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Abstract In this study, Saint-Venant equations (SVEs) are solved numerically using 
MacCormack finite-difference scheme. Derivation of 2D Saint-Venant continuity 
and momentum equations is presented using the finite difference method. For the 
discretization of SVEs, MacCormack Predictor-Corrector Scheme is utilized. In 
both space and time, it is 2nd-order accurate. The Saint-Venant equations for 2D 
flow is solved for the computation of hydraulic jump in a straight channel with 
the addition of artificial viscosity term to MacCormack Predictor-Corrector Scheme 
for reducing numerical oscillations. Results show that this scheme easily captures 
hydraulic jump near upstream (within 3 m of channel span) without numerical oscil-
lation. The results of the numerical experiment show that the MacCormack Predictor-
Correction Scheme is working well with the 2D numerical experiment of hydraulic 
jump in a straight channel. 

Keywords Numerical modelling · FDM · MacCormack predictor-correction 
scheme · Artificial viscosity 

1 Introduction 

Flood is a natural disaster, which causes the loss of livestock, human beings, destruc-
tion to the infrastructure, and the agricultural lands [1]. The main causes of flood 
occurrences are increasing urbanization without proper design or planning which turn 
to be more runoff rate, weather parameters like prolonged rainfall, which increase
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surface runoff and reduce adequate river capacity due to urbanization. It is very neces-
sary to know the nature of floods in rivers or channels for saving human lives and 
infrastructure using early disaster management. For that in the early day’s methods 
used for this is only predict the daily discharge at one fixed cross-section of the 
channel which is inappropriate for early disaster management [2]. To overcome the 
above-stated problem, nowadays, mainly physical and numerical based models are 
used very effectively to solve these types of problems. Toombes and Chanson [3] 
stated that it is economical to use a numerical based model instead of a physical-
based model if the current problem can be solved effectively by numerical based 
model and added that it is very complex and difficult to solve the real-life problem 
without use of the numerical method. 

To govern different flow conditions like surface flow, subsurface flow, and coupled 
flows, mathematical models are very useful. For such a flow condition, various studies 
were done on flood modeling. de Saint-Venant [4] was proposed dynamic flood 
wave propagation equations for the 1D applications and which are known as SVEs 
and they are widely used to calculate velocity, depth, and the flow rate over the 
surface. For 2D surface flow conditions, SVEs are obtained from the Navier-Stokes 
Equations (NSEs), and this equation is known as Shallow Water Equations (SWEs) 
[5]. SWEs are derived from the principles of mass and momentum conservation. 
These equations are frequently employed in the case of unsteady free surface flow 
(hydrodynamic flow). These equations belong to the family of first-order hyperbolic 
partial differential equations, and cannot be solved using analytical methods. As a 
result, various numerical approaches must be used for these sorts of equations. SWEs 
are solved using several numerical methods. Finite difference method (FDM), finite 
volume method (FVM), and finite element method (FEM) [6–8] are well known 
for the solution of shallow water hydrodynamic equation. From these three methods, 
FDM is the oldest one. It is used extensively because it is relatively easy to implement, 
efficiently computing linear algebra, and easy to program. John and Anderson [9] 
stated that the use of FDM for SWEs is led to dissipation and dispersion errors 
because of its truncated terms and it required proper treatment for that. To reduce 
dissipation and dispersion errors, [10] suggested an excellent numerical scheme for 
solutions of SWEs, which is a Finite Difference Explicit MacCormack Predictor-
Corrector Scheme. Due to its shock capturing nature, it is widely used for smoothly 
capture high discontinuity like bore wave, hydraulic jump, etc., in river flow. 

The advantage of this technique is that it leaves a smooth area for a large gradient 
relatively undisturbed. In this technique, the extra term adds after the traditional 
MacCormack method for finding depth, velocity, and runoff rate at new time steps. 
In this technique, to control the dissipation, a regulating coefficient is used which 
is computed using the hit and trial approach. The extreme value of this regulating-
coefficient shows extreme diffusion of results, which lead to spurious oscillations in 
solution. Overcome this problem, an additional term as “corrector step” added after 
the old (traditional) MacCormack Predictor-Corrector Scheme, which easily controls 
the spurious oscillations [12]. After used this model for a different test case, they 
concluded that this model obtained very smooth results as compare to the traditional 
one.
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Objective of study is to perform numerical experiment for hydraulic jump in 
straight channel using MacCormack Predictor-Corrector Scheme with Artificial 
Viscosity term. 

