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Abstract. Locating enemy targets via their electromagnetic radiation
signal is vital to block and attack the enemy targets at an earlier stage.
Traditional electromagnetic radiation source localization methods in lit-
erature are essentially geometric methods. Although they are simple and
intuitive, they might fail to locate the source due to measurement noise.
This paper proposes a novel electromagnetic radiation source localiza-
tion method based on dynamic data driven simulations. In the proposed
approach, we first model the spatial propagation process of the electro-
magnetic radiation signal emitted from the target, and then we assume
a proper model for the noisy measurements. Based on the signal propa-
gation model and the measurement model, the particle filter is employed
to estimate the target position, and in the process addresses measure-
ment and modeling errors. Identical-twin experiment is conducted to test
and validate the proposed approach. The simulation results show that
the proposed method can accurately locate the electromagnetic radiation
source, and is robust to errors both in the model and in the data.

Keywords: Electromagnetic radiation source localization · Signal
propagation modeling · Dynamic data driven simulation · Particle
filters

1 Introduction

At the end of the 19th century, the discovery of wireless electromagnetic waves
not only provided a new information carrier for communication, but also could be
used to locate and trace the source of electromagnetic radiation. In the military
field, especially the ocean security, the main threats are to prevent the invasion
of enemy fleets, prevent drone reconnaissance, and prevent submarines from
sneaking in, etc. If we could locate the targets by detecting their electromagnetic
radiation signals, we would be able to block and attack the enemy targets at an
earlier stage.

In literature, the commonly used electromagnetic radiation source localiza-
tion methods can be classified into four categories, namely the Received Signal
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Strength (RSS) method, the Time of Arrival (TOA) method, the Time Difference
of Arrival (TDOA) method, and the Angle of Arrival (AOA) method [1]. The
RSS method is designed based on the fact that the power of the wireless signal
will decay according to a certain law as the signal propagates spatially [2]. The
RSS method first records the signal power received at each measurement point,
and then calculates the distances between the measurement points to the target
based on a semi-empirical model, and finally exploits the triangulation theory
to estimate the location of the target. The TOA method is proposed based on
the principle that the product of the speed and time is equal to the travel dis-
tance [3]. The target sends electromagnetic wave signal, and each measurement
point receives and records the arrival time of the signal; based on the transmis-
sion media, the travel speed can be determined, and then the travel distance
can be calculated accordingly. Finally, the triangulation theory is again used to
locate the target. When using the TOA method, it is necessary to ensure that
the clocks among all measurement points are strictly synchronized, otherwise
the localization error would be large. Due to this limitation, [4] proposes the
TDOA method, which locates the target according to the difference among time
instants when signal arrives at each measurement points, thereby reducing the
time synchronization requirements. The AOA method uses a receiver to measure
the angle of the signal emitted from the target to each measurement point, and
uses geometric relations to estimate the coordinates of the target. The advantage
of the AOA method is that it does not require time synchronization, but it is
susceptible to be affected by wave reflection.

The electromagnetic radiation source localization methods in literature are
essentially geometric methods, and their advantages are that they are simple
and intuitive, but in practical applications, measurement noise inevitably exist,
which will result in failures when using these methods, since the intersection
point (i.e. the estimated target position) may not exist or multiple intersection
points exist. Therefore, this paper proposes a novel electromagnetic radiation
source localization method based on dynamic data driven simulations (DDDS).
Dynamic data driven simulations are a new simulation paradigm, where the
simulation is continually influenced by the real time data for better analysis and
prediction of a system under study [5,6]. In a dynamic data driven simulation,
the noisy observations from the system under study are continually injected
into the simulation which mimics the dynamic state evolution of the system. At
the meantime, the data assimilation technique [7] is exploited to combine noisy
observations and (simulation) model predictions to estimate the system state.
In the proposed approach, we first model the spatial propagation process of the
electromagnetic radiation signal emitted from the target, and then we assume a
proper model for the noisy measurements. Based on the signal propagation model
and the measurement model, the particle filter [8,9] is employed to estimate the
target position. Identical-twin experiment is conducted to test and validate the
proposed approach. The simulation results show that the proposed method can
accurately locate the electromagnetic radiation source.

