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Preface 

Hydrological models have evolved as indispensable tools for effective planning and 
management of water resources. Hydrologic modelling aims to study the spatio-
temporal variations in the hydrologic processes such as precipitation, snowmelt, 
interception, infiltration, evapotranspiration, sub-surface flow, surface flow and their 
interactions through empirical, physics-based or data-driven approaches. Hydrologic 
modelling is challenging due to the complexity, nonlinearity and higher spatio-
temporal variability in the hydrologic processes over a region. However, with the 
recent technological advancements and availability of reliable gauged and satellite-
based datasets, hydrological modelling tools and approaches have gained popularity 
in the hydrologic community. The satellite-based datasets are used to derive vital 
geospatial inputs for the hydrological models, such as the digital elevation model, 
land use–land cover, soil characteristics and geological information. Apart from that, 
the satellite-based products provide reliable and long-term measurements of precip-
itation, temperature, evapotranspiration, soil moisture and other fluxes to overcome 
the limitations due to the unavailability of gauged observations. Over the years, 
several books have discussed the aspects of hydrological modelling, but most of 
them were theoretical-oriented, with a narrow focus on real-world case studies. 

This book covers the broader theme of hydrology and hydrological modelling 
while dealing with several sub-topics such as reservoir sedimentation, drought assess-
ment, crop water requirements, sub-surface flow and groundwater flow modelling. 
The present book deals with hydrological modelling applications for climate change 
impact assessment, water balance assessment, streamflow prediction, land use– 
land cover changes, runoff estimation, assessment of snow cover variability and 
reservoir sedimentation studies. The hydrological modelling case studies through 
the application of several well-known tools such as the Soil and Water Assess-
ment Tool (SWAT), Hydrologic Modeling System (HEC-HMS) and River Anal-
ysis System (RAS) from the Hydrologic Engineering Centre (HEC), MIKE NAM 
(Nedbør-Afstrømings-Model) and others are discussed. These case studies provide 
new hydrological insights across various geographical regions exhibiting different 
physiographic and climatic conditions, such as the Tapi, Godavari, Ganga, Baitarani, 
Brahmaputra, Mandovi, Mahi, Sabarmati, Sutlej, and Periyar River basins. Several
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vi Preface

case studies dealing with drought assessment through various indices are included in 
this book. The crop evapotranspiration and irrigation water requirements for the Ukai-
Kakrapar and Dharoi command areas are analysed. Several experimental and simula-
tion studies about the estimation of porosity, permeability and modelling groundwater 
flows are also demonstrated. A couple of review papers dealing with the application 
of HEC-HMS and flood routing studies have been included in this book. This book 
will help the readers to gain new hydrological insights for various study domains 
and improve their conceptual understanding of the hydrological process through 
case studies and reviews. 

Surat, India 
Surat, India 
College Station, TX, USA 
Indore, India 
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Vijay P. Singh 
Priyank J. Sharma
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Comparison of Different Climate Models 
Projections for Watershed Using Soil 
and Water Assessment Tool: A Case 
Study of Middle Tapi Sub-basin 

Vishal Sharma, Priyamitra Munoth, and Rohit Goyal 

Abstract In the scenario of climate change, it is very important to forecast the future 
values of watershed constituents for the better management of water resources. For 
that, several general circulation models (GCM) were made in many countries. In 
this study, BNU-ESM, CCC-ma, CNRM, MPI-ESM-LR, MPI-ESM-MR climate 
models inputs were used to find surface runoff, actual evapotranspiration (AET), 
potential evapotranspiration (PET) and sediment yield using soil and water assess-
ment tool (SWAT) in Middle Tapi sub-basin, India. Efforts have been made in this 
study to evaluate which model’s inputs are reliable to find watershed constituents. 
The performance of all the climate models was evaluated using three indices, i.e. 
coefficient of determination (R2) Nash–Sutcliffe model efficiency coefficient (NSE) 
and per cent bias (PBIAS), by comparing the results with base model developed 
using IMD data. The results show that all the models are better predicting the AET 
based on their PBIAS values and the best PBIAS value (−3.84) was given by the 
CNRM model for AET among all the models. The precipitation, surface runoff, sedi-
ment yield, lateral flow, total water yield and PET values were underestimated by all 
climate models. Deep aquifer recharge, total aquifer recharge, percolation out of soil 
were overestimated by BNU-ESM, CCC-ma, CNRM, MPI-ESM-LR models and 
underestimated by MPI-ESM-MR model. The present study also shows the impact 
of climate change on the hydrological process of watershed of Middle Tapi sub-basin 
in the near future (2011–2040), mid-future (2041–2070) and far future (2071–2100) 
using the representative concentration pathways (RCP) of 4.5 and 8.5 scenario. 
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1 Introduction 

The climate of the Earth is changing significantly all the way through its history. Many 
independent investigations have provided the evidence that when the industrial revo-
lution started the climate of earth has significantly altered [1, 2]. From 1850, each of 
the last three decades faced successively warmer earth surface than preceding decade 
[1]. “Trends of other global climate indicators like rate and patterns of temperature, 
precipitation and precipitation extremes, continental ice melt, atmospheric water 
vapour concentration, sea-level rise, ocean heat content, ocean acidification and the 
rate of recurrence of powerful cyclones were consistent with the feedback expected 
from a warming planet” [1]. The global average near-surface air temperature has 
been increased by 1 °C since pre-industrial times. At this trend of increasing temper-
ature, it is obvious that the “global warming would reach 1.5 °C between 2030 and 
2050 (high confidence)” [2]. In this varying atmosphere, the rainfall and runoff were 
varying in space and time. The changing amount of greenhouse gases (GHGs) in 
the atmosphere changes the precipitation and temperature. These changes in climate 
affect the water resources of the earth very much, so for the better management of 
water resources, it is required to understand the effect of climate change on the water 
resources and the watershed is the most basic natural hydrologic unit for the study 
of hydrology and water resources of any region [3]. The water balance exploration 
of any watershed gives the information of how much water is gained and lost in 
quantitative terms from any area. Therefore, an enormous number of hydrological 
models was developed, e.g. “MIKE System Hydrologic European (MIKE SHE)” 
[4], “Topographic Hydrologic Model (TOPMODEL)” [5], “Hydrologiska Byrans 
Vattenavdelning model (HBV)” [6], “Variable Infiltration Capacity model (VIC)”, 
“Soil and Water Assessment Tool (SWAT)” [7], etc., to quantify the water resources 
of a watershed. Similarly, many GCM like “BNU-ESM (Beijing Normal Univer-
sity Earth System Model), CCC-ma (Canadian Centre for Climate Modelling and 
Analysis), CNRM (National Centre for Meteorological Research-Climate Model), 
MPI-LR (Max Plank Institute Low Resolution Earth System Model), MPI-MR (Max 
Plank Institute Mix Resolution Earth System Model)” are also developed to predict 
the precipitation and temperature values under different climate scenarios. For the 
assessment of climate change effect on the watershed of any area, it is necessary 
to find suitable GCM for that area. In IPCC (Intergovernmental Panel on Climate 
Change) [1] report, the Coupled Model Intercomparison Project - Phase 5 (CMIP5) 
models were used to assess the climate change. It was found that the mean rates 
of GHGs (“carbon dioxide, methane and nitrous oxide”) were increased over the 
past centuries, with high confidence, “unprecedented in the last 22,000 years” [1]. 
The ocean warming was seen largest nearby the surface with upper 75 m warmed 
by 0.11 °C per decade over the period of 1971–2010. Molla et al. [8] used SWAT  
model for investigating climate change impact on stream flow of BARO-AKOBO 
river basin in Ethiopia for thirty-one years from 1986 to 2016. The RCP 8.5 scenarios 
based on the “IPCC 5th assessment report” set for African countries are used in the 
study. Krishnan et al. [9] used the projections of CMIP5 and CORDEX South Asia
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datasets for examining regional climate change. The CMIP5 models used in this 
study were interpolated to the resolution of 1° × 1°. It uses the RCPs of 4.5 and 8.5 
scenarios. In this study, the surface runoff and other parameters were identified in 
changing climate conditions by using CMIP5, CMIP6 and IIT-ESM (Indian Institute 
of Technology Earth System Model). 

Therefore, the objective of present study is to evaluate the water resources in a 
watershed of Middle Tapi basin in terms of surface runoff, AET, PET, sediment yield 
and finding the suitable GCM for the study area by using water balance approach and 
then to predict the future hydrological component. The water budget components are 
estimated using the SWAT. The impact of climate change on the watershed parameters 
under the forcing of “RCP 4.5 and RCP 8.5” was analysed, and the outputs of all 
GCMs were compared. 

2 Study Area and Data Source 

2.1 Tapi River Basin 

The Tapi River is also known as Tapti. It flows East to West direction and goes 
through Madhya Pradesh, Maharashtra and Gujarat and drains into Arabian Sea. “It 
is the second largest west flowing river of India” [10]. The surrounding mountain 
ranges of Tapi basin are the Satpura mountain range at North, the Ajanta and Satmala 
mountain range at South, the Mahadeva mountain range at East. Maximum area of 
Tapi river basin lies in Maharashtra which is about 80% of the total area (http://india-
wris.nrsc.gov.in). 

The whole Tapi river basin has “three sub-basins: first Upper Tapi basin, from 
Multai to Hathnur dam at meeting of Purna river with the Tapi River (29,430 km2); 
second Middle Tapi basin starting Hathnur dam to Ukai dam (31,767 km2); and third 
Lower Tapi basin starting from Ukai dam to Arabian Sea in the Gulf of Khambhat 
(3948 km2) (Fig. 1). Tapi River originates near Multai in Betul district of Madhya 
Pradesh at an elevation of 752 m and travelled a total distance of 724 km before 
meets to the Arabian Sea (Fig. 1)” [11–14]. “The major water resources projects in 
the Tapi basin are Ukai, Hathnur and Girna having gross storage capacities of 7414.3 
Mm3, 388.0 Mm3 and 608.5 Mm3, respectively” [15].

In this study, a watershed located in Middle Tapi basin was selected which lies 
between 75°26,07,, E and 76°10,09,, E longitude and 20°22,12,, N to 21°09,49,, N 
latitude covering a geographical area of 2473.52 km2 and perimeter of 416.6 km 
in plain region of Maharashtra (Fig. 1). The reason of choosing this watershed is 
because Tapi River is the main river of Maharashtra state for the agriculture and 
domestic purpose and every year Maharashtra state faces the drought situation, so it 
is important to study the Tapi basin so that the management of water resources could 
be better.

http://india-wris.nrsc.gov.in
http://india-wris.nrsc.gov.in
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Fig. 1 Location map of study area

2.2 Data Used 

The raster datasets such as “Digital Elevation Model (DEM), land use–land cover 
(LULC), hydrological soil group map and datasets such as precipitation, temperature 
and outlet” are required for the generation of water balance parameters. The digital 
elevation model is made with the help of Shuttle Radar Topography Mission (SRTM) 
void filled data of resolution 1 arc-second (30 m) (Table 1). This high-resolution 
global data is downloaded from USGS Earth explorer Website in the form of tiles. 
The elevation of study area ranges from 154 to 808 m above the mean sea level. 
Average elevation of study area is 344.75 m (Fig. 2).

The land use–land cover dataset was procured by “National Remote Sensing 
Centre (NRSC) India” of 56 m resolution for the year 2005 (Table 1). The LULC 
datasets were divided into six classes, i.e. “agriculture, barren land, built-up, forest, 
range land and water”. The majority of land is agricultural land with about 64% area 
and least area for the residential area with 1.45% area, which is shown in Fig. 3.

The soil analogue maps (1:2,500,000 scale) of study area was obtained from 
National Bureau of Soil Survey and Land Use Planning (NBSS & LUP), Nagpur, 
and for further classification into various soil groups, this was converted in digital 
form in GIS platform (Table 1). The main soil groups of the study area are clayey 
and clay loam to gravely clay loam varying from light brown to reddish brown, black 
cotton, medium soil, dark yellowish brown to dark reddish brown (Fig. 4).
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Table 1 Description of input data 

Data type Resolution Source 

Digital elevation model (DEM) 30 m Shuttle Radar Topography Mission 
(SRTM) 
http://www.earthexplorer.usgs.gov/ 

LULC Map 56 m NRSC 
https://www.nrsc.gov.in/ 

Soil map 1:2,500,000 scale NBSS & LUP 
https://www.nbsslup.in/ 

Climate data Stations India Meteorological Department 
(IMD) 
https://mausam.imd.gov.in/ 

GCM data 0.5° × 0.5° Regional climate projections in India 
with statistical downscaling 
http://www.regclimindia.in/ 

Fig. 2 DEM of study area

http://www.earthexplorer.usgs.gov/
https://www.nrsc.gov.in/
https://www.nbsslup.in/
https://mausam.imd.gov.in/
http://www.regclimindia.in/
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Fig.3 Land use-land cover of study area

The climate of the study area is characterized by a hot summer and general 
dryness throughout the year excluding during the season of south-west monsoon. 
The study area receives 90% of rainfall from June to November with average rain-
fall of about 739 mm. Major parts of the study area lie in western plateau and hilly 
agro-climatic zone. Daily climatic data of rainfall, maximum/minimum tempera-
ture, relative humidity and wind speed data were taken from India Meteorological 
Department (IMD) for the years 1970–2013 (Fig. 5; Table 1).

The projections of precipitation and temperature data of RCP 4.5 and 8.5 scenarios 
from 2011 to 2040, 2041 to 2070, 2071 to 2100 are used to forecast the water balance 
parameters of the study area. All the projections of climate models were downscaled 
for the study area using Kernal regression [16, 17] (Table 1; Fig.  5).
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Fig. 4 Soil map of study area

3 Methodology 

3.1 Hydrological Modelling Using SWAT 

The SWAT model was used for the hydrological modelling of the study area and 
for comparison of projections of general circulation models for future scenarios. 
The SWAT model is computationally efficient, requires minimum data and does 
not require much calibration [18]. The SWAT model operates on a daily time step 
and designed to predict the impact of land use management on water, sediment 
and agricultural chemical yields in un-gauged watersheds [7]. It is developed by 
Agriculture Research Service of the United States Department of Agriculture. It is 
an all-embracing, semi-distributed and temporally uninterrupted simulations model. 
“Surface runoff, return flow, percolation, evapotranspiration, transmission losses, 
pond and reservoir storage, crop growth and irrigation, groundwater flow, reach 
routing; nutrient and pesticide loading, and water transfer” are the main constituents 
of SWAT. The Hydrological Response Units (HRUs) are the smallest simulation
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Fig. 5 Location of rain gauge stations and GCM data

units of SWAT model. The areas with a specific LULC and soil characteristics, 
which are scattered throughout the sub-watershed, are lumped together in one HRU. 
In SWAT model, “firstly the water balance parameters are calculated for HRUs, 
then summed together to find the total hydrologic process of sub-watershed and 
at last routing to the sub-watershed outlets through a river reach in the channel 
network to find the overall runoff and sediment yield for the watershed”. SWAT 
model required particular data “about weather, soil properties, topography, plants 
and ground management practices” taking place in the watershed. The model used 
the following water balance Eq. (1) in the catchment, which is illustrated in Fig. 6. 

SWt = SW0 + 
tΣ

t=1

(
Rday − Qsurf − Ea − Wseep − Qgw

)
(1)

“where SWt is the final soil water content (mm), SW0 is the initial soil water 
content on day i (mm), Rday is the amount of precipitation on day i (mm), Qsurf is 
the amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration
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Fig. 6 Illustration of simulated hydrological cycle in SWAT source: [7]

on day i (mm), W seep is the amount of water entering the vadose zone from the soil 
profile on day i (mm), Qgw is the amount of groundwater infiltration on day i (mm) 
and t is time (days)”. 

3.2 Simulation from SWAT 

Primarily, all the essential spatial data that is the LULC map, soil map and the DEM 
has been organized for the studied watershed area and projected to the UTM zone 43N 
datum. After this, the SWAT model has been set up to start hydrological simulation 
for the watershed. Model setup can be easily understood by the following flowchart 
in Fig. 7.

The first step is watershed delineation, and in this process, streams are generated 
by selecting projected DEM data, and 100 km2 area threshold value was defined. 
This threshold is used to describe the minimum size of the sub-watershed. After it, 
the outlet definition, selection and snap threshold process are followed. Then, SWAT 
calculates the sub-basin parameters and delineates the watershed. The study area is 
divided into 11 sub-watersheds (Fig. 7). The second step is HRUs creation, which 
is done by the slope class accumulation to land use and soil. Multiple slopes bands 
were defined in SWAT for HRU creation. The slope bands were 0–5%, 5–10% and 
above 10%. The HRUs were filtered by area of 2% of total area. There were 138 
HRUs which were created within the study area (Fig. 7). The third step is Edit Inputs 
and Run SWAT, for which the available daily observed climate data (precipitation,
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Fig. 7 Flowchart of model process

maximum/minimum temperature, wind speed and relative humidity) were selected 
from 1970 to 2005, and for all the climate models input data of only “precipitation 
and maximum/minimum temperature” were inputted for historical period (1970– 
2005). For the RCP 4.5 scenario and 8.5 scenario, future data from 2006 to 2100 was 
inputted. All the rest representative weather variables are generated by the automatic 
weather data generator tool. The SWAT model was simulated at monthly time step 
using 3 years of warm up period with default parameters. As the observed runoff 
data were unavailable for the study area, the outputs obtained by IMD data run were 
considered best and assumed as the observed data of watershed for the comparison 
of GCMs outputs. The performance of the SWAT model simulations of the study 
area was evaluated using the statistical criteria “R2, NSE and PBIAS” suggested by 
Moriasi et al. [19]. 

4 Results and Discussion 

4.1 Comparison of Climate Model with Base Model 

SWAT model was simulated for a baseline period from 1970 to 2005 using the 
IMD rain gauge data, and the future scenarios were simulated using the five GCMs 
projected data. Table 2 shows the average annual basin values of different components 
of hydrological cycle of the watershed for the base model and GCMs.

For finding the suitable climate model for the study area, the outputs of different 
climate models were compared with the observed data (IMD output). All the climate 
models were underestimated the precipitation, lateral soil, revap from shallow aquifer 
to soil/plants and total water yield (Table 2). Ground water to shallow aquifer quantity, 
ground water to deep aquifer quantity, deep aquifer recharge, total aquifer recharge,



Comparison of Different Climate Models Projections for Watershed … 11

Table 2 Average annual basin values for base model and different GCMs 

S. 
No. 

Basin values Base 
model 

BNU-ESM CCC-ma MPI-LR MPI-MR CNRM 

1 Precipitation (mm) 787.20 704.70 725.40 781.70 752.10 618.70 

2 Surface runoff 
(mm) 

205.84 82.7 104.75 125.35 114.35 77.51 

3 Lateral soil (mm) 7.95 6.99 7.77 7.78 7.57 5.87 

4 Groundwater 
(shallow aquifer) 
(mm) 

193.72 225.95 268.39 251.74 249.33 170.60 

5 Groundwater (deep 
aquifer) (mm) 

13.02 13.44 15.78 14.90 14.75 10.56 

6 Revaporation 
(shallow aquifer to 
soil/plants) (mm) 

54.11 29.73 29.63 29.97 30.13 29.91 

7 Deep aquifer 
recharge (mm) 

13.07 13.46 15.68 14.83 14.71 10.55 

8 Total aquifer 
recharge (mm) 

261.35 269.14 313.62 296.50 294.17 211.06 

9 Total water yield 
(mm) 

420.52 329.08 396.69 399.77 386.00 264.54 

10 Percolation out of 
soil (mm) 

261.39 269.18 313.51 296.33 294.11 211.13 

11 Actual 
evapotranspiration 
(mm) 

312.60 346.10 326.70 353.00 336.50 324.60 

12 Potential 
evapotranspiration 
(mm) 

2719.10 1487.80 1482.90 1499.80 1507.60 1496.80 

13 Total sediment 
loading (t/ha) 

43.74 6.45 8.82 11.18 9.84 6.72

percolation out of soil were overestimated by BNU-ESM, CCC-ma, CNRM, MPI-
LR models and underestimated by MPI-MR model (Table 2). All the climate models 
were underestimated the surface runoff, sediment yield and PET (Table 2). 

Table 3 shows the performance indices for the surface runoff, AET and sediment 
load. According to the values of R2 and NSE values, all the models fail to predict 
the outputs for the study area by using the outputs of IMD run as the observed data. 
According to PBIAS value for AET, all the models show satisfactory performance. 
Figures 8, 9 and 10 show the line graph and scatter plot of surface runoff, AET and 
sediment yield.
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Table 3 Performance indices for surface runoff, AET and sediment 

GCM model Surface runoff AET Sediment 

R2 PBIAS NSE R2 PBIAS NSE R2 PBIAS NSE 

BNU-ESM 0.01 59.82 -1.93 0.01 −10.7 −1.03 0.01 85.38 −2.56 

CCC-ma 0 49.11 -1.45 0.03 −4.51 −0.38 0.01 80.87 −2.28 

CNRM 0 62.34 -2.42 0.06 −3.84 −0.1 0 83.89 −2.53 

MPI-LR 0.01 39.1 -1.33 0.02 −12.91 −1.33 0.02 75.73 −2.12 

MPI-MR 0.02 44.44 -1.07 0 −7.63 −0.73 0 77.66 −2.02

4.2 Prediction of Hydrological Components for Future RCP 
Scenarios 

4.2.1 Precipitation 

By comparing with the historical data of different climate models with the future 
data simulated by RCP 4.5 scenario, it was observed that in all the models the 
precipitation is decreased in near future (2011–2040) (Fig. 11). In mid-future (2041– 
2070), CCC-ma, MPI-LR and MPI-MR models show higher values of precipitation 
from near future, while BNU-ESM model shows lower values (Fig. 11). For far future 
(2071–2100), BNU-ESM and CNRM show higher precipitation, while MPI-LR and 
MPI-MR show lower surface runoff from mid-future (Fig. 11).

The CCC-ma model shows slight increment from historical period (725 mm, Table 
2) in precipitation in near future for RCP 8.5 scenario (Fig. 12). BNU-ESM, CNRM 
and MPI-LR models show increment in precipitation in mid-future. Only the CNRM 
model shows the increase in precipitation for far future while all other models show 
decrease in precipitation values in far future for RCP 8.5 scenario (Fig. 12).

4.2.2 Surface Runoff 

The surface runoff values show increase for CCC-ma model in all the future period 
for RCP 4.5 scenario (Fig. 13). The CNRM model shows decrease from near future 
to far future. The MPI-LR and MPI-MR models show higher values in mid-future 
(Fig. 13).

Figure 14 shows the results of surface runoff simulated from RCP 8.5 scenario. 
It is observed that BNU-ENM, CCC-ma, MPI-LR and MPI-MR show higher values 
for surface runoff in mid-future (2041–2070) from near future and lower values in 
far future (2071–2100) from mid-future (Fig. 14).
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4.2.3 Actual Evapotranspiration (AET) 

Figure 15 shows the simulated AET values by RCP 4.5 scenario, and it is seen that the 
AET values are increasing from near future to far future for all the climate models, 
while in RCP 8.5 scenario, the CNRM, MPI-LR and MPI-MR show the increased

Fig. 8 Line graph and scatter plot between IMD and GCMs simulated surface runoff (a–j)
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Fig. 8 (continued)

value of AET from near future to far future. The BNU-ESM and CCC-ma models 
show increased value of AET from near future to mid-future and decreased values 
from mid-future to far future (Fig. 16).

4.2.4 Sediment Load 

Figure 17 shows the simulated sediment loads for RCP 4.5 scenario, and it shows that 
only CCC-ma model shows increase in sediment load values from near future to far 
future. The BNU-ESM and CNRM models show the decreased value in mid-future, 
while MPI-LR and MPI-MR show increased values in mid-future (Fig. 17).

Figure 18 shows the simulated sediment loads from RCP 8.5 scenario, and it was 
observed that BNU-ESM, CCC-ma, MPI-LR and MPI-MR models show the higher 
sediment in mid-future and then near future and lower values in far future, while the 
CNRM model shows lower sediment load in mid-future and higher in far future.
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Fig. 9 Line graph and scatter plot between IMD and GCMs simulated AET (a–j)
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Fig. 9 (continued)

5 Limitations of the Study 

Observed runoff data was unavailable for the study area. Therefore, results obtained 
from IMD model run were considered best and comparison was done. The compar-
ison could be better if observed runoff data was available. All the inputs of precipita-
tion and temperature produced by all the climate models were downscaled by kernel 
regression for the study area. So, the present study has the limitations of kernel 
regression. 

6 Conclusions 

SWAT model is applicable for the hydrological modelling of study area and for 
the prediction of future values of watershed in SWAT hydrological model. The
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Fig. 10 Line graph and scatter plot between IMD and GCMs simulated sediment yield (a–j)
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Fig. 10 (continued)

Fig. 11 Precipitation (mm) values of climate models for “near future, mid-future and far future for 
RCP 4.5 scenario”
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Fig. 12 Precipitation (mm) values of climate models for “near future, mid-future and far future for 
RCP 8.5 scenario”

Fig. 13 Surface runoff (mm) values of climate models for “near future, mid-future and far future 
for RCP 4.5 scenario”

Fig. 14 Surface runoff (mm) values of climate models for “near future, mid-future and far future 
for RCP 8.5 scenario”

Fig. 15 AET (mm) values of climate models for “near future, mid-future and far future for RCP 
4.5 scenario”
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Fig. 16 AET (mm) values of climate models for “near future, mid-future and far future for RCP 
8.5 scenario”

Fig. 17 Sediment yield (t/ha) values of climate models for “near future, mid-future and far future 
for RCP 4.5 scenario”

Fig. 18 Sediment yield (t/ha) values of climate models for “near future, mid-future and far future 
for RCP 8.5 scenario”

surface runoff, sediment yield, precipitation, lateral soil, revap from shallow aquifer 
to soil/plants, total water yield and PET values were underestimated by all the climate 
models. Deep aquifer recharge, total aquifer recharge, percolation out of soil were 
overestimated by BNU-ESM, CCC-ma, CNRM, MPI-LR models and underesti-
mated by MPI-MR model. According to NSE, R2, all the climate models were failed 
to predict the watershed parameters. Although all the climate models produced low 
per cent bias for the AET value for the study area, the CNRM model has −3.84 value 
of PBIAS which is best among all climate models. Almost in all climate models 
precipitation, surface runoff, sediment yield would decrease and actual evapotran-
spiration would increase in near future and mid-future for both the scenarios of RCP
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4.5 and RCP 8.5; In far future precipitation, AET, sediment loading would increase 
and surface runoff would decrease for RCP 4.5 and precipitation, surface runoff, 
sediment loading would decrease and AET would increase for the scenario RCP 8.5. 
This type of study is helpful for the management of water resources for the study 
area as well as for the ungauged watersheds to take appropriate decisions under the 
impact of climate change. 
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Evapotranspiration over Middle Tapi 
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Abstract Integrated watershed planning, management and decision-making are 
important for the efficient utilization of available water resources. The physics-
based hydrological models enable quantitative and qualitative evaluation of water 
at different spatial and temporal scales. The current study aims to ascertain the relia-
bility of hydrologic simulations using the SWAT hydrologic model. The model was 
developed for a climate-sensitive and agriculturally dominated catchment, i.e., the 
Middle Tapi basin (MTB), between Hatnur and Ukai reservoirs. The monthly inflows 
of the Ukai reservoir were utilized to calibrate and validate the SWAT model for 
1998–2007 and 2008–2013, respectively. The simulated potential evapotranspiration 
(PET) at the basin scale was compared with CRU-PET data to ascertain the reliability 
of the simulated variable. The global sensitivity analysis shows that GWQMN.gw, 
REVAPMN.gw, GW_REVAP.gw, SOL_K.sol, CNCOEF.bsn, SOL_AWC.sol are the 
most sensitive parameters at 5% significance level. The model performance metrics, 
namelyKGE, NSE, R2 andPBIAS with respect to observed streamflow during calibra-
tion (validation) period are 0.98 (0.98), 0.98 (0.97), 0.98 (0.97) and 0.6% (−1.2%), 
respectively. The similar statistics for PET during simulation period (1998–2013) 
are 0.73, 0.84, 0.94 and −4.36%, respectively. The model performance metrics show 
that the hydrologic model reliably simulates monthly inflows into the Ukai reservoir 
and PET in MTB. Thus, the developed model can accurately forecast hydrologic 
changes in response to climate instability in the study area, allowing for better water 
management practices. 

Keywords Potential evapotranspiration (PET) · Soil and water assessment tool 
(SWAT) · Sequential uncertainty fitting version-2 (SUFI-2) · SWAT-calibration and 
uncertainty prediction (SWAT-CUP) · Middle Tapi basin

P. Dwivedi (B) · L. K. Gehlot · P. L. Patel 
Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology Surat, 
Surat 395007, India 
e-mail: prabhat20011996@gmail.com 

P. L. Patel 
e-mail: plpatel@ced.svnit.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
P. V. Timbadiya et al. (eds.), Hydrology and Hydrologic Modelling, 
Lecture Notes in Civil Engineering 312, 
https://doi.org/10.1007/978-981-19-9147-9_2 

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9147-9_2&domain=pdf
mailto:prabhat20011996@gmail.com
mailto:plpatel@ced.svnit.ac.in
https://doi.org/10.1007/978-981-19-9147-9_2


24 P. Dwivedi et al.

1 Introduction 

The physics-based spatially distributed watershed models can predict the integrated 
response of the changing climatic conditions and anthropogenic activities in the 
watershed. These models/tools can effectively address the potential environmental 
and water management threats pertaining to climate variability, land-use change, 
reservoir operation, water yield, soil erosion, etc. The degree of accuracy and uncer-
tainty of hydrologic model simulations is primarily a function of model inputs, model 
structure, calibrating variables, etc., affecting the decision-making. The researchers 
utilize remote sensing (RS) and geographic information systems (GIS) products, 
available at various spatiotemporal scales, for modeling uncertainty due to different 
data sources [1]. The quantification of uncertainties in hydrological simulations helps 
hydrologists and government authorities make decisions for long-term water resource 
planning and management. 