2 Materials and Methods 

2.1 Governing Equations 

The 2D SVEs are used to monitor surface flow. The conservations of mass and 
momentum approach was used to obtain these equations [11]. The following are the 
governing equations for surface flow: 
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The continuity equation is Eq. (1), and the momentum equations for the x and y 
directions are Eqs. (2–3). Now writing 2D SWEs in matrix form as shown by [11]. 
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There are no closed-form solutions to the governing Eq. (4) since it is a set of 
1st-order nonlinear hyperbolic PDEs. So, these equations are numerically solved. 

2.2 MacCromack Discretization Technique 

MacCormack’s discretization approach is a variant of the Lax-Wendroff Method, 
although it is considerably easier to apply [9]. Both approaches are explicit FDM 
with second-order spatial and temporal accuracy. The discretization procedure of the 
Lax-Wendroff approach is simple, but the algebra computation is time-consuming, 
with the second time derivatives accounting for the majority of the long algebra [9]. 
Fortunately, all of this algebra is shortcut; this is achieved by MacCormack process. 
MacCormack [10] applying this method first. It is the simplest to comprehend and 
program. Furthermore, for many fluid flow applications, the results obtained by using 
MacCormack approach are perfectly appropriate. The method of MacCormack is 
illustrated here for these reasons and will be used for the applications. The use of this 
technique is a two-step hyperbolic equation method: a predictor step that is followed 
by a corrector step [9]. 

2.2.1 Discretization of 2-D Saint-Venant Equations 

For 2D surface flow, the governing equations are [11]: 
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Predictor Step: 
The spatial derivatives on the right-hand side are replaced by forward differences 

in Eqs. (6), (7), and (8). Which is show in Eqs. (9), (10) and (11), respectively [9].
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In Eqs. (12), (13) and (14), for initial value problem, variables at time t, i.e., the 
right-hand side are known value. So, the predicted value of
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, (u)t+Δt and (v)t+Δt are only predicted value of height and velocity in x 
and y-direction. It is only first order accurate since Eqs. (12), (13) and (14) contains 
only the 1st-order term in Taylor Series. 

Corrector Step: 
In this step, first obtain a predicted value of the time derivative at time +Δt ,(
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predictor step as known values in the RHS. In Eqs. (12), (13) and (14), the spatial 
derivatives are replaced with rearward differences. Equations (15), (16) and (17), 
respectively, represent corrector step [9].
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Final Step: 
The arithmetic mean is used to calculate the average value of the time derivative 

of height and velocity in the x and y directions, as illustrated in Eqs. (18), (19) and 
(20), respectively [9].
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The final, “corrected” value of height and velocity in x and y-direction at time 
t + Δt are shown in Eqs. (21), (22), and (23), respectively [9]. 
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2.3 Artificial Viscosity 

Normally, for Courant number less than one, 2nd-order FDM generate numerical 
oscillations. This is due to truncation error and diffusive properties of scheme. So, it 
is necessary to remove such numerical oscillation for smooth flow. Such condition 
addition of Artificial Viscosity term required to overcome such problem. This term 
was used successfully in different application with MacCormack’s technique by
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many researchers. The governing flow equations for 2D unsteady flow are as below: 
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In this governing equation, a small amount of artificial viscosity is added in each 
time step of solution vector U [9]: 
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In Eq. (25), Cx and Cy are two freely defined parameters with typical values 
ranging from 0.01 to 0.3. In the Eq. (25), U indicates the various elements of the 
solutions vector, each taken in independently. S is assessed in the predictor step using 
the known quantities at the moment, while in the corrector step, the values on the 
right-hand side of Eq. (25) are the anticipated values, with St i, j and it is represent by 
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The artificial viscosity term calculated from Eqs. (25) and (26) are added as extra 
term in predictor step (for predictor value of h, u, and) of MacCormack technique at 
time step t + Δt [9]. 
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At time t + Δt , as an extra term of artificial viscosity calculated from Eq. (26) is  
added in to the corrected values of h, u and v in corrector step [9].
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Table 1 Number of boundary conditions required in open boundary problem 