The rest of the paper is organized as follows. We first overview the dynamic
data driven simulations in Sect. 2. Section 3 then models the spatial propagation
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process of the electromagnetic radiation signal emitted from the target, after which
Sect. 4 presents the electromagnetic radiation source localization method based
on dynamic data driven simulations in detail. The simulation study to test the
proposed approach is presented in Sect. 5, and finally, the paper is concluded in
Sect. 6.

2 Dynamic Data Driven Simulation

Modeling&Simulation are amethod of choice for studying andpredicting dynamic
behavior of complex systems. However, models inevitably contain errors, which
arise from many sources in the modeling process, such as inadequate sampling of
the real system when constructing the behavior database for the source system
[10], or conceptual abstraction in the modeling process [11]. Due to these inevitable
errors, even elaborate complex models of systems cannot model the reality per-
fectly, and consequently, results produced by these imperfect simulation models
will diverge from or fail to predict the real behavior of those systems [12,13]. With
the advancement of measurement infrastructures, such as sensors, data storage
technologies, and remote data access, the availability of data, whether real-time
on-line or archival, has greatly increased [12,13]. This allows for a new paradigm
– dynamic data driven simulations, in which the simulation is continuously influ-
enced by fresh data sampled from the real system [5].

Fig. 1. A general dynamic data driven simulation [6]

Figure 1 shows a general dynamic data driven simulation, which consists of
1) a simulation model, describing the dynamic behavior of the real system; 2)
a data acquisition component, which essentially consists of sensors that collect
data from the real system; and 3) a data assimilation component, which car-
ries out state estimations based on information from both measurements and
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the simulation [7,14]. Since the state evolution of a simulation system usually
contains nonlinear and/or non-Gaussian behavior, the particle filter is always
adopted to conduct data assimilation in dynamic data driven simulations. The
particle filters approximate a probability density function by a set of particles
and their associated importance weights, and therefore they put no assumption
on the properties of the system model. As a result, they can effectively deal with
nonlinear and/or non-Gaussian applications [15].

By assimilating actual data, the simulation can dynamically update its cur-
rent state to be closer to the real system state, which facilitates real-time applica-
tions of simulation models, such as real-time control and analysis, real-time deci-
sion making, and understanding the current state of the real system. Besides, if
the model state is extended to include model parameters, on-line model parame-
ter calibration can be achieved together with the state estimation [16]. With more
accurate model state and model parameters adjusted by assimilating real-time
data, we can experiment (off-line) on the simulation model with the adjusted
state and parameters, which will lead to more accurate results for follow-on
simulations [6].

3 Spatial Propagation Model of Electromagnetic
Radiation Signal

After the electromagnetic radiation signal is emitted from the target, it will be
received by receivers after attenuating, delay and adding noise. The received
signal can be described as:

ri(t) = μis(t − τi)ej2πfit + ni(t) (1)

where s(t) represents the signal emitted by the target at time t, and τi is the path
propagation delay from the source to the i-th receiver; μi is the propagation path
gain coefficient from the target to the i-th receiver; fi is the drift value of the
frequency caused by the Doppler effect; ni is a complex noise; ri(t) is a complex
number that represents the signal received by the receiver at time t.

3.1 Electromagnetic Radiation Signal s(t)

The electromagnetic radiation signal emitted by the target can be expressed as:

s(t) = |s|ej2πft (2)

where f is the frequency of the signal in hertz (Hz), |s| is the amplitude of the
signal, and the unit is watts (W).