The Soil Water Assessment Tool (SWAT), a hydrologic response unit (HRU)-
based watershed model, evaluates the effects of topography, land development activ-
ities, climate variability and alternative watershed management strategies on water, 
sediment and nutrient yields from the basin [2, 3]. The SWAT model is globally 
accepted to simulate various water balance components and processes in the water-
shed. The Sequential Uncertainty Fitting (SUFI-2) in SWAT-CUP (calibration and 
uncertainty program) is widely used to account for parametric sensitivity and uncer-
tainty in hydrologic simulations [4, 5]. However, calibration of the hydrologic model 
using a single variable, particularly in heterogeneous catchments, may lead to unre-
alistic hydrologic model predictions due to the non-uniqueness of the model param-
eters and uncertainty associated with parameters range [5–8]. This requires a thor-
ough evaluation of the model’s goodness using multivariable/multisite calibration 
techniques [9–13]. 

Due to its unique geographical setting, the Tapi river basin (TRB) is climati-
cally heterogeneous in Peninsular India. The TRB is subdivided into Upper (UTB), 
Middle (MTB) and Lower (LTB) Tapi basins based on the geographic location of 
major hydraulic structures/dams. The MTB, an agriculture-dominated landmass, gets 
frequently affected due to scarce rainfall, and prolonged dry spell durations over the 
year [14] may lead to over-dependency on groundwater resources. The anthropogenic 
changes, hydro-climatic variability and streamflow regulation from major hydraulic 
structures (Hatnur and Girna dams) have severely impacted aquatic life and water 
demand for socio-economic growth in the region [15–17]. Thus, understanding the 
hydro-climatic variability and hydrological modeling can help derive better regional 
water management practices. The key objective is to develop a SWAT hydrologic 
model for MTB, calibrate and validate using streamflow data and ascertain the reli-
ability of the developed model by comparing the simulated PET form hydrologic 
model with PET data of Climate Research Unit; https://crudata.uea.ac.uk/cru/data/ 
hrg(CRU)).

https://crudata.uea.ac.uk/cru/data/hrg(CRU)
https://crudata.uea.ac.uk/cru/data/hrg(CRU)
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2 Study Area and Data Sources 

2.1 Middle Tapi Basin 

The TRB is India’s sixth largest river basin with total flow length of 724 km and 
drainage area of 65,145 km2. At an elevation of 752 m, the Tapi River rises from 
Multai in the Betul Plateau and flows into the Arabian Sea, where it joins the Gulf 
of Khambhat. The MTB lies between Hatnur and Ukai dam/reservoir, having total 
watershed area of 32,925 km2 (see Fig. 1). The study region has basaltic hills in 
peripheral part and alluvial plains in central region. The Middle Tapi River has 
five major tributaries on its left side, i.e., Girna, Waghur, Bori, Panjhra and Buray, 
while three are on its right side, i.e., Aner, Arunavati and Gomai. The Hatnur dam, 
an earthen dam in Maharashtra with gross (live) storage capacity of 388.0 (255.0) 
MCM (106 m3), forms the upstream boundary for MTB, while Ukai dam, Gujarat’s 
second largest earth-cum masonry dam with gross (live) storage capacity of 7414.29 
(6730.00) MCM and located 300 km downstream of the Hatnur dam, serves the 
downstream boundary for MTB. The watershed elevation varies from 63 to 1563 m 
above mean sea level as shown in Fig. 1. 

The climatology of MTB can be characterized by a hot summer and persis-
tent dryness throughout the year with low monsoon rainfall. The daily minimum 
(maximum) temperature ranges from 8 °C (34 °C) in January month to 22 °C (44 °C) 
in May month. The average annual rainfall and PET (period 1990–2013) in the basin

Fig. 1 Index map of study area 



26 P. Dwivedi et al.

are 791 mm and 2248 mm, respectively. The aridity index (ratio of rainfall to PET) 
in the research area is 0.35, indicating that the climate is semi-arid. Agricultural 
land is the most frequent land use in the region, followed by deciduous forest and 
fallow land. The dominant soil classes in the region vary from very gentle sloping to 
moderate and level surface. The soil texture ranges from loamy to clayey and deep 
black soil. The major historical floods were observed in the years 1998 and 2006 in 
the MTB, after the construction of Hatnur dam [15]. 

2.2 Data Sources 

The SWAT model requires topography, land use and land cover, soil, slope 
and weather data. For delineation of watershed features, the open-source Shuttle 
Radar Topographic Mission (SRTM, https://earthexplorer.usgs.gov) Digital Eleva-
tion Model (DEM) of 30 m grid size was used. The LULC data from NRSC, Hyder-
abad, with a spatial resolution of 56 m and soil map of NBSS&LUP, Nagpur (at a scale 
of 1:2,50,000) have been used for the development of the model. The daily rainfall 
data of 24 stations and daily maximum and minimum temperature data, interpolated 
to 0.5° × 0.5° from 1.0° × 1.0° using bilinear interpolation, have been obtained 
from India Meteorological Department (IMD), Pune. The daily streamflow data and 
releases from the Hatnur dam were obtained from Central Water Commission, Surat 
Division, and Tapi Irrigation Development Corporation, Jalgaon. The monthly PET 
data of CRU, at 0.5° × 0.5°, is used as a reference dataset for assessing simulated 
PET from the model. 

3 SWAT  Model  

The SWAT model demarcates the watershed and sub-watersheds depending 
upon user-specified outlet points and the drainage area threshold. Each sub-
watershed/subbasin is further subdivided into multiple hydrological response units 
(HRUs), representing a unique combination of land use, soil and slope class in the 
watershed. The SWAT uses land phase hydrology to control the amount of water, 
sediments and nutrients entering the main channel while the routing phase controls 
the flow of water, sediments and nutrients from the watershed drainage network to 
the outlet. The mathematical representation of the hydrologic cycle adopted by the 
SWAT model is based on the water balance equation (see Eq. (1), all having unit as 
mm H2O). 

Sfinal = Sinitial + 
t∑

i=1

(
Pday − Qoverflow − Eactual − Wsepage−Qground

)
(1)

https://earthexplorer.usgs.gov
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where Sinitial, Sfinal,Pday, Qoverflow,Eactual, Wsepage, Qground represents the initial soil 
moisture content, final soil moisture content, precipitation, surface runoff, evapo-
transpiration, percolation and return flow, respectively, on day i; and t is time in days. 
The hydrological response is anticipated separately for each HRU and subsequently 
routed through each subbasin in the watershed [2, 3]. In this study, the SCS-CN 
method with slope adjustment in CN2, plant ET method and Hargreaves method 
are employed to estimate land phase water balance parameters in the catchment, 
whereas the variable storage method is used to develop a hydrograph at the outlet of 
each basin in the main channel. 

In the watershed delineation process, 48 subbasins were delineated in the MTB 
between the Hatnur dam, at the upstream boundary and Ukai dam, at the downstream 
boundary, wherein releases from the Hatnur dam act as inlet points to the MTB. The 
SWAT model resamples the spatial inputs, i.e., soil and land use, to match the input 
DEM grid size. The LULC map (see Fig. 2) obtained from NRSC is reclassified 
into six major classes, namely agriculture (AGRC- 49.88%), wasteland (BARR-
10.58%), built-up (URML -1.79%), current fallow land (AGRR-16.26%), deciduous 
forest (FRSD-17.80%) and water body (WATR-3.70%). The primary soil texture, 
particularly hydrologic soil groups C and D, ranges from silty clay to clays and 
clay loam. The soil database comprising soil properties including hydrological soil 
group, texture, soil water content, soil depth, saturated hydraulic conductivity, bulk 
density, organic carbon content and percentage of soil texture was given as an input 
database to the SWAT model. In addition, the basin is divided into three major slope 
classes, 0–2%, 2–5% and more than 5%, fairly representing flat, moderately sloping 
and steep sloping land features, respectively. The area under smaller HRUs was 
restructured/redefined using HRU thresholds of 2, 5 and 10% for land use, soil and 
slope, thereby reducing total HRUs from 5186 to 2144. The CN values for each 
HRU are corrected for the slope class greater than 5% in the subbasin. The current 
study used a freely available weather generator database derived from IMD daily 
gridded data of 85 years with a spatial resolution of 1° × 1°. The station-based 
(24 nos.) rainfall data and grid-based minimum and maximum temperature data are 
used, remaining weather parameters, i.e., solar radiation, wind velocity, and relative 
humidity, are simulated by a weather generator. The Hatnur dam outflow from the 
spillway crest was given as inlet discharge into the MTB hydrological model.

The SWAT model’s parameters are process-based and should be adjusted within 
an acceptable uncertainty range. The most frequent causes of model uncertainty are 
anomalies in the spatial inputs, meteorological data, calibration variables and model 
assumptions. The calibration process involves the identification and regionalization, 
if permissible, of sensitive parameters and minimizing the uncertainty for a particular 
set of local conditions in the watershed or sub-watershed. The approach of calculating 
the average rate of change of the output variable/objective function of the model in 
relation to changes in model parameters is known as sensitivity analysis. The key 
parameters with specific range must be identified in the calibration process, followed 
by independent validation to determine whether the model will precisely replicate the 
watershed process-based on objectives [6]. The model is calibrated and validated for 
observed streamflow data for the period of 1998–2007 and 2008–2013, respectively.



28 P. Dwivedi et al.

Fig. 2 a Sub-watersheds during watershed delineation, b LULC map of MTB

The four-year warm-up period (1994–1997) has been used for the stabilization of 
the initial model parameters. The model performance is regarded as acceptable if 
NSE ≥ 0.5, R2 ≥ 0.5, and PBIAS < ±25% [18]. Furthermore, the reliability of the 
simulation of the watershed process was ascertained by independent validation of 
the simulated PET with the PET data obtained from CRU due to the non-availability 
of the measured meteorological variables in the study region. 

4 Results and Discussion 

The calibration being an inverse modeling process invites parametric uncertainties; 
thus, parameter selection plays a crucial role for a model to represent the watershed 
hydrology. The parameters selected for calibration of the model comprise parame-
ters related to water in various phases of hydrological processes, i.e., groundwater 
(.gw), land management (.mgt), soil (.sol), main channel (.rte), hydrological response 
units (.hru) and basin parameters (.bsn) (see Table 1). The uncertainty in simulated 
streamflow is determined statistically based on the p-factor, the percentage of obser-
vations encapsulated by the 95PPU (percentage prediction uncertainty) band, and 
r-factor, relative thickness of the 95PPU band with respect to the standard deviation 
of observed flow [5]. The objective function adopted for selecting the best param-
eters is Kling–Gupta Efficiency (KGE). The model calibration, validation, sensi-
tivity ranks of the parameter during the final calibration range and uncertainty in 
the model simulation are assessed by SUFI-2 in SWAT-CUP. Table 1 lists the model
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calibration parameters and their original and calibrated ranges, fitted values and 
sensitivity ranks. At a 5% level of significance, the global sensitivity analysis ranks 
demonstrate that groundwater (GW_REVAP.gw, GWQMN.gw, REVAPMN.gw), soil 
moisture (SOL_AWC.sol), and plant ET CN coefficient (CNCOEF.bsn) are  the most  
dominating water balancing components affecting the streamflow, corresponding to 
KGE objective function.

The internal consistency of fit for observed and simulated inflows in the Ukai reser-
voir is assessed using the model performance indicators, i.e., KGE, Nash–Sutcliffe 
(NSE), coefficient of determination (R2) and percentage bias (PBAIS). The respec-
tive values of model performance statistics through calibration (validation) period 
are 0.99 (0.97), 0.98 (0.97), 0.98 (0.97) and 0.0 (−1.7), respectively (see Table 2). 
The uncertainty estimators, i.e., p-factor (r-factor), through the calibration and vali-
dation are 0.48 (0.65) and 0.52 (0.59), respectively. The model performance statistics 
and the flow hydrograph (see Fig. 3) infer that the developed SWAT model is capable 
of simulating monthly inflow into the Ukai reservoir with fair confidence and accu-
racy. The annual water balance during calibration and validation is obtained from 
the output.std file. The average evapotranspiration and water yield from the MTB 
are 55% and 19%, respectively. Out of the 19% of the water yield, on average, the 
contributions from overland flow and groundwater flow/baseflow are 80% and 20%, 
respectively. The average curve number (CN) of the MTB during the simulation 
period was found to be 79.

The reliability of the simulated hydrological variables has been ascertained by 
using a variable that is not used as calibrating variable. Due to the lack of field obser-
vations, readily available PET data from CRU was used as a reference dataset in 
this work, and the assessment was done at the basin level, i.e., MTB. The simulated 
PET for MTB has been extracted from the output.std file of SWAT, and the average 
basin PET from CRU gridded dataset has been derived using Thiessen weights. 
The performance evaluation indicators, namely KGE, NSE, R2, and PBIAS through 
the simulation period (1998–2013), are found to be 0.73, 0.84, 0.94 and −4.36%, 
respectively (see Table 2). The average monthly estimates of PET during the same 
period are  shown in Fig.  4. The model performance indicator demonstrates high 
agreement between CRU-PET and simulated PET values on a monthly scale. The 
average monthly PET values have shown deviations ranging from −12.6% (in May) 
to 21.5% (in December), while the average annual estimates have shown a variation 
of 7%. Considering the various statistical indicators for calibrating variable (stream-
flow) and independent variable (PET), the SWAT model developed in the present 
study has shown reliable estimates for the watershed hydrological process from the 
period 1998- to 2013. Thus, a developed model can be utilized to accurately simu-
late the hydrologic alteration to the climate instability in the research area, and better 
water management practices can be employed. The model can also be used to assess 
the impact of LULC change, climate change, land management practices, etc., in 
individuals and in combination.
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Table 1 Model calibration parameters, initial and calibrated range, fitted value and their sensitivity 
ranks 

Parameter name Initial range Calibrated range Fitted value Sensitivity rank 

V__ALPHA_BF.gw 0.1–0.7 0.228–0.738 0.592 24 

V__GW_DELAY.gw 7–90 7.579–83.812 55.256 7 

V__GWQMN.gw 110–2838 112.303–3238.197 2728.937 2 

V__GW_REVAP.gw 0.1–0.2 0.02–0.2 0.169 1 

V__REVAPMN.gw 85–410 132.651–430.016 317.389 3 

V__RCHRG_DP.gw 0.01–0.17 0.001–0.017 0.013 28 

R__CN2.mgt −0.18 to −0.05 −0.18 to −0.012 −0.028 8 

R__SOL_AWC().sol 0.14–0.48 −0.014 to 0.478 0.33 4 

R__SOL_K().sol −0.75 to −0.12 −0.357 to −0.048 −0.198 29 

R__SOL_BD().sol −0.46 to −0.1 −0.464 to −0.114 −0.213 26 

V__SOL_ZMX.sol 320–2800 344.092–2781.408 2571.19 22 

R__SOL_ALB().sol 0.08–0.24 0.073–0.24 0.142 18 

V__CH_N2.rte 0.03–0.09 0.02–0.069 0.026 13 

V__CH_K2.rte 5–85 3.601–87.135 51.111 11 

R__CH_S2.rte −0.07 to 0.01 −0.074 to 0.005 −0.021 10 

V__ALPHA_BNK.rte 0.4–0.93 0.281–0.843 0.758 25 

V__ESCO.hru 0.15–0.6 0.228–0.46 0.265 27 

V__EPCO.hru 0.7–0.96 0.44–0.99 0.465 19 

V__CANMX.hru 12–45 12.089–42.248 21.074 6 

V__OV_N.hru 
(URML) 

0.02–0.05 0.012–0.046 0.029 16 

V__OV_N.hru (FRSD) 0.26–0.58 0.261–0.684 0.327 15 

V__OV_N.hru (WATR) 0.01–0.04 0.017–0.036 0.031 9 

V__OV_N.hru(AGRR, 
BARR) 

0.02–0.05 0.018–0.042 0.032 30 

V__OV_N.hru (AGRC) 0.02–0.05 0.023–0.046 0.034 20 

R__HRU_SLP.hru 0.01–0.23 0.011–0.187 0.067 12 

V__CH_N1.sub 0.02–0.06 0.019–0.047 0.024 31 

V__CH_K1.sub 4–85 4.111–78.298 41.05 23 

R__CH_S1.sub 0.03–0.2 0.035–0.184 0.163 14 

V__SURLAG.bsn 2.5–17 2.358–16.274 4.938 17 

V__EVRCH.bsn 0.6–0.98 0.646–0.985 0.832 21 

V__CNCOEF.bsn 1.14–2.0 1.142–2.0 1.991 5
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Table 2 Summary of model performance statistics 

Performance indices Observed streamflow Potential 
evapotranspiration 

Calibration 
(1998–2007) 

Validation (2008–13) Simulation period 
(1998–2013) 

KGE 0.99 0.97 0.73 

NSE 0.98 0.97 0.84 

R2 0.98 0.97 0.94 

PBIAS 0.00 −1.70 −4.36 

p-factor 0.48 0.65 – 

r-factor 0.52 0.59 – 

Fig. 3 Observed and simulated inflow in Ukai reservoir

Fig. 4 Average monthly PET values
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5 Conclusions 

The present study has developed a SWAT hydrologic model for a semi-arid Middle 
Tapi basin (MTB) with releases from the Hatnur dam as an upstream boundary. The 
model has been successfully calibrated and validated on a monthly time scale to 
estimate inflows into the Ukai reservoir, which serves as the downstream boundary. 
The model reliability is also ascertained using PET as an independent variable, and the 
simulated PET has been compared with CRU-PET data at the basin scale. Since ET 
holds a significant portion of total water available in the global/regional hydrological 
cycle, the present study emphasizes reliable simulation of non-calibrating variables, 
i.e., PET. The main findings of the current investigation are as follows: 

• The model performance metrics, namely KGE, NSE, R2, and PBIAS concerning 
observed monthly streamflow through the calibration (validation) period, are 
0.99 (0.97), 0.98 (0.97), 0.98 (0.97) and 0.0 (−1.7), respectively, signifying 
good competence of the hydrologic model to simulate monthly inflows through 
extensive drainage network of MTB into the Ukai reservoir. 

• The respective values of the performance statistics for PET are 0.73, 0.84, 0.94 and 
−4.36%, respectively, indicating model capability to simulate the other hydrologic 
variables with fair accuracy and a high degree of confidence. Thus, the present 
model can give a reliable forecast of monthly inflows in the Ukai reservoir for 
future climate data. 

• The present study used a single-site single variable approach, i.e., inflows into 
the Ukai reservoir, which may be considered a limitation. Based on the data’s 
availability, the model’s functioning can be further improved by incorporating 
a multi-metric calibration approach, i.e., multiple variables under calibration at 
multiple gauging sites. 
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Integrated Modeling of the Lower Tapi 
Basin Using SWAT 

Aditi K. Rathod and Sanskriti Mujumdar 

Abstract The Soil and Water Assessment Tool (SWAT) is a globally used integrated 
watershed model for studying sediment, hydrology, land use, climate change, in-
stream water quality, and other water management actions on water quality and 
quantity. The present research aims to hydrological modeling of Lower Tapi basin 
using SWAT from Ukai dam to Surat city. Surat is one of India’s most densely 
populated cities, located at the tail portion of the Tapi River. One of the biggest flood 
occurred in the year of 1998 and 2006. The Soil and Water Assessment Tool (SWAT) 
was used to establish rainfall–runoff relationship for the Lower Tapi basin. The 
Lower Tapi basin runoff is estimated using the SWAT model, which combines GIS 
data with an attribute database. SWAT a physical-based semi-distributed parameter 
designed to predict runoff, effect of soil and anticipate the effect of land management 
approaches. SWAT model is developed for the base line scenario for 1998–2017. 
SWAT-cup is used to calibrate and validate the SWAT model. Then, using 19 years 
of daily precipitation as well as daily maximum and lowest temperature data, a 
SWAT simulation is run for each day to determine future runoff for the associated 
rainfall. On a daily time scale, the model was calibrated at the Mandvi gauging 
site. The observed flow data was used to identify sensitivity values, which were then 
calibrated. For auto-calibration and validation, the SWAT-CUP SUFI-2 software was 
employed. The calibrated model can be utilized for further in-depth study, such as 
water resource management and climate and land use change impact assessments. 
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1 Introduction 

The most significant intrinsic of water resources development and administration 
programmers is understanding a basin’s water balance [1]. Water balance equations 
can be used to quantify major hydrological processes. Any effort to develop water 
resources requires a full understanding of how these physical elements interact with 
hydrological component. Because hydrologic processes are so complex, it is critical 
to have a thorough understanding of them, which is why watershed models are so 
popular [1]. The majority of watershed models essentially simulate precipitation 
transformation into runoff, sediment discharge and nutrient losses. 

Integrated watershed models are models that provide a holistic picture of the 
numerous hydrologic processes [2]. There are a variety of physically based semi-
distributed models that are integrated. SWAT has been regarded as the most promising 
and computationally efficient among them by academics (Neitsch et al. [3]). As a 
result, an attempt has been made in this work to identify the most sensitive SWAT 
model parameters and to evaluate the significant hydrologic components of a river 
basin with an emphasis on water conservation and management. 

The main goals of this study are to use the SWAT model to analyze the rainfall– 
runoff conduct of the Lower Tapi basin, to simulate the discharge using SWAT-CUPs 
with the sequential uncertainty fitting (SUFI-2) algorithm and to undertake sensitivity 
testing of the model parameters in terms of improving the model’s actual prospects 
in simulating runoff. 

2 Description of Model 

The USDA Agricultural Research Service (USDA-ARS) and Texas a&MAgriLite 
Research collaborated to create the Soil and Water Assessment Tool (SWAT), a public 
domain model. The SWAT model is a watershed model with a long-term, continuous 
simulation. It is made to predict how management affects water, sediments and 
agricultural chemical yields on a regular basis. This model was created in the early 
1990s. With the passage of time, the SWAT model’s development process continues 
to address many emergent difficulties in hydrological modeling. Various tools, such 
as different hydrological response units, auto-irrigation and fertilization options, 
nutrition cycling routine, bacteria transfer routine and so on, were introduced to the 
model during its development. Water and sediment circulation can be examined and 
projected with the help of this model. Runoff in urban catchments can be estimated 
using this model. The entire catchment region has been separated into sub-catchments 
in order to use the model in a real-world setting. The sub-catchments are further 
separated into minor Hydrological Response Units (HRU) based on land use and land 
cover similarities, as well as soil management techniques [2]. The basin’s hydrology 
can be separated into two phases: routing phase and land phase. Simulation of the 
hydrological cycle integrating whole water circulation in the basin is necessary for 
better estimation and forecasting of water, sediment circulation and other parameters 
from the basin.
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3 Study Area 

The Tapi basin is the Deccan plateau’s northernmost basin, located approximately 
between 72 33, and 78 17, east longitudes and 20 N to 22 N latitude. The Tapi River 
is the Peninsula’s second greatest westward draining interstate river. It begins at an 
elevation of 752 m near the Multai reserve forest in the Betul district of Madhya 
Pradesh. The river’s total length is 724 km, with the first 282 km flowing through 
Madhya Pradesh and 54 km defining the state’s common boundary with Maharashtra. 
It flows across Maharashtra for 228 km before entering Gujarat. The Tapi River flows 
across Gujarat for 214 km before joining the Arabian Sea at the Gulf of Cambay after 
passing through Surat. 

The Tapi basin is divided into sub-basins: the Upper basin (29,430 km2) up to  
the Hatnur intersection of the Purna with the major Tapi, the Middle Tapi basin 
(25,320 km2) from Hatnur to the Gidhade gauging site, and the Lower Tapi basin 
(25,320 km2) again from the Gidhade gauging site up to the sea (10,395 km2) [4]. 

The Lower Tapi basin, which includes Surat, is located between the Ukai Dam 
and the Arabian Sea. One of the worst floods in Surat’s history occurred in the years 
1998 and 2006. The flood of 2006 is recognized as a sever calamity that resulted in 
the widespread destruction of structures worth INR 20 billion and impacted people’s 
lives, with roughly 300 people dying as a result of the devastating floods [4]. Figure 1 
depicts a map of the Lower Tapi basin’s location.

4 Methodology and Data Collection 

4.1 Methodology 

SWAT necessitates a large number of spatial and temporal inputs. SWAT, being a 
semi-model, must process, aggregate and analyzes the data geographically utilizing 
GIS technologies. As a result, the model has been integrated with GIS software as 
a downloadable ArcSWAT for ArcGIS supplementary extension to make it easier 
to use. In flowchart Fig. 2, the methodology for runoff modeling at the basin outlet 
using SWAT is depicted.

4.2 Data Collection 

4.2.1 Rainfall Data 

The daily rainfall data is required as input for SWAT analysis. For this study, daily 
rainfall data from 8 rain gauge stations in the Lower Tapi basin was chosen from a 
total of 13 rain gauge stations with at least 20 years of data, and these rain gauge
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Fig. 1 Location map of Lower Tapi basin

Fig. 2 Methodology of rainfall–runoff modeling
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Table 1 Rain gauge station 
selected for study in Lower 
Tapi basin 

Station name District Latitude Longitude 

Amli Surat 21.400 73.408 

Godsamba Surat 21.279 73.231 

Kadod Surat 21.217 73.216 

Kholvad Surat 21.275 72.948 

Rander Surat 21.223 72.792 

Ukai Surat 21.256 73.580 

Uteva Surat 21.350 73.215 

Zankhvav Surat 21.443 73.319 

stations were gathered through the Gujarat State Water Data Centre (SWDC). The 
location and name of each SWDC rain gauge station are listed in Table 1. The position 
of the raingauge station is depicted in Fig. 3. 

Fig. 3 Location of raingauge station
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4.2.2 Runoff Data 

The river flow data for the Lower Tapi basin was also acquired from the State Water 
Data Centre (SWDC) in Gujarat. Daily streamflow data are used to calibrate and 
validate the SWAT model. Runoff data from one river gauge station in the study area, 
i.e., the Lower Tapi basin, namely, Mandvi, is available. 

4.2.3 Digital Elevation Model (DEM) 

A digital elevation model (DEM) is a three-dimensional depiction of a terrain 
created from elevation data. DEM was retrieved from the Bhuvan ISRO Website. 
DEM (Cartisat-1, CartoDEM Version-3 R1) with a resolution of 30 m × 30 m 
was downloaded from Bhuvan (https://bhuvan.nrsc.gov.in/home/index.php). Using 
ArcGIS10.5, the data sets are masked and projected in UTM projection. The DEM 
is used to define the longest reaches, drainage surfaces and stream network of the 
watershed and sub-basins. Figure 4 shows the digital elevation model of Lower Tapi 
basin. 

Fig. 4 Digital elevation model

https://bhuvan.nrsc.gov.in/home/index.php
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Fig. 5 Map of land use  

4.2.4 Landuse Landcover Classification 

The land use data was created from the LANDSAT 8 image (acquired on October 
2020). The information was taken from the USGS archive. The downloaded file 
contains seven bands. The picture is then converted into the correct projection using 
ArcGIS, just as the Digital Elevation Model with about the same dataset. The super-
vised classification technique was used for picture classification by distinguishing 
unique signatures present in the Tapi Lower basin, and the image was then translated 
to systematic form in ArcGIS to make it acceptable with ArcSWAT. Water, pasture, 
Agricultural Land-Generic, Mixed Forest and Residential are among the major clas-
sifications. Figure 5 depicts the land use map of the Tapi Lower basin, while Table 
2 shows the area covered by various land use types.

4.2.5 Soil Map 

The Food and Agriculture Organization of the United Nations (FAO/UNESCO) 
provided a soil map with a geographical resolution of 1:5,000,000. The soil data 
from the Tapi Lower basin has been separated into three groups. The texture of the 
soils is clay loam, loam and clay. Figure 6 shows the soil map of study area (Lower 
Tapi basin).
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Table 2 Tapi basin LULC 
classes 

S. No. Category Area (km2) Area of the 
watershed (%) 

1 Water 710.8409594 38 

2 Pasture 386.9089199 21 

3 Agricultural 
land-generic 

614.9602592 33 

4 Mixed forest 86.63310304 5 

5 Residential 53.88316237 3 

Total 1853.226404 100

Fig. 6 Soil map of study area 

5 Uncertainty Analysis and Calibration 

SUFI-2 can be used for uncertainty analysis and calibration, and it can simultaneously 
analyze a high degree of complexity and observed values from a significant number 
of sampling locations. It also requires the least number of simulation experiments to 
generate accurate uncertainty data and calibration and that can be connected directly 
with SWAT-CUP by an interaction. By comparing observed stream flows at the 
Mandvi gauge station with daily simulated stream flows, the SWAT model has indeed 
been optimized for daily modeled stream flows. The model was run for a 20-year
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period (1998–2017). Model sensitivities, uncertainty analysis and calibration were 
performed using the SWAT-CUP (uncertainty programs and calibration) interface. 
For the most sensitive parameters, the model has been calibrated. Many origins 
of errors, including generating parameters (e.g., precipitation), conceptual model, 
variables and observed values, are taken into consideration in SUFI-2 (Abbaspour 
et al. [5]). The d- and p-factor (Abbaspour et al. [6]) were used to quantify the accuracy 
of calibration and uncertainty measures with combination to the Nash-Sutcliff (NSE) 
and coefficient of correlation (R2). In contrast to these criteria, (Moriasi et al. [7]) used 
the NSE and coefficient of correlation between observations and final best simulations 
to determine goodness of fit. NSE is a standardized statistic that determines the 
magnitude of remaining variables compared to actual variation in the data (Nash and 
Sutcliffe [8]). The NSE could be computed using Eq. 1 

NSE = 1.0−
Σn 

i=1

(
oobs i − P sim 

i

)2

Σn 
i=1(o

obs 
i − omean 

i )2 
(1) 

6 Calibration of a SWAT Model 

6.1 SWAT Model Predictions Evaluation and Performance 

For a period of time, the SWAT model, which was calibrated and verified, was used 
to simulate hydrological elements of the Lower Tapi basin (1998–2017). Reduce the 
disparity between measured and expected daily stream flows and correlate estimated 
daily amounts to measured stream flow values that were used to calibrated the model. 

