, l) =
∑

u∈N(v)

δ (φ (u) , l) (4)

where δ is Kronecker delta. Vertices prefer to choose labels with high score. More
formally, a vertex updates its label to label lv according to the following update
function

lv = argmax
l

score(v, l) (5)

We call such an update a migration as it represents a logical vertex migration
between two partitions. If multiple labels satisfy the update function, we will
randomly select a label. The algorithm halts when no vertex updates its label.

3.3 Spark GraphX

Spark [44] is a parallel and distributed computing framework that enables the
processing of big data very efficiently and fast through a cluster of computers by
utilizing its in-memory programming model and its data abstraction called RDD.
GraphX [12] is a Resilient Distributed Graph (RDG) system based on Spark and
was inspired from Pregel [24] and Bulk Synchronous Parallel (BSP) programming
model. GraphX extends Spark’s Resilient Distributed Dataset (RDD) to RDG.
This RDG is composed of two record files, one for the vertices and the other
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containing the edges. GraphX provides a complete API that simplifies graph
ETL and computations. Since GraphX is based on Spark, it provides streaming
algorithms for dynamic graphs [2].

4 The Proposed Algorithm

4.1 Initialization

Most existing GP algorithms and graph processing frameworks use random or
hash algorithm for initial partitioning, which do not take into account the topol-
ogy of the graph. It incurs many subsequent calculations, and even leads to a
poor partitioning quality. To solve this problem, we take into consideration that
the degree distribution of vertices in natural graphs follows a power law [4].
In power-law graphs, a large fraction of vertices in the graph is connected to
only a few vertices that have a very high degree. If a high degree vertex and
its neighbors are assigned to the same initial partition, the initial partitioning
will get higher locality and fewer cut edges. For this purpose, we employ degree-
weighted label propagation for the initial partitioning. First, randomly assign
labels to each vertex. Then change the label’s score to Eq. (6)

scoredegree (v, l) =
∑

u∈N(v)

deg(u)δ (φ (u) , l) (6)

Unlike conventional convergence judgments, we fix the number of iterations to 2;
that is, the labels of the high degree vertices are diffused to the two-level neigh-
borhood. Note that we do not impose any restrictions on partition size during
this process, which means that the initial partitioning may be very unbalanced.
We will deal with it in subsequent algorithms.

4.2 Balanced and Optimized Label Propagation

Since the original label propagation algorithm did not care about the partition
size. We add a penalty function to penalize overly large partitions and integrate
it into the score function

scorebalance (v, l) =

∑
u∈N(v) δ (φ (u) , l)

deg(v)
− load(Pl)

C
(7)

where C is is the ideal load of each partition, defined as

C = ε ·
∑

v∈V deg(v)
k

(8)

In Eq. (7), we first normalize Eq. (4), and then add the penalty function. The
larger the load of the partition, the lower the corresponding score. Partitions
that are too large will get low scores and harder to be selected. The parameter
ε controls the tradeoff between convergence speed and partition unbalance. The
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larger the value of ε, the more vertices are migrated to the large partition at each
iteration. This possibly speeds up convergence, but may also increase unbalance
as more vertices are allowed to be assigned to each partition that exceeds the
ideal load

∑
v∈V deg(v)/k.

Another problem with original label propagation is that it is easy to fall into
local optima. In each iteration, the prevailing labels are always adopted, which
may trap the algorithm in a local optimum and never find the best solution. To
solve this problem, we draw on the idea of simulated annealing algorithm [40].
We allow vertices to adopt suboptimal labels instead of optimal labels with the
following probability ps to encourage the algorithm to jump out of local optima.

ps = exp(
scores − scoreo

T · scoreo
) (9)

where scoreo represents the highest score, scores represents the second-highest
score. The closer scores is to scoreo, the greater the probability of adopting a
suboptimal solution. T represents the initial temperature, which is a constant
and set to 1. After each iteration, T should be multiplied by a constant λ that
is less than 1 so that ps decreases and the process tends to stabilize.

T = λ · T (10)

After extensive experimentation, we recommend setting λ to 0.8.

4.3 Parallelization

After the above process, each vertex has selected the label that it should change,
which we call candidate label. Since each vertex changes its label independently,
in a synchronous parallel model, a situation arises where at a given time, a par-
tition with low load will attract a large number of vertices to migrate at the
same time, thus exceeding its load limit. To avoid this, vertices need to coordi-
nate after calculating their candidate labels. To make the solution independent,
we used a probabilistic approach. The probability of a vertex changing to its
candidate label depends on the following factors:

Global Status. The global state takes into account the current partition load
and the total number of candidate vertices for each partition. More specifically,
suppose that at iteration t partition l has a remaining capacity r(l) such that

r(l) = C − load(Pl) (11)

Suppose that c(l) is the set of candidate vertices that want to migrate to par-
tition l. If all candidate vertices of partition l are migrated, the added load is∑

v∈c(l) deg(v), which may exceed the remaining load r(l). So we set the migra-
tion probability pglobal as

pglobal(l) =
r(l)∑

v∈c(l) deg(v)
(12)
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Vertex Attribute. The above probability pglobal is shared by all vertices with
candidate label l, it ignores the difference between nodes. In power-law graphs,
most of the edges are related to only a few vertices with a very high degree. This
property can be exploited by assigning vertices to partitions in such a way that
the replication of a low-degree vertex is preferred to the replication of a high-
degree vertex. The rationale for this is that high-degree vertices are incident to so
many edges that they are likely to produce a large number of cut edges anyway.
By focusing on placing low-degree vertices with low cut edges, the overall cut
edges can be decreased [27].

Limited by the synchronous parallel model, we still use probability to imple-
ment this idea. Specifically, high-degree vertices are more likely to migrate to
other partitions, while low-degree vertices tend to be fixed to the original parti-
tion. The migration probability pdegree of vertex v is

pdegree(v) =
deg(v)
degmax

(13)

The final migration probability pmigration combines the above two factors,
which is

pmigration(v) = α · pdegree(v) + (1 − α) · pglobal(φ(v)) (14)

where α ∈ [0, 1] is a constant and represents the trade-off between global status
and node attribute. A larger value of α can achieve better partition quality,
but will result in unbalanced partitions, and vice versa. We recommend setting
α to 0.2.

4.4 Convergence and Halting

In the original label propagation algorithm, convergence is detected by no ver-
tices changing labels, called halting conditions. While in graph partitioning, we
need to optimize both locality and partition balance, which makes this strategy
inapplicable. It is a natural idea to judge the convergence according to the cut-
edge rate and partition balance. Specifically, at iteration t, when the algorithm
satisfies both of the following conditions, it is considered to be convergent: 1)
The increment of the cut-edge rate is less than the given threshold, that is

� μ =
∣∣∣∣1 − μ(Pt)

μmax

∣∣∣∣ ≤ β (15)

where μ(Pt) represents the current cut-edge rate of iteration t, μmax represents
the maximum cut-edge rate achieved before t iterations. 2) The current partition
load meets the conditions in Formula (3).

5 Experiments

In this section, comprehensive experiments are applied on different real-world
datasets to evaluate the effectiveness and performance of the proposed algo-
rithm with other state-of-the-art algorithms. We compare our algorithm with
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Spinner [25] and B-GRAP [9] because they are also LP-based graph partition-
ing algorithms. Furthermore, like our algorithm, both of the two algorithms
are developed on a distributed system. After extensive experimentation, we set
the algorithm parameters as follows: additional capacity ε = 1.05, λ = 0.8,
β = 0.0025 and α = 0.2. For baselines, we set ε = 1.05, other parameters follow
the default settings.

All of the experiments are conducted on a cluster with 9 computing nodes.
Each node has 32 GB of RAM and Intel(R) Xeon(R) CPU E5-2620 with 8 cores.
One node acts as the master, and the remaining 8 nodes act as workers. Eval-
uations are done with Spark version 2.4.0-cdh6.2.1, Scala programing language
version 2.11.12, Hadoop version 3.0 and Giraph version 1.1.0 for baselines.

5.1 Real-World Datasets

We adopt five real-world datasets to examine our algorithm and compared algo-
rithms whose details are summarized in Table 1. We got these datasets from Stan-
ford large network dataset collection [22] and Social Computing Data Repository
at Arizona State University [42]. The properties of GraphX make it unnecessary
to add edges to directed graphs.

Table 1. Datasets description

Dataset |V | |E| Directed Source

Youtube 1,134,890 2,987,624 False [41]

RoadNet-CA 1,965,206 2,766,607 False [21]

Hyves 1,402,611 2,777,419 False [43]

Wikitalk 2,394,385 5,021,410 True [19]

Skitter 1,696,415 11,095,298 False [20]

5.2 Partitioning Quality

We first evaluate the partitioning quality. We use two metrics shown in Eq. (16)
and (17) for evaluation of the cut-edge rate μ and the balance of the sizes of
partitions θ. These two metrics are the smaller the better.

μ =
#cutedges

#totaledges
(16)

θ =
max {load (Pi)}
1
k

∑k
i=1 load(Pi)

(17)

Table 2 shows the partition quality of all algorithms when k is from 8 to 64. It
can be seen that OLPGP achieves the best cut-edge rate and balance at the
same time in most cases. In Skitter dataset, OLPGP does not achieve the best
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balance, but the cutting edge rate is much higher than baselines. Furthermore,
OLPGP is not affected by k, which indicates it is scalable.

In Fig. 2, we show the evolution of metrics μ, θ over iterations. Due to space
limitations, we only show the results on the WikiTalk dataset when k = 64, the
results on other datasets are similar. It can be seen that although the initial
partitioning process produces extremely unbalanced partitions, our algorithm
can still reach balance after a few iterations and continuously improve the cut-
edge rate, which shows that our initialization strategy can be well combined with
the strategy of maintaining balance.

Table 2. Partitioning quality on all datasets.

k 8 16 32 64

μ θ μ θ μ θ μ θ

Youtube

Spinner 0.44 1.049 0.50 1.045 0.58 1.051 0.63 1.276

BGRAP 0.42 1.043 0.45 1.038 0.52 1.054 0.56 1.532

OLPGP 0.39 1.021 0.45 1.030 0.50 1.037 0.53 1.045

WikiTalk

Spinner 0.68 1.037 0.66 1.146? 0.73 1.031 0.76 1.101

BGRAP 0.49 1.037 0.52 1.048 0.53 1.162 0.54 1.790

OLPGP 0.44 1.005 0.47 1.012 0.50 1.022 0.49 1.049

Skitter

Spinner 0.27 1.048 0.30 1.036 0.39 1.068 0.41 1.133

BGRAP 0.26 1.298 0.31 1.494 0.36 1.329 0.39 1.535

OLPGP 0.24 1.008 0.28 1.029 0.32 1.040 0.38 1.212

RoadNet-CA

Spinner 0.46 1.009 0.47 1.017 0.48 1.022 0.48 1.023

BGRAP 0.45 1.011 0.47 1.014 0.49 1.016 0.49 1.021

OLPGP 0.20 1.014 0.23 1.019 0.28 1.017 0.25 1.025

Hyves

Spinner 0.53 1.017 0.57 1.026 0.59 1.045 0.61 1.048

BGRAP 0.37 1.190 0.42 1.930 0.45 2.015 0.48 2.066

OLPGP 0.39 1.002 0.41 1.022 0.42 1.030 0.43 1.043
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Fig. 1. Execution time on different
datasets when k = 64.

Fig. 2. Metrics over iterations on WikiTalk
dataset (k = 64).

5.3 Execution Time

Execution time is also an important metric for graph partitioning algorithms. In
this section, we compare the execution time of all algorithms when k = 64, and
the results are shown in Fig. 1. Obtained results show that the performance of
OLPGP is competitive, the execution time is always close to the best baseline.

6 Conclusion

In this paper we proposed OLPGP, a distributed graph partitioning algorithm
based on label propagation. We first initialize the partitions with a strategy of
degree-weighted label propagation, which provides good locality and allows to
speed up the convergence. Next, we add a penalty function to label propaga-
tion to ensure balanced partitions and optimize the algorithm to avoid local
optima. In order to adapt the algorithm to the synchronous parallel model, we
comprehensively consider the global state and the characteristics of vertices to
avoid partition overload. Our experiments show that OLPGP is scalable and can
achieve better cut-edge ratio and balance than other popular and state-of-the-art
algorithms. Moreover, the performance of OLPGP is competitive, indicating its
availability. Nowadays, the scale of complex networks is developing rapidly. Most
popular social networks will have new users joining every moment. As future
work, we plan to adapt our algorithm to graph changes in dynamic graphs.
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Abstract. To improve the inference accuracy of neural networks, their
size and complexity are growing rapidly, making the deployment of com-
plex task models on mobile devices with efficient inference a major chal-
lenge for industry today. Low-precision quantization is one of the key
methods to achieve efficient inference on complex networks, but previ-
ous works often quantize partial layers because severe accuracy degra-
dation occurs when quantizing is applied to the entire network. In order
to improve the stability and accuracy of low-precision quantization-fine-
tuning, we propose a hardware-friendly low-precision full quantization
method, called DRGS, which dynamically selects rounding mode for
weights according to the direction of weight updates during the training
forward and scales the corresponding gradient, finally completing the
quantization of all layers of the complex network to achieve floating-
free-inference. To validate the effectiveness of DRGS, we apply it to
RetinaNet with full 4-bit quantization, and the result of the MS-COCO
dataset shows that DRGS has a 2.1% improvement in mAP or at least 2X
less quantization loss compared to the state of art implementation. This
improvement is also significant even on the YOLO, an object detection
model family known for run-time low latency and efficiency. In the latest
version of YOLO-v5s, the 4-bit fully quantized network reaches mAP
33.4 which to our knowledge is the best mAP achieved at this category.

Keywords: Low-precision · Full quantization · Dynamic rounding ·
Gradient scaling · YOLO

1 Introduction

Deep neural networks (DNNs) have been a promising technology in recent years
and achieved excellent performance in areas such as computer vision and natural
language processing. However, the deeper and more complex DNN models make
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Table 1. Comparison between different quantizers. AL: Quantifying the parameters
of all layers, including weights, biases, and activations. BN: BN layers [8] exist only
during the training phase and are incorporated into the Conv layers during inference.
CT: Complex tasks other than classification, such as object detection. LS: Weights are
linearly symmetrically quantized. SI: No modification of the original network, main-
taining structural integrity. ✓ means the condition is met.

Methods AL BN CT LS SI

LQ-Nets [22] ✓

DSQ [6] ✓ ✓

LSQ+ [2] ✓ ✓

HPAQ [4] ✓ ✓ ✓

Log-scale [5] ✓ ✓

AQD [3] ✓ ✓ ✓

LLSQ [23] ✓ ✓ ✓ ✓

DRGS(Ours) ✓ ✓ ✓ ✓ ✓

efficient deployment on mobile devices with limited computing resources and
memory bandwidth a challenge [19]. Therefore, how to achieve efficient inference
on resource-limited devices with as little accuracy loss as possible through model
compression has become a research focus.

Quantization, as a compression method, maps a large number of continuous
high-precision floating-point values into a finite number of discrete values. In this
way, the memory footprint during inference is reduced while expensive floating-
point operations are replaced with efficient fixed-point operations. Therefore,
model quantization is a key to deploy complex networks on resource-limited
or integer-only devices, and this work focuses on efficient network quantization
schemes.

An effective quantizer is able to perform hardware-friendly end-to-end quan-
tization of DNNs, where the conditions [12,23] to be satisfied are extended as
shown in Table 1. Most quantization schemes only deal with convolution (Conv)
layers, and compute those non-convolutional layer in floating point format. LQ-
Nets [22] and Log-scale [5] use nonlinear quantizer, which requires special hard-
ware support and cannot be applied to most off-the-shelf DNN accelerators.
LLSQ [23] and AQD [3] quantize all layers, but LLSQ only targets on the classi-
fication task, and AQD modifies the network structure, can not fold the BN layer,
increases resource requirements and adds inference latency. Although DSQ [6],
LSQ+ [2] and HPAQ [4] use linear quantizers, quantization is performed only for
Conv and fully connected layers. Since non-convolutional parts are significant in
object detection schemes, computations in those parts not only require a large
number of floating-point units in hardware, but also require frequent switching
of data types that would reduces the acceleration gain by quantization.

To address these issues, we propose a hardware-friendly full quantization
scheme that can be used for complex tasks, which will quantize the parameters
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Fig. 1. Comparison of the distribution between original values, fine-tuned values, and
quantified values, based on the 2nd Conv weights of YOLO-v5n [20].

of all layers in the network, including Conv layers, BN layers, Skip-connection,
and Concat layers, resulting in that all learned quantization parameters are
represented by fixed-point numbers, thus enabling floating-point free inference.

When a complex object detection network is quantized to a low bit preci-
sion, we observed a large variation in accuracy during quantization-fine-tuning.
Figure 1(a) shows the changes in the distribution of weights before and after
quantization-fine-tuning. It can be seen that low precision quantization usu-
ally leads to a large deviation in distribution of the pre-quantization weights.
Obviously, the lower quantization precision is, the larger updates are needed for
the pre-quantization weights to approach target quantization points, as shown
in Fig. 1(b), and this needs to be done by a rounding function. Nagel et al. [15]
pointed out that rounding to the nearest may not be the best rounding mode, and
proposed a rounding mode selection method for post-training-quantization [16].
Inspired by the work, we propose a dynamic rounding mode selection method
for quantization-aware-training. In the training forward, the rounding mode is
dynamically selected according to the direction of weight change in the critical
rounding interval(CRI). At the same time, the corresponding gradient is also
scaled in order to locate the weights in the CRI out of the interval as soon as
possible. In this way we have a stable rounding mode the convergence is fast.
We refer to the above quantization method as DRGS(Dynamic Rounding and
Gradient Scaling). Our specific contributions are summarized as follows:

– We propose a hardware-friendly end-to-end full quantization method that
enables floating-point-free inference.

– We show that one reason for low stability in quantization-fine-tuning training
of a object detection model in low-precision is the rounding to the nearest
for all parameters, and propose a method to dynamically select the rounding
mode to improve the stability and accuracy of the fine-tuning.
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– We propose a gradient scaling mechanism that can train the weights to con-
verge to a stable rounding mode faster.

– To the best of our knowledge, we are the first to fully quantize the YOLO
model, a widely used detection model known for its run-time low latency and
efficiency, to 4bit or below.

2 Related Work

2.1 Network Quantization

Quantization can be divided into two categories from the perspective of whether
training is required [16], post-training-quantization(PTQ) [15] and quantization-
aware-training(QAT) [2–6,12,22,23]. PTQ suffers from severe accuracy loss
when quantizing models to 4-bit or below, while QAT can partially recover this
accuracy loss by fine-tuning the pre-trained models. In recent work, LLSQ [23],
TQT [10] and LSQ+ [2] propose learnable quantization parameters. Motivated
by these, we propose DRGS and implement low-precision full quantization on
detection model.

Aside from quantization methods, some works improve the quantization accu-
racy by overlaying other methods. For example, knowledge distillation is used in
QKD [11] to improve the quantization accuracy. Unlike these methods, DRGS
focuses on fine-tuning the forward and backward propagation without bells and
whistles, and DRGS is orthogonal to these methods.

2.2 Quantization on Modern Detectors

In recent years, the mainstream object detection algorithms are anchor-based
deep detection networks [24], which mainly contain two categories of two-
stage object detection and one-stage object detection, such as one-stage Reti-
naNet [13], YOLO [17,20] and two-stage Faster RCNN [18] have received wide
attention. The main efforts to quantize such detection models are [3–5,12], none
of which can satisfy all the conditions listed in Table 1. FQN [12] has a severe
accuracy loss in the case of low bit width quantization at 4-bit and below. Chin
et al. [4] and Choi et al. [5] quantize only the Conv layers, and Choi et al. [5]
uses a nonlinear quantization method, and this requires special hardware design
to support it. Chen et al. [3] proposes Multi-BN blocks to improve the network
accuracy, which makes the original network cannot fold the BN layer, which
will not only increase the hardware resources required for deployment, but also
increase the inference latency, and the method is difficult to be extended to
other structures. Furthermore, Wei et al. [21] use quantization and knowledge
distillation to train very tiny CNNs for object detection, and this work also has
only quantized Conv layers. In contrast, DRGS has no special requirements for
network structure, and no special hardware design is required, more versatile
and flexible. All these will facilitate us to get better performance directly on
more object detection models.
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Fig. 2. Typical block in the detection network and low-precision calculation of a Conv
layer. Dotted line indicate optional, and dotted box indicates that the fusion of the
Conv and BN layer will be implemented during inference.

3 Methods

In this section, we present the proposed DRGS method in detail. As shown in
Fig. 2(a), the combination of Conv, BN, and activation function layers is repeated
in object detection models, and other layers that also need to be quantified
include Skip Connection, Concat layer, etc. DRGS is able to fully quantize the
modules in modern detection networks, allowing dense matrix multiplication to
be implemented at low-precision, as shown in Fig. 2(b).

3.1 Weight Quantization

It is observed that the distribution range of the weight tensor varies greatly along
the direction of the output channel, and the weights of each layer are mostly
symmetrically distributed around zero [12]. In order to achieve fine quantization
in each channel, per-channel symmetric quantization should be used for the
weights. The formula is as follows.

wq =
⌊
clip

(
w

sw
,−2b−1, 2b−1 − 1

) ⌉

w̄ = wq · sw

(1)

where �·� represents the rounding function, and the clip (a, b, c) function clamps
the input a to the range [b, c]. w denotes the weights in the weight tensor, and b
represents the quantization bit width. wq, an integer scaled representation of the
quantized weight, and w̄, a quantized representation of the w at the same scale
as origin weight data. There is only one quantization parameter in the weight
quantizer, sw, which is a scaling factor and also a learnable parameter based on
the training loss. The calculation of its gradient will be introduced in Sect. 3.4.
He et al. [7] argued that the weights approximate the Gaussian distribution,
and inspired by this argument, we propose an initialization scheme for sw with
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practical value.

swinit
=

max(|μ − 3σ|, |μ + 3σ|)
2b−1 − 1

swinit
t = β · swinit

t−1 + (1 − β) · swinit
t

(2)

where μ and σ denote the mean and standard deviation of the weights, respec-
tively. Equation(2) indicates that the initial value will be determined after a few
iterations by exponential moving average(EMA), where the β is set to 0.9. t is
the time step.

3.2 Activation Quantization and Floating-Point Free Inference

Activation Quantization. To avoid introducing more computations by quan-
tization, we use per-layer asymmetric quantization of the activation. And unlike
most of previous works about quantization, we propose DRGS to quantize the
detect model from the input to the output of the final detection head, as well
as the input of the sigmoid function in the post-processing. This allows us to
replace the hardware-unfriendly exponential operations with table lookups. The
formula is as follows.

xq =
⌊
clip

(
x

sx
+ zp, 0, 2b − 1

) ⌉
, zp =

⌊
clip

(−zf

sx
, 0, 2b − 1

) ⌉

x̄ = (xq − zp) · sx

(3)

x denotes the input activation, xq and x̄ are the same as the weight quantiza-
tion. The difference is that since the activation are quantized asymmetrically,
each quantizer has two quantization parameters, zp and sx. zp denotes the zero
point, which has the same data type as the values xq, and is in fact the quantized
xq corresponding to the real value 0, this enables us to automatically satisfy the
requirement that the real value x = 0 can be accurately represented by a quan-
tized value. These two quantization parameters are also learnable parameters,
and for this purpose it is necessary to update zp with a real domain value instead
of zp, which is represented by zf in Eq. (3). These two parameters are initialized
as follows.

sxinit =
xmax − xmin

2b − 1
, zfinit = xmin (4)

We still initialize via EMA, but note that to eliminate the effect of outliers in
the activation, xmin and xmax are taken from the activation according to the
percentage (1 − γ) and γ, here γ = 0.999.

Floating-Point Free Inference. After quantizing the weights and activation,
as shown in Fig. 2(b), the expensive floating-point operations can be replaced
with efficient low-precision operations, as follows.

sxout (xqout − zpout) = (wq · sw) · (xqin − zpin) · sxin

xqout =
sw · sxin

sxout

(wq · xqin − wq · zpin) + zpout
(5)
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Fig. 3. Traditional rounding to the nearest and dynamic rounding with CRI.

Although the activation are asymmetrically quantized, the wq · zpin term can be
precomputed, which does not cause additional computation in inference; mean-
while, sw·sxin

sxout
can be converted to fixed-point multiplications, therefore complete

floating-point-free inference is realized.

3.3 Dynamic Rounding

As mentioned above, rounding to the nearest is not the best way to round for each
weight. Therefore we propose a method of dynamically selecting the rounding
mode. Observing Fig. 3(b), the weights located in the (lb, ub) interval are often
extremely prone to changing between the two rounding modes even for a very
small update, thus making the corresponding quantization values alternating
between two adjacent values, causing instability in the quantization-fine-tuning.
To solve this problem, we introduce a new concept of critical rounding inter-
val(CRI), the corresponding interval range is (lb, ub). For the weights in CRI,
the corresponding rounding mode will be selected based on the direction of the
weight update. The quantification scheme of the weights in CRI is as follows.

wt
q =

{ �wt�, if wt > wt−1

�wt�, if wt < wt−1 (6)

wt is the current weight, and wt−1 represents the last weight. The proposed
dynamic rounding method in DRGS reduces fluctuation of weights in CRI, sta-
bilizing the process of quantization-fine-tuning. Specially, the nearest rounding
is a special case of dynamic rounding in DRGS when lb equals to ub in CRI.

3.4 Gradient Scaling

Gradient Calculation of Quantization Parameter. Since the rounding
function is not derivable, Straight Though Estimator (STE) [1] is needed to
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Fig. 4. 2-D derivation of gradient scaling trend and distance distribution of w and wq

in CRI. The distance shown is calculated at the first iteration before fine-tuning and
is based on YOLO-v5n [20].

approximate the gradient through the round function. The gradient of the three
quantization parameters in DRGS is calculated as follows.

∂w̄

∂sw
=

{
−w
sw

+ DR
(

w
sw

)
, if − 2b−1 < w

sw
< 2b−1 − 1

−2b−1 or 2b−1 − 1, otherwise

∂x̄

∂sx
=

{
−

(
x
sx

+ zp
)

+
⌊

x
sx

+ zp
⌉
, if 0 < x

sx
+ zp < 2b − 1

0 or 2b − 1, otherwise

∂x̄

∂zf
=

{
0, if 0 < x

sx
+ zp < 2b − 1

1, otherwise

(7)

Where the DR(·) function indicates that each weight will be rounded using the
rounding mode chosen at its forward inference.

Gradient Scaling for Weights. The gradient of the quantization parameters
requires STE, which propagates the same gradient, gw = gwq

, without consid-
ering the value of the weights. This results in that the weights located in the
CRI are extremely prone to change of the rounding mode due to an approxi-
mate inaccurate gradient falling into a state of frequent alternation between two
neighboring quantization points. In order to solve this problem to enable that
the weights in CRI can be updated more quickly toward the target quantization
points and then be out of this critical interval to obtain a stable rounding mode,
the gradient needs to be scaled according to the distance between the weights and
the corresponding target quantization points. Based on weight update formula
in the gradient descent method, we can obtain the following equation.

wt+1 = wt − η · gw · sg (8)
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Table 2. RetinaNet 4-bit quantization based on the MS-COCO dataset. FP32 means
no quantization.

Model Method mAP mAP0.5 mAP0.75 mAPS mAPM mAPL

RetinaNet50 FP32 35.7 52.8 38.3 19 39.8 46.9

RetinaNet50 FQN [12] 32.5 51.5 34.7 17.3 35.6 42.6

RetinaNet50 DRGS 34.6 51.7 37.1 18.2 38.5 46.1

RetianNet18 FP32 31.7 49.9 33.2 16.4 34.8 42.3

RetianNet18 FQN [12] 28.6 46.9 29.9 14.9 31.2 38.7

RetinaNet18 DRGS 30.1 48.2 31.7 15.5 32.8 40.4

Where η denotes the learning rate, wt represents the current weight, and gw and
sg are the gradient and gradient scaling factor corresponding to that weight,
respectively. Combining with Fig. 4(a), when gw > 0 and wn1 < wq, although we
want wt+1 to increase, we can only retard its decreasing trend because of gw > 0,
so we need sg < 1. Similarly, when gw > 0 and wn2 > wq, sg > 1 is needed to
reduce wt+1. And for gw < 0, wn4 < wq, we need sg > 1 to increase wt+1, but
for gw < 0 and wn3 > wq, although we want wt+1 to decrease to approach wq,
since gw < 0, we can only retard its increasing trend, so sg < 1.

Meanwhile it can be seen from Fig. 4(b) that distances between w and wq in
CRI are mostly close to zero, but there are still a few larger values, so we need
to reduce this distance appropriately. Heuristically we propose the formula for
sg as follows.

dist (w,wq) = w − wq

sg = 1 + sd · sign (gw) · dist (w,wq) · CRIaddr
(9)

sd is the scaling factor of dist (w,wq), which is used to scale the distances between
w and wq. In all experiments of this paper, sd = 0.2 is set empirically. sign(gw)
is the sign function, and CRIaddr is used to indicate that only the gradient of
the weight in the CRI is scaled.

3.5 Other Layers

As shown in Fig. 2(a), the Conv layer is often followed by a BN layer [8], which
normalize the input in batch using minibatch statistics μBN and σBN to elim-
inate covariance shifting. When only inference is performed, the computation
overhead can be reduced by folding the BN layer into the Conv layer. The fused
weights and biases are as follows.

wfold =
w√

σ2
BN + ε

· γBN

bfold =
b − μBN√
σ2
BN + ε

· γBN + βBN

(10)
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Table 3. 4-bit quantization of RetinaNet18 with different methods.

Model Quantizationn method Activation calibration mAP

RetinaNet18 FP32 baseline — 31.7

RetinaNet18 Integer-only [9] Moving Average 19.7

RetinaNet18 Quant whitepaper [16] Moving Average 22.6

RetinaNet18 FQN [12] Percentile 28.6

RetinaNet18 DRGS Percentile 30.1

where γBN and βBN parameters are learnable parameters in the quantization
fine-tuning. For the max-pooling layer and the upsampling layer using the nearest
interpolation, no floating-point operation is introduced and the zp and sx are
not changed. Thus, no special modifications are needed. For the Skip-connection
and Concat layer, the quantization is performed by referring to the method in
activation quantization [9].

4 Experiments and Results

4.1 Experimental Settings

Datasets. To validate the effectiveness of the DRGS, we carried out extensive
experiments on the MS-COCO dataset [14]. The MS-COCO dataset contains 80
object categories of over 200K images and is widely used to benchmark SOTA
object detectors because of its rich annotations and challenging scenarios.

Detectors. The detectors we selected include RetinaNet [13] and YOLO [20].
Note that we choose two models with different parameter sizes in the latest ver-
sion, YOLO-v5nano and YOLO-v5small (YOLO-v5n and YOLO-v5s for short).
We do not modify any structure of the network, and all activation functions use
ReLU. All detectors were trained based on MS-COCO.

Full-Precision Training Details. For RetinaNet, the total batchsize is 8 with
4 workers, the initial learning rate is 1e–4, at the 8th and 12th epoch multiplied
by 0.1. For fair comparison [12], the short edges of all images are adjusted to
800 in training and evaluation. For YOLO-v5, all training settings are officially
consistent.

Quantization-Fine-Tuning. Quantization-fine-tuning is initialized by a full-
precision model, the weights and activations of all layers are quantized to 4-bit
or below except for the first and last layer, which are quantized to 8-bit [9,12,23].
Without loss of generality, we empirically set the CRI with lb = 0.45, ub = 0.55.
With RetinaNet, the initial learning rate drops 10x, the batchsize is halved, and
other settings remain unchanged. For YOLO-v5, the quantization parameters are
trained using the Adam optimizer, and the batchsize is set to 32 which is half of
the full precision. The initial learning rate also differs for different quantization
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Table 4. Results of YOLO-v5n and YOLO-v5s at different bit widths. W/A denotes
the quantization bit width of weight and activation.

Model W/A

32/32 2/2 3/3 4/4 8/8

YOLO-v5n 26.5 mAP 8.6 mAP 17.9 mAP 22.9 mAP 27.1 mAP

YOLO-v5s 36.5 mAP 18.7 mAP 29.7 mAP 33.4 mAP 36.3 mAP

bit widths of the two models. For YOLO-v5n, the initial learning rate is 3e–4,
3.5e–4, 4e–4 corresponding to 4-bit, 3-bit and 2-bit quantization respectively.
For YOLO-v5s, the learning rate is 1.5e–4, 2e–4, 3e–4 respectively. In addition,
we use only 100 epochs (1/3 of baseline) for fine-tuning.

4.2 Results on RetinaNet and YOLO-v5

Results on RetinaNet. We first apply DRGS to RetinaNet using 4bit quan-
tization, the results are shown in Table 2. For 4-bit RetinaNet with ResNet50
backbone, DRGS only suffers a 1.1% mAP loss while the references suffers 3.2%
lost compared to full-precision floating point 32bit baseline. Table 2 shows that
DRGS has about 2× less quantization loss with different backbones compared
to FQN [12].

As shown in Table 3, we compared DRGS method with several existing full
quantization algorithms, among which there are two different activation cal-
ibration methods, namely Moving Average and Percentile method. It can be
seen that our proposed DRGS clearly exceeds these references in mAP loss, our
method has quantization loss 1.6% while references have 3.1%, 9.1%, 12%.

Results on YOLO-v5. We carry out quantization experiments applying DRGS
with a wide range of quantization bit widths to YOLO-v5n and YOLO-v5s, in
order to explore the impact of quantization width and model size. As shown in
Table 4, the 8-bit full quantization result of YOLO-v5n is actually 0.6% mAP
higher than FP32 baseline, which reflects the excellent results of DRGS on small

Table 5. Quantization results of different methods on YOLO-v5. a represents non-full-
quantization. b indicates that YOLO-v5m uses 8-bit quantization.

Method Model W/A FP32 Baseline Accuracy

Integer-only [9] YOLO-v5n 4/4 26.5 mAP 12.5 mAP

FQN [12] YOLO-v5n 4/4 26.5 mAP 19.4 mAP

DRGS YOLO-v5n 4/4 26.5 mAP 22.9 mAP

Log-scale [5]ab YOLO-v5m 8/8 62.5 mAP0.5 61.7 mAP0.5

DRGSb YOLO-v5m 8/8 62.5 mAP0.5 62.4 mAP0.5
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Fig. 5. The total loss and accuracy during training with and without DRGS(the first
two cases in Table 6). In YOLO-v5s, the losses include cls loss, box loss, and obj loss,
and the inference accuracy during training is 1–2% lower than that during valida-
tion [20].

models. Table 4 also shows that quantization less than 4-bit input/4-bit weight
might not be useful due to heavy loss suffered in detection accuracy. Interestingly
at 4-bit input/4-bit weight or lower, the accuracy loss caused by quantization is
smaller for YOLO-v5s than for YOLO-v5n in all quantization experiments. We
speculate that this is caused by the higher redundancy of YOLO-v5s, which has
four times more parameters than YOLO-v5n’s about 1.9 million parameters.

Table 5 shows the comparison of different quantization methods. We can see
that our proposed DRGS quantizes significantly better than the other two full
quantization algorithms for the 4-bit quantization of YOLO-v5n. We can also see
that the nonlinear logarithmic quantization algorithm [5], although it quantizes
only the Conv layers with complex logarithm method, has accuracy loss 8X
higher than DRGS (0.8% vs 0.1% loss).

4.3 Discussion

Analysis on Dynamic Rounding and Gradient Scaling. To verify the
effect of Dynamic Rounding and Gradient Scaling in DRGS, we carried out

Table 6. YOLO-v5s 4-bit and 8-bit quantization with or without Dynamic Rounding
and Gradient Scaling.

Model W/A Dynamic rounding
& gradient scaling

mAP

YOLO-v5s 4/4 with 33.4 mAP

YOLO-v5s 4/4 without 33.0 mAP

YOLO-v5s 8/8 with 36.3 mAP

YOLO-v5s 8/8 without 36.1 mAP



DRGS: Low-Precision Full Quantization of Deep Neural Network 149

Table 7. YOLO-v5s 4-bit quantization experiment under different CRI Settings. lb
and ub denote the boundaries of CRI.

Model W/A lb ub mAP

YOLO-v5s 4/4 0.35 0.65 32.7 mAP

YOLO-v5s 4/4 0.45 0.55 33.4 mAP

YOLO-v5s 4/4 0.50 0.50 33.0 mAP

experiments based on YOLO-v5s, and the results are shown in Table 6. It can
be seen that Dynamic Rounding and Gradient Scaling have more significant
optimization effects at lower precision quantization. Figure 5 shows the total
loss and accuracy during training with and without DRGS(the first two cases in
Table 6). It can be seen from Fig. 5 that the training with DRGS yields higher
accuracy and has faster convergence speed compared to the training without
DRGS. Also, we believe that DRGS can benefit object detection schemes in
similar ways.

Analysis on Lb and Ub of CRI. As mentioned in the previous experimental
settings, we empirically chose lb and ub in CRI, and to verify the effect of
this setting, we carried out three sets of quantization experiments, as shown in
Table 7. Obviously, the second setting is significantly better than the other two.
Also, it should be noted that lb = ub = 0.5 in the third setting, which means
that there is no effect of DRGS since we only perform gradient scaling for the
weights located in the CRI.

5 Conclusion

In this paper, we propose DRGS, a low-precision full quantization method with
BN folding, which combines dynamic rounding and gradient scaling to obtain
higher accuracy and stability, and finally achieve floating-point-free inference.
We carried out extensive experiments on two complex object detection tasks and
achieved SOTA quantization results, even on YOLO-v5, which is widely used and
known for its run-time low latency and efficiency. We believe that DRGS can
be an effective alternative for low-precision full quantization of complex tasks,
and we will explore hybrid-precision quantization on complex tasks to further
improve quantization performance.
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Abstract. The Convolutional neural network is one of the most mature
models used in deep learning technology and have achieved a series of
remarkable results in cross-domain research. It has become a hot research
topic to apply Convolutional neural network (CNN) to emotion recogni-
tion based on EEG signals. Although many researchers have used experi-
ments showing that CNNs have good results for emotion recognition, they
ignore the individual differences of subjects and the time differences of the
same subject. Then we propose the 1D multi-scale CNN in this paper that
can effectively solve individual differences and temporal differences with
optimal scale convolution, which solves restrictions of the results when
classifying. The experiments on public DEAP dataset show that the 1D
multi-scale CNN proposed outperforms other existing models.

Keywords: Emotion recognition · Multi-scale Kernels · EEG ·
Convolutional neural network

1 Introduction

Emotion is the corresponding behavioral responses following the experience of
human attitudes towards objective things, affecting human perceptions, decision
making and interpersonal interactions, and play an important role in daily life
[7]. Therefore, research on the recognition of emotion has been triggered in com-
puter science, healthcare, and human-computer interaction [5,23]. As an impor-
tant research direction in cross-cutting areas, several researchers have classified
different emotions through human-computer interaction based on emotional arti-
ficial intelligence [17,24,31]. Especially, based on EEG signals, the methods of
recognizing emotion have turned into a hot research direction because they can
objectively and accurately respond to the real emotion of the subjects.

With the great success of deep learning in many fields such as speech recog-
nition, computer vision, and natural language processing, many researchers
have also applied deep learning to emotion recognition based on EEG signals.
For example, some researchers based on deep learning have shown experimen-
tally that emotion recognition gives good results in the field of brain-computer
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interface [35,36]. Convolutional neural networks, the most widely used of deep
learning methods, have the ability to learn directly from EEG data. It has
shown excellent results in brain-computer interface systems [15,20,25]. Specif-
ically, both Schirrmeister and Lawhern et al. used 1D single-scale convolution
kernels to extract temporal and spatial information from the EEG [15,27]. Con-
sidering the need to address the problem of capturing temporal dynamics and
spatial asymmetry in EEG due to its non-stationary and dynamic nature, Ding
et al., proposed a one-dimensional multi-scale TSception model for convolutional
neural networks (CNNs) to achieve more accurate emotion classification [6]. It
is now shown that there are temporal differences and individual differences in
EEG [13]. There is a lack of research in CNN model-based emotion recognition
for the problem of individual differences and temporal differences. Since it is dif-
ficult to determine the optimal scale convolution for individual differences and
temporal differences for emotion recognition classification, it makes the accuracy
of emotion recognition classification challenging.

To solve the above challenges, this paper proposes a new end-to-end deep
learning model: 1D multi-scale Emotion Convolutional Neural Network (ECNN).
Our ECNN has 5 parallel EEG’s Emotional Networks (EENs), consisting of
multi-scale convolutional kernel sizes. The main contributions of this paper are
summarized in three aspects as follows:

(1) Based on parallel processing, we propose a 1D multi-scale convolutional
model, which is able to deal with individual differences of subjects and the
time differences of the same subject problems of emotion classification.

(2) We design an end-to-end ECNN model, which can effectively decode the
original EEG signal without any preprocessing (including filtering) and can
be transfer to other disciplines for research with broad practical application
prospects.

(3) We conduct experiments on the publicly available DEAP dataset, and the
experimental results show that our model outperforms other baseline models.

2 Related Work

In the field of affective computing, a lot of research has been conducted on emo-
tion recognition based on different data. Since physiological signals can accu-
rately and objectively reflect the real emotion of the subject, while EEG signals
because the subject cannot be subjectively controlled. Therefore, it can more
accurately represent the inner emotional state than signals such as voice facial
expressions, thus becoming a research hotspot for emotion recognition.

Earlier, Bahari et al., used a recursive graph-based nearest neighbor classifica-
tion algorithm (kNN) with a nonlinear model k to identify different emotions [4].
Wang et al., used a support vector machine (SVM) classification algorithm based
on frequency features for emotion classification [30]. However, traditional machine
learning techniques have feature design and feature selection limitations.

With the rapid development of deep learning, some researchers have found
that deep learning can address the deficiencies in traditional machine learning
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techniques, thus applying deep learning to EEG emotion recognition. For exam-
ple, Alarcao and Mahmud et al., used deep learning methods in emotion recog-
nition tasks [1,19]. Song et al., proposed a multi-channel EEG based on a new
dynamic graph convolution neural network (DGCNN) in order to improve the
emotion recognition performance of EEG. The model used the learned adjacency
matrix to improve the ability of more discriminating features [28]. Kim et al., sum-
marized the computational method of EEG-based emotion estimation by a related
previous study, and showed the EEG-based emotion recognition computational
model is valid and feasible [22].

Research based on deep learning models from EEG signals for emotion recog-
nition has been mainly through the following three dimensions of feature extrac-
tion: (1) Frequency feature extraction dimension: Zheng et al., proposed the deep
belief network (DBN), which used differential entropy (DE) features to identify
emotion. The research showed that the DE feature extracted from EEG signals
is a stable and accurate classification method [38]. Yang et al., proposed a hier-
archical network using DE features of five frequency bands to identify different
emotions [33]. (2) Temporal feature extraction dimension: Alhagry et al., showed
experimentally that good results were obtained by using two-layer LSTM with
EEG signals as input [2]. Ma et al., proposed a multi-modal residual LSTM
model (MMResLSTM) with temporal weights shared across multiple modalities
[18]. (3) Spatial feature extraction dimension: Li et al., designed EEG-based
2D images, a layered CNN for extracting spatial information between different
channels [16]. Mei and Kwon et al., used a 2D CNN model for extracting and
classifying features [21,34]. Yang et al., research showed that 2D CNN module
and LSTM module extract spatial and temporal features respectively. In addi-
tion, it also combined the corresponding features for classification, it achieved a
relatively high accuracy in the emotion recognition task [32]. However, the 2D
conventional method ignores the spatial characteristics of the EEG signal. There-
fore, Jia et al., proposed HetEmotionNet, a dual-stream heterogeneous graph
recurrent neural network fusing multi-modal physiological signals, to exploit the
complementarity between spatio-temporal domain features for emotion recogni-
tion [12]. Salama et al., also proposed a 3D CNN model considering that the
model of 2D CNN ignores the spatial features of EEG signals. This model added
a spatio-temporal feature extraction method for EEG signal spatio-temporal
feature extraction and classification. The 3D CNN model was shown to be supe-
rior to other methods for emotion recognition by experimental data [26]. Jia et
al., designed a model that integrates spatial-spectral-temporal features simul-
taneously into a unified network framework that leverages discriminative local
patterns between different EEG features and features targeting different emo-
tions to pair recognize emotion, a novel SST-EmotionNet based on a 3D dense
network of spatio-temporal attention [8]. Zhao et al., also proposed a 3D CNN
model for automatic extraction of spatio-temporal features of EEG signals, pre-
processed by relocating the electrode topology and baseline signals, which has a
high accuracy for emotion recognition [37].

So far, although existing emotion recognition methods have achieved high
accuracy, the importance of addressing is temporal differences and individual
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differences has been overlooked. To fill this research gap, in this paper we design a
1D multi-scale CNN with the main purpose of using to study emotion recognition
by 1D CNNs and thus compare the accuracy of emotion recognition.

3 One-dimensional Multi-scale Emotional CNN Model

CNN is a deep neural network model consisting of three network layers: convolu-
tional layer, downsampling layer, and fully connected layer. Each EEN consists
of an Emotion Multi-scale module and a Residual module. Overall framework of
the proposed ECNN model as shown in Fig. 1.

Fig. 1. General framework of the proposed ECNN model. To be more specific, our
ECNN includes 5 parallel EENs

As shown in Fig. 2. and Fig. 3: the horizontal axis indicates the size of differ-
ent convolution kernels, and the vertical axis is the degree of accuracy. Figure 2:
Individual A has the highest degree of accuracy of 0.84 at a convolution kernel
size of 45. As for individual B, the accuracy was 0.93 at a convolution kernel
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Fig. 2. Subject difference: classification accuracy of two different subjects with different
kernel size.

size of 105, which reached the highest degree. This shows that the classification
results of different individuals are influenced by the size of the convolution ker-
nel. Figure 3: The same individual with a convolutional kernel size of 15 and a
precision of 0.86 within time period 1 to the highest degree, and a convolutional
kernel size of 55 and a precision of 0.88 within time period 2 to the highest
degree. Figure 2 and Fig. 3 further show that the results of emotion recognition
using different convolutional kernels are different. In summary, there is tempo-
ral differences and individual differences in the emotion recognition task. Since
the optimal scale convolution varies with individual differences and temporal
differences, our ECNN model solves the problem of individual differences and
temporal differences by multi-scale convolution: all EEN branches use differ-
ent convolution kernel sizes (different scales). To improve the noise immunity,
ELU function is adopted in our ECNN, which avoid using the traditional RELU
function [13].

3.1 Emotional Multi-scale Module

To increase the convolutional kernel size in parallel, our ECNN model utilizes
Emotion Multi-scale modules (EMM) a-e EEN in order to achieve multi-scale
convolution. We devise the Emotion Multi-scale module, mainly derived from
the classical inception network [29]. Each Emotion Multi-scale module has 4
parts, where have multi-scale 1D convolution and pooling operations. Figure 4
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Fig. 3. Time difference: classification accuracy of two different sessions of Subject A
with different kernel size.

shows the structure of Emotion Multi-scale module-a. The specific data of each
convolution kernel is shown in Table 1.

Table 1. Summary of relevant information of convolution kernel data.

EMM Kernel size

a 1 ∗ 10 1 ∗ 15 1 ∗ 20

b 1 ∗ 45 1 ∗ 50 1 ∗ 55

c 1 ∗ 65 1 ∗ 70 1 ∗ 75

d 1 ∗ 85 1 ∗ 90 1 ∗ 95

e 1 ∗ 100 1 ∗ 105 1 ∗ 110

The kernel size increases gradually in all Emotion Multi-scale modules. The
Emotion Multi-scale module process is defined as:

Y = [qpj=1,k ∗ x;Y = qpj=2,k ∗ x;Y = qpj=3,k ∗ x;Fmaxpooling(x)] (1)

where Y is the output of the Emotion Multi-scale module in different EENs. Y ∈
RT ′×C′

, p ∈ [a, b, c, d, e] in the Emotion Multi-scale module, with five branches
in qj . q

p
j,k∗ denotes the convolution operation, x denotes the input sample.
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Fig. 4. Structure of emotion multi-scale module-a (EMM-a). Emotion multi-scale
module-a has four parts, three of which are multi-scale convolutional layers, and one
is a pooling layer.

3.2 Residual Module

Network degradation might happen when the network layers number is increas-
ing [25]. In order to solve such a problem, a Residual module is used as shown
in Fig. 5.

Every Residual module includes two branches: first branch performs a series
of layers interleaved with 1D convolutional and batch normalization (BN) layers,
and obtains the output Fres(X); second branch inserts a shortcut connection.
Final output are able to be formed after that these branches are combined, which
can be defined as:

Up = Fres(X) + X (2)

where Up represents outputs of Residual modules and X represents inputs. We
can extract these features from shallow layers, and then transfer them to layers
that are deeper. As a result, the Residual module solves the problem of degrading
to a large extent.

4 Experiment

4.1 Dataset

The DEAP dataset used physiological signals for the analysis of human emotional
states. There were 32 subjects who watched music videos while their physiolog-
ical signals of EEG, facial expressions, and skin current response (GSR) were
recorded. Each subject participated in a total of 40 trials. The duration of each
trial was 1 min, with a pre-trial baseline of 3 s (each signal recording was pre-
ceded by a 3-s silent period). After each trial, subjects promptly self-assessed
their own emotional state on the self-assessment manikins (SAM) questionnaire
on 4 dimensions of potency, arousal, dominance, and liking, with 9 scales for each
dimension. The EEG is acquired using a 32-channel device with a sampling rate
512 Hz 128 Hz resampling (official pre-processed resampling data is provided).
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Fig. 5. Structure of the residual module.

4.2 Pre-processing

For DEAP, because each segment of signal recording was preceded by 3 s of
silence, a 3 s pre-test baseline is removed for each trial. Next, the data is down
sampled 512 Hz 128 Hz, and then the electrooculogram is removed with a blind
source separation method as in the experimental method of Koelstra et al. A
bandpass filter of 4.0–45 Hz is then applied to the raw EEG in order to remove
low and high frequency noise [14].

Finally, the EEG channels are averaged to the open reference. In this study,
only arousal and valence dimensions are used, with class labels from 1 to 9 for
each dimension, and 5 is chosen as the threshold to project the 9 discrete values
into the low and high classes of each dimension [3,14]. Deep neural networks
have more trainable parameters and therefore a large sample of labeled data is
required in order to optimally learn the emotional state representation in the
EEG. However, as shown in Table 2, the number of trials in the selected dataset
is very small. To overcome this challenge, the data needs to be augmented by
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Table 2. Summary of information related to the datasets used in the experiments.

Factor Value

Subjects 32

Stimuli Music videos

Trials 40

Trials duration 1 min

EEG channels 32

Sampling rate 512 Hz

Label Valence/Arousal

dividing each trial into smaller non-overlapping 4s segments. These segments are
then used to train the deep neural network.

4.3 Performance Evaluation Indicators

Accuracy is one of the most commonly used evaluation indicators in classification
problems [3]. It is the ratio of correctly predicted samples to the total number
of samples. For binary classification problems, accuracy can also be defined as:

Accuracy =
TP + TN

TP + FP + TN + FN

where TP is true positive, TN is true negative, FP is false positive, and FN is
false negative.

4.4 Baseline Models

We use following baselines:
MLP [9]: This is a general function approximation method that can be used

to solve classification problems.
SVM [30]: The least squares support vector machine classification analysis

that uses frequency features for emotion classification.
DGCNN [28]: This model multi-channel EEG features based on dynamic

graph CNNs performs EEG emotion classification.
SST-EmotionNet [8]: A 3D attention mechanism is designed to adaptively

explore discriminative local patterns for EEG emotion recognition by simul-
taneously integrating spatial-spectral-temporal features into a unified network
framework.

HetEmotionNet [12]: Modeling the heterogeneity and correlation between
multi-modal signals is a two-stream heterogeneous graph recurrent neural net-
work that incorporates multi-modal physiological signals for emotion recognition.
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Table 3. Comparison of the accuracy effects of our ECNN and other baseline models
on the DEAP dataset.

Model Valance (%) Arousal (%)

MLP 62.31 ± 4.26 65.23 ± 5.02

SVM 71.14 ± 3.36 73.60 ± 4.23

DGCNN 80.14 ± 3.01 81.70 ± 3.46

SST-EmotionNet 81.30 ± 1.55 82.87 ± 2.11

HetEmotionNet 82.72 ± 3.21 82.38 ± 3.73

ECNN (Our method) 83.97 ± 4.13 83.72 ± 3.05

Fig. 6. Comparison of the most accurate results of our ECNN and other baseline
models on the DEAP dataset.

4.5 Analysis and Comparison of Results

In this paper, our model is compared with other baseline models based on the
DEAP dataset. Table 3 and Fig. 6 show the average precision and standard devia-
tion of these models for the valance and arousal dimensions in EEG-based emo-
tion recognition. The proposed ECNN model achieves the best results on the
DEAP dataset. Experimental results show that the deep learning model outper-
forms the MLP and SVM models. DGCNN considers spatial information of EEG
signals collected from different channels and uses graph convolution to extract
spatial information with 82.72% and 82.38% accuracy in valance and arousal
dimensions. SST-EmotionNet considers spatial, spectral, and temporal features
simultaneously and is designed to explore discriminative local patterns adap-
tively, with the accuracy of valance and arousal dimensions reaching 81.30% and
82.87%, separately. HetEmotionNet models the heterogeneity and correlation
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between multi-modal signals and makes full use of the different domain between
features for emotion recognition. Valance and arousal dimensional accuracies of
82.72% and 82.38% are achieved. ECNN(Our model) takes into account both
individual differences and temporal differences. Compared with all the baseline
models, the accuracy of our model is further improved, reaching 83.97% and
83.72% accuracy in the valance and arousal dimensions, reaching the optimal
level.

5 Conclusion

In this paper, we propose an end-to-end 1D multi-scale CNN as a simple and
effective method for emotion recognition based on EEG signals. Our model takes
into account the factors of individual difference and time evolution, and success-
fully overcomes the challenge of the individual differences of subjects and the
time differences of the same subject with the optimal convolution scale. We use
the public DEAP dataset for systematic evaluation of emotion recognition. From
the experimental results, our model is superior to the most advanced model, with
good reliability and excellent effect. The model is a general framework for clas-
sification of multiple physiological time series based on EEG signals, so we can
further apply it to other fields, such as EEG based sleep stage classification and
driving fatigue analysis [9–11]. In addition, some popular deep learning methods
such as transformer could be applied into the emotion recognition.
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Abstract. Human pose estimation is a hot research problem in com-
puter vision, it has a certain application prospect in the automatic
driving industry, security field, film and television industry, and spe-
cific action monitoring of special scenes. Because a 2D skeleton usu-
ally corresponds to multiple 3D skeletons, the mapping from 2D to 3D
in the monocular video has inherent depth ambiguity and is ill-posed,
which makes the research on the technology of 3D human pose esti-
mation in monocular video challenging. In this paper, a Pose Sequence
Model (PSM) for 3D human pose estimation in the monocular video is
proposed, which combines the full convolution neural network based on
extended convolution with the Long Short-Term Memory (LSTM) net-
work. We make full use of convolution to extract spatial features and
use LSTM to obtain temporal features. With this model, we can predict
3D human posture through 2D sequences. Compared with the previous
work on classical data sets, our method has good detection results.

Keywords: 3D human pose estimation · PSM · Monocular video

1 Introduction

The research on 2D pose estimation has 2 main methods: top-down and bottom-
up methods. The top-down method [19,25,28,30] takes the result from human
detection, generally a bounding box, and performs the single human pose esti-
mation on each human block diagram. The bottom-up method [18], oppositely,
starts by detecting the human body key points in the image and then groups
the key points into a human body. Toshev et al. [26] transformed the 2D
human pose estimation problem from the original image processing and tem-
plate matching problem into CNN image feature extraction and keypoint coor-
dinate regression problem, and used DNN-based regression criteria to estimate
the occludes/missing human joint nodes, which brings great influence. Until now,
the 2D pose estimation has reached relatively high accuracy and high resolution
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[23]. Combining the 2D and 3D human pose estimation, Chen et al. [4] con-
veyed that rather than directly measure 3D pose from images, the procedure of
3D pose estimation can be divided into 2D pose estimating using Mature deep
neural networks, and 3D mocap data matching, this has been the main idea of
posture estimating.

In recent years, there has been vast research on 3D posture estimating. Some
focus on estimating 3D pose from 2D pose of a single image, Martinez et al. [16]
conducted an efficient neural network to infer from 2D projections to 3D joints,
which focuses on the visual parsing of human bodies in 2d images. To solve the
problem of unknown motions and camera positions, Wandt et al. [27] proposed
an extra camera network to infer camera parameters, followed by a reprojection
layer to reproject the 3D pose back to 2D. Li et al. [14] designed a dataset evo-
lution framework to address the problem of the biased dataset, along with a cas-
caded network: TAGNet to predict the final 3D skeleton from the enhanced data.
Based on the part-guided novel image synthesis, Kundu et al. [10] proposed a self-
supervised learning framework to disentangle the inherent factors of variations:
shape and appearance. Some research may get 3D pose from explicit middle repre-
sentations, Pavlakos et al. [20] proposed volumetric representation for 3D human
pose(3D heatmap) and coarse-to-fine prediction technique to validate the value of
end-to-end learning for the representation of 3D pose, which addresses the chal-
lenge of estimating 3D human poses from a single color image. Li et al. [12] intro-
duced the mixture density networks (MDN) [1,32] into the 3D joint estimation to
verify the hypotheses that multiple feasible poses can be inferred from a monoc-
ular input. Li et al. [13] designed HybrIK reconstructing 3D body mesh by twist-
and-swing decomposition to bridge the gap between volume grid estimation and
3D keypoint estimation, which both preserve the accuracy of the 3D pose and the
real body structure of the parameterized human body model, to obtain a pixel-
aligned 3D body grid and a more accurate 3D pose.

CNN can fully learn images or videos’ high-level semantic information and
has excellent spatial information extraction capabilities. However, the 3D human
pose recognition task based on the human skeleton sequence is a significant time-
dependent problem for monocular video. So, balancing and making better use
of spatial and temporal information is an extremely difficult task. An additional
issue that needs to be addressed is raising the model’s generalizability for out-
door datasets. As a result, we propose a multi-stage framework for estimating
the 3D human pose that begins by estimating the 2D human pose from the
image, then from the result to estimate the 3D human pose. Some 2D outdoor
datasets can be used to provide the model with generalization capabilities by
making use of the model’s revolutionized 2D human pose detector. After that,
the mapping relationship sequence from the 2D human pose to the 3D human
pose is modeled, transforming the issue into a time-based sequence modeling
task. The encoder-decoder structure PSM makes use of the LSTM as an encoder
and the fully convolutional neural network as a decoder. The use of LSTM as
an encoder makes it possible to first encode the video frame’s correlation into
a vector of fixed size and then decode it using a fully convolutional neural net-
work. The CNN network’s spatial information processing capability and the RNN
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network’s temporal information acquisition capability can be combined and fully
utilized in this manner. Additionally, the jitter of 3D human motion between
video frames frequently presents a challenge when estimating the 3D human
pose from monocular video. Since the polynomial order can be modeled using
motion refinement and used as an optional branch to optimize the prediction
results, motion refinement is used to reduce bounce and increase accuracy. Con-
sequently, the performance of 3D human pose estimation can be improved by
the proposed framework. In Fig. 1, the first row contains the images, and the
second row corresponds to the estimation results of the 3D pose.

Fig. 1. The effect of the 3D human pose estimation.

The contribution is reflected in the following points:

1. The structure of encode-decode is formed by CNN and RNN, which can utilize
spatial and temporal information by encoder-decoder structure.

2. We propose a PSM that combines LSTM with a fully convolutional neural
network, which can be used for the estimation of 3D pose.

3. Our framework is implemented in the 3D datasets and good results can also
be obtained for wild web videos.

2 Related Work

In recent years, the field of 3D pose recognition has developed rapidly, mainly in
two directions: picture recognition and video recognition. A method for multi-
person 3D pose recognition using a single image is proposed in [7], which
allows the recognition of single or multi-person poses using constant time. They
designed a simple and effective compression method using high-resolution body
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heat maps and decoded them using an auto-encoder. [6] addressed the prob-
lem of 3D pose estimation for multiple people in a few calibrated camera views.
A multi-way matching algorithm is used to cluster the detected 2D poses in all
views. Each cluster encodes the correspondence between the pose and key points
of the same person in different 2D views to efficiently infer the 3D pose of the
person. A feature-enhanced network is proposed in [15] to estimate 3D hand
pose and 3D body pose using a single RGB image. To address the effects arising
from texture, illumination changes, and occlusion in real applications, a long and
short-term dependent perception module is used for enhancement. A contextual
consistency gate is also introduced to modulate based on contextual consistency.
A graph-based approach is proposed in [3] for the problems of depth ambiguity
and severe self-obscuration, considering spatial dependence and temporal con-
sistency. A local-to-global network structure is also implemented to solve the 3D
human pose estimation problem from short sequence 2D joint detection.