Subcritical flow Supercritical Flow 

Upstream Downstream Upstream Downstream 

1D simulation 1 1 2 0 

2D simulation 2 1 3 0 
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2.4 Initial and Boundary Conditions 

The number of boundary conditions is determined by the Froude number or whether 
the flow is described as subcritical or supercritical [13] (Table 1). 

2.5 Stability Condition 

For the time marching problem, stability depends on Courant–Friedrichs–Lewy 
(CFL) condition [9]. 
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The spatial grid spacing, flow velocity, and celerity are defining computation 
time interval, and it will change significantly in computation. Thus, it is necessary 
to control size of this computational time interval for stability of scheme. 

2.6 Governing Equation of Hydraulic Jump 
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/
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)
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Here y1 and y2 are upstream and downstream flow depth immediately after and before 
of the jump, respectively, and Fr1 is Froude number at upstream [14]. 

3 Results and Discussion 

The present MacCormack Predictor-Corrector Scheme is used to represent numerical 
experiment for h hydraulic jump. 

3.1 Numerical Experiment for Hydraulic Jump 

The present MacCormack model is also applied to study the unsteady flow behavior 
of hydraulic jump in straight channel(flume). Various parameters considered for 
numerical experiment are taken from [15]. The details of the experiment, as well as 
their results, are presented here. The jump was allowed to form in the first 3 m of 
the glassed flume by controlling the depth at the downstream end. Table 2 lists the 
various test parameters. 

The normal component of velocity is set to zero at the side walls. At the upstream 
boundary, U-velocity and depth are fixed, while V-velocity is zero. The flow depth 
is fixed, and the U and V velocities at the downstream boundary are extrapolated

Table 2 Various parameters 
for hydraulic jump in straight 
channel 

Name Unit Value 

Total length of flume (l) m 14 

Total width of flume (w) m 0.46 

Acceleration due to gravity (g) m/s2 9.81 

Manning roughness coefficient (n) s/m1/3 0.016 

Bed slope (sb) m/m 0 

Interval in x-direction (Δx) m 0.28 

Interval in y-direction (Δy) m 0.0575 

Grid points – 50 × 8 
Total time (tmax) S 100 

Time interval (Δt) s 0.02 

Total time steps (kmax) – 5001 

Upstream depth M 0.043 

Upstream velocity m/s 2.737 

Downstream depth m 0.222 

Froude number – 4.23 

Courant–Friedrichs–Lewy (CFL) – 0.8
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from the interior nodes. The results have been presented in Fig. 1. Also, it observed 
that depth of flow after hydraulic jump (subcritical flow condition) obtained by 
governing equation of hydraulic jump and from numerical experiment are 0.236 
and 0.222 m, respectively, which is differ by 5.93%. From the result, it is cleared 
that the MacCormack method is capable to capture the hydraulic jump in an open 
channel.

Fig. 1 Hydraulic jump: a water surface elevation b velocity vector profile
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4 Conclusions 

(i) The Saint-Venant Equations for 2D flow is solved for the computation of 
hydraulic jump in straight channel with addition of Artificial Viscosity term to 
MacCormack Predictor-Corrector Scheme for reduce numerical oscillations. 
From results it is clarifying that this scheme easy capture hydraulic jump near 
upstream (within 3 m of channel span) without numerical oscillation. 

(ii) Also, it observed that depth of flow after hydraulic jump (subcritical flow condi-
tion) obtained by governing equation of hydraulic jump and from numerical 
experiment are 0.236 m and 0.222 m, respectively which is differ by 5.93%. 

(iii) The results of the numerical experiments show that, the MacCormack Predictor-
Correction Scheme works well with 2D numerical experiment of hydraulic 
jump. 
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