The SUFI-2 algorithm of SWAT-CUP was used to perform auto-validation and 
calibration in this investigation. Using the SWAT model text input file as a main source 
of information, the next step is to denote the observed stream flow. Another step is 
to set number of parameter that would be more sensitive to Tapi Lower basin. The 
iterative procedure used by SUFI-2 reduces the attribute values after every repetition. 
The number of simulations in each iterative procedure has been set to 500. After the 
number of iterations had been set, all of the statistical factors could be computed 
every time, and the best simulation could be seen in the output results as the suitable 
statistical value outcome. 

6.2 Analysis of Results 

The SWAT hydrological model for the lower Tapi basin is used, as well as model 
runs using SWDC observed climate data to validate and calibrate this model using
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Table 3 Values of sensitive parameters 

Name of the parameter Fitted value Minimum value Maximum value 

V_CH_N2.rte 0.0943 0.0829 0.2488 

R_OV_N.hru 0.2526 −0.0547 0.3357 

V_GW_DELAY.gw 22.5551 −130.2715 256.6315 

R_SOL_AWC (.).sol −0.0891 −0.3477 0.0507 

V_EPCO.hru 0.8068 0.2873 0.8626 

V_SLSUBBSN.hru 144.6588 61.575 164.7847 

R_CN2.mgt −0.1647 −0.3166 0.0278 

actual flows. A sensitivity analysis on twelve factors was undertaken in order to deter-
mine the significant factors controlling the hydrologic processes for river discharge 
computing given by the SWAT model. Variable sensitivity was calculated using 
global sensitivity analysis in the SWAT-CUP SUFI-2 software. The values of sensitive 
parameters are shown in Table 3. 

6.2.1 Results of Calibration and Validation 

The SWAT model in the Lower Tapi basin was calibrated using the SUFI-2 approach. 
Plots of daily observed and simulated stream flow were generated to evaluate the 
model performance based on visual comparison. For some of the more intense storm 
events, the peak steam flow is over or under predicted (Fig. 7). Figure 7 shows that all 
high peaks are underestimated, and in many cases, a significant difference between 
observed and simulated flow can be noticed. Figure 7 depicts each day calibration 
of observed and simulated flow for the Lower Tapi basin. 

Fig. 7 Calibration of observed and simulated flows for the Lower Tapi basin on a daily basis



Integrated Modeling of the Lower Tapi Basin Using SWAT 45

Fig. 8 Validation of observed and simulated flow for the Lower Tapi basin on a daily basis 

Validation was carried out with the same parameter value ranges and 500 simu-
lations. A seven-year validation period was used (2011–2017). The daily validation 
plot between observed and simulated flow is shown in Fig. 8. 

7 Results and Discussion 

By referring relevant literature (Gorgij et al. [9]; Geethu et al. [10]; Moriasi et al. 
[11]; Van Griensven et al. [12]) and SWAT documentation (Neitsch et al. [3]) [8], 
a set of model parameters for sensitivity analysis was chosen. To validate and cali-
brate the model, the parameters with the highest sensitivity were used. The most 
vulnerable criteria are those indicating surface response, sub-surface runoff and 
basin response, according to the findings. The SWAT hydrological parameters SCS 
runoff curve number CN2, CH N2, SOL AWC, OV N, EPCO, ESCO, ALPHA 
BF, GW DELAY, GWQMN, REVAPMN, SURLAG and SLSUBBSN are crucial 
for the model’s success. SCS runoff curve number (CN2), average slope length 
(SLSUBBSN), ground delay (GW DELAY), Manning’s “n” value for the main 
channel (CH N2), Plant uptake compensation factor (EPCO), Manning’s “n” value 
for overland flow (OV N) and available water capacity of the soil layer (SOL AWC) 
are the most sensitive parameters for the USRB, according to the sensitivity anal-
ysis. Table 4 for daily periods gives the results of statistical evaluation criteria used 
to check model performance.
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Table 4 Performance 
evaluation of a statistical 
model for the Lower Tapi 
basin on a daily basis 

Statistical parameter R2 NSE 

Calibration (2001–2010) 0.87 0.86 

Validation (2011–2017) 0.83 0.82 

8 Conclusions 

Observed stream flow data was used to calibrate and validate the SWAT model. 
During the Lower Tapi basin’s calibration and validation periods, the SWAT model 
worked admirably. For calibration and validation, twenty-year discharge data is sepa-
rated into two equal halves. To determine the important parameters affecting the flow, 
a sensitivity analysis is carried out. The flow was auto-calibrated from 2000 to 2010 
using daily observed and simulated flows. Validation of flows between 2011 and 
2017 has been completed. The R2 coefficients of determination for daily calibration 
and validation were 0.87 and 0.83, correspondingly, showing that the calibrated and 
observed daily flows are in good agreement. Overall, the model responded well to the 
simulation of streamflow for the Lower Tapi basin. The model is therefore suitable 
to simulate runoff behavior of Lower Tapi basin. 
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Effect of Drainage Area Threshold 
on Stream Flow Modelling Using Arcswat 

Shivansh and P. L. Patel 

Abstract The present study explores the effect of varying threshold values of 
drainage area on the stream flow and water balance characteristics of the Burhanpur 
sub-catchment in the Upper Tapi River basin, India. Stream network and flow 
characteristics were derived by threshold-based stream definition in ArcSWAT 
2012.10_5.24 using Shuttle Radar Topographic Mission (SRTM) Digital Elevation 
Model (DEM) of 30 m resolution. The SWAT models with drainage area threshold 
values of 50, 100, 200, 300, 400, 500, 600 and 700 km2 were calibrated and validated 
on a monthly time scale. The performance of each model was evaluated in terms of 
statistical performance indices, i.e. Nash Sutcliffe Efficiency (NSE) and Coefficient 
of Determination (R2). All the models were found to perform efficiently in estimating 
the stream flow from the sub-catchment. The respective NSE and R2 values ranged 
between 0.8–0.85 and 0.84–0.89 during the calibration and 0.91–0.93 and 0.90–0.93 
during the validation periods. The simulated stream flow and water balance were 
found to be optimum at 200 km2 drainage area threshold, both during calibration 
(NSE = 0.85 and R2 = 0.89) and validation (NSE = 0.93 and R2 = 0.93) period. 
The results imply that an appropriate drainage area threshold value has to be used 
to generate optimum stream flows and water balance to enhance the performance of 
hydrological models. 

Keywords ArcSWAT · Hydrological model · Drainage area threshold · Stream 
flow ·Water balance
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1 Introduction 

Water is the most important element related to human existence, and it plays a very 
crucial role in the economic and social development of a nation. The hydrolog-
ical cycle is the foundation of hydrology, and hydrological models are the simple 
and comprehensive characterization of a hydrologic system. Mathematical combi-
nations of components of hydrologic cycle are termed as a watershed hydrologic 
model [1]. Hydrological models are a complex combination of input, model struc-
ture, parameters, and uncertainty involved and that makes calibration a challenging 
task [2]. In recent years, the use of remote sensing data and Geographic Informa-
tion System (GIS) along with hydrological models has become very important for 
watershed management. Hydrological models are further classified into lumped, 
semi-distributed, and distributed models [3]. Distributed models are considered to 
be more accurate, but they have not shown significantly better results than their 
lumped counterparts [4–7]. 

Soil Water Assessment Tool (SWAT) is a comprehensive, continuous-time, semi-
distributed, process-based river basin model which is computationally efficient for 
continuous simulation over a long period of time [8]. In this study, ArcSWAT version 
2012.10_5.24 has been used with the ArcGIS platform. Watershed delineation is the 
first step towards developing a SWAT model. Drainage Area Threshold (DAT) is the 
minimum area required to form the origin of a stream [9]. DATs are very important 
for the detailing and accuracy of stream network generated as well as the number and 
size of sub-watersheds delineated. Thus, it is very important to select an optimal value 
of DAT for accurate stream network generation which in turn leads to better model 
performance. SWAT-CUP which takes into account five algorithms for calibration 
and uncertainty techniques, i.e. General Likelihood Uncertainty Estimation (GLUE) 
[10], Markov Chain Monte Carlo (MCMC) [11], Parameter Solution (Parasol) [12], 
Sequential Uncertainty Fitting (SUFI-2) [13, 14]. p-factor (percentage of uncertainty 
bracketed by the model) and r-factor (thickness of uncertainty prediction band) are 
two statistical performance indicators used to evaluate the model uncertainty perfor-
mance. p-factor >0.7 and r-factor <1.5 are acceptable [15]. In this study, effect of 
DAT on streamflow output and water balance and subsequent selection of optimal 
DAT value has been carried out. Eight different SWAT models with DAT values 50, 
100, 200, 300, 400, 500, 600, and 700 km2 have been calibrated and validated on a 
monthly time scale at the Burhanpur stream gauging station in the Upper Tapi River 
basin, India. Eight different models were calibrated for the period of 1998–2007 
using SWAT-CUP [14]. In this study, SUFI-2 algorithm has been used to calibrate 
the model as the same accounts for all sources of uncertainties by expressing them 
in ranges using Latin Hypercube Sampling.
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2 Study Area and Data Source 

2.1 Burhanpur Sub-catchment 

Tapi River originates from Tapi Kund in Betul district in Madhya Pradesh and reaches 
the Arabian Sea after travelling through three sub-basins and covering around 784 km. 
The Upper Tapi basin, Middle Tapi basin, and the Lower Tapi basin drains areas of 
29,430 km2, 32,097 km2, and 3618 km2, respectively. The present study focuses on 
Burhanpur sub-catchment which is the northern sub-division of Upper Tapi basin 
which has subtropical to temperate climatic conditions. 

Burhanpur sub-catchment drains an area of 10,613 km2 till its terminal station, 
i.e. Hatnur dam, and is bounded by Satpura hills in the north, Gwaligarh hills in the 
south, and Betul plateau in the east. Tapi River travels approximately 350 km west 
to join Hatnur reservoir. The river is perennial in nature and has two stream gauging 
stations, i.e. Dedtalai and Burhanpur, with drainage areas 6770 km2 and 8487 km2, 
respectively. 

Based on Thiessen polygon eight rain gauge stations (Multai, Atner, Bhainsdehi, 
Chikhalda, Akot, Dharni, Burhanpur, and Raver) affect the rainfall distribution in the 
Burhanpur sub-catchment but only five rain gauge stations (Multai, Atner, Dharni, 
Burhanpur, and Raver) lie within the catchment boundary. Dharni rain gauge station 
covers most of the Thiessen area (28.01%) followed by Bhainsdehi (21.30%) and 
Burhanpur (20.69%). The index map for Burhanpur sub-catchment is shown in Fig. 1.

2.2 Data Used 

The datasets used in the present study along with their source and resolution has 
been presented in Table 1.

3 Preparation of Input Data 

3.1 Digital Elevation Model (DEM) 

In the present study, Shuttle Radar Topography Mission (SRTM) DEM of 30 m reso-
lution was obtained from USGS website. Figure 1 shows the DEM for the study area 
where elevation varies from 211 to 1171 m. The projection system WGS_1984_UTM 
Zone 43 N was used for the present study.
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Fig. 1 Burhanpur sub-catchment of Upper Tapi basin along with drainage networks

3.2 Land-Use Land-Cover Map 

LULC map was prepared using cloud free LANDSAT Enhanced Thematic Mapper 
(ETM) satellite imagery of 30 m resolution of the year 2006 obtained from USGS 
website. The LANDSAT imagery obtained from USGS was processed, and super-
vised classification using maximum likelihood was employed to generate LULC 
Maps using ERDAS Imagine 2015 software. Six LULC classes were identified, 
i.e. deciduous forest (FRSD), fallow land (RNGB), scrub land (BARR), agricultural 
land (AGRL), built-up area (URML), and water bodies (WATR), where the bracketed 
codes are SWAT reference codes defined in database for various land-use type. 

Figure 2 shows the LULC map for Burhanpur sub-catchment. More than 50% of 
the Burhanpur sub-catchment area is covered by deciduous forest, mostly as a part of 
Satpura Hill ranges which divides Tapi basin and Narmada basin. Agricultural land is 
the second most dominant land use class (33.74%) in the Burhanpur sub-catchment. 
Other land use classes, namely barren land (5.97%), range land (3.13%), built-up 
(1.34), and water bodies (0.57%), cover a relatively lesser area in the Burhanpur 
sub-catchment.
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Table 1 Data used in present study along with the sources 

S. No. Type of data Resolution/Scale/Unit Period of 
coverage 

Source/Agency 

1 Satellite imagery: 
LANDSAT 7 ETM 

30 m 2006 United States 
Geological Survey 
(USGS) Earth 
Explorer website 

2 Shuttle Radar 
Topography 
Mission (SRTM) 
Digital Elevation 
Model (DEM) 

30 m United States 
Geological Survey 
(USGS) Earth 
Explorer website 

3 Daily discharge 
data 

m3/s Burhanpur: 
1998–2013 

India WRIS Portal 

4 Soil data Distributed map (scale 
1:250,000) 

National Bureau of 
Soil Survey and Land 
Use Planning, Nagpur 
(NBSS&LUP) 

5 Rainfall data Station data of 54 rain 
gauge stations in Tapi 
basin 

1977–2013 India Meteorological 
Department (IMD): 
Station Data 

6 Temperature data Station data of 91 
weather stations in Tapi 
basin 

1951–2017 India Meteorological 
Department (IMD): 
Station Data

3.3 Soil Map 

Soil categories for Burhanpur sub-catchment were assessed using the National 
Bureau of Soil Survey and Land Use Planning (NBSS&LUP) Nagpur Soil Map. 
The georeferenced and projected soil maps of the study area were digitized, and 
the polygons were allocated attributes in a GIS platform based on soil properties. 
The polygons were classified into hydrological soil groups, namely A, B, C, and D. 
The study area is characterized by the presence of four textures of soil, under the 
taxonomy clay loam, sandy clay loam, sandy clay, and sandy loam (Fig. 3).

3.4 Climate Input Data 

SWAT model requires daily precipitation, maximum and minimum air temperature, 
relative humidity, wind speed, and solar radiation. These parameter values can be 
given as input or SWAT may generate them.



54 Shivansh and P. L. Patel

Fig. 2 Land-use land-cover map of Burhanpur sub-catchment

3.5 ArcSWAT Model Development 

In this study, the geographic information system (GIS) interface used for the present 
study is ArcGIS 10.5© and SWAT 2012 for development of hydrological model 
for Burhanpur sub-catchment. Figure 4 shows the general methodology adopted to 
develop ArcSWAT models.

The first step towards model development is the watershed delineation using 
DEM. Threshold-based stream definition to generate sub-basins and nine different 
SWAT models were developed based on drainage area threshold values 50, 100, 
200, 300, 400, 500, 600, and 700, 800 km2. Figure 5 shows the number of sub-
basins generated for each SWAT model with different DAT values. The number of 
watersheds delineated decreased with an increase in drainage area threshold (km2). 
The number of sub-basins delineated did not change after 700 km2 DAT values, and 
the any further increase in drainage area threshold had no effect on the number of 
sub-basins generated after watershed delineation in ArcSWAT (Fig. 5).

For all nine SWAT models, land slope was divided into three classes 0–5%, 5– 
12%, and >12%. HRUs were generated by overlaying LULC map, soil map, and 
slope map. The threshold values for land use %, soil class %, and slope class were 
set as 2%, 5%, and 10%, respectively [16]. Location of daily rainfall data, daily
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Fig. 3 Soil map of Burhanpur sub-catchment

Fig. 4 General methodology adopted for developing ArcSWAT models

maximum and minimum temperature data were written and linked with the model, 
whereas wind speed, relative humidity, and solar radiation data were generated using 
the WGEN file. All nine SWAT models were run on monthly time steps for the period 
of 14 years (1994–2007) with 4 years as warm-up period.
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Fig. 5 Sub-basins generated for Burhanpur sub-catchment with HRU values
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Fig. 6 Variation of statistical indicators (R2 and NSE) with drainage area threshold (km2) 

4 Results and Discussion 

4.1 Comparison of ArcSWAT Streamflow Output 
Pre-calibration 

SWAT simulation was run for nine different SWAT models, and the stream flow at 
Burhanpur outlet was compared to the observed streamflow at Burhanpur stream 
gauging station. Figure 6 shows the variation of statistical indicators (R2 and NSE) 
and drainage area threshold (km2) before calibration. It was observed that the R2 

and NSE values increased from 0.76 and 0.72 for 50 km2 DAT to 0.81 and 0.77 for 
200 km2 DAT. The value of R2 and NSE decreases at 300 km2 DAT (R2 and NSE 
values 0.80 and 0.75, respectively) and then increases again and becomes constant 
thereafter. It was observed that increasing the DAT value beyond 700 km2 had no 
effect on statistical indicators (R2 and NSE). Based on the statistical parameters, 
the number of sub-basins delineated and the number of HRUs generated 8 out of 9 
SWAT Models were selected for calibration and validation. SWAT model with 800 
km2 drainage threshold value was not selected for calibration and validation since 
the number of sub-basins delineated, number of HRUs generated, and statistical 
parameters like R2 and NSE after 700 km2 drainage threshold value did not change 
(Fig. 6). 

4.2 Calibration of SWAT Models 

Based on the literature available on SWAT modelling, the global sensitivity analysis 
was performed on 33 parameters shown in Table 2. Sufi-2 being iterative can handle 
large number of input parameters and generally does not require too many runs in 
each iteration [17]. Parameter sensitivity was carried out using the global sensitivity 
analysis which requires each iteration to have a large number of simulations. Since
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the performance of model pre-calibration was not poor (Fig. 6), a lot of runs were 
not required to attain good model performance.

With global sensitivity analysis performed on all eight SWAT models, ground-
water revap coefficient (GW_REVAP), the curve number (CN2), groundwater delay 
(days) (GW_DELAY), threshold depth of water in the shallow aquifer for return flow 
to occur (mm) (GWQMN), soil evaporation compensation factor (ESCO), available 
water capacity in the soil layer (mm) (SOL_AWC), and saturated hydraulic conduc-
tivity (mm/hr) (SOL_K) were highly sensitive with p-values <0.05. GW_REVAP was 
fitted between 0.12 and 0.14, revap coefficient close to 0 implies restricted movement 
of water to the rootzone, whereas revap coefficient close to 1 implies rate of transfer 
of water is equal to the rate of potential evapotranspiration. Curve number varied 
from 59–95 indicated mixed land-use conditions in the basin (Fig. 2). ESCO varied 
from 0.69 to 0.72, ESCO value of 0.6 indicates desert conditions. The absolute range 
and fitted values of all 33 parameters for all the 8 SWAT models are shown in Table 
2. The models were calibrated for a period from 1998 to 2007. 

The values of the performance indicators like p-factor, r-factor, R2, and NSE for 
all the calibrated models are listed in Table 3. The value of the p-factor varied from 
0.73 to 0.81 whereas the r-factor varied from 0.28 to 0.36. All the calibrated models 
were further validated using the same 33 parameters for the period of 2008–2013. 
The performance of the validated models is listed in Table 4. The performance of the 
model was found to be very good during both calibration and validation as per the 
criteria given by Moriasi et al. [18].

4.3 Water Balance Analysis 

Annual average water balance analysis was carried out for calibration, and validation 
period for all eight SWAT models to check the valid division of water in the hydrologic 
system [19]. (Table 5). SWAT uses nearest station statistics to assign precipitation 
to a sub-basin, i.e. as the DAT value changes, the centroid of each sub-basin shifts 
leading to a change in the nearest rain gauge station from its centroid which in turn 
leads to a change in annual average rainfall over the sub-basin and eventually over 
the entire watershed. For the calibration period, the annual average rainfall in the 
Upper Tapi River Basin varied between 880.2 and 932.3 mm. The average SCS-
curve number value varied from 82.37 to 85.93 which in turn leads to a surface 
runoff contributing around 66% of the total annual average flow. The annual average 
of potential evapotranspiration in the Burhanpur sub-catchment is 1841.24 mm for 
the calibration period (1998–2007), which is around 38% of the annual average 
rainfall.
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Table 3 Performance of the models during calibration (1998–2007) 

Drainage area threshold (km2) p-factor r-factor R2 NSE 

50 0.73 0.28 0.88 0.85 

100 0.79 0.35 0.88 0.84 

200 0.81 0.36 0.89 0.85 

300 0.8 0.34 0.84 0.8 

400 0.78 0.33 0.87 0.84 

500 0.79 0.36 0.88 0.85 

600 0.79 0.36 0.88 0.85 

700 0.8 0.36 0.87 0.85 

Table 4 Performance of the models during validation (2008–2013) 

Drainage area threshold (km2) p-factor r-factor R2 NSE 

50 0.65 0.38 0.93 0.93 

100 0.67 0.47 0.93 0.93 

200 0.68 0.49 0.93 0.93 

300 0.68 0.47 0.93 0.93 

400 0.65 0.47 0.92 0.92 

500 0.65 0.49 0.91 0.91 

600 0.65 0.49 0.91 0.91 

700 0.64 0.5 0.91 0.91

4.4 Selection of Optimal Value of Drainage Area Threshold 
(km2) 

Based on the statistical performance indicators like p-factor, r-factor, R2, NSE, and 
water balance analysis, 200 km2 was selected as the optimal value of the drainage area 
threshold. 200 km2 model was able to capture 81% of uncertainties (p-factor = 0.81) 
with thickness of the uncertainty band (r-factor = 0.36) with R2 = 0.89, NSE = 0.85. 
Also, the water balance analysis for 200 km2 showed more acceptable results with 
ET accounting for 39.3% of annual average rainfall which is justified considering 
humid climatic setting in the region. Curve number 83.52 is acceptable considering 
dominance of HSG D and HSG C covering 58.2% and 40% area, respectively. High 
curve number is also aided by the presence of high slope (6.17°) in the region. Surface 
runoff contributes around 70% of the total annual average flow for the same reason 
stated above.



62 Shivansh and P. L. Patel

Table 5 Water balance components during calibration (cali) and validation (vali) 

Drainage area threshold (km2) 

50 100 200 300 

Hydrological 
components 

Cali Vali Cali Vali Cali Vali Cali Vali 

Precipitation (mm) 918.4 1081.9 923.3 1079.8 931.6 1094.3 880.2 1045.8 

Evapotranspiration 
(mm) 

331.7 417.1 376.5 410.3 366.9 407.8 356.3 397.5 

Surface runoff 
(mm) 

276.31 295.01 287.51 282.41 320.05 300.42 291 286.49 

Return flow (mm) 190.89 237.93 138.77 214.81 132.51 246.87 123.53 228.1 

Lateral flow (mm) 3.85 5.03 3.75 6.5 3.41 6.17 3.25 5.9 

400 500 600 700 

Cali Vali Cali Vali Cali Vali Cali Vali 

Precipitation (mm) 862 1044.7 925.1 1075.7 932.3 1106 932.3 1106 

Evapotranspiration 
(mm) 

268.9 383.6 356.3 325.7 357.6 403.9 364.8 408.9 

Surface runoff 
(mm) 

265.14 303.96 328.99 447.42 334.36 245.49 306.76 296.12 

Return flow (mm) 203.12 182.61 124.83 59.15 127.21 319.59 138.71 252.52 

Lateral flow (mm) 2.98 4.55 2.98 34.03 2.98 5.44 3.36 5.84

5 Conclusions 

In this study, the effect of drainage area threshold (DAT) values on streamflow output 
and water balance analysis were carried out. The following are the key conclusions 
derived from this study: 

1. The sensitivity analysis of hydrological input parameters was carried out using the 
observed data at Burhanpur stream gauging station for the period (1998–2007). 
Parameters like GW_REVAP.gw, CN2.mgt, GW_DELAY.gw, GWQMN.gw, 
ESCO.hru, SOL_AWC.sol, SOL_K.gw were found to be sensitive for all eight 
different drainage area threshold value-based models. 

2. After going through the rigorous process of calibration and validation of eight 
different SWAT models with different drainage area thresholds on a monthly 
time scale, based on the performance evaluation parameters and annual water 
balance analyses, 200 km2 drainage area threshold was found as an optimal 
value to develop SWAT model in the Burhanpur sub-catchment of Upper Tapi 
River basin, India. 

3. For 200 km2 DAT model, the value of statistical performance indicators was 
NSE = 0.85 and R2 = 0.89 for calibration (1998–2007) and NSE = 0.93 AND 
R2 = 0.93 for validation (2008–2013) periods. Model performance has been
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found to be very good [18]. The value for p-factor and r-factor for calibrated 
model was acceptable according to criteria given by Abbaspour et al. [15]. 

4. For the 200 km2 DAT model, surface flow contribution was 70% of total flow 
which is justified considering high slope and clayey soil being the most domi-
nant soil type in the region whereas ET accounted for 39% of total annual rain-
fall which is relatively less even though there is humid climatic setting in the 
Burhanpur sub-catchment. 
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Abstract The current research is based on the comparative analysis conducted using 
land-use maps of 2005 and 2015. SWAT simulations are undertaken on a monthly 
time scale to estimate runoff for associated rainfall. The coefficient of correlation 
(R2) and Nash–Sutcliffe efficiency (NSE) for rainfall and the accompanying runoff 
for the calibration period of 10 years (1988–97) are determined to be 0.99 and 0.99 
respectively at Gidhade station and 0.95 and 0.9 for Sarangkheda station. And for 
the next 7 years (1998–2004) of the validation period, values of R2 and NSE are 0.99 
and 0.99 and 0.99 and 0.98 for Sarangkheda and Gidhade stream gauge stations. 
The above-mentioned results are comparatively similar for both land-use maps for 
2005 and 2015. Based on model predictions, it is found that the annual surface runoff 
reduced marginally while the evapotranspiration increased, while baseflow and deep 
aquifer recharging remain unchanged. The surface runoff has decreased by 3.23% in 
the ten years, water in shallow aquifer returning to root zone has lowered by 0.34%, 
and evapotranspiration has increased by 1.07%. In terms of land-use classes, there 
has been a significant increase in rangeland and a decline in agricultural land. 
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1 Introduction 

In recent years, research has focused on the hydrological impact of land-use change, 
significantly regarding rainfall–runoff response [3]. This is because the dynamics of 
the rainfall–runoff process are driven by LULC change in combination with rain-
fall, properties of soil and terrain. LULC impacts on the processes of hydrology 
occur quickly as compared to soil and elevation, allowing researchers to investigate 
their direct impact [7]. Drought, flooding, landslides, and extreme soil erosion are 
becoming more common worldwide, particularly in the tropics and are influenced 
by climate change, and anthropogenic activities mainly LULC modification are also 
an important factor [6]. Due to the effects of this change on watershed, it is crucial 
to study this interaction between environment and human beings. 

Several studies have already been conducted worldwide to examine the effect of 
LULC change on water balance parameters at the sub basin scale [10]. In past years, 
the assessment of LULC alterations has gained importance in providing options for 
land developments and forecasting environmental consequences at small scales [2]. 
Previous and current LULC change scenarios were used in hydrological models to 
find out the response of water balance in the catchments [13]. The impact of changes 
in land-use on runoff characteristics varies by location. 

Land use management has changed streamflow patterns, deep and shallow aquifer 
recharge, surface and sub-surface runoff, and return flow, among other factors, with 
various environmental consequences [8]. As a result, it is essential to look into the 
impact of LULC changes on runoff characteristics in the area of interest, especially if 
the area has any unique features. This paper uses a Tapi river sub-basins case study to 
examine the effects of LULC alterations on streamflow. Sub-watershed runoff and 
water yield were computed and compared for a similar period. 

2 Study Area and Data Source 

2.1 Sub Basins of Middle Tapi River Basin 

The Tapi basin covers 65,145 km2 or approximately 2% of the country’s entire 
geographic area. It originates in the Madhya Pradesh district of Multai and ends in 
the Arabian Sea near Surat. Apart from supporting various residential water supply 
schemes, industry, and hydropower in its watershed, the Tapi River is a crucial source 
of irrigation and acts as a significant part in the agricultural economies of Maharashtra 
and Gujarat. However, the river basin used in this study has an area of 17,684.99 km2, 
starting Savkheda Station till Ukai Dam, as shown in Fig. 1. Since the basin is at the 
middle part of the basin, observed discharge data at savkheda has been used as the 
inlet discharge data for the study.
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Fig. 1 Index map of the study area 

3 Data Collection 

3.1 Digital Elevation Model (DEM) 

The watershed was delineated and additional topographic processing was done using 
a digital elevation model (DEM) SRTM DEM with 30 m resolution obtained from 
the USGS. 

3.2 Land Cover/Land Use (LULC) 

The bare surface was obtained using two land-use maps created by India’s National 
Remote Sensing Centre (NRSC) in 2005 and 2015 (1:250,000). Unless their location 
agreed with the location of the bare surface generated from NRSC LULC data, all 
fallow land found from satellite images was classed as agricultural land. The final 
land-use data is divided into six categories, included in the SWAT2012 database. 
Water (or WATR in SWAT), general agricultural (AGRL), shrub grassland (RNGB), 
barren surface (BARR), forest (FRSD), and urban (URMD) settlements were the 
six types of settlements. 

3.3 Soil Data 

Meteorological data resolution substantially impacts streamflow and sediment load 
modeling, and a fine spatial resolution soil map will improve the model’s prediction
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accuracy. The National Bureau of Soil Survey and Land Use Planning provided 
the soil map for this investigation (NBSS&LUP). Initially, the complete area was 
digitized manually in ArcGIS using state-wise soil maps in JPG format. Then, a 
separate excel file was prepared for the corresponding soil series properties according 
to the required format. And finally, both were imported to ArcSWAT. According to 
the Middle Tapi Basin, the soil map (30 arc-second raster resolution) was projected 
to WGS1984 UTM Zone 43 N using the raster re-projection tool in ArcGIS. 

3.4 Weather Data 

Meteorological data is one of the most crucial information required by the SWAT 
model. The SWAT model typically requires at least two observed metrological data 
to acquire proper runoff, namely daily rainfall data and temperature data. In contrast, 
the other metrological parameters can be simulated by the SWAT model utilizing a 
weather generator. Rainfall data for 24 different stations in the basin was received 
from the Indian Meteorological Department (Pune) for this study. IMD also provided 
temperature data (maximum and minimum) in a grid format (01° × 01°). Other 
climatic characteristics, such as solar radiation, relative humidity, and wind speed, 
were simulated using the SWAT model and weather generator. 