Although it is possible to divide the video into multiple frames for pose
recognition, there are often different problems in the video. Graph convolutional
networks are often built on fixed human-joint affinities, which can reduce the
adaptive ability of GCNs to handle complex Spatio-temporal pose changes in
videos. A 3D pose estimation neural network that can adaptively learn video
Spatio-temporal relations is proposed in [22]. And [2] proposed a method for
multi-person 3D pose estimation and tracking from multi-point video, where
each point undergoes independent pose detection followed by correction and cor-
relation, thus generating and tracking 3D skeletons using the associated pose.
Multiplayer full-body 3D pose estimation and tracking in dynamic motion scenes
are achieved. In exception to joint position prediction, a prediction based on
skeletal orientation and skeletal length is proposed in [5], and since the human
skeletal length is constant, a full convolutional propagation architecture with
long jump connections that can effectively use the information in the video for
prediction is proposed. To address the accurate recognition of depth ambiguity,
self-obscuration, or other uncommon poses, [33] proposed a new skeletal GNN
solution using a hop-count-aware hierarchical channel squeezing fusion layer that
effectively extracts information from neighboring nodes while suppressing unde-
sired noise in the GNN, thus effectively improving the prediction accuracy.

3 Method

3D human pose detection methods which are end-to-end must simultaneously
complete feature extraction and 3D joint prediction. In addition, since 2D human
posture corresponds to multiple 3D human postures, there are inherent fuzziness
and discomfort in using end-to-end methods to estimate 3D human posture using
monocular images. In this paper, the framework we propose is multi-stage. First,
we convert the image into 2D human pose through a 2D detector, and then
establish the mapping relationship between 2D and 3D human pose through
depth learning method. The prediction framework is shown in Fig. 2.
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Fig. 2. The prediction framework for the estimation of 3D human pose.

It can be seen from Fig. 2 that our framework is a multi-stage 3D human
posture, and different 2D human posture detectors can be used to improve the
generalization performance of the model. At the same time, a PSM composed of
LSTM and a complete convolution model is proposed to predict 3D human pose
through 2D human pose sequence.

3.1 Time-Series Modeling

The input sequence can supposed as x0 . . . , xt . . . , xT , where xt is the 2D human
poses. Then, we estimate the output y0, . . . , yt . . . , yT , where yt is the 3D human
poses. In the case of non-causality, for the given time t, the output yt can be got
by passing any subset of xT . For the causal cases, the data x0, . . . , xt is observed
before the t state can only be used. So the time series modeling can be as a
function f : Xτ → Y τ that can produce a mapping relationship:

y′
0, . . . , y

′
T = f (x0, . . . , xT ) (1)

For the causal situation, yt should be obtained only from x0, . . . , xt instead of
the subsequent input xt+1, . . . , xT .

3.2 The Proposed Pose Sequence Model

The encoder-decoder model is a common scheme in time series modeling. The
encoding can convert the input time series into vectors, and the decoding can
convert the vectors into output sequences. The combination of CNN and RNN
can form an encoder and decoder structure. The encoder part of the PSM model
we use is the LSTM structure, and the decoder part is a fully convolutional
network, forming the RNN-CNN structure. It can effectively use the ability of
LSTM to extract time information in time series modeling and the advantages
of CNN in processing spatial information. The PSM model is shown in Fig. 3.

Because LSTM can be used to deal with the long-term dependence in time
series modeling, its structure is relatively simple and its parameters are few,
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Fig. 3. The proposed PSM for 3D pose estimation.

so it is used as the encoder of the model in this paper. In addition, a dilated
convolution is used to decode the LSTM encoding. When causal PSM is used
for training, the encoder uses LSTM, while noncausal PSM uses bidirectional
LSTM. There are some differences between bidirectional LSTM and LSTM. The
current state tis not only related to the previous state t − 1, but also related to
the next state t+ 1.

The PSM decoder consists of the full convolution model of the dilated convo-
lution, and the dilated convolution refers to the standard convolution with holes.
The reception field of each convolution kernel can be changed by adjusting the
kernel spacing, and the dilated convolution obtains multi-scale information by
setting different dilation rates. We set different expansion rates for different
blocks. This strategy can play the advantages of parallel processing and reduce
the loss of information at the hole. For a 2D sequence x ∈ R2 and a function
f : {0, . . . , k−1} ⇒ R, operation of dilated convolution F acting on any element
e of the sequence x is expressed as follow.

F (e) = (x ∗D f)(e) =
k−1∑

i=0

f(i) · Xs−D·i (2)



Encoder-Decoder Structured Pose Sequence Model 171

k is the size of the convolution kernel and D is the expansion factor. The fully
convolutional neural network includes the Batch Norm (BN), Relu, and dropout.
The BN layer is to normalize the batch of data, a BN layer is after the fully con-
nected layer to ensure each layer remains uniformly distributed. Moreover, the
Relu function is chosen as the activation function. For the dropout, each neu-
ron stops with a probability of p. Moreover, a residual connection is used to
superimpose the input and the output, which solves the problem of gradient
disappearance caused by deep networks. After obtaining the 2D joints J in each
image, LSTM is used to perform encoding, and a fully convolutional neural net-
work is used to complete the decoding of temporal convolution. For the LSTM,
the number of hidden layers is set to J ∗ 2. For the decoder, kernel with size K
is set to 3, the output is dilated convolution with a size C=1024 and an expan-
sion factor D = KN , where N are the n-th residual modules. The next part is
BatchNorm, Relu, and dropout layers.

3.3 Training Details

The training process is shown in Fig. 4.
Here, the 2D pose represents the 2D sequences. The branch of the 3D pose

prediction learns the mapping relationship from 2D to 3D pose using PSM. The
y
(j)
f3d,t

(i) is the joint j in the t-th frame predicted by the model, and y
(j)
fgt,t

(i) is
the ground truth for the t-th frame. The loss function of Mean Per Joint Position
Error (MPJPE) can be defined as:

L3d=
1
NT

1
NS

NT∑

j=1

NS∑

i=1

∥∥∥y(j)f3d,t
(i) − y

(j)
gt,t(i)

∥∥∥
2

(3)

Fig. 4. The training process.

NT is the number of video frames, and NS is the number of joints.
Simultaneously, weak supervision of 2D projection is used. We project the

estimated 3D pose to the 2D space and get the MPJPE loss Lproj , then the loss
of the overall task is :

L = L3d + Lproj (4)
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Where L3d is 3D loss, Lproj is 2D loss.
During training, each step represents as N . The framework consists of the

below steps. First, the 2D joints J2D are normalized, and then the 3D joint Ĵ3D

are predicted through the PSM. Ĵ3D can be calculated with the ground truth
to obtain L3d. The projected 2D joint can be obtained through projection, and
then we calculated with the ground truth to obtain Lproj , where the camera
parameter is C.

4 Experimental Verifications

First, the data sets used for training and testing and the overall evaluation
indicators are introduced, and the proposed framework is compared with the
baselines method in different data sets. After verification, our framework has
achieved good results.

4.1 Datasets and Evaluation

In the experiment, we mainly used two data sets, HumanEVA and Human3.6m.
Hman3.6M is a general data set in the field of 3D human pose estimation. It
includes 15 groups of actions completed by motion capture, and a total of 3.6
million videos are provided in 50HZ format. 17 joint point models are used, 5
object groups (S1, S5, S6, S7, S8) are used as training sets, and (S9, S11) are
used as test sets. HumanEVA is another data set used in the experiment, with a
total of 4 test objects. According to actions, it can be divided into single-action
SA protocol and multi-action MA protocol.

In the evaluation process, we used two protocols: P1 is used to calculate
the Euclidean distance between the predicted 3D coordinates and the ground
truth, which is averaged according to the number of joints and frames, namely
MPJPE. P2 uses Procrustes analysis to evaluate the error between the rigid
body transformation result and the ground truth, which is P-MPJPE.

4.2 Implementation Details

Our 2D detector can use different networks, including Mask R-CNN [9] and
HRNet [24]. For Mask R-CNN, the ResNet-101 backbone network can be used.
The learning rate starts from 1e–3, the attenuation rate is 0.995, and 80k iter-
ations of training have been conducted. For HRNet, starting from 1e–4, it was
reduced to 1e–6 in the 15th iteration, and a total of 20k iteration trainings were
conducted.

In addition, the Human3.6m dataset has been translated and rotated. The
receptive field of the PSM model is set to 243 and the attenuation factor is 0.95.
For the HumanEVA dataset, the attenuation factor is 0.99, and 800 cycles of
training were conducted.



Encoder-Decoder Structured Pose Sequence Model 173

4.3 Experiment on 3D Datasets

Comparison Results on Human3.6m Dataset. Comparative experiments
are carried out on the Human3.6m dataset and the results are as follows.

Table 1. The value of P1 on Human3.6m dataset

Dir Disc Eat Greet Phone Photo Pose Purch Sit Smoke Wait Walk Avg

Fang et al. AAAI
(2018) [8]

50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 60.3 57.7 47.5 60.4

Yang et al. CVPR
(2018) [31]

51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 57.4 58.4 60.1 58.6

Pavllo et al. CVPR
(2019) [21]

45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 47.1 44.0 32.8 46.8

Wu et al. AAAI
(2020) [29]

36.9 43.9 39.5 60.4 45.3 51.6 38.1 41.9 54.1 44.4 57.6 32.2 47.3

Ours, causal 41.7 44.1 41.4 43.1 46.0 52.4 44.9 43.2 54.4 44.2 45.1 32.8 44.7
Ours, non-causal 41.3 43.8 39.1 42.5 45.1 51.8 44.7 41.5 52.8 43.9 44.8 32.0 43.9

Table 1 and Table 2 show the results on the Human3.6m dataset under the
evaluation indicators P1 and P2. The model uses HRNet as a two-dimensional
attitude detector, and the data in the table contains the results of multiple
actions. The smaller the value of the evaluation index P1 and P2, the better. The
last column of the table is the average value of multiple groups of actions. Cause
and effect represent cause and effect PSM, which takes the previous frame as
input, rather than cause and effect represents PSM, and the input data includes
future frames. The best result in the table is shown in bold, and the second-best
result is shown in the underline. It can be seen from the table that non-causal
PSM achieves better results than causal PSM. Our method ranks first in most
actions and second in some actions.

Table 2. The value of P2 on Human3.6m dataset

Dir Disc Eat Greet Phone Photo Pose Purch Sit Smoke Wait Walk Avg

Fang et al. AAAI
(2018) [8]

38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 47.2 44.3 36.7 45.7

Yang et al. CVPR
(2018) [31]

26.9 30.9 36.3 39.9 43.9 47.4 38.8 29.4 36.9 41.5 30.5 42.5 37.7

Pavllo et al. CVPR
(2019) [21]

45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 47.1 44.0 32.8 46.8

Wu et al. AAAI
(2020) [29]

32.1 36.2 33.9 41.2 37.4 40.6 30.7 33.4 45.0 37.4 38.8 25.7 37.3

Ours, causal 33.1 39.0 33.2 36.8 39.9 40.9 31.2 32.3 43.7 37.0 35.9 26.1 35.7
Ours, non-causal 32.7 38.6 32.9 35.3 39.8 39.5 30.9 31.9 42.2 36.8 35.2 25.7 35.2
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Comparison Results on HumanEVA Dataset. We conducted experiments
in the HumanEVA dataset to prove the effectiveness of our framework on small-
scale datasets. Three participants were selected as test subjects, S1, S2, and
S3. Then, using the two-dimensional attitude detector HRNet, multiple actions
(MA) and single action (SA) strategies are selected for experiments. As can be
seen from Table 3, our framework has generally achieved good results on P2.
Especially in the case of MA, the best results are obtained.

Table 3. Comparative experiments on the HumanEVA dataset

Subjects Walk(S1) Walk(S2) Jog(S1) Jog(S2) Box(S1) Box(S2)

Martinez et al. (SA) [17] 19.7 17.4 26.9 18.2 - -
Lee et al. [11] 18.6 19.9 25.7 16.8 42.8 48.1
Pavllo et al. (SA) 14.5 10.5 21.9 13.4 24.3 34.9
Pavllo et al. (MA) 13.9 10.2 20.9 13.1 23.8 33.7
ours(SA) 12.6 10.0 18.6 13.4 24.1 30.4
ours(MA) 12.4 9.8 18.2 11.4 21.8 29.4

5 Conclusion

The framework proposed in this paper is multi-stage, which is used to realize
3D human pose estimation in monocular video. First, obtain the 2d pose of the
human body from the video, and then use the 2d pose to predict the 3d pose.
Our model adopts PSM, which can realize the sequence modeling of 2d to 3d
pose. PSM is an encoded second structure, which makes full use of the multi-
level features extracted by a fully convolutional neural network and LSTM. In
addition, since our framework is multi-stage, we can use different 2D detectors
to improve performance. Compared with the corresponding baseline methods,
our method has achieved good results on HumanEVA and Human3.6m datasets.
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Abstract. With the rapid development of computer vision and artificial intelli-
gence, human pose estimation has become the subject of intense scholarly debate.
In addition, ubiquitous video software andmonitoringmachines provide sufficient
video data, and all kinds of key elements can be found in the visual information.
However, due to different task subdivision scenarios as well as the confusing
nature of the human actions, the scenario-oriented video detection techniques aim
to establish standard libraries for distinct application scenarios, aggregating both
original joint coordinates and composite features. In this paper, we present an
innovative framework for detecting possible actions in various scenarios, table
tennis training, pilot running planes and boot camp scenes, which covers vast
range of social scenes. First, we call OpenPose for accurate and robust skeleton
information. Then, manually constructed features of pose angles, relative dis-
placements, moving pattern sequences and etc. are calculated. These informative
features enlighten people of latent motion rules. Finally, we report how our frame-
work is applied to realistic classification datasets. Through our work, an overall
sketch for skeleton-based human pose estimation and a framework with practi-
cal application value is proposed, where people can gain a deep theoretical and
practical understanding of a front field of computer vision.

Keywords: Action recognition · Pattern matching · Data analysis

1 Introduction

1.1 Technical Background

Computer vision helps the machine to learn through observation. Deep learning tech-
niques have facilitated the precise image and video recognition. Two main research
directions are object recognition and human motion recognition [1]. For human motion
recognition, the object is to identify the human moving pattern and analyze the pur-
pose and intent driving the movements. However, the identification is always scenario-
oriented, that is, if we draw conclusions simply base on the actions and neglect the item
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and background information, tapping the keys without the piano will seem very con-
fusing. Another challenge arises when the human target performs delicate maneuvers.
Elaborate finger movements are either inconspicuous or hidden from the camera angle.

The exciting technological trend has been upward with an explosion of video data
and software. Also, the people demand upbeat calls for a more accurate and interpretable
result for image detection and image recognition.BothRGB images and joint coordinates
provide informative insights on body postures, while coordinates information is more
popular for its data size and final accuracy. OpenPose [2] has offered to jointly detect
human body, hand, facial, and foot keypoints for images and videos. With keypoint
coordinates, it is easy to recover the skeleton information that suits for transformation
and calculation. In addition, the skeleton information is robust to confounding factors
in the background and mainly records the bearing and angle of the actions.

Carreira et al. [3] proposed a general regression framework leveraging GoogleNet
that jointly learns the input and output features. A feedback mechanism in the frame-
work uses the current estimating deviations to iteratively modify the prediction results.
Shuang et al. [4] transforms the joints information through skeleton parameterization,
thus achieving better humanposture structure representation.Wang et al. [5] proposed the
HR-ARNet, using attentionmechanism to reinforcemulti-scale feature fusion. The infor-
mative features are distinct from those unwanted ones, and the inconsistency problem
of keypoints are solved.

Videos records what happens in vast, unbroken slabs of time sequences. A common
way to process video data is through capturing the time sequence information and recon-
structing the continuously dynamic moving patterns, which are useful in dealing with
blurring, occlusion, and changing appearance problems. The pattern recognition meth-
ods will be integrated with specific posture estimation missions. The FAMI-Pose frame-
work [6], like all other methods, combining additional visual evidence from neighboring
frames to facilitate pose estimation of the target frame. FAMI-Pose framework hands
extracted features to its global transformation module and its local calibration module
for temporal alignment. In addition, the framework provides a feature level supervision
for the target frame from calculating the maximal complementary information in the
supporting frames.

1.2 Application Scenarios

Skeleton coordinates information records human acts in all kinds of scenarios, life, work,
entertainment scenes, and etc. Studying different scenario cases and their correspond-
ing latent human pose patterns greatly promotes progress in technology, and facilitates
people’s social life. In point of fact, this paper will expose the people to three typical
application scenarios of human pose estimation, including table tennis training, pilot
running planes and boot camp scenes.

Table tennis sport is a hold bat net separated competition that calls for physical
fitness and mental preparation in players. And winning such competitive sport requires
mainly techniques and strategies. Table tennis action shots are of distinct characteristics.
In beginner and player training, the most common shots are forehand hits and backhand
hits. Normally, it is best for players to use balanced forehand and backhand skills.
However, the choice of different bat swings actually indicate possible movements in that
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the standing of forehand and backhand hits constrains the players’ waist rotation angles.
Classification for Table tennis actions are of significant value in technical analysis and
tactical arrangement for players.

A number of civil aviation accidents have aroused people’s attention. It is pilots’ first
priority to ensure the safety of every flight. Flight surveillance videos records pilots’
actions during take-off and landing. However, videos of surviving a failed takeoff, emer-
gency landing, crash landing or runway collision are inaccessible, either damaged or
too rare. So, the task in this scenario is to identify features of the only kind action in
available surveillance videos. And by doing this, we perform a rough screening test for
pilots driving safety assurance, without accounts of planes crashing records.

For every action in boot camps, there are standard evaluate criteria. And new
recruits undergoing training are imposed of strict orders requesting accurate and repet-
itive actions. This adaptive training process is a comprehensive observation at recruits’
physical quality and ideological foundation. Nevertheless, it is heavy work training the
recruits, since there just aren’t a lot of instructors relative to the number of recruits. To
attention, salute and squat are three basic actions for every recruit enlisted. The recruit
movements should be standard and elaborate, so that paradigms of the different actions
can be in a standard library. Video detection techniques in this scenario helps to facilitate
automatic training, regulating and constant supervision.

1.3 Problems and Algorithm Innovation

For the type behavior recognition of the current three application scenarios (table tennis
training, pilot driving, and boot camp), most of them use video decoding technology
to decode the video frame by frame into pictures, and use machine learning, depth
learning and other related technologies for training to obtain the classification model
after training, and then use the model to achieve the effect of action classification.

In the process of our constant experiments, we found that there are two major prob-
lems. First, using the trained classification model can only achieve the purpose of recog-
nition results, but cannot achieve the purpose of calculating times. For example, in the
process of table tennis training, the same action of an athlete needs to be repeated 500
times, but at this time this classification model cannot achieve the purpose of calculating
the number of times, and can only simply continue to classify the action. Second, in the
process of using deep learning or machine learning, when the data reaches the fitting
point is the most difficult problem for designers. Over fitting and under fitting will lead
to errors in the identification results. The cost of time and energy spent in searching for
appropriate training times and iterations of a certain type of data cannot be estimated.

For the two problems found above, we propose a new behavior recognition algorithm
based on user-defined rules. For different application scenarios, we design a unique
algorithm for classification. We use Openpose technology to extract the skeleton frame
coordinates of each frame in the video, use it to calculate the relevant angle and distance,
as well as the angle change curve, and use the most original pattern matching method to
achieve the function of action classification and counting, which effectively solves the
above problems. The two are the highlights of our algorithm.
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The paper is organized as follows. Section 2 introduces the core algorithm and
methodology. Section 3 presents and analyzes the influencing factors for each application
scenario based on experiments. Section 4 discusses plausible suggestions for future use
of the pose recognition system, and concludes the paper. Section 5 discusses the next
research direction and relevant assumptions.

2 Algorithm Design

2.1 Methodology of Pose Recognition

Openpose is a technique used in mainstream research on human pose recognition, which
transforms the person in the video into a skeleton map or skeleton point coordinates. The
coco model used in this paper uses opepose to extract the 25 pairs of coordinates of the
person, as shown in Fig. 1. The current mainstream researchmethod for pose recognition
is roughly divided into three steps, the first step is to transform the video into a skeleton
map, the second step is to combine the skeleton map with a deep learning and machine
learning model framework, and the third part uses the classification model trained in
the previous step to perform classification operations so as to achieve the effect of pose
recognition.

However, there are twomain problems. First, for the pose, the image does not directly
represent the relative position of each point, but only an approximate orientation, and
cannot clearly represent the characteristics of the pose. Second, when training themodel,
researchers need to spend a lot of time and effort, first of all, to have a sufficiently
complete training set, the amount of data needs to be large enough to get more relevant
parameters of the pose, and in the design of the learning network, the number of layers,
size of the convolutional layer, pooling layer, and the threshold value are required a lot
of tests to get a suitable range, and not an accurate value. It will also change in different
application scenarios.

For the first problem, we chose to further extract the human posture characteristics
to get the skeleton coordinates, and the coordinate points more clearly show the position
relationship and specific angles and distances of the limbs. The characteristics of the
action can be shown more directly.

For the second problem, we choose the original idea of pattern matching which is
gradually forgotten, and use the extracted skeleton coordinates to calculate the relevant
angle and distance ratios as the basis of determination to identify the posture of the
person in the video, which greatly reduces the time and effort to get the posture results
in a short time.
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Fig. 1. Sequence diagram of 25 human body points extracted

For the three application scenarios, we initially calculated Angle-A, Angle-B,
Distance-D1 and Distance-D2 based on the overall state of the action as the rules data
for determining the pose. Detailed descriptions of the angles and distances are shown in
Table 1.

Table 1. Angle distance description table

Name Explanation

Angle A Take (2, 3) and (4, 3) as edges and 3 as angles

Angle B Take (9, 10) and (11, 10) as edges and 10 as angles

Distance-D1 Linear distance from point 4 to point 8

Distance-D2 Linear distance from point 4 to point 17

In the table tennis training scene, the recognition posture is preset for forehand
attack (Fig. 2(1)) and backhand attack (Fig. 2(2)), as shown in the Fig. 2. Through a
large amount of data analysis, it can be concluded that there are more frames with the
ratio of Distance-D1 to Distance-D2 less than 1 in forehand attack, and more frames
with the ratio of Distance-D1 to Distance-D2 greater than 1 in backhand attack.
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Fig. 2. Forehand attack and backhand attack

According to the above steps, convert the video into 25 pairs of human skeleton
frame coordinates, calculate the required values of Distance-D1 and Distance-D2, and
divide the Distance-D1 and Distance-D2 of each frame to obtain their ratio L; when L
is less than 1, it is judged as a forehand shot; when L is greater than 1, it is judged as a
backhand shot. An example results is shown in Fig. 2.

The coordinates of all frames in the current video are operated in this way, and two
parameters a and b are set using the statistical method. When the frame is determined
as a forehand attack, a is added with 1, and when the frame is determined as a backhand
attack, b is added with 1. In the final judgment, the sizes of a and b are compared. When
a is greater than b, the video is judged as forehand attack; When a is less than b, the
video is judged as backhand attack.

As shown in Fig. 3, the Fig. 3(1) is the distribution diagram of the decision points
of the forehand attack video, and Fig. 3(2) is the distribution diagram of the decision
points of the backhand attack video.

Fig. 3. The impact point of the ratio L of forehand attack and backhand attack

In the boot camp scene, the preset recognition poses is squat, salute and attention,
as shown in Fig. 4.
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Fig. 4. Squat, salute and attention

After pre-processing and analysis of data, it is concluded that the key characteristics
to determine poses in this scene is angle A and angle B, as shown in Fig. 5.

Fig. 5. Decision flow chart

In the pilot driving application scenario, a SVMmodel are trained for calculating the
specific values in the above table. Normal frames can be identified as normal driving, and
the others can be identified as abnormal driving. Abnormal driving is shown in Fig. 6.
Perform this operation on the coordinates of all frames in the current video, and use
the statistical method to set two parameters a and b. When the frame is determined as
normal driving, a is added by 1, and when the frame is determined as abnormal driving,
b is added by 1. In the final determination, the sizes of a and b are compared. When a
is greater than b, the video is determined as normal driving; when a is less than b, the
video is seen as abnormal driving.
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Fig. 6. Diagram driving

2.2 Counting Algorithm in Table Tennis Training

In the application scenario of table tennis training, this paper proposes an algorithm to
calculate the number of times of a same pose. When the forehand attack or backhand
attack move is carried out continuously, the angle transformation of angle A presents
a circular state. Here, the angle is binarized. First, calculate the average value Avg of
angle A in the video, and then traverse the entire video. When angle A is greater than
Avg, it is recorded as 1, otherwise it is recorded as 0, and then connect it. As shown in
the Fig. 7, after binarization, it is a scatter plot of angle change, Fig. 7(1) is a backhand
shot plot, Fig. 7(2) is a forehand shot plot, and it is recorded as one shot from the crest
to the trough, and to the crest. Thus, the number of times of this action in the video can
be obtained.

Fig. 7. Scatter diagram of angle change after binary processing

3 Experiment Results

3.1 Table Tennis Training Test

In the video test of table tennis training, there are 30 test videos, the time is about 60
seconds to 100 seconds, and the average frame number is 25 f/s. Using Openpose to
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decode the video, the data obtained is about 2500 groups. The following Table 2 shows
the recognition accuracy of the table tennis training posture.

Table 2. Table tennis training test results

Class Quantity (Number of frame groups) Recognition accuracy

Forehand attack 1343 85%

Backhand attack 1148 87%

In order to reflect the availability of this algorithm, a control group using CNN for
pose classification is set. However, since this algorithm only uses one ratio as the basis
for judgment, if a parameter is directly used for training in the depth learning network,
the effect is poor, so 70% of the data set obtained by combining the skeleton coordinates
extracted from the above data video with the calculated Distance D1, Distance D2 and
their ratio L is put into the 1D CNN, As a training set, it is used for model training,
and 30% as a test set, it is used for model testing. The number of layers of CNN model
is 4. Each layer includes convolution layer, pooling layer and full connection layer.
The number of convolution cores is 16, 32, 64 and 128, respectively. The length of
convolution cores is 6. Test results are shown in the following Table 3.

Table 3. CNN classification and testing (table tennis training)

Class Number of
training sets

Number of test
sets

Training accuracy Accuracy of test

Forehand attack 941 402 80% 69%

Backhand attack 1148 344 82% 71%

According to Table 2 and Table 3, the test accuracy of the classification algorithm
proposed in this paper is better than that of CNN model classification. Secondly, when
using CNN, the data needs to be transferred into the CNN model for parameter calcula-
tion, and then compared with the parameters in the pre trained model, and then output
the results. The classification algorithm proposed in this paper does not need parameter
calculation, and directly classifies according to the set rules. The output results greatly
reduce the user’s waiting time.

There are 6 counting algorithm test videos, the time is about 60 s to 100 s, and the
average frame number is 25 f/s. The test results are shown in the following Table 4. The
test data is basically correct, and the error is within ±1. In addition, counting algorithm
is not provided by deep learning and machine learning model classification.
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Table 4. Counting test

Id Actual times Number of tests Correctness

Test-1 13 13 YES

Test-2 6 6 YES

Test-3 6 6 YES

Test-4 7 7 YES

Test-5 9 8 NO

Test-6 5 5 YES

3.2 Boot Camp Test

In the video test of boot camp test, there are 33 test videos, with the time between 60
s and 100 s, and the average number of frames is 25 f/s. Using Openpose to decode
the video, the data obtained is about 2300 groups. The following Table 5 shows the
recognition accuracy of recruits poses.

Table 5. Test results of recruits poses

Class Quantity (Number of frame groups) Recognition accuracy

Squat 953 90%

Salute 758 89%

Attention 637 95%

In order to reflect the availability of this algorithm, a group of control groups using
CNN for pose classification is set. The specific model is consistent with the field of table
tennis training. The training data is the combination of skeleton coordinates extracted
from the video and calculated Angle A and Angle B to obtain a data set. 70% of the
data is put into 1D CNN as a training set for model training, 30% as a test set for model
testing. The test results are shown in the following Table 6.

Table 6. CNN classification and testing (boot camp)

Class Number of training
sets

Number of test sets Training accuracy Accuracy of test

Squat 667 286 81% 70%

Salute 530 228 78% 71%

Attention 445 192 82% 68%
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According to Table 5 and Table 6, the test accuracy of the classification algorithm
proposed in this paper is better than that of CNN model classification. It shows that the
classification effect of this innovative algorithm is ideal.

3.3 Pilot Driving Test

In the video test of pilot driving test, there are 30 test videos, the time is about 60 s to
100 s, and the average frame number is 25 f/s. Using Openpose to decode the video,
the data obtained is about 2200 groups. The following Table 7 shows the recognition
accuracy of pilot driving poses.

Table 7. Test results of pilots driving poses

Class Quantity (Number of frame groups) Recognition accuracy

Normal driving 1593 90%

Abnormal driving 636 85%

In order to reflect the availability of ideas, set up a control group that uses CNN
for posture classification. The specific model is consistent with the field of table tennis
training. The training data is the combination of skeleton coordinates extracted from the
video and calculated Angle A, Angle B, Distance D1 and Distance D2 to obtain a data
set. 70% of the data is put into 1D CNN as a training set for model training, and 30% is
used as a test set for model testing. The test results are shown in the following Table 8.

Table 8. CNN classification and testing (pilot driving)

Class Number of
training sets

Number of test
sets

Training
accuracy

Accuracy of test

Normal driving 1115 478 78% 70%

Abnormal driving 445 191 81% 72%

According to Table 7 and Table 8, the test accuracy of the classification algorithm
proposed in this paper is better than that of CNN model classification. The training
effect of CNN model for one-dimensional data is weaker than that of svm model. The
advantage of CNN model is that it is more sensitive to RGB type images, while the
advantage of svm model is that it is more sensitive to one-dimensional data. In the case
of fewer categories and one-dimensional data, the effect of svm is more prominent.

3.4 Algorithm Analysis

First of all, based on the above experimental results, it can be seen that the experimental
results of the human pose recognition algorithm based on rule matching are better than
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those of the human pose recognition algorithm based on CNN. The advantage of rule
matching based human pose recognition algorithm is that when the angle in the video
is positive and the picture is clear and the skeleton is intact, it is less difficult to analyze
the human pose rules; when recognizing the human pose, there are better results and it
takes relatively less time and effort. The accuracy rate of single pose recognition is above
85%. When there are more angles in the video, the screen angle switches frequently or
the screen is not clear and the skeleton is not complete, the difficulty of analyzing the
human pose rules increases subsequently and fluctuates when recognizing the human
pose. This is a more testing data set, whether there is the same action of different angles
and orientation of the pose data. When there is enough variety of data, the results are
relatively stable, otherwise there will be fluctuations.

Secondly, the pose counting is a brand newproposed algorithm, currently its recorded
times, the error is within ±1, the main original, the current algorithm is not able to
determine what state the character pose is in at the beginning of the video. A complete
pose of the character is divided into a start state, an intermediate state and an end state.
When the video starts in the middle state, the pose counting algorithm will have errors.
When the video starts in the other two states, the pose counting algorithm does not make
errors.

Finally, although the algorithm still needs to be improved, it still has a relatively large
advantage over CNN-based human pose recognition algorithms. First, the algorithm is
simpler in termsof implementationdifficulty.The algorithm ismore targeted andoriented
to individual application scenarios and practical needs. It is not just pursuing to increase
the variety of recognized postures. Second, the problem of fitting in machine learning
algorithms such as CNN networks has always existed, and it is not easy to train when to
reach the best fit.

4 Conclusion

In this paper, the original idea of pattern matching is used, and a user-defined rule-based
pose classification algorithm is proposed, which greatly reduces the time and energy
spent in training models and selecting process of the optimal model in machine learning
or deep learning. The algorithm also provides the function of calculating the number of
actions that the mainstream deep learning and machine learning models do not support.
It can get the classification results and number of times in a very short time, effectively
solving its shortcomings, and also help users get the required information more quickly
and accurately. The research and proposal of this algorithm also provides a new idea
for attitude estimation research, and does not blindly use depth learning or machine
learning framework. We can start from the most fundamental of the data, mining its
internal relationship from its most original geometric relationship, and apply it to the
algorithm, that is, the idea of pattern matching, to solve practical problemsmore quickly.

5 Future Work

We will continue to further analyze the attitude of the above three application scenarios,
introducemore attitudes, enrich the categories identified in the scene, and further improve
the two algorithms (attitude estimation algorithm and counting algorithm).
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There are two points in the research of attitude estimation algorithm. First, the cur-
rently set decision rules are mainly used to classify and recognize the pose with a clear
face and a more accurate skeleton coordinate recognition. Later, multi angle recognition
will be introduced, and different angle projections will be introduced for the same pose.
Analyze the relevant features of the same action at different angles to further improve
the accuracy of recognition. Second, for the motion process of two types of poses in the
same application scenario, there are similar fragments or confusing features. Later, time
series will be introduced to further describe the motion process of the pose and further
improve the accuracy of recognition.

For the counting algorithm, after introducing the dimension of time sequence, we can
more accurately find the starting and ending states of the attitude, calculate the changes
of its coordinates and angles in this short time, seek its internal laws, and obtain more
accurate times information.

Provide a new algorithm with higher recognition rate and better robustness for the
research field of attitude estimation.
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Abstract. To solve the problem of low accuracy of solo-militant action recogni-
tion under small sample data set, a new method of solo-militant behavior analysis
based on ResNet and rule matching is proposed in this paper. The militant’s action
classification is done by 2 levels of classification. Firstly, the skeleton key points
are extracted from themilitant’s combat video frames byOpenPose. Then, the first
level classification of militant’s action is performed by the ResNet deep learning
network based on RGB images and combined with the skeleton key point rule
set of militant’s action. Next, the second level classification of militant’s action
is performed by the CNN network based on skeleton map. At last, the final clas-
sification of militant’s action is output according to the 2 levels of classification.
The experimental results show that the proposed method in this paper can achieve
more effective recognition rate of solo-militant action under small sample data
set.

Keywords: ResNet Network · Rule matching · Action recognition

1 Introduction

With the rapid spread and development of video acquisition equipment and broadband
networks, video has become the main carrier of information. The massive emergence of
video data contains a wealth of information, providing a basis for information mining.
Deeper mining of media information to provide users of media videos with information
to assist in decision making has gradually become a widespread demand among video
users, but it also poses a greater challenge. If the massive amount of videos are analyzed
and labeled manually, the workload is huge, which will not only consume a lot of
energy and financial resources, but also there will certainly be delays, and timeliness and
efficiency cannot be guaranteed.Video behavior recognition is an important research area
of computer vision, which refers to the automatic recognition of actions and behaviors
from videos, and has a very wide application value. And analyzing foreign war videos
has an important research value for one country to understand other countries’ combat
methods, weapons, etc.
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This paper introduces the traditional rule matching method into the solo-militant
behavioral action classification and proposes a behavioral analysis algorithm combined
with ResNet, aiming to identify the combat behaviors of solo-militant including march-
ing, equipment use, standing shooting aiming behavior, kneeling shooting aiming behav-
ior, ambush shooting aiming behavior and other behaviors in domestic and foreignmedia
videos of Russian and Ukrainian war reports, starting from video big data analysis tech-
nology. The method extracts the information of the key point location of the militant’s
skeleton by OpenPose model, calculates the angle and distance to give the classification
labels for the action design features, and combines the ResNet classification results to
give the final classification results.

2 Related Works

Despite the importance of militant action recognition for battlefield awareness, intelli-
gence analysis, and video retrieval in the military domain, very limited research work
has been conducted in this specific area, and the research interests of some experts are
currently focused on the broader field of action recognition.

As far as the field of action recognition is concerned, human action recognition is
mainly divided into two categories: action recognition based on 2-dimensional image
data and action recognition based on 3-dimensional image data.

Action recognition based on 2-dimensional image data is used to obtain the action
category of the human body by analyzing 2-dimensional imageRGBdata or by analyzing
the RGB image frame data decoded from the video. It can be further divided into two
main categories: traditional feature extraction methods and deep learning-based feature
extraction methods [1].

Traditional feature extraction methods include two types: feature extraction meth-
ods based on human geometric features or motion information and feature extraction
methods based on spatio-temporal interest points. Fujiyoshi et al. [2] is a human action
recognition method based on human geometric features, which uses a star-like diagram
represented by five vertices of the limbs and head to represent the human pose in the cur-
rent frame, and uses a vector of five feature points and the center of gravity as the feature
vector of the action. Bobick et al.’s work is a motion information-based feature extrac-
tion method, which extracts different features from motion energy images (MEI) and
motion history images (MHI) [3] to interpret themotion category of human body [4]. The
feature extraction method based on spatio-temporal interest points is based on detecting
the interest points in the video, which are the most dramatically changing locations in
the spatio-temporal dimension [5], and then extracting the relevant regional features
based on the interest point locations and analyzing the human motion classes. Wang
et al. [6] compared various local feature descriptors (HOG3D, HOG/HOF [7], Extended
SURF), in the literature. Among these descriptors, it was found that the descriptors
integrating gradient and optical flow information had better effect on human motion
recognition, while HOG3D had the best effect on human motion recognition. To auto-
matically recognize actions in realistic and complex scenes, Nazir et al. [8] combined
Har-ris 3D spatio-temporal features and 3D scale-invariant feature transformation detec-
tion methods to extract key regions and represented actions with traditional visual word
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histograms, which greatly improved the accuracy of action recognition. Wang et al. [9]
made full use of valid pose information in still image action recognition. By computing
key points to generate an explicitly action inclusive scalable posture-enhanced relation-
ship module is used to extract the implicit relationship between posture and human body,
and output posture-enhanced relationship features with powerful representation capa-
bility. Sima et al. [10] proposed to first fuse motion and static information of human
action into features, and construct a motion model using skeleton vectors to describe the
changes of human action after feature extraction. The model is then introduced into an
adaptive time pyramid to obtain global and local information.

Deep learning-based feature extraction methods, mainly through supervised convo-
lutional neural networks, Au-to Encoder-based deep neural networks, Restricted Boltz-
mann machine (RBM)-based deep belief networks (DBN) [11, 12] and Recurrent neu-
ral network (RNN)-based deep neural networks, are used to recognize human action
types. Russel et al. [13] used single-frame data and optical flow data to capture human
motion information using convolutional neural networks for human behavior recogni-
tion. Karpathy et al. [14] used a multi-resolution convolutional neural network for video
feature extraction, where the input video was divided into two separate data streams: the
low-resolution stream and the original-resolution stream. Song et al. [15] constructed
an action recognition model based on RNN using LSTM, which uses different levels of
attention to learn the recognizable joints of skeleton in each input frame. Donahue et al.
[16] explored the application of LSTM in two-dimensional convolutional network time
series modeling and proposed a long-term recurrent convolutional network that maps
variable-length video frames to variable-length outputs instead of simple action classi-
fication. Shen et al. [17] proposed to combine complex network coding and LSTM for
human action recognition by using network topological attributes as feature vectors. Shi
et al. [18] encoded body part features into a human body based spatio-temporal graph
and used a lightweight graph convolution module to explicitly model the dependencies
between body parts. Xu et al. [19] proposed a fast network for human action recogni-
tion to improve the efficiency of optical flow feature extraction, using CNN instead of
VGG16 to process optical flow features to obtain rich features. Qin et al. [20], to improve
the recognition of similar action accuracy, higher-order features in the form of human
motion skeletal angle coding (AGE) were fused into a modern architecture to robustly
capture the relationship between joints and body parts. Yang et al. [21] extracted and
fused temporal and spatial information through two networks consisting of CNN and
LSTM with multiple inputs for processing large-scale video frames, which has solved
the problem of long-term dependency.

Action recognition based on 3-dimensional image data is to obtain the classification
of human body’s action by analyzing the depth data of each point on the 2-dimensional
image RGB data composite to form RGB-D data, or by analyzing the sequence of 3-
dimensional RGB-D image data captured by 3-dimensional cameras. The methods can
be divided into three categories: depth sequence-based methods, skeletal data-based
methods, and multi-feature fusion methods. The typical research results are as follows.
Chen et al. [22] gave a depth sequence-based action recognitionmethod,which used local
binary pattern features based onDMM to represent actions, analyzed the spatio-temporal
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depth structure in forward, lateral and upward directions [23], extracted the motion tra-
jectory shape and boundary histogram features of spatio-temporal interest points, and
used dense sample points and joints in each view to represent the action and improve the
accuracy of action recognition. Li et al. [24] proposed a human action recognitionmethod
based on skeletal data, which uses CNN deep learning to represent skeletal sequences
as images, encodes temporal dynamics and skeletal joints as rows and columns, respec-
tively, and then feeds them into CNN to recognize human action classification just like
image classification. Shahroudy et al. [25] proposed a new human action recognition
method based on multi-feature fusion. It is based on a depth self-encoding nonlinear co-
component analysis network that fuses multiple dynamic features extracted from RGB,
depth video, and 3D skeleton sequences for human action recognition. Alsarhan et al.
[26] focused on adaptive feature extraction of high-resolution information in spatial and
temporal dimensions, and proposed an enhanced discriminative graph convolutional
network based on the skeleton data recognition attention mechanism (ED-GCN), for
the temporal dimension motivated by temporal modeling in video. They introduced the
adaptive time building block (ATB), which is able to capture temporal structure flexibly.
Li et al. [27] proposed a new dual-stream spatial Graphormer network that uses struc-
tural encoding combined with attention to construct joint and skeletal information. Jacek
et al. [28] proposed to build a network on the original depth map for action recognition.
Frame features are extracted using a convolutional autoencoder on the depth mapping
sequence, and features are extracted in a CNN sent to a 1D CNN. Xu et al. [29] used an
effective data preprocessing method for RGB and skeleton, and proposed a multimodal
fusion network BPAN combining RGB and skeleton sequences, which can effectively
compress RGB and skeletal features and project them into the latent subspace to obtain
fusion features.

The action recognition based on traditional feature extraction method for 2-
dimensional image data has achieved good recognition effect in certain application sce-
narios, but it lacks flexible adaptability and robustness for complex action classification
in complex scenarios. The action recognition based on deep learning feature extrac-
tion method for 2-dimensional image data, although incorporating artificial intelligence
method, has good action recognition effect for large data samples, but the recognition
accuracy for small sample data is not high. For the various action recognition methods
for 3-dimensional image data, although the combination of image depth data improves
the accuracy of action recognition, but the complexity of the algorithm, the acquisition
results of image depth data are often not accurate enough, the cost of 3-dimensional
capture equipment is expensive, and other reasons, and limit the application of action
recognition algorithms.

Aiming at the problems of poor robustness, low accuracy of small sample data and
difficulty of 3-dimensional data acquisition in some current research works in the field of
human action recognition, this paper proposes a solo-militant action recognition method
based on ResNet and rule matching under the premise of small sample for 2-dimensional
video data.
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This paper is organized as follows: Sect. 3 gives a ResNet and CNN based app-
roach for solo-militant action recognition. In this section, two-level heterogeneous hybrid
deep learning network architectures, ResNet-based recognitionmethod, and CNN-based
recognitionmethod are given respectively. Section 4gives a rule-set based actiondiscrim-
ination method for solo-militant. In this section, the rule matching based action recogni-
tion processing method and its hybrid inference mechanism combined with ResNet and
CNN recognition methods are introduced. Section 5 gives the experimental results and
analysis. In this section, the experimental setting, the data set, and the comparison of
our method with other methods are presented. Section 6 gives a summary of the content
and methods of this paper.

3 Action Recognition Based on ResNet and CNN

3.1 Two Level Heterogeneous Hybrid Deep Learning Network Architecture

In using deep learning network for analysis of marching, apparatus use, other, standing
shooting aiming behavior, kneeling shooting aiming behavior, ambush shooting aiming
behavior of solo-militant, in order to improve the accuracy of deep learning network
analysis and reduce the influence of video angle, color, illumination and other factors,
the traditional means of analysis of single neural network is improved and deep learning
and analysis method of two-stage neural network is used. The first level uses ResNet18
network model to learn and analyze marching, instrument use, shooting-like aiming
behavior, and other behaviors; the second level uses CNN deep learning network to learn
and analyze standing shooting aiming behavior, kneeling shooting aiming behavior, and
ambling shooting aiming behavior.

According to the different task characteristics of the two-layer deep learning network,
the input of the first-level deep learning network model is the original scene picture, and
the first-level classification is performed by the information of environment, militant
behavior, and weaponry; the second-level deep learning network model uses pseudo-
images of extracted militant skeleton maps for the input of the network model since it
only needs to identify specific shooting aiming actions for classification based on the
militant’s action posture without redundant scene information judgment. A combination
of original image and skeleton map is used for hierarchical training to achieve better
behavioral analysis.

The flowchart of the two-level heterogeneous hybrid deep learning network system
is shown in Fig. 1.
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Fig. 1. Flow chart of two-level heterogeneous hybrid deep learning network system

The input of the second layer of the deep learning network is a pseudo-image of
the human skeleton map based on the location information of 25 skeletal points of the
human body extracted from the OpenPose human pose model. The original image and
the pseudo-image of skeleton are shown in Fig. 2.

Fig. 2. Original image and its pseudo-images of skeleton: (a) original image; (b) pseudo-images
of skeleton.

3.2 Recognition Based on ResNet Network

For regular networks, the model accuracy is continuously improved with the increasing
number of network layers, while the training accuracy and testing accuracy decrease
rapidly after the network layers increase to a certain number. ResNet introduces a residual
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network structure, in which the data output of a layer in the first few layers is directly
skipped and introduced into the input part of the later data layers. By this residual network
structure, the network layers can be designed to be very deep and the final classification
results are very good. Therefore, in this paper, ResNet18 is used for the first layer of
action classification, and the structure is shown in Fig. 3. The data is first input through a
7 * 7 convolution, and then input to a residual block after a maximum pooling layer. This
residual block consists of two convolutional layers with 64 3 * 3 convolutional kernels.
The residual blocks of different dimensions are stacked and the data are downscaled
with 1 * 1 convolution for each doubling of the number of convolution kernels. Finally,
the image is predicted by a fully connected classification layer.

Fig. 3. ResNet18 network structure

A residual network is composed of a series of residual blocks. A residual block can
be expressed as:

H (x) = x + F(x) (1)

In the unit mapping, y = x is the observed value, i.e., the input of the model is the
original video frame picture, H(x) is the predicted value, i.e., the output of the model,
and F(x) is the corresponding residual.

The residual block is divided into two parts: the direct mapping part and the residual
part. h(xl) is the direct mapping, and is shown on the left in the Fig. 4; F(xl,Wl) is the
residual part, which generally consists of two or three convolution operations, i.e., the
part containing the convolution on the right in Fig. 4.

Weight in Fig. 4 here refers to the convolution operation, addition refers to the unit
addition operation. BN is batch normalization, which is a structure that approximates
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the output of the convolutional layer as a Gaussian distribution, making the network
more stable during training and effectively avoiding gradient disappearance and gradient
explosion. Using BN together with the activation function can effectively improve the
performance of the network, and the batch normalization formula is:

y(k) = γ(k)
xk − μk

√(
σk

)2 + ε

+ β2 (2)

where x(k) and y(k) are the original data and the output data after normalization, respec-
tively, μ(k) and σ (k) are the mean and standard deviation of the data, respectively, ε is
a quantity to prevent the denominator from being zero, β(k) and γ (k) are the learnable
translation and scaling parameters, respectively. The role of β and γ in batch normal-
ization is mainly to preserve the parameters during the training of the network, making
the neurons adaptive to learn the mean and variance of a batch.

Fig. 4. Residual blocks

In a convolutional network, xl may not have the same number of feature map as xl+1,
and it is then necessary to use 1 × 1 convolution for dimensionality up or down. At this
point, the residual block is expressed as:

xl+1 = h(xl) + F(xl,Wl) (3)

where h(xl) = W
′
l x. W

′
l is the 1 × 1 convolution operation.

3.3 Identification Based on CNN Network

The design of CNN-based deep learning network architecture for solo-militant behavior
analysis is shown in Fig. 5.
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Fig. 5. CNN-based deep learning network for warfighter action recognition

(1) ACNNbased deep learning network is established through the deep learning frame-
work Tensorflow, which is divided into input layer, convolution layer, incentive
layer, pooling layer, full connection layer and output layer.

(2) For the standing shot aiming behavior, kneeling shot aiming behavior, and ambush
shot aiming behavior, the input layer is fedwith a 150*150pseudo-militant skeleton
image generated based on 25 key point coordinate data.

(3) The convolution layer uses a 6 * 6 convolution kernel, and the convolution operation
uses a template operation

(4) The convolution layer is followed by the excitation layer, which is a mapping of the
output of the convolution layer, and the excitation function used is ReLu function.

f (x) = max(x, 0) (4)

The function is shown in Fig. 6:

Fig. 6. ReLu function image

(5) The pooling layer scales down the width and height of the feature image from (W,
H) to (W/2, H/2), using a maximum pooling operation of 2 * 2 for down sampling.

(6) The full connection layer performs weight-based combination operations on image
features, as shown in Fig. 7.
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Fig. 7. Schematic diagram of the fully connected layer

The output of the full connection layer is:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1 = W11 ∗ x1 + W12 ∗ x2 + · · · + W1n ∗ xn + b1
a2 = W21 ∗ x1 + W22 ∗ x2 + · · · + W2n ∗ x3 + b2
a3 = W31 ∗ x1 + W32 ∗ x2 + · · · + W3n ∗ x3 + b3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an = Wn1 ∗ x1 + Wn2 ∗ x2 + · · · + Wnn ∗ x3 + b3

(5)

where x1, x2, x3... xn are the inputs of the fully connected layer and a1, a2, a3... an are
the outputs.
(7) The output layer finally completes the output of the final target result, the excitation
function used is the softmax function, the softmax function is accessed behind the fully
connected layer, the output result is the probability of a specific kind of shooting aiming
action, the softmax function can be expressed as:

Softmaxi = evi∑k
j=1e

vj
(6)

where k= 3 denotes the three categories of standing shot aiming bahavior, kneeling shot
aiming behavior, and ambush shot aiming behavior output by the deep learning network,
v is the output vector, vj is the value of the jth output or category in v, and i denotes the
current category to be calculated between 0 and 1, and the softmax value of all categories
sums to 1.

The softmax function of a militant’s skeletal image for different values of vi is shown
in Fig. 8.
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Fig. 8. Softmax function image

(8) The loss function is proposed to be a cross-entropy loss function with multiple
classifications.

L = 1

N

∑
i
Li = − 1

N

∑
i

∑M

c=1
yiclog(pic)

i

(7)

where M = 3 denotes the number of categories, yic symbolic function, and pic predicted
probability of observing sample i belonging to category c (standing shot aiming behavior,
kneeling shot aiming behavior, and ambulatory shot aiming behavior).

4 Individual Action Discrimination Based on Rule Set

Although deep learning networks have a certain learning capability, they require a large
amount of sample data and sometimes under or over-fit, so a geometric logic relationship
based on skeletal joint points is used to construct a rule set for solo-militant behavior
analysis for marching, equipment use, shooting-like aiming actions, and other classifi-
cations. For a given solo-militant behavior category, the position relationship between
its corresponding skeletal joint points is constructed, and the spatial position relation-
ship between the skeletal joint points is used to analyze the behavior categories such as
marching, instrument use, shooting class aiming action, and others.

This part mainly addresses the problem that the recognition of deep learning network
is sometimes not accurate enough, and gives specific rules for determining the type of
action based on the skeletal coordinate points extracted by OpenPose according to the
actual situation of solo-militant action. For the specific geometric position of the current
skeletal joint point, the determination result of the rule set is used if the preconditions
of rule inference are satisfied, otherwise the determination result of the deep learning
network is used.

The flow chart of action recognition based on rule set is shown in Fig. 9.
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Fig. 9. Flow chart of action recognition based on rule set

The information of skeleton key point location extracted by OpenPose is shown in
Fig. 10.

Fig. 10. Position information of skeleton key points

For the classification of equipment use, marching, shooting-like aiming behavior,
and other behaviors, the distance, angle, and height difference were calculated from the
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extracted skeletal key point coordinate data according to the difference between action
types, as the basis for action classification. The distance is chosen as the relative distance
based on the spine height, and the angle is based on the cosine theorem. The specific
calculated angles and distances are shown in Table 1.

Table 1. Distance and angle calculated by rule set

Name Explaining

Distance0 a0 to a4

Distance1 a0 to a7

Distance2 a2 to a4

Distance3 a5 to a7

Distance4 a4 to a11

Distance5 a7 to a14

altitude_differ1 a20 to a23

altitude_differ2 a3 to a4

altitude_differ3 a6 to a7

angle0 Inner angle with a3 as vertex a2 and a4 as edge

angle1 Inner angle with a6 as vertex a5 and a7 as edge

angle2 Inner angle with a10 as vertex a9 and a11 as edge

angle3 Inner angle with a13 as vertex a12 and a14 as edge

5 Experimental Results and Analysis

5.1 Experimental Data Set

There are already many datasets related to action classification, but they are not highly
targeted, so the experimental datasets used in this paper are all from video clips and
pictures about the behavior of militants in the Russian-Ukrainian war collected from the
Internet, including equipment use, marching, standing shooting aiming behavior, kneel-
ing shooting aiming behavior, ambling shooting aiming behavior, and other behaviors.
The overall dataset contains different light and darkness, background, shooting distance
and shooting angle. 41 video datasets are in MP4 format with an average frame rate of
26 fps and video duration of 4 s–96 s, and the number of training, validation and test
sets are divided according to 6:2:2.
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5.2 Analysis of Experimental Results

The experimental environment used is Windows 10, python programming language,
AMD Ryzen7 5800H processor, NVIDIA GeForce RTX 3050Ti, 16G video mem-
ory. The experimental data were classified using the method in this paper, and the
experimental results are shown in Table 2.

The proposed method in this paper is compared with CNN deep learning network
with raw images as input data, ResNet50 network with raw images as input data, and
CNN deep learning network with pseudo images of skeletal key points as input data.
The experimental comparison with the result is shown in Fig. 11. The experimental
results show that the accuracy of the proposed method in this paper is improved by
about 8% relative to ResNet50 of the input original image, so the proposed solo-militant
action recognition method in this paper has better performance for solo-militant action
recognition in war video under small data set.

Table 2. Experimental results

Video_id Frames Actions Accuracy

Video1 1175 Marching, standing shooting aiming behavior 85%

Video2 700 standing shooting aiming behavior, kneeling Shooting aiming
behavior, ambush shooting aiming behavior, use of equipment

80%

Video3 1020 Standing shot aiming behavior, kneeling shot Aiming
behavior, ambush shot aiming behavior, other behavior

83%

Video4 200 Ambush firing aiming behavior, standing firing aiming
behavior, kneeling firing aiming behavior

76.2%

Video5 350 Kneeling shooting aiming behavior, standing shooting aiming
behavior

78.6%

Video6 377 marching, standing shooting aiming behavior 84.2%

Video7 2784 standing shot aiming behavior, kneeling shot aiming behavior,
ambush shot aiming behavior, marching, other behavior

70.6%

Video8 210 standing shooting aiming behavior, kneeling Shooting aiming
behavior, marching, use of equipment

79.2%
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Fig. 11. Comparison of experimental results

6 Conclusion

In this paper, a ResNet and rule matching based solo-militant action recognition clas-
sification method is proposed, which can effectively recognize solo-militant actions in
war videos. Firstly, the first stage original image is input to the ResNet18 network for
classifying equipment use, marching, shooting class aiming behavior, and other behav-
iors. Then the network recognition results are combined with the rule set established by
the skeleton point coordinates extracted by OpenPose for final judgment. If it is shoot-
ing class, the second stage skeleton pseudo-image extracted by OpenPose is input to
the CNN network for classifying standing shooting aiming behavior, kneeling shoot-
ing aiming behavior, and ambush shooting aiming behavior. The experiments and the
comparison of the result analysis show that the proposed method is robust and effective.
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Abstract. Model compression technology investigates the compression
of deep neural networks by quantizing the full-precision weights of the net-
work into low-bit ones, to achieve network acceleration. However, most of
the existing quantization operations are calculated by simple thresholding
operations, which will lead to serious precision loss. In this paper, we pro-
pose a new quantization framework combined with pruning, called Mul-
tiple Residual Quantization of Pruning (MRQP), to achieve higher pre-
cision quantization neural network (QNN). MRQP recursively performs
quantization of the full-precision weights by combining the low-bit weights
stem and residual parts many times, to minimize the error between the
quantized weights and the full-precision weights, and to ensure higher pre-
cision quantization. At the same time, MRQP prunes some weights that
have less impact on loss function to further reduce model size.

Keywords: Quantization neural networks · Quantization · Model
compression · Pruning

1 Introduction

In the past few years, deep neural networks (DNNs) have improved their perfor-
mance in a wide range of applications, including computer vision [1–3], speech
recognition [4–6], natural language processing [7,8], robots [9], and optimiza-
tion [10–14] which have widely used deep neural networks. DNNs has shown the
best accuracy in many AI tasks, but when applied to computing-constrained
environments, such as mobile devices, there are problems such as large model
size and high computing costs. At the same time, as the increase in computing
and storage consumption in various cloud/edge computing applications, peo-
ple are increasingly interested in deploying deep neural networks on resource-
constrained devices. To improve the efficiency of neural networks, it is very
important to compress neural networks without or with little performance degra-
dation. To solve the above problems, many methods of model compression have
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been proposed, such as pruning [15], distillation [16,17], and quantization [18–
21]. In this paper, we focus on quantization, especially ternary quantization,
which quantizes full-precision weights while still maintaining considerable per-
formance. Pruning and distillation are representative technologies of network
compression. Pruning removes redundant weights in the network, and the dis-
tillation aims to train a smaller model to replicate the behavior of the original
model. The networks compressed by these technologies still use floating-point
computing, so they are not suitable for fixed-point edge devices to improve
energy efficiency. Network quantization is an alternative method that converts
full precision weights to low-bit counterpart, supports fixed-point reasoning, and
reduces memory and computing costs.

Because the weight in quantization neural networks (QNNs) is low-bit, it will
inevitably cause the accuracy of the neural network to decline. For QNNs, to
mitigate the performance degradation caused by quantization, it is very impor-
tant to have a quantizer that can accurately map the full-precision value to the
quantized value. Many approaches have been explored for quantizer optimiza-
tion. First, BinaryConnect [22] and BWN [23] perform binarization by using a
symbolic function: convert each element of the weight w to −1 or +1. Thus,
multiplication operation is eliminated, operation speed and resource efficiency
are improved, and model size is reduced. Then TTQ [24] optimizes the weight
quantizer by learning different scale factors under different weight states, achiev-
ing higher performance in recognition tasks. Besides, Nahshan Y, Chmiel B, and
Baskin C, et al. [25] study the effect of quantization on the structure of the loss
landscape. In fact, although the above literature has improved the quantizer, it
always uses simple threshold operation training (for example Fig. 1), resulting
in a large approximation error to the full precision weight, and there is still a
large performance gap.

The goal of this paper is to design a more accurate and flexible quantizer
to improve the performance of the quantization neural network. Specifically, we
propose a quantized neural network with a multiple residual quantization with
pruning process, which first prunes the network model to reduce the model size.
Then, by introducing the multiple dry residuals framework, the quantization
process is implemented, which will further reduce the size of the model at the
same time. Instead of directly performing threshold operation, we perform quan-
tization weight through the combination of binary stems and residuals. These
weights are obtained by recursive quantization of full precision weights. This
method can accurately reconstruct quantization weight, with small quantization
errors and accurate mapping. The experimental results show that MRQP has
good performance on CIFAR-10 and MNIST. Our contributions are summarized
as follows:

1) We propose a quantized neural network (MRQP) based on a multiple residuals
framework, which computes quantized weights recursively, and significantly
improves the performance of threshold-based methods.

2) Our method combines pruning and quantification processes, significantly
reducing model size.
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3) We evaluated MRQP on different categorical datasets and proved that our
method performs better than the base method.

The rest of this paper is organized as follows: Sect. 2 reviews prior work, Sect. 3
describes the nature of quantization and then describes a proposed method.
Section 4 provides experimental results, and Sect. 5 summarizes this paper.