3.2 Propagation Path Gain Coefficient µi

The propagation path gain coefficient |μi| represents the power gain rate of the
signal from the sender (i.e. the target) to the receiver. After the signal arrives
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at the receiver, it is filtered, and amplified by a low-noise amplifier (LNA), and
finally sampled. So |μi| is related to the length of the propagation path and the
magnification of the LNA. Due to the phase inconsistency between the sender
and the receiver, there will exist an amplitude angle for μi. Therefore, we model
the propagation path gain coefficient |μi| as:

μi = |μi|ej2π(f−fi
r) =

kie
j2π(f−fi

r)

|P i(t) − G| (3)

where f i
r is the center frequency of the i-th receiver, and 2π(f − f i

r) represents
the phase difference between the sender and the receiver. P i(t) is the position
of the i-th receiver, while G = [gx, gy, gz]T is the position of the target. ki is the
LNA magnification in decibels (dB).

3.3 The Frequency Drift fi

The moving receiver will cause the Doppler effect, which will incur the frequency
drift. The frequency drift value of the i-th receiver can be expressed by:

fi =
vi cos(θi)

λ
=

vif cos(θi)
c

(4)

where

cos(θi) =
(G − P i(t)) · (P i(t − Δt) − P i(t))
|G − P i(t)| × |P i(t − Δt) − P i(t)|

G − P i(t) = [gx − (xi
0 + vi

x × t), gy − (yi
0 + vi

y × t), gz − (zi
0 + vi

z × t)]T

P i(t − Δt) − P i(t) = [−vi
x × Δt,−vi

y × Δt,−vi
z × Δt]T

where [xi
0, y

i
0, z

i
0]

T is the initial position of the i-th receiver, and vi = [vi
x, vi

y, vi
z]

T

is its velocity, and Δt is the sampling period of the signal.

3.4 The Received Signal at the i-th Receiver

Bring the electromagnetic radiation signal s(t) (Eq. (2)), the propagation path
gain coefficient μi (Eq. (3)), and the frequency drift fi (Eq. (4)) into Eq. (1), we
can get the signal received by the i-th receiver at time t:

ri(t) = μis(t − τi)ej2πfit + ni(t)

=
ki|s|

|P i(t) − G|e
j(2π(f−fi

r)+2πf(t− |P i(t)−G |
c )+2π

vif cos(θi)
c ) + ni(t)

(5)

where τi =
|P i(t) − G|

c
is the signal transmission delay, and c is the speed of

light.
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4 The Electromagnetic Radiation Source Localization
Approach

In this section, the proposed electromagnetic radiation source localization app-
roach is presented. Since the proposed approach is based on the DDDS frame-
work, we first formalize the system model which describes the moving of the
target in Sect. 4.1, after which we assume the measurement model in Sect. 4.2
based on the spatial propagation model of electromagnetic radiation signal emit-
ted by the target which is derived in Sect. 3. Finally, particle filters are employed
to locate the target, which is described in Sect. 4.3.

4.1 System Model

The position of the target is G = [gx, gy, gz]T , so we define the system state as
sk = [gx, gy, gz]T . In this paper, we assume that the target keeps still, therefore
we can define the state evolution of the target as a slow-change process:

sk = sk−1 + νk−1, k = 1, 2, . . . (6)

where the noise vector νk−1 is a Gaussian white noise with an average of 0 and
variances of σ2

gx
, σ2

gy
, σ2

gz
, respectively.

4.2 Measurement Model

Suppose we have n receivers, and the measurement at the k-th step can be
defined as mk = [r1(k × Δt), · · · , rn(k × Δt)]T , where Δt is the signal sampling
period of the receiver. According to the signal propagation model derived in
Sect. 3, the measurement model can be defined as:

mk = g(sk) + εk

=

⎡
⎢⎢⎣

k1|s|
|P 1(k×Δt)−G|e

j(2π(f−f1
r )+2πf(k×Δt− |P 1(k×Δt)−G |

c )+2π
v1f cos(θ1)

c )

...
kn|s|

|P n(k×Δt)−G|e
j(2π(f−fn

r )+2πf(k×Δt− |P n(k×Δt)−G |
c )+2π

vnf cos(θn)
c )

⎤
⎥⎥⎦ + εk

(7)
where cos(θi), |P i(k × Δt) − G|, i = 1, . . . , n are defined in Sect. 3.3. εk is the
measurement noise, and we assume that both the real and imaginary parts of εk

are Gaussian white noise with mean 0 and variance σ2
m.