3.5 Streamflow Data 

SWAT is a model that simulates the effects of land use and management on water, agri-
cultural chemical yields, and sediments of watersheds that are not gauged [11]. Even 
with the lack of data for calibration and validation, the model is run and implemented. 
However, calibration and validation are still required in hydrologic modeling inves-
tigations. The Central Water Commission (Surat) provided the rainfall data needed 
for this investigation. The most powerful instrument for calibrating and validating 
the model’s performance is discharge data. In the present work, daily discharge data 
for the period from 1988 to 2004 including three separate stations, namely Gidhade, 
Sarangkheda, and Savkheda, were used. 

4 Materials and Methods 

4.1 SWAT Model 

The Soil and Water Assessment Tool was developed by the USDA’s Agricultural 
Research Service in Texas. There are mainly two ways to categorize SWAT:
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1. It can be classed as a deterministic model based on input and uncertainty. 
2. It can also be classed as a semi-distributed model based on spatial representation 

of the watershed. 

SWAT considers a variety of physical processes to represent surface runoff and 
sediment in a watershed. Examples of physical processes include evapotranspiration, 
evaporation, infiltration, prospective and actual evapotranspiration, lateral flow, and 
groundwater contribution. Because sediment, pesticides, and nutrients are delivered 
through streamflow from upland watersheds, the accuracy of sediment, pesticide, 
and nutrient prediction is dependent on the precision of hydrologic cycle prediction 
[5]. The hydrology simulation in the SWAT model can be divided into two essential 
parts: (1) land and (2) routing phases of the hydrological cycle. This model allows its 
user to estimate the relative influence of climate, soil, management, and vegetation 
changes (Arnold and Allen 1998). 

4.2 Selection of Input Parameters 

The SWAT model was parameterized with land-use inputs for two time periods 
using parameter ranges which were assigned during calibration of the model (Table 
1). With the NSE results in hand, there is a solid case to be made for employing the 
discovered parameters as an input to model study for the complete watershed over a 
more extended period to analyze the basin’s response to land-use change [4, 12]. 

Table 1 SWAT parameters were used in model calibration 

Parameter Description Initial range Calibrated value 

r__CN2.mgt SCS runoff curve number −0.3 to 0.3 −0.285 

v__REVAPMN.gw Threshold depth of water in the shallow 
aquifer for “revap” to occur (mm) 

50–150 52.5 

v__ESCO.bsn Soil evaporation compensation factor 0.6–0.9 0.7875 

r__SOL_K().sol Saturated hydraulic conductivity −0.6 to 0.3 −0.5325 

r__SOL_AWC().sol Available water capacity of the soil layer 0–0.6 0.405 

v__GW_REVAP.gw Groundwater “revap” coefficient 0.1–0.25 0.20125 

v__ALPHA_BF.gw Baseflow alpha-factor (days) 0–0.4 0.39 

v__SURLAG.bsn Surface runoff lag time 0.1–1.5 1.255 

v__HRU_SLP.hru Average slope steepness 0.001–0.01 0.004325 

v__RCHRG_DP.gw Deep aquifer percolation fraction 0.003–0.01 0.008775
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5 Results and Discussions 

5.1 Calibration and Validation 

SWAT simulation covered 20 years from 1985 to 2004 using SWAT-CUP. This soft-
ware (Calibration and Uncertainty Procedures) has been prepared in order to calibrate 
the data outputs from SWAT simulations [1]. The process of calibration was carried 
out using 1988 to 1997 streamflow data, and it was validated using the remaining 
data from 1998 to 2004. Calibration of the model using identified set of parameters 
and their corresponding values has improved the model prediction capability. Firstly, 
the procedure was implemented for the model prepared using land-use data of the 
year 2005, which improved the precalibrated model at Sarangkheda station, NSE 
right from 0.91 to 0.99 and R2 from 0.97 to 0.99. The procedure also enhanced the 
performance of uncalibrated model at Gidhade station, NSE from 0.89 to 0.95 and 
R2 from 0.94 to 0.95. 

Compared to prior SWAT modeling studies, these calibrated values are relatively 
high. Secondly, the same calibration and validation process was implemented for the 
model prepared using land-use data of the year 2015. And, hence again same results 
were drawn, i.e., at Sarangkheda station, NSE is 0.99, and R2 is 0.99, and at Gidhade 
station, NSE is 0.95 and R2 is 0.95. Furthermore, based on the criterion, NSE greater 
than 0.5 and values R2 of above 0.5 are regarded as “acceptable and satisfactory” [9]. 

The improvement can be seen in the calibration plot shown in Fig. 2 where it can 
be seen that there is a marked improvement in line fitting, especially for baseflow. 
Validation also yields good simulation results, both using land-use data of 2005 and 
2015, at Sarangkheda station, NSE is 0.99, R2 is 0.99, and at Gidhade station, NSE 
is 0.99, and R2 is 0.98. Several factors can influence the model’s performance. In 
this case, we are using observed discharge data at Savkheda station as an inlet point, 
tremendously increasing the model performance. Due to which similar calibration 
and validation results have been observed both for LULC of 2005 and 2015.

5.2 Land Use/Land Cover (LULC) Change 

The SWAT model was parameterized with few more land-use inputs for the two time 
period using parameter settings identified during calibration of the model (Table 1). 
With the NSE results in place, there is a solid case to be made for employing the 
discovered parameters as input to the model for the complete watershed over a more 
extended period to analyze watershed balance components to the change in land use. 
From 2005 to 2015, the LULC change in the Tapi River’s Middle watershed indicated 
an increase in grassland and water but a decline in the forest, barren, and available 
agricultural land, which can be observed in Fig. 3.

The LULC alteration resulted in a 2.4 mm reduction in annual surface runoff 
(Table 3) not only decrease in the runoff but also in revaporization from shallow
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Fig. 2 Discharge versus time series plot of at Sarangkheda and Gidhade stations both using land 
cover maps of 2005 and 2015

aquifer cab noted by an annual value of 1.05 mm. Moreover, evapotranspiration 
has increased by 3.7 mm per year, whereas percolation and deep aquifer recharge 
have remained constant. In addition, the base is also unaltered. While the percentage 
cover of urban land remained unchanged for both periods, the percentage cover of 
agricultural land decreased by 3.9% (Table 2). There was also a major increase in 
the percent cover of grasslands, while the percent cover of barren land declined by 
1.1%. There is a slight rise in the water-covered area and a decrease in the forest 
area.

Increased evapotranspiration and decreased shallow aquifer revaporization are 
direct results of grasslands, while barren lands decreased. In addition, in 10 years, 
the reduction in surface runoff results from a combination of land-use changes, 
including changes in evapotranspiration, percolation, and agricultural cover. These 
reactions are ruled by the same hydrologic principles that influence LULC’s linkages 
with surface runoff, infiltration, evapotranspiration, percolation, and deep aquifer 
recharge. 

6 Conclusions 

The following conclusions can be drawn from the preceding research:

1. This study found that LULC change impacts the hydrologic responses of Middle 
Tapi Basin watersheds regarding water quantity and hydrologic occurrence 
timing. According to model simulations, annual surface runoff declined as evapo-
transpiration increased, also base flow and deep aquifer recharge remained steady.
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Fig. 3 Land use/land cover (LULC) maps a 2005 and b 2015 for the watersheds of Middle Tapi
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Table 2 Percent area of LULC classes for 2005 and 2015 with its relative changes 

LULC classes LULC code 2005 Percent cover 
(%) 

2015 percent cover 
(%) 

The difference in  
percent cover 
(2015–2005) 

Urban URML 1.54 1.54 0 

Agricultural AGRL 42.12 38.19 −3.92 

Grassland RNGB 18.69 23.93 5.23 

Forest FRSD 21.01 20.93 −0.07 

Barren BARR 11.98 10.91 −1.07 

Water WATR 4.66 4.91 0.25 

Total - 100 100 0 

Table 3 Water balance for the 2005 and 2015 LULCs 

Hydrologic variables LULC 2005 LULC 2015 

mm % mm % 

Surface runoff 4.95 7.0815 47.9 6.8526 

Baseflow 0.37 0.053 0.37 0.053 

Revap shallow aquifer 302.1 43.219 301.0 43.069 

Deep aquifer recharge 2.88 0.412 2.88 0.412 

Evapotranspiration 344 49.213 347.7 49.742 

Precipitation 699 100 699 100

As per land-use classes, there is a modest decline in agricultural land and a high 
increase in grassland.

2. Below-mentioned three hydrological variables show the following changes in 
terms of percentage. Surface runoff has decreased by 3.23% in the ten years 
from 2005 to 2015, water in shallow aquifer which were returning to root zone 
has lowered by 0.34%, and evapotranspiration has increased by 1.07%. 

3. It was discovered that the model’s performance in terms of NSE and R2 does 
not change significantly for both LULCs. One of the critical reasons for strong 
model performance for both LULCs could be the use of observed discharge data 
at Savkheda as an inlet. 

4. tWater sustainability involves research based on a hydrological change in 
response to changes in land-use patterns, and hence, efforts must be made to 
bridge information gaps and provide a decision-making support system for this 
critical ecosystem. 
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Temporal Variation of Percolation 
and Evapotranspiration Components 
in the Water Cycle for the Ropar District, 
Punjab, India, Using SWAT 

Thallam Prashanth and Sayantan Ganguly 

Abstract Hydrological modeling is the mathematical representation of hydrolog-
ical processes. Hydrological models analyze a basin’s yield and response over 
time. Solving the continuity equation can quantify the amount of water available 
as direct surface runoff, groundwater recharge, evapotranspiration, etc., over time. It 
is observed that both annual/monthly precipitation and temperature vary with respect 
to time and space in the Ropar. The main objectives of this study are to validate the 
monthly average streamflow using the SWAT model at the Ropar headwork and 
determine the variation in groundwater recharge and evapotranspiration with respect 
to time at Ropar district in Punjab. The study also aims to analyze annual rainfall 
trends, evapotranspiration, and percolation obtained from SWAT from 2008 to 2019 
at Ropar. The model was calibrated for the period from 2008 to 2015, and NSE of 
0.55 was obtained in the study. The results are validated for the simulated flow for a 
period of 2016–2019 where R2 value of 0.722 and NSE value of 0.6 are achieved. 

Keywords Hydrologic modeling · Water-balance equation · SWAT modeling ·
Land-phase · Routing-phase · Modified SCS-CN 

1 Introduction 

The quantification of hydrologic variables is essential in water resources develop-
ment and management. A proper water management plan must be developed to 
meet the water demand among the population residing in arid and semi-arid regions 
[1]. Currently, rainfall–runoff models are increasingly used to analyze the yield and 
response of any basin due to changes in land use, weather parameters, etc. [2]. Hydrol-
ogists must select a simple model that utilizes fewer parameters and consumes less
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time [3]. A model is a mathematical representation of the physical processes, here, the 
physical process is a water cycle, and therefore, the model is said to be a hydrological 
model. Based on their mathematical structure, hydrological models are divided into 
three categories: spatial, temporal representation and simulation [4]. Spatial represen-
tation tells how the weather parameters vary with respect to location. Based on spatial 
representation, it is further sub-divided into three types, namely lumped (low reso-
lution), semi-distributed (medium resolution), and distributed models (higher reso-
lution). Temporal representation tells how the weather parameters vary with respect 
to time. It is further sub-divided on temporal representation into two types: event-
based (simulates individual event) and continuous based (simulates long-term event). 
Simulation basis tells about different methods to determine hydrological parameters 
mathematically. Based on the simulation basis of the hydrological processes, it is 
further divided into three types, namely empirical models (fitted regression equa-
tions), conceptual models (partial representation of hydrological process), physical 
models (hydrological process is represented in detailed manner) [4]. 

The Variable Infiltration Capacity (VIC), Hydrologic Engineering Center-
Hydrological Modeling Software (HEC-HMS), and Soil and Water Assessment Tools 
(SWAT) models help to quantify hydrological parameters and prepare a proper water 
management plan for a basin. These models also help to analyze the change in the 
basin response in terms of quality and quantity when there is a change in land use, 
land cover, and soil type [1]. We can also determine the runoff at any location on the 
stream by digitizing the outlet. When there is a change in rainfall, temperature, and 
the magnitude of changes in land use, hydrological modeling plays a significant role 
in it. 

The SWAT model has been used for several basins to determine climate change 
impact on water availability [5]. Kiprotich et al. [6] studied assessing the effects 
of land use and climate change on direct surface runoff response using SWAT+ on 
the upper Athi basin. They obtained that Nash–Sutcliffe efficiency (NSE) of about 
0.89 for calibration and validation. Similarly, Park et al. [7] used the SWAT model 
to evaluate mixed forest evapotranspiration and soil moisture for the Seolma-cheon 
basin. Chandra et al. [8] validated SWAT for determining sediment yield for the Upper 
Tapi basin. Their results show that SWAT is a suitable modeling tool for determining 
the hydrological parameters and analyzing the sediment yield for a watershed. 

In Ropar, the annual/monthly precipitation and temperature vary with time and 
space. For proper water management in Ropar, streamflow, evapotranspiration, and 
percolation are to be quantified. The primary objectives of this study are to calibrate 
and validate the monthly average streamflow by using the SWAT model at the Ropar 
headwork to predict the variation in groundwater recharge and evapotranspiration 
with respect to time in the Ropar district in Punjab. The study also computes the 
annual trends of rainfall, percolation, and evapotranspiration with respect to time 
obtained from SWAT.
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2 Materials and Methods 

2.1 Study Area and Data Source 

The present study encompasses the Sutlej basin, which originates from the 
Manasarover lake (Elevation= 4570 m) at Mount Kailash in China (Tibetian Plateau) 
and extends toward the Shipkila at Himachal Pradesh (Greater and lesser Himalayan 
Ranges), Punjab (Siwalik Hills or Outer Himalayas) in India. The Sutlej basin covers 
3% area of the Xizang state in China, 62% area of the Himachal Pradesh state, and 
35% area of the Punjab state in India. The Sutlej basin extends at latitudes of 30°N to 
33°N and longitudes of 74°E to 82°E. As per the digital world soil map provided by 
Food and Agricultural Organization (FAO), the basin is covered maximum by loam, 
clay, and sandy loam at 0–30 cm depth from ground level. As per the data available 
from the NASA power data access viewer during the period from 1998 to 2020, 
the average annual rainfall of the Sutlej basin is 582 mm, the temperature ranges 
from 0.96 to 48 °C, the wind ranges from 0.22 to 10.62 m/s, and the solar radiation 
ranges from 0.65 to 30.89 MJ/m2/day. The basin receives most rainfall from June 
to September (South-West Monsoon). Figure 1 shows the index map of the Sutlej 
basin. 

Fig. 1 Index map of the study area
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2.1.1 Data Collection 

The ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 
digital elevation models (DEM) required for the study area is available on the USGS 
Earth Explorer website (Fig. 2). The DEM is of 30m resolution and is used to generate 
the stream network (Figs. 3 and 4), hill shade, delineate watershed, etc. Land use 
and land cover (LULC) is developed by performing supervised classification for 
Sentinel 2 satellite images. In Fig. 5, we observed five significant classes, waterbody, 
agriculture, forest, buildup, and barren land. The soil map (Fig. 6) is available on 
the Food and Agricultural Organization (FAO) Website on a scale of 1:5000000. 
Harmonized World Soil Database (HWSD) viewer provides information about soil 
type. SWAT generates Hydrological Response Units (HRUs) using slope, LULC, 
and soil map. HRUs are a unique combination of slope, LULC, and soil. Weather 
parameters like precipitation, maximum and minimum temperature, wind, humidity, 
and solar radiation data are available in the NASA portal at 0.5° * 0.5° resolutions 
(Fig. 7).

2.2 Methodology 

Soil and Water Assessment Tool (SWAT) is a physical-based, semi-distributed, and 
continuous representation of hydrological processes in an area [9]. SWAT computes 
runoff using modified soil conservation service, curve number method (SCS-CN) 
and Green-Ampt infiltration equation. When using daily data, the modified SCS-CN 
method is used to calculate runoff, whereas the Green-Ampt infiltration equation 
is preferred when using hourly data [10]. SWAT calculates evapotranspiration by 
using the Penman–Monteith equation. The SCS-CN method cannot calculate runoff 
in Himalayan ranges due to a lack of slope steepness factor, and it has been modified 
to calculate runoff in Himalayan ranges. Penman–Monteith differs from penman’s 
method by incorporating the aerodynamic parameters and the bulk surface resistance. 
SWAT computes snow runoff by utilizing the average daily temperature. 

SWt = SW0 + 
tΣ

i=1

(
Rday − Qsurf − Ea − wseep − Qgw

)
(1) 

SWt final soil water content (mm) 
t Time (days) 
SW0 initial soil water content 
Rday Amount of precipitation on day ‘i’ 
Qgw amount of return flow on day ‘i’ 
Ea Amount of Evaporation on day ‘i’ 
wseep amount of water entering the vadose zone from the ground surface on day ‘i’ 
Qsurf amount of surface runoff on day ‘i’
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Fig. 2 Sutlej basin DEM

SWAT has two major components: 

• The land phase of the hydrological cycle determines the volume of water, amount 
of sediment, nutrients, etc., along with the higher-order stream network. 

• The routing phase of the hydrological process tells about the water, sediment, 
nutrients, etc., movements from the source to the sink. 

Figure 8 tells SWAT to create a stream network, hill shade, and watershed delin-
eation using DEM. LULC is developed by performing supervised classification on 
the sentinel-2 image using the google earth engine. The soil map is acquired from the
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Fig. 3 Sutlej river sub-basins and reaches

FAO Website and clipped to my study using Arc-GIS. The user gives slope ranges 
in SWAT. It creates Hydrological Response Units by overlaying slope, land use, and 
soil data for the whole Sutlej basin. It requires various datasets spatially and tempo-
rally. The weather generator database prepares input files for SWAT and then writes 
all input tables in the SWAT editor. The SWAT model simulates the land and routing 
phases by considering the physical effect of hydrological processes. We can finally
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Fig. 4 Sutlej basin stream order

read and visualize all the hydrologic elements like runoff at various outlets, ground-
water recharge, and evapotranspiration at different basins for a given weather data 
when it completes the simulation. The simulated flow is compared with the observed 
flow to analyze various hydrological elements over time.

Nonparametric Trend Analysis 
Mann–Kendall test: It is used as the data set when the time series does not follow 
any continuous distribution. In this test, the null hypothesis (H0) tends to have no 
trend, while the alternate hypothesis (Ha) is said to be in decreasing or increasing 
trend. The Mann–Kendall test statistic ‘S’ is determined by: 

S = 
n−1Σ

k=1 

nΣ

j=k+1 

sgn
(
X j − Xk

)
(2)
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Fig. 5 Sutlej basin LULC

Xj, Xk the annual values for the year’s j and k and n is the number of data values. 

The Signum function sgn (Xj–Xk) is calculated by: 

sgn
(
Xj − Xk

) = 

⎧ 
⎨ 

⎩ 

1 if
(
X j − Xk

)
> 0 

0 if
(
X j − Xk

) = 0 
−1 if

(
X j − Xk

)
< 0 

(3) 

Var(S) = 
n(n − 1)(2n + 5) − ∑q 

p=1 tp
(
tp − 1

)(
2tp + 5

)

18 
(4)
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Fig. 6 Sutlej basin soil map

where ‘q’ is the number of tied groups and ‘tp’ is the number of data values of the 
pth group. 

Zc = 

⎧ 
⎪⎨ 

⎪⎩ 

S−1 √
var(S) if S > 0 

0 if  s = 0 
S+1 √
var(S) if S < 0 

(5) 

Significance level ‘α’ is used for testing either decreasing or increasing monotone 
trend (a two-tailed test). At significance level ‘α’ (α = 95%), if the condition-Zc ≥ 
Zα/2 is satisfied, then the trend is considered significant.
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Fig. 7 Sutlej basin weather stations

Sen’s Slope Estimator 
Sen developed the nonparametric test for measuring the slope of a trend in the sample 
of ‘N’ pairs of data. The slope of the simple least square regression line in form Y (t) 
= Q * t + B determines the rate of increase/decrease trend in the variable, where Q 
is the trend given by slope in unit time ‘t,’ making an intercept of B. 

The slope ‘Qi’ is calculated using the formula-Qi = X j−Xk 

j−k where Xj, Xk are 
the annual values in years j and k, respectively, and n is the number of data values. 
The ‘n’ values of Qi are ranked from smallest to largest, and the Sen’s estimator is 
calculated by:
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Fig. 8 Workflow of hydrological modeling using SWAT

Qmedian = 

⎧ 
⎨ 

⎩ 
Q n+1 

2 
if ‘n, is odd

(
Q n 

2 
+Q n+1 

2

)

2 if ‘n, is even 
(6) 

The median of these values indicates the steepness of the trend, and its sign 
indicates the reflection of the data trend. Confidence interval about time slope is Cα 
= Z1−α/2 * var(S). M1 = n−Cα 

2 , M2 = n+Cα 
2 . The lower and upper limits of the 

confidence interval are Qmin and Qmax for M1th and (M2 + 1)th of n ordered slope 
estimates. If the same sign demarcates Qmin and Qmax, then they are significant. 

3 Results and Discussion 

The simulated streamflow obtained from SWAT is compared with the observed 
streamflow provided by Ropar Headwork Division (30°59,10,,N, 76°31,14,,E) by 
using SWAT-CUP. Figure 9 indicates the water availability (stream flow) with respect 
to time (months) near Ropar headwork, and it gives information about peak flows 
observed between July to October. Figure 10 shows the variation of annual rainfall 
(mm), evapotranspiration (mm), and percolation (mm) with respect to time in the 
Ropar district. In 2009, 2012, and 2016, evapotranspiration was more than rainfall, 
and there was no recharge in those years. When rainfall increases, percolation and 
evapotranspiration increase. Figure 11 shows the variation of water percolation with
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annual rainfall. The water table rises when there is a minimum rainfall of 500 mm. 
Figure 12 shows that as rainfall increases evapotranspiration also increases. Annual 
percolation, evapotranspiration from SWAT, and annual rainfall data (2008–2019) 
are not following a normal distribution. Therefore, a nonparametric test like Mann– 
Kendall, Sen’s slope estimator is suitable. Table 1 shows Zc values obtained from the 
Mann–Kendall test and is compared with Zα/2 at a 5% significance level. At a 5% 
significance level, it is observed that evapotranspiration has a significantly increasing 
trend while percolation and rainfall have no trend from 2008 to 2019. Table 2 shows 
Qi values from Sen’s slope estimator test at a 5% significance level. Here, we should 
compare signs of Qmax and Qmin. It is observed that evapotranspiration has the same 
sign, i.e., significantly increasing; percolation and rainfall have opposite signs, i.e., 
no significant trend. 
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Fig. 9 Streamflow (cumecs) versus time (months) at Ropar headwork 
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Table 1 Zc obtained from the Mann–Kendall test at 5% significance level 

Parameters Zc Z0.05/2 Type of trend 

Evapotranspiration 2.4 1.96 Significantly increasing 

Percolation 0.82 1.96 No trend 

Rainfall 1.57 1.96 No trend 

Table 2 Qi obtained from Sen’s slope estimator test at 5% significance level 

Parameters Qmedian Qmin Qmax Sign Type of trend 

Evapotranspiration 13.53 3.15624 23.1729 same Significant 

Percolation 6.62 4.42958 − 24.245 not same Not significant 

Rainfall 28.08 28.5911 − 26.113 not same Not significant 

Fig. 11 Percolation versus 
rainfall 
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3.1 Calibration and Validation 

For a watershed, it is essential to determine the key parameters which will help 
calibrate the model. SWAT-CUP is a user-friendly tool that helps understand how 
hydrologic variables respond within the basin. Sequential uncertainty fitting algo-
rithm (SUFI-2) is one of the algorithms used in SWAT-CUP, which provides better-
optimized results and gives broad knowledge on how parameters are responding 
within the basin so that users can perform sensitivity analysis to achieve goodness 
of fit. In this study, the model was calibrated for the period from 2008 to 2015 and 
validated for 2016 to 2019. In calibration, an R2 value of 0.8 and an NSE value of 0.55 
were obtained (Fig. 13), while in validation, an R2 value of 0.722 and an NSE value 
of 0.6 were obtained (Fig. 14). Table 3 shows the parameters used for calibration and 
validation in the SWAT-CUP. 

Fig. 13 Scattered plot 
between simulated and 
observed flows from 2008 to 
2015 
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Fig. 14 Scattered plot 
between simulated and 
observed flows from 2016 to 
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Table 3 Parameters used for calibration and validation 

S. No. Parameter Fitted parameter Minimum value Maximum value 

1 V__CN2.mgt 67.894806 41.336697 69.590004 

2 V__ALPHA_BF.gw 0.430663 0.357901 0.877631 

3 V__GW_DELAY.gw 140.487167 101.554291 317.848022 

4 V__GWQMN.gw 2.555232 1.504731 2.924327 

5 V__GW_REVAP.gw 0.036951 0.02881 0.110216 

6 V__ESCO.hru 0.871015 0.848365 0.935479 

7 V__CH_N2.rte 0.316455 0.131072 0.320238 

8 V__CH_K2.rte 98.222443 38.499077 119.206322 

9 V__ALPHA_BNK.rte 0.547293 0.334021 0.797655 

10 V__SOL_AWC(..).sol 0.542261 0.187152 0.620212 

11 V__SOL_K(..).sol 4.596707 0 32.833622 

12 V__SOL_BD(..).sol 1.625816 1.227363 1.965239 

13 V__SFTMP.bsn 1.090274 0.546916 5.980496 

14 V__SURLAG.bsn 14.516365 5.881654 18.216955 

15 V__RCHRG_DP.gw 0.522412 0.183072 0.697224 

4 Conclusions 

The following conclusions are derived from the preceding study: 

1. The SWAT model quantifies all hydrological parameters for a Sutlej Basin. The 
model simulated the variation of hydrological parameters with time (monthly 
scale). This quantification of all hydrological parameters can be used in the 
future for proper water management. 

2. Global sensitivity analysis in SWAT-CUP tells us which parameters are more 
sensitive. In this study, CN2, GW_DELAY.gw, ALPHA_BF.gw, SURLAG.bsn, 
RCHRG_DP.gw, etc., are the most dependent parameters in the model. 

3. It had been observed that R2 values obtained 0.8 for calibration and 0.722 for 
validation respectively at Ropar headwork which accesses goodness of fit. 

4. We found no trend for rainfall or percolation at 5% significance in Mann–Kendall 
and Sen’s slope estimator, but there is an increase in the significant trend for evap-
otranspiration. When there is a water shortage in Ropar and evapotranspiration 
losses must be reduced, artificial recharge structures based on water availability 
near higher-order streams and lithology in the Ropar district must be built. 

5. These results can be helpful for stakeholders or government officials for better 
water management in the Ropar district and also beneficial in locating areas 
suitable for artificial recharge structures.
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The Role of Objective Functions 
in Assessment of Water Balance 
Components Using SUFI-2 Algorithm 
in Semi-arid Basin 

Alka Sharma, P. L. Patel, and Priyank J. Sharma 

Abstract The Soil and Water Assessment Tool calibration and uncertainty program 
(SWAT-CUP) is equipped with many algorithms. The sequential uncertainty fitting 
2 (SUFI-2) algorithm is one of the algorithms which is used in the Dharoi catch-
ment of Sabarmati basin, India, for calibrating and validating the SWAT hydrologic 
model by considering seven objective functions. The different objective functions are 
examined to understand their influence on the results obtained during calibration, the 
best-fitted parameter values, and water balance components estimation. During cali-
bration and validation processes, statistical performance indices of all the objective 
functions are found to give satisfactory results. The best-fitted parameter values using 
different objective function are different, except in case of Nash–Sutcliffe efficiency 
(NSE) and ratio of root mean square error and the standard deviation of observations 
(RSR). Due to same-fitted value generated by using NSE and RSR, the obtained 
water balance components, i.e., surface runoff (Qs), lateral flow (Lat), evapotran-
spiration (Ea), and percolation (Perc) are also found to be the same. The range of 
45–59% (20–30%) (11–14%) evapotranspiration (surface runoff) (percolation) using 
different objective functions is estimated for the present area. It is concluded that the 
water balance estimated given by NSE and KGE is relatively reasonable than other 
objective functions. This analysis would help in selecting the objective functions 
used to produce predictive hydrological model during calibration in SWAT-CUP 
using SUFI-2 algorithm. 
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1 Introduction 

Hydrological models are the caricature of the hydrological behavior of the basin. 
They help to understand the impact studies related to climate and land-use change, 
to manage water resources, to study water quality and sedimentation, and to predict 
future water availability of a basin. The Soil and Water Assessment Tool (SWAT) 
is physically based, semi-distributed, continuous, and watershed-scale simulation 
model that simulates the large number of physical processes such as evapotranspi-
ration loss, surface and subsurface runoff, groundwater flow, sedimentation, and 
snow contribution [1]. Hydrological modeling includes (i) calibration and validation 
from observed streamflow and climatic data and (ii) generation of streamflow series 
using the weather data of global climatic models (GCM) or regional climate models 
(RCM). Therefore, a properly calibrated and validated model and its uncertainty 
analysis are necessary for the reliable hydrological model and to analyze the basin 
to ensure proper water management. 

The process of calibration and uncertainty analysis is always inter-related, and the 
results obtained during calibration always be investigated with the quantified degree 
of uncertainty in predicting the model [2]. Various parameters need to be calibrated 
in a physically based, semi-distributed hydrological model like SWAT. Calibration 
process is executed by selecting the parameter values within respective uncertainty 
ranges and then comparing the simulated and observed measured data [1]. SWAT 
includes several calibration techniques which include manual as well as automatic 
calibration using the shuffled complex evolution method. The SWAT calibration 
and uncertainty program (SWAT-CUP) connect SWAT model to algorithms, viz., 
sequential uncertainty fitting 2 (SUFI-2), generalized likelihood uncertainty estima-
tion (GLUE), parameter solution (ParaSol), Markov chain Monte Carlo (MCMC), 
and particle swarm optimization (PSO) algorithms [2] which are frequently and 
widely used by researchers to perform uncertainty analysis and calibrating [3, 4]. 