Fig. 1. Simple principle of threshold operation. (F represents the floating-point number
before quantization, and Q represents the integer after quantization. Numbers between
f1 and f2 are all quantized as q.)

2 Prior Work

Modern large-scale networks usually have a large number of parameters and huge
computing costs. Compressing large networks facilitates the evaluation of these
networks on devices with limited resources. The basic idea of model quantization
is to replace the original floating-point precision with lower precision. It aims
to reduce the weight value and active bit width, but it can still produce high
performance. The core challenge of quantification is how to reduce the accuracy
of representation without dropping the accuracy of the model, that is, to balance
the loss of compression rate and accuracy rate [23,26–29].

Early research used 8-bit fixed-point representation to quantify the network
and achieved the most advanced performance on ILSVRC-12 [23]. Later, people
explored the DDN compression method of very low-bit quantization. For exam-
ple, the activation and weight of DNN are discretized into binary or ternary
values (for example, {−1,+1} or {−1,0,+1}) [18,22,24,30–32]. However, these
methods only use bit operations to approximate the convolution operations of
DNN, which easily leads to performance degradation. To narrow the accuracy
gap, some improvements have been made to the quantization methods, such
as distance sensing quantization [33] and loss-aware quantization [34]. These
methods enable the network to have more powerful capabilities, thus further
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narrowing the accuracy gap. Zhang et al. LQ-Net [35] and Lou et al. RQDNN
[36] proposed a learnable quantizer to improve the performance of quantitative
models. Miyashita et al. [37] proposed using non-uniform logarithmic represen-
tations to approximate weights and activation without significantly degrading
performance. In this paper, we propose that MRQP introduces a multiple resid-
ual quantization network with pruning, which realizes the quantization process
in a novel recursive way, further reduces the size of the model and improves the
performance of the network.

3 Method

This section introduces our ternary neural networks with multiple residual quan-
tizations, which are designed to reduce the quantization error recursively. In the
following, we first give some preliminaries about ternarization. Then we pro-
pose our ternary quantization method, including the details on the forward and
backward propagation.

3.1 Overview

The main operation in deep neural networks is expressed as

z = wT a, (1)

where w ∈ Rn∗n is the weight vector, a ∈ Rn∗n is the activition vector. The
ternary neural network refers to the use of ternary values to represent floating
point weights and/or activities. Formally, quantization can be expressed as(we
uniformly use ternary quantization)

Q(x) = cxTx, (2)

where x is the full-precision parameters including full-precision weights w and
full-precision activations a, Q(x) is the quantized full-precision parameters, Tx

denotes ternary values after the quantization on x, c is a scalar used to scale
the ternary values, which can be computed from the full-precision parameters
or learned via backpropagation. Tx is usually obtained by thresholding function

Tx =

⎧
⎨

⎩

+1 if x > Δ
0 if |x| ≤ Δ
−1 if x < −Δ,

(3)

where Δ denotes a fixed threshold used for quantization. With the ternary
weights and activitions, the vector multiplications in the forward propagation
can be reformulated as

z = Q(w)Q(a) = cwca(Tw � Ta), (4)

where � represents the inner product for vectors with bitwise operations.
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In general, the derivative of quantization function Q(x) is non-differentiable
and thus unpractical to directly apply the backpropagation to perform the train-
ing phase. For this issue, we follow the now widely adopted “Straight-Through
Estimator (STE)” [26] to approximate the partial gradient calculation, which is
formally expressed as

∂Q(x)
∂x ≈ c1|x|≤1. (5)

3.2 MRQP

As can be seen, existing quantization methods simply find the closest quantized
value approximation of w [22,23], inevitably causing performance degradation
due to an inaccurate mapping of full-precision parameters to low-bit counter-
parts. In this paper, we consider multiple residual quantizations. After pruning
the weights, MRQP extracts binary stems and residuals repeatedly by recur-
sively quantizing the full-precision weights, and combining them to generate a
refined ternary representation, thus obtaining the multi-stem-residual framework
of QNNs.

Pruning Weights. In this step, we gradually reduce the size of the model
by pruning the least important weights. We only set some elements of w to zero
(that is, they are removed from weights domain, resulting in a decrease in model
size) without changing the others. We first find the impact of each weight on the
final loss function, and rank them according to the impact. Then, according to
the weights proportion we need to prune, set the weights within this proportion
to 0. (In this way, the sparse tensor is not introduced. Sparse tensors can lead
to harmful irregular calculations.)

Multi-stem-Residual Quantization. We first need to have an acceptable
error range ε (ε is a small positive number, to ensure that residual quantization
can be performed repeated), then extract stems as rough fitting of full-precision
weight w, which is calculated by performing sign (·) on w as

Qw = csign(w), (6)

where c is a learnable coefficient. Then, we further calculate the quantization
error as

R = w − Qw. (7)

If condition R ≥ ε is met, we continue to extract the residual, calculate the
residual Rw from R by performing sign (·) on the quantization error R

Rw = csign(R). (8)

By combining Eq. 6 and Eq. 8, we can obtain the more accurate ternary
weight approximation (new Qw)

Qw = Qw + Rw. (9)

Then we repeat the process from Eq. 7 to Eq. 9 for the new Qw until condition
R < ε is satisfied.
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Up to now, we achieve the quantization in our framework, with the full-
precision weights quantized to multi values, i.e.,

{−nc,−(n − 1)c, · · · ,−c, 0, c, · · · , (n − 1)c, nc}.

where n refers to the number of residual quantization (Eq. 7 to Eq. 9).
Obviously, seeking a better coefficient c is significantly important for the

effectiveness of quantizer, which would be detailed in the following section.

3.3 Backward Propogation of MRQP

In the backward propagation, We need to learn and update the full-precision
weight w and the learnable coefficient c. In multi-stem-residual framework, the
two kinds of parameters are jointly learned. And in each layer, MRQP updates
the w first and then the c.

Update w. For W updating, the gradient through the quantizer to weights
are estimated by a STE that pass the gradient whose weight value is in the range
of (−nc, nc):

∂Qw

∂w = 1|x|≤nc. (10)

Then we can obtain the updating process of w

δw = ∂L
∂Qw

∂Qw

∂w , (11)

w = w − ηδw, (12)

where L is the loss function and η is learning rate.
Update c. The coefficient c determines the scale of binary stems and residu-

als, which is directly related to the quality of ternary weights. Therefore, unlike
the way to obtain the gradient of w, we decompose the quantizer to calculate
the more refined gradient of c.

It is worth mentioning that we find that the derivatives of Qx and c times Qx

with respect to c are almost equal, The difference between them is c2 or 0. Since
c is a small positive number, we ignore this error term without losing generality,
so we calculate the derivative of Qx with respect to c as follows

∂Qw

∂c = sign(w), (13)

∂Qw

∂c new
= ∂Qw

∂c old
+ sign(w − c∂Qw

∂c old
) − c∂Qw

∂c old
1|w−c ∂Qw

∂c old
|≤1. (14)

If condition |∂Qw

∂c new
− ∂Qw

∂c old
| ≥ ζ is met, we have

∂Qw

∂c old
= ∂Qw

∂c new
, (15)

where ζ is a small positive number, which can be set freely according to different
needs.
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Then continue to execute Eq. 14 and judge whether condition |∂Qw

∂c new
−

∂Qw

∂c old
| ≥ ζ is met, and cycle the process until condition |∂Qw

∂c new
− ∂Qw

∂c old
| ≥ ζ

is not met.
Then we can obtain the updating process of c

δc = ∂L
∂Qw

∂Qw

∂c , (16)

c = c − ηδc. (17)

4 Experiments

In this section, in order to demonstrate the performance of our MRQP, we con-
ducted different experiments on two classification datasets: MNIST and CIFAR-
10. Note that in the following, unless otherwise stated, we refer to the baseline
as a quantitative network with the same architecture as MRQP, and use the
conventional quantization method described in Sect. 3.1.

This setting is similar to that of Courbariaux [22]. We do not conduct data
expansion or unsupervised pre-training. The experiment was conducted on two
commonly used data sets:

1) MNIST: This data set is a very classic data set in the field of machine learn-
ing. It consists of 60000 training samples and 10000 test samples, including
28× 28 grayscale images. We used 50000 images for training, another 10000
for validation, and the remaining 10000 for testing. We use the 5-layer model:

784FC − 1024FC − 1024FC − 1024FC − 10SV M

where FC is a fully-connected layer, and SVM is a L2-SVM output layer using
the square hinge loss. We run the training algorithm for 100 epochs with a
batch size of 200. The learning rate of the weighted quantization network
starts from 0.005 and decays 0.1 every 15 epochs. For all settings, Adam with
momentum of 0.9 is adopted as the optimizer.

2) CIFAR-10: This contains 32× 32 color images from ten object classes. We
use 45000 images for training, another 5000 for validation, and the remaining
10000 for testing. The images are preprocessed with global contrast normal-
ization and ZCA whitening. We use the VGG-like architecture [34]:

(2∗128C3)−MP2−(2∗256C3)−MP2−(2∗512C3)−MP2−(2∗1024FC)−10SVM

where C3 is a 3*3 ReLU convolution layer, and MP2 is a 2*2 max-pooling layer.
Batch normalization, with a minibatch size of 256, is used. The maximum num-
ber of epochs is 200. The learning rate of the weighted quantization network
starts from 0.01 and decays 0.5 every 15 epochs. For all settings, Adam with
momentum of 0.9 is adopted as the optimizer.
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For these two models, we conducted three kinds of pruning ratios, pruning
0% (no prune), 30%, and 50% weights respectively. The experimental results are
as follows (It is worth mentioning that, in order to ensure accuracy, we didn’t
quantize the first and last layers of the network, nor did we prune them.):

Table 1. Top-1 accuracy (5-layer Model network on MNIST)

Pruning rate Top-1 accuracy

Full-precision (no prune) 98.52%
Baseline (no prune) 97.63%
MRQP (no prune) 98.01%

30% 98.15%
50% 97.8%

Table 2. Top-1 accuracy (VGG-like Model network on CIFAR-10)

Pruning rate Top-1 accuracy

Full-precision (no prune) 92.3%
Baseline (no prune) 88.9%
MRQP (no prune) 90.5%

30% 89.6%
50% 89.4%

Table 1 and Table 2 shows the accuracy comparison between our method
and the baseline method on MNIST (where implements a 5-layer full-connected
network) and CIFAR-10 (where VGG-like network is implemented). From the
table, we can see that our method is superior to the baseline, and the Top-1
accuracy is improved by at least 0.17% (MNIST) and 0.5% (CIFAR-10).

5 Conclusion

In this paper, we propose an efficient and accurate MRQP neural network with
pruning. Different from the previous work of directly applying threshold quan-
tization, our MRQP realizes quantization from the perspective of stem residual.
In particular, MRQP reconsiders the ternary quantization weight as a combi-
nation of binary stems and residuals, thus giving the quantizer more accurate
mapping between full-precision weights and quantization weight. Furthermore,
experiments on two datasets show that the accuracy of the quantization neural
network is improved by using our MRQP method. And our method does not
need any special hardware support, such as channel or filter quantization.
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62172083 and the Fundamental Research Funds for the Central Universities.
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Abstract. Shallow clustering methods adopt linear or simple nonlinear
projections to reduce the feature dimensions, which may suffer from the
weak representation capability. Contrastively, deep clustering methods
have the advantages on representing the sample characteristics. However,
most deep clustering models focus on preserving feature information of
samples and ignore the important intrinsic structures of samples. Besides,
large amounts of neural network parameters should be optimized in deep
clustering models, but no proper semantic supervision can be used in
the unsupervised clustering process. To alleviate these problems, in this
paper, we propose a unified deep structured graph clustering network
to guide the unsupervised deep clustering process with a theoretically
ideal cluster structure. Specifically, we simultaneously learn the discrim-
inative feature representation of samples, and the similarity graph of
samples with well clustering structure by automatically assigning proper
neighbors to each sample. Experiments on several public testing datasets
demonstrate the effects of the proposed method.

Keywords: Clustering · Deep learning · Structured graph · Joint
learning

1 Introduction

Clustering is one of the most important research topics in data science and
machine learning. A large number of clustering methods are proposed over the
past decades such as k-means [19], support vector clustering [2], hierarchical
clustering [14] and multi-view clustering [36].

Traditional shallow clustering methods like k-means or spectral clustering
[17], adopt the original features and space manifold information of samples to
compute the clustering results when the dimension of samples is small. However,
when the dimension of the input sample features becomes high, the traditional
clustering method will become unreliable due to the complexity of the mani-
fold structure [26]. Thus, how to effectively realize the dimensionality reduction
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during the clustering process is important. Recent clustering methods Projected
Clustering with Adaptive Neighbors (PCAN) [21] and Robust Structured Graph
Clustering (RSGC) [28] learn a structured graph with dimension reduction meth-
ods Principal Components Analysis (PCA) [23] and Sparse Matrix Factorization
(SMF) [16] respectively to retrain the manifold structure and perform the clus-
tering process. However, due to the limited feature representation capability of
dimension reduction (linear or simple nonlinear projection) and the complex
manifold structure hidden in the high-dimensional feature, these methods still
cannot achieve satisfactory results.

With the development of deep learning, deep neural networks are introduced
to the clustering research area in recent literature. Stacked AutoEncoder (SAE)
[30] makes use of Deep Neural Networks (DNNs) [11] to learn a nonlinear map-
ping to convert samples to low dimensions. Deep learning with nonparametric
clustering (DNMC) [10] trains a Deep Belief Network (DBN) [35] for dimension
reduction, then learns clustering results with nonparametric maximum margin
clustering. These methods aim at learning a low-dimensional subspace, where
the traditional clustering methods can achieve better results. However, they basi-
cally treat their DNNs as a preprocessing stage. The feature extraction process
is separate from the subsequent clustering process. Under such circumstances,
sub-optimal performance may be brought due to the two-step learning.

In recent years, several models like Deep Clustering Network (DCN) [34],
Deep Embedded Clustering (DEC) [33], and Deep Subspace Clustering Networks
(DSC) [13] are proposed to jointly optimize the feature learning and clustering.
Due to the joint learning, these methods generally achieve better clustering per-
formance. However, incorporating the deep neural networks into the clustering
process will bring large amounts of parameters. It is contradictory to the fact that
no semantic guidance can be used to train these parameters in the unsupervised
clustering process. Under such circumstances, insufficient semantic guidance will
lead to weak deep neural networks. Besides, the manifold structure of samples
is important for the clustering task [28]. Nevertheless, existing deep clustering
methods focus on preserving the original information of samples, ignoring the
similarity relationship of samples. Moreover, existing methods separate the simi-
larity measurement from the clustering process, which may make the acquisition
of similarity matrix inaccurate and thus deteriorate the clustering performance.

To address these problems, in this paper, we propose an effective Deep Struc-
tured Graph Clustering (DSGC) method. The basic learning framework is shown
in Fig. 1. Our unified learning framework jointly performs deep representation
and structured graph learning, and simultaneously employs the learned struc-
tured graph to guide the deep neural network learning. Different from the existing
clustering method, the guidance of the structured graph enables the deep neural
network to retain the manifold structure of samples during the training process
and thus achieve better clustering effects. Besides, we build the model based on
the AutoEncoder [20] with similarity constraint, so that the original manifold
structure can be retained more accurately in the projection process. The main
contributions of this paper can be summarized as follows:
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Fig. 1. The basic framework of the proposed DSGC. The original sample xi is encoded
by encoder E to obtain the embedded sample f(xi). The similarity matrix S and
clustering center C are trained by optimizing the similarity Loss Ls and the embedding
loss Le, and the final model is obtained by using C and S to construct the embedded
layer and encoder E with likelihood Loss Lc.

1. We propose a deep structured graph clustering network, which simultaneously
performs deep feature representation learning, structured graph learning, and
clustering. The deep embedding processing can retain the manifold structure
of samples more accurately to pursue an ideal clustering structure. To the
best of our knowledge, there is still no similar work.

2. We propose a deep neural network to perform feature learning by optimizing
the loss function of KL divergence based on the clustering objective with a
self-training target distribution. In this network, the deep feature learning,
structured graph learning as well as data clustering are jointly optimized
and can enhance each other. The feature information of the samples and
the similarity relations of the pair-wise samples are preserved in the whole
learning processing.

3. We evaluate our model on widely tested clustering benchmarks, and extensive
experiments on public datasets demonstrate that our method significantly
outperforms the state-of-the-art deep clustering approaches.

2 Related Work

Shallow Clustering. Clustering algorithms have been extensively studied in
machine learning. k-means [19] is a classic clustering method that aims to learn
k cluster centroids by minimizing the distances from samples to the cluster cen-
troids. Spectral clustering (SC) [17] is based on graph theory, which clusters
data by the spectral embedding with the eigenvectors of the graph Laplacian
matrix. Despite the success of these methods in a wide range, their effects are



226 S. Li et al.

limited on handling the low-dimensional samples. As the sample feature dimen-
sion rises, these methods will suffer from the curse of dimensionality and lead to
unsatisfactory results.

In recent years, optimal graph-based clustering methods are proposed to
improve clustering performance. Projected Clustering with Adaptive Neighbors
(PCAN) [21] learns the similarity matrix by adaptively assigning the neighbors
for each data point based on the local distance. Robust Structured Graph Clus-
tering (RSGC) [28] proposes a framework to simultaneously perform the struc-
tured graph learning and clustering, and learns a robust latent representation to
resist the noises.

The shallow clustering methods have achieved promising performance on
many datasets. However, when datasets contain more semantics, linear and sim-
ple nonlinear projection in existing shallow clustering methods cannot preserve
the sample information well. With the development of deep learning, various
deep clustering methods based on deep neural networks are proposed.

Deep Clustering. Deep clustering has received broad attention recently. Exist-
ing deep clustering methods can be classified into two categories: two-step learn-
ing approaches that get clustering results after learning deep embedded features
[4,24], and the joint learning approaches that simultaneously optimize the fea-
ture learning and clustering [33,34].

The former combines existing deep learning with clustering methods. Deep
Representations for Graph Clustering (DRGC) [29] uses AutoEncoder to learn
low dimensional features from the original sample, then use k-means algorithm
to get clustering results. Nonparametric Maximum Margin Clustering (NMMC)
[4] currently use Deep Belief Network (DBN) [35] instead of AutoEncoder for
fast feature learning and then use non-parametric maximum-margin clustering
to learn sample representations.

The other category of deep clustering approaches try to define a loss that
can simulate classification error in supervised deep learning. Typical examples
include Deep Clustering Network (DCN) [34], Deep Embedded Clustering (DEC)
[33] and Improved Deep Embedded Clustering (IDEC) [9]. DCN proposes a
recurrent framework in deep feature representation and clusters. It combines two
processes into one model and performs the optimization. DEC learns a mapping
from the data space to a lower-dimensional feature space in which a clustering
objective is iteratively optimized. Based on DEC, IDEC manipulates feature
space with the guidance of clustering loss to scatter data points. Because of the
introduction of the DNNs, the deep clustering method can retain the original fea-
tures of the samples better. However, the existing deep clustering methods focus
on preserving the features inside the samples but ignore the sample relations,
which limits the clustering performance.

Different from existing methods, in this paper, we propose a deep structured
graph clustering method that integrates feature representation and structured
graph learning into a unified learning framework. Our model performs well on
the high-dimension feature and is superior to other models on the clustering
performance due to the supervision of a well clustering structure.
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3 Deep Structured Graph Clustering Network

3.1 Notations and Definitions

Throughout this paper, matrices are marked as uppercase letters and vectors are
marked as lowercase letters. For matrix H, the ith row and the (i, j)th element
are denoted by hi and hij , respectively. The trace of matrix H and the transpose
of H are denoted by Tr(H) and HT , respectively. The Frobenius norm of H is
denoted by ‖ H ‖F . An identity matrix is denoted by I and an all-one vector is
denoted by 1. The main notations used in the paper are listed in Table 1.

Table 1. Summary of the main notations in this paper.

Symbols Explanations

X Original data matrix
Z Latent feature space
S Similarity matrix
LS Laplacian matrix
θ Parameters of AutoEncoder
c Number of clusters
u Clustering center
η Similarity threshold
qij Similarity between embedding sample f(xi) and clustering center uj

p Auxiliary variable
hij Likelihood between xi and xj

ωij Distance between xi and xj

3.2 Deep Embedded Network

Consider the problem of clustering a set of n samples {xi}i=1,...,N in to c cluster,
each sample is represented by a clustering center uj , j = 1, · · · , n. instead of
performing clustering in the high-dimensional space X, we propose a multi-
layer non-linear mapping fθ : X → Z, where θ are learnable parameters of
AutoEncoder and Z is the latent feature space. The dimension of Z is much
smaller than X to avoid the curse of dimensionality [1]. For parameters fθ,
we choice the AutoEncoder and θ denotes its parameters. So we introduce the
reconstruction loss defined as follows:

Lr =‖ X − fθd
(fθe

(X)) ‖2F . (1)

In addition to preserve the original features of samples, we want the projected
low-dimensional space to have a well cluster structure. It is promising to measure
the soft distribution between the embedded samples and cluster centers, and
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then use it to optimize network parameters fθ and cluster centers u. Therefore,
inspired by t-Stochastic Neighbor Embedding (t-SNE) [18], we use qij to measure
the similarity between embedded point fθe

(xi) and cluster center uj .

qij =
(1+ ‖ fθe

(xi) − uj ‖2 /α)−
α+1
2

∑
j′(1+ ‖ fθe

(xi) − uj ‖2 /α)−
α+1
2

, (2)

where α is the degree of freedom. qij can be interpreted as the probability of
assigning sample i to clustering center j, and we define qij is the soft assignment
betwen zi and uj .

We define an auxiliary distribution as:

pij =
q2ij/fj

∑
j′ q2ij/fj′

, (3)

where fj =
∑

i qij is the soft clustering frequency. Then, we adopt the KL
divergence loss [25] between the soft assignments qi and the auxiliary distribution
pi to iteratively refine the clusters. The embedding loss is as follows:

Le =
∑

i

∑

j

pij log
pij

qij
. (4)

3.3 Structured Graph with Adaptive Neighbors

In this paper, to retain the manifold structure between the samples, we adopt
the structured graph to guide the training of DNNs. Obviously, closer samples
are connected with larger probability. Hence, the probability of two data to be
neighbors can be regarded as the similarity between them. In this paper, we
define sij ∈ S as the probability that xi is connected to xj . sij is inversely
proportional to the distance between xi and xj . Specifically, we calculate the
similarity matrix S by solving

min
sT

i 1=1,0≤sij≤1

∑

i,j

‖ xi − xj ‖22 sij + γs2ij , (5)

where γ is the regularization parameter to avoid the trivial solution.
We can get the loss function as follows:

L = min
sT

i 1=1,0≤sij≤1

∑

i,j

‖ xi − xj ‖22 sij + γs2ij + Le + Lr. (6)

For the similarity matrix S in Eq. (5), it is noisy if we directly use it to guide
the clustering process. Thus, we further process S as follows:

sij =

{
1 sij > 0 or sim(xi, xj) > η

0 otherwise,
(7)
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where sim(·) is the similarity function which measures the similarity between xi

and xj , and η is hyper-parameter. After obtaining the updated similarity S, we
can define the likelihood of the pairwise samples as follows:

h(sij) =

{
δ(ωij) sij = 1
1 − δ(ωij) sij = 0,

(8)

where δ(ωij) = 1
1+eωij , and ωij is the distance between xj and xi, it is defined

as follows:
ωij = (xi − xj)2, (9)

It is difficult to calculate the distance between two samples directly in the
training process, so we rewrite Eq. (9) as follows:

Ω = 2(H − XXT ), (10)

where hij ∈ H,∀hij = x2
i . Note that, Ωij = ωij .

Therefore, we can get optimization loss function Lc as follows:

minLc = − log h(S|X) = −
∑

sij∈S

(sijωij − log(1 + eωij )) = SΩ − log(1 + eΩ).

(11)
Thus, we rewrite the loss function as:

L = min
sT

i 1=1,0≤sij≤1

∑

i,j

‖ xi − xj ‖22 sij + γs2ij + Lc + Le + Lr. (12)

For deep clustering, fewer parameters usually indicate stronger robustness.
Following CAN [21], we can get S with stable training by setting fewer param-
eters. The matrix S can be seen as a similarity matrix of the graph with n data
points as the nodes. The ideal state of S is that it contains c connected compo-
nents, which is beneficial for the subsequent processing. Suppose each node i is
assigned a function value as fi, then it can be verified as follows:

n∑

i,j=1

‖ fi − fj ‖22 sij = 2Tr(FT LSF ), (13)

where F with i row arranged by fi, and LS = DS − ST +S
2 is called Laplacian

matrix, DS is degree matrix and the i-th entry is defined as
∑

j
(sij+sji)

2 . It
can be proved that similarity matrix S will have c components connected if
rank(LS) = n − c. Then we can get S by solve:

min
∑

i,j

‖ fθe (xi) − fθe (xj) ‖22 sij + γs2ij , s.t.∀i, sT
i 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n − c.

(14)
It is difficult to solve with constraint rank(LS) = n − c. Consider LS is

positive semi-definite, we suppose εi(LS) is the i-th smallest eigenvalue of LS ,
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we know εi(LS) ≥ 0. According to the Ky Fan Theorem [8], we can rewrite Eq.
(14) as follows:

min
∑

i,j

(‖ fθe
(xi) − fθe

(xj) ‖22 sij + γs2ij) + λTr(FT LSF )

s.t. ∀i, sT
i 1 = 1, 0 ≤ sij ≤ 1, FT F = I,

(15)

where λ is the parameter to ensure Tr(FT LSF ) close to zero.
By comprehensively considering the above factors, we derive our overall

objective formulation as

Lfin =min
∑

i,j

(‖ fθe(xi) − fθe(xj) ‖2
2 sij + γs2ij) + λTr(F T LSF ) + Lr + Le + Lc

s.t. ∀i, sT
i 1 = 1, 0 ≤ sij ≤ 1, F T F = I.

(16)

3.4 Optimization

–Update structured graph. According to CAN [21], we can solve the problem
(15) by applying the alternative optimization approach.

When S is fixed, the problem (15) becomes:

min
F T F=I

Tr(FT LSF ). (17)

The optimal solution F is formed by the c eigenvectors of LS corresponding to
the c smallest eigenvalues.

When F is fixed, according to Eq. (13), we can rewrite the problem (15) as:

min
∑

i,j

(‖ fθe
(xi) − fθe

(xj) ‖22 sij + γs2ij + λ ‖ fi − fj ‖22 sij)

s.t. ∀i, sT
i 1 = 1, 0 ≤ sij ≤ 1.

(18)

We denote dx
ij =‖ fθe

(xi) − fθe
(xj) ‖22, df

ij =‖ fi − fj ‖22, and dij = dx
ij + df

ij .
Then we can get structure graph S by optimizing the following formula:

min
sT

i 1=1,0≤sij≤1

∥
∥
∥
∥si +

1
2γ

di

∥
∥
∥
∥

2

2

. (19)

The Lagrangian function of the problem (19) is

L(si, φ, β) =
1
2

∥
∥
∥
∥si +

dx
i

2γi

∥
∥
∥
∥

2

2

− φ(sT
i 1 − 1) − βT

i si, (20)

where φ and βi ≥ 0 is the Lagrangian multipliers.
According to the KKT condition [12], the optimal solution si can be calcu-

lated as

sij =
(

− dx
ij

2γi
+ φ

)

+

. (21)
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–Update AutoEncoders weights and clustering centers. We optimize θ
and u using Stochastic Gradient Descent (SGD) and Back Propagation (BP) [3].
Fixing the structured graph S, the gradients of Lfin with respect to clustering
center uj and embedded point zi = fθe

(xi) can be computed as:

∂Lfin

∂uj
=

∂Le

∂uj
= 2

n∑

j=1

(1+ ‖ zi − uj ‖2)−1(qij − pij)(zi − uj) (22)

∂Lfin

∂zi
=

∂Le

∂zi
+

∂Lc

∂zi
=2

c∑

j=1

(1+ ‖ zi − uj ‖2)−1(pij − qij)(zi − uj)

+
1
2

∑

j:sij∈S

(aij − sij)zj +
1
2

∑

j:sij∈S

(aji − sji)zj ,

(23)

where aij = δ(ωij).
The whole algorithm is summarized in Algorithm 1.

Algorithm 1: Learning algorithm for DSGC
Input: The original sample X, the number of pertrain iterations PreIter,

similarity threshold η, hyper-parameter λ
Output: AutoEncoder weight θ, cluster center c, and label y

1 for iter ∈ {0, 1, . . . , P reIter} do
2 Calculate parameter θ of the AutoEncoder by optimizing Eq.(1).
3 end
4 Get the structured graph S using (21).
5 Improve the structured graph S according to Eq. (8).
6 while not convergence do
7 Calculate parameters p and q by Eq. (2) and Eq.(3).
8 Update θ and c via Eq. (23) and Eq. (22) with p, q, and S.
9 end

4 Experimental Configuration

4.1 Experimental Datasets

1. MNIST [7] is provided by NIST, and consists of 70,000 handwritten digits
in 28*28 pixel from 0 to 9. It contains 60,000 training samples and 10,000
test samples, and has been widely used to test character recognition method.

2. USPS [27] is the handwritten digital image dataset provided by the United
States postal service. It consists of 9,298 handwritten digits (0–9) in 16*16
grayscale pixel. USPS is also one of the datasets widely used in handwritten
numeral recognition.

3. Fashion MNIST (FMNIST) [37] is an image dataset provided by Zalando
that replaces the MNIST dataset. It includes 70,000 positive digits in 10
classes with different fashion items.
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4. STL-10 [5] is an image recognition dataset that contains 10,000 96*96 pixel
color images. In this paper, we use the VGG16 network to convert these
images into 4096-dimensional vectors for the convenience of later training.

5. CIFAR-10 [32] consists of 60,000 32*32 colour images in 10 classes, with
6,000 images per class. We select 50,000 images for training, and 10,000 images
for testing.

6. REUTERS10K [15] is based on 11,228 Reuters news texts and divided into
46 topics. In this paper, according to DEC [33], we use root categories: cor-
porate/industrial, government/social, markets, and economics as labels for
training, all documents with multiple labels. Then we use the text feature
extraction method to transform the text data into the 2,000-dimensional vec-
tor by word frequency.

4.2 Evaluation Baselines

1. AE+k-means [19], AE+SC [17] and AE+CAN [21] are two-step deep
clustering approaches. The features are first extracted by the AutoEncoder.
Then, k-menas, SC and CAN are performed on the embedding features.

2. DCN [34] is a joint deep neural network and k-means clustering approach to
train a model that can project samples into a k-means-friendly Spaces.

3. DEC [33] simultaneously learns feature representations and cluster assign-
ments by using deep neural networks. It clusters data into a jointly optimized
feature space by optimizing the KL divergence between the samples and the
cluster center.

4. IDEC [9] is based on DEC, which manipulate feature space to scatter data
points by using a clustering loss as guidance.

5. DCCM [32] learns feature representation by mining a comprehensive corre-
lation and using mutual information between corresponding features.

Table 2. ACC of all methods on six public datasets. The best result in each line is
marked with bold.

Methods MNIST USPS FMNIST STL-10 CIFAR-10 REUTERS10K

AE+k-means 0.8050 0.6278 0.4918 0.6163 0.4596 0.4842
AE+SC 0.7536 0.6345 0.5777 0.6142 0.4668 0.6134
AE+CAN 0.6497 0.7113 0.5112 0.2217 0.2336 0.3873
DCN 0.8400 0.6900 0.5600 0.6400 0.5500 0.5300
DEC 0.7486 0.7399 0.6056 0.8894 0.5126 0.7221
IDEC 0.7730 0.7384 0.5904 0.9017 0.5731 0.7478
DCCM 0.7510 0.4918 0.3609 0.4820 0.6230 -
Ours 0.9549 0.7662 0.6162 0.9202 0.6489 0.7920
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4.3 Evaluation Metrics

We adopt three evaluation metrics widely used in clustering task: Accuracy
(ACC) [31], Normalized Mutual Information (NMI) [22], and Adjusted Rand
Index (ARI) [6] to evaluate the performance of clustering methods.

4.4 Parameter Setting

Following setting in DEC, we construct an AutoEncoder network as a fully
connected Multi-Layer Perception (MLP) with dimensions d - 500 - 500 - 2000
- c for all datasets, where d is the dimensions of samples and c is the number
of clusters. Except for the input layer, output layer, and embedding layer, all
other layers in the AutoEncoder model are activated by the ReLU nonlinearity
function. For AE+k-means, AE+SC, and AE+CAN, we set the number of pre-
training iterations of AutoEncode for each dataset to 200. For DEC and IDEC,
we set the pre-training iteration of MNIST data to 300, the pre-training iteration
of USPS to 50, and for the other datasets, we set the number of pre-training
sessions to 10. For our method, we set the similarity threshold η to 0.85.

5 Experiment Results

5.1 Performance Comparison

This subsection evaluates the clustering performance of DSGC with seven clus-
tering methods on six datasets. The results are reported in Tables 2, 3, and
4. From the results, we can find that DSGC dramatically outperforms other
baselines, include the two-step clustering method, embedded methods like DEC,
IDEC and others. For example, on STL10 dataset, DSGC achieved the ACC
value of 0.9202, and 0.02 improvement than the second-best method IDEC.
Moreover, DSGC obtains the NMI value of 0.8480 on STL-10 dataset, 0.6489
on CIFAR-10 dataset, better than the other baseline. Both DSGC and DEC are
deep clustering methods that project samples into a clustered friendly space. By
comparing DSGC and DEC, we can find that DSGC can significantly improve
the clustering effect with the guidance of the structured graph.

The superior performance of our model is attributed to the following reasons.
First, we used embedded deep neural networks to joint optimization feature
learning and clustering, the results of the embedding clustering methods like
DEC or IDEC demonstrate the effectiveness of jointly optimize. Then, we add the
structured graph constraints between samples to the process of feature learning,
which enables the manifold information between samples to be introduced into
feature learning. Through joint optimization of feature learning, clustering, and
similarity constraint between samples, our method achieves superior performance
compared with the previous methods.
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Table 3. NMI of all methods on six public datasets.

Methods MNIST USPS FMNIST STL-10 CIFAR-10 REUTERS10K

AE+k-means 0.7384 0.6198 0.4874 0.5797 0.3842 0.1932
AE+SC 0.6346 0.5731 0.5984 0.4856 0.3947 0.3433
AE+CAN 0.6598 0.7902 0.5824 0.2213 0.2044 0.0041
DCN 0.8000 0.6800 0.6500 0.6600 0.4700 0.3200
DEC 0.7105 0.7592 0.6317 0.8219 0.5095 0.5403
IDEC 0.7211 0.7560 0.6226 0.8245 0.4641 0.4852
DCCM 0.7370 0.3961 0.3760 0.3760 0.4960 -
Ours 0.8907 0.7914 0.6317 0.8480 0.5760 0.5979

Table 4. ARI of all methods on six public datasets.

Methods MNIST USPS FMNIST STL-10 CIFAR-10 REUTERS10K

AE+k-means 0.6958 0.5240 0.3390 0.4512 0.2716 0.1568
AE+SC 0.5876 0.4863 0.4468 0.3617 0.2820 0.3276
AE+CAN 0.6967 0.8203 0.5778 0.2397 0.2348 0.3930
DCN 0.7400 0.5800 0.4600 0.4100 0.3100 0.2500
DEC 0.6273 0.6690 0.4926 0.7841 0.3885 0.5867
IDEC 0.6548 0.6709 0.4818 0.8015 0.3707 0.4932
DMMC 0.6289 0.2841 0.1789 0.2620 0.4080 -
Ours 0.9033 0.7133 0.4899 0.8358 0.4782 0.6057

5.2 Effects of the Structured Graph Learning

In this subsection, we conduct experiments to verify the validity of the structured
graph of the method. We design several variants of our method and compare their
performance with our approach. Considering the differences between datasets
and the time as well as space costs required for operation, we randomly select
10,000 samples from each dataset as the test set, and the effect of the structured
graph of the model was tested on these datasets. The experimental results are
shown in Fig. 2.
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Fig. 2. Experimental results of our method and variants on public datasets, where
ours-NS represents that similarity matrix is not used as a guide in the training process,
ours-SS represents the use similarity matrix constructed by simple distances to guide
the training process, and our-AS represents we obtain the similarity matrix adaptively
by solving Eq. (15).

Model Without the Structured Graph Guidance. We first designed a vari-
ant method named ours-NS that performs clustering without the structured graph
guidance. Under such circumstances, the variant method degenerates to a com-
mon embedding clustering model. According to the results in Fig. 2, we can clearly
observe that the clustering effect of modes without structured graph guidance is
significantly lower than that of other models with structure graph guidance.

Models with Different Structured Graph. We design a variant clustering
model (ours-SS) based on the fixed graph constructed with the cosine similarity,
we can observe that the model with the guidance of fixed structure graph can
improve by about 3% points compared to the model without the structure graph.
But on most datasets, it is still 1–3 percentage points behind the structured
graph model with adaptive learning.

Through the above analysis, we can find that the guidance of the similarity
matrix can significantly improve the accuracy of clustering. And the adaptive
similarity matrix is better than the similarity matrix obtained by simple distance
in guiding the clustering.

5.3 Parameter Experiment

To more accurately analyze the performance of the proposed method, the number
of output neurons of different encoders is analyzed, and the variation curve of
accuracy is shown in Fig. 3. When the dimension of output samples is too low,
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the information will be missing, when the dimension of output samples is too
high, information redundancy will be caused and the clustering effect will be
affected. From Fig. 3, we can find that for most datasets, when the number of
neurons in the output layer o is the same as the number of clustering c, this
method can achieve better results.
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Fig. 3. Parameter analysis of the encoder construction on public datasets.

0   1120 2240 3360 4480 5600
Number of iterations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Lo
ss

MNIST

0   1120 2240 3360 4480 5600
Number of iterations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Lo
ss

USPS

0   1120 2240 3360 4480 5600
Number of iterations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Lo
ss

STL

0   1120 2240 3360 4480 5600
Number of iterations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Lo
ss

REUTERS10K

Fig. 4. The losses during training on public datasets

5.4 Convergence Experiment

Figure 4 shows the convergence curves that record the variations of the loss func-
tion value with the number of iterations. We can clearly find that as the number
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of iterations increases, the value of loss function decreases continuously. After a
period of iteration, the value of loss function does not change significantly. The
results validate that our proposed method could achieve convergence efficiently.

6 Conclusion

In this paper, we propose a clustering model that can adaptively learn a struc-
tured graph to guide the training of deep neural networks. To verify our claim,
we conducted a series of experiments to verify the effect of the structure diagram
on clustering results. By comparing the clustering performance of models with
different structured graphs on each dataset, we verify the significant positive
effect of structured graph guidance on clustering results.

Our future works are as follows. We will perform more methods to obtain the
structured graph, try to achieve a better clustering effect, and solve the existing
problem of excessive space and time occupancy.
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Abstract. Learning style identification is important for improving the learning
and teaching experience in the massive open online courses (MOOCs). To identify
learning styles automatically, a very large quantity of labeled data is necessary.
However, labeling data manually is tedious and impractical. A known solution to
this problem is to cluster MOOCs learning data and label them with the general
characteristics of the cluster to which they belong. In this paper, we propose
two distance measures suitable for forming canopies in MOOCs, and incorporate
the canopy approach into the K-means clustering algorithm. This improves the
stability of the clustering results and the quality of the data labeling. Experimental
results with four popular classifiers show that the proposed method can improve
both the overall identification of learning styles and the identification of each
individual learning style.

Keywords: Massive open online courses · Learning styles · Clustering ·
K-means · Elbow method · Canopy approach

1 Introduction

Massive open online courses (MOOCs) are online teaching platforms that can offer
unlimited enrollments in courses on rich learning topics for anyone via the internet.
MOOCs play an increasingly important role in education because of the development
of internet technology and people’s increasingly diverse learning needs [16].

As the popularity of MOOCs has increased, their problems have also become more
prominent. One of the earliest andmost widely studied problems ofMOOCs is their high
dropout rate, which significantly reduces the number of learners successfully completing
the courses in which they have enrolled. Various methods have been proposed to solve
this problem from different perspectives [2, 10]. Another serious problem with MOOCs
is their impersonal nature. In many cases, thousands of learners enroll in a single course
with a single instructor and the same learning material. To improve personalization,
data mining methods, such as pattern mining [14] and clustering [15], have been used to
analyze students’ learning behavior in depth. These methods discover learners’ behavior
from data collected via an e-learning or MOOC platform, thus avoiding the problems of
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traditional questionnaires, such as their complex design and the treatment of arbitrary
answers.

Recently, Hmedna et al. demonstrated that exploiting domain knowledge can further
improve the understanding of MOOC learners’ behavior. In their work [8], the Felder–
Silverman learning style model (FSLSM) [6] was used to guide the identification of
learning styles. Specifically, K-means clustering was used to label learners according to
their preferences for each learning style, and then four supervised models were used to
identify their learning styles.

In this paper, we improve the performance of learning style identification by stabiliz-
ing the initial clusters with the elbow method [11] and canopy approach [9]. The elbow
method is used to determine the number of clusters correctly, and the canopy approach
can ensure that the initial cluster centers are suitable for stable clustering. The clustering
results are used together with the FSLSM to label theMOOC learning data for automatic
identification of learning styles. In experiments, the data were labeled separately using
the proposed method and the method of [8], and learning styles were identified from two
datasets using four popular classifiers. The experimental results show that the proposed
method was superior to the method of [8] with respect to both the overall identification
performance and the identification performance for each individual style.

2 Learning Style Identification

Learning styles can be defined in many ways, from the perspective of either psychology
or pedagogy. Generally, a learning style is an overall pattern that provides direction to
learning and teaching. A learning style can also be described as a set of factors and
behaviors that facilitates learning for an individual in a given situation [4].

Among the various learning style models, FSLSM [6] is the most widely used.
Originally designed for engineering education, FSLSM consists of four dimensions:
perception, input, processing, and understanding. Recently, various studies have shown
that identifying learners’ learning styles automatically could improve the quality of
online learning. El Aissaoui et al. extracted learning sequences from learners’ log files
using web usage mining techniques, and then used fuzzy c-means (FCM) to categorize
learning styles with FSLSM [3]. Similarly, Azzi et al. also predicted learning styles in e-
learning systems using FSLSM and FCM [1]. The difference between these two studies
is that Azzi et al. considered several courses. Furthermore, neural networks (NNs) [5]
and decision trees (DTs) [12] have also been used for identifying learning styles.

According toHmedna et al. [8], FSLSMis alsohelpful for learning style identification
in MOOCs. In their work, both unsupervised and supervised learning techniques were
used to identify learning styles accurately.

3 Dataset and Preprocessing

The clickstream data of the “Statistical Learning” course was used throughout this study.
The dataset was collected from edX and provided by the author of [8]. It should be noted
that the data of only one dimension (the processing dimension) of FSLSMwas provided
to us; therefore, all of the work performed in this study was conducted on the processing
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dimension. According to FSLSM, the processing dimension has two poles: active and
reflective.

The dataset contains the records of 18,475,724 events of 32,209 learners from Jan-
uary 19, 2015 to April 6, 2015. The main attributes include course content, learners’
interactions in a forum, learning activities, video interactions, and events triggered by
individual learners. Each event is described by a set of features, such as the learner
identifier, event type, and date and time of the event.

We used the same preprocessing methods as those reported in [8]. First, each learner
was represented as a feature vector that consists of the number of events, number of
weeks, and status of certification. Second, eight anomalous learners were detected and
deleted. Third, six features of the active pole and five features of the reflective pole were
selected. Finally, their values were normalized to [0, 1] by min–max normalization.

4 Improved K-Means Clustering for Data Labeling

4.1 Basic Algorithm

Using the feature vectors constructed in the preprocessing phase, learners were divided
into groups by clustering techniques in [8]. The purpose of clustering is to partition a
set of objects such that objects in the same group (called a cluster) are more similar to
each other than to those in other groups.

The clustering algorithm used in [8] was K-means. Given a predefined number of
clusters K, the K-means algorithm starts with K randomly selected centers, which are
used as the initial feature vectors for every cluster. At each step, every vector is assigned
to its nearest cluster center, and each cluster center is updated to the average of the
vectors assigned to it. This process repeats until either the cluster centers have stabilized
or a predefined number of iterations has been performed.

K-means clustering has twomain limitations. First, the user has to specify the number
of clusters K in advance, which is a difficult task for those who are not familiar with the
data. The second limitation is that the algorithm is sensitive to the initial cluster centers:
choosing different initial centers often leads to very different results.

To overcome these two limitations and increase the accuracy of learning style identi-
fication, we improved the K-means clustering algorithm in two respects. First, the elbow
method [11] was used to determine the number of clusters. Second, the canopy approach
[9] was used to set the initial centers within each cluster. With these two improvements,
the proposed K-means-CE (K-means with canopy and elbow) clusteringmethod for data
labeling is presented in Algorithm

Algorithm 1
Input
Output

K-means-CE
Unlabeled feature vectors
Labeled feature vectors

1 Determine K by the elbow method;
2 Calculate K initial centers using the canopy approach;
3 Perform K-means clustering with the K canopy centers as the initial 

cluster centers;
4 Label each vector with the clustering results.
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4.2 Elbow Method

The first part of Algorithm 1 is the determination of K. We use the elbow method, which
is based on the sum of squared errors (SSE). The SSE metric is defined as

SSE =
K∑

i=1

∑

f∈Ci

dis(f,µi), (1)

where Ci is the i-th cluster, f and µi are an arbitrary feature vector and the center of Ci,
respectively, and dis(f, µi) is the distance between f and µi, which is defined as

dis(f,µi) =
√√√√

m∑

j=1

(fj − µij)2, (2)

where m is the number of elements of a feature vector, f j is the j-th element of f, and
µij is the j-th element of µi.

We can observe from Eq. 1 that a smaller value of SSE corresponds to more compact
clusters. Therefore, clusters that minimize SSE should be favored. However, SSE tends
to decrease toward 0 as K increases. This is because, when K is maximized, each data
point is its own cluster and there is no error between it and the center of its cluster. The
value of K at which the improvement in SSE declines the most is called the elbow; this
is the point at which we should stop dividing the data into more clusters. This process
is usually realized by plotting a line chart of SSE for each value of K. If the line chart
looks like an arm, then the “elbow” of the arm is the optimal value of K. In this study,
K was set to 4.

4.3 Canopy Approach

After the number of clusters has been determined, the canopy approach is used to
determine the initial center of each cluster.

A canopy is simply a set of the feature vectors that are within some distance threshold
from a center. A feature vector may appear in more than one canopy, and every feature
vector must appear in at least one canopy. Therefore, canopies usually overlap. The
main idea underlying the canopy approach is that two feature vectors that do not appear
in any common canopy are sufficiently far apart that they could not possibly be in the
same cluster. Consequently, when performing a strict clustering algorithm, the distance
between two feature vectors that are not in the same canopy can be ignored. The canopy
approach is usually performed to obtain a rough partition of the dataset for a more
accurate clustering result.

Canopies are usually generated as follows, given two distance thresholds T1 and T2,
where T1 > T2. Select a feature vector f and approximately measure its distance to each
canopy center. Add f to a canopy if the distance between f and its center is no greater
than threshold T1. Remove f from the dataset if its distance from the canopy center is no
greater than threshold T2. If f does not belong to any existing canopy, it is set as a new
canopy center and deleted from the dataset. Repeat the above process until the dataset
is empty.
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The purpose of our proposed method is to generate stable clusters. Therefore, T2 is
defined as the average distance between each pair of feature vectors:

T2 =
N∑

i=1

∑

j �=i

dis(fi, fj)/(N × (N − 1)), (3)

where f i (1 ≤ i ≤ N) and fj (1 ≤ j ≤ N) are two arbitrary feature vectors, and dis(f i, fj)
is the Euclidean distance between points f i and fj, defined in Eq. 2.

After outlining the approximate range, we attempt to determine the optimal value of
T1 by progressive refinement. Most importantly, to ensure that the number of canopies
is equal to K, T1 is defined as.

T1 = 2 × T2. (4)

4.4 K-Means Clustering

Using the K canopy centers as the initial centers of the K clusters, the next stage of
K-means-CE is the K-means clustering.

In general, this stage processes a set of N feature vectors F = {f1, f2, …, fN} and
K initial cluster centers C = {µ1, µ2, …, µK}, which are actually the centers of K
canopies, and works as follows.

First, the distance from each feature vector f i (1 ≤ i ≤ N) to each center µj (1 ≤ j
≤ K) is computed, using Euclidean distance (Eq. 2). The closest center is then assigned
to each feature vector. For each center, the average of the feature vectors labeled with it
is calculated, and these averaged feature vectors become the new centers of the clusters.
The distance from each feature vector to each center is recalculated, the assignment is
modified, and the procedure is repeated until the assignments are stabilized. Finally, the
clusters are generated. It should be noted that step 3 of Algorithm 1 does not calculate
the distance between two feature vectors that never appear in the same canopy.

Similar to the method of [8], we also use the Calinski–Harabasz index (CHI) and the
Silhouette index (SI) to validate the clustering results.

CHI is the ratio of the sum of inter-cluster dispersion to the sum of intra-cluster
dispersion for all clusters. It is defined as

CHI(K) = SSB

K − 1
× N − K

SSE
, (5)

where N is the number of feature vectors, K is the number of clusters, SSE (Eq. 1)
denotes the intra-cluster sum of squares, and SSB denotes the sum of squares between
clusters. SSB is defined as

SSB =
K∑

i=1

(Ni × dis(µi,µ)), (6)

where Ni is the number of feature vectors in the i-th cluster, µi is the center of the i-th
cluster, µ is the center of the whole dataset, and dis(µi, µ) (Eq. 2) is the Euclidean
distance between µi and µ.
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It can be observed from Eq. 5 that a higher CHI corresponds to a better clustering
because observations in each cluster are closer together, whereas clusters themselves are
further away from each other.

Another metric used to validate clustering results is the SI, which measures the
closeness of each point in one cluster to points in the neighboring clusters. SI is defined
as

SI(f) = b(f) − a(f)
max{a(f), b(f)} , (7)

where f is a feature vector, a(f) is the average distance between f and all other feature
vectors in the same cluster, and b(f) is the average distance between f and all objects in
the closest cluster.

The value of SI lies in the range [−1, 1]. If SI(f) is close to 1, f is well-clustered and
already assigned to a highly appropriate cluster. If SI(f) is close to 0, f could be assigned
to another cluster close to it because f lies equally far away from both the clusters. If
SI(f) is close to −1, f is misclassified and is merely placed somewhere between the
clusters.

The Silhouette validation technique calculates the SI for each feature vector, the
average SI for each cluster, and the overall average SI for the entire dataset. Using
the proposed approach, each cluster can be represented by its SI, which measures the
compactness of the cluster and its separation from other clusters.

In the experiments reported in this paper, we generated four clusters for the active
pole and four clusters for the reflective pole.

4.5 Data Labeling

In the final step of the algorithm, the clustering results are used for labeling each learner.
For the active and reflective poles, four preference levels (very weak, weak, moderate,
and strong) are used to describe the degree to which each learner belongs to each pole.
These four labels correspond to the four clusters, and are determined by ranking themean
values of the corresponding attributes of each cluster. The main difference between the
poles is that six features of the active pole and five features of the reflective pole are
selected. The 11 features used in this paper are exactly the same as the 11 features used
in [8].

The label of the cluster determines the degree of preference of each learner for both
the active and reflective poles. For example, a learner with a strongly active learning
style simultaneously shows a weak preference for a reflective learning style. We use the
same weighting for the preference level as that used in [8]; the weights are shown in
Table 1.
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Table 1. Weights of learning style

Very weak Weak Moderate Strong

Active 0 1 2 3

Reflective 0 −1 −2 −3

By summing the active and reflective weights of each learner, a grid of the balance
of learning styles is generated, in which each entry represents the dominant learning
style (DLS) of a learner (Table 2).

Table 2. Balance of learning styles grid

Active

Very weak
(0)

Weak (1) Moderate (2) Strong (3)

Reflective Very weak (0) Balanced Moderate
active

Strong active Strong active

Weak (−1) Moderate
reflective

Balanced Moderate
active

Strong active

Moderate (−2) Strong
reflective

Moderate
reflective

Balanced Moderate
active

Strong (−3) Strong
reflective

Strong
reflective

Moderate
reflective

Balanced

Table 2 shows that scores of ±2 and ±3 indicate a strong preference, ±1 indicates
a moderate preference, and 0 indicates a balanced preference.

Each learner can be represented by a global feature vector (GFV), which includes
the DLS, in the form.

GFV = {x11, x12, . . . , x16, x21, x22, . . . , x25, DLS}, (7)

where x1i (1 ≤ i ≤ 6) is the value of the i-th feature of the active pole, x2j (1 ≤ j ≤ 5)
is the value of the j-th feature of the reflective pole, and DLS ∈ {Balanced, Moderate
active, Strong active, Moderate reflective, Strong reflective}.
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5 Learning Style Identification by Supervised Learning

5.1 Classifiers for Learning Style Identification

The original dataset can be transformed to a labeled dataset that is ready for identifying
learning styles by using popular classifiers. The DLSs of GFVs act as the labels. As in
[8], DT, random forest (RF), K-nearest neighbors (KNN), andNNwere used for learning
style identification.

A DT is a tree of decision nodes. Beginning at the root node, each node tests the
value of some feature of a GFV, and each leaf node assigns a class label to the GFV. A
DT is easy to explain and efficient for classification. However, it is also sensitive to data
change and prone to overfitting.

An RF combines the output of multiple DTs to obtain a single result. The RFmethod
can be viewed as an extension of the bagging method because it uses both bagging and
feature randomness to create an uncorrelated forest of DTs. Instead of relying on one
DT, an RF takes a prediction from each tree and predicts the final output by a majority
vote of the predictions. The main advantage of the RF method is that it reduces the
overfitting problem of DTs; additionally, it reduces the variance and therefore improves
the accuracy. However, an RF is harder to interpret than a single DT.

KNN is a data classification method for estimating the probability that a GFV will
become a member of a specific group according to the groups to which the GFVs nearest
to it belong. KNN is a lazy and non-parametric algorithm. Its main advantage is that it is
simple and requires no training phase, but it has two main disadvantages. First, it does
not perform well on a dataset containing a large number of records or a large number of
dimensions. Second, it is sensitive to outliers.

An NN is a system whose structure is inspired by the action of the human brain.
Generally speaking, the nodes of the network are distributed in several layers, which
are interconnected with one another. Each node of an NN is a perceptron. NNs enable
nonlinear process modeling, and this is one of the primary reasons for the immense
popularity of NN technology.

5.2 Evaluation Metrics

We use the same measures to evaluate the performance of classifiers as those used in
[8].

Accuracy is the fraction of true matches out of all possible samples, and is defined
as

Accuracy =
∑M

i=1 (TPi + TNi)∑M
i=1 (TPi + TNi + FPi + FNi)

, (9)

where M is the number of classes, and TPi, TNi, FPi, and FNi are the numbers of true
positives, true negatives, false positives, and false negatives of the i-th class, respectively.

Precision, also called positive predictive value (PPV), is the fraction of true positive
matches out of all positive predicted samples. The precision of the i-th class is defined
as

Precisioni = TPi

TPi + FPi
. (10)
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Recall, also called true positive rate (TPR), is the fraction of true positive matches
out of all positive samples. The recall of the i-th class is defined as

Recalli = TPi

TPi + FNi
. (11)

The F1-score measures both precision and recall by harmonic meaning the two
metrics, and is defined as

F1 = 2 × PPV × TPR

PPV + TPR
. (12)

We also used twometrics that measure the general precision amongmultiple classes.
Macro-precision is the average precision of all the classes, and is defined as

Macro-Pre = 1

M
×

∑M

i=1
Precisioni. (13)

Micro-precision is the sum of the numbers of true positives for all the classes divided
by the total number of positive predictions, and is defined as

Micro-Pre =
∑M

i=1 TPi∑M
i=1 (TPi + FPi)

. (14)

For all the above six measures, a larger value corresponds to a better classification
performance.

6 Experimental Results

We compared our method for learning style identification (named K-CE-LS) experi-
mentally with the method proposed in [8] (named K-LS). The source code of K-LS was
provided by the author.

6.1 Clustering Results

We visualized the clustering results of K-LS and K-CE-LS to visually compare the
performance of the two methods. Both methods returned four clusters.

To visualize the clustering results in the form of a scatter diagram, we used principal
component analysis to transform the original features to two features for the active pole
and two features for the reflective pole. The results of the comparison are shown in Figs. 1
and 2. In these two figures, each point is a learner, and points belong to different clusters
are represented by different colors. Specifically, the green part represents the cluster
‘Strong’, the blue part represents the cluster ‘Moderate’, the yellow part represents the
cluster ‘Weak’, and the purple part represents the cluster ‘Very weak’.



Improved Clustering Strategies for Learning Style 249

(a) Active learning style                   (b) Reflective learning style

Fig. 1. Clustering results of K-LS

(a) Active learning style                   (b) Reflective learning style

Fig. 2. Clustering results of K-CE-LS

It is clear from Fig. 1 that the boundaries between clusters are not sufficiently clear
and the clusters overlap. There are many points that are far away from any cluster, and
the points within each cluster are scattered. In contrast to this, the boundaries between
clusters in Fig. 2 are relatively clear. There are few points that are far away from any
cluster, and the points within each cluster are compact.

We then further compared the clustering results quantitatively using CHI and SI; the
numerical results are presented in Table 3.

Table 3. Comparison of clustering results of K-LS and K-CE-LS

CHI SI

K-LS K-CE-LS K-LS K-CE-LS

Active 192985.01 198647.21 0.80 0.81

Reflective 99628.87 99660.80 0.78 0.79

The results in Table 3 show that incorporating the canopy approach into the clus-
tering algorithm can improve the clustering results on clickstream data in the MOOC
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environment. This is mainly because the use of the canopy approach can solve the prob-
lem that the clustering results are not sufficiently stable because of the random selection
of the initial centers.

Next, we labeled the original dataset with the clustering results of K-LS and K-CE-
LS, separately, using the method described in Sect. 4.5. After labeling, the distributions
of each learning style on the two datasets are shown in Figs. 3 and 4.

Fig. 3. Distribution of learning styles labeled by K-LS

Fig. 4. Distribution of learning styles labeled by K-CE-LS

We can obtain two insights from Figs. 3 and 4. First, the labeled datasets transformed
by both K-LS and K-CE-LS are highly imbalanced: the number of learners with the
balanced style is far greater than the number of learners with other learning styles.
Second, the number of learners with strong active and strong reflective styles is roughly
equal in Fig. 4, whereas in Fig. 3, there are significantly more learners with the strong
active style than with the strong reflective style. Using K-LS, only 64 learners were
labeled as strong reflective, so they are barely visible in Fig. 3.
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6.2 Classifiers for Learning Style Identification

We used DT, RF, KNN, and NN to identify learning styles on the datasets transformed
by K-LS and K-CE-LS, separately. When comparing the classification performance,
we used the same hyperparameters as those used in [8]. Training was performed using
K-fold cross-validation with K = 10. Each dataset was divided into two parts, with
80% used as the training set and 20% used as the test set. Furthermore, we applied a
learning curve to determine whether our learning algorithms suffer from overfitting or
underfitting.

The overall classification performance on the two datasets are shown in Tables 4 and
5. Because these two tables present the performance results over all the classes, only the
multiclass metrics are included.

Table 4. Overall classification performance on K-LS-labeled dataset

Accuracy F1 Macro-Pre Micro-Pre

DT 0.990 0.990 0.980 0.990

RF 0.987 0.990 0.980 0.990

KNN 0.810 0.780 0.550 0.810

NN 0.979 0.980 0.920 0.980

Table 5. Overall classification performance on K-CE-LS-labeled dataset

Accuracy F1 Macro-Pre Micro-Pre

DT 0.995 1.000 0.980 0.990

RF 0.990 0.990 0.980 0.990

KNN 0.849 0.840 0.620 0.850

NN 0.991 0.990 0.970 0.990

Similar to the clustering results presented in Table 3, these tables show that the
general performance of the four classifiers on the K-CE-LS-labeled dataset is better
than that on the K-LS-labeled dataset, particularly for KNN and NN.

To analyze the performance more concretely, we present the results of the four
classifiers for identifying the five learning styles in Table 6. Because this experiment
was designed to assess the classification performance for each specific class, we only
include the single-class metrics.