4.3 Locating the Target Using Particle Filters

Based on the system model and the measurement model, we locate the target
based on particle filters (see Algorithm 1). The input of the algorithm is the
data sequence collected by n receivers, i.e. data = {[d1k, · · · , dn

k ]T }N
k=1, where

N is the number of time steps; particle filters estimate the target position as



354 X. Xie and Y. Ma

{{[gi
x,k, gi

y,k, gi
z,k]T }Np

i=1}N
k=1, where Np is the number of particles. Note that at step

k, the output of the particle filter is a group of particles {[gi
x,k, gi

y,k, gi
z,k]T }Np

i=1,
approximating the probability distribution of the target position. Therefore, given
the particles at each step k, the position of the target and the corresponding vari-
ance can be estimated:

[ĝx,k, ĝy,k, ĝz,k]T = [
1

Np

Np∑
i=1

gi
x,k,

1
Np

Np∑
i=1

gi
y,k,

1
Np

Np∑
i=1

gi
z,k]T

σ2
x,k =

1
Np − 1

Np∑
i=1

(gi
x,k − ĝx,k)2

σ2
y,k =

1
Np − 1

Np∑
i=1

(gi
y,k − ĝy,k)2

σ2
z,k =

1
Np − 1

Np∑
i=1

(gi
z,k − ĝz,k)2

4.4 Weight Computation

Given the particle state si
k, we can calculate mi

k = [ri
1(kΔt), · · · , ri

n(kΔt)]T

according to the measurement model. Then the particle weight can be computed
as:

wi
k = wi

k−1 × p([d1k, · · · , dn
k ]T |mi

k) = wi
k−1 ×

n∏
j=1

1√
2πσm

e
− |ri

j(kΔt)−d
j
k
|2

2σ2
m (8)

Note that ri
j(kΔt) and dj

k are complex numbers, and |ri
j(kΔt) − dj

k| represents
the modulo of the difference between two complex numbers.

5 Experimental Results and Analysis

5.1 Experiment Scenario and Parameter Setting

We use the identical-twin experiment [17] to test and validate the proposed
approach. In the identical-twin experiment, a simulation is first run, and the
corresponding data are recorded. This simulation is regarded as the ‘real’ system.
Then we add noise to these data, and use these noisy data to estimate the
position of the target based on the proposed approach. Finally we compare the
estimated results with the ground truth data to quantify the accuracy of the
estimation.

In the first simulation which is used to generate the ground truth data,
the parameters of the target are set based on Table 1. Four drones are used as
receivers to collect data (i.e. the amplitude and phase of the signal), and the
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Algorithm 1: The particle filter for electromagnetic radiation source local-
ization
Input: data = {[d1k, · · · , dnk ]T }N

k=1

Output: estimated location of the target: {{[gix,k, giy,k, giz,k]T }Np

i=1}N
k=1

1 % the initialization step
2 for i = 1 : Np do
3 generate the i-th particle si0 = [gix,0, g

i
y,0, g

i
z,0]

T

4 set weight wi
0 = 1/Np

5 end
6 for k = 1 : N do
7 % the sampling step for any time k ≥ 1
8 for i = 1 : Np do
9 according to the state at time step k − 1, i.e. sik−1, generate a new

particle at time step k, i.e. sik, using equation (6)
10 calculate mi

k based on sik using equation (7), and update the weight of
the particle (see more details in section 4.4):

wi
k = wi

k−1 × p([d1k, · · · , dnk ]T |mi
k)

11 end

12 normalizes the particle weights and denote them as {sik, wi
k}Np

i=1

13 % The resampling step

14 resample {sik, wi
k}Np

i=1 using the standard resampling method which samples
particles in proportion to their weights; the resampled results are again
denoted as {sik, wi

k}Np

i=1

15 Set the weight of each particle as 1/Np

16 % record data for estimation

17 record each particle’s estimate of the target position: {[gix,k, giy,k, giz,k]T }Np

i=1

18 end

relevant parameters are set based on Table 2. The drones collect the data every
second (i.e. Δt = 1 s) for a total of 100 s (i.e. N = 100). For data noise, we set
σm to 5% of the signal amplitude. For model errors, we set σgx

, σgy
and σgz

to
5% of the corresponding coordinates of the target position.