Among these algorithms, SUFI-2 is one of the most popular algorithms to carry 
out calibration/validation and uncertainty analysis [5]. Many objective functions are 
incorporated in the SUFI-2 algorithm for performing the calibration and uncertainty 
analysis. To simplify the burden of calibrating a model, many researchers [6, 7] have  
contributed to verify the reliability and accuracy of hydrological model based on 
the statistical performance and graphical representation. Moriasi et al. [7] suggested 
model performance as “satisfactory” if Nash–Sutcliffe efficiency (NSE) > 0.50, ratio 
of root mean square error to the standard deviation of observed values (RSR) < 0.70, 
and percent bias (PBIAS) ± 25% for model simulation. Ritter and Munoz-Carpena 
[8] gave the threshold of > 0.65 to consider a model as a satisfactory one. Legates 
and McCabe [9] reported over sensitive nature of NSE to extreme values which is 
considered inappropriate for model evaluation and proposed modified coefficient 
of efficiency that replaced square differences by absolute values. Gupta et al. [10] 
proposed Kling-Gupta efficiency (KGE) to improve the bias and variability of the 
model. Kouchi et al. [11] compared eight objective functions (NSE, MNS, RSR, R2 

(coefficient of determination), KGE, bR2 (modified coefficient of determination),
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PBIAS) with different algorithms (SUFI-2, GLUE, and PSO) of SWAT-CUP and 
calibrated the SWAT model at monthly time scale in the two watersheds in Iran. 
They obtained different parameter ranges by using the three algorithms with the 
same objective function during the calibration process. Similarly, different objective 
functions gave different parameter ranges with the different algorithms. Hence, the 
resulting parameter range leads to different estimation of water balance for the water-
shed, and it can be said that the calibrated models are “conditioned” and based on the 
choice of objective function and algorithm utilized during the calibration process. 

A valid question is whether the choice of the objective function can influence 
the water balance component of hydrologic model which is the representation of 
the hydrologic behavior of a multi-faceted natural system? In the present work, an 
attempt is made to answer this question and to represent the hydrologic phenomenon 
for semi-arid Dharoi catchment of Sabarmati basin, India, by using SUFI-2 algorithm 
with different objective functions, viz., NSE, MNS, RSR, R2, KGE, bR2, and PBIAS. 
The current work also aims to identify objective function for water resources estimate 
of the basin. 

2 Material and Methods 

2.1 Study Area 

One of the major west-flowing rivers of India is the Sabarmati River which originates 
at an elevation of 762 m from the Aravalli Hills of Rajasthan in village Tejpur in 
Udaipur and after traveling 370 km meets the Gulf of Cambay in the Arabian Sea. 
The total catchment area of the basin is 30,674 km2 that is shared by Rajasthan 
(19%) and Gujarat states (81%) [12]. The basin lies between 70° 58, E and 73° 51,
E and 22° 15, N to 24° 47, N. Sabarmati basin covers Udaipur, Sirohi, Pali, and 
Dungarpur districts of Rajasthan and Sabarkantha, Kheda, Ahmedabad, Mahesana, 
Gandhinagar, and Banaskantha districts of Gujarat in the east of the Sabarmati River 
basin. There are several dams and reservoirs on Sabarmati and its tributaries. Dharoi 
dam is in the northern part of the Sabarmati River basin. The catchment area of the 
Dharoi catchment is 5540 km2, out of which about 2640 km2 lies in Gujarat state 
and the rest of the part lies in Rajasthan. The terrain of the Sabarmati basin is hilly 
in the early reaches up to Dharoi after which the river flows mostly in plains. The 
mean annual rainfall of the Dharoi catchment is 633 mm [12]. The monsoon season 
starts from June to September months in the basin. The catchment is mainly covered 
by agricultural and forest lands. The index map of presented study area is shown in 
Fig. 1.
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Fig. 1 Dharoi catchment location 

2.2 SWAT Input Data 

Quality of input data is the most important and critical part of any modeling. Results 
obtained from hydrologic models are purely based on given input data. Table 1 shows 
the data source used in this study. The digital elevation model (DEM) (30 m resolu-
tion) is downloaded from the United States Geological Survey [13] (Fig. 2a). SWAT 
uses DEM for the delineation of stream network and watershed boundary and then 
computes the slope of the catchment. Land-use/land-cover imagery of year 2005 
is obtained from National Remote Sensing Centre (NRSC), Hyderabad, India, and 
reclassified into six classes which are forest (48.51%), water/stream (4.13%), agri-
cultural land (27.39%), built-up area, fallow land (5.6%), and scrub land (14.08%). 
Soil map is collected from NBSS and LUP, Nagpur, and then digitized for the present 
study area. The soil type present in study is hydrologic soil group B (68%), C (19%), 
and D (13%) (Fig. 2c) which have low, moderate, and high runoff potential, respec-
tively. The daily gridded rainfall (temperature) dataset of 0.25° × 0.25° (1° × 1°) 
spatial resolution of Dharoi basin is taken for the analysis in the present study for 
the period from 1995 to 2015. The Köppen-Geiger climate classification the study 
area consists of two major climate types. Out of these, the dominant climate type is 
arid BSh (82%), followed by tropical AW and temperate Cwa (18%) [14] (Fig. 2c).
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Fig. 2 a Digital elevation model, b Soil map c Köppen-Geigger climate classification, and d 
Delineated watersheds 

Table 1 Data and data source 

Input data Data source 

SRTM DEM https://earthexplorer.usgs.gov/ 

Meteorological data India Meteorological Department, Pune, India 

Land use/land cover NRSC, Hyderabad, India 

Soil types National Bureau of Soil Survey and Land Use Planning (NBSS and LUP), 
Nagpur, India

https://earthexplorer.usgs.gov/
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Weather generator is used to simulate relative humidity, wind speed, and solar 
radiation due to non-availability of these climatic data. The time series of inflow into 
Dharoi is collected from reservoir Narmada, Water Resources, Water Supply and 
Kalpsar Department, Government of Gujarat, India. 

2.3 Model Setup 

Input data presented in Table 1 is used to set up the Soil Water Assessment Tool 
(SWAT) model. The SWAT model predicts watershed hydrological processes at 
hydrological response units (HRUs) based on soil types, land-use types, and slope 
classes using Eq. 1. 

SWt = SWo + 
tΣ

i=1

(
Rday − Qsurf − Ea − Wseep − Qgw

)
(1) 

where SW t is the final water content (mm H2O), SW o is the initial soil water content 
on day i (mm H2O), t is time (days), Rday is the amount of precipitation on day i 
(mm H2O), Qsur f  is the amount of surface runoff on day i (mm H2O), Ea is the 
amount of evapotranspiration on day i (mm H2O), Wseep is the amount of water 
entering the vadose zone from the soil profile on day i , and Qgw is the amount of 
groundwater flow on day i (mm H2O). Curve number (CN) method is utilized in this 
study to obtain runoff, and to route the flood, variable storage method is utilized. 
The ArcGIS 10.5 and Arc-SWAT 2012 are used in this study. The calibration and 
uncertainty analysis are performed using sequential uncertainty fitting 2 (SUFI-2) 
[15] algorithm. 

The threshold drainage area of 20,000 ha is used to divide the catchment into 15 
subbasins (Fig. 2d) and then into 667 Hydrologic Response Units (HRUs). Calibra-
tion is performed at monthly scale for the years 1993–2009 which includes two years 
(1993–1994) of warm-up period. The built-in semi-automated SUFI-2 algorithm [2, 
16] of the SWAT-CUP software was used to identify the best-fitting parameter set. 
Detailed information about uncertainty analysis techniques using SUFI-2 is given 
in the SWAT-CUP 2012 user manual [16]. The SUFI-2 technique used p-factor and 
r-factor to calculate the uncertainty of the measurements. The r-factor is the average 
thickness of the 95PPU divided by the standard deviation of the measurements, and 
the p-factor is the percentage of measured data surrounded by the 95% prediction 
uncertainty (95PPU), calculated as 2.5 and 97.5% of the cumulative distribution of 
an output variable obtained via Latin hypercube sampling [16]. As a result, the goal 
of the SUFI-2 method is to maximize the p-factor while minimizing the r-factor in 
order to reach the ideal parameter range. Flowchart of methodology is given in Fig. 3.
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Fig. 3 Methodology of present work 

2.4 Parameterization 

Calibration process starts with the selection of parameters and defining the accept-
able initial parameter ranges. The selected parameters range can be changed by two 
methods, i.e., replace and relative. The absolute range of parameters taken in present 
work is presented in Table 2.

2.5 Objective Functions 

SUFI-2 algorithm is linked with eleven objective functions, out of which seven 
(NSE, MNS, RSR, R2, KGE, bR2, PBIAS) are used in present work to evaluate 
their influence on the predicted flow, calibrated parameter range, and water balance 
components (Table 3).

Here, Q is any variable (discharge), a is observed time series value, s is for the 
computed time series value, i stands for the ith observed or computed time series 
value, Q is the average observed time series value of variable Q, Qs is the average 
computed time series value of variable Q, h is the coefficient of the regression line 
between the observed and computed time series value, v is the modified Nash– 
Sutcliffe efficiency factor, num is the total number of observed or simulated time 
series value, j represents the rank, and d is the linear regression coefficient between
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Table 2 Parameters taken in present study 

Parameters Method Description Absolute ranges 

CN2.mgt Relative SCS runoff curve number for moisture 
condition II 

35–98 

SOL_AWC.sol Relative Available water capacity of the soil layer (mm 
H2O/mm soil) 

0–1 

SOL_BD.sol Relative Moist bulk density mm layer (g/cm3) 0.9–2.5 

SOL_K.sol Relative Saturated hydraulic conductivity (mm/hr) 0–2000 

Alpha_Bnk Replace Base flow alpha factor for bank storage (days) 0–1 

GWQMN.gw Replace Threshold depth of water in the shallow aquifer 
required for return flow to occur (mm) 

0–5000 

GW_DELAY.gw Replace Groundwater delay (days) 0–500 

GW_REVAP.gw Replace Groundwater recap coefficient 0.02–0.2 

ALPHA_BF.gw Replace Base flow alpha factor (days) 0–1 

EPCO.hru Replace Plant uptake compensation factor 0–1 

ESCO.hru Replace Soil evaporation compensation factor 0–1 

CH_N2.rte Replace Manning’s n value for the main channel − 0.01 to 0.3 
CH_K2.rte Replace Effective hydraulic conductivity in main 

channel alluvium (mm/hr) 
− 0.01 to 500 

SURLAG.bsn Replace Surface runoff lag coefficient 0.05–24

Table 3 Objective functions considered in the present work 

Nash–Sutcliffe efficiency NSE = 1 −
Σ

i (Qa−Qs )
2 
iΣ

i

(
Qa,i−Qa

)2 

Modified nash–sutcliffe efficiency MNS = 1 −
Σ

i |Qa−Qs |v 
iΣ

i

||(Qa,i−Qa
)||v 

Ratio of the standard deviation of observations 
to root mean square error 

RSR =
/Σnum 

i=1 (Qa−Qs )
2 
i/Σnum 

i=1
((
Qa,i−Qa

))2 
i 

Coefficient of determination R2 =
{Σ

i

(
Qa,i−Qa

)(
Qs,i−Qs

)}2
Σ

i

(
Qa,i−Qa

)2Σ
i

(
Qs,i−Qs

)2 

Kling-Gupta efficiency KGE = 1 − 
/

(d − 1)2 + (∝ −1)2 + (β − 1)2 

Modified coefficient of determination bR2 =
{

|h|R2(i f  |h| ≤ 1) 
|h|−1 R2(i f  |h| > 1) 

Percent bias PBIAS = 100
Σn 

i=1 (Qa−Qs )iΣn 
i=1(Qa,i )
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Table 4 Good-of-fit criteria of considered objective function 

Indices NSE MNS RSR R2 KGE bR2 PBIAS 

Range −∞ to 1 −∞ to 1 0–∞ 0–1 −∞ to 1 0–1 −∞ to ∞ 
Optimal value 1 1 0 1 1 1 0 

Satisfactory value > 0.5 ≥ 0.4 ≤ 0.7 > 0.5  ≥ 0.5 ≥ 0.4 < ± 25 

computed and observed variables, and ∝ = σs 
σm 

and β = μs 

μm 
, where σs and σm are the 

standard deviations of the computed and observed time series value, respectively. μs 

and μm stand for means of the computed and observed time series value, respectively. 

3 Results and Discussions 

3.1 Model Calibration and Validation 

Calibration is a process to compare observed and computed variables with the fitted 
parameter values [17], while in other hand, a good validation result shows the reli-
ability of the calibrated results and fitted parameters range. This study involves the 
hydrological modeling for the calibration period of 1995–2009 and validation period 
of 2010–2014 at monthly time step for Dharoi catchment (Fig. 1). Detailed descrip-
tion of utilized seven objective functions and their optimal and acceptable ranges are 
given in Table 4. The satisfactory threshold for other statistical indices except for 
bR2 and MNS is given by Moriasi et al. [7]. 

3.2 Calibration and Validation 

The simulated and observed discharges at monthly scale (calibration period—1995– 
2009 and validation period—2010–2014) using different objective functions are 
shown from Fig. 4a–f. The computed discharges show good agreement with rainfall.

The calibrated model overestimated peak flows while using R2 and bR2 as these 
objective functions are used to minimize the total errors between the computed and 
observed values. The R2 and bR2 objective functions are oversensitive in nature to 
high extreme values due to the presence of squared difference [9]. The obtained cali-
brated results are similar using NSE, MNS, and RSR objective functions, especially 
the RSR and NSE objective functions (Fig. 4a). These objective functions fit the 
simulated and observed base flows recession curves resulting significant reduction 
of simulated peak flows. The same results using the taken objective function are 
reported by Sao et al. [18] for Pursat River basin, Cambodia. 

The objective function KGE performed well and shows good agreement between 
simulated and observed flows, with little overestimation of peak flows (Fig. 4d). The
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Fig. 4 Simulated discharges at monthly scale using different objective functions

KGE objective function highlights the error between the measured and simulated 
data and then reduces the errors. 

The peak flows are sometimes overestimated, and simulated base flows are some-
times underestimated in case of PBIAS (Fig. 4g) objective function. The limitation 
of this objective function is that it either overpredicts or underpredicts [19, 20].
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Fig. 4 (continued)
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3.3 Statistical Performance of Model 

The obtained calibrated parameter sets using seven different objective functions are 
analyzed and influenced considered objective function on other statistical indices 
(Fig. 5a–g). For the assessment of performance of the model, the p-factor, and r-factor 
are calculated by comparing observed flow to simulated monthly flow. The p-factor 
and r-factor are independent of objective function, and the values of 0.45 (0.35), 0.30 
(0.25) respectively are obtained during the calibration (validation) period for all seven 
objective functions. All objective functions gave satisfactory performance as criteria 
given in Fig. 5. The objective functions (NSE, MNS, RSR, bR2, and KGE) (Fig. 5a–c, 
e–f) satisfied all statistical indices, during the calibration/validation process, whereas 
R2 did not perform well during the validation period with the objective function 
PBIAS (−30.1) (Fig. 5d), while calibration and validation, parameter set obtained 
using PBIAS (Fig. 5g), satisfy all other statistical indices (MNS, NSE, RSR). Cali-
bration period of 1995–2009 is selected as it covers dry, wet, and normal years [21]. 
The validation period (2010–2015) covers wet and normal years, and hence, the 
performance of the statistical indices using objective functions gave relatively better 
results than calibration.

3.4 Water Balance Estimation 

Figure 6 shows average annual water balance components (rainfall P, surface flow 
or runoff Qs, lateral flow Qlat, actual evapotranspiration Ea, and percolation Perc) 
of the calibrated model using different objective functions based on the obtained 
best-fitted parameters. The estimated water balance components and water yields 
are different for different objective function. The annual average Ea using different 
objective functions ranges from 296.5 to 358.9 mm (49–59% of total rainfall). On 
the other hand, Qs varies from 159.6 to 203.5 mm (20–33% of the total rainfall). The 
estimated annual average Qlat generated by considered objective functions ranged 
from 53.6 to 67.6 mm (10–11%). It is worthy to note that RSR and NSE provide 
same water yield in the calibrated model. Due to semi-arid climate zone in Dharoi 
catchment, obtained Ea loss varies in the range of 50–60%. The Ea loss estimated by 
NSE and RSR provided more close results as compared to other objection functions. 
The type of soil present in the study area allows Perc loss ranges from 11 to 14%. 
The reasonable estimation is given by almost all objective functions (MNS, NSE, 
RSR, PBIAS, and KGE) (Fig. 6).
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Fig. 5 Model performance evaluated using different objective functions

3.5 Best-Fitted Parameters 

The results discussed in previous sections are dependent upon the values of best-
fitted parameter using the considered objection function during calibration (Table 
5). During the calibration process, the most sensitive parameters noticed are CN2, 
GWQMN, GW_REVAP, ESCO, SOL_AWC, and SOL_K. The best-fitted parameter 
values NSE and RSR are same and reflect reasonable water balance components 
based on the land use, soil type, and climatic condition. The average curve number 
of the catchment is 70, and one can expect change from 10 to 14% increase or decrease 
during the calibration process. All objective functions gave relative change ranges 
from 10 to 14% except bR2 and R2 (Table 5). The bR2 (R2) objective function gave 
relative change of 20% (20%) which will produce surface runoff up to 33% which may 
not be possible due to type of land use, soil type, and antecedent moisture condition. 
The smaller thresholds (Table 5) of the parameter GWQMN 402.60 (428.18) are 
produced for bR2 (R2), which is responsible for relative more groundwater flow and
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Fig. 5 (continued)

lower estimation of Ea loss with smaller value of GW_REVAP of 0.12. Low ESCO 
value indicates more water extraction from deep soil layers to meet the evaporative 
demand resulting in high evapotranspiration loss, lower water yield, streamflow, 
and base flow. The lowest value of ESCO is noticed using NSE and RSR objective 
functions. The best-fitted parameter value of SOL_AWC (SOL_K) is noticed in the 
accepted range from −8 to  −18% (−2 to 4%) for all objective functions (Table 5).

4 Conclusions 

The SWAT is applied to Dharoi catchment of Sabarmati basin, India. The model 
is calibrated (validated) for a period from 1995–2009 (2010–2015) using SUFI-
2 algorithm with linked objective functions. Total 14 parameters are considered 
during analysis, out of which the most sensitive parameters are CN2, GWQMN,
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Hydrological Com-
ponents Notations NSE MNS RSR R2 KGE bR2 PBIAS 

Precipitation  (mm) 604.7 604.7 604.7 604.7 604.7 604.7 604.7 
Surface flow  (mm) 124.9 144.5 124.9 203.5 135.5 202.5 159.7 
Lateral flow  (mm) 62.2 65.9 62.2 65.2 61.1 59.6 53.6 

Base flow  (mm) 65.2 71.5 65.2 71.6 83.7 78.4 87.9 
GW  (mm) 8.2 7.9 8.2 10.5 8.9 12.6 6.2 

Actual Evapotran-
spiration  (mm) 359.0 326.5 359.0 302.3 333.9 296.5 325.5 

Percolation  (mm) 68.9 75.4 68.9 80.4 86.7 81.3 91.1 

Total water yield 
 = + 
 + 

(mm) 
252.2 281.9 314.4 340.3 280.2 340.5 301.1 

Fig. 6 Water balance components analysis using different objective functions

GW_REVAP, ESCO, SOL_AWC, and SOL_K. The present work investigated the 
influence of objective functions on the parameter optimizations, calibration results, 
and water resources estimation. The performance of considered objective functions 
showed satisfactory results while calibrating the SWAT model. However, the best-
fitted parameters obtained using different objective functions are different which led 
to different estimations of water balance components. The NSE and RSR generated 
same simulated flows and best-fitted parameter values, and as a result, the same 
estimated water balance components among all objective functions are investigated 
in the current work [18]. It can be suggested that the use of KGE, NSE, RSR, 
MNS, and PBIAS objective functions yields reasonable water balance component 
estimation of any watershed.
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Table 5 Best-fitted parameter value based on objective function 

S. No. Parameter name NSE MNS RSR R2 KGE bR2 PBIAS 

1 SURLAG.hru 2.5 2.1 2.5 2.5 2.1 2.5 2.2 

2 CN2.mgt 0.1 0.1 0.1 0.2 0.1 0.2 0.1 

3 ALPHA_BF.gw 0.2 0.2 0.2 0.2 0.1 0.1 0.1 

4 GW_DELAY.gw 65.4 46.7 65.4 51.0 65.1 63.7 63.9 

5 GWQMN.gw 557.8 600.1 557.8 402.6 520.3 421.2 560.3 

6 GW_REVAP.gw 0.2 0.2 0.2 0.1 0.2 0.1 0.2 

7 ESCO.hru 0.4 0.3 0.4 0.5 0.4 0.5 0.4 

8 EPCO.hru 0.5 0.7 0.5 0.7 0.7 0.6 0.5 

9 SOL_BD.sol 0.0 0.0 0.0 0.0 −0.1 0.0 −0.1 

10 SOL_K.sol −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.2 

11 SOL_AWC.sol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

12 CH_N2.rte 0.5 0.7 0.5 0.8 0.8 1.0 0.9 

13 CH_K2.rte 1.2 3.2 1.2 6.0 6.9 25.6 31.2 

14 ALPHA_BNK.rte 0.9 0.9 0.9 1.0 1.0 0.9 1.0
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Assessment of Future Land Use Land 
Cover Change Impacts on Hydrologic 
Regime of a River Basin 

Kashish Sadhwani, T. I. Eldho, and Subhankar Karmakar 

Abstract Land use and land cover change (LULC) has significant impact on hydro-
logic response at the river basin/watershed level. Quantitative assessment of LULC 
impacts on runoff generations on river basin scale is important for water resources 
development and impact assessment of extreme events. Based on the historical 
LULC changes, the future LULC can be projected, and its impacts can be assessed 
using a hydrologic model. In this study, the future LULC of Periyar river basin in 
Western Ghats in South India is projected using multi-layer perceptron–artificial 
neural network (MLP-ANN) technique in land change modeler (LCM) of TerrSet 
model. The soil and water assessment tool (SWAT) model was used to study the effect 
of LULC change on streamflow. The model was calibrated for the period 1984–2004 
and then validated for 2006–2012. The results show good co-relation for streamflow 
with R2, NSE, and PBIAS, 0.92, 0.84, and 6.5% for calibration period, and 0.85, 
0.67, and 11.8% for validation period, respectively. The impact of LULC change for 
far future is analyzed, and change was compared at monthly, seasonal, and annual 
scale. The results suggested an increase in streamflow annually. Also it suggests 
an increase in streamflow in winter and monsoon season whereas a slight decrease 
in summer season. This information will be useful for planners and researchers to 
understand the impacts of future LULC changes on river basin hydrology. Further, 
it will be helpful in decision-making for preparing future development strategies. 
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1 Introduction 

Flooding is the most common ecological and natural disaster in India for the last 
two decades such as 2005 Mumbai, 2015 Chennai, 2016 Assam, 2017 Gujrat, and 
2018 Kerala. It is important to understand the impacts of future LULC change on 
hydrological responses as past studies have shown that LULC change has showed a 
significant impact over change in the streamflow, which results in flooding [16, 22, 
25–27, 29]. The rapid LULC change, such as extensive agriculture expansion, defor-
estation, unplanned urbanization, and population growth, particularly in a developed 
country like India, has been a major challenge for water resource management. LULC 
change alters basin hydrology by affecting surface runoff, evapotranspiration, soil 
erosion, soil infiltration capacity, and water quality of the basin. The IPCC AR5 report 
stated that extreme rainfall events during the Indian summer monsoon are expected 
to increase, and floods are likely to increase in future. In this regard, it becomes 
important to study the role of LULC change in flooding as it will improve our under-
standing of the hydrological dynamics involved in the flooding. For future LULC 
change assessment, several modeling techniques are available including land change 
modeler (LCM), Markov chain, cellular automata (CA), CA_Markov, GeoMod, and 
stochastic choice (STCHOICE) [7, 10, 12, 23, 28]. All these techniques are embedded 
in TerrSet (formerly IDRISI) environment and help in developing specific realiza-
tions. Among these, LCM has been highly recognized tool in LULC change analysis 
and incorporated in various studies [24, 26]; Ananad et al. (2018). Modeling the 
effects of past and future LULC and climate change on hydrology in the river basin 
can be useful for management of water resource and extreme events (floods and 
droughts) in the area which may help to the management of same at a sub-basin 
level. 

Within the above framework, the main objectives of this study are to assess and 
compare the historical (1988) and projected future LULC (2050) change impact on 
streamflow and other hydrological parameters for Periyar river basin, Western Ghats 
India. The Periyar river basin situated in the Western Ghats of India which is one of 
the highly affected river basins during the 2018 flood of Kerala. In addition, Western 
Ghats is global hotspots region due to the biodiversity and presence of a variety of 
species [21]. In this study, the open source and semi-distributed hydrological model 
SWAT is used for computing the impacts of LULC and climate change on streamflow, 
and SWAT-CUP with sequential uncertainty fitting algorithm (SUFI-2) is used for 
calibration, validation, and sensitivity analysis on a river sub-basin scale.
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2 Study Area and Data Source 

2.1 Periyar River Basin (PRB) 

Periyar river is the second-longest river of Kerala with a length of approximately 
244 km. It originates at Sivagiri peak at an elevation of 2438 m above mean sea level 
(MSL) and joins the Arabian Sea toward the west. The watershed area ranges from 
longitude 76° E to 77° 30, E and latitude 9° 16, N to 10° 20, N (Fig. 1). The soil texture 
over the region varies slightly from clayey to loamy with significant proportions of 
loam as per the National Bureau of Soil Survey and Land Use Planning (NBSS & 
LUP) (Fig. 2c). The elevation details and slope map of the region are shown in Fig. 2a 
and Fig. 2b, respectively. The elevation varies from the highest point of 2695 m above 
mean sea level at Anamudi Peak (https://www.keralatourism.org/munnar/anamudi-
peak-kerala.php) to the lowest point near the sea.

The slope of the watershed has been categorized into four classes 0–2%, 2–8%, 8– 
16%, and above 16%. The average annual rainfall of PRB is approximately 3200 mm 
[6]. There are two hydrological observation stations managed by CWC at Neelesh-
waran (10° 12, N 76° 5, E) and Vandiperiyar (9° 32, N 77° 4, E) in the watershed. 
There are three major dams with significant storage in PRB, namely Mullaperiyar 
(443.23 million cubic meters (MCM)), Idukki (1460 MCM), and Idalmalayar (1018 
MCM) [18]. Details of the reservoirs are mentioned in Table 1.

2.2 Data Collection 

For simulation of the SWAT model, digital elevation model (DEM) from Cartosat 
(30 m resolution), LULC from Landsat (30 m resolution), soil data from National 
Bureau of Soil Survey and Land Use Planning (NBSS & LUP), India and climatic 
data, including precipitation and temperature, from India Meteorological Department 
(IMD, 0.25º resolution) are used. The solar radiation and wind velocity data collected 
from Climate Forecast System Reanalysis and interpolated at 0.25° as the same grid 
points to precipitation data for this study. The hydrological data such as observed 
runoff is collected from a gaging location at Neeleshwaram for the years 1980–2019 
at a daily time scale from the Central Water Commission of India.

https://www.keralatourism.org/munnar/anamudi-peak-kerala.php
https://www.keralatourism.org/munnar/anamudi-peak-kerala.php
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Fig. 1 a Location; b watershed and sub-basins details of Periyar river basin

3 Methodology 

3.1 SWAT Model 

A physically based and open-source SWAT hydrological model which is coupled 
with ArcGIS is used for simulating the streamflow at sub-basin scale in this study. 
The SWAT model is developed for simulating ungaged and particularly has limited 
data in the river basin scale [4]. It is also used for assessing the impact of LULC and 
climate change for streamflow and sediment yields, pesticides, nitrate, and phosphate 
load in the channel by different researchers [30]. The SWAT model includes large 
uncertainty in calibration from inputs and observed data. SWAT-Calibration and 
Uncertainty Program with sequential and uncertainty fitting (SUFI-2) algorithm is



Assessment of Future Land Use Land Cover Change Impacts … 113

Fig. 2 a DEM, b slope map, c soil map of PRB

Table 1 Details of reservoirs [18] (Source: Kerala State Electricity Board; Mohankrishnan and 
Verma, 

Name of 
reservoir 

Built in year Full reservoir 
level (m) 

Full reservoir 
capacity 
(MCM) 

Effective 
volume 
(MCM) 

Surface area at 
FRL (km2) 

Idamalayar 1985 169 1089 1017.80 28.3 

Idduki 1973 168.91 1996 1460 60.03 

Mullaperiyar 1895 53.64 443.23 324 20.55

used for calibration because of its simplicity and effectiveness [4]. The SWAT model 
divides the watershed into sub-basins and hydrological response units (HRUs) on 
the basis of uniqueness of terrain, LULC, and soil types. The soil conservation 
service (SCS) curve number (CN) method is used for computing surface runoff [5] 
on the basis of the soil hydrological groups, antecedent soil moisture, and LULC
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characteristics. The details of theoretical documentation of SWAT model is given in 
Website (https://swat.tamu.edu/documentation/). 