Table 6 shows that, of the 60 results (obtained by identifying five styles using four
classifiers and three metrics), 50 results (underlined) obtained on the K-CE-LS-labeled
dataset are at least as good as those obtained on the K-LS-labeled dataset.

Interestingly, usingKNNon the dataset labeled byK-LS failed to identify any learner
with a strong reflective learning style. This can be explained by the results shown inFig. 3.
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The number of learnerswith a strong reflective learning style on theK-LS-labeled dataset
is negligible, which makes it difficult for a lazy learner such as KNN to find neighbors
whose learning style is strong reflective. Consequently, the values of the three metrics
(precision, recall, and F1) obtained by KNN on this dataset are all zero. This extreme
example also shows that labeling the dataset by the K-CE-LS method improves the
performance of learning style identification.

Table 6. Identification performance of four classifiers for five learning styles

Learning styles Classifier K-LS-labeled dataset K-CE-LS-labeled dataset

Precision Recall F1 Precision Recall F1

Balanced DT 1.00 0.99 0.99 1.00 1.00 1.00

RF 0.99 0.99 0.99 1.00 0.99 1.00

KNN 0.85 0.96 0.90 0.90 0.95 0.93

NN 0.99 0.99 0.99 1.00 0.99 1.00

Moderate active DT 0.96 0.99 0.97 0.96 0.99 0.97

RF 0.97 0.98 0.98 0.94 0.98 0.96

KNN 0.55 0.42 0.47 0.54 0.36 0.43

NN 0.95 0.94 0.95 0.98 0.97 0.97

Moderate reflective DT 0.99 0.97 0.98 1.00 0.99 0.99

RF 0.92 0.98 0.95 0.97 0.99 0.98

KNN 0.50 0.16 0.24 0.58 0.56 0.57

NN 0.95 0.94 0.94 0.96 0.99 0.97

Strong active DT 0.98 0.99 0.99 0.99 0.99 0.99

RF 0.99 0.92 0.95 1.00 0.96 0.98

KNN 0.84 0.19 0.32 0.72 0.37 0.49

NN 0.99 0.98 0.99 0.99 0.96 0.98

Strong reflective DT 1.00 0.89 0.94 0.99 1.00 0.99

RF 1.00 0.44 0.62 1.00 0.71 0.83

KNN 0.00 0.00 0.00 0.33 0.07 0.12

NN 0.70 0.78 0.74 0.94 0.97 0.96

7 Conclusions and Future Work

To identify learning style automatically, we clustered the MOOC learning data and
labeled each learner according to the cluster towhich it belongs, with the help of FSLSM.
The main contribution of this work is that we set two appropriate distance thresholds for
generating canopies, and incorporated the canopy approach into the clustering algorithm
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to determine the initial centers for K-means clustering. This enables stable clustering
results to be generated. We demonstrated the superiority of the proposed method by
comparing it with the method proposed in [8]. Comparison results on four popular
classifiers showed that the proposed method can improve the performance of learning
style identification both globally and locally.

The main purpose of learning style identification is to improve the teaching and
learning quality ofMOOCs.Thus, it isworth exploringwhether descriptivemethods such
as pattern mining [7] can be used to improve the learning performance of students with
different learning styles. Furthermore, providing different learning materials to learners
with different learning styles is also a possible path. Therefore, using the identified
learning styles to improve the performance of recommendation systems [13] in the
MOOC environment is another objective of our future work.

Acknowledgments. We thank Dr. Brahim Hmedna for providing the source code of the
K-LS method and dataset for experimentation. This work was partially supported by the
National Natural Science Foundation of China (61977001) and the Great Wall Scholar Program
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Abstract. Analyzing statistical features of electrical data is an impor-
tant issue in the field of electrical data research, which often concerns
collecting huge amounts of original data from various sources. Evidently,
data compression and security issues are two key aspects of such pro-
cess. However, a proportion of electrical data owners may agree to sup-
port electrical data analysis only when their private data are not dis-
closed to the public or even to the researchers. To address this problem,
this paper proposes a secure data processing method named Compressed
Sensing Homomorphic Encryption Method (CSHEM), which simulta-
neously achieves data compression and encryption. CSHEM also could
allow researchers to reconstruct statistical analysis results of the original
electrical data without requirements to possess these original data. We
conduct experiments and simulations using real electrical data from over
100 households. The results show that the proposed method could realize
data compression and encryption, and the reconstruction results could
express the true statistical information of the original data.

Keywords: Compressed sensing · Homomorphic encryption ·
Electrical data

1 Introduction

During recent decades, information and communication technologies are devel-
oping rapidly, which supports the developments of smart grids. Simultaneously,
many security issues are emerging during this progress [1–3]. As a result of the
developments of smart grids, huge amounts of electrical data have been gen-
erated and may need to be collected or analyzed. Electrical data may contain
records concerning various kinds of information, such as individual information
of users, electrical capacities, electrical charges, etc., which may help to describe
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the status of individuals, households, enterprises or organizations [4]. Moreover,
with the popularization of big data technology, more and more data may need
to be shared with or to be processed by several different organizations or insti-
tutions. Big data businesses have facilitated people’s life to a certain extent, but
the risks brought by data opening may also follow [5–7]. How to obtain and to
process data generated and collected from smart grids, and to achieve confiden-
tiality and privacy during data sharing and processing, may become an issue to
be studied.

Gentry constructed the concept of full homomorphic encryption in 2009 [15],
which made homomorphic encryption technology obtain breakthrough progress,
and opened the door to research on data sharing scheme based on homomorphic
encryption technologies. Subsequently, researchers not only made contributions
to the improvement of homomorphic encryption algorithms, but also began to
try to apply homomorphic encryption algorithms in various fields. Zouari et al.
proposed a privacy protection scheme that combined homomorphic encryption
and secret sharing technologies. This scheme acted as a security intermediary
and ensured data integrity and confidentiality by transmitting the collected data
from the perception layer to the application layer [8]. Li et al. proposed a privacy
protection computing scheme for the Internet of Things based on homomorphic
encryption, which encrypted the encounter probability between nodes, so that
the data information collected by nodes could be sent to the target node in the
best path while protecting the privacy of related nodes [9]. Bringer et al. used
the additive homomorphic encryption algorithm to complete the authentication
of fingerprints, faces and irises [10]. You proposed a biometric authentication
scheme based on homomorphic encryption and message encoding technology.
The identity authentication process was carried out in the cryptographic domain,
and the scheme proved to be well applicable in complex network environments
[11]. Cramer et al. designed the first electronic voting system based on homomor-
phic encryption [12]. Alharbi et al. applied the data sharing technology based
on homomorphic encryption to the smart grids, and proposed a smart grid data
sharing framework, which enabled grid companies to analyze consumer data
while maintaining consumer privacy [13]. Li et al. adopted an encryption system
based on homomorphic encryption technology, mainly aiming at the two phases
of the smart meters data processing, namely, the real-time data transmission
phase and the accounting phase, which protected the user’s privacy [14]. Apply-
ing homomorphic encryption methods to electrical data sharing and processing
could effectively enhance data security and protect data privacy. However, as
far as we know, data compression methods are rarely involved in such schemes,
which is a worthy research direction in the era of big data when massive data
may need to be collected and processed.

Compressed sensing (CS) is an efficient signal sampling method, which can
sample signals beyond the Nyquist sampling rate [15,16]. CS makes use of the
redundancy of original signals, reduces the sampling rate, and can use the sam-
pled signals to reconstruct the nearly accurate original signal [17]. In recent years,
compressed sensing technology has been widely used in various fields. Liu et al.
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analyzed the inverse problem of sparse optimization of seismic random noise
suppression under the compressed sensing framework and proposed an iterative
soft threshold algorithm [18]. Cao et al. proposed an adaptive autocorrelation
matrix reduction parameter pilot optimization algorithm achieving the mini-
mization of channel reconstruction error rate based on the compressed sensing
theory [19]. Zhao et al. applied the compressed sensing theory to the spectral
experiments, reconstructed the spectral reflectance and improved the reconstruc-
tion accuracy [20]. Chen et al. proposed an image encryption algorithm based
on depth learning, compressed sensing and compound chaotic systems, using
bilinear interpolation and convolution neural network to compress images [21].
Compressed sensing methods can simultaneously realize data sampling, com-
pression and encryption in solely one step. It has been applied in the field of
smart grid in recent years. In order to meet the data collection requirements of
smart grids, Yang et al. proposed a data collection method based on compressed
sensing from the perspective of combining the same domain sampling and com-
pression sampling [22]. Applying CS methods to the collection and transmission
of electrical data could help to save data storage space and to improve data
transmission efficiency. However, as far as we know, improvements still could be
made in the aspect of data privacy protection, especially in scenarios concerning
big data in smart grids. This issue could be studies in the future.

In summary, the research concerning electrical data sharing and processing
technologies based on homomorphic encryption and compressed sensing is still
in its early phase. Although there is existing research either on homomorphic
encryption or compressed sensing, researchers are always considering the two
theories separately. As far as we know, very little existing research covers the
point of combining homomorphic encryption and compressed sensing technology.
Wang et al. proposed a homomorphic aggregation method to process medical
images [23]. There are two main differences between the method in reference
[23] and the proposed one:

1© The functions are different. The previous one only concerns data aggrega-
tion, while the proposed method in this paper extends the homomorphic method
to provide privacy protection functions for statistical data analyzing.

2© The application scenarios are different. The previous one is to process
medical images, while the proposed method in this paper aims to process elec-
trical data.

It is valuable to combine the homomorphic encryption and compressed sens-
ing theories, especially in the big data era when information is exposing. To begin
with, nowadays, huge amounts of data may be collected. How to efficiently and
securely transmit and process these data becomes a burning issue. Compressed
sensing methods are quite suitable to handle such scenarios because of their
data dimensional reduction abilities. Namely, CS methods could compress data
to make data sampling and transmission more efficient. In addition, since the
CS measurement matrices could act as secret keys of symmetric cryptosystems,
CS methods could also enhance the security level of data sampling and trans-
mission [24]. Moreover, the original data to be processed may concern private
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or confidential information. Most traditional CS methods could not achieve the
privacy protection goal for data owners during data processing by data analysts,
while homomorphic encryption supports operations in the encrypted domain.
So, it is significant to combine homomorphic encryption and compressed sensing
theories, which could ensure efficiency, security and privacy protection during
data sampling, transiting and processing. Electrical data may have characteris-
tics such as multiple sources, multi-scale spatial and temporal distribution, etc.,
which makes research on electrical data processing methods based on the above
two theories stimulating. The main contributions of this paper are as follows:

1© This paper proposes an electrical data processing method called CSHEM,
which could achieve data compression and encryption for data owners in only
one step.

2© CSHEM could realize sharing the operation results, that is, the recon-
structed results of electrical data without disclosing original data of each data
owner.

3© The data processed by CSHEM can compress the original data to 50 %.
The experimental results show that the reconstructed results effectively reflect
the statistical characteristics of the original data.

2 Preliminaries

This section briefly reviews the preliminaries concerning compressed sensing and
homomorphic encryption. Specifically, in Sect. 2.1, research related CS is intro-
duced, and in Sect. 2.2, research related homomorphic encryption is introduced.

2.1 Compressed Sensing

Compressed sensing is a signal processing method, which could represent original
signals with dimensionally-reduced signals, i.e., observation values [25]. CS makes
use of the redundancy of original signals. If there are at most k non-zero elements
in vector x, we call the vector x is a k-sparse vector. Assume the original signal
is s ∈ R

N , and signal s is k-sparse or signal s is k-sparse under the sparse basis
Ψ , namely, x = Ψs, where x ∈ R

N is a k-sparse vector, the process of compressed
sensing is taken as (1),

y = As = AΨ−1x = Φx (1)

where A ∈ R
M×N (M < N) is the measurement matrix, Φ = AΨ−1 is the

sensing matrix and y ∈ R
M is the observation signal.

To reconstruct the original signals from the observation signals accurately,
the Restricted Isometry Property (RIP) should be satisfied [17,26], that is to
say, if there exists δk ∈ (0, 1) which satisfies (2),

(1 − δk)‖x‖22≤‖Φx‖22≤(1 + δk)‖x‖22 (2)

where x is a k-sparse vector.
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2.2 Homomorphic Encryption

Homomorphic encryption is a data encryption method, which often has the data
protection function [27]. It allows participants to directly perform specific opera-
tions in the ciphertext domain without decrypting the encrypted data. The data
obtained after decrypting the operation results are consistent with the results
obtained by directly performing the same operations with the plaintext.

Definition 1 (Homomorphic Encryption). For plaintext domain P and
ciphertext domain E, the cryptographic function ψ : P → E is called an additive
homomorphic encryption when it satisfies the following properties:

For x, y ∈ P , Enc(x+y) = Enc(x)⊕Enc(y) or x+y = Dec(Enc(x)⊕Enc(y))
is a true statement, where + and ⊕ are two kinds of operations, Enc and Dec
are the encryption algorithm and the decryption algorithm of ψ.

3 CSHEM

In this section, the proposed method is introduced first. Then we discuss the
feasibility of the proposed method.

3.1 The Proposed Method

CSHEM is a data processing method based on compressed sensing and homo-
morphic encryption, which could be used to share statistical features of original
electrical data between participants.

As shown in Fig. 1, there are four kinds of participants of CSHEM: data
owner, service provider, researcher and key distribution center.

1. Data Owner: Data owners possess the original data, that is, unencrypted
data, and are willing to support researchers to study statistical features of the
original data on the premise that data privacy is ensured. Data owners could be
institutions or end users with original data, such as power companies, households
with smart meters or other data collection terminals. The main work of data
owners includes: 1© Obtain and store the original data. 2© Encrypt the original
data with the key provided by the key distribution center. 3© Transmit the
encrypted data to the service provider.

2. Service Provider: Service providers receive the encrypted data from data
owners, and on the premise of ensuring data privacy, that is, do not decrypt
the encrypted data, provide data processing services, and send the processing
results to researchers. Service providers could be organizations or other enti-
ties with certain capacity of data processing and computing. The main work of
service providers includes: 1© Obtain and store the encrypted data. 2© Process
the encrypted data, i.e., conduct operations in the ciphertext domain without
decrypting the encrypted data. 3© Transmit the results of data processing to
researchers.

3. Researcher: Researchers receive the encrypted processing results from ser-
vice providers, decrypt the results, and conduct further research on the decrypted
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Fig. 1. The framework of CSHEM for data aggregation in Smart Grid

results. Researchers could be institutions or individuals who want to study fea-
tures of the original data owned by multiple data owners, such as government
regulatory authorities, colleges and universities. The main work of researchers
includes: 1© Obtain and store the encrypted data processing results. 2© Decrypt
the encrypted data processing results with the key provided by the key distri-
bution center. 3© Conduct research using the decrypted results.

4. Key Distribution Center: Key distribution centers take charge of key gen-
eration, distribution and maintenance, and provide keys to data owners and
researchers to accomplish data encryption and decryption. Key distribution cen-
ters could be independent and trusted third-party organizations or other enti-
ties. The main work of key distribution centers includes: 1© Lead the processes
of key generation. 2© Securely distribute keys to data owners and researchers.
3© Lead the processes of key regeneration and destruction. Noticeably, the secu-
rity level of secret keys may decide the security level of cryptographic schemes.
Therefore, specific mechanisms should be deployed to protect the processing of
key generation, distribution and destruction [28–30]. Such mechanisms could be
sophisticated, which are not discussed in this paper.

We suppose that there are n(n ∈ Z
+) data owners, and the original data

owned by the ith (1 ≤ i ≤ n) data owner is si ∈ R
N . In this paper, data si

contain electrical records collected by smart meters from different households.
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Fig. 2. The workflow of CSHEM for electrical data processing

Researchers want to study statistical features of the original data owned by
data owners, such as the mean values of the samples, and do not care about
the specific contents of these original data. Data owners are willing to support
the work of researchers without exposing their own original data. The proposed
method provides a solution for this demand. The main data processing flow of
CSHEM is shown in Fig. 2, which includes three phrases.

Phase I: In order to protect the privacy of their original data, data owners
firstly encrypt the original data using a CS method. Notably, this has the fringe
benefit of compressing the original data while encrypting them, which may save
both storage space and transmission bandwidth.

In Phase I, first, data owners need to increase the sparsity of the original
data si, since in the real world, electrical data may not be sparse. The process
is shown as (3),

xi = Ψsi (3)

where xi ∈ R
N is the sparse signal of the ith data owner, and Ψ ∈ R

N×N is the
sparse basis. In this paper, we use orthogonal discrete Fourier matrices as sparse
bases.



262 W. Wu et al.

After that, data owners use a CS method to compress and encrypt signal xi.
The data compression and encryption process is shown as (4),

yi = Φxi (4)

where yi ∈ R
M is observation signal obtained by the ith data owner, and Φ ∈

R
M×N is the sensing matrix. In this paper, we use matrices padded by Tent

chaotic sequences as sensing matrices, and these sensing matrices act as secret
keys. The generation of a Tent chaotic sequence zl, l = 1, 2, 3 · · · is as (5),

zl+1 =

{
zl/b, 0 < zl < b

(1 − zl)/(1 − b), b < zl < 1
(5)

where b, 0 < b < 1 is the Tent chaotic parameter, and z0 is the initial value.
Notably, when b = 0.5, the generated sequences perform short periods. Because
of this, usually, the value of b is not set to be 0.5. Another thing to be noteworthy
is that the initial value z0 should not be equal to b. Chaotic sequences can be
used to construct sensing matrices due to their good pseudo-randomness. Similar
to Gaussian matrices and Bernoulli matrices, the sensing matrices padded by
chaotic sequences also satisfy RIP with overwhelming probabilities [17,31,32].

Then the ith data owner transmits the compressed and encrypted data yi to
the service provider through open channels. At this point, the work of Phase I
is completed.

Phase II: Service providers of CSHEM only provide their storage and com-
puting capabilities. Since service providers do not own secret keys, they can only
operate on the ciphertext in the encryption domain. Namely, the original data
of data owners will not be exposed to the service providers.

In Phase II, after receiving the encrypted data sent by data owners, the ser-
vice provider performs homomorphic operations without decrypting these data.
In this paper, we suppose that researchers want to get the mean value of the
original data owned by n data owners. The homomorphic operation process is
shown as (6),

ye =
1
n

n∑
i=1

yi (6)

where ye is the encrypted operation result calculated in the encryption domain.
Then the service provider transmits the encrypted operation result ye to

researchers through open channels. At this point, the work of Phase II is com-
pleted.

Phase III: Researchers want to study statistical features of the original data
owned by data owners. In this paper, the research objectives are the mean values
of the samples. Researchers do not care about the specific contents of the original
data owned by data owners. In fact, even if researchers are interested in the
contents of original data, they could not reconstruct the original data, since
each yi could not be calculated using ye. That is to say, the original data owned
by data owners will not be exposed to researchers.
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In Phase III, first, researchers decrypt and decompress the encrypted mean
value ye which is calculated in the encryption domain using the secret key, i.e.
the sensing matrix Φ. The decryption and decompression process of compressed
sensing is actually the process of reconstructing the original signal using the
observation signal. There has been much research on the CS signal reconstruction
methods [33–35]. In this paper, we use orthogonal matching pursuit algorithm
(OMP) for signal reconstruction [36,37], as shown in (7),

∧
xe = arg min

xe

‖xe‖1 subject to ye = Φxe (7)

where xe is the sparse form of the mean value, and
∧
xe is the estimate of xe.

So far, Phase III is completed. Researchers obtain the statistical feature, that
is the reconstructed mean value of the original data.

3.2 The Feasibility of CSHEM

The feasibility of the proposed method is based on the additive homomorphic
character of compressed sensing process [23]. In this section, we briefly discuss
the theoretical feasibility of the proposed method. From (1), (3) and (4), we
could obtain,

Dec(Enc(
s1
n

+
s2
n

+ · · ·+ sn
n

)) = se =
1
n

n∑
i=1

si =
1
n

n∑
i=1

Ψ−1xi =
Ψ−1

n

n∑
i=1

xi (8)

and

Enc(
s1
n

)+Enc(
s2
n

)+ · · ·+Enc(
sn
n

) =
1
n

n∑
i=1

Asi =
A

n

n∑
i=1

Ψ−1xi =
AΨ−1

n

n∑
i=1

xi

(9)
that is

Enc(
s1
n

+
s2
n

+ · · · +
sn
n

) = Enc(
s1
n

) + Enc(
s2
n

) + · · · + Enc(
sn
n

) (10)

where Enc and Dec are the encryption and decryption processes of CSHEM.
When implementing CSHEM, first, the ith data owner calculates Enc(si)

and transmits the encryption results to the service provider. After n results are
received, the service provider calculates Enc(s1) + Enc(s2) + · · · + Enc(sn) and
transmits the encryption result to researchers. According to (10), researchers
could decrypt the encryption result of Enc( s1n + s2

n + · · · + sn
n ), i.e., they could

obtain the mean values of the original data owned by data owners.
It is worth noting that the premise of the above feasibility demonstration is

that the original signal could be accurately reconstructed using the observation
signal by CS method, i.e.,

∧
se = se. While in the real world, the reconstructed

signal may not be exactly the same as the original signal, due to the influence of
compression ratios, the constructions of sensing matrices and other factors. The
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application scenario of this paper is to help researchers analyze the statistical
characteristics of electrical data. When the reconstructed signal is very close to
the original signal, i.e., ‖∧

se − se‖ < ε, the reconstructed signal can express the
statistical features of the original signal. Specifically, in this paper, the mean
value of the original signal is the research object.

4 Experiment and Analysis

In this section, first, the feasibility of the proposed method is verified by experi-
ments. Then the security of the proposed method is discussed from two aspects:
the key space and the sensitivity of the initial values concerning the secret key.

4.1 Experiment to Verify Feasibility

In this paper, we use electrical data collected from 125 different households as
experimental data set. The electrical data used in the experiments of this paper
are obtained from the Smart project of the UMass Trace Repository, which
could be accessed by visiting the website (traces.cs.umass.edu). To begin with,
we randomly divide these 125 households into 5 groups, that is, each data group
contains electrical data collected from 25 households. Then, we calculate the
mean value of each data group and show the results by blue lines in Fig. 3. At
the same time, we process the electrical data of each group with CSHEM: 1© We
compress and encrypt the original data under different compression ratios. Here
the compression ratio refers to the ratio of the dimension of the compressed signal
to the dimension of the original data. In Fig. 3, columns a to e show experimental
results used electrical data from data group 1 to 5. The reconstruction results
shown in a1-a5, b1-b5, c1-c5, d1-d5 and e1-e5 are obtain by experiments under
compression ratios 1

12 , 1
6 , 1

4 , 1
2 and 2

3 , respectively. 2© We perform homomorphic
operations on the encrypted data of each group, and obtain the encrypted forms
of the mean values of the original data. 3© We reconstruct the mean values of
data from each group and show the results by red lines in Fig. 3.

It can be implied from the experimental results shown in Fig. 3 that when
the compression ratio is low, such as when the compression ratio is 1

12 or 1
6 ,

the reconstructed mean values cannot truly express the real mean values. When
the compression ratio rises to 1

4 , although the reconstructed mean values do not
completely coincide with the real mean values, the reconstructed mean values
can roughly express the real mean values. When the compression ratio is high,
such as when the compression ratio is 1

2 or 2
3 , the reconstructed mean values can

express the real mean values more accurately. In summary, we consider that the
proposed method is practically feasible according to the experimental results.
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Fig. 3. The mean values of original electrical data and the reconstructed mean values

4.2 Security Analysis

A cryptosystem is considered to be secure if it satisfies P(c) = P(c|p), where
p is the plaintext and c is the ciphertext [38]. When designing modern cryp-
tosystems, we often try to achieve computational security, i.e., the cryptosystem
cannot be cracked by existing tools within polynomial time. More specifically, a
cryptosystem could be considered to be secure, when it has the characteristics
of large key space and initial value sensitivity [39]. The two characteristics of
CSHEM are discussed as follows.

The CSHEM proposed in this paper uses sensing matrix Φ padded with
Tent chaotic sequences as the secret key. The parameters involved in construct-
ing sensing matrices are: 1© the Tent chaotic parameter b, 2© the initial value
to generate Tent chaotic sequence z0, 3© the initial sampling position r0, 4©
the sampling distance d. That is to say, the key space of the proposed method
KCSHEM could be calculated by (11),

KCSHEM = K1 × K2 × K3 × K4 (11)

where K1, K2, K3 and K4 are decided by parameters b, z0, r0 and d, respectively.
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Table 1. Key space of CSHEM

Parameter name Prameter type Value range Key space

b Double precision floating point (0, 1) K1 ≈ 1 × 1016

z0 Double precision floating point (0, 1) K2 ≈ 1 × 1016

r0 Positive integer [1, 1000] K3 = 1000

d Positive integer [1, 100] K4 = 100

The experiments in this paper use a 64-bit central processor, which processes
double precision floating point numbers to 16 digits after the decimal point. The
initial sampling position is selected from 1 to 1000. The sampling distance is
selected from 1 to 100. So, the key space of the proposed method is 1037. See
Table 1 for details. Obviously, increasing the precision of parameters or expand-
ing their value ranges could increase the key space of CSHEM, which may help
to increase the security level of the proposed method. However, such practices
may cause the proposed methods to require more storage space or more com-
putational resources. Therefore, when using CSHEM, the key space should be
reasonably designed according to the actual situations.

Sensitivity of initial values is one of the characteristics of chaotic sequences.
Even if the initial value of a chaotic sequence changes slightly, the subsequent
values of the sequence will change entirely. The proposed method uses Tent
chaotic sequences to generate secret keys. Figure 4 shows the sensitivity of ini-
tial values of Tent chaotic sequences. The blue curves and the red curves show
Tent chaotic sequences generated with different initial values. In Fig. 4(a), the
difference between the initial values used by the blue curve and the red curve is
10−15. The green curve shows the difference between the two sequences above.
In Fig. 4(b), the difference between the initial values used by the blue curve and
the red curve is 10−16.

Fig. 4. Sensitivity to initial conditions of tent sequences
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Figure 5 shows the impacts on reconstruction results of CSHEM when the
initial values of the Tent chaotic sequences to construct the secret keys change
slightly. Again, we use the electrical data of 125 households and divide them into
5 groups. Each group contains data from 25 households. In Fig. 5, columns a to
e show the reconstruction results of groups 1 to 5. The blue lines show the meal
values calculated using the original data. The red lines show the reconstructed
mean values generated with different secret keys. The compression ratio is 1

2 . In
lines 1 to 5, compared with the initial values of the Tent chaotic sequences to
construct the right secret key, the initial values of the Tent chaotic sequences to
construct secret keys have changed 0, +1016, −1016, +1015 and −1015, respec-
tively.

Fig. 5. The impact of changes of Tent initial values on CSHEM reconstruction results

From Fig. 5, we could imply that when using CSHEM to reconstruct the mean
values of electrical data, even if the initial values of the Tent chaotic sequences to
generate the secret keys have an extremely small change, such as +1016, −1016,
+1015 and −1015, the reconstructed mean values have changed significantly.
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5 Conclusion

This paper proposes a secure data processing method for electrical data, called
CSHEM. The proposed method is motivated by the combination of compressed
sensing and homomorphic encryption. CSHEM uses CS to compress and encrypt
the original data to achieve both resource saving and security enhancement.
At the same time, homomorphic encryption is used to ensure the privacy of
electrical data, i.e., the original data does not need to be exposed in plaintext
to researchers or other third-party organizations. In fact, encrypted data are
operated in the encryption domain, and finally researchers only reconstruct the
operation results. In the future, based on the work of this paper, expanding the
types of homomorphic operations on the encryption domain could be a research
direction, which may help researchers or other third-party institutions to research
on the original data in greater detail.
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Abstract. The acquisition of PM2.5 concentration mainly relies on
small and provincial control air quality monitoring stations, respectively.
The distribution of provincial control stations (PCSs) is sparse as its high
cost, conversely the distribution of small stations is relatively dense and
spread over the whole space as the relatively low cost, thus the observa-
tions of small stations can be employed to predict that of PCSs. Based on
this considerations, in this paper, we propose a novel multi-source spa-
tiotemporal data fusion method via the nearest neighbor grids, named
MSF-NNG, to interpolate and predict PM2.5 concentration of PCSs by
utilizing those data of small stations. Firstly, we divide the city into
1 km× 1 km grids, and then Cressman interpolation method is employed
to fill the missing ones with the observations of small stations, wherein
the observations include PM2.5 concentrations, humidity, temperature
and wind speed. Secondly, it needs to find the neighbors of a PCS based
on its grid partitions. Thirdly, MSF-NNG is proposed to interpolate
and predict the PM2.5 concentrations of PCS by fusing the informa-
tion of PM2.5 concentrations, humidity, temperature and wind speed of
the corresponding neighbor grids. Finally, comparison experiments are
conducted on several data sets, the results show MSF-NNG method with
obvious advantages in interpolation and prediction for PM2.5 concentra-
tions over fourteen and twelve algorithms, respectively.

Keywords: PM2.5 concentration prediction · Temporal convolutional
network · Interpolation · Provincial control station data · Neural
network · Small stations data

1 Introduction

Air pollution is a serious threat to people’s health. According to the World
Health Organization report, about 4.2 million people worldwide have died from
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diseases caused by air pollution [1]. Of all the air pollutants, particulate pollution
(PM) has the most negative impact on people’s lives, because PM accumulates
toxic and harmful substances in the air, these harmful substances on the human
body has induced respiratory disease, and increase the risk of cardiovascular
and cerebrovascular diseases [2]. In China, with the process of urbanization and
industrial agglomeration, the degree of environmental pollution is often aggra-
vated [3]. Based on the above considerations, people pay more and more attention
to the monitoring and prevention of air pollution because of the consideration of
human health and sustainable development, many cities have set up their own
air quality monitoring stations to measure the concentration of air pollutants
[4]. But the significance of setting up monitoring stations is not only to monitor
the concentration of air pollutants, the data collected from the concentration of
air pollutants can not only be used for the government to formulate air pollutant
prevention and control policies [5], the fine-grained data are also useful for public
people make outdoor activities plans [6].

A city usualy own not enough pullution monitoring stations due to the expen-
sive cost of buliding and maintaining [7], data collected from air quality moni-
toring networks also have the problem of missing data [8], and so on. In many
scenarios which require real-time air pollutant concentrations in the monitored
area, we have to predict pollutant concentrations at spatial and temporal scales.
Similar to the data collected by the coastal environment monitor and the trans-
mission error of the monitor, sensor failures and equipment maintenance prob-
lems often lead to data loss [9]. [10] experiments that use aerosol and other
data to predict PM2.5 concentration for high-precision PM2.5 concentration is
the same as missing values prediction. Sometimes, not only is the target data
missing, but the data needed for the prediction is also missing, just like [11], the
authors used interpolation algorithms to complete aerosol data with missing data
and then used the completed data to make PM2.5 concentration predictions. We
simulate the application of missing data and high-precision data prediction by
predicting the PM2.5 concentrations of PCSs in our experiment. In short, we
made the following three contributions:

1. The data of pollutant concentration monitoring points and meteorological
monitoring points are interpolated into surface data by interpolation algo-
rithm. Spatial information is integrated into surface data through point data
to surface data, this is equivalent to incorporating new spatial information
into the point data and then increasing the dimension of the point data.

2. A deep learning algorithm for multi-source data fusion is proposed, which
extracts features from multi-source data and fuses different types of data
and their spatial information, a mapping from multi-source data to PM2.5
concentration from PCS was constructed.

3. Two experiments are designed, the one is to investigate the spatial interpo-
lation of PM2.5 concentrations by employing small air quality monitoring
stations data and meteorological stations data at the current moment, it is
named PM2.5 concentration interpolation, the other one is to predict the
PM2.5 concentrations at the next moment of the PCS by fusing the small
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air quality monitoring stations data and meteorological stations data in cur-
rent moment, it is called PM2.5 concentration prediction. The experimental
results show MSF-NNG with excellent ability in interpolation and prediction
for PM2.5 concentration when compared to other methods.

The main contents are organized as follows: Sect. 2 introduces the related
works, Sect. 3 introduces data preprocessing and MSF-NNG, Sect. 4 shows the
experimental results and Sect. 5 gives the conclusion.

2 Overview

In this section, we discuss the algorithms about spatial resolution enhancement,
which can be used to enhance the spatial resolution of PM2.5 monitoring sta-
tions.

In Ref. [12], Malings et al. proposed a spatial resolution enhancement algo-
rithm which aims to improve the spatial resolution of air quality data by employ-
ing a dense sensor networks with low-cost. However, high spatial resolution of
air pollution concentrations requires numerous air pollution monitoring stations
to cover the target area, which is not feasible because of the high cost of instal-
lation and maintenance [13,14]. Li et al. [15] compares a number of spatial
interpolation methods applied to the environment and divides them into non-
geostatistical methods, geostatistical methods and combined methods, inverse
distance weighting (IDW) and Kriging belongs to geostatistical methods, and
support vector regression (SVR) and random forest (RF) are divided into new
hybrid methods. Sekulic et al. [16] proposed a random forest spatial interpolation
(RFSI) method for land surface temperature and humidity spatial interpolation.

In addition to the widespread use of machine learning algorithms for pre-
dicting PM2.5 concentrations, researchers have also developed a number of
deep learning algorithms for predicting PM2.5 concentrations as deep learn-
ing becomes more and more popular. Li et al. [19] use a generalized regression
neural network (GRNN) model to predict a national-scale PM2.5 concentrations
in China. Huang et al. [20] proposed a gated recurrent unit (GRU) neural net-
work based on the decomposition of an empirical model for predicting next hour
PM2.5 concentrations which is greatly exceed single GRU model. Wu et al. [21]
used a long short-term memory neural network (LSTM) [22] for PM2.5/PM10
ratio prediction. The experimental results show LSTM is superior than other
algorithms in accuracy and stability for PM2.5/PM10 ratio prediction. Ahmed
et al. [23] uses a convolutional neural network (CNN) input of seven different
pollutant satellite images to estimate daily average PM2.5 concentrations. This
work, however, requires plenty of satellite images.

In this paper, MSF-NNG is proposed for PM2.5 concentrations prediction by
employing multi-source spatiotemporal data.

3 Method

This section aims to interpolate and predict the PM2.5 concentrations of PC sta-
tions by introducing a multi-source data fusion model based on nearest neighbor
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grids, wherein the multi-source data consist of PM2.5 concentrations, humid-
ity, temperature and wind speed of small stations and meteorological stations.
To achieve this accomplishment, we need to divide the entire city according to
its location, and then get the corresponding interpolations or predictions for
the PM2.5 concentrations, humidity, temperature and wind speed based on the
observations.

3.1 Cressman Interpolation Method

Let X denote the region of entire city, we can get a division with m × n grids
by dividing the region of entire city into 1 km× 1 km grids. Let Xt

l = {xt
lij , i =

1, · · · ,m, j = 1, · · · , n} ∈ Rm×n(l = 1, 2, 3, 4) be divisions of entire city X at
time t corresponding to PM2.5 concentrations (l = 1), humidity (l = 2), temper-
ature (l = 3) and wind speed (l = 4), where Xt

1 denotes the division of PM2.5
concentrations, and Xt

l(l = 2, 3, 4) denotes that of the humidity, temperature
and wind speed, respectively.

Crissman interpolation [24] is a fast spatial interpolation algorithm for spatial
prediction, which is stable when the spatial resolution of the data used is higher
than the grid resolution [25]. Suppose there are some grids with observations
corresponding to each Xt

l and that of the rest ones are unknown and need to be
filled, we fill the unknown values by Cressman interpolation method and obtain
the corresponding dense matrix ̂X

t

l = {x̂t
lij}(l = 1, 2, 3, 4).

As mentioned above, Xt
l(l = 1, 2, 3, 4) is incomplete with some grids are

not monitored, which can be solved by introducing projection operator PΩ(Xt
l)

onto known entries of Xt
l . The set of indices of the observed entries of Xt

l is
denoted as Ωt

l = {(i1, j1), (i2, j2), · · · , (im, jm)}. The observation set is therefore

{xt
l,i,j : (i, j) ∈ Ωt

l}, and (PΩ(Xt
l))ij =

{

xt
lij , (i, j) ∈ Ωt

l

0, otherwise
. Especially, we treat

the unobserved entries as 0 in Xt
l .

Cressman interpolation method aims to compute the unobserved entry xt
lij

according to Eq. (1):

x̂t
lij =

∑

(i,j)∈Ωt
l

λt
lijx

t
lij , (1)

where λt
lij is the weight of the xt

lij , and

λt
lij =

w̄t
lij

∑

(i,j)∈Ωt
l

w̄t
lij

, (2)

w̄t
lij =

R2
l − (rtlij)

2

R2
l + (rtlij)2

, (3)

where Rt
l represents the search radius of target grid xt

li′ j′ , and rtlij is the distance
between xt

lij and xt
li′ j′ . The interpolation process is shown in Fig. 1.
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Fig. 1. Cressman interpolation method

3.2 Multi-source Data Fusion Model

As discussed in Sect. 3.1, we can get four dense matrices by Cressman interpola-
tion method based on those observations of small air quality monitoring stations
corresponding to PM2.5 concentrations, humidity, temperature and wind speed,
respectively. The nearby observations are always more similar than the remote
one in both time and space [10], so our goal is to predict the PCS’s values based
on the values of nine grid points of dense matrices around PCS.

Typically, suppose Xt
P = {xt

pij}(l = 1, 2, 3, 4) denote the division of entire
city correspond to PCS at time t, and Xt+1

P = {xt+1
pij }(l = 1, 2, 3, 4) denote the

division at time t + 1, the value of xt
pij and xt+1

pij are computed by the nearby
grid points as follows, respectively:

xt
pij = F(G1(xt

ij), G2(xt
ij), G3(xt

ij), G4(xt
ij)), (4)

xt+1
pij = T (G1(xt

ij), G2(xt
ij), G3(xt

ij), G4(xt
ij)), (5)

wherein Gl(xt
ij)(l = 1, 2, 3, 4) are the collections of nearest neighbor grids around

the PCS’s location (i, j) from dense matrices ̂X
t

l(l = 1, 2, 3, 4). F in Eq. (4) is
an arbitrary mapping function which is used to interpolate the values of PCS at
time t, and T in Eq. (5) is employed to predict the values of PCS at next time
t + 1 by using the data sets collected at time t. Herein, F and T establish the
fusion model frameworks for interpolation and prediction, where interpolation
denotes the data fusion in a spatial sense, and prediction means the data fusion
in a temporal sense, respectively. And both of F and T are composed of CNN
and TCN, we collectively refers to this kind of fusion method as multi-source
spatiotemporal data fusion model based on nearest neighbor grids, short for
MSF-NNG. The detailed process can be shown in Fig. 2.

As shown in Fig. 2, MSF-NNG is composed of two parts where CNN is used
for initial feature extraction, TCN is employed to multi-source data fusion, which
are given as follows:
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Fig. 2. The framework of MSF-NNG

– First part refers to feature extraction. We use CNN to extract the features
of each Gt

l(l = 1, 2, 3, 4), wherein those latent features can be represented
as F t

l (l = 1, 2, 3, 4), Gt
l(l = 1, 2, 3, 4) consists of nine grid points around the

PCS’s location corresponding to PM2.5 concentrations, humidity, tempera-
ture and wind speed, respectively.

– Second part refers to feature fusion. Those latent features F t
l (l = 1, 2, 3, 4)

are extracted from multi-source Gt
1, G

t
2, G

t
3, G

t
4 can be employed as the inputs

of TCN to get the integrated and unified latent features, which are explored
to predict the values of PCS. Specifically, TCN integrates the features F t

l (l =
1, 2, 3, 4) and outputs a 4 by 4 feature matrix F t, spatial characteristics of
F t

l (l = 1, 2, 3, 4) are integrated into a latent space, and they are structured
as 4 by 4 feature matrix F t. To fit the spatial information, FCN flattens F t

into a 16 by 1 column vector and feeds it into a network of hidden layers.

We establish a multi-source data fusion framework which is composed of
CNN and TCN based on above descriptions, by which we can predict the PM2.5
concentrations, PM10 concentrations and other air pollution concentrations.

4 Experiments

4.1 Data Set

As discussed in Sect. 3.1, we can get four dense matrices by Cressman interpola-
tion method based on those observations of small air quality monitoring stations
corresponding to PM2.5 concentrations, humidity, temperature and wind speed,
respectively. The nearby observations are always more similar than the remote
one in both time and space [10], so our goal is to predict the PCS’s values based
on the values of nine grid points of dense matrices around PCS.
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The experiment is displayed on 8763 hourly data of PM2.5 concentrations,
humidity, temperature and wind speed of one city in China from October 12,
2018 to October 12, 2019, which consist of 186 small air quality monitoring
stations and 5 PCSs. To test the performance of the described algorithms, we
first need to divide those data sets into training set, validation set and test set,
wherein the training set with 7009 h of data from October 12, 2018 to July 31,
2019, the validation set consist of 889 h of data from August 1, 2019 to September
6, 2019, and the testing set contains 865 h of data from September 7, 2019 to
October 12, 2019. We eliminate a small amount of missing hourly data which
with few values and it doesn’t affect the experimental results.

4.2 Algorithm Compared

To indicate the performance of our technique, we compare our MSF-NNG algo-
rithm to Linear Regression (LR), KNN, Decision Tree (DT), IDW, OK, SVR,
MLP, RF, Gradient Boosting (GB), ET, CNN and LSTM, the detailed descrip-
tion are giving as follows:

• K-Nearest Neighbor (KNN): KNN is a non-parametric method for outputting
the average of K nearest input data [26].

• IDW and Ordinary Kriging (OK): IDW [27] and OK [28] are two traditional
statistical interpolation methods, wherein IDW interpolation method gets its
name from its definition of the relationship between weight and distance,
which is inversely proportional to the distance; OK interpolation method
employs observations to estimate the parameters of a random field and then
predicts the values of an empty grid from the random field [16].

• Extremely Randomized Trees (ERT): ERT [30] is a tree-based ensemble learn-
ing algorithm, which can be used to solve complex regression problems. ERT
divides the nodes of the tree by randomly selecting the cut points, and uses
all the training samples to construct the tree during the training process [18].

4.3 Evaluation Metrics

To test the effectiveness of all algorithms, RMSE (Root Mean Squard Error) and
R2 are employed:

RMSE =

√

√

√

√

1
n

n
∑

i=1

(ŷi − yi)
2
, R2 = 1 −

∑n
i=1 (ŷi − yi)

2

∑n
i=1 (ȳi − yi)

2 ,

where ŷi is the predicted value, yi denotes real value, ȳi is the mean value of
real value, and n is the number of samples, the values of RMSE is smaller are
better, whereas the larger the value of R2 the better.
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4.4 Performance Comparison

The spatial and temporal distribution of PM2.5 concentrations are different
at the different stations, which can be shown in Fig. 3. It was noted in [17]
that PM2.5 concentrations are strong correlated to the geographical environ-
ments which include meteorological factors, land changes and human activities
and so on.

Table 1. RMSE comparison of PM2.5 concentration interpolation

Methods(RMSE) Station 1 Station 2 Station 3 Station 4 Station 5 Average

LR 6.873 12.975 8.176 7.958 12.276 9.652

KNN 15.736 15.871 8.988 15.059 13.206 13.722

DT 11.294 15.585 8.257 10.533 12.273 11.588

SVR(Linear) 6.129 12.180 6.836 6.844 11.476 8.693

SVR(Poly) 8.896 14.283 8.884 8.058 12.560 10.536

SVR(RBF) 7.863 12.534 7.651 7.483 11.530 9.412

MLP 7.537 11.942 7.020 6.872 10.233 8.721

RF 10.728 12.593 7.274 7.404 10.125 9.625

GB 8.947 13.036 7.555 7.059 10.739 9.467

ERT 18.028 15.625 8.894 11.822 13.320 13.538

CNN 6.978 12.063 7.026 6.770 10.151 8.598

LSTM 7.398 11.947 7.093 7.371 9.278 8.617

OK 10.937 14.464 14.406 11.145 13.255 12.842

IDW 5.927 11.701 7.476 6.971 8.682 8.151

MSF-NNG 2.966 5.225 3.179 4.103 4.916 4.078

As can be seen from Tables 1, 2 and Figs. 4, 5, the RMSE of PM2.5 concen-
trations in spatial interpolation is smaller than that of prediction, some models
like LR, RF, GB, and ERT, whose RMSE in spatial interpolation is higher than
that of prediction.

Tables 3 and 4 verify the advantage of MSF-NNG by employing R2, wherein
the average R2 are greater than 0.9 in both spatial interpolation and prediction,
while the best IDW among other algorithms is only 0.7, and the rest are less
than 0.5.

The results of Table 3 show MSF-NNG is superior to other methods in spa-
tial interpolation of PM2.5 concentrations, except which SVR (Linear) perform
best, and KNN and ERT perform worst, this is because PCS’s observations
with relatively large fluctuation at the different stations, and the relationships
between the PCSs and their nearest neighbor grids are irregular. Specifically,
when we use regression model to forecast the PM2.5 concentrations, it first needs
to interpolate the missing values by using the Cressman interpolation methods,
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(a) Station 1 PM2.5
concentrations distribu-
tion

(b) Station 2 PM2.5
concentrations distribu-
tion

(c) Station 3 PM2.5
concentrations distribu-
tion

(d) Station 4 PM2.5 concentra-
tions distribution

(e) Station 5 PM2.5 concentra-
tions distribution

(f) Box plot for 5 PCS

Fig. 3. PM2.5 concentrations of 5 PCS in time series
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Fig. 4. The box plot for RMSE comparison of PM2.5 concentration interpolation

Table 2. RMSE comparison of PM2.5 concentration prediction

Methods(RMSE) Station 1 Station 2 Station 3 Station 4 Station 5 Average

LR 6.656 13.377 8.052 8.756 12.389 9.846

KNN 10.603 15.772 9.105 14.123 14.210 12.763

DT 9.796 16.233 8.544 10.773 12.553 11.580

SVR(Linear) 5.869 12.351 6.668 7.009 11.519 8.683

SVR(Poly) 8.694 14.262 8.803 8.184 12.692 10.527

SVR(RBF) 7.651 12.641 7.673 7.589 11.695 9.450

MLP 7.961 12.367 7.905 6.564 9.510 8.861

RF 8.271 12.909 7.363 7.508 10.307 9.272

GB 8.041 13.773 7.575 7.458 11.458 9.661

ERT 11.51 15.985 9.718 12.275 13.569 12.612

CNN 6.818 12.404 7.032 6.893 10.367 8.703

LSTM 6.035 12.135 6.849 8.543 10.455 8.804

MSF-NNG 3.095 5.225 3.277 4.259 5.054 4.182
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Fig. 5. The box plot for RMSE comparison of PM2.5 concentration prediction

Table 3. R2 comparison of PM2.5 concentration interpolation

Methods(R2) Station 1 Station 2 Station 3 Station 4 Station 5 Average

LR 0.669 0.063 0.631 0.730 –0.180 0.382

KNN –0.362 0.119 0.292 0.335 0.253 0.127

DT 0.151 –0.053 0.332 0.471 0.237 0.227

SVR(Linear) 0.746 0.266 0.723 0.805 –0.066 0.494

SVR(Poly) –0.586 –1.001 –0.427 0.441 –1.323 –0.579

SVR(RBF) 0.075 –0.193 0.169 0.588 –0.409 0.045

MLP 0.321 0.145 0.447 0.695 0.254 0.373

RF –0.329 0.031 0.399 0.680 0.357 0.228

GB –0.292 –0.084 0.240 0.665 –0.013 0.103

ERT –0.469 –0.138 0.295 0.489 0.159 0.067

CNN 0.417 0.099 0.467 0.715 0.051 0.350

LSTM 0.342 –0.160 0.480 0.553 0.583 0.359

OK 0.588 0.069 0.484 0.602 0.238 0.396

IDW 0.836 0.443 0.736 0.811 0.697 0.705

MSF-NNG 0.951 0.894 0.939 0.922 0.917 0.924
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Table 4. R2 comparison of PM2.5 concentration prediction

Methods(R2) Station 1 Station 2 Station 3 Station 4 Station 5 Average

LR 0.666 –0.051 0.620 0.661 –0.269 0.325

KNN 0.082 –0.041 0.276 0.370 0.238 0.185

DT 0.299 –0.091 0.343 0.460 0.252 0.252

SVR(Linear) 0.759 0.223 0.728 0.790 –0.081 0.484

SVR(Poly) –0.457 –0.900 –0.312 0.425 –1.390 –0.527

SVR(RBF) 0.133 –0.236 0.184 0.564 –0.570 0.014

MLP 0.279 –0.105 0.278 0.752 0.362 0.313

RF 0.263 –0.111 0.362 0.645 0.290 0.290

GB 0.037 –0.307 0.273 0.624 –0.064 0.112

ERT 0.159 0.026 0.141 0.387 0.184 0.179

CNN 0.450 0.222 0.463 0.693 0.067 0.379

LSTM 0.698 –0.099 0.583 0.490 0.113 0.357

MSF-NNG 0.948 0.904 0.938 0.918 0.913 0.924

wherein those errors from interpolation stage will enlarge the regression model’s
deviations in prediction stage. However, MSF-NNG can reduce the influence of
interpolation errors on the prediction, and it is easier to capture the relationship
between the PCSs and their nearest neighbor grids.

The results of Table 4 show MSF-NNG is robust for PM2.5 concentrations
prediction and it improves the accuracy by 50% on average. Among the remain-
ing methods, MLP performs better than others, because it can captures the
nonlinear relationship between PCSs and their nearest grids PM2.5 concentra-
tions, whose most essential features are spatial and temporal heterogeneity [17],
which are the import reasons that LR performs worse.

Based on above descriptions, we can see the performance of CNN and LSTM
is better than that of LR, KNN, DT, MLP, RF, GB, and ERT, but they are
still poor in comparison to MSF-NNG. The training dataset is multidimensional
and each of them is depicted by its nearest neighbor grids, which reflects the
spatial organization structure, and these data with the strong time correlation.
CNN is robust to extract the spatial features, but it can not effectively fuse the
spatial features. LSTM is good at extracting the temporal features of time series
data, but it is not competent for refining spatial features well. However, MSF-
NNG can integrate multi-source data information without altering the spatial
structure of nearest neighbor grids, which contains abundant spatial information.
If the spatial information can not fully be utilized and discovered, the data with
spatial organization structure is redundant for the nonlinear model, that is why
the performance of LR and SVR(Linear) is more robust than other traditional
algorithms in interpolation and prediction.
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5 Conclusion

In this paper, a multi-source spatiotemporal data fusion model named MSF-
NNG is proposed to interpolate and predict the PM2.5 concentrations of PCSs,
where multi-source are collected from the nearest neighbor grids around PCSs.
Actually, two experiments are conducted in this paper to valid the effective-
ness of MSF-NNG, one is related to interpolation, and the other one is referred
to prediction. The experimental results demonstrate MSF-NNG with a higher
accuracy than other methods both in interpolation and prediction, which fur-
ther valid the necessity of introduction for the nearest neighbor grids. In the
experimental stage, we select five regional data and each of them includes four
kinds of data that related to PM2.5 concentrations, humidity, temperature and
wind speed, which are highly correlated to the PM2.5 concentrations of PCSs.
However, this paper only focuses on the interpolation or prediction by extrap-
olation from observations and incapability of those empty ones. Based on this
considerations, we are dedicated to investigating the interpolation or prediction
of entire city in the future, especially on those unobserved ones.
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Abstract. Rice noodle is a special snack in southern China. With the develop-
ment of the grain industry and the improvement of living standards, choosing the
right raw materials to produce high-quality rice noodles has become one of the
problems to be solved at present. Therefore, on the premise of satisfying various
characteristics of rice noodles, this paper proposed a deep feature fusion method,
which combines with machine learning algorithm to achieve the backward pre-
diction of raw material index content of rice noodles. Deep feature fusion can
improve the prediction accuracy by multi-layer weighted feature fusion of rice
noodles product index. It realizes feature selection and information extraction of
multiple dimensions from the original data and makes the information of the orig-
inal data play more fully. Experimental results show that the highest R2 of the
single index of the prediction result can reach 0.987, and the RMSE of single
index only 0.0302. The errors between the predicted value and the actual value
of the index of water content, starch content, protein content, swelling force and
gelatinization temperature are small, which shows the method has a good predic-
tion effect. It can provide a good reference for the selection of raw materials for
the production of high-quality rice noodle.

Keywords: Raw material index · Value prediction · Deep feature fusion ·
Machine learning

1 Introduction

Rice noodles is a kind of special snacks in southern China. With the development of
grain and food industry and the improvement of living standards, choosing the right
raw materials to produce high-quality rice noodle is one of the problems to be solved at
present. The basic condition for the production of high-quality products is to obtain high-
quality raw materials. And choosing the proper raw materials to produce rice noodles
has become the key to solve the problem.
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In terms of the influence of raw materials on the quality of rice noodles, Sun T.L [1]
analyzed the correlation between the quality of 38 rawmaterials and the sensory score of
rice flour, and established the regression equation of rice flour processing quality. Gao X
X [2] made sensory evaluation of fresh rice noodles and determined the main evaluation
indexes through correlation and cluster analysis. And the literature [3–5] also described
the research of domestic and foreign researchers on rice noodle raw materials, which
provides a theoretical basis for the selection of rice noodle raw materials, and confirms
that the selection of different raw materials and processing way can improve the quality
of rice noodles.

In different research fields of raw materials, Zhang Biao [6] used the artificial neural
network algorithm to predict the quality of dried products with the indicators of apple
raw materials, which provided a basis for the selection of apple dry specialized raw
materials. Huang Yan [7] explored the influence of raw materials on the quality of sweet
dumplings through correlation analysis and determined the key indicators affecting the
quality of glutinous rice flour used for sweet dumplings. And the literatures [8–10] also
discussed through various examples that the optimization of raw materials is absolutely
necessary even in different fields.

This paper tries to predict the raw material index value of rice noodles through the
index value of products and analyze the content of raw materials from the perspective of
products. To obtain the relevant information of raw material index of rice noodles with
high product evaluation, and provide suitable and scientific rawmaterial optimization for
the production of high-quality products. This will provide guidance for the production
of rice noodles in related enterprises.

The core of rice noodles product index content prediction is to use appropriate
prediction method to improve the prediction accuracy. For prediction methods, scholars
from different fields at all over the world have made abundant research achievements in
recent years.Obsie [11] used avariety of predictors to select features before the prediction
and a variety of machine learning algorithms to predict the yield of wild blueberries. The
results show that the prediction accuracy reaches the ideal effect. Zhang [12] extracted a
large number of features from the remotemaps of almond orchards as predictor variables,
and used the stochastic gradient liftingmodel to predict almond yieldwith high accuracy.
The literature [13–17] also described the methods used by domestic and foreign scholars
on prediction problems, which can be summarized as machine learning model is a good
method for prediction problems, and multi-source data also make a great contribution
to the improvement of prediction accuracy.

2 Problem Analysis and Solution

2.1 The Research Question

In order to produce high-quality rice noodles with good taste, beautiful appearance and
high nutritional value, it is necessary to analyze the index of rice noodle products, and
make accurate reverse prediction of the product indexes after pretreatment. According to
the relevant evaluation standards, the predicted raw material index content was analyzed
and evaluated to provide a good reference for the selection of raw materials and quality
control of high-quality rice noodle production. And the core of rice noodle product index



290 Z. Tian et al.

content prediction is to use appropriate prediction method to improve the prediction
accuracy.

2.2 Design Ideas

For the prediction problem of rice noodle raw material index, an excellent prediction
process includes the following three stages. Firstly, the stage of data analysis and feature
extraction. The next is the choice of prediction model. The last is the optimization of the
prediction process. The prediction process is shown in Fig. 1.

Fig. 1. Prediction process.

For the traditional prediction process, in the first stage of feature extraction, the
traditional methods have certain limitations, such as using correlation analysis to remove
features with high similarity, and using factor analysis to extract factors from data. These
traditional methods may not give full play to the information expression of the original
data. In addition, the optimization of the prediction process in the third stage is relatively
less. For traditionalmachine learningmodels, such as regression, decision tree and neural
network, their structure is relatively simple and the process of parameter optimization is
not too complicated, which may make the accuracy of the prediction results fail to reach
the expected expectation.

Aiming at the above two problems, this paper proposes the deep feature fusion tech-
nology applied in the whole prediction process to improve the prediction accuracy. The
deep feature fusion prediction process is also divided into three parts. The first part is
the feature extraction part. The deep feature fusion technology is used to extract multi-
dimensional deep features from the original data to enhance the feature expression of
the original data and improve the prediction accuracy. The second part is the selection
of prediction model. The third part is the optimization of the deep feature fusion and
prediction model together. Through the optimization, the extracted features can make
greater contribution to the improvement of the prediction accuracy, so that the prediction
performance of the prediction model can reach the best, and the prediction accuracy of
the whole prediction process can be improved.

2.3 Methods

Based on the characteristics of rice noodles dataset (detailed below), deep feature fusion
is used to predict the content of raw material index of rice noodles as follows.
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Step One: Deep feature fusion is used to extract features from rice noodles data. The
original data need to be preprocessed and feature extracted before being sent to the
predictionmodel to reduce noise data and enhance data expressiveness. The deep feature
fusion method is used to extract features and fuse the features from the original data. The
multi-layer and multi-dimensional features are extracted, so as to play the information
role of the data from themulti-dimension. In this paper, two-layer deep feature fusionwill
be adopted to process the data. Pearson correlation coefficient and factor analysis will
be used for simple feature extraction in the first layer, and random forest and XGBoost
will be used for deep feature score of the data in the second layer, so as to achieve the
feature extraction of the original data from shallow to deep. Finally, the features will be
weighted and fused, and the final fused features will be input into the prediction model.

Step Two: Selection of prediction model. According to the characteristics of the prob-
lem and the rice noodles data, it is necessary to choose the appropriate prediction model.
The problem of this paper is to make numerical prediction, and the data is of the type
of multi-feature and multi-label. Through investigation and simple experiment result
analysis, we found several prediction models suitable for this kind of problems and data.
For the experiment in this paper, Deep Neural Network (DNN) [18], Random Forest
(RF) [19] and Extreme Gradient Boosting (XGBoost) [20] are selected.

The structure of DNN has greater capacity, which has the benefit of being able to
represent complex functions with fewer parameters. In recent years, DNN has been
frequently used in forecasting. Because of its relatively easy structure optimization, this
model is selected as the prediction model.

Lately, RF and XGBoost have been using to predict yields by many agricultural
and food researchers. Because of their excellent prediction performance, as well as
their multi-feature and multi-label characteristics, were applicable to the data for this
experiment, RF and XGBoost were selected as the prediction models used in this paper.

Step Three: Overall optimization of the prediction process. In this stage, the weights
of deep feature fusion and the structure of different prediction models will be optimized.
After reference and analysis, this paper decided to use PSO to optimize the fusion
weight and model structure simultaneously with inner and outer nesting. The inner layer
optimized the model structure and the outer layer optimized the fusion weight.

3 Implementation of Deep Feature Fusion

3.1 Introduction of Feature Fusion Process

Multi-dimensional feature fusion is an abstract module of deep feature fusion method,
which is the single-layer basic operation part of deep feature fusion. In the process of
feature fusion, the original data will be extracted by a variety of methods. The extracted
features are weighted and then fused to generate the new data. The process of feature
fusion is shown in Fig. 2.
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Fig. 2. Feature fusion process

In Fig. 2, D0 = {X1,X2,X3, ...,Xp} is the input data of feature fusion at this layer,
and f = {f1, f2, ..., fn} represents the various feature extraction methods at this layer.
Each method fi in f is used to extract features fromD0, and di is the different dimensions
of the extracted features, which plays the role of information on different dimensions of
data.

di will perform feature fusion calculation, and each di will be assigned the corre-
sponding weight. The specific weighted fusion process is as follows: di is weighted
internally by the assigned weight wi, and the sum of the weights is 1, which can show
the integrity of the data. The weighted di is spliced together to generate the fusion feature
data D1 = {X1,X2,X3, ...,Xq}, and D1 will be input into the next layer or prediction
model. The process of feature fusion in a single layer is calculated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

di = fi(D0)

D1 =
∑n

i=1
widi

widi = [wixi1,wixi2, ...,wixik ]
∑n

i=1
wi = 1or0

ỹ = F(D1)

(1)

Equation (1) shows the process of feature fusion, D0 is the input, D1 and
∼
y is the output.

∼
y is the predicted value, and F is the prediction model. widi Shows the weighting process
of feature di. The goal of Eq. (1) is to make the original data D0 through feature fusion
to generate the new data D1. D1 Will be input into the next layer or prediction model F
for training and prediction, so as to minimize the loss value of the model.