5.2 The Performance Indicators

In order to quantify the accuracy of the proposed localization method, we define
the following performance indicators (since the z-coordinate of the target is 0,
the localization error of the z-coordinate is not considered):

RMSEx =

√∑N
k=1(ĝx,k − gx)2

N

RMSEy =

√∑N
k=1(ĝy,k − gy)2

N

(9)
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Table 1. The parameter settings of the target

Parameter Value

Position of the target (−9960.3, 123686, 0)

Signal amplitude |s| 200W

The frequency of the signal f 100MHz

Table 2. The parameter settings of the drones (i.e. the receivers used in the experi-
ment)

Parameter Value

Initial position of drone#1 (−120341, 110974, 12000)

Velocity of drone#1 (69, 72.4, 0)

Initial position of drone#2 (68625, 131345, 12000)

Velocity of drone#2 (58.5, 81.1, 0)

Initial position of drone#3 (−50000, 130000, 12000)

Velocity of drone#3 (60.0, 40.0, 0)

Initial position of drone#4 (50000, 111000, 12000)

Velocity of drone#4 (50.0, 35.0, 0)

LNA magnification 160 dB

Center frequency of the receiver fr 315.425MHz

where gx and gy are the true horizontal and vertical coordinates of the target,
while ĝx,kand ĝy,k are the corresponding estimates given by the particle filtering
algorithm.

5.3 The Experiment Results

In this experiment, we use Np = 1000 particles. In the initialization step, we
randomly generate particles, and each particle represents a guess of the position
of the target. The particle initialization result is shown in Fig. 2. It can be seen
that the particles are evenly distributed within the state space in which the
target may exist.

As more data are assimilated, it is expected that the particles will converge
to the true position of the target. We show the data assimilation results at t = 6
in Figs. 3a and 3b. We can see that in the sampling step (Fig. 3a), the particles
that are close to the target are assigned larger weights (see the different colors);
After resampling (Fig. 3b), the particles with larger weights are kept for the data
assimilation at the next time step, and consequently the probability distribution
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Fig. 2. The particle initialization result (the true target position is represented by a
black cross)

of the estimated target position will gradually converge to the true distribution
of the target (see that the area of the particle dispersion gradually shrinks).

Fig. 3. The data assimilation results at t = 6 (the true target position is represented
by a red cross) (Color figure online)

The estimated position of the target at different time steps is shown in
Figs. 4a and 4b. Based on the estimated positions at different steps, we also
calculate the performance indicators defined in Eq. (9), and the values are:

RMSEx = 987.7626 m

RMSEy = 6476 m

and the relative errors are RMSEx/gx × 100% = 9.92%, RMSEy/gy × 100% =
5.24%. These results show that the proposed approach can accurately locate the
target.
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Fig. 4. The estimated position of the target

6 Conclusions and Future Work

Locating enemy targets via their electromagnetic radiation signal is vital to block
and attack the enemy targets at an earlier stage. In this paper, we propose a novel
electromagnetic radiation source localization method based on dynamic data
driven simulations (DDDS). Firstly, we model the spatial propagation process
of the electromagnetic radiation signal emitted from the target, and then we
assume a proper model for the noisy measurements. Based on these two models,
we design a particle filter based localization method to locate the target. We
adopt the identical-twin experiment to test and validate the proposed approach,
and the experiment results show that the relative localization errors are within
10% of the true target positions, which prove that the propose approach can
accurately locate the target using noisy electromagnetic radiation signals, and
is also robust to errors both in the model and in the data.

Future work is planned in the following directions. First, we need to test
the effectiveness of the approach when the target is moving, since this experi-
ment assumes that the target keeps still. Second, more realistic electromagnetic
radiation process models will be researched.
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