3.2 Classification and Future LULC Projection 

The historical LULC for 1988 is prepared from Level 2 Landsat images. These 
images are collected during post monsoon season (October to January) as they were 
cloud free. The supervised image classification with maximum likelihood technique 
is used because of its suitability due to availability of several ground truth points [15]. 
Six major land use classes are identified, namely forest, cropland, plantation, barren, 
built-up, and water body, in the river basin, and LULC maps are classified using 
100 reference points for each class. For validation of the processed LULC data, 
randomly selected ground truth points were compared with the LULC map. The 
overall accuracy of classification and kappa coefficient, which is a standard measure 
for agreement of classified raster, is used to measure the performance of processed 
raster [8, 9, 11, 14]. Overall accuracy is computed by dividing the total correctly clas-
sified pixels by the total number of pixels in the error matrix [11]. Kappa coefficient 
is the measure of probability of correct classification [8]. The overall accuracy and 
kappa coefficient (κ) are 84% and 0.82, respectively, which are considered substantial 
[3]. For the assessment of future streamflow due to future LULC change, 2050 LULC 
is projected. Land change modeler (LCM) is used for projection of LULC which is 
incorporated within TerrSET (formerly IDRISI) software developed by Clark labs. 
LCM compares two maps to identify the trend of transition from one class to another 
and then uses a multi-layer perceptron (MLP) neural system to develop an empirical 
relation between the transition and influencing elements (driver variables) respon-
sible for land cover change. The results develop a series of transition potential maps 
for land use change, and these are used with Markov chain transition matrix tech-
nique [20] to generate future LULC maps. LULC maps of 1998 and 2002 are used to 
project 2016 LULC map with elevation, slope, distance from road, water, forest, and 
plantation as driver variables. The projected and classified LULC map of 2016 was 
compared to calibrate and validate the parameters of LCM. The same parameters are 
used to project LULC map of 2050 with 2016 and 2030 as input. Since long-term 
(62 years) LULC change impact is assessed in this study, so only LULC of 1988 and 
2050 has been represented (Fig. 3).

3.3 Calibration and Validation of the SWAT Model 

The sensitivity parameters are evaluated for streamflow before calibration of SWAT 
model at monthly time-step for the period of 1998–2004 (7 years) at river gage 
station which is located Neeleshwaram (Fig. 1). The same simulation setup is used 
in the validation of streamflow for another 7 years (2006–2012) after calibration.

https://swat.tamu.edu/documentation/
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Fig. 3 Classified map for 1988 (a) and projected map of 2050 (b) of the  Periyar river basin  
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Latin hypercube (LH) one factor at a time approach, which is incorporated within 
SUFI-2 algorithm, is used to identify the sensitivity parameters [1, 17]. The LH 
sampling is based on considering p parameter combinations, where p is the number 
of simulations. These sampled parameter sets are used as input in SWAT, and the 
simulation results are compared with gaged data. The performance of the model 
for simulating streamflow is evaluated by the Nash–Sutcliffe coefficient (NSE), the 
coefficient of determination (R2), and percent bias (PBIAS) [13]. The process is 
repeated to reduce the uncertainty bands and fix suitable parameter ranges. 

After fixing the model parameters, the impact of long term LULC change on 
streamflow will be assessed. For this, the simulations of SWAT model will be 
compared by changing the LULC between 1988 and 2050, keeping the climatic 
variables same for the period 1981–2014. 

4 Results and Discussion 

4.1 LULC Change from 1988 and 2050 

The spatial distribution of different LULC classes for 1988 and 2050 maps is 
presented in Fig. 3, and their corresponding area and percentage growth are listed in 
Table 2. Forest, plantation, cropland, and barren land areas are expected to decrease, 
and built-up area will increase from 1988 to 2050. Water bodies remain nearly same 
with marginal decrease of 0.05%. Built-up areas will increase from 1.81 to 14.21%, 
whereas forest, plantation, cropland, and barren land will decrease from 33.45% to 
29.61%, 55.02% to 50.9%, 4.41% to 3.49%, and 3.95% to 0.71%, respectively, from 
1988 to 2050. Major reason for such change can be understood from the histor-
ical transition pattern, i.e., plantation and cropland transition into built-up area in 
conjunction with forest areas into cropland and plantation. Thus, the sequence of 
conversion of land use was identified as forest to plantation and cropland, which 
further changes to built up. The maximum percentage change in growth was observed 
in the built-up area (+812.7%), i.e., it increased by 9.59% of total basin area. Water 
bodies remain fairly same with a marginal positive growth of 1.38%. Whereas, the 
maximum negative growth occurred in barren (− 61.01%) followed by cropland (− 
20.81%), forest (− 11.47%), plantation (− 7.48%), respectively. The results indicate 
that the expansion of urbanization in the PRB will lead to land degradation, poten-
tially affecting streamflow in future. In addition, reduction in forest and plantation 
is alarming as it will also affect the streamflow and alter the natural balance of the 
watershed ecosystem.
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Table 2 Area (km2) and overall amount of change (%) in LULC of study area over the period of 
1988–2050 

LULC type 1988 (Km2) Percent of 
study area 

2050 (Km2) Percent of 
study area 

Amount of 
change 
(Km2) 

Percentage 
growth 

Water 173.5 3.62 175.89 3.67 2.39 1.38 

Built-up 56.55 1.18 516.18 10.77 459.63 812.7 

Plantation 2637.01 55.02 2439.55 50.9 − 197.46 − 7.48 
Cropland 211.36 4.41 167.26 3.49 − 44.09 − 20.81 
Barren 189.31 3.95 73.80 1.54 − 115.5 − 61.01 
Forest 1603.2 33.45 1419.15 29.61 − 184.04 − 11.47 
Total 4792.83 100 4792.83 100 

4.2 Calibration and Validation of the SWAT Model 

The most sensitive parameters adjusted during calibration of the SWAT model for 
streamflow were water use in reach (WURCH) followed by threshold depth of water 
in the shallow aquifer (GWQMN), SCS-CN, and other parameters as shown in 
Table 3. For streamflow, the parameters related to base flow and surface runoff have 
almost equal sensitivity. The SWAT model is calibrated spatially at Neeleshwaram 
gaging station in sub-basin 8 for streamflow. The comparisons between observed 
and simulated scattered plot for monthly streamflow during the period of calibration 
(01/01/1998 − 12/31/2004) and validation 01/01/2006 − 12/31/2012) are presented 
in Fig. 3. The results show good co-relation for streamflow with R2, NSE, and PBIAS, 
0.92, 0.84, and 6.5% for calibration period, and 0.85, 0.67, and 11.8% for valida-
tion period, respectively. Overall, the reliability between the results simulated by the 
model and the observed values as well as their R2, NSE, and PBIAS values indicated 
that the model performed well for a monthly time scale [19].

4.3 Impacts of Historical and Projected LULC Change 

Figure 5c illustrates the spatial distribution of the mean monthly change in the evap-
otranspiration under the LULC change. The results show that ET is expected to 
increase in downstream end and decrease in upstream part of PRB. The major reason 
for this could be the reduction in forest and plantation cover in upper region. This 
reduced ET in upper region will result in increased streamflow in these regions. 
Figure 6c illustrates the spatial distribution of the mean monthly change in the surface 
runoff under the LULC change. The results showed that the surface runoff would 
increase by 2.64%. Figure 7 shows the monthly and seasonal change in streamflow 
due to LULC change. It is observed that streamflow increases in all seasons with 
annual increase of 2.5%, and in monsoon, the increase is up to 2.73%. The spatial
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Table 3 Sensitivity parameters for streamflow calibration 

Rank Parameter Description Min value Max value Fitted value 

1 WURCH.hru Water use in reach 
(×104 m3) 

0 5005.677 2.502839 (v) 

2 GWQMN.gw Threshold depth of 
water in the shallow 
aquifer required for 
return flow to occur 
(mm) 

− 1124.862 3375.138 2390.642 (v) 

3 CN2.mgt initial SCS-CN II 
value 

− 0.01945 0.00685 − 0.010442 (r) 

4 ALPHA_BNK.rte Baseflow alpha 
factor for bank 
storage 

0 0.304392 0.066205 (v) 

5 SOL_AWC.sol Available water 
capacity of the soil 
layer 

0.043715 0.681285 0.274834 (v) 

6 ESCO.hru Soil evaporation 
compensation 
factors 

− 0.13739 0.020885 − 0.062602 (r) 

7 ALPHA_BF.gw Base flow alpha 
factor (day) 

0 0.054575 0.004994 (v) 

8 GW_DELAY.gw Groundwater delay 
(days) 

20.88599 280.314 125.0463 (v) 

9 SURLAG.bsn Surface runoff lag 
time (days) 

8.138288 24.31816 19.06779 (v) 

10 USLE_K.sol USLE soil 
erodibility factor 

− 0.65783 0.047428 − 0.574255 (r) 

11 GW_REVAP.gw Groundwater revap 
coefficient 

0.02 0.118601 0.029416 (v) 

v: absolute change; r: relative change

distribution of the change in surface runoff (Fig. 6a and b) under LULC change 
from 1988 to 2050 indicated that the streamflow would mainly increase throughout 
the basin. This may be because of increase in urbanization and reduction in plan-
tation/forests. Figure 6c indicates that most of the basins near the river channel are 
showing maximum increase in surface runoff as these are the areas where maximum 
changes in LULC are observed. Thus, it can be understood that LULC change shows 
significant impact on surface runoff. At a sub-basin scale, the proportions of changes 
for urban land use is positively correlated, whereas those for forests, plantation, and 
barren land were negatively correlated. Similar results have been reported in past 
studies that an increase in the agriculture area and a decrease in the forest area may 
increase the surface runoff [2, 7, 26, 27]. This increase in streamflow due to LULC 
change suggests that there are high possibilities of flood occurrence in future. Thus,
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Fig. 5 Spatial distribution of actual evapotranspiration in mm a for LULC 1988, b for LULC 2050, 
and c change in ET (%) 

Fig. 6 Spatial distribution of actual streamflow in m3/s a for LULC 1988, b for LULC 2050, and 
c change in streamflow

planners should consider LULC change impact on the streamflow as an important 
parameter when planning water resource management. 

5 Conclusions 

In this study, the impact of long-term LULC change is investigated on streamflow 
of Periyar river basin using SWAT hydrological model. The results indicated that
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Fig. 7 Monthly and seasonal change in streamflow with LULC change from 1988 to 2050 for PRB

the major changes in LULC that affected surface runoff were an expansion of urban 
area and decline of forest and plantation area from 1988 to 2050. From the analysis, 
it can be concluded that forest and plantation have an inverse relation with surface 
runoff and directly in relation with ET. On contrary, this relations reverse with urban 
area with increased urbanization leading to increased surface runoff and a decrease 
in ET. LULC change shows significant variation in streamflow, and thus, it is an 
essential component for water resource management and planning. The variation 
of streamflow is estimated to become more severe in future due to component of 
LULC change. This will lead to amplified streamflow during flooding condition in 
the Periyar river basin. In such situations, damage caused by floods will be higher. 
Since both the prevalence and size of extreme weather events in India are on the 
rise, it logical to assume that agricultural and urban growth will also contribute to an 
increase in the severity of such occurrences (drought and floods). Long-term water 
resource planning, therefore, needs to be flexible in light of these considerations. 
To lessen the impact of urban and agricultural sprawl, policymakers and planners 
should design a comprehensive land use strategy. 
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Impact Assessment of Climate Change 
on Hydrological Parameters: Evaluation 
of Water Balance Components of a River 
Basin 

Raju Narwade and S. K. Ukarande 

Abstract In recent years, climate change has become a big concern over the world. 
Global warming and climate change have made the problem terrible. It has attracted 
the attention of researchers all over the world. Due to climate change, unusual changes 
are happening in the atmosphere, so accurate modeling will help us address the issue 
by modeling in terms of parameter finding, assessment, and estimation. Hydrological 
models are extensively used for different water projects to understand catchment 
water balance, prediction of streamline flow, rainfall, runoff, flood forecasting, and 
other water resource management projects. Two watersheds of the Manjra River 
basin, the tributary of the Godavari River basin, namely MNJR012 and MNJR013, 
were selected. The Soil and Water Assessment Tool (SWAT) hydrological model is 
used for impact assessment on those watersheds. Remote sensing data like digital 
elevation model (DEM), soil map, land use/land cover (LULC), and weather data are 
used. The simulated and observed data were then compared, and regression analysis 
was performed which gave values of R2 0.933 and 0.971 for Watersheds MNJR012 
and MNJR013, respectively, which is closer to 1; hence, the simulated values obtained 
are validated. It has been observed that simulated data and observed data were in 
very close agreement with each other, which validated the results. 
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1 Introduction 

Water is the fundamental element for the sustenance of life. Due to the increase 
in population, majority of the river basins are considered as overstressed. Water on 
the earth is available in several forms in the environment, such as surface bodies 
like a lake, moisture in the air, snow, and groundwater. These water bodies are 
interconnected through the hydrological cycle. The hydrological cycle starts when 
water evaporates from surface water bodies due to solar insolation. When these vapors 
get condensed, they form clouds and precipitate to fall on earth. 

Out of this, only 22% of water seep underground, and only less than half reach 
the actual groundwater reservoir; the remaining water gets received by oceans, evap-
oration, and surface water bodies like rivers and lakes. The major components of 
the hydrological cycle are precipitation, i.e., rainfall, snowfall, hail, sleet, fog, and 
other components like runoff, evapotranspiration, percolation, etc. These compo-
nents of the hydrological cycle play a vital role in water resource management and 
water budgeting projects. Climate change highly affects water resources by altering 
several water balance components; land use/land cover affects the water quality of 
streams and water bodies due to pollutants and soil erosion. Water shortage is a 
main reason of the degradation of the eco-environment in most river basins, and also 
it is a serious problem for society. To manage effective water resources, attention 
should be given on the proper distribution of water resources. Based on different 
scales models, the water balance components have been evaluated during the past 
few years. To overcome the issue of water shortage, the appropriate water resource 
management and water budgeting are compulsory. 

After the Ganga River basin, the Godavari River is the second largest in India. 
This basin comes under six different states: Maharashtra, Madhya Pradesh, Orissa, 
Chhattisgarh, Telangana, and Andhra Pradesh. The water flows in the Godavari basin 
are shared among these states. The majority of the population in the state depends 
upon agriculture. In recent years, farmers have been forced to depend upon ground-
water for these agricultural needs due to the dwindling nature of rainfall and surface 
water flows—the overexploitation of groundwater results in depletion of the shallow 
aquifer. For sustainable water resource management and agricultural development, it 
is necessary to understand available water resources, their characteristics, and their 
variation over time [2]. 

Every year in Maharashtra state, the Marathwada region faces water scarcity 
problems due to the depletion of water levels. In such cases, proper water budgeting 
is necessary for further water management and distribution. Two watersheds of the 
Manjra River MNJR012 and MNJR013 are selected. The Manjra River is a tributary 
river of the Godavari River and flows through the Marathwada region. Also, it is 
a major source of water in the Marathwada and surrounding region. Hence, the 
smaller watersheds of the Manjra River basin are selected to study the characteristics 
of watersheds and components in detail.
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2 Data Used and Methodology 

2.1 Methodology 

The SWAT, a hydrological model, is used. In this model, watersheds in Manjra River 
basin are divided into sub-watersheds, which are further subdivided into (HRUs) 
Hydrologic Response Units. The HRU includes attributes of land use/land cover, 
slope, and soil [20]. The HRUs are generally used to simplify the simulation because 
all land use and soil areas unite into a single response unit. The ArcSWAT requires 
spatially distributed data which are DEM, soil map and land-use/land-cover data, 
shape file, grid data, and also weather data and streamflow data are required as input 
for calibration and future prediction in SWAT. Flowchart of methodology is shown 
in Fig. 1. 

Fig. 1 Flowchart of methodology
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Fig. 2 Study area 
(Watersheds MNJR012 and 
MNJR013) 

Study Area and Data Collection 

2.1.1 The Manjra River Basin 

The Manjra River is a tributary of the second largest river of India, which is the 
Godavari. It flows through Maharashtra, Telangana, and Karnataka states. The river 
is 724 km long which starts from the Beed district and ends in Telangana state. This 
basin has a catchment area of about 30,844 km2. Lendi, Terna, Tawarja, Gharni, 
Manyad, and Teru are the six tributaries of the Manjra River. Singur dam and Nizam 
Sagar are two major projects in the Manjra River and play a vital role in fulfilling the 
water requirement of the surrounding region in Maharashtra and Telangana states. 

The Manjra River consists of a total of 28 watersheds, among them two watersheds 
selected. The Central Ground Water Board has given codes to these watersheds. The 
study area consists of two watersheds having codes MNJR012 and MNJR013 in the 
Manjra River basin as shown in Fig. 2. Watershed MNJR012 has an area of 756 km2 

and comes under the Lendi River stream. It covers some areas of Andhra Pradesh and 
some areas of the Maharashtra district. Watershed MNJR013 has an area of about 
1249 km2 and comes under the Terna stream, and it covers some part of Karnataka 
and Maharashtra states. 

2.1.2 Data Collection 

For any hydrologic model, the data required are rainfall, discharge data, DEM, LULC, 
type of soil. Daily rainfall data can be obtained from Indian Meteorological Depart-
ment (IMD), Pune. Metrological datasets can also be obtained from India Water
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Portal (IWP), Ministry of Earth Science (data.gov.in), Central Water Commission 
(CWC) processing system (nasa.pps.eosdis.nasa.gov), etc. Free satellite images and 
GIS data can be downloaded from various websites available based on the type 
of data, such as IndiaRemotSensing.com http://glovis.usgs.gov, www.divagis.org/ 
gData, www.gadm.org/cou-ntry, www.mappinghack-s.com. 

2.2 Selection of Input Parameters

• Digital Elevation Model: Shuttle Radar Topography Mission project is led by the 
National Geospatial-Intelligence Agency (NGA) and NASA. (SRTM 90) meter 
(3 arc-second) resolution.

• Soil Map: National Bureau of Soil Survey and Land Use Planning (NBSSLUP), 
Nagpur

• LULC Map: Indian Space Research Organisation (ISRO), International Geo-
Sphere Biosphere Program (IGBP) was used. 

2.3 SWAT Hydrological Model Overview 

This is a river basin-scale hydrological model which is designed to simulate the 
hydrological process, nutrient cycle, and sediment transport throughout the water-
shed. The area ranges from 00,015 to 491,700 km2. The SWAT modeling is initialized 
by some input data like soil map, land-use/land-cover data, weather data, elevation 
data, sub-basin routing, etc. The smallest unit in the SWAT model is the HRU unit, 
i.e., Hydrological Response Unit, which is used to simulate runoff, erosion, nutrient 
cycle, infiltration, etc. These units are defined by soil data and land-use data. The 
simulation also requires meteorological data as input data, which includes rainfall 
data, temperature, wind, humidity, and solar data, which is provided by ArcSWAT 
2012. The simulation gets routed through the internal network. For the selected study 
area, land use, soil map, and slope data were obtained from the Indian dataset. The 
development of the entire database required for the model is the initial step for model 
setup. ArcSWAT 2012 delineates sub-watersheds by using DEM. All the parame-
ters for the selected catchment area were calculated for each basin. SWAT allows 
importing land use and soil map in the model. The land use gives brief specifica-
tions about the land-use layers, and the soil map reclassifies the type of soil into the 
hydrological soil group based on infiltration rate. A threshold percentage of 10% 
was adopted to eliminate minor land use, soil, slope. The model requires daily data 
of precipitation and temperature. This model allows loading weather stations into 
the project and assigning the weather data to sub-watersheds. Using this data, SWAT 
model prepares input tables for SWT run, which furthers produces simulated values 
of water balance components.

http://glovis.usgs.gov
http://www.divagis.org/gData
http://www.divagis.org/gData
http://www.gadm.org/cou-ntry
http://www.mappinghack-s.com
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Fig. 3 LULC map of 
MNJR012 

2.4 Thematic Maps 

The thematic map of LULC, Soil and digital elevation model were prepared as 
follows. 

2.5 Land Use/Land Cover (LULC) 

Land-use documents are used to show how people are using land, whereas land-cover 
documents specify the physical land type such as open water, forest, bare land. The 
distribution of land in Watersheds MNJR012 and MNJR013 and land-use/land-cover 
map of the Manjra River basin are shown in Figs. 3 and 5, respectively. The figures 
show land-use classes such as Water (WATR), Rangeland Brush (RNGB), Agricul-
tural Land-Generic (AGRL), Agricultural Land-Row Crops (AGRR), Agricultural 
Land-Close Grown (AGRC), and Forest (FRST). 

2.6 Soil Map 

The soil map of Watersheds MNJR012 and MNJR013 of the Manjra River basin are 
shown in Figs. 4 and 6, respectively. In Watersheds MNJR012 and MNJR013, clay 
loam and clay soils are shown in Table 1.
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Fig. 4 Soil map of 
MNJR012 

Fig. 5 LULC map of 
MNJR12 

Fig. 6 Soil map of 
MNJR013 

Table 1 Soil classification Class Type 

Bv12-3b-3696 Clay loam 

Vc43-3ab-3861 Clay 

Vo43-3ab-3861 Clay
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2.7 Digital Elevation Model Map 

Figures 7 and 8 show the DEM of Watersheds MNJR012 and MNJR013 in the Manjra 
River. The data required for DEM are collected from hydrosheds. 

3 Results and Discussions 

The four different water balancing components of watersheds are generated using the 
SWAT model and GIS. The water balancing components rainfall, runoff, evapotran-
spiration, and groundwater recharge are evaluated. The SWAT model also gave the 
land-use/land-cover distribution in the study area. It has also prepared land use/land 
cover and soil maps. 

For each watershed, a separate SWAT simulation was used.

Precipitation (P)−Runoff (Q)−Evapotranspiration (ET)−Base flow

Fig. 7 DEM of Watershed 
MNJR012 

Fig. 8 DEM of Watershed 
MNJR013 
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± ΔTWS−(other components) = 0 . . . . . . . . . . . . . .(Water Balancing Equation) 
(1)

ΔTWS is change in terrestrial water storage and other components which include 
groundwater storage (shallow and deep) and soil moisture. 

3.1 Watershed MNJR012 

Figure 9 gives water balancing components in the MNJ012. All parameters indicate 
the average values. 

Precipitation (P) = 979.2 mm, Total runoff (Q) = 420.17 mm, Groundwater 
recharge = 7.71 mm and Evapotranspiration (ET) = 515.1 mm. So, from (Eq. 1); 

979.2 − 420.17 − 515.1 − 7.71 = 36. 1 
Therefore, 979.2 − 420.17 − 515.1 − 7.71 − 36.1 = 0. 
As the summation of water balance components is equal to zero, this means the 

incoming and outgoing of water in Watershed MNJR013 are equal. Table 2 shows 
the value of incoming and outgoing of water in Watershed MNJR012 region, which 
are equal, which justifies the water balance equation.

Using the SWAT simulation, monthly basin values of important parameters for 
Watershed MNJR012 of the Manjra River were derived which are shown in Table 
3. It includes precipitation values, runoff, water yield, evapotranspiration of selected 
watershed. These components are shown in Figs. 10, 11, 12, and 13 in the graphical 
form.

Fig. 9 Water balance 
components of Manjra 
Watershed MNJR012 
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Table 2 Water balance components of Watershed MNJR012 

Components Incoming (mm) Outgoing (mm) 

P 979.2 

ET – 515.1 

Q – 420.17

ΔTWS – 36.1 

Groundwater recharge – 7.71 

Total 979.2 979.2 

Bold values in the columns indicate the total precipitation i.e. total water entering in the watershed 
in the form of precipitation and total water leaving in the form of runoff, groundwater recharge, 
evapotranspiration and other components

Table 3 Monthly basin value of Manjra Watershed MNJR01 

Month Rain (mm) Runoff (mm) Water yield (mm) E.T. (mm) 

1 0.1 0.11 1.57 11.91 

2 0.17 0.1 0.71 7.21 

3 12.83 2.13 2.63 41.2 

4 9.26 0.18 0.54 52.51 

5 20.17 0.3 0.57 20.19 

6 157.66 14.98 14.14 60.76 

7 224.25 68.54 68.76 71.19 

8 228.08 92.12 105.2 74.22 

9 165.9 62.2 91.64 69.11 

10 125.38 55.45 91.68 54.96 

11 31.82 10.69 37.33 32.19 

12 3.74 2.36 13.25 19.88 

Fig. 10 Monthly rainfall 
(average) MNJR012
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Fig. 11 Monthly runoff 
(average) MNJR012 

Fig. 12 Monthly water yield 
(average) MNJR012 

Fig. 13 Monthly 
evapotranspiration (average) 
MNJR012 

3.2 Watershed MNJR013 

Figure 14 gives water balancing components in the watershed.

Precipitation (P) average = 959.8 mm, Total runoff (Q) average = 396.38 mm, 
Groundwater recharge (average) = 7.97 mm, Evapotranspiration (ET) average = 
519.2 mm.
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Fig. 14 Water balance 
components of MNJR012

Table 4 Water balance 
components of MNJR01 

Water balance component Incoming (mm) Outgoing (mm) 

P 959.8 

ET – 519.2 

Q – 396.38

ΔTWS – 36.25 

Groundwater recharge – 7.97 

Total 959.8 959.8 

959.8 − 396.38 − 519.2 − 7.97 = 36.25…. from Eq. (1); 
The value 36.25 mm including other components as mentioned for MNJ012. 
Therefore, 959.8 − 396.38 − 519.2 − 7.97 − 36.25 = 0. 
As the summation of water balance is equal to zero, this means the incoming and 

outgoing of water in Watershed MNJR013 are equal. Table 4 shows the values of 
incoming and outgoing of MNJR013 watershed. 

The basin values (monthly) of important parameters for Watershed MNJR013 of 
Manjra River were derived by SWAT simulation and are as follows: Table 5 gives 
average monthly values of P, Q, E.T, and water yield for MNJR013 in the Manjra 
River. Figures 15, 16, 17, and 18 show the graphs of the components.

Modeling has given the water balance components of Manjra River watersheds. 
So we can get the information about availability of water for all purposes use. This 

will help in real water resource management and distribution of water for different 
purposes in that region.
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Table 5 Monthly basin value of Manjra Watershed MNJR013 

Month Rain (mm) Runoff (mm) Water yield (mm) E.T. (mm) 

1 0.1 0.16 1.83 12.2 

2 0.62 0.22 0.86 7.52 

3 12.29 1.84 2.36 40.45 

4 9.24 0.17 0.55 52.83 

5 21.9 0.29 0.57 21.8 

6 154.15 12.25 11.72 61.89 

7 216.69 60.67 61.18 71.01 

8 218.87 83.74 96.88 73.76 

9 170.87 62.31 91.71 69.14 

10 120.48 47.4 85.12 56.4 

11 29.74 8.88 37.16 32.38 

12 5 2.61 14.54 20.04 

Fig. 15 Monthly rainfall (P) 
average MNJR013 

Fig. 16 Monthly runoff (Q) 
average MNJR013
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Fig. 17 Average monthly 
water yield for MNJR013 

Fig. 18 Average monthly 
evapotranspiration 
MNJR013

3.3 Validation 

The different water balancing components of Manjra River watersheds are evalu-
ated by SWAT simulation. The regression analysis was performed to validate these 
simulated results; these simulated values have been compared with observed values. 
The coefficient of determination, i.e., R2 was found for each watershed. The range of 
coefficient of determination R2 is between 0 and 1. It is considered that if the value 
of R2 is closer to 1, then the similarity between the two datasets is more. 

(a) Watershed MNJR012: 

To validate the simulated results, regression analysis was carried out between simu-
lated and observed precipitation values. The observed precipitation data were derived 
from global weather data. Table 6 shows simulated and observed rainfall values for 
Watershed MNJR012.

Figure 19 shows a graphical representation of the simulated and observed precipi-
tation values of the Manjra Watershed MNJR012. The regression analysis gave value 
of R2 as 0.933, which is closer to 1; hence, the simulated values obtained from SWAT 
simulation are validated. Table 7 shows a summary of regression analysis for rainfall 
values of Watersheds MNJR012 and MNJ013 of the Manjra River.
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Table 6 Monthly observed 
and simulated values of 
rainfall MNJR012 

Rainfall (mm) 

Month Simulated values Observed values 

Jan 0.11 5.57 

Feb 0.18 3.36 

Mar 12.82 13.16 

Apr 9.27 8.4 

May 20.17 16.06 

June 157.67 152.56 

July 224.25 204.39 

Aug 228.08 262.66 

Sept 165.9 232.72 

Oct 125.38 84.61 

Nov 31.82 33.07 

Dec 3.74 2.42

Fig. 19 Graphical 
representation of simulated 
and observed rainfall 
MNJR012 

Table 7 Regression analysis 
for MNJR012 and MNJ013 
watersheds 

Sr. No. Summary 
(MNJ012) 

Summary 
(MNJ013) 

Regression statistics 

R (multiple) 0.966083663 0.971735413 

R (square) 0.933317643 0.944269713 

R square (adjusted) 0.926649407 0.938696684 

Standard error 24.79042288 21.74800299 

Observations 12 12 

(b) Watershed MNJR013: 

For validation of the simulated result, regression analysis was carried out for simu-
lated and observed precipitation values. The observed precipitation data were derived 
from global weather data. Table 8 shows simulated and observed rainfall data for 
Watershed MNJR013.
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Table 8 Monthly simulated 
and observed values of 
rainfall for MNJR013 

Rainfall (mm) 

Month Simulated values Observed values 

Jan 0.1 5.33 

Feb 0.62 3.07 

Mar 12.29 13.08 

Apr 9.24 7.94 

May 21.9 18.54 

June 154.15 161.98 

July 216.69 209.62 

Aug 218.87 275.82 

Sept 170.87 242.7 

Oct 120.48 91.74 

Nov 29.74 38.5 

Dec 5 2.77 

Fig. 20 Graphical 
representation of simulated 
and observed rainfall data for 
MNJR013 watershed 

Figure 20 shows a graph between the simulated and observed precipitation values 
of the Manjra River Watershed MNJR013. The regression analysis gave the value 
of R2 as 0.971, which is closer to 1; hence, the simulated values obtained from 
SWAT simulation are validated. Table 7 shows the summary of regression analysis 
for rainfall values of Watershed MNJR013 of the Manjra River. 