A variety of feature extraction methods are used to extract features from data so
that the extracted features can play the role of data information from different dimen-
sions. This enhances the feature representation of the data and can also be viewed as an
optimization of the feature extraction method. The weight allocation in feature fusion
represents the contribution of various basic methods to the fusion feature. And the pur-
pose of feature fusion is to improve the final prediction accuracy by processing the
original data.
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3.2 Introduction of Deep Feature Fusion Process

Deep feature fusion is a further improvement of multi-dimensional feature fusion. By
setting multi-layer feature fusion, the feature fusion has its depth. This makes the feature
extraction of the original data from simple to complex, and makes the information play
more comprehensive. The deep feature fusion process of is shown in Fig. 3.

Fig. 3. Deep feature fusion process

D0 is the original data, which generates Dt after multi-layer feature fusion. By setting
the feature fusion ofmultiple layers, the feature extraction and fusion of each layerwould
be carried out. And saving the features extracted by each layer’s methods, so that the
features of each layer can be weighted when generating deep fusion features. Finally,
deep fusion features are generated and input to the prediction model to maximize the
performance of the original data as much as possible, so as to achieve the purpose of
improving the final prediction accuracy.

Taking the data Dk obtained by feature fusion of the Kth layer as an example, to
show how to save the features extracted by each layer’s methods. The Kth layer feature
fusion with multiple feature extraction methods set as fk = {fk1, fk2, ..., fkp}, and each
method in fk performs feature extraction on Dk−1 to obtain dki respectively, and each
dki generates {dk1, dk2, ..., dkp} by direct concatenation.

In the depth feature fusion process, in order to reflect the expressiveness of various
feature extraction methods at each layer, {dk1, dk2, ..., dkp} would be processed in a
weighted way, and then the fused feature Dk would be generated. The weighted process
of each layer is independent, and the weighting order is from the first layer to the last
layer. The process of deep feature fusion for prediction is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dk1 = fk1(Dk−1)

...

dkp = fkp(Dk−1)

Dk =
∑p

i=1
wkidki

widi = [wkixk1,wkixk2, ...,wkixki]
∑p

i=1
wki = 1or0

ỹ = F(Dk)

(2)
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In Eq. (2),
∼
y is the predicted value, and F is the prediction model. The goal of Eq. (3) is

to make the original dataD0 operated by the deep feature fusion to generate the final data
Dk , and the Dk is input into the prediction model to train and predict, so as to minimize
the loss value of the model. Deep feature fusion enables feature fusion to obtain depth,
further processing the data and enhancing the information expression of the original
data.

3.3 Optimization of Weights and Models

Throughout the process of prediction with deep feature fusion, the assignment of fusion
weights to each layer and the structure of the prediction model are to be optimized.
However, the optimization of one may affect the optimization of the other. So this paper
adopts an inner and outer nested optimization approach to optimize both. Then finding
the combination that makes the final prediction result with the highest accuracy.

In the inner and outer nested optimization process, the inner layer optimizes the struc-
ture of the prediction model. This process can be regarded as local optimization. While
the outer layer optimizes the assignment of the fusion weights of each layer, which needs
to be optimized together with the model structure. This process can be regarded as the
overall optimization of the prediction process.

Local Optimization: This is the optimization of the structure of three prediction mod-
els. In this paper, the structure of the models will be optimized by the PSO algorithm,
which makes the prediction accuracy improved.

The PSO algorithm is suitable for the optimization of this paper because of its fast
convergence, strong global search capability and fewer parameters. Therefore, the PSO
algorithm is used to optimize the whole prediction process. The iterative process of the
velocity and position of the particles is shown in Eq. (3):

{
vk+1
id = wvkid + c1r1(p

k
id ,pbest − xkid ) + c2r2(p

k
d ,gbest − xkid )

xk+1
id = xkid + vk+1

id

(3)

In the optimization of each mode prediction model, it is necessary to encode its
structural parameters into the position encoding of particles. The decimal encoding is
used to encode the prediction model F into the form of particles:

F = [X1,X2, ...,Xn] (4)

whereX1 X2... Xn are the parameters associatedwith the predictionmodel,which specif-
ically decided by the prediction model. The structure of the three prediction models of
DNN, RF, and XGBoost are coded respectively as FDNN, FRF, FXGBoost:

FDNN = [[N1,N2, ...,Ni],Act,Opt] (5)

where is the number of nodes in each hidden layer of DNN, Act is the selection of
activation function, and Opt is the selection of optimizer.

FRF = [N , MaxD, MinSS, MinSL] (6)



Study on the Prediction of Rice Noodle Raw Material 295

where N is the number of decision trees created by RF, MaxD is the maximum depth
of the tree, MinSS is the minimum number of split samples of nodes, and MinSL is the
min-number of samples of leaf nodes.

FXGBoost = [N , LR, MaxD, MinCW ] (7)

where N is the number of decision trees of XGBoost, LR is the learning rate, MaxD
is the maximum depth of the tree, and MinCW is the minimum sample weight sum of
child nodes.

The encoded models FDNN,FRF, and FXGBoost are updated iteratively by the PSO
algorithm and the loss values of the prediction model are used as the fitness function.
When the iteration conditions are satisfied, the final output is the model structure with
the minimum loss value, which is the optimal model-code in model optimization. The
process of the PSO optimization prediction model is shown in Fig. 4.

Fig. 4. Model
optimization process

Fig. 5. Overall optimization process

Overall Optimization: The combined optimization of the fusion weights and the pre-
diction model structure is defined as the overall optimization in the prediction process.
Since the input is the fused feature data generated by deep feature fusion, when the
fusion weights changed during the deep feature fusion process, the generated data also
would change, which may cause the optimal structure of the prediction model to change
as well. Therefore, in this paper, the structure of the prediction model and the fusion
weights are optimized as a whole by using an inner and outer nesting approach. The
process the overall optimization is shown in Fig. 5.
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The inner fitness function is the loss value of the prediction model. In this paper,
RRMSE is used as the loss value evaluation to the model, which is expressed as follows:

RMSE =
√
1

n

∑n

i=0
(Yi − X i)2 (8)

RRMSE = RMSE

Ỹ
∗ 100% (9)

where Yi is the actual value, Xi is the model-predict value, Ỹ is the mean actual value.
And the outer fitness function is the loss value of the inner optimal model. The number
of iterations for both inner and outer is 20. When the number of iterations is satisfied,
we can obtain the optimal combination of weights and prediction model.

4 Application and Experiments

4.1 Application

In this chapter, the method of deep feature fusion is used to predict the raw material
index content from the product index content of rice noodle data. (D0) [21]. And the
prediction results were evaluated. In the experiment, deep feature fusion processing
would be carried out on the original data to generate deep fusion features data, then it
would be input into the prediction model.

In the experiment,we took two layers deep feature fusion (k=2)with three prediction
models to predict the materials index content of rice noodle. The framework of two
layers deep feature fusion is as follows: the first layer uses Pearson coefficients and
Factor Analysis (FA) to extract features from D0. The second layer uses two algorithms,
RF and XGBoost, to score the features input from the first layer and extract the features
separately.

To increase the comparability, two sets of experiments with single-layer feature
fusion (k = 1) were added: Pearson and FA were used to single layer feature fusion on
D0 for prediction, and RF and XGBoost were used to single layer feature fusion on D0
for prediction. The results of multiple experiments were compared and analyzed, so as
to provide relevant suggestions for the selection of rawmaterials to produce high quality
rice noodles. The experimental process is shown in Fig. 6.
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Fig. 6. Experimental process

4.2 Rice Noodle Data

Before the application experiments, a preliminary analysis of the rice noodles data is
required. The total number of rice noodles data samples is 1074, and there are 22 data
index, including 11 rawmaterial index and 11 product index. Table 1 shows the statistical
distribution of the rawmaterials. Table 2 shows the statistical distribution of the products.

Table 1. The statistical distribution of raw materials data.

Feature Min Max Avg Std

Water Content (WC) 11.302 14.346 12.602 0.554

Starch Content (SC) 69.451 74.789 72.759 1.341

Amylose Content (AC) 11.309 25.789 16.555 3.589

Gel Consistency (GC) 17.163 77.887 57.476 14.665

Protein Content (PC) 6.849 8.538 7.724 0.363

Fat Content (FC) 0.541 1.538 0.981 0.210

Fatty Acid Value (FAV) 16.271 196.878 74.559 46.078

Water Solubility (WS) 3.156 5.283 4.247 0.529

Swelling Force (SF) 6.916 8.523 7.793 0.424

Final Viscosity (FV) 2571.347 5020.148 3194.764 554.827

Gelatinzation Temperature (GT) 78.339 91.796 84.802 2.709
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Table 2. The statistical distribution of products data

Feature Min Max Avg Std

Viscoelasticity (VIS) 2.500 7.199 4.171 1.389

Exquisite sexual (ES) 3.200 6.300 4.605 0.774

Softness (Softness) 3.511 7.297 5.038 0.893

Chewiness (Chewiness) 2.803 8.485 4.446 1.151

Colour and lustre (CAL) 14.007 18.000 16.544 0.880

Taste score (TS) 30.801 41.069 340804 2.672

Cooking loss (CL) 2.530 10.000 7.119 1.866

Rehydration time (RTime) 22.756 32.487 27.435 2.282

Taste 5.101 6.474 5.822 0.394

Product water content (PWC) 11.801 13.198 12.627 0.318

Breaking rate (BR) 1.159 28.494 10.370 5.938

4.3 Experimental Results of Two-Layer Depth Feature Fusion

The data Dnew generated by two layers of deep feature fusion was input into three
prediction models (DNN, RF and XGBoost). After using PSO to optimize the fusion
weights and model structure, the index content of rice noodles was finally predicted.
The optimized combinations of deep fusion features and prediction models are denoted
as DNN-Dnew,RF-Dnew and XGB-Dnew respectively.

Table 3. Predicted results (k = 2)

DNN-Dnew RF-Dnew XGB-Dnew

R2 RMSE Accuracy R2 RMSE Accuracy R2 RMSE Accuracy

WC 0.945 0.344 97.281% 0.975 0.090 99.287% 0.980 0.062 99.505%

SC 0.948 1.866 97.434% 0.974 0.215 99.109% 0.985 0.162 99.777%

AC 0.950 0.384 97.526% 0.951 0.350 97.932% 0.962 0.271 98.345%

GC 0.826 7.151 87.534% 0.945 1.920 96.640% 0.954 1.456 97.506%

PC 0.938 0.273 96.459% 0.978 0.053 99.315% 0.978 0.060 99.223%

FC 0.872 0.084 91.362% 0.947 0.035 96.530% 0.951 0.030 96.894%

FAV 0.870 7.954 90.102% 0.886 7.700 90.334% 0.912 4.986 93.407%

WS 0.932 0.120 96.243% 0.963 0.072 98.310% 0.960 0.077 98.196%

SF 0.933 0.287 96.309% 0.985 0.049 99.357% 0.979 0.050 99.356%

FV 0.924 103.175 95.241% 0.949 82.918 97.423% 0.958 67.092 97.866%

GT 0.933 3.056 96.397% 0.987 0.403 99.526% 0.982 0.379 99.553%
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Table 3 shows the prediction results of DNN-Dnew, RF-Dnew and XGB-Dnew on each
index of rice noodles raw materials. R2, RMSE and Accuracy were respectively shown
to evaluate the prediction results.

It can be analyzed from Table 3 that RF-Dnew and XGB-Dnew have more stable
prediction results, higher prediction accuracy and better overall prediction performance
compared with DNN-Dnew. Compared XGB-Dnew with RF-Dnew, the prediction accu-
racy of the former is a little higher. In conclusion, all the three can be effectively predicted
in the prediction application of rice noodle raw material index, and XGB-Dnew has the
best prediction effect among the three.

From Table 3, it can be concluded that the RMSE of WC, SC, PC, SF and GT are
relatively small and the prediction accuracy of XGB-Dnew for each raw material index
is more than 99%, which means that the prediction of XGB-Dnew for these index is
excellent. The prediction accuracy of SC, GC, FC, WS and FV are above 95%, and
the prediction accuracy of FAV is above 90%. This indicates that the prediction of rice
noodle index by XGB is very effective, and the predicted values of the index are very
close to the real values, which can be well applied to the problem of predicting the rice
noodle index content.

Table 4 shows the weights of the deep fusion features of DNN-Dnew, RF-Dnew and
XGB-Dnew. The weight distribution of the three has its own characteristics, and there
is no case that a certain weight is too high to be close to one or too low to be close
to zero. In other words, the basic methods of each layer in deep feature fusion have
certain contributions to the final fused features. Among the weights of the three, w12 is
greater than w11 and w22 is greater than w21. It can be considered that in the first layer
of deep feature fusion, the contribution of features extracted by factor analysis is greater
than correlation analysis. In the second layer of deep feature fusion, the contribution of
XGBoost is greater than RF.

Table 4. Feature fusion weight

w11 (Pearson) w12 (FA) w21 (RF) w22 (XGBoost)

DNN-Dnew 0.301 0.699 0.298 0.702

RF-Dnew 0.356 0.644 0.294 0.706

XGB-Dnew 0.147 0.853 0.434 0.566

Table 5 shows the optimal structural coding of the three prediction models. We can
obtain the model structure according to Eq. (5), Eq. (6), Eq. (7). This will provide an
effective reference for the actual prediction of rice noodle.
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Table 5. Model structure

Model Structured coding

DNN [ [18, 22, 20], Selu, Adma]

RF [480, 4, 7, 3]

XGB [500, 0.05, 6, 3]

Table 6,Table 7 andTable 8 respectively show thepredictedvalues ofDNN-Dnew,RF-
Dnew and XGB-Dnew as well as the corresponding actual values and errors. And each
sample is randomly selected from the rice noodle data as an example. By comparing the
actual value with the predicted value, it is found that the error between each prediction
index and the actual value is very small, among which XGB-Dnew has the best prediction
effect overall.

For example, the error between the actual and predicted values of WS in Table 8 is
only 0.005, indicating that the prediction accuracy of this model combination is excel-
lent. Although the error of FV is 55.9098, the accuracy of this index is 97%, which is
within the error. In general, it can provide a reference for the prediction of rice noodle
raw materials and help to select appropriate raw materials.

Table 6. Predicted and true values of DNN

DNN
WC SC AC GC PC

Actual 13.2143 72.9255 17.0764 64.9421 7.9097 
Predicted 12.9465 74.7397 16.7079 57.3485 7.8243

Error 0.2678 1.8148 0.3685 7.5926 0.0854

DNN
FC FAV WS SF FV GT

Actual 0.9561 46.9580 3.2602 8.2931 3378.0805 83.0449
Predicted 0.9995 49.2914 3.4210 7.9821 3246.7514 85.4788 

Error 0.0434 2.3340 0.1608 0.3110 131.3291 2.4339
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Table 7. Predicted and true values of RF

RF
WC SC AC GC PC

Actual 12.3244 74.0102 13.6870 71.4495 7.0179
Predicted 12.3390 73.9492 13.8281 69.7243 7.0851

Error 0.0146 0.061 0.1411 1.7252 0.0672

RF
FC FAV WS SF FV GT

Actual 0.7951 28.7645 4.4436 7.4502 2685.7372 85.2922 
Predicted 0.8004 33.6247 4.4269 7.4972 2606.1304 85.7216

Error 0.0053 4.8602 0.0167 0.0470 73.6068 0.4296

Table 8. Predicted and true values of XGBoost

XGBoost
WC SC AC GC PC

Actual 12.7803 70.9802 16.2490 54.4519 7.4479
Predicted 12.7725 70.8967 16.2130 53.5797 7.5271

Error 0.0078 0.0835 0.0360 0.8722 0.0792

XGBoost
FC FAV WS SF FV GT

Actual 1.2784 66.4410 4.8202 7.4884 2576.8136 88.6146 
Predicted 1.2856 62.2151 4.8152 7.5343 2632.7234 88.9814 

Error 0.0072 4.2259 0.0050 0.0459 55.9098 0.3668

4.4 Experimental Results of Single-Layer Depth Feature Fusion

Two groups of comparative experiments were set. The first and second layers of deep
feature fusion of two layers were respectively set as single-layer feature fusion.

The data after extracting features by Pearson and FA methods and performing
weighted fusion is defined asDp_fa. The data after extracting features byRFandXGBoost
methods and performing weighted fusion is defined as Drf_xgb. The prediction accuracy
of Dp_fa, Drf_xgb with three prediction models after optimization for each index is shown
in Table 9.
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Table 9. Predicted results (k = 1)

Dp_fa Drf_xgb

DNN RF XGBoost DNN RF XGBoost

WC 95.704% 98.766% 99.393% 96.300% 99.223% 99.317%

SC 97.040% 99.611% 99.791% 97.603% 99.740% 99.776%

AC 94.059% 95.835% 97.902% 91.430% 94.818% 97.720%

GC 84.580% 96.257% 97.114% 89.520% 96.820% 97.275%

PC 90.917% 98.714% 98.683% 96.065% 99.007% 99.176%

FC 92.950% 93.596% 95.613% 93.042% 94.316% 97.017%

FAV 87.891% 88.706% 92.590% 88.969% 87.317% 90.851%

WS 90.001% 96.546% 98.264% 90.411% 96.679% 97.627%

SF 95.452% 99.038% 99.359% 96.994% 98.651% 99.251%

FV 93.752% 97.445% 97.605% 93.951% 99.058% 96.973%

GT 95.155% 99.280% 99.343% 95.951% 99.388% 99.671%

Comparing Table 9 with Table 3, it can be found that the accuracy of the prediction
results of rice noodle raw material index by using a single layer of feature fusion is
overall lower.

This indicates that in the rice noodle raw material index prediction problem, the
prediction performance of each model is improved after using two layers of deep feature
fusion and optimization. So that the rice noodle raw material index content can be
effectively predicted,whichwould provide an effective reference for the actual prediction
application of rice noodle. And it will provide a good reference for the selection of raw
materials in the process of producing high-quality rice noodle.

5 Conclusion

In order to solve the problem of rice noodle raw material index content prediction and
improve the accuracy of prediction results, this paper proposes a deep feature fusion
method to predict the raw material index content, and verifies the reliability of the
results through experiments.

The experiment shows that the prediction accuracy of rice noodle rawmaterial index
values by taking two layers of deep feature fusion is improved compared with the single
layer result. In the experimental results, the deep feature fusion combined with XGBoost
has the best prediction effect. The accuracy of Water Content, Starch Content, Protein
Content, Swelling Force and Gelatinzation Temperature are above 99%, the accuracy of
Amylose Content, Gel Consistency,Water Solubility and Final Viscosity are above 97%,
and the accuracy of the rest of the index are also above 90%, which is a very good result.
The method improved the prediction accuracy of each raw material index by rice noodle
products, which would provide a good reference to the selection of raw materials for
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producing high-quality rice noodle and provide guidance for the production of related
enterprises.

Future Work: Further improvements to the overall optimization. More experiments:
Comparedwith the experimental results of currentmainstream feature fusion algorithms.
Improved computational framework and theoretical description.
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GAP: Goal-Aware Prediction
with Hierarchical Interactive

Representation for Vehicle Trajectory
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Abstract. Predicting the future trajectories of surrounding vehicles
plays a vital role in ensuring the safety of autonomous driving. It is
extremely challenging for the pure imitation method due to the high
degree of multimodality and uncertainty in the future. In fact, when driv-
ing in most traffic scenarios, vehicles should obey some traffic rules such
as “vehicles follow the lane and do not collide with each other”. Inspired by
this, this paper proposes a goal-aware prediction (GAP) framework to pre-
dict the multimodal trajectories, where goals are chosen in the lanes with
hierarchical interactive representation and a multi-task loss. Based on the
graph-based vectorized input, a novel hierarchical interactive representa-
tion module is first designed to obtain the fine-grained goal features, which
progressively models interactions between goal-to-goal, goal-to-lane, and
lane-to-agent, corresponding to the individual, local and global levels,
respectively. Then, an auxiliary collision loss is developed to take into
account learning from demonstration and injecting common sense of col-
lision avoidance, and is served as a part of the multi-task loss to guide the
generation of multimodal plausible trajectories. In the end, the proposed
method is verified on the Baidu In-house Cut-in dataset, which includes
more than 370K interactive scenarios collected in the real road testing.
The comparative results demonstrate the superior performance of our pro-
posed GAP model than the mainstream prediction methods.

Keywords: Multimodal trajectory prediction · Hierarchical
interactive representation · Graph neural network · Multi-task loss

1 Introduction

Predicting the future trajectories of surrounding vehicles (called target agents)
is crucial for the Autonomous Vehicle (AV) system to conduct the subsequent
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decision-making [1] and path planning [2] modules. Being different from Model
Predictive Controller (MPC), this task not only makes a choice of the optimal
path (i.e., spatial dimension) but also enriches the speed attribute (i.e., temporal
dimension). However, trajectory prediction faces great challenges due to the
high-degree uncertainties of target agents’ future intents (e.g., a target agent
could turn unprotected left or turn right at an intersection). Effective trajectory
prediction model must be able to represent such a rich output space with the
possible behavioral outcomes matching the underlying multimodal distribution.

Generally speaking, multimodal trajectories can be obtained via a direct
regression model with pure imitation [3,4]. However, since such methods are
trained with only one ground truth per data sample, all the predicted trajecto-
ries converge to the same solution which leads to mode collapse. To overcome
these limitations, some researchers address the multimodality problem with the
anchor-based method, which first predicts the probabilistic distribution over
intent anchors, and then regresses multimodal trajectories conditioned on the
predicted anchors. The intent anchors can be represented by different forms. On
one hand, a family of methods describe the future intents by a candidate set of
trajectory anchors which can be predefined [5,6] or generated by the planner [7].
On the other hand, when the high-definition (HD) map is available, a series of
goal anchors can be retrieved by sampling the equally spaced waypoints along
per future lane in a sequential order, which can be considered as the fine-grained
representations of future intents. This is inspired by the fact that the future
intents of vehicles are highly correlated with the topology of lanes. TNT [8],
served as a typical representative for goal anchor-based methods, has achieved
outstanding performance with the scene context encoder VectorNet [4]. This app-
roach is flexible and can capture a diverse set of future intents. Unfortunately,
the future interaction over vehicles is ignored for TNT, which means it can not
reason about the danger of collision especially for the interactive scenarios such
as cut-in scenarios. To address this problem, TrafficSim [9] augments the pure
imitation method with an auxiliary common sense objective to avoid collision.

In this paper, we introduce a goal-aware prediction (GAP) framework, which
builds upon TNT [8] and TrafficSim [10], taking concepts of goal anchors and
the auxiliary collision loss, but reconsidering how to represent the fine-grained
features of goal anchors and establish trajectory modeling via a multi-task loss.
Our contributions are summarized as follows:

– A novel hierarchical interactive representation module is proposed to obtain
the fine-grained features of goal anchors, which explicitly captures the sophis-
ticated interactive relationships between goal-to-goal, goal-to-lane, and lane-
to-agent, corresponding to the individual, local and global levels, respectively.

– A multi-task loss is established augmenting an auxiliary collision loss into
the pure imitation loss of the goal anchor-based method, which takes into
account learning from demonstration and injecting common sense of collision
avoidance.

The experimental results indicate the proposed GAP framework can achieve
superior performances on Baidu In-house dataset consisting of cut-in interactive
scenarios than the existing mainstream prediction methods.
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Fig. 1. An overall structure of our proposed GAP framework. The hierarchical inter-
active representation module is first applied to extract the fine-grained features over a
candidate set of future goals. Followed by this, two main stages of goal anchor-based
model are conducted in turn. Goal estimation stage is responsible to select the top K
potential goals predicted by π

(
gk
l | Sp, G, S1:E

p

)
. Once the goal candidates are deter-

mined, the goal-oriented trajectory forecasting stage correspondingly produces K tra-
jectories from the same initial state to the diverse final positions. Finally, a multi-task
loss is proposed to optimize the end-to-end interpretable pipeline, predicting multi-
modal plausible trajectories with collision avoidance.

In recent years, deep learning-based methods have been widely used in the
trajectory forcasting domain [11,12], which can be roughly divided into two
categories: context-based and anchor-based methods.

Towards the context-based methods, the majority of them focus on how to
design a scheme to encode the useful information from the environments. Numer-
ous previous models [13,14] employ Convolutional Neural Network (CNN) to
extract features by rendering as input a rasterized Birds-Eye-View (BEV) image,
with different channels representing different types of semantic observations.
However, the receptive fields of CNN may not be skilled at deducing the temporal
and spatial sequential relationships between agent trajectories and future lanes.
Hence, information aggregation methods, including Recurrent Neural Network
(RNN), Graph Neural Network (GNN), Transformer layer, and max-pooling
operator et al., have emerged to efficiently encode the vectorized representations
instead, which characterizes the temporal and spatial sequences into entities
with locations and attributes. More specifically, WIMP [15] applies an RNN-
based encoder-decoder structure to capture temporal dependencies over time
step movements. Further, VectorNet [4] treats both agent trajectories and future
lanes as a unified graph-based vectorized representation, and encodes them via
GNN. Besides, Scene Transformer [16] is proposed to predict multi-agent trajec-
tories considering interactions over agents, time steps, and road elements three
different axes by using the attention mechanism [17]. TrafficSim [10] utilizes the
implicit latent variable model to capture useful information over future intents,
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and proposes an auxiliary collision loss to explicitly reason about multi-agent
interactions.

As for another kind of methods, anchor-based approaches concentrate on
modeling multimodality of future trajectories by abstracting diverse future
intents as a pool of anchors. For instance, MultiPath [6] tackles trajectory predic-
tion as a classification task over the candidate set of predefined trajectory anchors
learned by k-means clustering algorithm. PRIME [7] relies on a model-based
generator to produce multiple feasible trajectories under explicit constraints,
and ranks them using a learning-based evaluator. Different from these methods
above, TNT [8] samples fine-grained goal anchors along future lanes where the
target agent potentially arrives, which makes the guidance of predicting various
goal-oriented trajectories. Note that accurate descriptions of goal anchor features
ease the difficulty of goal estimation.

Inheriting TNT and TrafficSim, the GAP framework further modifies the
feature extraction and multi-task learning objectives to accurately forecast the
future state with multimodality and collision avoidance.

2 Methodology

In the following, we first introduce our problem formulation in Sect. 2.1. We
then define our hierarchical interactive representation module in Sect. 2.2. In
Sect. 2.3, we explain how GAP predicts multimodal trajectories by means of
goal-anchor based method. Finally, we show our multi-task loss in Sect. 2.4. An
overall structure of our proposed GAP framework is shown in Fig. 1.

2.1 Problem Formulation

Given a sequence of the past states for the target agent Sp ={
s−τ+1

p , · · · , s−t
p , · · · , s0

p

}
throughout the observed τ time steps, our objective

is to predict its future states Sf =
{

s1
f , · · · , sδ

f , · · · , sT
f

}
over future T time

steps. Let s−t
p denote the coordinate of the target agent’s centroid at the pre-

vious time step t relative to s0
p = (0, 0). We represent sδ

f in a similar definition
manner at the future time step δ. In addition, during the trajectory prediction
process, the target agent interacts with the static HD map and its dynamic
surrounding agents. On one hand, to effectively depict the topology of HD
map, we sample K equally spaced waypoints on L future lanes in turn, i.e.,
G =

{
gk

l | l = 1 : L, k = 1 : K
}
, where gk

l denotes the k-th waypoint coordinate
extracted along the l-th future lane. On the other hand, we select E nearby agents
in the neighbor region of the target agent to represent its dynamic surrounding
agents. Likewise, let Se

p =
{
se,−τ+1

p , · · · , se,−t
p , · · · , se,0

p

}
define the sequence of

the past states for the e-th surrounding agent. In particular, S1
p denotes the past

trajectory of AV, which is also regarded as the surrounding agent for the target
agent. Once all available observations are obtained, the trajectory prediction
task can be formulated as a posterior distribution p

(
Sf | Sp,G,S1:E

p

)
.
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Inspired by the TNT model [8], we employ the goal anchor-based method to
produce multimodal trajectories. In this paper, a candidate set of waypoints are
served as goal anchors to guide the trajectory prediction. Thus, the probabilistic
distribution p

(
Sf | Sp,G,S1:E

p

)
can be expressed as

p
(
Sf | Sp,G,S1:E

p

)
=

L∑

l=1

K∑

k=1

p
(
Sf , gk

l | Sp,G,S1:E
p

)

=
L∑

l=1

K∑

k=1

p
(
Sf | gk

l ,Sp,G,S1:E
p

)
p

(
gk

l | Sp,G,S1:E
p

)
.

(1)

According to Eq. (1), the goal anchor-based method is implemented by two
main stages including goal estimation and goal-oriented trajectory forecasting.
In detail, the goal estimation is responsible to model the uncertainties over future
intents of the target agent via the goal distribution p

(
gk

l | Sp,G,S1:E
p

)
, which

can be further factorized by

p
(
gk

l | Sp,G,S1:E
p

)
= π

(
gk

l | Sp,G,S1:E
p

) N (
Δgk

l | μ
(
Δgk

l

)
,Σ

(
Δgk

l

))
,
(2)

where π
(
gk

l | Sp,G,S1:E
p

)
is a softmax distribution normalizing the predicted

confidence over a discrete set of waypoints G. Besides, a generalized Gaussian
distribution N (

Δgk
l | μ

(
Δgk

l

)
,Σ

(
Δgk

l

))
is established to output the contin-

uous offsets from the predicted goals to the real endpoint sT
f , with the mean

μ
(
Δgk

l

)
and the variance Σ

(
Δgk

l

)
. Subsequently, once the potential goal is

determined, the unimodal distribution p
(
Sf | gk

l ,Sp,G,S1:E
p

)
is modeled to pro-

duce the plausible goal-oriented future states.

2.2 Hierarchical Interactive Representation

Figure 2 depicts the structure of our hierarchical interactive representation mod-
ule. First, the prior knowledge, consisting of past trajectories and road topology,
is encoded in a unified graph-based vectorized representation proposed by Vec-
torNet [4]. Based on this, we build interactive representations at the individual,
local and global levels by utilizing GNN, max-pooling operator and Transformer
layer, respectively. Moreover, these three types of interactive representations
exhibit a hierarchical progressive relationship, with the output at the lower level
as the input to the higher level. Finally, the structural features of fine-grained
goals are obtained by stacking these three interactive representations, which are
used in the following multimodal trajectory forecasting module.

(1) Graph-based vectorized representation. Since all of the available observa-
tions are captured in the form of sequences, we formulate a unified graph-based
vectorized representation Ga = (Va,Ea) to be applied to any observed sequence.
At the same time, we use the attribute index a = {0, e ∈ [1, E], l ∈ [1, L]} to
distinguish these observed sequences with different semantic information, i.e.,
the temporal sequences over past states and the spatial sequences over future



310 D. Li et al.

lanes. Given a specific attribute index a, the set of nodes Va and their edge
relationships Ea are determined. More specifically, the node embeddings {vi

a}
with the temporal and spatial sequences are respectively given by

vi
0 = [si

p, s
i+1
p , 0],vi

e = [se,i
p , se,i+1

p , e],∀ e ∈ [1, E] and i ∈ [−τ + 1,−1], (3)

and
vi

l = [gi
l , g

i+1
l , E + l],∀ l ∈ [1, L] and i ∈ [1,K − 1]. (4)

As shown in Eq. (3), the node embeddings of temporal sequences record the
locations at the adjacent moments for the past trajectories of the target agent
and its surrounding agents, which implicitly provides some extra useful infor-
mation such as velocity and heading. Equation (4) gives a particular description
over the node embeddings of the spatial sequences instead, which concludes the
waypoint coordinates at the adjacent positions along per future lane the target
agent desires to reach.

Fig. 2. An overview of the hierarchical interactive representation module. First, all
observed sequences with different semantic information are transformed into a unified
graph-based vectorized representation. Then, three information aggregation means,
including GNN, max-pooling operator and Transformer layer, are adopted sequentially
to model interactions at the individual, local and global levels, respectively. Finally, we
obtain the structural representations of the target agent and its future goal candidates
by stacking the interactive representations above in necessity.

(2) Aggregation-based interactive representation. Given the graph-based vec-
torized representations of all temporal and spatial sequences, we apply three typ-
ical aggregation means, i.e., GNN, max-pooling operator and the Transformer
layer, to model interactions at the individual, local and global levels, respec-
tively. First, we use GNN to update each node feature

(
vi

a

)(n+1) in a neighbor-

hood aggregation manner, with
{(

vj
a

)(n)} denoting the set of its neighbors in
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the graph Ga, as described by
(
vi

a

)(n+1)
= φcc

(
fec

((
vi

a

)(n))
, φmp

({
fec

((
vj

a

)(n))}))
, (5)

where φcc(·) denotes a concatenation operator, and φmp(·) represents a max-
pooling operator. Besides, a mapping function fec(·) is designed to iteratively
encode the node features, which is realized by a single fully connected layer with
Layer Normalization [18] and ReLU non-linearity. As the number of GNN layers
increases, the number of hidden units grows twice as fast with its initial value set
to 16. After N = 3 layers of iterations, we obtain the individual representations{(

vi
a

)(N)
}

over all node embeddings in each sequence. Then, a max-pooling
operator is employed to capture the local representations {va} of the temporal
and spatial sequences by aggregating the individual node representations belong
to their own, which can be written as

va = φmp

({(
vi

a

)(N)
})

. (6)

Finally, built upon the local-level representations {va} above, the high-order
information aggregation is established to modal global interactions between
agent-to-agent and agent-to-lane by relying on the Transformer layer:

W = softmax

(
Q (K)T√

dk

)

V , (7)

where W denotes a matrix including the global-level representations {wa} of all
observed sequences. Besides, Q, K and V represent the query, key and value
matrix, respectively. Each of them is computed as a learned linear transformation
over the local-level representations. Note that dk = 128 denotes the dimension
of the key matrix.

(3) Stacked structural representation. The fine-grained feature of a goal can-
didate needs to derive from three aspects: the individual node representations
of a waypoint, the local and global sequence representations of the future lane
along which the waypoint is sampled. Therefore, the structural representations
are built to describe the fine-grained features over a candidate set of future goals
by stacking the underlying representations from these three aspects above:

hk
l = φcc

({(
vk

l

)(N)
,vl,wl

})
,hK

l = hK−1
l ,∀ l ∈ [1, L] and k ∈ [1,K − 1].

(8)
In addition, we also obtain the structural representations of the target agent
by concatenating the corresponding local and global sequence representations of
the past states:

h0 = φcc ({v0,w0}) . (9)

2.3 Multimodal Trajectory Forecasting

This section exhibits the detailed implementation process of the goal anchor-
based method.
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(1) Goal estimation. As described in Sect. 2.1, this stage consists of two steps:
goal selection and offset prediction. The goal selection can be treated a segmen-
tation task, which is performed by a softmax distribution:

π
(
gk

l | Sp,G,S1:E
p

)
= softmax

(
fseg

(
gk

l ,hk
l

))
. (10)

Further, we select the top K goal candidates estimated by π
(
gk

l | Sp,G,S1:E
p

)
.

For brevity, in the offset prediction step, we assume the variance Σ
(
Δgk

l

)
to

be an identity matrix, and the mean μ
(
Δgk

l

)
is learned by a regression task as

denoted by
μ

(
Δgk

l

)
= freg

(
gk

l ,hk
l

)
. (11)

In Eqs.(10) and (11), the mapping functions fseg(·) and freg(·) are achieved by a
three-layer multilayer perceptron (MLP), with the goal candidates gk

l and their
structural representations hk

l as the input.
(2) Goal-oriented trajectory forecasting. In this paper, an encoder-decoder

architecture is used to capture the sequential nature of past and future trajec-
tories for the target agent. Here, both encoder and decoder are performed by
a 2-layer bi-directional GRU network with a 128-dimension hidden state. More
specifically, the encoder updates its hidden states by taking into input the past
trajectory Sp of the target agent, and then the decoder inherits the hidden states
of the encoding procedure to predict the future trajectory in a step-wise rollout
manner. In addition to taking into account the structural representation h0, the
decoding procedure also considers the selected K goal candidates gk

l , which are
served as diverse anchors to guide the generation of K multimodal trajectories.

2.4 Multi-task Loss

To learn from demonstration and injecting common sense of collision avoidance,
we train our model end-to-end with the multi-task loss function L augmenting
pure imitation loss Limi with an auxiliary collision loss Lcol, as described by

L = Limi + λLcol, Limi = Lseg + Lreg + Lref . (12)

where λ = 1e−3 is a scalar that balances the two loss terms. Determined by the
pipeline of goal anchor-based method, the pure imitation loss Limi consists of
three parts: goal segmentation, offset regression, and trajectory refinement. More
concretely, in the goal estimation stage, we adopt the binary cross entropy loss
for Lseg and the mean square error loss for Lreg, where both two loss functions
are merely evaluated on the positive instances, i.e., the top K closest goal candi-
dates to the ground-truth endpoints. Further, K selected goals are represented as
K different prediction modes to correspondingly produce K goal-oriented trajec-
tories. In the goal-oriented trajectory forecasting stage, the trajectory refinement
loss Lref is measured by the mean square error loss between the predicted state
and its ground-truth over each future time step for per prediction mode. Since
the trajectory forecasting stage largely depends on the goal estimation stage, we
employ the teacher forcing technique [19] by feeding the real end point as the
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goal to accelerate the training process. Different from that, in the inference pro-
cess, the real endpoint is substituted by the predicted goals from the estimation
π

(
gk

l | Sp,G,S1:E
p

)
instead.

Since pure imitation loss can not reason about the danger of collision, an
auxiliary collision loss Lcol is designed to consider the future interaction with
AV, as depicted by

Lcol =
1

K · T

K∑

κ=1

T∑

δ=1

Lκ,δ
or , (13)

where Lκ,δ
or denotes a single overlap loss between the target agent and AV at the

future time step δ for the κ-th prediction mode. Approximately, we abstract each
agent with 5 circles whose radiuses are determined by half of the agent widths.
More concretely, we define the single overlap loss Lκ,δ

or as follows:

Lκ,δ
or =

⎧
⎨

⎩
1,&if d

(
ŝκ,δ

f , s1,δ
f

)
≤ R + R1,

0,&otherwise,
(14)

where ŝκ,δ
f represents the predicted state of the target agent at the time step δ

for the prediction mode κ, and s1,δ
f is the ground truth future state of AV at the

time step δ, and d(·) is responsible to compute L2 distance between centroids
of the closest circles for two agents. In addition, R and R1 are circle radiuses of
the target agent and AV, respectively. From Eq. (14) we can intuitively conclude
that the single overlap loss is set to 0 if no overlap between any circles while is
set to 1 if two circles overlap with each other.

3 Experiment

In this section, we use the Baidu In-house Cut-in dataset to verify the effective-
ness of our proposed GAP framework. Our model is trained on 4 A100 GPUs
for 200 epochs with the batch size of 64. We use the Adam [20] optimizer with
an initial learning rate of 5 × 10−3, which is decayed by a factor of 0.5 per 30
epochs.

3.1 Dataset

Baidu In-house Cut-in dataset is a large-scale private dataset, which is collected
from amounts of cut-in scenarios in Beijing, China. Given 2 s past observations,
our task is to forecast 3 s future locations of the target agent to cut in front
of the AV. According to different types of data collection scenarios, the Baidu
In-house Cut-in dataset consists of two branches: Junction and Non-junction
dataset. More specifically, the Junction dataset is further split into training and
validation sets with 162381 and 17820 frames, respectively. Towards the Non-
junction dataset, the number of the training and validation frames is 162556 and
30845, respectively. Also note that each frame is sampled 10Hz. In addition to
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5 s full trajectory of the target agent, each frame also includes 2 s past states
of E = 14 surrounding agents, and some extra information, such as the agent’s
initial heading and the agent’s length-width information. Moreover, we could
query the map topology represented by L = 6 future lanes the target agent
is likely to reach, each of which has the sequence of K = 200 equally spaced
waypoints.

3.2 Evaluation Metrics

On one hand, we adopt three extensively used distance-error metrics [3], i.e.,
minimum Average Displacement Error (minADE), minimum Final Displacement
Error (minFDE) and Miss Rate (MR), for the performance evaluation over K = 6
predicted future trajectories, respectively. minFDE is measured by L2 distance
of the endpoint between the ground-truth and the best predicted trajectory.
minADE is defined as the average L2 distance of all future time steps between
the ground-truth and the predicted trajectory with minFDE. Besides, MR is also
considered to compute the percentage of the predicted trajectory with minFDE,
whose endpoint is more than 2.0m away from ground-truth.

On the other hand, the Overlap Rate (OR) and Cut-in Rate (CR), served
as the interactive metrics, are considered as well. OR is computed as the total
number of collision frames divided by the total number of all the validation
frames. In particular, a collision frame is determined by a overlap indicator
IsOR(·) as described by

IsOR(·) = 1

(
T∑

δ=1

IOU
(
b
(
ŝκ̄,δ

f

)
, b

(
s1,δ

f

))
> 0

)

, (15)

where b(·) is a function to obtain the bounding box information (length, width
and heading) from the specific predicted state ŝκ̄,δ

f for the target agent, as well
as the ground truth state s1,δ

f for AV. As the overlap indicator is measured
by the full trajectories between the target agent and AV, the index κ̄ is the
number of the specific prediction mode belonging to the predicted trajectory with
minADE. Once the bounding box information is obtained, IOU(·) computes the
intersection-over-union between two bounding boxes of the two agents. From
another aspect, due to the unique characteristics of the large-scale Baidu In-
house Cut-in dataset, CR is assigned to count the number of the cut-in scenarios
under the condition that no collision occurs. Moreover, a cut-in indicator is
developed to identify the cut-in modality, which can be shown by

IsCutin(·) = 1
(
lane

(
ŝκ̄,T

f

)
= lane

(
s1,T

f

))
∧ 1

(
y

(
ŝκ̄,T

f

)
> y

(
s1,T

f

))
, (16)

where lane(·) is responsible to compute the index of the future lane where each
of two agents locates at the last future time step, and y(·) is a function to
retrieve the longitudinal coordinates of the endpoints for the target agent and
AV, respectively.
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Table 1. Performance comparison on Baidu In-house Cut-in dataset

Scenario Method minADE ↓ minFDE ↓ MR ↓ OR ↓ CR ↑
(m) (m) (%) (%) (%)

Junction LSTM [3] 0.79 1.51 25.4 5.92e−1 83
VectorNet [4] 0.54 1.06 13.4 4.97e−1 87
GAP 0.46 0.61 4.9 4.58e−1 90

Non-junction LSTM [3] 0.75 1.68 30.2 2.26e-2 82
VectorNet [4] 0.55 1.19 17.4 1.93e-2 90
GAP 0.37 0.76 6.4 6.46e-3 92

3.3 Quantitative Comparisons

We evaluate the performance of the proposed GAP framework on the junction
and non-junction datasets. As shown in Table 1, towards each dataset, we com-
pare the proposed GAP method with the existing mainstream methods including
LSTM [3] and VectorNet [4], which are both served as the typical regression rep-
resentatives trained by pure imitation loss.

Towards the distance-error metrics, compared with the competitive Vector-
Net in the junction dataset, we observe that our proposed GAP framework fur-
ther promotes the performance of FDE and MR by 42.45% and 63.43%, respec-
tively, which implies that our method is capable of learning accurate probabilistic
distribution over goal anchors with a novel hierarchical interactive representation
module.

Towards the interactive metrics, the proposed GAP framework adopts a
multi-task loss to take into consideration learning from demonstration and inject-
ing common sense of collision avoidance, resulting in largely better OR as com-
pared to the mainstream trajectory prediction methods which are purely opti-
mized by imitation loss. Besides, relying on the advantage of the goal anchor-
based pipeline, the proposed GAP framework accurately captures the cut-in
modality from the vast number of cut-in scenarios, which benefits the CR per-
formance in contrast with the direct regression models.

3.4 Ablation Studies

As shown in Table 2, to highlight the contribution of each component in the
proposed GAP framework, we conduct several ablation studies on the Baidu
In-house Cut-in dataset. We consider the individual-level representation in GAP
as the baseline model, and hierarchically add other level-based representation
modules to aggregate interactive contextual information, and employ an aux-
iliary collision loss to encourage supervision from injecting common sense of
collision avoidance.

Firstly, we observe that the model with a novel hierarchical interactive repre-
sentation module boosts the minFDE and MR by a large margin. This validates
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Fig. 3. Examples of K = 6 predicted trajectories obtained with GAP (the lower row)
and LSTM (the upper row) on the Baidu In-house Cut-in dataset: (a-b) junction
dataset and (c-d) non-junction dataset.

that stacking the comprehensive understandings progressively contributes to the
accurate distribution modeling over a candidate set of future goals, which takes
into account the logical interactive relationships between goal-to-goal, goal-to-
lane and lane-to-agent, correspondingly to the individual, local and global levels,
respectively.

Besides, incorporating the additional constraints of collision avoidance, the
proposed GAP framework with collision loss improves the interaction reason-
ing and prevents undesired collision behaviors in the future, reducing OR by a
significant margin compared with our method without collision loss. More con-
cretely, the proposed GAP framework with collision loss performs with 10.72%
and 49.92% relative decrease in OR for the junction and non-junction dataset,
respectively.

3.5 Qualitative Results

We showcase the qualitative comparisons between the proposed GAP framework
and LSTM for junction and non-junction datasets. In Fig. 3, we observe that our
method demonstrates good multimodalities which cover diverse future intents,
such as cut-in and lane-keeping. On the contrary, the predictions provided by
LSTM merely generate unimodal trajectories matching with the ground truth.
From this result, we confirm that the future goal candidates provide the target
agent different choices of admissible destinations and the proposed GAP frame-
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Table 2. Ablation study of GAP on Baidu In-house Cut-in dataset

Scenario Representation minADE ↓ minFDE ↓ MR ↓ OR ↓ CR ↑
(m) (m) (%) (%) (%)

Junction Individual 0.77 1.13 13.6 4.97e−1 86
+Local 0.71 0.93 10.1 4.80e−1 87
+Global 0.46 0.67 6.0 5.13e−1 90
+Collision loss 0.46 0.61 4.9 4.58e−1 90

Non-junction Individual 0.65 1.42 19.2 3.56e-2 87
+Local 0.53 1.14 13.8 1.94e-2 89
+Global 0.46 0.62 5.3 1.29e-2 92
+Collision loss 0.37 0.76 6.4 6.46e-3 92

work exploits them to correspondingly generate the feasible goal-oriented trajec-
tories in a given scenario. This also verifies the effectiveness of the hierarchical
interactive representation module, which extracts the fine-grained features of
future goal candidates for improving the accuracy of distribution modeling over
future intents. Further, relying on the vast amounts of real cut-in scenarios, the
proposed GAP framework has the ability to capture the cut-in modalities which
are highly associated with the goal selection, even when they differ from the
ground truth, especially as shown in Figs. 3 (b) and 3 (d). In the meanwhile, with
the auxiliary collision loss considered in the multi-task loss, our model produces
adequate trajectories with collision free behaviors and reasonable interactions.

4 Conclusion

In this paper, we propose a novel goal-aware prediction framework, GAP, by care-
fully considering fine-grained representation and multi-task loss design. Relying
on information aggregation methods, a hierarchical interactive representation
module is introduced to obtain the fine-grained features of goal candidates, which
lays solid foundation to build accurate distribution over future intents. Moreover,
an auxiliary collision loss is augmented in the multi-task optimization process
to learn from injecting common sense of collision avoidance. These two compo-
nents contribute to improve prediction quality in the aspect of multimodality
and interactivity.

The experiments conducted on the Baidu In-house Cut-in dataset demon-
strate that the proposed GAP framework achieves significant enhancements in
nearly all metrics considered. Towards the junction dataset, the proposed GAP
framework performs the competitive VectorNet with 63.43% reduction in MR.
Besides, the auxiliary collision loss plays a vital role in producing collision avoid-
ance behaviors in the future interaction process with AV, with about 49.92%
improvements in OR as compared to our method without the collision loss for
the non-junction dataset.
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Abstract. Recently, Electronic Health Records (EHR) have become
valuable for enhancing diagnosis prediction. Despite the effectiveness of
existing deep learning based methods, one unified embedding fails to cap-
ture multiple disease causes of a patient. Even though naive adoption of
multi-head attention could produce multiple cause vectors, a strong cor-
relation between these cause representations might mislead the model
to learning statistical spurious dependencies between cause vectors and
diagnosis predictions. Hence, in this work, we propose a novel Multi-
Cause Learning framework for Diagnosis Prediction, named MulDiag.
Our Multi-Cause Network extracts multiple cause representations for
a patient. We introduce HSIC (Hilbert-Schmidt Independence Crite-
rion) to measure the dependencies among each pair of cause represen-
tations. Further, sample re-weighting techniques are utilized to conduct
cause decorrelation. Experimental results on a publicly available dataset
demonstrate the effectiveness of our method.

Keywords: Diagnosis prediction · Multi-cause · Decorrelation ·
Statistical dependency

1 Introduction

Recently, Electronic Health Records (EHR) have become valuable for enhancing
medical decision making. EHR data are represented as a temporal sequence of
visits, where each visit includes multiple medical codes, representing clinical
diagnoses. One critical task is to predict future diagnoses based on historical
EHR data of a patient, so as to intervene in advance, i.e., diagnosis prediction.

Meanwhile, deep learning models have achieved great success in various
domains [7,8,20]. A lot of deep learning based methods have also been proposed
to model sequential EHR data. Similar to word embedding [17], each diagnosis is
parameterized by a real-valued vector. Recurrent neural networks [8] are adopted
to model temporal correlation among EHR sequence data. With a patient’s
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historical EHR data, these deep learning based methods usually generate an
overall embedding as patient health status representation.

Despite the effectiveness of these deep learning based approaches, there
remain some challenges demanding further exploration. A primary challenge
is that it is hard for a unified embedding to reflect different aspects of dis-
ease progression. Take an old man as an instance, he may suffer from multiple
diseases: diabetes and heart disease. Diagnoses of these two kinds of diseases
appear during the historical EHR data. Information of different diseases is fused
in the unified patient representation which produces difficulties for accurate pre-
dictions. Hence, we propose a multi-cause network to capture multiple disease
causes of a patient.

Fig. 1. Since the training dataset is collected in flu season, typical diagnoses of respi-
ratory (fever, sore throat) and heart disease (chest pain) tend to appear at the same
time. Hence, it is possible for the model to learn a spurious dependency between sore
throat and heart failure. Then, in the test phase, the model may make predictions of
heart failure according to sore throat symptoms.

Some existing methods [2] attempt to adopt multi-head attention mecha-
nisms to capture different aspects of disease progression. However, the perfor-
mance improvement is limited for two reasons. First of all, without proper regu-
larization, it is hard to obtain a model which can produce diverse cause vectors.
Instead, the obtained cause representations will be highly correlated which limits
the capability of those methods. Further, the strong statistical correlation may
mislead models to learn a statistical spurious dependency between diagnosis
prediction and disease cause representation. As a result, when data distribution
shifts, the learned statistical spurious dependency may generate false predic-
tions. For instance, as illustrated in Fig. 1, during flu season, typical symptoms
of respiratory (for example, cold) and heart disease tend to co-appear in some
old patients. If a model which attempts to capture multiple disease causes is
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trained on these data, diagnoses of respiratory (sore throat) and heart disease
(heart failure) would be statistically correlated. This kind of spurious depen-
dency would result in false predictions of heart failure if symptom sore throat
appears in historical visits.

To tackle the above two challenges, we propose a novel Multi-Cause Learning
framework for Diagnosis Prediction, named MulDiag. With regard to the first
challenge, we propose to represent one patient with multiple vectors through
a multi-cause network. As for the second challenge, we introduce the Hilbert-
Schmidt Independence Criterion (HSIC) to measure the degree of independence
among captured disease causes. Inspired by sample re-weighting techniques [10,
25], the cause correlation regularizer aims to estimate a sample weight for each
sample such that captured causes are decorrelated on the reweighted training
data. These two modules are jointly optimized in our method.

The main contributions of this work are summarized as follows:

– We propose a multi-cause network to capture different causes of a patient.
– We introduce the Hilbert-Schmidt Independence Criterion (HSIC) to measure

dependencies among captured causes.
– We adopt re-weighting techniques to conduct cause decorrelation for diagnosis

prediction.

2 Related Work

2.1 Diagnosis Prediction

EHR data contain rich historical health information of patients. Building power-
ful health risk prediction models based on EHR data paves the way for personal-
ized health care applications. Recently, deep learning techniques, including Con-
volutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
have achieved great success in various applications among multiple domains,
including health risk prediction and diagnosis prediction based on EHR data.
In viewing that EHR data exist in temporal sequential form, it is natural to
adopt RNNs or LSTMs to model disease progression in the time dimension. In
comparison, CNNs are adopted to capture local dependence in EHR data.

In Dipole [14], bidirectional recurrent neural networks are employed to
remember all the information of both the past visits and the future visits, and
three attention mechanisms are introduced to measure the influence of different
visits for the prediction. RETAIN [2] develops a reverse time attention model for
EHR data which achieves high accuracy while remaining clinically interpretable.
Its two-level neural attention detects influential past visits and significant clin-
ical variables within those visits (e.g. key diagnoses). Some works try to model
disease progression by taking time intervals into consideration. For example, Sta-
geNet [5] integrates inter-visit time information into LSTM cell states to capture
the stage variation of patients’ health conditions.

Another line of work proposes to incorporate existing medical knowledge into
diagnosis prediction. For example, GRAM [3] infuses information from a med-
ical ontology DAG (Directed acyclic graph) [19] into deep learning models via
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neural attention. GRAM can learn accurate and interpretable representations
for medical concepts and show significant improvement in the prediction perfor-
mance, especially on low-frequency diseases and small datasets. HAP [23] adopts
the same medical ontology DAG with GRAM [3], but hierarchically propagates
attention across the entire ontology structure with two rounds of knowledge
propagation. Nevertheless, in both GRAM and HAP, medical ontology infor-
mation is only used when learning code representations. Hence, Ma et al. [15]
propose KAME which directly exploits medical knowledge in the whole predic-
tion process, i.e. learning code representations, generating visit embeddings and
making predictions. KnowRisk [24] and DG-RNN [22] incorporate a more pow-
erful and larger scale knowledge graph KnowLife [4]1 to enrich the information
extracted from insufficient inputs and guide the prediction. And they propose
sophisticated knowledge graph attention to obtain the latent information from
embeddings of the input events in the knowledge graph.

2.2 Stable Learning

In order to tackle the problem of statistical spurious dependency, researchers pro-
pose a stable learning framework. The framework usually consists of two steps:
learning weights of training samples and training based on weighted data. To
be more specific, sample weights are learned to reduce the correlation between
features that could be measured by HSIC [6] or similar metrics. Under this
framework, a lot of decorrelation methods [10,18] have been proposed to train
linear stable models using re-weighted samples. Then, various deep stable models
are also proposed. For instance, StableNet [25] proposes to remove dependencies
between features by adopting sample weighting based on RFF (Random Fourier
Features). OOD-GNN [12] designs a novel nonlinear graph representation decor-
relation method.

For the diagnosis prediction task, Luo et al. [13] propose to use a causal rep-
resentation learning method called Causal Healthcare Embedding (CHE) which
aims at eliminating the spurious statistical relationship by removing the depen-
dencies between diagnoses and procedures. In comparison, we propose MulDiag
to eliminate spurious dependencies between different disease causes.

3 Preliminary

In this section, we mainly provide some background knowledge about EHR data
and formulate the diagnosis prediction task.

3.1 Electronic Health Records

Electronic Health Records (EHR) is a special kind of data that consists of the
medical history of a patient. For each visit to the hospital of a specific patient,

1 http://knowlife.mpi-inf.mpg.de/.

http://knowlife.mpi-inf.mpg.de/
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the diagnoses are recorded as medical codes in a pre-defined system such as ICD2

(International Classification of Diseases) or CUI3 (Concept Unique Identifiers).

3.2 Basic Notations

In this paper, all the unique medical codes from EHR data are denoted as
c1, c2, . . . , c|C| ∈ C. For a specific patient, the EHR data are denoted as
V = {v1, v2, . . . , vt}. Visit vt is a subset of C, representing medical codes appear-
ing in the t-th visit. For the convenience of calculation, vt can also be represented
as a |C|-length multi-hot vector xt ∈ {0, 1}|C|, where each element is zero or one,
representing each medical code appears or not respectively. By stacking those
multi-hot vectors, we reach a 0–1 valued matrix X ∈ {0, 1}t×|C| to represent the
EHR data.

3.3 Diagnosis Prediction Task

Diagnosis prediction is one of the most important tasks in the health care area
which aims to predict potential diagnoses according to historical EHR data. Here,
we give the formulation based on the notations provided above. For a specific
patient, denote his or her EHR data for t consecutive visits as X ∈ {0, 1}t×|C|,
the goal is to tell which diagnosis is likely to appear in the next visit, i.e. the
value of xt+1.

4 Methodology

In Fig. 2, we provide an overview of the proposed MulDiag. In the following, we
will describe each sub-module and optimization in detail.

4.1 Multi-Cause Network

In MulDiag, we employ a parameter embedding matrix E ∈ R
|C|×d, where each

row encodes a medical code. Given t-th visit code xt, we can obtain the vector
representation for t-th visit as follows:

vt = Ext. (1)

Inspired by deep multi-interest recommendation models [1,11], we devise a
Multi-Cause Network to generate multiple representations to reflect the disease
causes of patients. In previous studies, the attention mechanism has shown strong
capability in exploiting temporal EHR visit data. Hence, in this work, we adopt
a similar temporal attention mechanism. First, visit embeddings v1,v2, . . . ,vt

are fed into an RNN to encode historical visits information into state vectors:

g1,g2, . . . ,gt = RNN(v1,v2, . . . ,vt). (2)
2 https://www.cdc.gov/nchs/icd/icd9.htm.
3 https://www.nlm.nih.gov/research/umls/new users/online learning/Meta 005.

https://www.cdc.gov/nchs/icd/icd9.htm
https://www.nlm.nih.gov/research/umls/new_users/online_learning/Meta_005
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Fig. 2. The overview of the proposed MulDiag. The Embedding Layer first converts
visits consisting of medical codes into dense embeddings. Then, Multi-Cause Network
extracts multiple cause vectors given visit embeddings. Empirical HSIC statistics is
calculated between each pair of cause representations and are optimized through sample
weighting. Weighted BCE loss is adopted to optimize model parameters.

Then, based on these state vectors, attention coefficients are given by

α1, α2, . . . αt = softmax(a1, a2, . . . , at), (3)

in which αi = wT
a gi + b. Finally, we can obtain cause vector representations as

follows:

c =
t∑

i=1

αivi. (4)

We adopt the multi-head attention mechanism (for the sake of brevity, we omit
the subscript in the previous text), so there are multiple cause vectors, i.e.
c1, c2, . . . , cm.

4.2 Cause Decorrelation

To decorrelate cause representations, we first need to measure the degree of
dependence between each pair of cause representation vectors. Cause represen-
tations c1, c2, . . . , cm are samples of a high-dimensional distribution. In this
paper, we introduce HSIC to reflect dependence among each pair of cause rep-
resentations. HSIC is the Hilbert-Schmidt norm of the cross-covariance operator
between distributions in Reproducing Kernel Hilbert Space (RKHS). Let x,y be
random vector variables, and they follow distribution pxy, HSIC is given by

HSIC (pXY,x,y) = Ex1,x2,y1,y2 [k (x1,x2) l (y1,y2)] + Ex1,x2 [k (x1,x2)]

· Ey1,y2 [l (y1,y2)] − 2Ex1,y1 [Ex2 [k (x1,x2)] Ey2 [l (y1,y2)]] ,

(5)
in which k(·, ·) and l(·, ·) are kernel functions.
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However, the definition of HSIC in Eq. 5 is only theoretically valuable. Luck-
ily, given a series of n independent samples Z := {(x1,y1) , . . . , (xn,yn)} ⊂ X×Y
drawn from pxy, there is an approximately unbiased empirical statistics [6]:

HSIC(Z) = (n − 1)−2 tr KHLH, (6)

where H,K,L ∈ R
n×n,Kij = k (xi,xj) , Lij = l (yi,yj) and Hij = δij −n−1. In

this paper, we adopt the Radial Basis Function (RBF) kernel functions, i.e.

k(x1,x2) = l(x1,x2) = exp
(

−‖x1 − x2‖22
σ2

.

)
(7)

Algorithm 1: Training of MulDiag
Input: Training dataset
Parameters: Θ,w

1 Initialize sample weights w ← 1
2 Randomly initialize model parameters Θ
3 for q ← 1 to max epoch do

4 Keep w(q−1) fixed and update parameters Θ(q) according to Eq. 10

5 Keep Θ(q) fixed and update sample weights w(q) according to Eq. 12
6 if early stopping condition reaches then
7 return fΘ(q)

8 end

9 end

Inspired by sample re-weighting techniques, we propose a cause decorrelation
framework that aims to estimate a weight for each sample. In this manner,
cause representations for re-weighted data are decorrelated. We denote w ∈
R

n as the sample weights, where n is the number of samples. Before training,
w is initialized as [1, 1, . . . , 1]. During training, sample weights w and model
parameters are alternatively optimized as shown in Algorithm 1.

Model Optimization. During the optimization of model parameters, sample
weights w is fixed. Given the k-th training sample Xk = (x1,x2, . . . ,xt,xt+1),
for target medical code i, cause selection is conducted by choosing a cause rep-
resentation that is closest to the embedding vector Ei:

ŝi = max cTj Ei. (8)

The normalized prediction score for i-th medical code will be si = exp(ŝi)∑
j exp(ŝj)

.
Hence, the BCE (Binary Cross Entropy) loss function for the k-th training sam-
ple would be

L(Xk) = −
|C|∑

i=1

si log(xt+1[i]) + (1 − si) log(1 − xt+1[i]). (9)
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Model parameters Θ is updated through the weighted BCE loss:

Θ ← argmin
∑

k

wkL(Xk) (10)

Weight Optimization. To obtain decorrelated cause representations, Mul-
Diag finds optimal sample weights by minimizing the empirical HSIC statistics
between each pair of weighted cause vectors. Formally, given a batch of B sam-
ples, let c(b)i be the i-th cause vector of the b-th sample and w(b) be the sample
weight for the b-th sample, Then, the HSIC loss would be

HSIC loss =
∑

i

∑

j

HSIC({(w(1)c(1)i ,w(1)c(1)j ), . . . , (w(B)c(B)
i ,w(B)c(B)

j )}),

(11)
where HSIC is defined in Eq. 6. With model parameters Θ fixed, sample weights
w is updated as:

w ← argmin
w

HSIC loss. (12)

4.3 Complexity Analysis and Model Comparison

In this subsection, we analyze the complexity of MulDiag and compare it with
mainstream diagnosis prediction models.

For MulDiag, it takes O(nmdLK) to obtain m cause vectors for n samples,
in which d is embedding size, L is the average length of visit data and K is the
average number of diagnoses appearing in one visit. Cause decorrelation process
takes O(Bnd) to compute the HSIC statistics in which B is the batchsize.

For mainstream diagnosis prediction models such as RETAIN and StageNet,
computation complexity is usually O(ndLK). Therefore, MulDiag is as asymp-
totically efficient as mainstream diagnosis prediction methods.

5 Experiments

In this section, we first provide details of experimental settings. Then, we discuss
the experimental results of MulDiag and compare them with baseline methods.
In addition, we also provide visualization and sensitivity analysis.

5.1 Experimental Setup

Dataset. In this paper, we conduct extensive experiments on a real-world EHR
dataset MIMIC-III which includes 7,537 patients’ health records from ICU. In
the training phase, part of historical diagnoses are employed as an input of our
model while future diagnoses serve as supervision signals. Similarly, in the test
phase, diagnoses appearing later than those in the training set are adopted to
compute the accuracy and precision of our model.
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Baselines. To validate the effectiveness of the proposed MulDiag, we choose
four competitive baseline models: LSTM, RETAIN [2], RAIM [21], StageNet [5].

LSTM: We adopt the same embedding method as Dipole [14]. Then, the
embeddings of each visit are fed into an LSTM [8] layer. After that, all hidden
states are added together to obtain a final feature vector. In the end, a linear
classifier is employed to reach final predictions.

RETAIN: RETAIN is a competitive prediction model that adopts a two-level
neural attention model that detects influential past visits and significant clinical
variables with those visits.

RAIM: RAIM introduces an efficient attention mechanism for continuous
monitoring data, which is guided by discrete clinical events. With guided multi-
channel attention, high-density multi-channel signals are integrated with discrete
events and prove very useful in risk prediction.

StageNet: StageNet is constituted of a stage-aware long-short-term memory
(LSTM) module extracting health stage variations with no supervision and a
stage-adaptive convolutional module that incorporates stage-related progression
patterns.

Evaluation Metric. Following previous works [3,15], we adopt two metrics
to measure the performance of all methods for the diagnosis prediction task,
i.e. visit-level precision@k and code-level accuracy@k. In addition, we sort the
medical codes by their frequencies in the training dataset in non-decreasing
order, and then divide them into five different groups. We report code-level
accuracy in each group to reflect the prediction performance for codes with
varying frequencies.

Implementation Details. In this paper, all the baselines and our models are
implemented with PyTorch4 [16]. The dataset is randomly divided into training,
validation and testing sets in a 0.7:0.1:0.2 ratio. Embedding size d is set to 64
for all approaches. The same dropout strategy with a 0.5 drop rate is applied
to all the methods. All methods are trained with Adam optimizer [9] with a
mini-batch of 128 samples. The learning rate is fixed at 0.001 for all methods.

5.2 Performance Comparison

Comparison results at both visit and code levels are reported in Table 1, in which,
precision and accuracy for different values of k are included. From the table, we
can observe that MulDiag outperforms all the baseline methods. In Table 2, in
addition to the overall performance in code-level accuracy, we also report the
results for each group which are obtained by dividing the medical codes according
to the percentile of their frequencies in the training dataset. For example, 0–20
are the rarest diagnoses while 80–100 represent the most common ones. From
the table, we can tell that in addition to the overall performance improvement,

4 https://pytorch.org/.

https://pytorch.org/
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Table 1. Visit level Precision@k and code level Accuray@k comparison on MIMIC-III.
Average results for multiple values of k are also included.

Model Visit level Precision@k Code level Accuracy@k

10 15 20 25 30 Avg. 10 15 20 25 30 Avg.

LSTM 34.49 34.10 36.23 38.84 41.57 37.05 22.40 27.98 32.29 35.77 38.80 31.45

RETAIN 39.22 38.36 40.06 42.72 45.51 41.17 25.48 31.44 35.86 39.53 42.55 34.97

RAIM 23.49 23.50 25.31 28.17 30.75 26.24 15.93 20.27 24.15 27.61 30.55 23.70

StageNet 36.69 36.57 38.95 41.89 44.85 39.79 23.82 29.85 34.69 38.48 41.77 33.72

MulDiag 39.16 38.77 40.93 43.71 46.47 41.81 25.49 31.73 36.55 40.27 43.40 35.49

Table 2. Code-level accuracy@20. Diagnosis codes are divided into five groups accord-
ing to their frequencies in the training set. For example, 0–20 are the rarest diagnoses.

Model Code-level accuracy

0–20 20–40 40–60 60–80 80–100 Overall

LSTM 2.49 12.10 19.08 47.07 81.31 32.29

RETAIN 3.02 17.17 25.64 51.31 82.38 35.86

RAIM 0.00 0.00 0.00 26.56 96.87 24.15

StageNet 3.51 16.39 23.85 47.75 82.43 34.69

MulDiag 5.80 20.53 28.26 49.16 79.18 36.55

MulDiag achieves significant improvement in the prediction of rare diagnoses.
In comparison, baseline models perform poorly for those infrequent diagnoses
(Fig. 3).

5.3 Visualization Analysis

For an easier understanding of weight optimization, we visualize the change
of HSIC on the test set while MulDiag and MulDiag-NWO are training on the
MIMIC-III dataset. Compared with MulDiag, MulDiag-NWO is almost the same
except that there is no sample weight optimization (i.e. each sample weight is
1). Since the parameters of models are initialized randomly, HSIC is near 0 at
earlier epochs for both MulDiag and MulDiag-NWO. Then, the HSIC begins to
decrease. After some epochs, the HSIC of MulDiag-NWO on the test set remains
unchanged while the HSIC of MulDiag keeps decreasing. This makes it possible
for our MulDiag to update more steps and achieve better performance.

5.4 Sensitivity Analysis

We also provide the experimental results for the sensitivity analysis of the num-
ber of causes. As Fig. 4 illustrates, the number of causes does not impact the
performance very much. Cause decorrelation of MulDiag is capable of boosting
the performance for various values of the number of causes.
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Fig. 3. The change of HSIC on the test set when MulDiag and MulDiag-NWO are
trained on MIMIC-III.

Fig. 4. Accuracy and precision of MulDiag with the number of causes varying from 2
to 8.

6 Conclusion

In this paper, we propose MulDiag which aims to capture multiple causes of
diseases. To avoid learning statistical spurious dependency between cause rep-
resentations and diagnosis predictions, we first introduce HSIC to measure the
degree of independence among cause vectors. Then, re-weighting techniques are
adopted to implement dependency decorrelation. Extensive experiments on the
publicly available benchmark dataset demonstrate the effectiveness of our model.
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Abstract. Esophageal squamous cell carcinoma (ESCC) is a global safety prob-
lem, especially the low 5-year survival rate of patients after surgery, and their
healthy life after surgery is directly threatened. Kaplan-Meier (K-M) survival
analysis is used to screen the blood indexes of patients with ESCC. The gray
wolf algorithm (GWO) is introduced to optimize the weight threshold of back-
propagation (BP) neural network, and a prediction model based on K-M-GWO-
BP is established. According to the influencing factors of postoperative survival,
the postoperative survival level of patients is predicted. K-M survival analysis is
used to analyze the relevant risk factors, the redundant variables are eliminated,
and the whole structure of the neural network is simplified. The initial weight
of BP neural network is optimized by GWO. Conclusions: BP neural network
model, PSO-BP, GA-BP, SSA-BP, GWO-BP, K-M-BP, K-M-PSO-BP, K-MGA-
BP, K-M-SSA-BP and K-M-GWO-BP are compared, the prediction accuracy of
K-M-GWO-BP neural network model is the best.

Keywords: Esophageal Squamous Cell Carcinoma (ESCC) · Kaplan-Meier
(K-M) survival analysis · BP network · K-M-GWO-BP model

1 Introduction

Esophageal cancer was one of themost commonmalignant tumors of digestive system in
the world. Global Cancer Epidemiology Statistics (GLOBOCAN2018) shown that there
are 572000 new cases of esophageal cancer worldwide, and 509000 cases were expected
to die of esophageal cancer in 2018 [1]. The number of new cases of esophageal cancer
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in China ranked first in the world, accounting for about 50% of the global incidence
of esophageal cancer [2, 3]. It was one of the countries with the highest incidence of
esophageal cancer in the world [4, 5]. In China, squamous cell carcinoma was the main
pathological type of esophageal cancer (EC), accounting for more than 90%. Surgery
was the first choice for patients with resectable EC. With the progress of medical and
health technology, the development of minimally invasive concept and the development
of (ERAS) concept of accelerated rehabilitation surgery, the long-term prognosis of
patients has been significantly improved [6, 7]. There are more problems like this, just
to name a few. Due to the complexity of EC surgery, more postoperative complications,
and a high recurrence rate after surgical resection, the 5-year survival rate was about
40% [8, 9].

In fact, the survival rate of all patients with ESCCmore than 5 years after operation is
less than 20% [12]. According to the low accuracy of predicting the survival rate of can-
cer patients, recent studies have shown that a computer-aided classification method for
lung cancer prediction based on evolutionary system has been proposed [13]. The work
demonstrated that the proposed probabilistic genetic algorithm optimized neural net-
work models, integrating with the t-SNE dimensionality reduction algorithm, achieved
accurate prediction of patient survival [14]. The proposed GPU-based training of BP
neural network was tested on a breast cancer data, which shown a significant enhance-
ment in training speed [16]. BP neural network model [17, 18], genetic algorithm model
[19, 20], support vector machine model [21], decision tree method [22]and time series
method [23] were commonly used prediction methods at present. However, BP neural
network had some defects such as local optimization, irrelevant to physical meaning,
strong dependence on training data and slow convergence speed, which hindered its
application in practical engineering [17, 19]. Strong macro search and global optimiza-
tion capabilities were the characteristics of genetic algorithm (GA) [20]. The problem of
local minimization of network could be solved to improve network performance. There-
fore, GAwas widely used to optimize BP neural network [19]. Due to the characteristics
of multi-media and multi factors in the blood of esophageal cancer, it was difficult to
determine the influencing factors which had the optimal correlation with the prediction
indexes of the model. In the process of neural network modeling, it was time-consuming
and difficult to optimize the neural network.

The GWO had the characteristics of simple implementation and fast convergence
speed, which shows excellent results in standard test functions. At the same time, the
research shows that the GWO algorithm was better than other intelligent optimization
algorithms in some application fields, such as particle swarm optimization algorithm
(PSO) and GA [19]. The objectives of this work are summarized as follows.

1) AK-M-BP neural network model is proposed. The purpose of the model is to reduce
the dimension of data and improve the accuracy of BP neural network prediction
model. K-M analysis is used to screen the blood factors with high correlation with
the survival level of patients to simplify the network structure. BP neural network is
applied to predict the survival level of patients with esophageal cancer. Case study
and experimental results demonstrate that K-M-BP neural network model is more
effective than BP neural network model in predicting the survival level of patients.
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2) Based on the proposed framework, a K-M-GWO-BP is proposed by adopting GWO
as the optimizer for evolving the BP. GWO is used to optimize the BP neural network
trained model to improve the prediction accuracy. The proposed GWO-BP is tested
on a set of benchmark functions to verify its effectiveness. The prediction accuracy
and applicability of BP, GWO-BP and K-M-GWO-BP prediction models are con-
structed to explore a new way of survival level prediction. The experimental results
show that the proposed K-M-GWO-BP neural network model is superior to some
of the latest BP neural network models in terms of calculation speed and prediction
accuracy.

In the rest of this article, the sources of the data are described in Sect. 2. Then, the
proposedK-MandGWOandGWO-BPare given inSect. 3.Afterwards, the experimental
results are detailed in Sects. 4 and 5. Finally, conclusions are drawn and future work is
outlined in Sect. 6.

2 Objects and Analysis

2.1 Collect Patient Samples

A total of 331 patients with ESCC were treated in the affiliated Hospital of Zhengzhou
University from January 2007 to December 2018, including 210 males (63.44%) and
121 females (36.56%). Patients were concentrated at age of 38 to 80 years old with
average age of 60.61 years old.

2.2 Experimental Data

The patient data included 17 blood indexes, such as WBC count (109/L), lympho-
cyte count (109/L), monocyte count (109/L), neutrophil count (109/L), eosinophil count
(109/L), basophil count (109/L), red blood cell count (109/L), hemoglobin concentra-
tion (g/L), platelet count (109/L), total protein (g/L), white blood protein (g/L), globulin
(g/L), PT (s), INR, APTT (s), TT (s), FIB (mg/dL).

Blood indicators were regarded as important factors in the clinical manifestations of
cancer patients. The relationship between neutrophil to lymphocyte ratio (NLR), platelet
to lymphocyte ratio (PLR) and lymphocyte to monocyte ratio (MLR) and the prognos-
tic and clinicopathological significance in patients with ESCC have been reported by
many studies. NLR, PLR and LMR might be served as prognostic markers in patients
with ESCC [24, 25]. Peripheral blood cell count ratio was suggested to evaluate clini-
cal response and prognosis of patients with non-surgical ESCC. Serum TT may be an
important factor in prognosis of ESCC patients confirmed. Preoperative serum FIB was
validated to verify survival of ESCC, especially for the early pathological TNM stage (I–
II) and N0 patients. The nomogram combined with C-reactive protein (CRP)/ALB ratio
could be used as a predictive model for the efficacy and survival outcome of thoracic
ESCC treated with received chemo radiotherapy (CRT) or single radiotherapy (RT),
which was found by zhang research.
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3 Composite Model for Predicting Survival Level of Patients
with EC

3.1 K-M Survival Analyze

K-M survival analysis is a method to analyze the result and process of an event. K-
M considers not only the occurrence of the event, but also the duration of the event.
Therefore, survival analysis is also called time to event analysis. Survival analysis is
very common for the study of survival time of cancer and other diseases in the medical
field [34, 35]. In order to analyze the influencing factors of survival time of EC patients,
the blood indicators of patients are used as input and the survival time is used as output.
The statistical software SPSS20.0 is used for K-M survival analysis. The accuracy of
variable selection is determined by the size of correlation.

3.2 GWO Algorithm

GWO is a new intelligent optimization algorithm proposed in 2014. The population
system and predation behavior of grey wolves are imitated by GWO. In the Fig. 1, the
goal of optimization is achieved by simulating the hunting process of wolves. The wolf
pack is composed of 5–12 wolves, which can be divided into 4 grades according to
the fitness value. The wolf in the first layer of the pyramid is the leader wolf, which is
expressed as α, and has the decision-making power on all major issues of the whole wolf
pack. The wolf in the second layer is represented as β, which helps the leader wolf to
make decisions. The wolf in the third layer is represented as δ, which is responsible for
sentinel, reconnaissance and other tasks. The wolf at the bottom is denoted as ω, which
is under the command of the first three levels of gray wolf. In the process of predation,
α, β, δ wolves constantly change their positions to pursue prey, and the remaining gray
wolf ω follows the first three, and the optimal solution is the specific location of prey.
Due to the uncertainty of the location of gray wolf, the distance between each wolf and
its prey is expressed as follows:

Fig. 1. Hierarchy of grey wolf
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D(t) = |Cp(t) − X (t)| (1)

The increasing number of iterations is represented by t. The prey of the t generation
and the position of the wolf are expressed by p(t) and X (t), respectively. C = 2r1, r1 is
a random number in [0,1]. The positions Xα(0), Xβ (0), Xδ(0) and Xw (0) of each gray
wolf are randomly initialized. The location of the wolf is updated in formula.

⎧
⎨

⎩

X (t + 1) = p(t) − A(t)D(t)
A(t) = 2α(t)r2 − α(t)

α(t) = 2 − 2 t
max

(2)

r2 is a random number at [0,1]. a(t) is defined as the convergence factor. The custom
maximum number of iterations is expressed as max. For the three wolves, there are the
following mathematical descriptions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dα = |C1Xα(t) − X (t)|
Dβ = |C2Xβ(t) − X (t)|
Dδ = |C3Xδ(t) − X (t)|

X1 = Xα − A1Dα

X2 = Xβ − A2Dβ

X3 = Xδ − A3Dδ

(3)

The position of the next generation ω wolf is defined by Eq. (4).

Xω(t + 1) = X1 + X2 + X3

3
(4)

3.3 BP Neural Network Algorithm

(1) Determine the input layer, hidden layer and output layer

The number of nodes in the input layer, hidden layer and output layer of the network
is expressed by l, m and n, respectively. α is a random number in the range of 1–10, in
Fig. 2. The initial weight between input layer and hidden layer is determined by ω ij,
and that between hidden layer and output layer is determined by vjk. The threshold of
hidden layer is represented by a, a = [a1, a2, …, am]. The threshold of the output layer
is expressed by b, b = [b1, b2, …, bn].

m = √
l + n + α α ∈ [1, 10] (5)

(2) Calculate hidden layer output

hj = f (
l∑

i=1

ωijxi − aj) (6)
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Fig. 2. Structure diagram of neural network

In formula (6), the output of the jth neuron in the hidden layer is hj. xi is the input
of the i th neuron in the input layer. aj is the jth threshold of the hidden layer.

(3) Calculate output of output layer

Ok =
m∑

j=1

hjvjk − bk) k = 1,2,....n (7)

The kth threshold of the output layer is represented by bk . The output of the output
layer is Ok .

(4) Update connection layer weights.

The following objective functions are defined:

J = 1

2

A∑

S=1

n∑

k=1

(ysk − osk)

2

(8)

In Eq. (8), A is the number of training samples and n is the number of output nodes.
ysk is the expected output of sample s; osk is the output of the kth output node under the
action of sample s.

The weight update function can be expressed as:

ωij(t + 1) = ωij(t) + μ[(1 − γ )D(t) + γD(t − 1)] (9)

vjk(t + 1) = vjk(t) + μ[(1 − γ )E(t) + γE(t − 1)] (10)

In Eq. (9) and Eq. (10), i = 1, 2, …, l, j = 1, 2, …, m, k = 1, 2, …, n. The learning
efficiency is μ, and μ > 0. The inertia coefficient is γ , and 0 ≤ γ<1.

D(t) = − ∂J

∂ωij(t)
, E(t) = − ∂J

∂vjk(t)
◦
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(5) Update threshold

⎧
⎨

⎩

aj(t + 1) = aj(t) + μhj(1 − hj)
n∑

k=1
vjk(yk − ok)

bk(t + 1) = bk(t) + (yk − ok)
(11)

(6) Judge

Whether the algorithm reaches the maximum number of iterations is judged. If the
maximum number of iterations is not reached, return to step (2). If the maximum number
of iterations is reached, the network training ends.

3.4 GWO-BP Neural Network Algorithm

The convergence speed of BP neural network is slow and easy to fall into local minimum.
Therefore, GWO algorithm is used to enhance the global search ability. As shown in
Fig. 3, the gray wolf position is taken as the weight and threshold of BP neural network,
and the gray wolf algorithm is iterated for many times. The location of prey is continu-
ously judged and updated by gray wolf. The threshold and weight of BP neural network
are constantly updated to calculate the global optimal result. The steps are as follows:

Fig. 3. Flow chart of GWO-BP neural network
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Step 1: selecting appropriate training samples. The variables selected by K-M
survival analysis are used as training input samples.

Step 2: the establishment of BP neural network model. The number of input layers
is l. The number of output layers is n. The number of hidden layer neuron nodes m,
as shown in formula (5). a is an arbitrary constant from 1 to 10. Therefore, after many
experiments, it can be concluded that when a is 5, the convergence speed and fitting
accuracy of the neural network model are the most suitable in the table.

Step 3: initialization of GWO optimization algorithm. The optimal positions Xα, Xβ

and Xδ are initialized.
Step 4: calculating individual fitness value. The weights and thresholds of BP neural

network are set as the object of GWO algorithm. The error sum of each neural node
of BP neural network is used as the fitness function of GWO optimization algorithm to
measure the individual position, and the position of the current optimal fitness value is
obtained.

F = 1

A

A∑

S=1

√
√
√
√

n∑

k=1

(ysk − osk)
2 (12)

Step 5: updating the parameters r1, r2, q in GWO. According to formula (1) and
Eq. (2), the positionof eachwolfwasupdated, and anewBPneural network is constructed
and trained. According to Eq. (12), the fitness function value of each wolf is calculated,
and the new α, β, δ are determined again.

Step 6: determining the number of iterations. When the number of iterations reaches
the upper limit, GWO optimization algorithm is finished, and the optimal initial weights
and thresholds of BP neural network are obtained. If the number of iterations does not
reach the upper limit, return to step (5).

Step 7: output of prediction results. BP neural network is trained and evaluated
according to the weights and thresholds optimized by GWO optimization algorithm,
and finally the prediction results are obtained.

In the process of building the network, Matlab simulation software is used to update
the individual position in GWO optimization algorithm until the number of iterations
reaches the set value. As shown in the Fig. 4, the optimal fitness value of GWOoptimiza-
tion algorithm before the number of iterations reaches 500. The optimal initial weights
and thresholds of BP neural network are obtained by GWO optimization algorithm.
When the number of iterations is 300, the optimal fitness value of GWO optimization
algorithm before the number of iterations reaches 300. 300 iterations and 500 itera-
tions are compared to calculate the speed and optimal value, and the optimal number of
iterations 500 is obtained.
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Fig. 4. Optimal fitness graphs for 300 and 500 iterations

4 Case Analysis

4.1 Selection of Input and Output Parameters

Table 1. Log rank test of K-M survival analysis

Variables Chi square Degrees of freedom Sig

WBCC 315.765 86 <0.001

TLC 203.852 33 <0.001

MONO 32.085 15 0.006

NEUT 411.260 81 <0.001

EOS 174.795 9 <0.001

BOS 42.030 6 <0.001

RBC 412.880 151 <0.001

HGB 163.149 71 <0.001

PLT 756.434 191 <0.001

TP 59.369 37 0.011

ALB 41.551 29 0.062

GLB 37.363 27 0.088

PT 114.245 65 <0.001

INR 110.603 65 <0.001

APTT 578.811 188 <0.001

TT 135.878 77 <0.001

FIB 262.722 115 <0.001

LMR 416.955 107 <0.001

(continued)
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Table 1. (continued)

Variables Chi square Degrees of freedom Sig

NLR 1090.615 254 <0.001

PLR 1701.675 312 <0.001

PNI 254.672 61 <0.001

In the first step of prediction modeling, relevant data need to be obtained in Table 1.
The input and output data inmodeling are preprocessed to obtain accurate and applicable
sample set. In view of the nonlinear complexity of the patient’s blood system, K-M
survival analysis is used to screen the input variables. The purpose of screening variables
is related to survival level, and irrelevant variables are deleted. The significance of chi-
square value is less than 0.05, and the two variables are significantly correlated. The
degree of freedom refers to the number of variables whose values are not limited when
calculating a unified measurement. Significance refers to the risk level of rejecting zero
hypothesis when zero hypothesis is true, also known as probability level, or significance
level.

4.2 Performance Test of GWO Algorithm

In order to verify the validity and generality of GWO, 23 benchmark tests are selected to
test GWO algorithm. Among them, F1 and F2 are unimodal test functions, and F9, F11
and F13 are multi peak test functions, as shown in Table 2. Salp swarm algorithm (SSA),
differential evolution (DE), particle swarm optimization (PSO), ant lion optimization
(ALO), dragonfly algorithm (DA) and GWO are selected for comparative study. In order
to make the algorithm fairer, the parameters of the five algorithms are set as follows.
The population size is set to 30 and the cutoff iterations are set to 500. In SSA, c1 is
between 0 and 2, c2 and c3 are random numbers between 0 and 1. In DE algorithm,
the scale factor is set to 0.5 and the crossover constant is set to 0.2. In PSO algorithm,
the maximum value of inertia weight is set to 0.9, and the minimum value is set to 0.4.
The learning factor of PSO algorithm is set to ca = 2.5, cb = 0.5, and the maximum
limit speed is set to 1. In ALO algorithm and DA the same dimension as GWO. The
convergence accuracy and convergence rate of the algorithms are evaluated.

Table 2. Results of benchmark test function

Function GWO SSA PSO DE ALO DA

F1 Ave 1.69e−15 4.51e−05 0.002195 0.010272 0.007754 8.208377

Std 1.54e−16 3.43e−05 0.001589 0.022289 0.005202 5.867565

F2 Ave 1.30e−18 0.041021 1.66e−04 0.019779 0.344763 0.485178

Std 2.38e−19 0.114595 3.09e−04 0.040523 1.069088 0.626178

F3 Ave 5.37e−05 9.344069 2.865525 0.012248 11.204666 17.469637

(continued)
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Table 2. (continued)

Function GWO SSA PSO DE ALO DA

Std 2.36e−05 6.754941 1.832225 0.027985 7.815729 16.309052

F4 Ave 8.94e−07 5.601099 0.490286 0.306086 13.306136 16.960946

Std 1.96e−07 2.719842 0.322861 0.169225 6.039672 8.004191

F5 Ave 0.076699 0.013783 0.289451 0.525274 0.115306 2.742857

Std 0.208071 0.019954 0.361101 0.357824 0.228265 1.101517

F6 Ave 0.434285 0.499991 0.500024 0 0.500075 5.316411

Std 0.168623 5.65e−05 8.15e−04 0 0.003769 3.671765

F7 Ave 0.016815 0.133704 0.083586 0.230743 0.117537 0.127742

Std 0.020713 0.071891 0.046507 0.176026 0.076103 0.1120653

F8 Ave 2.1242e+02 3.1122e+02 1.9815e+02 0.971742 4.9405e+02 2.2939e+02

Std 1.4854e+02 1.7010e+ 02 1.3821e + 02 0.060516 32.556011 1.6225e+02

F9 Ave 3.72e−09 1.392938 1.162095 0.399364 1.757771 1.551829

Std 2.51e−09 0.809567 0.786181 0.515579 1.582437 0.613495

F10 Ave 2.08e−14 0.479007 0.121888 0.559262 2.786641 1.101415

Std 6.21e−15 0.603006 0.309137 0.258891 2.566353 0.941039

F11 Ave 2.14e−08 0.074052 0.001161 0.024587 0.146765 51.978504

Std 1.29e−08 0.095434 0.001108 0.052775 0.163191 27.669841

F12 Ave 0.799699 4.689853 1.000013 0.859562 5.624831 5.823162

Std 0.395535 3.125309 0.005251 0.457892 3.101541 3.302272

F13 Ave 0.754019 1.554161 1.000018 0.886953 3.777629 5.910301

Std 0.387561 1.239284 3.94e−04 0.146431 1.138838 2.970171

F14 Ave 23.932545 23.978367 31.978334 0.029963 31.978336 31.978334

Std 11.283171 11.302351 1.003e−06 0.003063 6.21e−06 7.23e−07

F15 Ave 0.233314 2.599323 7.270406 0.394241 1.063258 3.052731

Std 0.080406 2.096767 5.048224 0.197431 0.867394 2.361489

F16 Ave 0.4012807 0.401249 0.401249 0.353553 0.401249 0.401249

Std 0.440366 0.440396 0.440396 0.500000 0.440396 0.440396

F17 Ave 2.708872 0.537405 2.708296 1 2.708296 2.708296

Std 0.611744 0.231406 0.612773 0 0.612773 0.612773

F18 Ave 0.500248 0.500001 0.500001 0 0.500001 0.500001

Std 0.706892 0.707106 0.707106 0 0.707106 0.707106

F19 Ave 0.508537 0.507603 0.507603 0.496227 0.507603 0.508225

Std 0.369743 0.371305 0.371305 0.364716 0.371304 0.370286

F20 Ave 0.345023 0.479691 0.480745 0.364069 0.460785 0.433646

Std 0.189996 0.322890 0.352831 0.185006 0.323137 0.287861

F21 Ave 8.000627 4.000085 4.000085 0.982601 4.000085 7.999633

Std 0.006721 5.55e-05 5.54e−05 0.021352 5.57e−05 1.25e−04

F22 Ave 4.001473 4.000089 4.000089 0.994969 4.000089 4.001454

(continued)
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Table 2. (continued)

Function GWO SSA PSO DE ALO DA

Std 0.001394 6.28e-04 6.28e−04 0.005808 6.29e-04 0.005133

F23 Ave 4.007203 5.293117 4.000128 0.975137 4.007192 7.999457

Std 2.305720 1.960713 6.31e−04 0.049725 2.306840 1.84e−05

Fig. 5. Unimodal benchmark functions

Under the condition of the same population size and maximum iteration times, 30
tests are conducted on 23 functions by SSA, DE, PSO, ALO, DA andGWO. The average
value and standard deviation are used as statistical data to observe the experimental
results in Table 3. No matter in unimodal function or multimodal function, GWO is
superior to other algorithms in convergence accuracy and stability. Therefore, GWO
has good global convergence performance. Optimal fitness value diagram of benchmark
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functions are given in Fig. 5, Fig. 6. By comparing the advantages of the six algorithms,
GWO has the advantages of fast computing speed and low fitness.

4.3 Prediction of Survival Level of Patients with EC by K-M-GWO-BP

In the construction of BP network model, the input layer is determined by the number
of influence variables. The number of output layers is determined by the number of
prediction. The number of input layer and output layer is 5 and 1 respectively. There
is no unified way to determine the number of hidden layers, but it plays an important
role in the accuracy of the prediction model. The number of hidden layers is selected
by comparing the training errors under different numbers of hidden layers. Select the
number of hidden layers from 3 to 13 for BP network training, and get the results as
shown in Table 4 through 10 experiments. When the number of hidden layers is 11, the
training error is 0.0173, and the training result is the best.

Fig. 6. Multimodal benchmark functions

Table 3. Network training error of node numbers in different implicit layer

Number of nodes 3 4 5 6 7 8 9 10 11 12 13

BP training error 6.6599 6.7328 6.7316 6.9328 6.6517 6.7726 6.8356 7.0237 6.9346 6.6637 6.8205

GWO-BP training
error

4.8392 4.2302 5.2688 5.7011 4.6974 4.6812 4.8253 4.5574 4.8330 3.5871 5.0219
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In order to comprehensively reflect the performance of theK-M-GWO-BPprediction
model, the prediction results are evaluated by three indexes: the average value of the
absolute error, the variance of the absolute error and the average value of the relative
error. The agreement between the predicted value and the real value of test data in the
prediction model is reflected by the average value of absolute error and relative error.
The smaller the corresponding value is, the higher the prediction accuracy of the model
is. The variance of the absolute error reflects the fluctuation of the difference, and the
smaller the value is, the more stable the prediction result is. The predicted results for
the normalized data are given in Table 5, with an average absolute error of 3.4156 for
K-M-GWO-BP. The average relative error of 0.3277 is smaller than that of BP, PSO-
BP, GA-BP, SSA-BP, GWO-BP, K-M-BP, K-M-PSO-BP, K-M-SSA-BP, K-M-GA-BP
indicating that the prediction accuracy and fitting degree are higher. The average absolute
error of PSO-BP is 7.3707 and the average relative error is 0.8831 higher than that of BP
prediction model. The absolute error variance of BP is smaller than that of K-M-GWO-
BP prediction model. The absolute error of the models without K-M analysis is given
in Fig. 7. The absolute error of K-M-GWO-BP model is minimum. The comprehensive
results show that the K-M-GWO-BP prediction model has better training accuracy and
prediction effect.

Fig. 7. Absolute error of the models
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Table 4. Comparison of forecast results evaluation

Algorithm type Average absolute error Absolute error variance Average relative error /%

BP 7.0483 3.6125 0.7098

PSO-BP 7.3707 13.7809 0.8831

ASSA-BP 5.7459 3.8047 0.5716

GA-BP 6.9386 3.9834 0.7007

GWO-BP 4.3486 4.2637 0.4232

K-M-BP 6.8245 3.7137 0.6852

K-M-PSO-BP 3.4979 12.5807 0.8744

K-M-ASSA-BP 5.4399 4.1366 0.5409

K-M-GA-BP 6.5191 4.6490 0.6522

K-M-GWO-BP 3.4156 4.4168 0.3277

5 Discussion

In this paper, a comprehensive model for predicting the survival level of patients with
esophageal squamous cell carcinoma based on K-M survival analysis and gray wolf
optimized backward propagation neural network is proposed. In view of the strong
coupling and nonlinear characteristics of patient blood sample data, the sample data are
analyzed by K-M survival analysis to reduce the impact of data correlation on modeling
accuracy. On the basis of obtaining all kinds of sample data, the corresponding BP
neural network model is distributed and constructed. The grey wolf algorithm with
global optimization ability is used to optimize the parameters of error back propagation
neural network, which avoids the blindness of artificial parameter selection and improves
the prediction accuracy of the model.

Considering the influence factors of patients’ blood, 250 groups of data are selected
to train the network, and 80 groups of data are used to test the trained network. Compared
with BP neural network model, PSO-BP, GA-BP, ASSA-BP, GWO-BP, K-M-BP, K-M-
PSO-BP,K-M-ASSA-BPandK-M-GWO-BP, the prediction accuracyofK-M-GWO-BP
is the best. The rapid and accurate prediction of patients’ survival level is based on the
solution method of K-M-GWO-BP neural network, which provides a new way for the
healthy life of postoperative patients.

In this paper, 17 factors are found. Because there are many influence factors, the
correlation is large. Reducing screened blood factors for ESCC is our next goal to
improve the accuracy of predicting survival.
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Abstract. In this paper, while considering rejection as an option, we
attempt to tackle the problem of multiclass classification and the uncer-
tainty that arises from the class possibility assignment of data. To address
the challenge of classification based on possible class assignments, we use
the likelihood ratio, which helps us develop a holistic approach that con-
siders all the positive and negative effects of assigning a particular class as
opposed to others to a data point. To this end, we propose a possibilistic
variant of the contrastive-learning function, inspired by RSLVQ [20],
and a class-wise decision rule based on it. The latter is used to define
the total cost function. In addition, with the help of likelihood ratio, an
error-rejection trade-off inspired by Chow [3], is proposed. Finally, mod-
ification of the cost function and integration of rejection into it result
in an interpretable model whose capabilities in both aspects (classifica-
tion/rejection) are demonstrated by application to different data sets.

Keywords: Reject-option · Possibilistic classifier · Contrastive
learning · Multiclass classification · NN-Models

1 Introduction

In today’s world, classification as a supervised machine learning method has
gained a lot of credit, witnessed not only by many contributions with the promise
of almost perfect classification in different kinds of applications [4,14,22], but
also by a variety of practices for model evaluation [2,7,16,21]. Although, it should
be pointed out that in the face of real-world data, classifying data safely and reli-
ably, especially when a data point is too close to class boundaries, is an ongoing
problem. To set an example for diagnosing a person with an illness sometimes
it is impossible to call a person sick for sure. Hence, in this case, the idea of
crisp labeling as a solution is off the table. After further investigation, it can be
realized that sometimes people with the same symptoms may be diagnosed with
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different illnesses. So, here comes the problem of multi-labeling. But considering
such a situation as probability-based labeling [11,18,23] is impossible since,
in reality, we do not deal with random events which can be measured by prob-
ability functions. As a consequence, we have to consider any possible outcome
and measure it with a possibility function. Even after narrowing the problem
of diagnosis down to a possibilistic classification problem [12] the situation of
ambiguity in symptoms and consecutive uncertainty leads us to consider a
rejection as an option because here an incorrect classification is not just wrong-
doing and it can cost a life. Despite many efforts and proposals from different
models [5,24,25] almost all suffer from treating the problem of classification with
or without rejection from a possibilistic point of view. In [12] we tried to close
the gap between all previous solutions and the already existing problem, but
the reject option is missing. In this paper, we try to tackle the latter with some
fundamental modifications to the previous model.

The structure of the contribution is as follows; we start with LVQ [8] because
it is simple, intuitive, and has a variety of applications that makes it a powerful
method that can be compatible with almost any novel situation [6,13,19]. To
this end, we hire the probabilistic version of LVQ, called robust soft LVQ or
RSLVQ [20], to construct the first step to establish a model, called possibilistic
soft LVQ or PSLVQ, that aims to fulfill the duty described previously.

The RSLVQ benefits from a function called likelihood ratio which helps us
to introduce a prediction scheme followed by an error-reject trade-off, motivated
by Chow [3], as a function of a threshold, t.

To evaluate the model’s predicted class possibility assignment with the true
class possibility label the Kullback-Leibler divergence [10] is hired. The applica-
tion of the Kullback-Leibler divergence paves the way to introduce a local cost
function. The goal is to minimize the recent function. But the resulted cost func-
tion does not have a lower bound i.e., without any extra constraint it cannot be
minimized. To fix the problem we normalize the local cost function and obtain
a distance-based classifier like the one in GLVQ [19]. Numerical experiments
then follow the discussion. Finally, some remarks and discussions conclude the
paper.

2 Model Description

2.1 Classifying in Absence of Rejection

We aim to classify a data point x ∈ X ⊆ IRn together with a label, called class
possibility assignment, y(x) =

(
y1(x), . . . , yNc

(x)
) ∈ [0, 1]Nc . Here yi(x)

denotes the possibility of assigning a class i ∈ C = {1, ..., Nc} to x. To this end, we
introduce a prototype-based scheme with a set of prototypes W = {(wi, c(wi)) ∈
IRn × C | i = 1, ..., N} whereas c(wi) denotes the class label of wi.

In the beginning, the discussion is restricted to probability. After framing the
primal model we relax the probability as a restriction and generalize the model
to a possibilistic one. In all stages, stochastic gradient descent (SGD) [17] as a
standard and efficient approach materializes the model optimization.
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The RSLVQ as a Basis. We start this section with a quick review of the
robust soft learning vector quantization (RSLVQ), introduced by S.Seo and
K.Obermayer [20]. In a prototype-based classifier consisting of a set of proto-
types W = {(wi, c(wi)) ∈ IRn × C | i = 1, ..., N}, let i be a mixture component
that is parameterized by wi and c(wi) = ci as its label. We emphasize that each
component is responsible for generating sample data for one and only one class.
The model density of a data point x regarding a given class y is given by;

pw(x, y) =
∑

{i,ci=y}
pi · pw(x | i) (1)

here, pi, typically chosen as a constant, is the prior probability and the condi-
tional probability pw(x | i), called likelihood-function, is the probability that
the component i generates a data point x. As it can be seen all prototypes with
the same label are involved in (1). So, this model is not a nearest prototype
classifier.

Let pw(x, k) be the density of x and its correct class label. In con-
trast, the density of x and incorrect class labels is denoted by pw(x, k) =∑

{i,ci �=k} pi ·pw(x | i). In the best-case scenario, the model benefits from a max-
imal pw(x, k) and a minimal pw(x, k) at the same time. Therefore, the RSLVQ
sets the maximization of the following Likelihood Ratio as a goal;

Lw(x, k) =
pw(x, k)
pw(x, k)

(2)

and considers the respective following function as a cost-function.

log(Lw(X)) =
∑

x∈X

log
(pw(x, k)
pw(x, k)

)
(3)

Inspired by RSLVQ, we propose a modified likelihood-ratio;

L̂w(x, i) =
pw(i | x)
pw(i | x)

(4)

where pw(i | x), called posterior, is inferred as the probability of assigning a
label i to x as well as pw(i | x) =

∑
j �=i pw(j | x) denoting the probability of

assigning any label to x except i. Unlike RSLVQ, i here does not necessarily
refer to the correct label. The likelihood ratio (4) is utilized to predict a label
for an unknown data point in a way that the higher is the value of L̂w(x, i) the
more likely the class i assigned to x. So,

argmaxi L̂w(x, i) = i∗ =⇒ c∗
w (x) = i∗.

It must be noted the likelihood ratio (4) is a monotonically increasing func-
tion and obtains its maximum at pw(i∗ | x) = maxi{pw(i | x)}. Due to the
Bayes’ theorem;

pw(i | x) = pw(x | i) · pi

pw(x)
(5)
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so, the modified likelihood ratio (4) is rephrased as;

L̂w(x, i) =
pw(x | i) · pi∑

j �=i pw(x | j) · pj
(6)

and in a special case with the assumption of pi = 1
Nc

the likelihood-function,
pw(x | i), is a replacement for the posterior and has the same role. Here Nc

stands for the number of classes. Using (6) in the next step helps us to introduce
a contrastive learning function.

Introduction of a Contrastive-Learning Function. The RSLVQ proves
that the expectation of the cost function (3) is given by;

E(log(Lw(X))) =
∑

x∈X

DKL

(
P (x) || Pw(x)

) − DKL

(
P (x) || Pw(x)

)
(7)

where DKL(• || •), called Kullback-Leibler divergence [10], distinguishes the
similarity between the true distribution P (x) =

(
p(x, 1), ..., p(x, Nc)

)
and cor-

rect predicted class probability assignment Pw(x) =
(
pw(x, 1), ..., pw(x, Nc)

)

as well as incorrect predicted class probability assignment Pw(x) =(
pw(x, 1), ..., pw(x, Nc)

)
. In (7);

– DKL(P (x) || Pw(x)) =
∑Nc

i=1 −p(x, yi) · log
(

pw(x,yi)
p(x,yi)

)
,

– DKL(P (x) || Pw(x)) =
∑Nc

i=1 −p(x, yi) · log
(

pw(x,yi)
p(x,yi)

)

can be inferred as the positive- and negative-reasoning. So the expectation of
the cost function (3) holds the property of a contrastive learning function. In
analogy to (7), we introduce;

ĉl(x) =
Nc∑

i=1

−yi(x) · log(L̂w(x, i)) (8)

which is actually ĉl(x) = DKL(y(x) || Pw(x)) − DKL(y(x) || Pw(x)). We
aim to minimize (8) as a contrastive learning function. Here, Pw(x) =

(
pw(1 |

x), ..., pw(Nc | x)
)

and Pw(x) =
(
pw(1 | x), ..., pw(Nc | x)

)
with pw(i | x) =∑

j �=i pw(j | x); ∀i = 1, ..., Nc.
Considering that DKL(• || •) ≥ 0, the contrastive learning function (8), as

a difference between two distinct Kullback-Leibler divergences, is not confined
to a lower bound, i.e. it does not hold a necessary condition for minimization.
Hence, (8) is not a good choice for being a cost function. The very next step
is dedicated to tackling the problem through the deployment of the generalized
learning vector quantization GLVQ [19].
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An Objective Function Related to the GLVQ. To deal with the problem
of minimizing the contrastive learning function (8) we need to review the GLVQ,
introduced by A. Sato and K. Yamada [19], in the first place. Consider a set of
prototypes W = {(wi, c(wi)) ∈ IRn ×C | i = 1, ..., N} with i as the class label of
wi, denoted by c(wi) = i. For a given data point x ∈ X with the label c(x), let
w+ be the closest prototype to x with the same label as x and w− the closest
prototype to x but with a different label. The GLVQ aims to minimize the cost
function;

Sw =
∑

x∈X

f(μ(x)) (9)

with f(•) as a monotonically increasing function and μ(x) as a distance-based
classifier function given by;

μ(x) =
d+ − d−

d+ + d− (10)

where d+ and d− denote the distances (dissimilarities) of x from w+ and w−,
respectively. An investigation of the classifier function (10) shows μ(x) ∈ [−1, 1]
with μ(x) < 0 corresponding to a correct classification as well as μ(x) > 0
prompting an incorrect classification. It is worth to mention that different choices
of f(•) and μ(•) provide LVQ and LVQ2.1 [9]. The corresponding learning step
is given by;

Δω+ = α · ∂f
∂ω+

(11)

and;

Δω− = (−1) · α · ∂f
∂ω− (12)

with 0 < α << 1 as a learning rate. As a matter of different choices of f(•) and
μ(•) in (9), we opt for the sigmoid function;

sgdλ(τ) =
exp (λ · τ)

exp (1 + λ · τ)
; λ > 0 (13)

and a modified distance(dissimilarity)-based classifier, like (10), as following;

μ̂(x) =
DKL(y(x) || Pw(x)) − DKL(y(x) || Pw(x))
DKL(y(x) || Pw(x)) + DKL(y(x) || Pw(x))

(14)

with DKL(• || •), the Kullback-Leibler divergence [10], measuring the dissimilar-
ities. Correspondingly, the local cost function is given by;

Sw(x) = sgdλ(μ̂(x)) (15)

which as a bounded function does not suffer like (8) and paves the way for the
following total cost function.

Sw =
∑

x∈X

sgdλ(μ̂(x)) (16)
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To justify the choice of the cost function (16), we simplify it as follows.

Sw =
∑

x∈X

H(μ̂(x)) (17)

where H(•), called the Heaviside function, returns 0 for negative- and 1 for
non-negative- inputs. Accordingly, (17) counts the number of misclassifications
regarding the sign of μ̂(x). And, we aim to minimize (17). The application of
H(•) makes (17) incompatible with gradient descent-based learning. In order
to facilitate the optimization of the cost function, the Heaviside function is
replaced by sgd(•), which on the one hand is differentiable and on the other
hand, with a suitable choice of λ, acts as a soft variant of Heaviside.

2.2 Classifying in Presence of Rejection

Introduction of the Reject-Classifying Trade-Off. At this step we aim to
introduce a rejection criterion and embed it in the cost function (16). But first
we need to discuss the error-reject trade-off proposed by Chow [3]. Based on
this model, the condition for rejecting a data point x is given by;

pi∗ · pw(x | i∗) < (1 − t) ·
Nc∑

i=1

(
pi · pw(x | i)

)
(18)

where pi∗ · pw(x | i∗) = maxi{pi · pw(x | i)} and t ∈ (0, 1) is called threshold.
A mathematical deduction from (18) leads us to the following reject condition;

L̂w(x, i∗) ≤ 1 − t

t
(19)

with the assumption that 1
Nc−1 > 1−t

t > 0. The recent assumption guarantees
t ∈ (0, 1) and (19) holds all specified properties. In [11] it was proved that
not only such a threshold t exists but can also be optimized regardless of the
choice of posterior as a probability or possibility function. Moreover, L̂w(x, i∗) =

pw(i∗|x)∑
i�=i∗ pw(i|x) and i∗ maximizes the pw(i∗ | x), and as a consequence L̂w(x, i∗).
To integrate the reject condition (19) in the cost function (16), first, we

partition the data set X into two sets AC and AR called classification- and
reject-area, respectively.

– AC = {x ∈ X | L̂w(x, i∗) > 1−t
t }

– AR = {x ∈ X | L̂w(x, i∗) ≤ 1−t
t }

Accordingly, the cost function (16) is modified to the following statement.

Sw(t) =
∑

x∈AC

sgdλ(μ̂(x)) +
∑

x∈AR

sgdλ(μ̂(x)) (20)

Given the consideration of the modified distance-based classifier (14), AC

can be partitioned into correct- and mis-classification areas, denoted by ACC

and AMC , respectively.
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– ACC = {x ∈ AC | μ̂(x) < 0}
– AMC = {x ∈ AC | μ̂(x) ≥ 0}

So we reformulate the cost function (20) as follows.

Sw(t) =
∑

x∈ACC

sgdλ(μ̂(x)) +
∑

x∈AMC

sgdλ(μ̂(x)) +
∑

x∈AR

sgdλ(μ̂(x)) (21)

In the absence of the reject condition (19), neither (20) nor (21) is a function
of t. Hence, they are the same as (16).

Optimizing the Reject-Classifying Trade-Off. To find an optimum thresh-
old, t∗, Chow’s model introduces cc and ce as the rate for correct- and incorrect-
classification, respectively, whereas cr is the rate for the rejection assuming that
cc < cr < ce. The overall cost function is given by;

Ŝw(t) = cc ·
∑

x∈X

Cw(t,x) + ce ·
∑

x∈X

Ew(t,x) + cr ·
∑

x∈X

Rw(t,x) (22)

where Cw(t,x), Ew(t,x) and Rw(t,x) denote the cost of the correct classification,
incorrect classification along with the rejection, in the same order. With the
assumption that;

CW (t,x) + EW (t,x) + RW (t,x) = pw(x) (23)

the optimum threshold t∗ = cc−cr
cc−ce

is obtained from (22) where pw(x) =
∑Nc

i=1 pw(x, i). In continuation to this idea and considering that;

– 0 ≤ sgdλ(τ) ≤ 1
–

∫ 1

τ=−1
sgdλ(τ) dτ = 1

pw(x) in (23) can be replaced by sgdλ

(
μ̂(x)

)
(15). To this end, we define;

– CW(t,x) = H
(
L̂w(x, i∗) − 1−t

t

) · H
( − μ̂(x)

) · δ
ct (x)
c∗

w (x) · sgdλ

(
μ̂(x)

)

– EW(t,x) = H
(
L̂w(x, i∗) − 1−t

t

) · H
(
μ̂(x)

) · (
1 − δ

ct (x)
c∗

w (x)

) · sgdλ

(
μ̂(x)

)

– RW(t,x) = H
(
1−t

t − L̂w(x, i∗)
) · sgdλ

(
μ̂(x)

)

where H(•) denotes the Heaviside function, while the Kronecker delta, as fol-
lows;

δ
ct (x)
c∗

w (x) =
{

1 ; c∗
w (x) = ct(x)

0 ; c∗
w (x) �= ct(x) (24)

examines if the predicted label c∗
w (x) and the true label ct(x) are the same.

As a matter of fact;

– H
(
L̂w(x, i∗) − 1−t

t

) · H
( − μ̂(x)

)
= 1 =⇒ x ∈ ACC ,
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– H
(
L̂w(x, i∗) − 1−t

t

) · H
(
μ̂(x)

)
= 1 =⇒ x ∈ AMC ,

– H
(
L̂w(x, i∗) − 1−t

t

)
= 0 =⇒ x ∈ AR.

In summary, the cost function (22), using a non-probabilistic function μ̂(•),
still holds all necessary properties like the probabilistic rejection classifier (21).
Therefore (22) provides an optimal threshold, t∗.

3 Generalization

In the beginning, we restricted the discussion to probability functions. Now we
relax the restriction and pivot towards possibility functions to generalize our
model. But before moving further, we need the following assumptions.

– yi(x) ∈ [0, 1] and
∑Nc

i=1 yi(x) = yx

– pw(i | x) ∈ [0, 1] and
∑Nc

i=1 pw(i | x) = px

It should be mentioned that yx , px �= 1, necessarily, and their indexing alludes
that their values may change depending on x. To measure the similarity between
yi(x) and pw(i | x) as well as yi(x) and pw(i | x), we have to use the generalized
Kullback-Leibler divergence.

– DGKL(y(x) || Pw(x)) =
∑Nc

i=1

[
− yi(x) · log

(
pw(i|x)
yi(x)

)
−

(
yi(x) − pw(i | x)

)]

– DGKL(y(x) || Pw(x)) =
∑Nc

i=1

[
− yi(x) · log

(∑
j �=i pw(j|x)

yi(x)

)
−

(
yi(x) −

∑
j �=i pw(j | x)

)]

As a consequence, the generalized contrastive learning function (8) is obtained
as follows;

gcl(x) = DGKL(y(x) || Pw(x)) − DGKL(y(x) || Pw(x)) + (Nc − 2) · px (25)

In (25), DGKL(y(x) || Pw(x)) and DGKL(y(x) || Pw(x)) can be inferred as
negative- and positive-reasoning, respectively. So, the gcl(x) is a contrastive-
learning function. According to the current modifications, the generalized
distance-based classifier (14) is obtained by;

μ̂g(x) =
D+ − D− + (Nc − 2) · pw(x)

D+ + D− − (−1)H(D+−D−) · (Nc − 2) · px
(26)

where D+ stands for DGKL(y(x) || Pw(x)) and D− for DGKL(y(x) || Pw(x)).
For clarification, (−1)H(D+−D−) facilitates the normalization of (26) with the
help of the Heaviside function, which leads to μ̂g(x) ∈ [−1, 1]. Similar to (10),
μ̂g(x) = −1 determines the best predicted possibility function as μ̂g(x) = 1
does the same for the worst one. As a result, the cost function (22), regardless
of the choice of a prediction function as a probability- or possibility-one, remains
unchanged and works perfectly.
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Table 1. Specification of datasets

Dataset n-instances n-attributes n-targets

DBCW 569 32 2

CHD 1190 11 2

4 Experiments

Even though this paper aims to propose a concrete mathematical model, we
believe that nothing better justifies the reasons for all the different choices when
setting up a framework than pursuing its goal through experimental results.
Also, we cannot confidently call a model interpretable unless we have a chance
to compare the model’s decisions with our expectations. This is the point at
which the crucial role of comprehensive implementation is recognized.

As we already know a good choice of the likelihood function, pw(x | i), with
the assistance of the Bayes’ theorem (5) provides us with the posterior, pw(i | x).
To this end, we take the liberty to propose pw(x | i) = exp

( − γ · d2(x,wi)
)

as
a likelihood function with γ > 0. Here d(•, •) is a distance function which in our
case the standard Euclidean distance fulfills the job. To clarify;

exp (−γ · τ) =
{

1 τ = 0
0 τ −→ ∞ (27)

in other words, (27) resembles a possibility function depending on τ as the
relative distance between data points and prototypes. In addition, with the help
of the likelihood-ratio (4) and a good choice of γ, (27) acts the same as the
Gaussian distribution.

To start we implement the classification model without rejection. This
includes implementing the core of the model and determining the necessary steps
to design a training pipeline. In the next step, we add rejection as an option to
the primal model and tune the parameters to ensure the stability of the model
and prevent bad generalization in the long run. For this purpose, we use the k-
fold cross-validation technique to find a trade-off between bias and variance. The
hyperparameter k indicates the number of partitions into which the dataset
should be divided. The whole process results in a robust estimation performance
[7] that helps the better generalization of the model.

Here we use the Diagnostic Breast Cancer Wisconsin (DBCW) and Compre-
hensive Heart Disease (CHD) datasets. The description can be found in Table 1.
In this table, the number of attributes(n-attributes) indicates the dimension of a
single data point whereas the number of targets(n-targets) denotes the number
of classes.

Table 2 shows the results of the model for investigating the accuracy of
classification in absence and also presence of the rejection step.
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As can be seen in Table 2, for the DBCW dataset, the test accuracy is slightly
higher than the training accuracy. Although we are convinced that this phe-
nomenon has nothing to do with the complexity of the model and the problem
of bias-variance trade-off [15], we carry out the following experimental investi-
gation. In this experiment, we try to investigate whether the trend (better test
accuracy compared to training accuracy) can change due to the different values
of parameters. In other words, is the trend sensitive to the model’s parameters?
We also check the cost function and find that it steadily decreases, which is
another indication of the flawless performance of the model. So the only reason
to justify this anomaly is that even though different data classes have the same
proportion of train/test split, it doesn’t mean that the underlying distribution
of data in test split and train split equals fit. As a result, the test samples some-
times become the easier choice for the model to classify, which is the case in this
dataset. Table 3 shows the selected part of the experiment.

Table 2. PSLVQ’s Accuracy (train/test)

Dataset Learning-rate n-epochs n-folds Classification Reject-classification

DBCW 0.2 25 60 81.785/88.88 83.67/88.88

CHD 0.1 20 60 80.78/74.57 81.36/78.94

Previously we discussed based on Chow [3] that the optimum t∗ = cc−ce
cc−cr

is
obtained from (22) as long as ce > cr > cc. Without loss of generality, we assume
cc = 0 and try to investigate the model’s behavior for different values of cr and
ce. For this task, we focus on the CHD dataset.

Table 3. Model’s parameters and their impact on the trend

Learning-rate n-epochs n-folds Trend change Cost function

0.05 30 53 No Decreasing

0.10 10 53 No Decreasing

0.10 20 53 No Decreasing

0.10 20 27 No Decreasing

0.15 10 53 No Decreasing

0.15 20 53 No Decreasing

0.15 20 27 No Decreasing

0.15 25 27 No Decreasing

0.15 30 27 No Decreasing

0.20 20 53 No Decreasing
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As shown in Table 4, larger 1−t
t results in poorer performance and more

rejected data. Since a larger 1−t
t means a smaller t, we can conclude that the

more severe the impact of misclassification compared to rejection, the worse the
outcome. In summary, to ensure an accurate classification, this model attempts
to find a balance between severity of the impact of misclassification and
rejection.

Table 4. Threshold-accuracy trade-off

cr
ce

1−t
t

Learning-rate n-epochs n-folds Train/test Rejection rate n-acceptance

0.50 1.00 0.1 25 60 76.66/70.88 20.42 900

0.66 0.50 0.1 25 60 80.28/74.57 1.32 1131

0.75 0.33 0.1 25 60 81.36/78.94 0.59 1164

Finally, we compare our model, PSLVQ, with the RSLVQ. We open the
discussion with Table 5. For this purpose, we consider the same rejection criterion
which is used in the PSLVQ. As a drawback, it can be seen that the impressive
accuracy (train/test) from the RSLVQ is compensated by rejecting almost half
of the dataset. In our opinion, if not all but most of these rejections could be
avoided. Besides, it seems in this special case the learning rate does not have any
significant role. Considering that the original RSLVQ does not benefit from the
reject option we decide to drop the rejection and compare the outcome of the
PSLVQ with those from the RSLVQ. It is the point that the PSLVQ compared
to the RSLVQ exhibits a big difference witnessed by Table 6.

In the end, it is worth mentioning that even though it is a tedious job to get
the desired results from a model in practice but the outcomes are reasonably
good enough to encourage us for taking further steps in the future and conduct
a survey to compare other models with the PSLVQ.