4 Conclusions 

In this study, the water balance components for the Manjra River Watersheds 
MNJR012 and MNJR013 were evaluated through SWAT simulation, which are 
precipitation, runoff, water yield, and evapotranspiration. Also, land use/land cover 
and soil classification were obtained. The necessary thematic maps and databases
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were prepared. To validate the obtained data, simulated data were compared with 
observed data, and regression analysis was performed, which gave values of R2 0.933 
and 0.971 for Watersheds MNJR012 and MNJR013, respectively, which is closer to 
1; hence, the simulated values obtained are validated. This study can be further used 
for different effective water resource management projects. 
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Anthropogenic Influence on Streamflow 
in the Mahi Bajaj Sagar Basin, India 
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Abstract Climate change and its impact on associated natural and manufactured 
systems have stressed water resources. Since the last decade, the flow of most rivers 
in Rajasthan has been showing a decrease in water. Mahi Sagar reservoir, one of 
the largest water reservoirs, is also experiencing a decline in river runoff due to 
climate change impact and human activities. The effect of climate change (CC) 
on regional hydrology imposes challenges because of the connection between the 
climate system and the hydrological cycles and the basin’s characteristics. Using daily 
climate data, this research was conducted using hydrological semi-distributed model, 
and a Soil Water Assessment Tool (SWAT) is verified to a baseline from 1990 to 2005. 
Subsequently, we reconstructed natural runoff for 2006–2018 without considering 
the local human impact. We observed short-term variation in streamflow throughout 
the impact period based on reconstructed streamflow and observed streamflow data. 
Trend analysis and the SWAT model were taken in the experiment to analyze the 
relative contribution of CC and human activities on streamflow. The outcome of the 
study showed that total relative change in the assessment period 2006–2011, 2012– 
2018, and 2006–2018 is 29%, 48%, and 46%, respectively, and for the same periods, 
impact by climate change 48%, − 4%, and 26.51%, respectively, and impact by 
human activities 51%, 104%, and 73.49% on streamflow. 
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1 Introduction 

According to previous scientific research, climate change (CC) is one of the primary 
factors affecting availability of water and its spatial distribution across the globe. In 
a developing country such as India, CC and human activities significantly influence 
regional water resources [1]. Streamflow is an important component of the hydrolog-
ical cycle in a river catchment. Streamflow unpredictability has an impact on water 
consumption trends in diverse sectors like agriculture, domestic industry, generation 
of hydropower, wastewater management units, and navigation [2]. Previously, scien-
tists examined streamflow data to evaluate variability over very long time period 
and attribute total streamflow fluctuation through time to changes in CC and human 
activities. Precipitation, evaporation, and soil moisture availability are all affected by 
climate change [2–4]. Over the last decade, CC studies have been done to assess the 
impact of CC on water resources at the basin level [5–9] using distributed hydrolog-
ical, for example, SWAT, VIC, and MIKE-SHE. These models utilize fine resolution 
data for better accuracy in outcome [10–13]. The distributed hydrological models are 
the most efficient and reliable modeling tool for (climate change impact assessment) 
studies [14–16] to understand the hydrological phenomenon at a basin scale because 
they can easily relate most of the physically observed parameters directly in to the 
model parameters. 

Researchers in the last decade preferred various methodologies to quantify the 
relative impact of CC and human activities on surface runoff. These methodologies 
come under certain categories, first category hydrological modeling [17–19], second 
category climate elasticity [20] and method of decomposition [21], third category 
hydrological sensitivity method [22], and fourth category experimental approach 
[23]. The hydrological modeling method is based on the hydrological model because 
it is technically sound and can physically depict hydrological processes in the water-
shed. Lumped model as SIMHYD is a version of HYDROLOG model, and the 
Xinanjiang model [24], etc., lacks in representing underlying surface properties or 
input parameters of the model in the watershed. Despite the use of lumped models, 
a semi-distributed model such as SWAT, VIC, GBHM (geomorphological-based 
model of hydrology) is applied for very long time so that results might be trustable 
for quantifying the impact of CC and human activities in regional surface runoff. 
Climate elasticity and decomposition method come under the Budyco framework 
[25] and also have certain drawbacks as these two methods have functions in the 
form of equations that impose problems for analyzing variation in runoff in the given 
scenarios. The hydrological sensitivity method is based on the single factor at a time 
approach analysis where only one component was changed, while the others remained 
constant. This method is very time-consuming as it does not provide flexibility in 
projecting climate change scenario. The most efficient strategy is the experimental 
approach, which has typically been employed for small catchments; however, it is 
cost-effective, but it is difficult to apply to a large-sized watershed. Many studies 
provide access for quantifying the effect of climate change or land use/land cover 
change on streamflow. These approaches are limited to regional impact assessment.
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It is often necessary to determine how much streamflow is influenced by human 
activity relative to climate change, particularly long-term streamflow observed in the 
Mahi Bajaj Sagar basin. In the last decade, as the author knows, less attention has 
been given to the Mahi Bajaj Sagar basin. Therefore, present study investigates the 
relative impact of CC and human activities on streamflow at the Mahi Bajaj Sagar 
basin. 

2 Study Area and Data Source 

2.1 Mahi Bajaj Sagar Basin 

Mahi Bajaj Sagar basin is a part of Mahi River catchment of India, which is situated in 
the vicinity of 23°37,37 N and 74°32,39E as shown in Fig. 1. Mahi Bajaj Sagar basin 
covered 6149 sq.km. Most of the part of the basin is covered with fine loamy-textured 
soil. The research area receives between 850 and 1000 mm of rain per year. The 
climate of Mahi Bajaj Sagar basin is semi-arid. It is known for hot summer and general 
dryness except during the southwest monsoon, which experiences heavy rainfall. The 
monsoon season is a short period; nearly 85% of the total rainfall comes from this 
southwest monsoon. Mean monthly air temperature ranges from 12 to 15 °C in winter 
season and 35–47 °C in summer season. Dominant land use/land cover in the region 
of Mahi Bajaj Sagar basin is agriculture. Karif and Rabi season are the crop season 
which required water for irrigation from the Mahi Sagar reservoir. The reservoir’s 
current discharge capacity is 383m3/sec and has the potential of maximum discharge 
10,887 m3/sec from the Mahi Bajaj Sagar basin. Stormwater drainage for the Mahi 
Bajaj Sagar basin has been disrupted due to the influence of anthropogenic factors 
such as encroachment of hutments in large numbers, particularly in the surrounding 
Mahi River in both urban and rural areas.

2.2 Data Collection 

The long-term available meteorology data from 1975 to 2018 at the daily temporal 
scale has been used in the present study to arrive at statistical inference. Land use/land 
cover (LULU) information was extracted from the classification of satellite images 
for the years 1990 and 2010 from October to November of the Karif season. All of 
the images used in this study were taken during the post-monsoon season and were 
cloud-free. The supervised maximum likelihood classification techniques were used 
to classify LULC images for respective years. Soil information was obtained from 
food organizations and subset to the study area. DEM data from the United States 
Geological Survey was obtained and used to delineate the basin at a threshold value 
of 100 km2. Table 1 contains information about the data used in this study.
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Fig. 1 Study area location map of Mahi Bajaj Sagar basin

Table 1 Data used in the present study 

Variable Period Temporal resolution Spatial agency 

Precipitation 1975–2018 Daily (25°*25°) Indian Meteorology 
Department (IMD) 

Temperature (max. and 
min.) 

1975–2018 Daily (05°*05°) Indian Meteorology 
Department (IMD) 

Observed streamflow 1984–2018 Daily Rajasthan Government 

LULC data 1990, 2010 
(Kharif 
season) 

30 m Landsat Data Satellite 
Imageries USGS (http://ear 
thexplorer.usgs.gov/) 

Soil data 1971–1981 1 km Harmonized World Soil 
Database v1.2, FAO 
UNESCO soil map of the 
world (https://www.fao.org/ 
soils-portal/) 

DEM – 30 m ASTER Data USGS

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
https://www.fao.org/soils-portal/
https://www.fao.org/soils-portal/
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3 Method  

3.1 Quantifying Impacts on Streamflow 

Individual impacts of CC and human activities (anthropogenic) in terms of LULC 
change on basin hydrology are challenging to investigate. This present study esti-
mates the relative impact of CC and human activity on runoff and method adopted 
from [19]. In the present study, meteorological data for 35 years (1984–2018) has 
been used as a baseline case to determine the effect of CC on runoff regime of the 
study area. A semi-distributed hydrological model (SWAT) was used. SWAT simu-
lates watershed hydrological response as a function of meteorological and LULC 
characteristics over a period in Mahi Bajaj Sagar basin. SWAT model was conceptu-
alized for the study area, and calibrated and validated periods are provided in Table 
2. Calibrated SWAT model was applied to simulate rainfall-runoff for the study area 
considering constant LULC conditions from 1990 to 2005. The constant change in 
hydrological response of watershed with constant LULC reflects the influence of the 
effect of CC alone that is the change produced by precipitation and temperature. The 
second simulation hydrology of the basin was simulated from 2006 to 2018 using 
a calibrated model with the same setting for generating natural streamflow without 
considering local human activities, such as no LULC change. The difference between 
streamflow during the impact period and streamflow during the baseline period is 
made up of two parts. One part is the possible changes due to human activities as
ΔRh and the second part from climate change as ΔRc, observed streamflow denoted 
as Ri, and the streamflow corresponding to the baseline period is Rb. As a result, the 
major difference between observed streamflow for the period of assessment and the 
period of baseline reflects the streamflow response as shown in Eqs. (1–2) sum of
ΔRh and ΔRc

ΔRh + ΔRc = Ri − Rb (1)

ΔRh = Ri − Rm (2)

ΔRc = Rm − Rb (3) 

Table 2 Calibration and 
validation monthly simulation 
at Mahi Bajaj Sagar basin 

Variable Calibration (1990–2005) Validation (2006–2010) 

R2 0.74 0.70 

NSE 0.73 0.72 

PBIAS − 0.20 − 12.20 
* NSE Nash–Sutcliff; 
* PBIAS Percentage BIAS
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whereΔRh (m3/s) is change in runoff due to human-induced activities,ΔRc (m3/s) is 
change in runoff due to effect of CC, Rb is the observed runoff for yearly basis in the 
period of assessment in m3/s, and Rm is the generated or reconstructed streamflow 
monthly basis (latter converted to yearly basis) for the period of assessment by the 
use state of art hydrological model. 

PR  = 
Ri 

Rb 
− 1 × 100% (4) 

where the percentage of change in the observed annual runoff in the baseline period 
is denoted by PR (relative change). 

The percentage change from human activities and CC is estimated in respective 
time frames by Eqs. (5) and Eq. (6) and denoted by (PH, PC) 

PH = ΔRc

ΔRh + ΔRc 
× 100% (5) 

PH = ΔRc

ΔRh + ΔRc 
× 100% (6) 

3.2 SWAT Model Setup 

The USDA Agriculture Research Service’s Soil Water Assessment Tool (SWAT 
Model) [26] is the outcome of nearly 40 years of modeling work [27]. SWAT model 
is a basin-scale model classified as semi-distributed. It follows the continuous-time 
model and operates in daily time steps. The SWAT model is intended to simulate 
various hydrological components of the water cycle as well as various water, agri-
culture, and sediment yield management processes. SWAT is physically based and 
can simulate for long periods of time. It takes less time to simulate the process. 
The SWAT model required climate data input as well as observed data for model 
validation. 

3.3 Mann-Kendall’s Test 

The M-K method is used to analyze climate and environmental time series data. It 
was proposed by [28] and is frequently used with time series [29] of climate data. This 
test has two benefits. First, it is a nonparametric measure that does not require the data 
to be distributed on a regular basis. Second, because time series are inhomogeneous, 
it is impervious to abrupt breaks. The null hypothesis H0 states that no trend exists 
(data is independent and randomly ordered) [30]. This test was performed against the
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alternative hypothesis H1, which supposes that the data exhibits the trend depicted 
in Eq. 4. 

S = 
n−1Σ

k=1 

nΣ

k+1 

sgn
(
x j − xk

)
(7) 

The trend test is applied to time series xk , which is ranked k = 1, 2, 3…n − 1, 
which is ranked for j = i, i + 1, i + 2, i + 3…..each data point xj is used as a reference 
point, as shown in Eq. 5 [30]. 

sgn
(
x j − xk

) = 1 if  x j − xk > 0 
= 0 if  x j − xk = 0 

= −1 if  x j − xk < 0 (8)  

3.4 Sen’s Slope Test 

The magnitude of the trend can be calculated using Sen’s slope estimator in time 
series [30, 31]. To measure the real slope of an existing trend, such as the quantity 
of change per year, Sen’s nonparametric approach [30] was applied, and the test was 
conducted using the MAKESENS micro excel [32]. 

4 Results and Discussions 

4.1 Precipitation and Temperature Trend Analysis 
at the Mahi Bajaj Sagar Basin 

Figure 2 depicts the precipitation trend in the Mahi Bajaj Sagar basin. In the selected 
period, the observed precipitation shows a decreasing trend, and observed air temper-
ature shows an increasing trend. Precipitation and temperature had regression slopes 
of − 1.52 and 0.011, respectively. The observed precipitation reached a maximum of 
1564.22 mm in 1994 and a minimum of 442.16 mm in 2000. The decadal variability 
in precipitation at the Mahi Bajaj Sagar basin depicted was uneven distribution. The 
temperature varies greatly during the summer season. As a result, there is variation 
from north to south in the Mahi Bajaj Sagar basin. The maximum air temperature 
was 44.84 °C shown in the year 1991. In the winter season, less variation forms south 
to north but high variation in the east to the west section of Mahi Bajaj Sagar basin 
during the period 1984–2018. The lowest air temperature is observed in the year 
1990 which is 4.29 °C. The results of the applied test (Mann-Kendall) showed the
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decreasing trend for annual precipitation during the period 1984–2018 at the Mahi 
Bajaj Sagar basin. However, the predicted trend is insignificant (Fig. 2). Similarly, 
for air temperature, the trend increases for both maximum and minimum air temper-
atures (Figs. 3 and 4). Furthermore, for this period, step-change precipitation and 
temperature were not taken into account. The Mahi Bajaj Sagar basin’s climate has 
warmed over the last 35 years (Fig. 4). Year 1990 was the coldest year, followed 
by 1977. Temperature increased from 1984 to 2018, according to the Mann-Kendall 
test results (Fig. 3). During the years 1984–2018, there was a statistically significant 
trend. The overall analysis of precipitation and temperature shows climate change in 
the region of Mahi Bajaj Sagar basin. 

Fig. 2 Trend in observed annual precipitation using Mann-Kendall test percentage error 

Fig. 3 Annual maximum temperature using Mann-Kendall trend
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Fig. 4 Annual minimum temperature using Mann-Kendall trend 

4.2 Streamflow Trend Analysis at the Mahi Bajaj Sagar Basin 

Figure 5 depicts the observed annual streamflow at the Mahi Bajaj Sagar basin outlet 
from 1984 to 2018. The findings of the Mann-Kendall test revealed a statistically 
significant decrease in yearly streamflow for the Mahi Bajaj Sagar basin. The regres-
sion slope was − 0.54, detected by Sen’s slope estimator. Significant step-change 
point is not observed. But outliers were present in the streamflow in the years 1984, 
2011, and 2017. The minimum flow in the year 2000 was 10 m3/sec, and the maximum 
flow in the year 2011 was 269.89 m3/sec. 

Fig. 5 Annual observed streamflow at the outlet of Mahi Bajaj Sagar basin
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4.3 Performance of SWAT Model 

The calibration process was applied to the SWAT model using the SWAT-Cup [33] 
uncertainty program. The sensitive parameters for runoff were determined during the 
calibration of the SWAT model [2]. Table 3 lists their statistical data and rankings. 
The most responsive surface runoff parameter was 11 parameters, i.e., compensation 
factor for soil evaporation (ESCO), followed by the saturated hydraulic conductivity 
of the soil (Sol_K), initial SCS-CN II value in runoff process (CN2), alpha factor 
for base flow in groundwater simulation (Alpha_BF), groundwater delay which has 
units in days (GW_Delay), water capacity available in the soil layer (SOL_AWC), 
shallow aquifer threshold depth required for groundwater (GWQMN), plant uptake 
compensation factors in evaporation process (EPCO), hydraulic conductivity in the 
main channel alluvium (CH_K2), Manning’s “n” value in channel process (CH_N2), 
and average slope steepness in the geomorphological process (HRU_SLP). These 
parameters were found to be best for the simulated model after sensitivity analysis 
throughout the calibration process. In this study, ESCO.hru, Sol_K.sol, and CN2.mgt 
are the most sensitive parameters, followed by other parameters as shown in Table 3. 
In SWAT-CUP, sensitivity estimation t-stat and p-value factor are taken [34]. Most 
sensitive parameters, according to their rank, directly reflect an understanding of the 
basin’s hydrology. All the parameters have rank depending on the sensitivity statistics 
such as maximum and minimum values and fitted value of the parameters. Calibration 
statistics illustrated in Table 2 for the Mahi Bajaj Sagar basin were verified as per the 
criteria followed by researchers [35–37]. To use the hydrological model to simulate 
streamflow for the baseline period and impact period, SWAT model calibrates for 
baseline period and natural streamflow which is generated for impact period. Figure 6 
depicts graph for model-simulated streamflow compared to observed streamflow for 
the Mahi Bajaj Sagar basin outlet. 

Table 3 Parameters selected for the calibration of the SWAT model 

Parameters Parameter initial max. 
range 

Parameter initial min. 
range 

Fitted value Rank 

V_ESCO.hru 0.34 1.02 0.39 1 

R_SOL_K.sol 0.00 1077.36 3.05 2 

R_CN2.mgt − 0.25 0.04 − 0.01 3 

V_ALPHA_BF.gw 0.39 1.18 0.96 4 

V_GW_DELAY 0.00 296.11 84.39 5 

R_SOL_AWC.sol 0.00 0.518 0.09 6 

A_GWQMN.gw 2032.10 6117.89 3833.93 7 

R_EPCO.hru 0.09 0.07 0.82 8 

V_CH_K2 − 0.66.93 311.78 − 41.56 9 

V_CH_N2 0.0 0.29 0.14 10 

R_HRU_SLP.hru 0.41 1.24 0.49 11
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Fig. 6 Plot for observed and simulated runoff at Mahi Bajaj Sagar basin 

4.4 Streamflow Reconstruction for Impact Period 

After the SWAT model calibration process, use the same hydrometeorological condi-
tion for the baseline. Calibrated SWAT model was used to reconstruct the natural 
streamflow data for the impact period from 2006 to 2018 with no local human activity. 
(No changes in land use/land cover in the basin). Figure 7 shows reconstructed 
streamflow from calibrated SWAT model for Mahi Sagar basin. 

Fig. 7 Monthly time series of streamflow and simulated streamflow for period 2006–2018 at the 
outlet of Mahi Bajaj Sagar basin
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4.5 Quantification of Impacts on Streamflow at Mahi Bajaj 
Sagar Basin 

In this study, the observed runoff and reconstructed streamflow by hydrological model 
and the impact of CC and human activities on runoff were calculated using Eqs. (1)– 
(6) for impact period and summarized in Table 4. The observed and reconstructed 
average annual streamflow at the Mahi Bajaj Sagar basin accounted 1474.92 m3/sec 
and 935.29 m3/sec in the baseline period. Three observations are shown in Table 4. 
First, the average yearly streamflow for 2006–2018 was smaller than the baseline 
case, which implies that the observed runoff at the Mahi Bajaj Sagar basin falls 
under the selected period. The absolute and relative combined impacts of CC and 
human activities on streamflow accounted 680.35 cumecs and 46.13%, respectively. 
The most significant impact observed is 709.25 cumecs and 48.09%, respectively, 
appearing in the 2012 impact period (2012–2018). Second, the difference between 
the natural streamflow (reconstructed streamflow) and the streamflow of the baseline 
case shows the deficient streamflow because of CC. Figure 8 depicts human activities 
responsible for streamflow changes, especially downstream in the different periods. 
The changes in streamflow because of climate change (PC) were 48.64% and − 
4.70% in the years 2006 to 2011 and 2012 to 2018, respectively. For the same years, 
changes caused by human activities (PH) were 51.36% and 104%, respectively, 
on streamflow. Third, in the impact period 2006 to 2018, human activities and CC 
contributed for 73.49 and 26.51% of the overall decline in the runoff. Human activities 
are the primary cause of the recently identified decreased runoff in the Mahi River 
in the Mahi Bajaj Sagar basin. 

Table 4 Impact of CC and human activity on runoff at Mahi Bajaj Sagar basin 

Period Observed 
streamflow 
(m3/sec) 

Reconstructed 
streamflow 
(m3/sec) 

Total 
change 
[PR (%)] 

Impact of 
climate 
change [PC 
(%)] 

Impact of 
human 
activities 
[PH (%)] 

Baseline Period 
(1990–2005) 

1474.92 935.29 

Impact 
Period (2006–2011) 

1039.41 1263.09 29.58 48.64 51.36 

Impact 
Period (2012–2018) 

765.67 1508.16 48.09 − 4.69 104.69 

Impact 
Period (2006–2018) 

794.57 1294.58 46.13 26.51 73.50 

PR Percentage of relative change 
PC Percentage of climate change 
PH Percentage of human activities
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Fig. 8 CC and human activities at Mahi Bajaj Sagar basin 

4.6 Discussion and Conclusion 

Previous studies are conducted for quantification of climate influence in the basin. 
Basin characteristics and local activities in terms of LULC affect the streamflow. 
Streamflow is the resultant of various catchment hydrological processes and is 
impacted by so many factors. Changes in streamflow can be caused by any factor, 
including climate and LULC. However, quantifying the individual impact is quite 
difficult as major changes are linked with climate and human activities. The result 
from this study shows the percentage of changes from both phenomena in the hydro-
logical system. From this study’s conclusion, human activities impact streamflow 
is significantly higher than climate change impact. Similar results found in studies 
done over last 10 years. Thier studies reported that climate change might be factor 
for the variation in runoff [17, 38, 39]. On the other side some researchers [15, 
20, 40, 41] found human activities are primary factors for variation in runoff. In 
addition to this, urban expansion [42] is also responsible for variation of surface 
runoff in diverse catchment like Mahi Bajaj Sagar basin. Large-scale human activi-
ties, including excessive irrigation and soil conservation practices and change in land 
use/land cover, are the direct factors for reducing the streamflow in the Mahi Bajaj 
Sagar basin. 
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Estimation of River Discharge 
in Mandovi Basin, Goa 

Raghavendra Talawar and Jayakumar Seelam 

Abstract Rivers are an important aspect of terrestrial hydrology. In fact, they are 
the reason for the interaction processes between land, ocean, and atmosphere. Most 
river discharge estimates are available at the gauging location, and scarce information 
is available on the discharge at the confluences. In this paper, studies are carried 
out to estimate discharge values for Mandovi River in Goa state. Ganjem watershed 
(599 km2 area) was modelled using the soil and water assessment tool) programme by 
USDA-ARS (Department of Agricultural-Agricultural Research sciences). Cartosat-
1 DEM—Version-3R1 (Resolution 32 m), soil, land use/land cover, precipitation, 
and temperature data are used in this study. The model was simulated for five years 
(2010–2014), and discharge for each year is estimated. The model was calibrated 
using three years of data and validated for two years. SWAT analysis reveals that 
the model parameters CN2, GWDELAY, GWQMIN, SURLAG, and ALPHA_BF 
are sensitive for the Mandovi basin. The simulated and observed values are in good 
agreement. Statistical analysis showed that co-relation coefficient R2 and Nash– 
Sutcliffe efficiency (NSE) were 0.88 and 0.80, which indicate model results that are 
in good agreement with measurements. 

Keywords DEM · SWAT · Sensitive parameters · Watershed · Hydrological 
modelling 

1 Introduction 

Rivers are the sources where freshwater is easily available to the mankind. As we 
can see that all civilizations are based on the river banks. Rivers are the important 
part of global hydrological cycle as they carry freshwater from land to sea or their

R. Talawar (B) · J. Seelam 
Ocean Engineering Division, CSIR—National Institute of Oceanography, Dona Paula, Panaji, 
Goa 403004, India 
e-mail: raghu.talawar123@gmail.com 

J. Seelam 
e-mail: jay@nio.org 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
P. V. Timbadiya et al. (eds.), Hydrology and Hydrologic Modelling, 
Lecture Notes in Civil Engineering 312, 
https://doi.org/10.1007/978-981-19-9147-9_11 

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9147-9_11&domain=pdf
mailto:raghu.talawar123@gmail.com
mailto:jay@nio.org
https://doi.org/10.1007/978-981-19-9147-9_11


158 R. Talawar and J. Seelam

destination [1]. From the various components of water cycle, river discharge is the 
only component that can be estimated precisely [2, 3]. 

In India, major river basins are gauged, but medium and small rivers are ungauged. 
In India, there are several catchments where the existing gauges are discontinued due 
to economic constraints that do not provide required hydrological data [4]. Available 
methods for river discharge prediction include regional model parameters, synthetic 
unit hydrographs, utilizing relationships between model parameters and basin phys-
ical properties, calibrated model parameters for similar gauged basins to ungauged 
basins, remote sensing observations, hydrological model simulations, and integrated 
meteorological and hydrological models. Numerous hydrological models are avail-
able for river discharge estimation. The SWAT programme is widely used in the liter-
ature. It has proved to be an effective tool for runoff and sediment estimation, land 
use land cover changes, water resources, and non-point source pollution problems. 
Hence in this study, SWAT is used for river discharge estimation. 

2 Study Area 

The watershed considered for study is the Mandovi River situated in Goa, described 
as the lifeline of Goa. Out of 11 main rivers in Goa, Mandovi is considered to be 
the major one. Mandovi is gauged at Ganjem, and the discharge values for daily 
estimates are available. Rainfall occurs in monsoon months from June to September 
similarly discharges which are also high during these periods. The details of the 
basin, map, and location are shown in Fig. 1 and Table 1.

3 Methodology 

Figure 2 shows the methodology adopted for the work in the form of a flow chart.
Arc-SWAT, a plug-in of Arc-GIS, was used to make essential files to execute 

the SWAT model. Arc-SWAT programme delineates the digital elevation model 
(DEM) and produces watershed and sub-watershed automatically. Outlets, stream 
network, and monitoring points are generated automatically based on given threshold 
value. Hydrologic response units (HRUs) are extracted from basic modelling. Rain-
fall/precipitation and temperature data from Global dataset are used as user defined 
data for weather parameters. After all these procedures, the SWAT model was run 
for five years with the default parameters. The model did not perform well; there-
fore, we modified parameters till a better comparison was obtained. With calibrated 
parameters, the model performed well. 

The discharge data at the Ganjem station were available, but no discharge data 
were available at Panaji (Mandovi watershed), where the river drains into the Arabian 
Sea. To obtain discharge data at this location, area ratio method was used, which can 
be done if watersheds are in hydro meteorologically similar basins [5]. The discharge
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Fig. 1 Basin location/map of study area 

Table 1 Description of 
catchments 

Catchment 
characteristics 

Ganjem Panaji 

Latitude 15°30,10,, N 15°30,12,, N 
Longitude 74°08,16,, E 73°49,54,, E 
Watershed area 599 km2 1981 km2 

Land use/Land 
cover 

Forest-100% Range brush-7.9%; 
forest-92.1% 

Soil texture Sandy_Clay_Loam Sandy_Clay_Loam

values of the Ganjem station are multiplied with an area ratio as shown below equation 
no. 1. The area ratio obtained was 3.30. Hence, discharge data at Panaji were obtained 
for comparison with the model results. 

Qungauged = Qgauged ∗
(
Aungauged 

Agauged

)
(1)
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Fig. 2 Methodology of 
work

3.1 Description of SWAT Model 

SWAT model was programmed/developed by the United States Department of 
Agricultural-Agricultural Research sciences to help the water experts assess the 
impact of management and climate on water distribution in watersheds and river 
basins. This model is semi-distributed, physically based, that emphasizes surface 
processes. It takes into account one watershed and breaks them into number of sub-
basins. The sub-basins are divided into combinations of soil, slope, and land use 
called hydrologic response units (HRUs). The SWAT runs by segregating all similar 
land use and soil areas into a single response unit. Various models have been devel-
oped to fit the conditions favourable to a particular region that may not adequately 
perform when tested on other regions. Hence, the question arises as to which water-
shed scale model to use amongst various available models. Climate change impacts 
on surface runoff, hydrology, groundwater, crop development, etc., are assessed using 
the SWAT model. The outputs of the SWAT model include runoff, sediment, redis-
tribution, phosphate, sulphate, climate change assessment. The model gives daily, 
monthly, and yearly time series results. The water balance equation for the model is 
shown below.
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Table 2 Details of data collection 

Sl. No. Data type Source and description 

1 DEM Bhuvan Website 
Product-Cartosat-1: DEM—Version-3R1 Resolution 32 m 

2 Soil Arc-SWAT Website, Soil HWSD FAO (Indian dataset for SWAT 
2012) 

3 LULC Arc-SWAT Website, Land use water base (Indian dataset for SWAT 
2012) 

4 Weather data Arc-SWAT Website, Global weather data include precipitation and 
temperature. (Global dataset for SWAT 2012) 

SWt = SWo + 
tΣ(

Rday − Qsurf − Ea − Wseep − Qgw
)

(2) 

SWt Water content in soil at time t 
SWo Water content in soil initially 
t Time in days 
Rday Rainfall/precipitation (mm) 
Qsurf Surface runoff (mm) 
Eo Evapotranspiration (mm) 
W seep Percolation to the bottom of soil profile on day i (mm) 
Qgw Amount of water returning to the groundwater on day i (mm). 

3.2 Data Collection 

The various types of data vital for the study are digital elevation model, soil map, land 
use/land cover, and weather data like precipitation and temperature. The sources of 
the data are shown in Table 2. The discharge data were obtained from the India WRIS 
Website for five years (2010–2014). The observed data from Ganjem showed that 
the peak discharge values in 2010, 2011, 2012, 2013, and 2014 were 153, 276, 266, 
452, 313 cumecs, respectively, and the discharge values for five years (2010–2014) 
range between 0 and 452 cumecs. 