Table 5. Applying RSLVQ with the reject-option on CHD

(1 − t)/t Learning-rate n-epochs n-folds Train/test Rejection percent. n-acceptance

0.50 0.001 25 40 100/100 47.26 612

0.50 0.01 25 40 100/100 47.26 612

0.50 0.1 25 40 100/100 47.26 612
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Table 6. Comparison between PSLVQ and RSLVQ

Model Learning-rate n-epochs n-folds Train/test

PSLVQ 0.15 25 60 82.24/79.00

RSLVQ 0.15 25 60 47.41/31.61

PSLVQ 0.1 25 60 80.87/78.94

RSLVQ 0.1 25 60 47.39/31.57

PSLVQ 0.1 25 40 78.16/74.57

RSLVQ 0.1 25 40 47.29/41.38

5 Conclusion

In this paper, we offer a trade-off between providing a reliable classification and
omitting noisy data points in the case of ambiguity and uncertainty, bearing in
mind that the lower the disparity between classes, the less reliable the model
[1]. To this end, we try to maximize the disparity by proposing a contrastive
learning method. The result is an interpretable mathematical model equipped
with rejection as an option. Moreover, what sets this framework apart from
other classifiers is the ability to process an unknown data point paired with a
class-possibility assignment that does not sum up to one, i.e. this model can
handle any positive measure like the membership function in fuzzy logic [26].
All challenges addressed in this work are supported by numerical experiments
and are superior to RSLVQ, especially in classification. Finally, future work will
consider studying unsupervised outlier detection as well as metric adaptation.
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Abstract. Imbalanced data will bring difficulties in data processing,
which is very common in data engineering. These data usually have
sophisticated distributions. Different resampling methods are required
for dealing with data with different distributions, while fixed ones are
adopted traditionally. Therefore, to select appropriate resampling meth-
ods for data with such characteristics, we propose a novel classifica-
tion method for Imbalanced Data based on Ant Lion Optimizer, called
ALOID. It combines adaptive resampling strategies, feature selection,
and ensemble classifiers. The adaptive resampling strategy refers to uti-
lizing roulette wheel selection to choose the most suitable resampling
method with a greater probability for each dataset according to the vari-
able probabilities of resampling methods. Then a two-stage approach is
further used in feature selection: preprocessing and enhancing. In addi-
tion, we adopt an ensemble classifier with dynamic weights. The variable
probabilities of resampling methods, features, and the weights of base
classifiers are coded in individual solutions. A large number of compre-
hensive experiments have been carried out in this paper. ALOID is com-
pared with 8 state-of-the-art algorithms on 33 publicly available imbal-
anced datasets. Using K-nearest neighbor as the base classifier, we have
found ALOID outperforms other methods in most cases, especially on
high-dimensional imbalanced datasets. Experiment results demonstrate
the performance advantage of ALOID over other comparable algorithms.

Keywords: Ensemble · Feature selection · Imbalanced classification ·
Resampling

1 Introduction

In recent years, as more and more imbalanced data appear in computer science,
natural science and management science, imbalanced classification problem has
gradually become the focus in the field of pattern recognition, machine learning
and data mining [1]. According to the number of classes, classification problems
can be divided into binary classification and multi-class classification [2]. In
this paper, we focus on the binary imbalanced classification problem. It refers
to the number of instances between classes that are different. Specifically, one
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class (the majority/negative class) has more instances, while the other class (the
minority/positive class) has fewer instances [3].

In standard binary classification research, it is usually assumed that the size
of instances in majority class and minority class is approximately equal and the
goal is to promote the overall accuracy of the classification model. But, when used
in an imbalanced classification problem, such as cancer diagnosis [4], depression
detection [5], fraud detection [6], network intrusion detection [7], gamma-ray
spectral classification [8], standard classification algorithms become flawed or
even ineffective [9]. That is because people tend to pay more attention to the
minority classes which means the purpose is to improve the performance for the
minority class without harming too much of it for the majority class [10]. If a
standard algorithm is used in an imbalanced problem, it may be biased towards
the majority class which goes against people’s expectations.

In order to enhance the classification performance on imbalanced datasets,
hundreds of methods have been proposed in the past few decades [1]. Existing
algorithms improve the recognition of minority class and the performance of
imbalance classification from different perspectives. However, they ignore that
different datasets have different distributions, so different resampling methods
should be used. If one method uses fixed resampling techniques, then it is prob-
ably not suitable for other datasets with different distributions. In addition,
although feature selection has become the focus in an imbalanced classification
problem, two-stage feature selection methods are relatively rarely used so far.
Furthermore, how to set the weights of base classifiers in ensemble classifier
is also a key issue. In order to solve these problems, we propose a classifica-
tion method for imbalanced data based on Ant Lion Optimizer (ALOID) with
adaptive resampling, two-stage feature selection, and ensemble classifiers with
dynamic weights.

Our contributions and the advantages of ALOID are summarized as follows:

– Unlike existing methods, ALOID applies roulette wheel selection to choose
resampling methods adaptively at iteration. This mechanism gives higher
chance to the most resampling method for each dataset.

– We utilize a two-stage method in feature selection. First, we adopt filters to
weigh and select features. It is considered feature preprocessing (rough selec-
tion). Then, a wrapper is employed subsequently. It is called enhanced feature
selection (fine selection). Combining these two types of methods, ALOID can
select more precise features based on the results of the previous step.

– An ensemble classifier is used in ALOID to ameliorate the classification per-
formance. In ALOID, the weights of base classifiers are updated dynamically.
This can make the performance better than those methods with artificial or
fixed weights.

The rest of this paper is organized as follows. Section 2 reviews popular algo-
rithms in four levels. Section 3 describes ALOID in detail. In Sect. 4, we show
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the results of experiments and then analyze them in three aspects. Finally, the
conclusion is presented. And the possible future work is discussed in Sect. 5.

2 Related Work

In this part, we will introduce classification methods of imbalanced data. It is
mainly divided into four categories: data level methods, algorithm level methods,
cost-sensitive level methods, and ensemble level methods.

2.1 Data Level Methods

According to the resampling techniques, data level methods can be divided
into two categories: oversampling and undersampling. Oversampling is usually
to increase the number of minority instances by sampling from minority sam-
ples repeatedly or generating new minority instances. Undersampling usually
decreases the number of majority samples by selecting part majority instances
and combine them with all minority samples [11]. The simplest methods are ran-
dom oversampling and random undersampling. However, random oversampling
will cause an over-fitting problem because it copies minority samples simply and
randomly [12]. In contrast, random undersampling may eliminate some valu-
able majority instances, which may lead to information missing and then affect
classification performance.

In order to solve the over-fitting problem caused by random oversam-
pling, Chawla et al. [13] propose the synthetic minority oversampling technique
(SMOTE) which is a widely used and effective oversampling method. The idea of
SMOTE is to synthesize new minority samples by random linear interpolation
between each minority sample and its K neighbor samples in the same class.
It generates new samples without repetition, which alleviates the over-fitting
problem greatly.

Paria et al. [14] propose an improved method of SMOTE called the range-
controlled SMOTE (RCSMOTE). It categorizes the minority instances into the
border, safe and noisy samples, and give priority to border samples compared to
the safe ones while ignoring the noisy samples in oversampling. In addition, it
proposes a mechanism to control the location of synthetic samples by considering
the characteristics of input datasets.

Outlier-SMOTE is a novel oversampling method proposed by Venkata et al.
[15], which is an improvement to SMOTE and tests on the COVID-19 dataset.
Original SMOTE resamples each instance equally, but the authors in this paper
believe that more importance should be given to samples that are far away from
the cluster, as they are the samples with a challenge to classify.

It is obvious that undersampling is a combinatorial optimization problem, so
undersampling based on evolutionary algorithms is widely used. Javad et al. [16]
employ the chaotic krill herd evolutionary algorithm to explore minority and
majority class spaces for selecting some representative instances. In this algo-
rithm, individuals are evaluated by a combined fitness function, which includes
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accuracy, Geometry mean (Gmean), and the penalties of minority and majority
class reduction rates.

In response to how to identify the best mix of two classes in resampling, Li
et al. [17] introduces a notion of swarm fusion and implements particle swarm
optimization (PSO) as the optimizer to select sample subsets.

2.2 Algorithm Level Methods

Algorithm level methods don’t generate new minority samples or remove major-
ity samples during preprocessing, so they don’t alter the original distribution
of datasets. It is beneficial to learn unbiased models. But, when facing with
imbalanced datasets, it is still very challenging. Algorithm level methods mainly
include one class learning [18], feature selection, and feature extraction [19,20].

One class learning [21] which learns a model only using one class samples has
attracted increasing attention in some costly fields [22]. Lee et al. [23] apply it
to the industrial field for fault-detection. The proposed module consists of three
submodules, time-series prediction, residual calculation, and one-class classifica-
tion and each deep network used for time-series prediction is trained with the
production success cases’ data. Gao et al. [24] use one class learning to detect
outliers in the medical field. The method uses imaging complexity to enable deep
learning models and learn inherent imaging features of one class.

2.3 Cost-Sensitive Level Methods

In classification problems, standard methods assign the same weights to all sam-
ples and focus on improving overall accuracy. But the performance declines sig-
nificantly in the case of learning from imbalanced data. If the classifier predicts
all samples as negative classes, high accuracy can be got, but the classifier is
useless obviously. To alleviate this problem, cost-sensitive level methods are pro-
posed.

Li et al. [25] present a cost-sensitive approach that penalizes misclassification
cost through a hybrid attribute measure. The measure is defined by the combi-
nation of the Gini index and information gain. Wang et al. [26] introduce a new
algorithm called cost-sensitive fuzzy multiple kernel learning. It combines fuzzy
memberships and multiple kernel learning. Fuzzy memberships are determined
by both the entropies of samples and the cost of each class. Multiple kernel
learning can easily extend existing algorithms to non-linear space by integrating
different kernels.

Although cost-sensitive level methods are closer to the nature of people’s
expectations, there are two challenges: (1) Misclassification cost matrix is usually
set by experts in that field, but most researchers are not. (2) Even for experts, it
is very difficult to obtain an appropriate misclassification cost matrix. Therefore,
cost-sensitive level methods have not received so much attention [27].
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2.4 Ensemble Level Methods

Ensemble level methods have acquired popularity in the field of data mining and
machine learning due to their superior performance than single base classifier
[28]. Chen et al. [27] develop a hybrid data level ensemble method, which com-
bines ensemble technology and the union of undersampling methods and over-
sampling methods. The proposed undersampling method deletes some unrep-
resentative majority samples based on margin theory [29], while oversampling
method generates diverse minority samples according to a new distance measure
comprising Euclidean distance and diversity of instances.

Seng et al. [30] propose a stacked ensemble method named neighborhood
undersampling stacked ensemble, which replaces the standard cross-validation-
like with the proposed Subset and Out-of-Subset prediction in the step of meta-
data generation. Moreover, this paper further proposes a novel undersampling
technique. It utilizes local neighborhood information to select majority samples
by using K-Nearest Neighbors [31].

Due to the superior performance, ensemble learning has received increas-
ing attention in imbalanced classification problems. However, existing ensemble
methods exhibit some limitations. For example, how to maximize the perfor-
mance of ensemble classifiers. Specifically, ensemble classifiers are combined by
many base classifiers, and how to find the optimal weights of base classifiers is
important and difficult.

3 Methods

In this section, we describe the proposed algorithm ALOID from four aspects:
feature preprocessing, enhanced feature selection, adaptive resampling and
ensemble classifier.

3.1 Feature Preprocessing

In order to attain a better input dataset, data preprocessing is often performed
before building a learning model. ALOID uses three filter methods in feature pre-
processing to delete irrelevant and redundant features. These three methods are
symmetrical uncertainty (SU), chi-square test, and reliefF. Then SU list, Chi list,
ReliefF list are got by sorted the features in descending order, respectively. SU
and chi-square test are good at measuring the correlation between features and
classes. ReliefF is an expert in calculating the importance of features by using
inter-sample information.

Then, we aggregate these three lists by median way. It chooses the median
number as the ranking for each feature. Then, we select the first D features
that are powerful in retrieving minority classes as the final result of feature
preprocessing [32]. This stage can both reduce the solution space and provide
guidance information for enhanced feature selection stage.
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3.2 Enhanced Feature Selection

In this part, we will give the key component of ALOID based on Ant Lion Opti-
mizer (ALO) [33]. ALO is an outstanding meta-heuristic algorithm by mimick-
ing the hunting behavior of antlions. It’s widely used in feature selection. In
enhanced feature selection, we take ALO as the benchmark algorithm and each
antlion is coded with D+V +M values within the ranges of 0 to 1. Fig. 1 shows
the composition of individuals.

3.3 Adaptive Resampling

Because the information from majority classes and minority classes is imbal-
anced, the learning classifier will perform better on the former than the latter.
However, in the real world, people tend to pay more attention to minority classes.
In order to increase the learning sensitivity to minority classes, lots of different
resampling methods are proposed that is because no resampling method is valid
for all datasets. But existing imbalanced classification methods often focus on
fixed resampling methods. This may reduce classification performance signifi-
cantly on datasets with different data distributions. Therefore, in order to select
a more suitable resampling method for each dataset, we introduce an adaptive
resampling strategy which selects a resampling method adaptively according to
roulette wheel selection.

Roulette selection means that the probability of each resampling method
being selected is proportional to the value of its variable probability. We set
the variable probabilities of resampling methods in the middle part of individual
solutions. In experiments, V is 3, and these three resampling methods are random
oversampling (ROS), random undersampling (RUS), and SMOTE. The pseudo
code of adaptive resampling strategy is described in Algorithm 1.

The process of normalizing the variable probability of each individual solution
is shown in (1).

Pi =
pi∑

i=o,u,s pi
(1)

where pi and Pi are variable probability and normalized variable probability of
each resampling method, respectively.

Fig. 1. The composition of individuals.
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Algorithm 1. Pseudo code of Adaptive Resampling

Input: Number of balanced datasets M , variable probabilities of ROS po, vari-
able probabilities of RUS pu, variable probabilities of SMOTE ps, dataset Dt

Output: M balanced datasets
1. According to the individual solution optimization process, the variable prob-
ability (po, pu, and ps) of each resampling method is obtained
2. FOR i from 1 to M
3. Use Equation (1) to normalize variable probability Pi

4. Use Equation (2) to calculate the cumulative probability qj
5. IF rand() <qo
6. Choose ROS as the resampling method
7. ELSEIF qo <rand() <qu
8. Choose RUS as the resampling method
9. ELSE
10. Choose SMOTE as the resampling method
11. END
12. Balance the dataset BDi

13. END FOR
14.Output M balanced datasets

The process of calculating the cumulative probability of each resampling
method is shown in (2).

qj =
j∑

i=o

Pi, j = o, u, s (2)

where qj is the cumulative probability of each resampling method.

3.4 Ensemble Classifier

To improve the classification performance of weak classifiers, ensemble algo-
rithms are used in many imbalanced learning tasks. The classification perfor-
mance of the ensemble classifier is usually greater than that of each single base
classifier [1]. In addition, the diversity of base classifiers can improve classifica-
tion performance significantly, especially in minority classes [34]. So, we make the
weights of base classifiers update dynamically. Simple linear weight aggregation
is employed in (3).

f(i) = W1 ∗ f1(i) + W2 ∗ f2(i) + . . . + WM ∗ fM (i) (3)

where i is the ith samples. fj(·) and f(·) are the results of jth base classifier
and ensemble classifier, respectively. Wj is the jth element in the last M values
of individuals.

3.5 ALOID

The pseudo code of ALOID is described in Algorithm 2.
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The process of ALOID can be divided into four steps. Firstly, according to
the feature dimension, it is judged whether the feature preprocessing process
is needed. If the number of dimensions is more than the threshold (set to 30
in experiments), we make a rough feature selection. Secondly, we refine fea-
tures in enhanced feature selection. Each antlion of ALOID, antlion, is coded
as a candidate solution with three parts: features, variable probabilities, and
weights. Thirdly, ALOID utilizes roulette wheel selection to choose a resampling
method. Finally, we yield M balanced datasets to train M base classifiers and
then combine them into an ensemble classifier.

4 Experimental Settings and Results

4.1 Datasets

In experiments, we select 33 binary imbalanced datasets from KEEL1, UCI2,
and scikit3 to test ALOID, including 23 low-dimensional datasets and 10 high-
dimensional datasets with 30 features as the demarcation point. The charac-
teristics of these datasets are shown in Table 1. The not bold part is low-
dimensional datasets with less than 30 features, and the bold part is high-
dimensional datasets with more than 30 features.

Samples denote the number of records (ranging from 62 to 2600). Features
represent the number of features in each dataset (ranging from 4 to 22283). IR
stands for the imbalanced ratio defined as the number of majority instances
divided by that of minority instances [35] (ranging from 1.01 to 23.15). Cho-
sen features indicate the number of features selected by ALOID (ranging from
38.88% to 75.00% in low-dimensional datasets and from 0.05% to 20.59% in
high-dimensional datasets). The number of classifiers denotes how many base
classifiers are integrated into ensemble classifiers.

The experiments are performed using Windows 10 operating system, Matlab
R2018a, Intel i7-9700 3.00 GHz, 16.0 GB ram as the test platform. We adopt
fivefold cross-validation for each dataset. In addition, in order to be objective and
effective, every algorithm is executed ten times independently and the average
value of ten outcomes is used as the final result.

4.2 Comparable Algorithms and Settings

To show the effectiveness of ALOID, eight algorithms are performed and com-
pared with it. Binary Multi-Neighborhood Artificial Bee Colony (BMNABC)
[36], Binary Differential Evolution (BDE) [37], Binary Grey Wolf Optimization-
approach 1/2 (bGWO1/2) [38], and SYMON [32] are five popular wrapper meth-
ods for imbalanced data feature selection. Genetic Undersampling and Multiob-
jective Ant Colony Optimization based Feature selection (GU-MOACOFS) [11]

1 https://sci2s.ugr.es/keel/imbalanced.php.
2 https://archive.ics.uci.edu/ml/datasets.php.
3 https://jundongl.github.io/scikit-feature/datasets.html.

https://sci2s.ugr.es/keel/imbalanced.php
https://archive.ics.uci.edu/ml/datasets.php
https://jundongl.github.io/scikit-feature/datasets.html
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Algorithm 2. Pseudo code of ALOID

Input: Train dataset Dt, test dataset Ds, population size N , max iterations T ,
the threshold of features D, number of chosen features F , number of classifiers
M , number of resampling methods V
Output: Ensemble classifier
1.IF features of dataset >D
2. Generate SU list,Chi list, ReliefF list on train dataset Dt

3. Integrate these three lists by median way into a Ranking list
4. Choose the first D features from Ranking list
5.END IF
6.Initialize N antlions and calculate their fitness
7.Find the best antlion as elite
8.WHILE (current iteration <T)
9. FOR every ant
10. Select an antlion based on roulette wheel selection
11. Create a random walk around the selected antlion and elite
12. Update the position of the ant
13. Select F features from the ant’s first D dimension, and choose a resampling
method based on variable probabilities from the middle V dimensions of ants
14. Generate M balanced datasets based on the F chosen features and the
chosen resampling method
15. Learn M base classifiers and combine them into an ensemble classifier
with weights from ant’s last M dimensions

16. Evaluate ALOID on test dataset Ds

17. END FOR
18. Update elite
19. END WHILE

is the preliminary work of our team. SVM-RFE [39] and SVM-RFE+CBR [40]
are two filter methods for imbalanced data feature selection.

The parameters of algorithms are set as follows, the number of iterations T is
200, population size N is 40. Hyperparameters are the same as original papers.
About ALOID, the threshold of features D is 0.2 times of dataset’s dimension,
and the number of chosen features F is shown in Table 1. We take KNN as
the base classifier, and K is set to 5. The number of base classifiers M is set
according to the results of preliminary experiments.

4.3 Evaluation Metrics and Functions

In order to reflect the performance of ALOID, we take Gmean [41], and Kappa
[42] as evaluation metrics. Among them, Gmean is popular in classification prob-
lems, which can reflect the classification result objectively. Kappa is adopted to
verify and contrast these algorithms because it can imply the credibility of clas-
sification models. Moreover, in order to analyze ALOID comprehensively, we
conduct a time cost analysis.
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4.4 Experiment Results and Analysis

Table 1. Characteristics of experiment datasets.

No. Datasets Samples Features IR Chosen Number of Websites

features classifiers

1 ecoli0vs1 220 7 1.86 4 15 keel

2 wisconsin 683 9 1.86 5 15 keel

3 pima 768 8 1.87 4 30 keel

4 iris0 150 4 2 3 3 keel

5 glass0 214 9 2.06 5 15 keel

6 vehicle0 846 18 3.25 7 15 keel

7 ecoli1 336 7 3.36 4 15 keel

8 glass 214 9 8.44 5 3 keel

9 ecoli3 336 7 8.6 4 15 keel

10 ecoli067vs35 222 7 9.09 4 5 keel

11 ecoli01vs235 244 7 9.17 4 9 keel

12 ecoli0347vs56 257 7 9.28 4 24 keel

13 glass016vs2 192 9 10.29 5 22 keel

14 ecoli01vs5 240 6 11 3 6 keel

15 cleveland0vs4 177 13 12.62 7 13 keel

16 ecoli0146vs5 280 6 13 3 4 keel

17 zoo-3 101 16 19.2 8 3 keel

18 shuttlec2vsc4 129 9 20.5 5 3 keel

19 yeast 1484 8 23.15 4 15 keel

20 poker9vs7 244 10 29.5 5 4 keel

21 ecoli0137vs26 281 7 39.14 4 4 keel

22 Statlog (heart) 270 12 1.25 6 20 UCI

23 Planning Relax 182 12 2.5 6 24 UCI

24 sonar 208 60 1.14 7 3 UCI

25 ionosphere 351 34 1.79 7 27 UCI

26 madelon 2600 500 1.01 5 18 scikit

27 Prostate GE 102 5966 1.04 6 3 scikit

28 SMK CAN 187 187 19993 1.08 11 3 scikit

29 arcene 200 10000 1.27 9 19 scikit

30 colon 62 2000 1.82 7 4 scikit

31 leukemia 72 7070 1.88 8 20 scikit

32 ALLAML 72 7129 1.88 8 18 scikit

33 GLI 85 85 22283 2.27 13 4 scikit

Comparative Experiments and Analysis. In this section, we analyze the
results of comparative experiments with all algorithms on all datasets. Table 2
and Table 3 shows the values of Gmean and Kappa, respectively. The upper
part is the results of low-dimensional datasets and the lower part is that of high-
dimensional datasets. Then, the bolded values represent the best. In addition,
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the number of first best, second best, third best, and others are recorded at the
bottom of tables by F/S/T/O, respectively.

Table 2 displays the value of Gmean. From it, we can find that ALOID’s per-
formance is the best in most cases. ALOID is top three on all 33 datasets, with 23
times reaching the best, 8 times reaching the second best, and 2 times being the
third best. According to the values in low-dimensional datasets, ALOID can get
1 on 5 datasets iris0, glass, zoo-3, shuttlec2vsc4, and poker9vs7. Then, ALOID
can get the first best on 15 datasets out of 23 cases, that is 65.22%. In addition,
ALOID’s Gmean is improved significantly by 0.9667 with BMNABC in dataset
poker9vs7. Furthermore, when compared with bGWO2 which is the second-best
among the remaining algorithms, ALOID’s result also can improve up to 0.2244
on dataset poker9vs7. Based on the values in high-dimensional datasets, ALOID
can get 1 on 3 datasets Prostate GE, leukemia, and ALLAML. Then, ALOID
can get the first best on 8 datasets out of 10 cases, that is 80.00%. In addition,
ALOID’s Gmean is improved significantly by 0.4767 with SVM-RFE+CBR in
dataset GLI 85. When compared with bGWO2, the value of ALOID can improve
up to 0.1393 on dataset SMK CAN 187.

Table 2. Gmean value of all algorithms on all datasets.

Gmean BMNABC BDE bGWO1 bGWO2 SYMON GU-MOACOFS SVM-RFE SVM-RFE+CBR ALOID

ecoli0vs1 0.9852 0.9873 0.9873 0.9873 0.9873 0.9895 0.9790 0.9682 0.9873

wisconsin 0.9698 0.9868 0.9841 0.9866 0.9832 0.9468 0.9562 0.9681 0.9857

pima 0.6643 0.7132 0.7119 0.7117 0.7025 0.4422 0.6605 0.5934 0.7433

iris0 0.9972 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass0 0.8053 0.8630 0.8643 0.8629 0.7954 0.6673 0.7746 0.7776 0.8715

vehicle0 0.9374 0.9670 0.9714 0.9784 0.9529 0.9619 0.9324 0.9168 0.9799

ecoli1 0.8589 0.8870 0.8895 0.8905 0.8907 0.7080 0.8370 0.8426 0.9171

glass 0.8912 0.9838 0.9929 0.9995 0.9715 0.9991 0.8551 0.8479 1.0000

ecoli3 0.6094 0.8024 0.8216 0.7710 0.7566 0.4832 0.7517 0.7198 0.8887

ecoli067vs35 0.8253 0.8778 0.8721 0.8746 0.8733 0.9473 0.7785 0.8419 0.9419

ecoli01vs235 0.7948 0.9102 0.9077 0.9135 0.9097 0.9516 0.7769 0.7088 0.9463

ecoli0347vs56 0.8440 0.9217 0.9217 0.9235 0.9116 0.9509 0.8572 0.8016 0.9564

glass016vs2 0.0856 0.5228 0.5228 0.5699 0.0974 0.4203 0.0632 0.0787 0.7665

ecoli01vs5 0.8645 0.9730 0.9707 0.9755 0.9638 0.9860 0.7840 0.7612 0.9841

cleveland0vs4 0.4527 0.7429 0.7712 0.9104 0.7240 0.7593 0.6518 0.6991 0.8581

ecoli0146vs5 0.8654 0.9562 0.9458 0.9599 0.9520 0.9680 0.8244 0.6944 0.9649

zoo-3 0.0667 0.6667 0.6667 0.8000 0.7333 0.4000 0.4000 0.2667 1.0000

shuttlec2vsc4 0.5805 1.0000 0.9805 1.0000 1.0000 0.0667 0.7886 0.2552 1.0000

yeast 0.8367 0.8566 0.8566 0.8584 0.8482 0.9316 0.8251 0.8266 0.9437

poker9vs7 0.0333 0.6190 0.6385 0.7856 0.5661 0.5632 0.7523 0.7718 1.0000

ecoli0137vs26 0.6334 0.8612 0.8612 0.8612 0.8612 0.4734 0.7786 0.7775 0.9476

Statlog (heart) 0.7947 0.8640 0.8600 0.8763 0.8157 0.7454 0.7860 0.7962 0.8607

Planning Relax 0.3948 0.5762 0.5715 0.5964 0.5546 0.5478 0.3385 0.3833 0.6924

sonar 0.8463 0.9300 0.9411 0.9732 0.9120 0.8352 0.7751 0.7330 0.9578

ionosphere 0.8731 0.8929 0.9054 0.9474 0.8916 0.8852 0.8513 0.8461 0.9547

madelon 0.8230 0.8274 0.8248 0.9200 0.7416 0.8083 0.4960 0.4998 0.8873

Prostate GE 0.9256 0.9027 0.9123 0.9193 0.9152 0.9711 0.9215 0.9352 1.0000

SMK CAN 187 0.6946 0.7142 0.7357 0.7483 0.7160 0.6821 0.6466 0.6798 0.8876

arcene 0.8752 0.8775 0.8971 0.9027 0.8824 0.8831 0.7668 0.7138 0.9632

colon 0.8322 0.8463 0.8610 0.8851 0.8447 0.9426 0.7007 0.7240 0.9912

leukemia 0.9072 0.9020 0.9224 0.9222 0.9163 0.9811 0.9482 0.7458 1.0000

ALLAML 0.8383 0.7906 0.8167 0.8397 0.8245 0.8054 0.8452 0.7524 1.0000

GLI 85 0.8516 0.9064 0.9397 0.9414 0.9201 0.9879 0.7757 0.5180 0.9947

F/S/T/O 0/1/1/31 3/4/6/20 1/5/7/20 6/12/8/7 2/3/1/27 6/6/1/20 1/1/4/27 1/0/1/31 23/8/2/0
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From Table 3, ALOID’s Kappa values stay top three in 27 out of 33 cases,
including 18 best, 5 s best, 4 third best. In low-dimensional datasets, ALOID
can get 1 on 5 datasets iris0, glass, zoo-3, shuttlec2vsc4, and poker9vs7. Then,
ALOID can get the first best on 10 datasets out of 23 cases, that is 43.48%.
In addition, ALOID’s Kappa values stay above 0.8 in 14 out of 23 cases,
that is 60.87%. In high-dimensional datasets, ALOID can get 1 on 3 datasets
Prostate GE, leukemia, and ALLAML. Then, ALOID can get the first best on
8 datasets out of 10 cases, that is 80.00%. In addition, ALOID’s Kappa values
stay above 0.8 in 8 out of 10 cases, that is 80.00%.

Based on the analysis of Table 2 and Table 3, we can draw the following
three conclusions. Firstly, ALOID can get the best results in most cases, that
prove the effectiveness of ALOID. Secondly, the results obtained by ALOID
on high-dimensional datasets are better than those on low-dimensional datasets.
Therefore, it can be considered that ALOID is more suitable for the classification
of high-dimensional imbalanced datasets. Thirdly, in most cases, the Kappa value
of the model trained using our proposed algorithm ALOID is higher than that
of the model trained using other comparison algorithms, which proves that the
model trained using ALOID is more reliable. Specifically, ALOID’s Kappa values
stay above 0.8 in 22 out of 33 cases, which stands for the almost perfect credibility
of ALOID [43], and stay above 0.4 in 32 out of 33 cases, which represents that
ALOID can train a stable and credible model in most cases.

Table 3. Kappa value of all algorithms on all datasets.

Kappa BMNABC BDE bGWO1 bGWO2 SYMON GU-MOACOFS SVM-RFE SVM-RFE+CBR ALOID

ecoli0vs1 0.9767 0.9800 0.9800 0.9800 0.9800 0.9833 0.9667 0.9497 0.9800

wisconsin 0.9331 0.9667 0.9632 0.9677 0.9600 0.9123 0.9100 0.9328 0.9632

pima 0.3793 0.4648 0.4627 0.4681 0.4532 0.2229 0.3633 0.2436 0.4709

iris0 0.9953 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass0 0.5998 0.7117 0.7122 0.7137 0.5354 0.5077 0.5372 0.5417 0.6893

vehicle0 0.8738 0.9284 0.9341 0.9511 0.8993 0.8547 0.8519 0.8065 0.9232

ecoli1 0.7322 0.8003 0.8016 0.8041 0.7890 0.6017 0.7017 0.7107 0.7498

glass 0.6212 0.9798 0.9912 0.9974 0.9640 0.9912 0.6841 0.5472 1.0000

ecoli3 0.5045 0.6901 0.7108 0.6761 0.6622 0.3731 0.5673 0.5263 0.6272

ecoli067vs35 0.7570 0.8497 0.8446 0.8476 0.8459 0.8525 0.6897 0.7845 0.8947

ecoli01vs235 0.7131 0.8915 0.8899 0.8956 0.8908 0.8706 0.6354 0.5191 0.9132

ecoli0347vs56 0.7555 0.9025 0.9025 0.9045 0.8856 0.8502 0.7726 0.6738 0.8949

glass016vs2 0.0757 0.4411 0.4411 0.4848 0.0392 0.0000 (0.0056) 0.0279 0.4352

ecoli01vs5 0.8127 0.9685 0.9636 0.9691 0.9551 0.9362 0.6372 0.5703 0.9762

cleveland0vs4 0.4075 0.6850 0.7148 0.8947 0.6802 0.0000 0.5402 0.5855 0.7644

ecoli0146vs5 0.8096 0.9497 0.9352 0.9505 0.9430 0.8859 0.7244 0.5038 0.9050

zoo-3 0.0667 0.6667 0.6667 0.8000 0.7333 0.0000 0.4000 0.2667 1.0000

shuttlec2vsc4 0.5766 1.0000 0.9765 1.0000 1.0000 0.0667 0.7729 0.2396 1.0000

yeast 0.7270 0.7700 0.7690 0.7711 0.7550 0.7302 0.7086 0.7111 0.7704

poker9vs7 0.0253 0.6094 0.6323 0.7681 0.5452 0.0000 0.7428 0.1627 1.0000

ecoli0137vs26 0.5970 0.8485 0.8485 0.8485 0.8485 0.4624 0.7615 0.7358 0.9131

Statlog (heart) 0.5961 0.7319 0.7273 0.7627 0.6414 0.5716 0.5796 0.5995 0.7302

Planning Relax 0.0451 0.3761 0.3679 0.4037 0.3359 0.3349 (0.0525) 0.0002 0.3379

sonar 0.6916 0.8661 0.8828 0.9470 0.8259 0.6748 0.5484 0.4724 0.9163

ionosphere 0.7912 0.8224 0.8427 0.9108 0.8284 0.8110 0.7257 0.7144 0.9238

madelon 0.6463 0.6550 0.6496 0.8398 0.4835 0.6329 (0.0049) 0.0008 0.7747

Prostate GE 0.8461 0.7984 0.8200 0.8355 0.8274 0.9378 0.8386 0.8691 1.0000

SMK CAN 187 0.4016 0.4365 0.4773 0.5027 0.4399 0.1592 0.2998 0.3634 0.7731

arcene 0.7473 0.7515 0.7893 0.8013 0.7600 0.7535 0.5297 0.4243 0.9289

colon 0.7020 0.6917 0.7292 0.7691 0.6872 0.8354 0.4189 0.4459 0.9824

leukemia 0.8417 0.8298 0.8707 0.8723 0.8526 0.9270 0.8802 0.5500 1.0000

ALLAML 0.7329 0.6807 0.7246 0.7547 0.7331 0.7084 0.7525 0.6089 1.0000

GLI 85 0.7341 0.7901 0.8628 0.8731 0.8246 0.9563 0.5670 0.1863 0.9896

F/S/T/O 0/1/1/31 2/9/8/14 2/8/8/15 15/12/4/2 2/2/2/27 2/5/1/25 1/0/4/28 1/0/1/31 18/5/4/6
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Time Cost Experiment. In Fig. 2, we show the average time cost of all
algorithms. From it, we can find that ALOID takes less time only than GU-
MOACOFS on low-dimensional datasets, GU-MOACOFS and SYMON on high-
dimensional datasets, and GU-MOACOFS on all datasets. It is because that
ALOID uses a two-stage feature selection method which employs filters first and
a wrapper next. This method improves ALOID’s performance but consumes
more time accordingly. On the other hand, ALOID even needs to synthesize
some minority samples on some datasets. And multiple base classifiers also need
to be trained in ALOID. Both of these skills are designed to improve performance
but are time-consuming.

Fig. 2. Combination chart of the average results of time cost on low-dimensional
datasets, high-dimensional datasets, and all datasets. (s)

5 Conclusion

In this paper, we propose a classification method for imbalanced data based on
Ant Lion Optimizer, called. In ALOID, we adopt a two-stage feature selection
method. In feature preprocessing stage, three filter methods are used and in
enhanced feature selection stage, a wrapper method based on ALO is employed.
Then, in order to select an appropriate resampling method adaptively for each
dataset, ALOID uses the roulette wheel selection strategy. Moreover, an ensem-
ble classifier with dynamic weights is also utilized to improve classification per-
formance. A large number of comprehensive experiments have been performed
with 8 comparable algorithms on 33 imbalanced datasets. The results show the
effectiveness and superiority of ALOID, especially on high-dimensional datasets.

Although the classification performance of ALOID is superior to compara-
ble algorithms, it also has some shortcomings. For example, ALOID is time-
consuming when compared with other algorithms. In the future, we will reduce
the time overhead of ALOID.
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Abstract. For medical image classification, annotations for images
are laborious and expensive, which is suitable for the application of
semi-supervised learning. Mainstream semi-supervised learning meth-
ods develop a consistency regularization to leverage the unlabeled data
but they neglect the relations among data. This paper proposes a novel
learnable relation semi-supervised method with triplet formulation to
not only jointly achieve feature extraction and distance metric learning
but restrict the relations among features properly. With the learnable
distance metric, the proposed method could learn the features and the
metric via one single network to much better characterize the relations
among features. Besides, triplet formulation is employed to constraint
the relations among features. Experiments on skin lesion diagnosis data
set indicate that the proposed method outperforms other state-of-the-art
semi-supervised learning methods.

Keywords: Semi-supervised · Medical image classification · Learnable
relation · Triplet formulation

1 Introduction

Medical image classification [10,11,25] plays an important role in clinical treat-
ment and computer-aided diagnosis, e.g., skin lesion classification [14,16] which
aims to identify melanoma apart from nevus. Recently, deep learning has boosted
the development of medical image classification [10,25]. However, the demand for
a large amount of labeled training data is especially hard to satisfy for medical
images since expertise medical knowledge is involved while labeling. By con-
trast, unlabeled data is much easier to collect through clinical equipment. Thus,
semi-supervised learning (SSL, [4,9,15,22]), which could effectively leverage the
numerous unlabeled data and the scarce labeled data to achieve great perfor-
mance, has its natural advantages in medical image classification [2,12,26].

Among the diverse researches in semi-supervised learning, Mean Teacher
(MT, [23]) is a popular framework that exploits the student and teacher models

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Tan and Y. Shi (Eds.): DMBD 2022, CCIS 1744, pp. 383–393, 2022.
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to regularize the consistency hidden in the labeled and unlabeled data. Based
on MT, SRC-MT [13] and MT-SNTG [15], have shown remarkable performance
in the task of skin lesion classification. SRC-MT [13] additionally enforces the
sample relation consistency to extract the semantic information from images.
MT-SNTG [15] encourages the features of data in the same class to be similar.
These methods regularize the relations in the feature space by employing stan-
dard distance functions, e.g., Euclidean distance, cosine distance, and l1-norm
distance. However, in the encoded feature space, these standard distance func-
tions might not be the optimal choices to characterize the relations [15], which
indicates that the performance could even be further improved.

To address this issue, in this paper, we consider a novel learnable relation semi-
supervised method that incorporates the feature encoding and the distance metric
learning into a unifying framework. In this framework, the distance functions are
not fixed forms and instead are learned simultaneously with the encoded features
via one single network, which brings better compatibility between the features
and the distance metric. Besides, to further better characterize the relations, we
construct a triplet formulation [5,8] to constrain the distribution of feature space
with respect to both intra-class and inter-class relations, which is more effective
than other existing constraints. Experiments show that our method achieves state-
of-the-art results on the ISIC 2018 [3,24] skin lesion analysis dataset.

Our main contributions are summarized as follows:

– We propose a novel learnable relation semi-supervised method by jointly per-
forming the feature extraction and the distance metric learning via one single
network.

– The proposed triplet formulation achieves stronger compactness of the intra-
class features and stronger separability of the inter-class features to enhance
the relation learning for semi-supervised learning.

– Extensive empirical results on the task of the skin lesion classification reveal
the superior effectiveness of the proposed method over the other state-of-the-
art methods. The ablation studies further indicate the necessity of distance
metric learning.

2 Related Works

In this section, we discuss the existing methods related to our approach, including
consistency-based semi-supervised learning and skin lesion classification.

2.1 Consistency-based Semi-supervised Learning

The consistency-based semi-supervised learning leverages the unlabeled data by
encouraging consistency of predictions for the same input with different pertur-
bations. Earlier Π model [9] predicts the labels for unlabeled data twice every
epoch and encourages the two predictions to be the same. Since random pertur-
bations are added to unlabeled data, it achieves the consistency regularization.
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Fig. 1. The overview of learnable relation semi-supervised framework with triplet for-
mulation. There is an MT semi-supervised backbone, whose student model is updated
via supervised loss Ls and unsupervised loss Lu, while teacher model weights are
updated as the EMA of student weights. The proposed method utilizes a relation learn-
ing network to achieve better compatibility between feature extraction and distance
metric, and a triplet formulation Ltri to enhance the relation learning.

Temporal Ensembling (TE, [9]) improves Π model by altering one prediction
with an ensembling of previous predictions for the same input through exponen-
tial moving average (EMA). TE needs lots of storage to preserve the predictions
for each epoch. MT [23] avoids this issue by adding a teacher network whose
parameters are updated as the EMA of parameters of student model. There
are also some improvements for MT, e.g., MT-SNTG [15] constructs a graph
based on the predictions of the teacher model, and the graph guides the features
in the same class to be similar on the low-dimensional manifold. SRC-MT [13]
enforces a sample relation consistency to extract the semantic information from
images. Besides, there are a series of consistency-based semi-supervised methods
which do not employ the teacher network. MixUp [27] trains the model using
the convex combination of data and label which simply learn the linear behavior
in-between training samples. MixMatch [1] follows MixUp and develop a unified
loss to reduce entropy and keep traditional regularization. MutexMatch [6] uti-
lizes a novel mutex-based consistency regularization for low-confidence samples,
which finally achieves better use of unlabeled data.

2.2 Skin Lesion Classification

Early detection for melanoma is important for decreasing the mortality rate
of skin cancer. Thus, skin lesion classification, especially melanoma recognition
which assists diagnosis, is essential and crucial. Lopez et al. [18] propose a deep-
learning approach based on VGGnet [20] to classify dermoscopic images con-
taining a skin lesion as malignant or benign. Gyawali et al. [7] present a novel
semi-supervised approach that trains network on linear mixing of labeled and
unlabeled data at both the input and latent space and achieves improved per-
formance.
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3 Method

To achieve medical image classification, the proposed learnable relation semi-
supervised method with triplet formulation, see Fig. 1, utilizes MT as the back-
bone and additionally constrains the relations among features to achieve better
classification performance. We will introduce our pipeline from four aspects: the
backbone MT network (Sect. 3.1), the triplet formulation (Sect. 3.2), the relation
learning network (Sect. 3.3), and the overall semi-supervised objective (Sect. 3.4).

3.1 The Backbone Semi-supervised Learning Network

In this subsection, we first introduce MT [4], which is the basis of our method.
We denote the labeled set as SL = {(xi, yi)}N

i=1 and the unlabeled set as SU =
{xi}N+M

i=N+1, where xi ∈ RH×W×3 is the input image from the data space X and
yi is the ground truth from label space Y. MT contains two networks named
teacher model f ′(·) and student model f(·). The student model is trained with
the stochastic gradient descent (SGD) algorithm [19], while the teacher network
updates its parameters θ′ as the exponential moving average (EMA) parameters
of student model:

θ′
τ = α · θ′

τ−1 + (1 − α) · θτ , (1)

where α denotes the EMA coefficient and τ represents the global training
iteration.

As a semi-supervised method, MT encourages a supervised loss Ls between
student model prediction and ground truth, and a consistency loss Lu between
student model prediction and teacher model prediction. The total semi-
supervised loss can be denoted as:

Lmt =
1
N

N∑

i=1

Ls(f(xi; θ), yi) + λu

N+M∑

i=1

Lu(f(xi; θ, η), f ′(xi; θ′, η′)), (2)

where η and η′ represent different perturbations (e.g. random affine). Ls is cross
entropy loss and Lu is mean square error loss. More details can be referred to [4].

3.2 Triplet Formulation

Recent improvements on MT have shown that learning relations between data
can benefit classification [13,15]. As previous work only encourages features in
the same class to be similar, we propose a more effective constraint to restrict the
intra-class as well as inter-class relations of features named triplet formulation,
which encourages the features in the same class to be closer and the features
in different classes to be far away, and thus contributes to classification. For
unlabeled data xi ∈ SU , the predictions of teacher model are employed as the
pseudo labels which can determine their class.

To regularize the relations between data, firstly, we need to map each image
to a latent feature hi in feature space H. To achieve this, the student model f(·)
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can be decomposed to feature encoder f̃(·) and classifier f̂(·), where f̃(·) maps
the input image xi to a latent feature hi, and the f̂(·) maps hi to yi. Then in
latent space, each feature is regarded as an anchor ha, the features in the same
class with the anchor are regarded as the positive samples hp, and the features in
different classes with the anchor are regarded as the negative samples hn. Then
distances between the anchor and the positive as well as negative samples are
measured using a distance function D(·, ·). Finally, the formulation requires: a).
minimize the distance between the anchor and the positive samples, b). at the
same time maximizing the distance between the anchor and the negative samples
until it is larger than the distance between the anchor and positive samples by
a margin M. The specific constraint can be denoted as:

Ltri = max(0,D(ha, hp) − D(ha, hn) + M) (3)

3.3 Relation Learning Network

To further improve the effect of triplet formulation with a more suitable distance
function D(·, ·), a learnable relation semi-supervised network which combines
student model in MT with a relation learning network is proposed. The pro-
posed network implements feature encoding and distance metric simultaneously
by coupling the feature encoder of student model f̃(·) with a relation learning
network g(·) and achieving end-to-end training. Relation learning network is
composed of four blocks and in each block there is a convolution layer, a Batch-
Norm and a ReLU function. Features for different data are concated and then
relation learning network computes distance for the concated two features and
output a distance matrix. The relations learned from the proposed network can
represent the encoded feature distribution better. Learnable relations for feature
distribution can be presented as:

D(hi, hj) = g(hi, hj ; θr)

= g(f̃(xi; θ), f̃(xj ; θ); θr)
(4)

where xi, xj ∈ SL ∪ SU , hi, hj are features from latent space H. θr and θ
respectively represents the parameters of relation learning network and student
network.

3.4 Overall Loss Function

The total objective function of the proposed method can be concluded as:

L = Ls + λuLu + λtLtri (5)

where λu and λt are the loss weights for consistency loss and triplet loss
respectively.
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4 Experiments

4.1 Data Sets and Experimental Setup

To validate the proposed method in the skin lesion classification task, experi-
ments are conducted on the data set of ISIC 2018: Skin Lesion Analysis Towards
Melanoma Detection [3,24]. ISIC 2018 is a multi-class skin lesion data set which
contains 10,015 images of 7 classes. We mainly follow the settings in SRC-MT
[13]. Specifically, 70%, 10% and 20% of the data are partitioned into the training,
validation and test sets respectively for a fair comparison. Besides, 4 different
metrics, i.e., AUC, sensitivity, specificity and accuracy [21], adopted in [13] are
also included in the comparison on the ISIC 2018 data set. The proposed method
is implemented in Python with PyTorch library [17]. The network is trained using
an SGD optimizer with a learning rate 1e−4. The batch size is set as 48, where
12 labeled images and 36 unlabeled ones are included. The number of epochs in
each experiment is set as 70. For those hyper-parameters of the model, λu and
λt are initialized as 100 and 0.001 respectively with exponential ramp-up [9].
Both the 2 margins m1 and m2 are set as 100.

Table 1. Comparison results of different models on the ISIC 2018 data set with multiple
percentages of labeled data.

Methods Percentages Metrics
Labeled Unlabeled AUC Sensitivity Specificity Accuracy

Upper bound 100% 0% 95.43 75.20 94.94 95.10

Baseline 5% 0% 84.24 59.69 87.28 84.73
MT 5% 95% 89.58 53.20 89.88 90.66
MT-SNTG 90.11 53.84 89.73 90.74
SRC-MT 87.61 62.04 89.36 88.77
Ours 90.75 64.02 90.49 90.44

Baseline 10% 0% 87.04 64.22 89.88 87.45
MT 10% 90% 92.49 66.36 90.97 92.18
MT-SNTG 92.67 68.56 90.48 91.88
SRC-MT 90.31 66.29 90.47 89.30
Ours 92.89 72.56 91.42 92.22
Baseline 20% 0% 90.15 65.50 91.83 92.17
MT 20% 80% 92.96 69.75 92.20 92.48
MT-SNTG 93.68 71.67 91.03 93.04
SRC-MT 93.58 71.47 92.72 92.54
Ours 94.03 74.34 92.47 92.66

Baseline 30% 0% 91.80 71.63 92.78 92.96
MT 30% 70% 94.55 72.03 92.65 92.75
MT-SNTG 94.73 76.39 92.51 93.48
SRC-MT 94.27 74.59 92.85 93.11
Ours 95.05 76.96 92.87 93.11



Learnable Relation with Triplet Formulation 389

Table 2. Ablation studies on the proposed relation learning network.

Distances Metrics
AUC Sensitivity Specificity Accuracy

Euclidean distance 92.12 71.62 91.13 91.17
Cosine distance 91.89 67.69 90.58 91.30
Manhattan distance 92.37 70.65 91.18 91.82
Ours (relation learning network) 92.89 72.56 91.42 92.22

In the following subsections, comprehensive empirical results are presented to
verify (1) the superiority of the proposed method in the skin lesion classification
task over other MT-based methods (see Sect. 4.2), (2) the individual impacts
of the relation learning network and the triplet formulation in the proposed
method (see Sect. 4.3), and (3) the robustness of the proposed method towards
the variations of the hyper-parameter M in the triplet loss Ltri in Equation (3)
(see Sect. 4.4).

4.2 Main Results

In this subsection, the proposed method is compared with several MT-based
semi-supervised methods, i.e., MT [23], MT-SNTG [15] and SRC-MT [13].
Specifically, for a comprehensive comparison, a wide range of different percent-
ages of the labeled data is adopted in experiments, including 5%, 10%, 20% and
30% labeled data. Aside from the compared MT-based methods, we further list
the results of “Upper Bound” and “Baseline”. To be specific, the former indi-
cates a supervised model trained with all the data fully-labeled, which can be
viewed as an upper bound that semi-supervised methods could achieve. While
the latter implies also a supervised model but trained only with limited labeled
data of the specified percentage, which appears as a baseline or lower bound of
semi-supervised methods. The results can be found in Table 1.

In Table 1, the proposed method outperforms the baseline and other MT-
based methods a lot in the terms of AUC, sensitivity and specificity under all
the multiple percentages of labeled data. Specifically, with 30% labeled data,
the proposed method achieves 76.96% sensitivity, which even exceeds that of the
fully-supervised model (75.20%) by nearly 2% points. Regarding to the accu-
racy, the proposed method also achieves competitive performance on the skin
lesion classification. Nevertheless, considering the fact that the positive samples
are only of a really small number of the total data (less than 1/7), the accuracy
metric is less convincing and comprehensive in demonstrating the model perfor-
mance, and the other 3 metrics play a more importance role, which are exactly
the advantages of the proposed method. In short, compared with other MT-
based methods, the proposed relation learning and triplet formulation together
boost the performance. Their individual impacts are further empirically shown
in detail in the next subsection via the ablation studies.
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Table 3. Ablation studies on the proposed triplet formulation.

Methods Metrics
AUC Sensitivity Specificity Accuracy

Model 1 92.49 66.36 90.97 92.18
Model 2 92.67 68.56 90.48 91.88
Model 3 92.23 66.86 90.96 92.35
Ours (Model 4 ) 92.89 72.56 91.42 92.22

4.3 Ablation Studies

Effectiveness of Relation Learning Network. In this subsection, we evalu-
ate the effectiveness of the relation learning network. Via this learnable network,
the proposed method could learn to capture better relations in the feature space
than other fixed distance functions. In experiments, keep MT framework with
triplet formulation in proposed method and substitute the relation learning net-
work with the following 3 widely-used distance functions respectively. The cor-
responding models w.r.t. 4 different distances trained with 10% labeled data and
90% unlabeled data are involved into a comparison.

Euclidean distance(hi, hj) = (
K∑

k=1

(hik − hjk)2)1/2,

Cosine distance(hi, hj) =
hi · hj

‖hi‖‖hj‖ =
∑K

k=1 hikhjk

(
∑K

k=1 h2
ik)1/2(

∑K
k=1 h2

jk)1/2
,

Manhattan distance(hi, hj) =
K∑

i=1

|hik − hjk|,

(6)

where hi = (hi1, ..., hiK) and hj == (hj1, ..., hjK) are learned features with K
dimensions in latent space.

The results are listed in Table 2. The relation learning network shows the
best performance on the 4 metrics over other three fixed distance functions
which confirms the effectiveness of relation learning network. It may because the
deep neural network have greater modeling capabilities than fixed functions.

Effectiveness of Triplet Formulation. In this subsection, we evaluate the
effectiveness of the proposed triplet formulation, which considers both the intra-
class and the inter-class relationship in the feature space for better classification
performance. Specifically, based on an MT framework, the experiments are exe-
cuted by training the following multiple models where the triplet loss Ltri (Eq.
(3)) is replaced:

– Model without the triplet formulation (Model 1 ).
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Table 4. Robustness analysis on the hyper-parameter M.

Different M-s Metrics
AUC Sensitivity Specificity Accuracy

M=0.1 92.21 71.93 91.47 91.53
M=1 92.65 72.19 90.81 91.03
M=10 92.80 68.65 90.21 91.38
Ours (M=100) 92.89 72.56 91.42 92.22
M=1000 92.68 70.89 91.51 91.73

– Model trained with the intra-class formulation only (Model 2 ). Equation (7)
shows the intra-class formulation where features hi and hj are of the same
class. M1 is a hyper-parameter.

L1 = max(0,D(hi, hj) − M1) (7)

– Model trained with the inter-class formulation only (Model 3 ). Equation (8)
shows the inter-class formulation where features hi and hj are of different
classes. M2 is also a hyper-parameter.

L2 = max(0,M2 − D(hi, hj)) (8)

– Our model trained with the complete triplet formulation (Model 4 ).

Again, all the models are trained on a data partition of 10% labeled and 90%
unlabeled data. The results are listed in Table 3. Clearly, the complete triplet
formulation brings the highest model performance, which indicates that simul-
taneously considering both the intra-class and inter-class benefits classification
performance the most.

4.4 Analysis of Hyper-parameter M
In this subsection, we analyse the robustness of the proposed method towards
the hyper-parameter M in Equation (3). M is a significant hyper-parameter,
indicates the exceeding distance margin and controls the separability of inter-
class samples and the clusterity of intra-class ones. To evaluate the impact
of M, multiple models are trained w.r.t. different values of M, i.e., M ∈
{0.1, 1, 10, 100, 1000}, on 10% labeled data and 90% unlabeled data. The results
are listed in Table 4.

In Table 4, as M increases from 0.1 to 100, values of the 4 metrics becomes
better. It is observed that specificity and accuracy are not very sensitive to the
value of M. Meanwhile, there is a limitation of M that it can not be too high
(e.g., 1000). Finally we set M as 100 in our experiments.
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5 Conclusion

We propose a novel learnable relation semi-supervised method with triplet for-
mulation for medical image classification in this paper. Based on the widely-used
MT framework, a triplet formulation is devised to better characterize the intra-
class and inter-class feature relations. Besides, a relation learning network is
proposed to learn the feature relations instead of adopting any fixed distance
functions. By considering the feature encoding and the distance metric learn-
ing together, the proposed semi-supervised method shows stronger classifica-
tion performance. Extensive empirical results demonstrate the superiority of our
method over other state-of-the-art semi-supervised learning methods and reveal
the robustness of our method with little labeled data.
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Abstract. Multi-view learning based on a variety of multiple hyperplane clas-
sification (MHC) models has shown promising performance for multi-view data
classification in recent years. However, seeking for a single fitting hyperplane for
each class might be insufficiently expressive for the datasets with complex feature
distribution. Moreover, in the presence of outlier data, most approaches tend to
produce degraded results due to the adverse impact of outliers. In this paper, we
put forward a new multi-view MHC model termed as multi-view twin projection
vector machine (MvTPVM) which aims to seek for multiple projection vectors.
Following the consensus principle, multi-view co-regularization is introduced to
constrain the projected features of two views. To further achieve robust multi-view
classification, we propose a robust variant called RMvTPVM where the distance
involved in this model is measured by L1,2-norm. To solve the resulting model, an
elegant iteration algorithm is further proposed. The experimental results on both
standard UCI datasets and driving fatigue detection based on EEG signals verify
the effectiveness of our models in multi-view classification.

Keywords: Multi-view classification · Multi-hyperplane model · Support vector
machine · Driving fatigue detection

1 Introduction

In many real-world applications, data in specific domain can be frequently described by
multiple representations or views. For example, for driving fatigue detection [1], we can
expect spectrum features as well as functional connectivity network extracted from the
collected EEG data characterizes the activities and relations occurred in the brain from
different viewpoints. Multi-view learning [2, 3] has been proposed to exploit comple-
mentary information from multiple sources. One popular multi-view learning strategy
called consensus principle attempts to maximize the agreement among multiple distinc-
tive prediction results of the data. Multi-view co-regularization [4] which conforms to
the consensus principle has been widely applied and shows excellent performance.

To data, the multi-view classification algorithms based on support vector machines
(SVM) [5] have received increasing popularity. As early as 2005, an SVM-based two-
view learning method called SVM-2K [6] was developed to implement a regularization
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framework for multiple view learning. Despite the ability of traditional SVM-based
models to combine multiple views, these algorithms suffer the problem of high cost
since themodel training has to solve a convex quadratic programming (QP) problemwith
time complexityO

(
N 3

)
where N is the total size of training samples. Recently, multiple

hyperplane classification (MHC) models such as generalized eigenvalue proximal SVM
(GEPSVM), twin SVM (TSVM), have attracted much attention. Instead of seeking for
a single separating hyperplane between different classes as SVM does, MHC try to
find multiple nonparallel hyperplanes, each of which is associated with a class, such
that each plane is closest to its own class while furthest from the other class. Due to
the excellent performance of MHC models and reduced training cost, the combination
of MHC model and multi-view information has emerged as a promising direction for
classification task. Many effective models such as MvGSVM [7], multi-view TSVM
(MvTSVM) [8], Regularizedmulti-viewLSTSVM (RMvLSTSVM) [9], Robust double-
sided TSVM (MvRDTSVM) [10] have been developed in the literature.

Although the existing multi-viewMHCmethods have achieved remarkable success,
there are still some problems. One major challenge is that all of these models are dedi-
cated to generate a fitting plane for each class. Using a single plane to characterize the
data with complex distribution has been proved to be insufficient for many real-world
applications. To address this challenge, in this paper, we first present a novel algorithm
termed as multi-view twin projection vector machine (MvTPVM). MvTPVM attempts
to find multiple projection vectors for each class such that in its own projected sub-
space, the samples belonging to the same class are closest to its class mean and the
samples of the other class are separated as far as possible. Then, in order to alleviate the
adverse impact of outliers, we further present a robust MvTPVM model (RMvTPVM)
based on L2,1-norm. Experiments are used to verify the effectiveness of our models.

In summary, our models have the following merits:

(1) Different from the existing multi-view MHC models, our proposed MvTPVM is
capable of producing multiple projection vectors such that the samples of one
class can be well separated from those of the other class in its own projected
space. Intuitively, multiple projection vectors which span a linear subspace with
higher dimension will contribute to extract more informative features and therefore
probably cause better performance for complex problems.

(2) Considering MvTPVMmay be prone to the presence of outliers since the involved
distance measure is based on squared L2-norm which will magnify the effect of
outliers, the enhancedRMvTPVM formulation purely based on L2,1-norm is further
proposed with the expectation of suppressing the influence of outliers and thus
promoting the classification performance.

The rest of this paper is organized as follows. Section 2 presents our proposed MvT-
PVM for classification. In Sect. 3, the robust variant RMvTPVM is further introduced.
Section 4 reports extensive experiment on standard UCI machine learning datasets. Sub-
sequently, our proposed models are applied to EEG based driving fatigue detection.
Finally, some conclusions and future works are discussed in Sect. 5.
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2 Multi-view Twin Projection Vector Machine

2.1 Problem Formulation

Suppose that there are two views with different dimensions, and each view contains sam-

ples from positive and negative class denoted as
{
x1,+i , x2,+i

}n1
i=1

and
{
x1,−j , x2,−j

}n2
j=1

,

x1,+i , x1,−j ∈ Rd1 , x2,+i , x2,−j ∈ Rd2 where the superscript 1 and 2 denotes two view,
superscript+ and− represents two class, subscript i and j denote the i th and j th sample
in each class, di is the dimension of view i, n1 and n2 are the number of samples in
positive and negative class, n = n1 + n2.

Different from the most MHC models [7–10] which find two nonparallel fitting
hyperplanes for each view, the goal ofMvTPVMis to find view-specific projectionmatri-
cesW1 ∈ Rd1×m1 ,W2 ∈ Rd2×m1 for the positive class, andV1 ∈ Rd1×m2 ,V2 ∈ Rd2×m2

for the negative class, where m1 and m2 denote the number of projection vectors for the
two views, respectively. By projecting the samples along these projection matrixes, we
expect that the samples in the same class are closest to the center of the corresponding
class while the samples in other class scatter away as far as possible from that center. In
addition, the multi-view information is further incorporated by following the consensus
principle. Therefore, we present the following formulations of MvTPVM for positive
class as follows

(MvTPVM1) min
W1,W2

∑n1
i=1 ‖x1,+i W1 − µ1,+W1‖2 + ∑n1

i=1 ‖x2,+i W2 − µ2,+W2‖2
∑n2

j=1 ‖x1,−j W1 − µ1,+W1‖2 + ∑n2
j=1 ‖x2,−j W1 − µ2,+W1‖2

+
δ1

∑n1
i=1 ‖

(
x1,+i − µ1,+

)
W1 −

(
x2,+i − µ2,+

)
W2‖

2 + τ1
(‖W1‖2F + ‖W2‖2F

)

∑n2
j=1 ‖x1,−j W1 − µ1,+W1‖2 + ∑n2

j=1 ‖x2,−j W1 − µ2,+W1‖2
(1)

whereδ1, τ1are non-negative weight parameters, µ1,+ = ∑n1
i=1 x

1,+
i /n1,µ2,+ =

∑n1
i=1 x

2,+
i /n1,µ1,− = ∑n2

j=1 x
1,−
j /n2,µ2,− = ∑n2

j=1 x
2,−
j /n2, denotes the class mean

of positive and negative class for two views. ‖·‖is theL2-normof a vector, and ‖ · ‖F is the
Frobenius norm of a matrix. The explanation of (1) is shown below. The first two terms
in the numerator are used to reduce the within-class scatter in the projected subspace for
the two views, respectively. The third term is the classic multi-view co-regularization
which constrains the prediction of the same sample across two views to be consistent.
The final term often called Tikhonov regularization is used to penalize the norm of pro-
jection matrices so as to avoid overfitting. The two terms in the denominator are used to
push the samples in negative class far away from the mean of positive class in the two
views.
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In the spirit of similar idea, the MvTPVM model for the negative class can be
expressed as

(MvTPVM2) min
V1,V2

∑n2
j=1 ‖x1,−j V1 − µ1,−V1‖2 + ∑n2

j=1 ‖x2,−j V2 − µ2,−V2‖2
∑n1

i=1 ‖x1,+i V1 − µ1,−V1‖2 + ∑n1
i=1 ‖x2,+i V2 − µ2,−V2‖2

+
δ2

∑n2
j=1 ‖

(
x1,−j − µ1,−

)
V1 −

(
x2,−j − µ2,−

)
V2‖

2 + τ2
(‖V1‖2F + ‖V2‖2F

)

∑n1
i=1 ‖x1,+i V1 − µ1,−V1‖2 + ∑n1

i=1 ‖x2,+i V2 − µ2,−V2‖2
. (2)

2.2 Solution Algorithm to MvTPVM

Let matrix A1 ∈ Rn1×d1 and A2 ∈ Rn1×d2 represent the positive class in the first and
second view of the positive class. Similarly, we can get the matrix representation of
netive samples in the two views, B1 ∈ Rn2×d1 and B2 ∈ Rn2×d2 . Some definitions are
given as follows

S1 = A1 − e1μ1,+, S2 = A2 − e1μ2,+, S*1 = B1 − e2μ1,+, S*2 = B2 − e2μ2,+ .

L1 = B1 − e2μ1,−, L2 = B2 − e2μ2,−,L*
1 = A1 − e1μ1,−, L*

2 = A2 − e1μ2,− .

(3)

Then, the optimization problems (1) and (2) for MvTPVM can be rewritten as

min
W1,W2

‖S1W1‖2F + ‖S2W2‖2F + δ1‖S1W1 − S2W2‖2F + τ1
(‖W1‖2F + ‖W2‖2F

)

‖S∗
1W1‖2F + ‖S∗

2W2‖2F
. (4)

min
V1,V2

‖L1V1‖2F + ‖L2V2‖2F + δ2‖L1V1 − L2V2‖2F + τ2
(‖V1‖2F + ‖V2‖2F

)

‖L∗
1V1‖2F + ‖L∗

2V1‖2F
. (5)

First, we will solve the optimization problem (4) for MvTPVM1. According to the
properties of matrix trace, the problem (4) is equivalent to

min
W

tr

(
WT

[
(1 + δ1)ST1S1 −δ1ST1S2

−δ1ST2S1 (1 + δ1)ST2S2

]
W

)
+ τ1tr

(
WTW

)

tr

(
WT

[
S* T1 S∗

1 0
0 S* T2 S∗

2

]
W

) . (6)

where W =
[
W1

W2

]
, tr(·) is the trace operation of a matrix. We define

Q1 =
[

(1 + δ1)ST1S1 −δ1ST1S2
−δ1ST2S1 (1 + δ1)ST2S2

]
+ τ1I,U1 =

[
S* T
1 S∗

1 0
0 S* T

2 S∗
2

]
. (7)

Then the optimization problem (6) can be simplified to the following form

min
W

tr
(
WTQ1W

)

tr
(
WTU1W

) . (8)
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Following the previous studies [11, 12], the unconstrained minimization problem (8)
is equivalent to

min
W

tr
(
WTQ1W

)
s.t.WTU1W = C1. (9)

where C1 is a constant matrix with all elements being constants. The above objective
function is a constrained optimization problem, so we can solve it by Lagrangian multi-
plier method. Finally, it can be concluded that MvTPVM1 boils down to the following
eigenvalue decomposition problem

Q1W = U1W�1. (10)

As a result, the optimal projection matrix W is composed of eigenvectors cor-
responding to the first m1 smallest eigenvalues except zeros of the Eigen-equation
Q1wk = λkU1wk(k = 1, . . . ,m1).

In the same way as the first optimization problem, the second problem (5) can be
reformulated as

min
V

tr
(
VTQ2V

)
s.t.VTU2V = C2. (11)

where V =
[
V1

V2

]
, C2 is a constant matrix, and

Q2 =
[

(1 + δ2)LT
1L1 −δ2LT

1L2

−δ2LT
2L1 (1 + δ2)LT

2L2

]
+ τ2I,U2 =

[
L* T
1 L∗

1 0
0 L* T

2 L∗
2

]
. (12)

Then, the optimal solution of (11) is given by

Q2V = U2V�2. (13)

The optimal projection matrix V is thus composed of eigenvectors correspond-
ing to the first m2 smallest eigenvalues except zeros of the Eigen-equation Q2vk =
λkU2vk(k = 1, . . . ,m2).

3 Robust MvTPVM

3.1 Problem Formulation

MvTPVM uses the squared L2-norm as distance metric as the other methods mentioned
above. However, it is generally recognized that [13, 14] the squared L2-norm are not
robust enough to outliers in that the samples with large distance will dominate the total
loss and thus make the resulting solution deviate from the optimal one. Therefore, we
further develop a robust MvTPVM model termed as RMvTPVM based on L2,1-norm.
The L2,1-norm is able to reduce the influence of outliers by using the L2-norm instead
of the squared version as distance metric on the data points, thereby improving the
robustness of the model.
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First, we give the definition of L2,1-norm of an arbitrary matrix A

∥∥AL2,1

∥∥ =
∑n1

i=1

√∑di

j=‘1
(A(i, j))2 =

∑ni

i=1
‖A(i, :)‖. (14)

We replace the squared L2-norm in theMvTPVM objective function (4) and (5) with
the L2,1-norm, and the objective function after replacement is shown as follows:

(RMvTPVM1) min
W1,W2

‖S1W1‖L2,1 + ‖S2W2‖L2,1 + δ1‖S1W1 − S2W2‖L2,1
‖S∗

1W1‖L2,1 + ‖S∗
2W2‖L2,1

+
τ1

(
‖W1‖L2,1 + ‖W2‖L2,1

)

‖S∗
1W1‖L2,1 + ‖S∗

2W2‖L2,1
(15)

(RMvTPVM2) min
V1,V2

‖L1V1‖L2,1 + ‖L2V2‖L2,1 + δ2‖L1V1 − L2V2‖L2,1
‖L∗

1V1‖L2,1 + ‖L∗
2V2‖L2,1

+
τ2

(
‖V1‖L2,1 + ‖V2‖L2,1

)

‖L∗
1V1‖L2,1 + ‖L∗

2V1‖L2,1
(16)

3.2 Solution Method to RMvTPVM

Let W =
[
W1

W2

]
and according to the definition of L2,1-norm, the objective function

(15) is equivalent to

min
W

∥∥∥∥

[
S1 0
0 S2

]
W

∥∥∥∥
L2,1

+ δ1

∥∥∥∥

[
S1 0
0 −S2

]
W

∥∥∥∥
L2,1

+ τ1‖W‖L2,1
∥∥∥∥

[
S∗
1 0
0 S∗

2

]
W

∥∥∥∥
L2,1

. (17)

Given the following notations:

Sp1 =
[
S1 0
0 S2

]
,Sp2 = δ1

[
S1 0
0 −S2

]

S =
[
STp1S

T
p2τ1I

]T
,S∗ =

[
S∗
1 0
0 S∗

2

]
.

(18)

where I is an unit matrix of appropriate dimensions, the objective function (17) can be
transformed into

min
W

‖SW‖L2,1
‖S∗W‖L2,1

. (19)
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According to the definition of L2,1-norm and through simple algebra, the numerator of
the above problems can be written as

‖SW‖L2,1 = tr
(
WTSTD1SW

)
. (20)

where D1 = diag
(

1
‖SW(1,:)‖2 , . . . ,

1
‖SW(N1,:)‖2

)
, N1 = 4n1 + d1 + d2, diag(·) denotes a

diagonal matrix.
Similar to the numerator, the denominator of the problem (19) can be written as

∥
∥S∗W

∥
∥
L2,1

= tr
(
WTS∗TE1S∗W

)
. (21)

where E1 = diag
(

1
‖S∗W(1,:)‖2 , . . . ,

1
‖S∗W(N2,:)‖2

)
N2 = 2n2.

Replacing the numerator and denominator in the objective function (19)with Eq. (20)
and Eq. (21) we can get

min
W

tr
(
WTSTD1SW

)

tr
(
WTS∗TE1S∗W

) . (22)

Similar to (9), objective function (22) can be reformulated as

min
W

tr
(
WTSTD1SW

)
s.t. WTS∗TE1S∗W = T1. (23)

where T1 is a constant matrix, and we define

Q1 = STD1S,U1 = S∗TE1S∗. (24)

In the same way asMvTPVM, the optimal solution of (23) is given byQ1W = U1W�1.
Therefore, the optimal projection matrix W is composed of eigenvectors correspond-
ing to the first m1 smallest eigenvalues except zeros of the Eigen-equation Q1wk =
λkU1wk(k = 1, . . . ,m1).

However, it should be emphasized that Q1 and U1 in (25) are actually depending
on the unknownW due to the definition of D1 and E1. As a result, the optimal solution
of needs to solved in an iterative way, that is, solving W while fixing D1 and E1 and
updating D1 and E1 while fixingW. The convergence of this iterative algorithm will be
proved in the following section.

In a similar way, for the second problem (16), we can reformulate the model as

min
V

tr
(
VTLTD2LV

)

s.t.VTLTE2L∗V = T2. (25)

where T2 is a constant matrix, and we have

Lp1 =
[
L1 0
0 L2

]
, Lp2 = δ2

[
L1 0
0 −L2

]
, N3 = 4n2 + d1 + d2 .
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L =
[
LT
p1 L

T
p2 τ2I

]T
, L∗ =

[
L*
1 0
0 L*

2

]
, N4 = 2n1 .

D2 = diag

(
1

LV(1, :)2
, . . . ,

1

LV(N3, :)2

)
.

E2 = diag

(
1

L∗V(1, :)2
, . . . ,

1

L∗V(N4, :)2

)
. (26)

Let us define

Q2 = LTD2L, U2 = L∗TE2L∗. (27)

Then, the optimal solution for (26) is given by

Q2V = U2V�2. (28)

The optimal projection matrix V is composed of eigenvectors corresponding to
the first m2 smallest eigenvalues except zeros of the Eigen-equation Q2vk =
λkU2vk(k = 1, . . . ,m2). It is worthy of note that, Q2 and U2 actually depend on the
current estimation of V, therefore, the optimal solution should be calculated iteratively.

Now we have obtained a total of four optimal projection matrices W1,W2,V1,V2
corresponds to the positive and negative class under the two views respectively. Given a
new sample with two views x1 and x2, we can assign the corresponding category based
on the distance between the projections of this sample and the class mean in each view.
Concretely, if

2∑

i=1

‖xiWi − µi,+Wi‖2 <

2∑

i=1

‖xiVi − µi,−Vi‖2. (29)

the sample is classified to positive class, otherwise negative class.

3.3 Convergence Analysis

In order to ensure the convergence of RMvTPVM, we hope to prove the monotonically
decreasing behavior. Specifically, we have the following conclusion.

Theorem 1. Algorithm will monotonically decrease the objective (23) in each iteration
until convergence. Mathematically, in the t-th iteration of algorithm, we will have

tr

((
W(t+1)

)T
STD(t+1)

1 SW(t+1)
)

≤ tr

((
W(t)

)T
STD(t)

1 SW(t)
)

. (30)

4 Experiments and Analysis

4.1 Experimental Specification

In order to evaluate the classification performance and computational efficiency of our
proposedMvTPVMandRMvTPVM,we comparewith some state-of-the-artmulti- view
MHC models, including MvGSVM [7], MvTSVM [8], and RMvLSTSVM [9]. As for
the parameter selection of each method, we employ 10-fold cross-validation technique
and grid search strategy. We carry out experiments on both standard UCI datasets and
EEG signal dataset for driving fatigue detection.
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4.2 Classification Results on UCI Datasets

For the UCI dataset shown in Table 1, we take the original data as the first view. For
the second view, we follow the previous methods [8, 9] where PCA is used to reduce
the dimension of original data. Then the resultant representation is regarded as the
second view. The classification accuracy averaged over 10-fold cross-validation of five
algorithms on 8 UCI datasets are reported in Table 2. In order to investigate whether
the proposed RMvTPVM has advantages in noise resistance, for each UCI datasets, we
perform experiment in label noise settings. Specifically, we randomly choose a portion
of training samples and reverse labels of the selected samples. The classification and
training time of all algorithms when the proportions of label noise are set equal 10% and
20% are shown in Table 3 to Table 4. The training time when no label noise is added is
shown in Table 5. The convergence behavior of RMvTPVM on three datasets is shown
in Fig. 1.

Table 1. Information about UCI datasets.

Data Datasets Numbers Positive Negative Dimension

D1 Diabetes 768 500 268 8

D2 Monks1 432 216 216 6

D3 Monks3 554 288 266 6

D4 Hepatitis 155 32 123 19

D5 Sonar 208 97 111 60

D6 Spect 267 212 55 44

D7 TicTacT 958 626 332 9

D8 E Votes 435 168 267 16

From these results, we can find that the proposed MvTPVM and RMvTPVM out-
perform the other algorithm on most datasets which indicates our proposed multi-view
methods are effective. Given label noise, we can find that the proposed RMvTPVM
works better than other algorithms for most datasets, although the performance of all
algorithms tends to drop as the label noise increases. In addition, RMvTPVM is more
stable with the increase of noise ratio on most datasets. We observe that MvGSVM
cannot work well on these datasets and RMvTPVM is superior than MvTPVM in most
cases. In terms of training time, our proposed MvTPVM is very fast and RMvTPVM is
slower because a series of eigenvalue problem needs to be solved.
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Table 2. The classification accuracy on UCI datasets.

Data MvGSVM MvTSVM RMvLSTSVM MvTPVM RMvTPVM

D1 75.14 77.08 77.09 76.69 75.40

D2 82.88 75.05 76.43 91.44 93.29

D3 83.05 88.47 87.03 96 9

D4 69.67 80.71 85.38 87.1 86.58

D5 77.36 80.76 81.67 85.62 87.45

D6 69.99 82.01 82.76 79.42 77.48

D7 66.29 67.44 68.80 76.40 75.46

D8 95.41 96.77 96.31 96.09 96.77

Table 3. Classification accuracy on UCI datasets for 10% noise.

Data MvGSVM MvTSVM RMvLSTSVM MvTPVM RMvTPVM

D1 74.48 76.18 76.05 71.22 70.58

D2 77.55 68.79 73.20 85.66 86.58

D3 81.96 81.60 83.06 92.80 93.69

D4 61.50 72.42 80.17 84.63 83.46

D5 70.21 75.40 73.55 75.95 78.43

D6 61.38 76.01 73.09 76.38 74.54

D7 62.94 65.77 67.44 72.44 72.54

D8 91.97 94.27 89.62 95.17 94.50

Table 4. Classification accuracy on UCI datasets for 20% noise.

Data MvGSVM MvTSVM RMvLSTSVM MvTPVM RMvTPVM

D1 73.70 74.62 75.13 69.54 69.41

D2 69.48 57.90 69.49 81.24 82.17

D3 75.48 75.63 77.64 89.90 90.44

D4 54.96 61.87 77.54 80.04 80.92

D5 64.48 64.90 68.74 70.71 74.60

D6 57.71 73.03 72.29 72.64 73.38

D7 60.63 64.83 64.72 70.55 70.25

D8 87.36 92.15 87.3 90.80 91.26
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Table 5. Training time of different algorithms on UCI datasets.

Data MvGSVM MvTSVM RMvLSTSVM MvTPVM RMvTPVM

D1 0.0039 2.5362 0.0012 0.0017 0.0702

D2 0.0009 0.6246 0.0007 0.0017 0.0245

D3 0.0009 1.0151 0.0008 0.0018 0.0307

D4 0.0011 0.0763 0.0014 0.0026 0.0113

D5 0.008 0.227 0.0024 0.0069 0.0319

D6 0.0068 0.2561 0.0023 0.0067 0.0425

D7 0.0011 3.8297 0.001 0.0030 0.1066

D8 0.0019 0.8739 0.0011 0.0031 0.0237

Fig. 1. Convergence curves on Monks1, Sonar, and TicTacToc datasets.

4.3 Application to EEG Based Driving Fatigue Detection

Driver fatigue is one of the most influential factors causing traffic accidents. Electroen-
cephalography (EEG), as a direct manifestation of brain inherent neurophysiological
activities in response to particular stimulus, has been widely to detect the driving fatigue
due to its high temporal resolution as well as non-invasive acquisition method. Tradi-
tionally, the amplitude information related fatigue evaluation indicators including EEG
power spectrum density (PSD), approximate entropy, fuzzy entropy, are used to extract
feature from raw EEG signal channel. Taking the whole brain as a complex network
where node represents specific brain region or electrode and edge describes the relation
between nodes, functional connectivity [15] can be utilized to measure the statistical
correlation between different nodes. Based on this analysis, we attempt to leverage the
proposed multi-view MHC models for driving fatigue detection based on the fusion of
local activation and functional connectivity.
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The experimental data [16, 17] was originally collected by a highway driving simula-
tor. A total of 12 young, healthymen participated in the experiment. The EEG recordings
from 32 channels (including 30 effective channels and 2 reference channels) at 1000 Hz.
For the detailed procedure, please refer to the studies [16, 17]. After necessary data pre-
processing, for each subject, 5 min EEG data during the normal and fatigue driving was
recorded from 30 electrodes. The data was further segmented into 1s epochs to generate
about 300 samples. The whole flowchart for driving fatigue detection is shown in Fig. 2.

Considering that EEG signal suffers from serious mental and physical drifts across
different subjects [18], we carry out experiment for two class within-subject fatigue
detection. The accuracy and the training time obtained by different models on twelve
subjects from S1 to S12 is shown in Table 6. As we can see, our methods achieve better
results for most subjects. Moreover, we also notice that the detection performance is
varied to a large extent for different subjects. For example, for some subject (e.g., S1)
the accuracy can reach about 90% while for other subject (e.g., S11) the accuracy is
about 70%.

Fig. 2. Flowchart of multi-view classification for driving fatigue detection.
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Table 6. Classification accuracy on EEG datasets.

MvGSVMs MvTSVMs RMvLSTSVMs MvTPVM RMvTPVM

S1 85.67 87.33 87.67 94.01 94.83

S2 86.01 87.67 88.17 86.33 87.17

S3 75.92 68.94 76.23 79.08 78.91

S4 93.51 96.17 96.34 96.01 95.84

S5 82.17 86.17 90.67 90.50 90.17

S6 73.73 68.73 78.55 81.19 80.37

S7 73.51 72.33 73.33 67.00 68.00

S8 80.67 83.33 83.33 84.17 83.83

S9 73.54 73.71 75.04 72.21 73.04

S10 73.01 77.01 76.83 84.83 85.50

S11 65.51 66.83 68.33 70.33 71.50

S12 68.38 67.21 71.21 71.72 73.05

5 Conclusions and Future Works

In this paper, we proposed two novel multi-view classification models termed as MvT-
PVM and RMvTPVM by learning multiple projection vectors for each class so as to
achieve better separation of different class in the projected subspace. RMvTPVM can
be regarded as a robust variant of MvTPVM thus leading to better performance in the
presence of outliers. The solution of MvTPVM is given by eigenvalue problem while
that of RMvTPVM can be obtained by an efficient iterative algorithm in which a series
of eigenvalue problem needs to be solved in each iteration. The experiments on eight
UCI benchmark datasets verify the effectiveness and efficiency of these algorithms. We
also apply the proposed algorithms to detect driving fatigue based on EEG data where
the results also indicate the advantages of our proposed methods over other related
techniques in most cases.

In the future works, a straightforward extension of this study is to investigate the
fusion of data with more than two views. This will be beneficial to integrate more infor-
mation from different sources thus boosting the performance. We also try to apply the
proposed models for other applications, such as brain disorder related disease diagnosis.
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Abstract. One of the most crucial tasks in the ICU is mortality pre-
diction. The number of deceased patients is significantly lower than the
number of survivors, and it is simple to over-identify the survivors. Addi-
tionally, the clinical use of present machine learning and deep learning
models is challenging due to their lack of interpretability. To address the
aforementioned issues, we innovatively propose the Interpretable Condi-
tional Augmentation Classification (ICAC) method. By using CWGAN
to create balanced samples, ICAC learns the distribution of minor sam-
ples. In order to make better clinical suggestions, the Shapley value
is utilized to examine the marginal contribution of patient character-
istics to the prediction model. We test the model on the latest released
MIMIC-IV, and the experimental results show that the AUC index of
our model is superior than that of the basic model. Our proposed method
can successfully address the class imbalance issue in EHRs, clarify how
features affect model outcomes, and offer useful recommendations for
clinical practice.

Keywords: Mortality prediction · Conditional Wasserstein Generative
Adversarial Nets · Interpretable classification

1 Introduction

Electronic Health Records (EHRs) are digital collections of clinical information.
They are generated from one or more encounters in any healthcare delivery set-
ting. EHRs include information about patient demographics, laboratory indica-
tors, medication use, vital signs, laboratory results, and reports of diagnostic pro-
cedures [4]. In recent years, EHRs have become a major source for treatment
assessment, quality of care improvement, side effect reduction, disease prediction,
and patient care optimization [18]. Dissimilar with other sources of data, EHRs
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have a lot of noise, irregular sampling, missing values, and heterogeneous data.
These characteristics of EHRs pose many challenges for data modeling [24].

Patient mortality risk prediction using EHRs has been a popular topic among
scholars in recent years, especially for ICU mortality prediction [12,28]. One
of the major challenges in performing mortality risk prediction is to build a
valid prediction model. This is a promissing technique to improve the patient’s
prognosis by providing physicians the pertinent information. The other challenge
is to achieve high accuracy or performance of the model. Thus, there are two
main challenges when dealing with this kind of work.

Class Imbalance: Class imbalance is a ubiquitous problem in medical data
[8]. Class imbalance leads the model to focus on the major proportion of the
category, thus ignoring the minor samples. Minor samples, however, should raise
greater concerns. For instance, the proportion of ICU deceased patients is sub-
stantially lower than that of those who survived [13]. Further, as deep learning
algorithms continuously evolve, deep learning methods will be impractical in pre-
diction even with high accuracy when the sample classes are severely imbalanced
[27]. Typically, class imbalance is solved by adding minor samples to achieve bal-
ance, or by emphasising minor sample learning in the loss function, etc.

Interpretability: There is general agreement that deep learning and
advanced machine learning exhibit excellent performance but lack interpretabil-
ity in healthcare [14]. There seems to be a trade-off between predictive accuracy
and interpretability, deeper and larger neural networks consistently outperform
shallow structures in some tasks at the expense of simpler representations. How-
ever, the consensus is often not true [22]. When considering the problem that
contains structured data with meaningful features, there is often no significant
difference betweeen more complex classifiers and simpler classifiers [1]. However,
interpretability of models is important and necessary in medical fields [6] and
accuracy is equally important. Studies that may fail to be explained to healthcare
professionals and physicians are meaningless with a high accuracy.

To address these challenges, we propose an Interpretable Condition Augmen-
tation Classification (ICAC) Approach, which aims at mortality prediction of
ICU patients with class imbalance EHRs data. The model addresses the imbal-
ance category of ICU patients in EHRs and selects Conditional Wasserstein
Generative Adversarial Nets (CWGAN) to generate a batch of new minor class
samples (deceased patients), thus expanding the original data to make the sam-
ple balance. Then Shapley value is used to interpret the CWGAN augmentation
model. Our results show that CWGAN can significantly enhance the perfor-
mance and interpretability of the model and achieve superior outcomes to the
baseline model.

2 Related Work

Class Imbalence in Healthcare: Imbalanced data classification is an impor-
tant research topic in the field of data mining, especially in the medical field,
such as diagnosis of malignant tumors [9], mortality prediction [26] and so on.
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Without sample processing, research findings may lack practical significance in
the diagnosis of tumors [8], even with a high accuracy. Usually, we need to gen-
erate a balanced training set from the original training sample set, which is used
to train medical classification models and improve the recognition rate of minor
class samples. In addition, the class imbalance problem can be ameliorated by
changing the class weights of the loss function, as well as using undersampling
for major class samples, which lose the diversity of the samples.

Data Augmentation for Class Imbalance: Data augmentation is a data
generation strategy commonly used for supervising problems in machine learn-
ing [20]. Data augmentation improves model performance by algorithmically
adding relevant data points. Common data augmentation algorithms are mainly
classified into oversampling and undersampling, with oversampling as Synthetic
Minority Oversampling Technique (SMOTE), Borderline-SMOTE and so on.
With the superior performance of Generative Adversarial Nets (GAN) [10] for
various tasks, such as generating realistic images, transforming image styles, pre-
dicting temporal data, etc. GAN is also utilized for data augmentation, which
provides more distributed information about the sample [7]. Variant of GAN,
CGAN [16] can generate images of specified categories by adding conditional
variables to the generator and discriminator. WGAN has also been applied to
EHRs data with good performance [3]. Inspired by those, we extract the minor
class samples in dataset and use CWGAN to expand the samples so that the
categories can be balanced.

Interpretability with Shapley Value: Interpretability of deep learning mod-
els is significant and inevitable for medical applications, as clinicians increas-
ingly rely on data-driven solutions for patient monitoring and decision making
[6]. Model interpretability is a major limitation in existing healthcare research.
Though various techniques are proposed in recent years like LIME [21], LRP [2]
and DeepLift [23], they can not portion the feature importance while maintaining
local accuracy and consistency. However, Shapley value provides a theoretically
sound method for allocating coalition benefits among coalition members of a
cooperative game. In foresight, the set of variables is the input characteristics of
the model, which can be viewed as a set of coalitions. The output values are the
predicted values of the model given these special input features.

3 Methods

3.1 Architecture

We provide a structural diagram of the model, as shown in Fig. 1. We divide the
class imbalanced EHRs data into training set and test set evenly by category
proportion. The training set is added to CWGAN for training to obtain a trained
generator. Then we get the new samples by trained generator, which is generated
according to the labels of the deceased patients. Finally, the generated data is
pasted with the original data to obtain a class balanced dataset.
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Fig. 1. Structure of our propose work

For the binary classification task, we use this class balanced data and a
multilayer perceptron consisting of two hidden layers with activation functions
tanh, relu, and sigmoid with weight Wi in Fig. 1. Subsequently, we perform
interpretable analysis of the trained model with sampling from the test set, and
obtain interpretable mortality risk analysis at the dataset level. Meanwhile, we
take a sample of the test data from deceased patients to analyze the causes of
explainable death for these individuals.

3.2 Conditional Wasserstein Generative Adversarial Nets

GAN is a deep learning model, which originates from the two-player zero-sum
game in game theory, i.e. One party’s loss is the other party’s gain. GAN con-
sists of a generator (G) and a discriminator (D). Generator is fed by input noise
variables pz(z) and generates fake data. Discriminator is a binary classifier and
outputs a single scalar, which represents the probability that x is from the data
rather than generator distribution pg. The two models compete with each other
until the generator has enough fake data to make the discriminator indistin-
guishable and equilibrium is reached. The value function V (G,D) originated
from two-player minimax game is defined by:

min
G

max
D

V (D,G) = Ex∼pdata(x) log(D(x)) − Ez∼pz(z)log(1 − D(G(z))) (1)

where the first part is the sum of expectation of correctly recognizing real data
D(x), and the other is the expectation of 1 minus truly recognizing the gener-
ated data. Compared with unconstrained generative models such as GAN and
Deep Convolution GAN [19], CGAN can generate specific data based on label
information, which adds category information to GAN so that the generators
can generate according to categories with the following value function:

min
G

max
D

V (D,G) = Ex∼pdata(x) log(D(x|y)) − Ez∼pz(z)log(1 − D(G(z|y))) (2)
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where y is the one-hot labels that condition discriminator and generator inputs.
The original GAN faces training instability, mode collapse and other problems,
WGAN (Wasserstein GAN) can effectively solve these problems. Wasserstein
distance is also called Earth-Mover distance, which is defined as follows:

W (pdata, pg) = inf

γ∼Π(pdata,pg)
E(x,y)∼y [‖x − y‖] (3)

where Π (pdata, pg) represents the joint distribution of (pdata, pg). For every pos-
sible γ, which contains a real sample x and a generated sample y, the expected
value of the distance of the samples can be calculated. The expected value can
be lower bounded in the joint distribution of all possible values, which is defined
as Wasserstein distance.

3.3 Interpretable Learning with Shapley Value

In statistical models, it is simple to comprehend how characteristics affect the
results, but it is more challenging for deep learning models. To address this, we
use feature importance to characterize the impact of each feature on the model,
where the impact is represented by Shapley value, which is the only way to add
the feature importance to the model and keep two important properties at the
same time. Below, we provide a brief description of the properties.

Local Accuracy. The local accuracy assumes the attribution of each specific
input can directly capture the difference between the expected model output
and the predict output, this property is defined by following equation:

f(x) = φ0(f, x) +
M∑

i=1

φi(f, x) (4)

where φ0 = E[f(x)] is the expected value of trained model, and M is the number
of the input with different groups of input features.

Consistency. There are two models f and f
′
, if

f
′
x(S ∪ {i}) − f

′
x(S) ≥ fx(S ∪ {i}) − fx(S) (5)

for all S ∈ Z\{i}, where Z presents the set of all M input features, then
φi(f

′
, x) ≥ φi(f, x). This property describes that if a feature is more impor-

tant in one model than in the other, then the attribution of this feature should
be higher to the model regardless of the other features.

There seems to be only allocation of attibution can satisfy those property,
which is given by Shapley value [15]. Given a particular prediction f(x), we use a
weighted sum that allows us to calculate Shapley value. The impact of each fea-
ture is calculated by averaging the marginal impact produced, and accumulated
by the model with the feature added to all possible feature orders:
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φi(f, x) =
∑

S⊆Sall\i

|S|!(M − |S| − 1)!
M !

[fx(S ∪ {i}) − fx(S)] (6)

In practice, the Shapley value is very complex to calculate, with too many
terms to estimate, but they can be calculated by a sampling procedure [25]

4 EHRs Benchmarks and Data Processing

4.1 Data Sources

Our work is conducted on MIMIC-IV (Version 1.0) [11]. MIMIC (Medical Infor-
mation Mart for Intensive Care) is a large, freely-available EHRs database, and
contains information about patients such as biochemical test results, demograph-
ics, clinical notes, survival etc. MIMIC-IV v1.0 was officially released in March
2021, and consists of EHRs data from 2008 to 2019.

Table 1. Laboratory measurements

Laboratory Measurements

Hematocrit, Platelets, white blood cell (WBC), Aniongap,

Bicarbonate, Blood urea nitrogen (BUN), Calcium, Chloride,

Creatinine, Glucose, Sodium, Potassium, Basophils,

Eosinophils, Monocytes, International normalized ratio (Inr),

Prothrombin time (Pt), Partial thromboplastin time (Ptt),

Alanine aminotransferase (Alt), Alkaline phosphatase (Alp),

Aspartate aminotransferase (Ast), Bilirubin, Neutrophils,

Cv (coefficient variation of glucose), Count hypoglycemia

4.2 Patient Cohort Feature Extracting

We extract the basic information of the patients who are first admitted to the
ICU, including gender, age, height, and weight. Laboratory measurements within
24 h after the patient’s admission to the ICU, which is shown in Table 1. In order
for the measurements to be correctly identified in the subsequently performed
interpretable analysis, we provide a few abbreviations for the measurements.

Indicators chosen before 24 h of a patient’s admission to the ICU are more
prognostic than those chosen after 72 h or a longer period of time [17]. The
longer span of time, the lower the timeliness of prediction, and the less practical
significance of predicting death, especially in the ICU. One of the most serious
challenges in using temporal data is the lack of data, especially for MIMIC data
sets. Nearly one-third of the variables have missing values of more than 90%,
and only the characteristics of clinical monitoring such as heart rate and blood
pressure have missing values of less than 10% [5]. We try to extract six sets of
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features every 8 h as a time point over 48-h, most of the variables are missing
more than 60%. So we select data within 24 h of admission to the ICU to be
more predictive. In addition, we consider the following five physiological scores
as indicators: (1) Acute Physiology Score III (APSIII). (2) Simplified Acute
Physiology Score II (SAPSII). (3) Systemic inflammatory response syndrome
(SIRS). (4) Logistic Organ Dysfunction Score (LODS). (5) Oxford Acute Severity
of Illness Score (OASIS).

We filter the cohort for patients with one or more missing basic information
and age less than 18 years old. Meanwhile the patients with missing values of
laboratory indicators more than 1/3 are deleted. Finally, we leave a total of
25450 patients in the cohort, and 31 variables are included for each patient. The
summary of patients’ basic information is in Table 1.

The summary of part variables is shown in Table 2, and p value indicates the
value of the Independent-Samples T-test to test whether there is a significant dif-
ference in the two patient groups of death and survival. As shown in Table 2, the
ratio of deceased to survival patients is close to 1:10, which implies the dataset
is imbalanced. We use the label ‘1’ indicates the patient died in hospital and
‘0’ indicates the survival. Then we preprocess the extracted data. For structural
data, We fill the empty value with the mean value of the measurements to obtain
the complete data, and we code the gender with one-hot encoding. Finally, the
variables except gender, are normalized using maximum-minimum.

Table 2. Summary of our patient cohort

ALL
N = 25450

Survivor
N= 22973

Non-survivor
N= 2477

p value

Demographic data

Age (years) 65.3(16.1) 64.8(16.1) 69.79(15.6) <0.01

Sex (male) 15397(60.5%) 14016(61%) 1381(55.8%) <0.01

Body Mass Index 28.7(7.5) 28.7(7.4) 28.5(8.7) 0.25

Laboratory data

Platelets (K/uL) 166.4(114.1) 167(113.4) 161(119.9) <0.05

Potassium (mEq/L) 4.3(0.6) 4.3(0.6) 4.4(0.7) <0.01

Aniongap (mEq/L) 13.4(5.4) 12.8(5.1) 15.9(6.8) <0.01

Bicarbonate (mEq/L) 21.4(6.9) 21.7(6.8) 19(7.7) <0.01

BUN (mg/dL) 21.8(19) 21.7(17.9) 31.7(25) <0.01

Criteria

APSIII 48.8(25.6) 45.5(22.7) 78.9(30.3) <0.01

SAPSII 36.9(14.5) 35.4(13.6) 50.1(16) <0.01

SIRS 2.6(0.9) 2.6(0.9) 3(0.8) <0.01

LODS 5.1(3.4) 4.7(3) 8.8(3.8) <0.01

OASIS 32.9(9.5) 31.9(9) 42.1(9.3) <0.01
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4.3 Length of Stay

There is a basis for setting appropriate prediction time span according to the
length of stay of our patient cohort. On the one hand, if the average length of
stay is short, then the variable time-span used for prediction should be shorter.
Only then the prediction is time-sensitive. The summary of length of stay is
shown in Table 3. We can see that the average length of stay is 55 h, only 11.58%
of patients are hospitalized less than 24 h. If we choose longer span of features,
such as 48 h, there are near 42.15% of patients with length of stay less than
48 h, which make the value of mortality prediction models greatly discounted.
Therefore, we select the data of the first 24 h after patients are admitted to the
ICU. Most of the existing studies have missed this specification, and there are
even mortality prediction studies using the first 72 h of patient characteristics in
the MIMIC dataset [26], which is low in practical value. On the other hand, the
missing values of MIMIC’s time series are very serious. The missing values of
some variables are more than 60% when using time series data, some variables
are more than 90% [5], in order to better explain the attribution, we have no
choice but to use cross-sectional data.

Table 3. Length of stay quartiles for our patient cohort

Quantile Min 11.58% 25% 42.15% 50% 58.21% 75% Max

Stay hours 0.67 24 30.71 48 55.73 72 120 2391.3

4.4 Conditional Augmentation

Expanding the dataset is one of the means to solve the class imbalance problem.
The conditional generative model is necessary for the expansion of minor class
samples. CWGAN provides a generative model with labels. Compared with tra-
ditional models such as Borderline-SMOTE and ADAptive SYNthetic sampling
(ADASYN), which are prone to overfitting and other problems. CWGAN is able
to capture the characteristics of the data distribution. In EHRs, we utilize the
CWGAN model for expanding death cases. The structure of CWGAN is shown
in Fig. 2.

The generator (G) consists of noise and label information as input layers, and
the number of neurons in the output layer is equal to the number of variables.
The input layer of the discriminator (D) consists of neurons with the number of
variables combined with labels, and the output is a sigmoid value of probability.
The details of the parameters are presented in the hyperparameter section.

We use the trained generator with given the labels to generate the spuri-
ous data of death, thus expanding the original dataset and making the classes
balanced.

In order to verify the validity of the generated data, we adopt Quantile-
Quantile (QQ) plot as the visual inspection. QQ plot is often used to compare
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Fig. 2. Structure of CWGAN

Fig. 3. QQ plot of augmentation data and training data in sodium and platelets

the quantile of sample data with the known data, and to test whether the data
distribution is consistent. We conduct 5-fold cross-validation of experiments,
and this is shown in Fig. 3 with a sample of the first fold. The Fig. 3 shows
the QQ plot of augmentation data and original training data and only shows
two variables due to space limitation. The X-axis represents with augmentation
data of platelets and sodium. In the figure, the X-axis represents the data sets
from different augmentation methods, while the Y-axis represents the original
training set. We can see that in the features, most data are evenly distributed on
both sides of the red line (Y = x) indicating that the generated data is relatively
consistent with the distribution of the original data.

4.5 Details of the Model and Hyperparameters

To evaluate the performance of the model and optimize the neural network
structure, we partition the dataset by training and test set at the ratio of 8:2.
Since our cohort is a class imbalanced dataset, we divide the sets in such a way
that the ratio of the deaths/survivals is consistent in each set.

Our model consists of two parts, CWGAN and MLP classifier. In CWGAN,
we set the binary cross-entropy loss function for both the generator and the
discriminator. ADAM and SGD are selected as the optimizer respectively, with
a learning rate of 0.001. In order to ensure the characteristics of the generated
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data, we selecte a model with the accuracy of the discriminator converging at
0.5, and the latent noise distribution is uniform distribution on [0, 1].

In MLP, we use hidden layers with 64 and 32 neurons respectively, and an
output layer with 1 neuron. The activation functions are tanh, relu and sig-
moid, respectively. The dropout layers are with a ratio of 0.4. The experimental
environment is Python 3.7 with Tensorflow 1.15 and all the experiments run on
our experimental computer with CPU: Intel I7-10700F, RAM: 16G and GPU:
GEFORCE RTX 2060 SUPER.

5 Performance Evaluation

5.1 Comparable Methods

As the features extracted from the dataset are one-dimensional, the data struc-
ture requirements of algorithms such as CNN or RNN are not applicable. To
evaluate the effectiveness of our model, we test the performance of the following
models on the same original and expanded datasets: eXtreme Gradient Boost-
ing (XGB), Support Vector Machines (SVM), and Logistic Regression (LR). The
parameters of the models are optimized by the grid search method.

To demonstrate our algorithm on data augmentation performance, we use the
ADASYN and Borderline-SMOTE for comparison. Traditional SMOTE algo-
rithm generates new data from the following:

xnew = x + Rand(0, 1) × (x − xn) (7)

where x denotes a sample in the minor class and xn denotes a randomly
selected nearest neighbor after k nearest neighbors. Rand is the random sampling
function.

Borderline-SMOTE is a modified algorithm of SMOTE, which selects only
the minority samples on the boundary to synthesize new samples, thus improving
the class distribution of the samples. Borderline-SMOTE sampling process is to
divide the minor class samples into 3 categories: Safe, Danger and Noise. Only
the minor class samples with the Danger are sampled by SMOTE. ADASYN
(adaptive synthetic sampling), is similar to Borderline-SMOTE. Which gives
different weights to different minority samples for generating data.

5.2 Evaluate Indicator

We apply Area Under the Receiver Operating Characteristic Curve (AUROC)
score and Area Under the Precision-Recall Curve (AUPRC) score to evaluate
the performance of the model. AUROC and AUPRC are highly diagnostic of the
classification ability of the model under class imbalance. The higher the AUROC
and AUPRC, the more capable the model is.

To ensure the reliability of the experiment, we conduct 5-fold cross-validation
of experiments with fixed random seeds and take the mean and standard devia-
tion for reporting.
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Table 4. Experimental results in different classifiers

AUROC AUPRC

MLP 0.825(0.008) 0.372(0.021)

C MLP 0.854(0.06)* 0.413(0.016)*

BS MLP 0.84(0.007)* 0.314(0.014)*

AD MLP 0.805(0.007)* 0.304(0.007)*

XGB 0.733(0.017) 0.488(0.048)

C XGB 0.746(0.029)* 0.549(0.057)*

BS XGB 0.728(0.009)* 0.535(0.01)*

AD XGB 0.705(0.021)* 0.541(0.027)*

SVM 0.532(0.003) 0.381(0.023)

C SVM 0.534 (0.004) 0.377(0.02)

BS SVM 0.771(0.01)* 0.525(0.012)*

AD SVM 0.772(0.006)* 0.529(0.007)*

LR 0.578(0.004) 0.401(0.013)

C LR 0.582(0.004) 0.407(0.019)

BS LR 0.74(0.079)* 0.505(0.055)*

AD LR 0.741(0.078)* 0.508(0.056)*

Note: * significance level of 10%

5.3 Performance Analysis

The results of the experiment using data within 24 h of admission to the ICU
to predict patient death are shown in Table 4. Where the prefixes C, BS, and
AD represent dataset augmentation by using CWGAN, Borderline-SMOTE
and ADASYN, respectively. In order to ensure the robustness of the results,
Independent-Samples T-test is performed on the augmentation models and
benchmark models results respectively.

As shown in the table, our model achieves the best performance in all indi-
cators in the MLP and XGB. The MLP model achieve a significant AUC score
at 0.854 under the balanced data after adding CWGAN. Meanwhile, comparing
the results of the ADASYN and Borderline-SMOTE algorithm, they are signifi-
cantly improved in SVM and LR models compared with the benchmark model.
But CWGAN augmentation has little impact on the performance of the indica-
tors of the model. These results indicate that these augmentation algorithms are
able to enrich the diversity of samples and thus improve the model performance.

5.4 Interpretable Analysis

For the interpretable analysis of the model, we use Shapley value to calculate
the marginal contribution of the variables to the model. Deepshap provides a
visualization toolkit to get an intuitive view of the impact of features on the
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model. Here, we build two explainers for interpretable analysis, one is the whole
test set and the other is death cases in the test set. Each explainer repeats ten
times for the stability of the results.

We use the first interpreter to calculate the effect of each variable on the MLP
model, which gets the best AUC score, and the result is shown in Fig. 4(a). The
Base value indicates the expected output of test features by the trained model,
and the final output f(x) represents the result impacted by features on the
model, as Eq. (5) indicated.

(a) Feature impact on MLP classifier without augmentation

(b) Feature impact on MLP classifier after the CWGAN data expansion

Fig. 4. Feature impact on MLP output with Shapely value

The final output of the model goes through the marginal contribution of the
features from 0.096 to 0.03 of base value in Fig. 4(a). The degree of marginal
contribution of each variable is indicated by the length of the bar, and red
features imply to push the mortality higher, while vice versa in blue. We can see
that characteristics such as lods and bun increase the risk of death, while oasis
and hemoglobin can decrease the risk in this test set explainer.

Figure 4(b) shows the performance of each feature on the classifier after
the CWGAN data augmentation. The results differ from those without data
augmentation. Firstly in base value and model output, the categories of data
are balanced after data augmentation, so that the expected output value (base
value) and output of the model are increased to 0.264 and 0.28, respectively.
Thus we can get an observation of the effects of the variables on the model.
After the data expansion, one more variable that increases the risk of death is
apsiii. While the main variables that decrease the risk only change their order
compared to the previous results. The results indicate that data augmentation
increases the diversity of the samples, but as the model changes, the order of main
variables also changes. The results can likewise provide more informative clinical
information, such as the effect of apsiii score on the risk of patient mortality is
not negligible.

After performing an analysis of explainable factors at the dataset level, we
further extract the cases that died in the test set for explainable analysis. To
fully observe each feature, we find the impact of each feature in the sample on
the model, as shown in Fig. 5.
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(a) Feature impact on MLP classi-
fier output

(b) Feature impact on MLP classi-
fier output with augmentation

Fig. 5. Feature impact on MLP classifier output Between train and augmentation data

The Fig. 5 shows the effect of each feature on the model output, with red
representing high feature value and blue representing low feature value. Taking
the apsiii score as an example, a higher feature value has a positive effect on
the model output (increasing the risk of death). Similarly, we can conclude that
higher age may increase the risk of death, while part of the samples with a lower
age show that age decreases the risk of death.

When considering the results of the experiments with data augmentation,
as shown in Fig. 5(b), it can be seen that the order of the top three variables
influencing the model changes slightly. CWGAN gives more clear prominence to
some variables, such as apsiii and lods scores. Lower apsiii and lods scores may
reduce the risk of death. However, we cannot get such a distinct analysis of these
two variables in Fig. 5(a). This extra information leads our model to outperform
the benchmark classifier. For the remaining features, the distribution of the
original features is well maintained, such as creatinine, which has no effect on
the model output at lower feature value, while higher feature value has a negative
effect on the model, which is unified with that in Fig. 5(a).

Overall, CWGAN is able to capture the importance of features to the model,
both at the test set level and the death case level. The feature importance of
the model is further riched so that the classification model has more information
and thus obtains better performance.

6 Conclusion

In this paper, we design the Interpretable Conditional Augmentation Classi-
fication (ICAC) method to creatively solve the class imbalance problem and
interpretability in EHRs. The classification task results of the balanced dataset
achieve better performance than the benchmark model on AUROC and AUPRC.
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In addition, we use Shapley value for interpretable analysis of mortality risk fac-
tors for different level sets and explain the classification impact of CWGAN
generated data on the model. Our method can give practical clinical advice and
thus improve patient prognosis.
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Abstract. Trajectory point classification can be described as a supervised
sequence labeling problem, in which a model is trained by labeling data to pre-
dict the category of unknown points and identify key events in the trajectory. Due
to the difficulty of labeling trajectory point, a large amount of trajectory data is
either unlabeled or labeled in an imbalanced way. To make matters worse, tradi-
tional trajectory point classification methods are generally constrained to utilize
the statistical features of the labeled data and the semantic features as well as
the large amount of unlabeled data have not been well studied yet. For this rea-
son, the performance of traditional trajectory point classification methods is far
from satisfactory. To solve this problem, we transfer existing language model
knowledge to construct the semantic features and construct a trajectory point clas-
sification model by combining both the motion features and semantic features.
The simulation results show that, compared with the traditional methods, our
method has improved the accuracy of trajectory point classification by three and
seven percentage points in the classification of circular and turning movements
respectively.

Keywords: Trajectory point classification · Sequence labeling · Motion features
and semantic features · Language model

1 Introduction

In recent years, with the development of intelligent data acquisition equipment, a large
amount of spatiotemporal trajectory data can be obtained. Aircraft trajectory is a struc-
tured time series data, which describes the longitude and altitude of aircrafts sequentially.
The movement category of each data point could be labeled accordingly. And then the
trajectory point classification algorithm uses the labeled data to build a point classi-
fication model to predict the category of unknown trajectory points. Trajectory point
classification is useful for detecting the change of target movement status, such as when
the target enters a turning state or a hovering state.

Trajectory classification can be summarized into three steps [1], trajectory data pre-
processing, feature extraction and point classifier building. Trajectory data preprocessing
mainly includes trajectory resampling, denoising and segmentation. Feature extraction
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aims to extract features that play a key role in classification, including moving features,
shape features, location and time features. Point classification is a process of building a
classifier with features extracted from trajectory points.

Existing trajectory classification methods include decision tree, support vector
machine, Bayes network, conditional random field, k-nearest neighbor, random for-
est, boosted decision tree and so on [2–4]. Paper [2] first extracts the target trajectory
length, moving speed and acceleration features, and then use Machine learning methods
for classification. Paper [5] adopts three new features: direction change rate, stop rate
and speed change rate to improve the classification accuracy. Paper [6] extracts global
and local motion features (velocity and acceleration) from trajectory for classification,
integrating global and local features, support vector machine is used for trajectory clas-
sification. However, these methods only consider a limited number of motion features,
such as velocity and acceleration, and the spatiotemporal characteristics of trajectories
have not been interpreted well.

In natural language processing, a sentence is composed of a sequence of words.
Word2vec [7] algorithm is an algorithm for word sequence vectorization. It makes use
of the context of a word to infer the semantic representation of this word. The aircraft
trajectory is a kind of time series. In that case, each point corresponds to a “word”
in a sentence, and the whole trajectory corresponds to a “sentence”. In reference [8],
the word sequence vectorization algorithm word2vec is applied for trajectory sequence
processing. However, word2vec is just a static word vector algorithm which cannot deal
with the phenomenon of “polysemy”.

The main challenges of trajectory point classification are as follows: The first chal-
lenge is the small labeled sample size due to the time-consuming labeling process.
Meanwhile, a large amount unlabeled data is easy to obtain. So, the key problem is how
to reasonably use a small amount of labeled data and a large amount of unlabeled data.
The second challenge is the category imbalance. This is because some categories of
movement occur rarely. Thirdly, the spatiotemporal trajectory data could not be handled
directly by existing machine learning algorithms.

In this paper, we propose a novel trajectory point classificationmethod by combining
both motion and semantic features. Firstly, the background of trajectory point classifi-
cation and the data annotation process are introduced. Secondly, the target motion char-
acteristics are calculated based on the dynamic sliding window. Then, a mask language
model is constructed to extract the semantic features of target trajectories. Finally, a focal
loss function is introduced to solve the problem of category imbalance. The experimental
results indicate that our classifier beats the traditional methods by 3 and 7 percentage of
f1 score in circling and turning points classification respectively.

2 Problem Description

2.1 Trajectory Representation

Trajectory data is the real-time longitude, latitude, altitude and other information of the
aircraft captured by radar, the trajectory data obtained by radar consists of a series of
discrete trajectory points, and the degree of discretization depends on the scanning period
of the radar. If all points of a given trajectory are connected into lines in chronological
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order, a line is formed. This process is called trajectory diagram, as shown in Fig. 1.
Trajectory F can be represented as a set composed of multiple tracks F = {T1, T2…Tn},
where Ti indicates the i-th trajectory, Ti can be represented as Ti = {Pi1,Pi2...Pij...Pim},
where Pij indicates the j-th trajectory point in the i-th trajectory. Each trajectory point
Pij = (x,y,h,t) is defined as a 4-dimensional vector, indicates the latitude, longitude,
altitude at a given time.

Fig. 1. Turning events trajectory drawing

2.2 Trajectory Annotation

Given a trajectory sequence, the trajectory point classification algorithm hopes to tag
each point with the corresponding category label sequence Li = {l(1), l(2)...l(j)...l(m)},
where l(j) ∈ {turn, circle,O} represents the label of j point in the trajectory. The event
types concerned in this paper include turning, circling and others.

3 Motion Feature Extraction

3.1 Feature Extraction of Trajectory Point Motion

The local motion features mainly include speed (vi), acceleration (ai), curvature (si),
direction (θi) and rotation angle (diffi), and the calculation is shown in formulas (1)-
(7). The curvature represents the ratio of the moving distance between two points to the
straight-line distance between the two points, which can describe the degree of curvature
of the path. The definition of the direction and the angle of rotation is shown in Fig. 2.
The direction represents the direction of movement between two consecutive points, and
the angle of rotation represents the difference between two consecutive angles.

ai = vi+1 − vi
ti+1 − ti

. (1)

vi = distance(Pi+1,Pi)

ti+1 − ti
. (2)
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si = distance(Pi,Pi−1) + distance(Pi+1,Pi)

distance(Pi−1,Pi+1)
. (3)

distance(Pi,Pj) =
√

(Pi − Pj)2. (4)

diffi = θi+1 − θi. (5)

θi+1 = arctan(yi+2 − yi+1, xi+2 − xi+1). (6)

θi = arctan(yi+1 − yi, xi+1 − xi). (7)

Fig. 2. Definition of direction and turn angle

3.2 Aggregate Feature Extraction Based on Sliding Window

In this paper, the sliding window is used as a unit to count the motion characteristics in
a single window. A sliding window w of size n is constructed with the current point as
the center, and local features are calculated in units of windows.

Let’smark trajectory points in thewindow are [P0,Pn−1], and calculate the curvature
and turning angle of the window respectively. The curvature of the window is calculated
as shown in formula (8), which is the ratio of the sum of the moving distance in the entire
window to the straight-line distance between the start and end positions of the window,
where n represents the window size, and the distance between the two points of the
trajectory pull the distance. The direction of the window is defined as shown in formula
(9), which is the direction angle of the line connecting the start point and the end point
of the window. The corner of the window is defined as shown in formula (10), which is
the difference between the direction angle of the window and the direction angle of the
entire trajectory.

swindow =

n−1∑
i=1

distance(Pi,Pi−1)

distance(Pn−1,P0)
. (8)

θwindow = arctan(yn−1 − y0, xn−1 − x0). (9)

θtrack = arctan(yT−1 − y0, xT−1 − x0). (10)
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4 Semantic Feature Extraction Based on Transfer Learning

In natural language processing, a sentence is composed of words, which can be regarded
as a time series composed of words. The success of the pre training language model
represented by Bert [9] has created a new paradigm for NLP research, which contain
two steps: First, a large number of unsupervised corpora are used for language model pre
training; Second, a small number of labeled corpus are used for fine-tuning for specific
tasks. In the pre training stage, some words in the sentence will be masked according
to the probability to form noisy input, and the training model will predict the masked
words. In this way, the model can learn the context representation of words, so as to
obtain the context semantic representation vector of words.

Literature [10] attempts to transfer the pre-training model learned by Bert in the
source domain to the target domain. Because the trajectory data and natural language
sentence are all time series data, this paper draws lessons from the ideas of the above
literature, try to transfer the language model knowledge in natural language to trajectory
point classification. The existing languagemodel is directly used to encode the trajectory
sequence, then in trajectory sequence train mask language model. It includes three steps:
longitude and latitude discretization, word frequency alignment between trajectory data
and pre training model, and the process of training mask language model on trajectory
data.

4.1 Longitude and Latitude Discretization

Because the trajectory sequence exists in the form of longitude and latitude with time
stamp, in order to train the word vector algorithm, it needs to be discretized first. In
this paper, geohash algorithm [11] is used to discretize the trajectory points, geohash is
an address coding method, which can encode two-dimensional longitude and latitude
coordinates into one-dimensional string. The coding process is regarded as the process
of spatial region division. Take longitude as an example, the longitude is divided into
two sections [−180, 0] and [0,180]. If the longitude to be coded falls in the left section,
it is coded as 0, otherwise it is 1.

4.2 Word Frequency Alignment

The trajectory sequence encoded by geohash is converted into a discrete string sequence,
formed the vocabof trajectory sequences. In order to load the pre-trained languagemodel,
it is necessary to align the vocabulary of trajectory sequence with the vocabulary of
existing language model. First, according to the longitude and latitude coordinates in the
geohash coding trajectory, get the dictionary set of trajectory sequence. Then count the
frequency of each code, and sorted in descending order of word frequency. Similarly, the
word inBert vocab are also arranged in descending order ofword frequency. This ensures
that words with the same ranking have the same initialization vector. For example, the
longitude and latitude coordinates encoded as “9y6c” have the same word frequency
ranking as “week” in Bert vocabulary, so they have the same initialization vector.
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4.3 Feature Extraction Network

In this paper, transformer [12, 13] is used as the feature extractor. As shown in Fig. 3,
the network is composed of multiple blocks with the same architecture, each block
is independent, and learn their own information. Each block consists of a multi head
self-attention layer and a feedforward network layer, normalization layer and residual
connection are inserted between the two layers. The input of each block is the output
vector of the previous block, and the operation of each block does not change the input
dimension.

Fig. 3. Architecture of transformer

4.4 Mask Language Model Based on Trajectory Sequence

Fig. 4. Masked language model by using trajectory

Mask languagemodel is an auto encoding languagemodel,which can recover the original
input from noisy data. Firstly, noise is introduced into the original data by masking, then
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train a model to predict the masked words. Through this process, we learn the contextual
representation for the masked words. As is showed in Fig. 4, firstly adding noise to the
original input, then get the hidden vector by transformer encoder, after a fully connected
layer, the probability distribution over the vocabulary is obtained.

After aligning the trajectory sequence vocabulary in Sect. 3.2 with the existing lan-
guage model vocabulary, the existing language model weight can be applied to initialize
the trajectory sequence, then mask language model is used to pre-train the trajectory
sequence.

5 Construction of Aircraft Trajectory Point Classification

Because the number of turn event type in the labeled data is less, it is a typical label
imbalance problem. This paper introduces focal loss [14] to solve this problem, focal
loss mainly solves the problem by setting different weights for different samples. For the
samples that are easy to distinguish, we want to reduce their weight, and for the samples
that are difficult to distinguish, we want to increase their weight. Extend focal loss to
the case of multi classification, note that the model output is shown in Eq. (11), and the
prediction probability is obtained by softmax normalization according to Eq. (12); if
the real category is y, the sample is based on multi classification focal loss, as shown in
Eq. (13).

Z : (Z1,Z2...Zy...ZC). (11)

p =
exp(Zy)∑C
j = 1 exp(Zj)

. (12)

FL(Z, y) = −(1 − p)γlogp. (13)

6 Results and Analysis

In this paper, the simulation platform LabVIEW [15, 16] is used to simulate the fighter,
its maneuvering process includes straight-line flight, ascent, turning and circling, this
paper limits the fluctuation range of longitude and latitude coordinateswithin 50 degrees.
Under the above restrictions, 50000 pieces of trajectory data are generated.Wemanually
mark 1400 trajectories, annotate the turning and circling points.

After analyzing the annotation data, we found each trajectory has an average of 63
points. For the distribution of event categories, turning events account for 2%, circling
events account for 26% and other events account for 72%, is a typical category imbalance
(Table 1).

In this experiment, we only measure the effect of combination features, and do not
consider the difference of classifiers. Therefore, we choose the Xgboost [17] as base
classifier, and we also fixes its parameters: setting the maximum depth of the tree to 18,
the number of iterations to 20. The classifier needs to perform three label classifications
for each trajectory point, that is circle, turning and other. We use F1 to measure the
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difference of models. For semantic features, we use Bert as the basic model to train
the mask language model, the learning rate is setting to 4e−4, each word has a 15%
probability of being replaced, of which 80% remains unchanged, 10% is replaced with
[mask], and 10% is randomly replaced with a word in the dictionary. Table 2 shows
the f1 score of classifier using only motion features, and Table 3 shows the effect of
combination of motion and semantic features. It can be seen that compared with motion
features, the combined features in this paper has an improvement of 3 and 7 percentage
points of f1 score in the classification of turning and circling.

Table 1. Distribution of event type.

Others Circle Turning

Count 62811 22712 1460

Ratio 0.72 0.26 0.02

Table 2. Result of classifier (motion features only).

Precision Recall F1 Support

Circle 0.81 0.87 0.84 4449

Turning 0.26 0.71 0.38 293

Others 0.96 0.89 0.92 11103

Table 3. Result of classifier (motion and semantic features)

Precision Recall F1 Support

Circle 0.85 0.90 0.87(+3) 4449

Turning 0.33 0.73 0.45(+7) 293

Others 0.98 0.94 0.96 11103

7 Conclusion

Aiming at the problem of aircraft trajectory point classification, a trajectory point clas-
sification method integrating motion features and semantic features is proposed in this
paper. Based on the sliding window, we extract moving features, including velocity,
acceleration, curvature, direction and rotation angle. We train mask language model on
a large number of unlabeled data, and get context semantic features. We then combine
moving features and semantic features to train a point classifier. For the problem of
category imbalance, we introduce focal loss, reduce the weight of easily distinguishable



Combining Statistical and Semantic Features 431

samples. The experimental results show that compared with existing motion features
only, the method proposed in this paper has an improvement of 3 and 7 percentage
points of f1 score in the classification of turning and circling events, respectively.
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