3.3 Evaluation of Model Performance 

To assess the accurateness of the SWAT programme, R2 and NSE statistical index 
were used. The R2 value ranges from 0 to1, where 1 demonstrates the best match 
between observed/recorded and predicted/simulated values. NSE ranges between -∞ 
and 1, wherein 1 indicates an excellent correlation between predicted and observed 
values. If the NSE values are zero or negative, then the model cannot predict discharge
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values. After repeated simulation trials, the R2 and NSE for calibration were found to 
be 0.91 and 0.87 and for validation 0.86 and 0.84. The correlation coefficient values 
greater than 0.5 are acceptable and in good relation as per [6, 7] 

4 Results and Discussion 

For the Ganjem watershed, after the setup of the SWAT model, the output was 
obtained from 2010 to 2014. Initially, the value of R2 obtained was 0.59, which indi-
cated that calibration is necessary. Hence, the calibration process was done manually. 
Calibration was worked for three years starting from 2010 to 2012 to match simulated 
with observed data values. The parameters are identified and adjusted with respect to 
their standard ranges to obtain better R2 and NSE values within the allowable limits. 
Table 3 shows the adjusted parameters during the calibration of the model, and Fig. 3 
shows the comparison of discharges. 

Validation is carried out after the completion of calibration. Validation is done 
for a period from 2013 to 2014. Validation is done to determine the accuracy of the 
model after calibration. The values of R2 and NSE after validation are 0.86 and 0.84. 
The R2 and NSE values obtained for calibration are 0.91 and 0.87 as shown in Fig. 4. 
Figure 5 shows the scatter plot of simulated versus observed flow after validation.

Table 3 Identified sensitivity 
parameters for the study 

Sl. No Identified sensitive 
parameter 

Original value Calibrated value 

1 CN2 72 80 

2 ALPHA__BF 0.048 1 

3 ESCO 0.95 1 

4 EPCO 1 0.5 

5 GW_DELAY 31 5 

6 SURLAG 24 0.2 

Fig. 3 Comparison graph of 
observed and simulated flow 
after calibration (Ganjem) 
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R² = 0.9118 
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Scatter Plot of Observed and Simulated Flow 

Fig. 4 Scatter plot of observed and simulated flow after calibration (Ganjem) 

Fig. 5 Scatter plot of 
observed and simulated flow 
after validation (Ganjem) R² = 0.8688 
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The calibrated SWAT model was used to obtain the river discharge at Panaji. R2 

and NSE values obtained were 0.85 and 0.8, which correlate well with measurements. 
The scatter plot of discharge by area ratio method and simulated flow for Panaji are 
shown in Fig. 6. 

Fig. 6 Scatter plot of 
discharge area ratio method 
and simulated flow (Panaji)
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Fig. 7 Comparison of 
discharge by area ratio 
method and simulated flow 
(Panaji) 
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The discharge data at panaji were obtained using area ratio method where the 
peak values during 2010, 2011, 2012, 2013, 2014 were 507, 913, 881, 1497, 1037 
cumecs. Whereas for the simulated discharge, the peaks were 498, 734, 675, 871, 624 
cumecs, respectively. Comparison of discharges is shown in Fig. 7. It is observed that 
the SWAT model simulates the average discharges well but misses out predicting the 
peak discharges. The peak discharges from SWAT model under predicted the 2013 
peak discharge by 58% and for 2014 by 60%, whereas for other periods, the under 
prediction is between 76 and 98%. This wide variation in the prediction of peak 
discharge by SWAT model needs further investigations. 

5 Conclusions 

SWAT programme/model was used to analyze the river discharge for Mandovi Basin 
in Goa, India. The model was calibrated and validated. The calibration and validation 
were done with reference to observed data from the India WRIS Website. During 
the calibration, CN2, GW_DELAY, GWQMN, ALPHA_BF, and SURLAG were the 
most sensitive parameters for the study area. The model performance with default 
values was reasonable; however, they improved after parameter calibration. 

In this study, parameter regionalization was attempted, where the calibration 
parameters of the Ganjem watershed were used in the simulation of the Mandovi 
watershed. The runoff for the Mandovi watershed was predicted and was compared 
with the runoff values obtained using the area ratio method. The comparison showed 
that the model performance was good. The discharge values for Mandovi watershed 
range from 0 to 1497 cumecs obtained by area ratio method, whereas the discharge 
values obtained from SWAT model simulation range from 0 to 871 cumecs. 

The simulation results are good; R2 and NSE values for calibration were 0.91 
and 0.87; for validation, it was 0.86 and 0.84. The statistical coefficients (R2 and 
NSE) were proved effective, which exhibits that the SWAT model can reasonably 
simulate the runoff in the study area. The correlation between observed and simulated 
discharges is good; however, the SWAT model is observed to underestimate the peak 
discharges during some periods like in August 2013.
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Reservoir Sedimentation Analysis Using 
SWAT Model 

R. S. Sabale , S. Londhe, and M. K. Jose 

Abstract Many water resource projects require sediment yield analysis, which is 
useful for estimating reservoir life, locating vulnerable areas prone to erosion, and 
ensuring that natural resources are conserved. The conventional methods available 
for sediment analysis are more complex and time-consuming and require more data 
to process. The soil and water assessment tool (SWAT) which is a semi-distributed, 
continuous, physical-based model and has better accuracy requires fewer efforts 
than conventional models which was employed in this study to predict sediment 
load. The Koyna basin is the largest and important basin in the state of Maharashtra, 
India. Due to topographical, geological, and meteorological features basin suffers 
from frequent floods, landslides and as a result Koyna basin has large soil erosion. 
These critical situations seek an attention to alleviate these issues. Therefore, in this 
work, the agro-hydrological model SWAT was formulated for the Koyna dam basin 
in Maharashtra, India for 308 Km2 basin area. The SWAT model was processed by 
using the meteorological data obtained from India Meteorological Department (IMD) 
for the period (2010–2020). The SWAT model was calibrated for (2013–2017) and 
validated for the period (2018–2020) with the help of the SUFI-2 algorithm in the 
SWAT-CUP tool. The sensitivity of work was assessed by statistical parameters like 
R2, NSE, and Pbias. The values of statistical parameters in calibration and validation 
periods indicate the acceptance of the model. The results showed that the spatial 
distribution of erosion in the different sub-basins revealed a maximum sediment yield 
value of 145 t/ha/year for sub-basin 17 and minimal sediment transport in sub-basins 
1, 9, 12, and 16. This would suggest that these sub-basins require immediate water
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and soil conservation efforts in order to decrease erosion and sediment transfer. The 
study concludes that the SWAT model is a very efficient tool for sediment analysis 
and can be used for the same basins in other regions. The outcomes of work may be 
useful for water managers for sustainable water resource management. 

Keywords Sediment yield · SWAT · SWAT-CUP · Calibration–validation · Koyna 

1 Introduction 

In the catchment basin, runoff and sediment yield modeling is critical. Sediment yield 
refers to the volume of sediment that is transported with surface runoff and deposited 
in reservoirs. Despite having just one outflow point, the watershed is characterized 
by a variety of socioeconomic activities, as well as geographical, hydrological, and 
climatic heterogeneity. In addition to the size and shape of the watershed, spatial 
and temporal variability have the visible change in the quantity of runoff [1]. The 
sedimentation is thought to be responsible for around 0.5–1.0% of global water 
storage loss on a yearly basis [2]. Moreover, the cost of replacing the lost storage has 
been estimated to be in excess of US$13 billion, excluding other environmental and 
socioeconomic consequences [2]. Therefore, modeling the hydrological processes 
of the watershed, such as runoff and sediment output, is helpful in managing and 
protecting natural resources [3]. Ultimately, this approach will lead to aid sustainable 
soil and water resource management and hence help to strengthen nation’s economy. 

The Koyna dam, which is built on the Koyna River and has a capacity of 105 
TMC, is the largest dam in Maharashtra, India. The dam has total catchment area of 
891.78 km2. The basin is a part of Sahyadri hill ranges and falls into Western Ghat. 
The basin characterized by undulating topography, steep slopes, loose and fragile 
soil, and excessive rainfall resulting in frequent floods, and consequently, consid-
erable soil erosion has been observed in the study area. The sediment deposition 
in the dam reduces its capacity, causing concerns such as flooding, waterlogging, 
and the submergence of valuable agricultural land in nearby area. The downstream 
portion of the Koyna dam, which includes parts of Sangli and Kolhapur districts, saw 
significant flooding for more than 15 days in year 2019. As a result, research into 
runoff and sediment yield in dam basins is required. The outcomes of present study 
could be used as a decision-making tool in the long-term development of soil and 
water resources. A very sparse and few research on the Koyna basin exist, at least to 
the authors’ knowledge, mostly concerned with discharge measurement, and flood 
foresting downstream of the dam [4, 5]. The sediment yield analysis for the Koyna 
dam basin is not supported by these researchers. 

Hydrological models that deal with hydrological simulations of drainage 
basins, such as MIKE-SHE, HEC-RAS, SWAT, GSFLOW, SWAT-MODFLOW, and 
MODFLOW, among others, also have the capacities to work with changing climatic 
conditions [6–10]. Sabale and Jose [11] integrated the SWAT and MODFLOW model
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to study the impact of conjunctive use of surface and groundwater on the ground-
water levels in command area. The soil and water assessment tool (SWAT) model was 
developed by the United States, Department of Agriculture’s research and is widely 
used in surface water modeling to simulate runoff and sediment load in basins [12]. 
Researchers in India have used and validated the SWAT model to simulate runoff 
and sediment yield in various river basins [1, 13–15]. Kumar et al. [16] used the  
SWAT model to identify the Damodar river basin’s critical erosive watershed in a 
data scare catchment. The model was calibrated and validated for two watersheds 
totaling 174.49 km2 watershed areas. The authors found that the SWAT model is 
useful in data-scarce situations to prioritize water management methods, and that the 
methodology is particularly beneficial to developing countries with limited resources, 
such as India. The sediment load for Ujjani Dam in Maharashtra was calculated using 
the SWAT model by Shendge et al. [17]. The study area was divided into 27 sub-
basins, and the average annual sediment load was 888,010 tons per year, according 
to the authors. Jain and Sharma [18] investigated the runoff and sediment generation 
from the 7820 km2 Vamsadhara river basin using the SWAT model. The authors 
conducted a sensitivity analysis using SWAT-CUP and found that the SWAT model 
is an effective tool for runoff and sediment simulation. The SWAT model was used 
to simulate the flow of the Manimala River in Kerala [19]. The authors concluded 
that curve numbers and the SOL_AWC were influencing parameters for runoff. 

In the current work, by keeping the objective as to determine reservoir sedimen-
tation, the SWAT model is used for Koyna basin. The SWAT model was processed 
for (the years 2010 to 2020). SWAT model utilizes some starting period to over-
come its initial losses in terms of evaporation and percolation; hence, the first three 
years (2010–2012) were skipped for the warm-up period. The model was calibrated 
and validated in SWAT-CUP using the SUFI-2 algorithm for the periods (2013–2017) 
and (2018–2020), respectively, using observed stream flows data. The calibration and 
validation were carried on monthly time steps basis. Statistical metrics such as the 
coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and percentage 
bias (Pbias) were used to assess the work’s sensitivity. 

2 Materials and Method 

2.1 Description of Study Area 

The Koyna dam basin (Fig. 1) is located between longitudes 17°54,, and 17°16,, N 
and latitudes 73°42,, and 74°06,, E in the Satara district of Maharashtra, India. The 
Koyna River originates at Mahabaleshwar, the Satara district’s highest relief. The 
Koyna River, which flows north–south for 65 km and occupies an area of 2036 km2, 
is the principal source of the Koyna dam. The current study has been carried out over 
the 308 km2 area. The average elevation in the research region is between 248 and 
1435 m.
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Fig. 1 Location map 

The study basin is farmed with fruits trees, paddy, and maize. The land cover of 
study area is comprised with 31.50% agricultural area; 42.94% barren, 6.13% water 
bodies, and 19.32 mixed forest. The loam soil (Nd51-2b-3820) is a major soil present 
in the study area. The basin is located in Satara district and gathers water from the 
Western Ghat’s east side. The Koyna dam basin has a subtropical climate with an 
annual average rainfall of 5000 mm. The temperature in the basin ranges from 50 to 
400 degrees Celsius, with an average wind speed of 8.7 km per hour. 

2.2 SWAT Model 

The SWAT version used in this study was ArcSWAT 2012. The SWAT model is 
a physical-based and semi-distributed hydrological model that is mostly used for 
surface water modeling. It was developed by the United Nations’ agricultural research 
center [20, 21]. It can forecast the effects of land use/land cover on hydrology and 
agricultural output. It can anticipate the impact of land use on runoff, sediment, 
water quality, and nutrient production at the basin size throughout time [22]. In the 
present work, after processing of the model, the study area has been divided into 17 
sub-basins (Fig. 2) and 69 hydrologic response units (HRUs).
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Fig. 2 Sub-basins map 

2.3 Data Used 

2.3.1 DEM Map 

For current study, the digital elevation model (DEM) was obtained from 
(search.earthdata.nasa.gov) Website with 30 m resolution. The DEM is used to calcu-
late the length of the channel, the channel slope, and the overland slope. The DEM 
of the research region is shown in Fig. 3, with a minimum elevation of 248 m and 
a relief of 1435 m. The flowchart of SWAT model and the methodology adopted in 
this study is shown in Fig. 4.

2.3.2 Soil Map 

The soil map for the current research region was obtained from the National Bureau 
of Soil Survey and Land Use Planning, Department of India, at a scale of 1:250,000. 
The data was accessible in a detailed format, revealing the soil texture profile, and 
it was then digitized for model use. Figure 5 depicts the soil types found in the 
research region. The Loam soil (Nd51-2b-3820, 100%) was the most abundant soil 
in the study basin.
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Fig. 3 DEM map 

Fig. 4 Flowchart of SWAT model

2.3.3 LULC Details of Study Area 

The study area’s land use and land cover map (LULC) depicts the physical use of the 
area, such as forest, urban, and bare land, and reports on how the area is used (Fig. 6). 
In present work, the LULC data for the timeframe (2018–2019) was collected from 
earth-explorer; data without clouds was chosen for work. Moreover, the land use



Reservoir Sedimentation Analysis Using SWAT Model 173

Fig. 5 Soil map

map for the study area was created by using maximum likelihood classification in 
ArcSWAT-2012 and using Landsat-8 imagery. 

Fig. 6 LULC map
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Table 1 Statistical parameters for sensitivity analysis 

Statistical parameter Formula Authors 

Coefficient of determination (R2) R2 =
[ Σn 

i=1
(
Oi−O

)(
Pi−P

)/Σn 
i=1

(
Oi−O

)2/Σn 
i=1

(
Pi−P

)2
]

[23] 

Nash–Sutcliffe efficiency (NSE) NSE = 1 −
[ Σn 

i=1
(
Y Obs i −Y Sim 

i

)2
Σn 

i=1

(
Y Obs i −Y Obs

)2
]

[24] 

Percentage bias (Pbias) Pbias =
[Σn 

i=1
(
Y Obs i −Y Sim 

i

)∗100Σn 
i=1 Y 

obs 
i

]
[23] 

2.3.4 Meteorological Data 

Precipitation, sun radiation, temperature (max and min), relative humidity, and wind 
velocity were collected from the India Meteorological Department (IMD) weather 
data center on a daily and monthly basis for the time (2010–2020). In the ‘C’ drive, 
the SWAT database was updated with IMD gridded data and climate forecast system 
reanalysis (CFSR) global data. The errors in meteorological data such as missing 
rainfall data presented as (-999.00) were removed before the SWAT model was 
processed. 

3 Results and Discussion 

3.1 Model Performance 

For calibration and validation, the observed stream flow data from Mahabaleshwar 
station for monthly time steps was used. The sensitivity of the work is assessed by 
statistical parameters like R2, Pbias [23], and NSE [24] (Table 1). 

The range of statistical parameters is shown in Table 2. The determination coef-
ficient (R2) is a number between 0 and 1, with 1 being the best result, indicating 
that estimated values match measured real values. The best value for PBIAS is 
zero. A pattern of underestimation bias is indicated by positive numbers, whereas an 
overestimation bias model is indicated by negative values [25].

3.2 Model Calibration 

The model’s calibration is critical since it displays the degree of fitness and shows how 
well simulated and observed data match. To overcome its initial losses and produce 
the best simulation results, the model was given a three-year warm-up period for
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Table 2 Values/range of statistical parameters [23, 24] 

Performance ratings NSE R2 Percentage bias (%) 

Sediment Flow 

Very good 0.75–1 0.75–1.00 < ± 15 < ± 10 
Good 0.65–0.75 0.65–0.75 ± 15 to ± 30 ± 10 to ± 15 
Satisfactory 0.50–0.65 0.50–0.65 ± 30 to ± 55 ± 15 to ± 25 
Unsatisfactory < 0.50 < 0.50 > ± 55 > ± 25

Fig. 7 Monthly basis data for calibration

the current investigation. SWAT-CUP tool was used to complete the calibration for 
the period (2013–2017) (Fig. 7). Initially, self-calibration was utilized in SWAT, and 
afterward, SWAT-CUP was used to change sensitive parameters (Table 3). The R2 

value during calibration was 0.74 which indicates the acceptance of model (Fig. 8). 

3.3 Model Validation 

Model validation was done for monthly time steps during a three-year period (2018– 
2020) (Fig. 9). From the Fig. 10, results showed that R2 value during validation is 
0.70 indicating good agreement between simulated data and observed data.

3.4 Sediment Yield 

During the calibration (2013–2017) and validation (2018–2020) periods, the average 
annual soil loss values were 10.15 and 19.37 t/ha/year, respectively. These values
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Table 3 Values of sensitive parameters used in calibration 

Parameter Process Details of parameter Range 

CN2 .mgt Curve number 2 for wetting conditions −50%; + 50% 

ALPHA_BF .gw Base flow factor (days) 0–1 

SURLAG .bsn Coefficient of surface runoff lag 0–10 

ESCO .hru Soil evaporation factor 0–1 

SLSUBBSN .hru Slope length −50%; + 50% 

SLOPE .hru Average steepness −15%; + 15% 

SOL_AWC .sol Soil available water capacity −20%; + 20% 

SOL_K .sol Hydraulic conductivity (Saturated) −50%; + 50% 

SOL_Z .sol Soil depth 0–3000 

SOL_BD .sol Moist bulk density −15%; + 15% 

Fig. 8 Scattergrams for calibration

fluctuate spatio-temporally; moreover, the erosion rate is governed by rainfall, land 
use/land cover, soil texture, and by topography. 

For both the calibration and validation periods, Figs. 11 and 12 depict the variation 
in sediment yield between the various sub-watersheds. For the calibration period, the 
spatial distribution of erosion in the different sub-basins revealed a maximum sedi-
ment yield value of 145 t/ha/year for sub-basin 17 and minimal sediment transport in 
sub-basins 1, 9, 12, and 16. This would suggest that these sub-basins require imme-
diate water and soil conservation efforts in order to decrease erosion and sediment 
transfer.
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Fig. 9 Monthly basis data for validation 

Fig. 10 Scattergrams for 
validation

4 Results and Discussion 

The hydrological models are quite good at modeling runoff and sediment yield on 
a basin scale; therefore, they can be utilized as a tool for soil and water resource 
management planning. The SWAT model was used in this study for the Koyna dam 
basin in Maharashtra, India to estimate sediment yield. The SWAT model was run 
over a period of time (2010–2020), and the data obtained from HDUG Nasik, i.e., 
observed flows were used for calibration and validation. The model was calibrated 
and validated with the help of the SUFI-2 algorithm in SWAT-CUP for monthly 
time steps, statistical measures such as NSE (0.68), R2 (0.74), and Pbias (11%) were 
obtained at the time of calibration, and NSE (0.72), R2 (0.70), and Pbias (14 %) were 
found at the validation phase. From this study, it is observed that sub-basin numbers



178 R. S. Sabale et al.

Fig. 11 Spatial distribution 
of sediment yield during 
calibration period 
(2013–2017) 

Fig. 12 Spatial distribution 
of sediment yield during 
validation period 
(2018–2020)
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13, 15, and 17 are more vulnerable for erosion and hence to be maintained to alleviate 
the soil losses. 

5 Conclusion 

The study concludes that the results are satisfactory; indicating that the model is 
capable of accurately reproducing reported sediment yields. The SWAT model has 
been proved to be a reliable method for simulating sediment transport in the Koyna 
basin. The outcomes of work will be useful to researchers and policymaker to 
conserve the soil and water resources in Koyna basin. 
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Assessing the Performance of SWOT 
Simulator in Estimating River Discharge 
of a Tropical Basin 

Taha Aawar, M. S. Adarsh, and C. T. Dhanya 

Abstract River discharge, one of the most informative hydrologic variables for 
different applications such as water resources management, flood forecasting, and 
long-term change studies in the water cycle, is measured only across a few stations, 
however. The measurement and maintenance of river discharge data at in situ hydro-
logical observations (HO) stations are challenging due to the cost involved and 
the accessibility. Hence, studies often rely on remote sensing methods, particularly 
satellite data, as a complementary source for estimating river discharge. Interest in 
space-based observation for remote sensing of river discharge has gained momentum 
recently due to continuous availability and open access of multiple satellites such 
as optical, microwave, and altimetry at various spatial and temporal scales globally. 
Surface Water and Ocean Topography satellite mission (SWOT), to be launched in 
2022, aims to estimate discharges in rivers wider than 100 m directly. This study 
aims to assess the applicability of the SWOT mission to estimate the discharge of 
Gopalkheda station in the Tapi river basins, a tropical basin in India, using SWOT-
like data. In situ, HO station data and satellite data are used in a SWOT Simulator 
along with multiple river discharge estimating algorithms used by SWOT satellite to 
derive the discharge series. The results are compared with the in situ river discharge 
to assess the performance of SWOT-derived river discharge. 

Keywords River discharge · Remote sensing · Satellite data · SWOT satellite 
mission
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1 Introduction 

River discharge has a significant role in water resources management; thus, under-
standing river discharge is advantageous for mitigating and controlling floods, 
drought, etc. Discharge estimation using satellite data is a complicated process due to 
numerous limitations like temporal and spatial resolution of satellites, type of satel-
lites available, and accuracy of the satellite images [1, 2]. Based on the literature, the 
global discharge database information has been regularly downsizing throughout the 
last few years. This issue leads to understanding the importance of remote sensing 
techniques and applications in measuring rivers’ height, width, and slope [3–6]. 
Recently, remote sensing and GIS techniques have been widely used to estimate 
river discharge through calibration in situ observation data [7–9]. Various studies 
have been conducted to estimate the discharge using satellite and remote sensing 
data products in the last few decades [2, 3, 9–18]. The river discharge through satel-
lite products data is estimated by measuring its different hydraulic components, such 
as river width, depth, or velocity either solely or jointly [19–21]. The Surface Water 
and Ocean Topography (SWOT) satellite mission planned to be launched in 2022 can 
estimate discharge by simultaneously measuring water surface elevation, river width 
and slope, using a temporally and spatially continuous Ka-band radar interferom-
eter [22, 23]. SWOT is the first such satellite devoted to terrestrial hydrology, which 
was developed by the National Aeronautics and Space Administration (NASA) and 
French: Centre National D’études Spatiales (CNES) with contributions from the 
Canadian Space Agency (CSA) and The United Kingdom Space Agency (UKSA) 
[24–31]. 

The SWOT mission satellite is designed to complete one earth cycle observation 
within 21 days at an altitude of 800–1000 km generating a large amount of data. This 
satellite carries a payload module containing a KaRIn radar interferometer to measure 
ocean water level, Jason class altimeter, DORIS antenna, microwave radiometer, X-
band antenna, laser reflector assembly, and GPS. Likewise, the SWOT mission can 
observe the ocean water level, estimate inland water bodies wider than 250 × 250 m 
with a target of 10,000 square metres, and discharge rivers more than 100 m wide 
[32, 33]. One of the most remarkable points of the SWOT is that it can accurately 
measure soil, snow, and vegetation layers with less penetration using KaRIn. KaRIn 
is the first satellite instrument to completely dissolve surface water bodies with high 
altitude accuracy [34, 35]. 

In order to investigate the capabilities of SWOT, identify applications, and develop 
algorithms to process the large output data, studies have been carried out by gener-
ating synthetic SWOT-like observations by corrupting the observed or modelled data 
with SWOT error characteristics [25, 36]. Using the CNES SWOT Hydrology Simu-
lator [34], proxy SWOT-like data are produced that account for additional measure-
ment error sources and produce outputs that are comparable to those expected from 
actual SWOT products. 

This paper attempts to evaluate the SWOT satellite’s performance with the obser-
vation data in one of India’s prominent rivers, the Tapi river basin. We use existing



Assessing the Performance of SWOT Simulator in Estimating River … 183

satellites and in situ observations data to supply inputs for SWOT Simulator to 
generate SWOT-like output data and compare with in situ observation. 

2 Study Area, Material, and Method 

2.1 Study Area 

Based on Central Water Commission (CWC), India has 20 river basins in which 
12 are prominent, and rest eight rest are composite and small basins. A seasonal 
tropical river basin with high intensity of rainfall and flood is located in central India 
called Tapi River Basin. Tapi River Basin has a 724 km length and 65,145 km2 

catchment area divided into upper Tapi river (Multai to Hathnur dam), middle Tapi 
river (Hathnur dam to Ukai dam), and lower Tapi river (Ukai dam to the Arabian 
Sea). Tapi river basin has three discharge gauge stations of which two located in the 
upper part of the basin, and the rest is in the middle part. In this study, the Gopalkheda 
gauge station is selected as in situ reference data. This station belongs to the branch 
of the Purnais river which located in the Akoal district of Maharashtra. The total 
average rainfall in this area is 704.7 mm [37]. Figure 1 shows the study area map. 

Fig. 1 Tapi River Basin—Study area
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2.2 In Situ Data Requirement 

The monsoon season in India generally peaks between July and October of every 
year. Our study focussed on these months and selected HO observations for each year 
from 2010 to 2017. Accordingly, we obtained discharge and water surface elevation 
data from India-WRIS (www.indiawris.gov.in) Website for the study area. 

2.3 Surface Water Extend from Satellite 

One of the inputs for the SWOT simulator is the river surface water extent at the study 
location. In order to obtain the water extent, we used images from multiple satellites 
such as the Sentinel-1 SAR satellite and Landsat-5, 7, 8 and Sentinel-2 Satellites. The 
images were processed to extract the surface water extent and converted to polygon 
shapefiles for use in SWOT Simulator. 

2.4 CNES SWOT Hydrology Simulator 

Amongst the inputs that the CNES SWOT hydrology simulator uses are radar param-
eters (power, bandwidth, baseline, thermal noise level, etc.), SWOT orbit, a land 
coverage map referred to as a water mask, and a digital elevation model (DEM). 

A simulator run begins with finding all ascending and descending orbits inter-
secting the area of interest and selecting the ones to use. In the next step, the simulator 
calculates the complex interferograms by taking into account the chosen orbit, the 
DEM, the land cover mask, the water topography, and the instrument characteristics. 
A complex output image reflects the magnitude of the backscattering of the surface 
(corrupted by speckle), and the phase reflects the topography of land and water (with 
thermal noise). 

It is possible to simulate various situations by changing parameters, like the 
backscattering model for each class (land, water, etc.), or by adding a wind field 
that will locally modulate water roughness and backscattering. In the next step, the 
simulator generates a “pixel cloud” product, a water mask associated with geolocated 
heights and uncertainties, in which the water pixels are demonstrated as a point cloud. 
Land pixels are mostly disposed of or discarded. 

We create the water extent at rivers using the polygon shapefile extracted from 
Satellite images. These shapefiles must contain attributes with water surface eleva-
tions input as “HEIGHT”, River flag (RIV_FLG) with 1 for the river and 0 for the 
lake [34]. Figure 2 illustrates the river network and river pixel cloud (river mask), 
which SWOT Simulator generated at Gopalkheda.

http://www.indiawris.gov.in
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Fig. 2 Generated river mask for Gopalkheda gauge station 

2.5 SWOT RiverObs Simulator 

The resulting pixel cloud of water surface heights is processed with a RiverObs 
package in the SWOT simulator, which uses a priori information of river centerline 
and node database spaced at ~200 m along the river centerline and reaches database 
computed by aggregating nodes to ~10 km. It uses an offline SWOT River Database 
(SWORD), which contains the river feature in shapefiles through its global and 
satellite-related database [38]. Generated nodes that have average water level and 
river with are shown in Fig. 3 at the Gopalkheda HO station of the study area.

2.6 Empirical Equation 

Discharge being a significant characteristic of the river, researchers have tried various 
methods to estimate discharge from satellite data products. [22, 39] used the stage-
rating curve and hydraulic manning equation to estimate river discharge from satellite 
data products. [20, 40, 41] used an empirical method in order to carry out river 
discharge from satellite data. Sichangi et al. [40] developed the manning’s equation 
form to derive discharge using satellite water level and river width with an assumption
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Fig. 3 Nodes generated from RiverObs at Gopalkheda gauge station

of the trapezoidal cross-section according to Eq. (1): 

q = aW D 
5 
3 + b (1) 

where a and b are constant, which can evaluate by calibration of in situ data, W is 
river width, q is the discharge, and D is water depth obtained from Eq. (2): 

D = H − h (2) 

H is water level height, and h is the zero flow water level. Huang et al. [41] expand 
the Eq. 1 for various cross-section areas shapes, which result is shown in Eq. (3): 

q = aW (H − h) 
5 
3 (3) 

where a is the constant ratio between roughness and slope and can estimate from the 
least square fitting using calibrated in situ data (Huang et al., 2018). 

For the present study, power-law fitting [42] as presented in Eqs. (4–6) is used in  
order to estimate discharge. 

h = aQb (4)
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W = cQd m (5)  

Wxh  = (a + c)Q(b+d) 

Wxh  = AQB (6) 

where W is river width, h is water depth, and Q is discharge. A and B are constant 
slope roughness ratios. 

3 Performance Evaluation 

Nush–Sutcliffe efficiency (NSE) coefficient, root mean square error (RMSE), and 
relative root mean square error (RRMSE) are used according to the following formula 
to evaluate the discharge estimation performance. 

NSE = 1 − 
(QObs − QEst)

2

(
QObs − QObs

)2 (7) 

RMSE =
/
(QObs − QEst)

2 

n 
(8) 

RRMSE = 
RMSE 

QObs 
× 100% (9) 

4 Results and Discussion 

SWOT satellite missions can simultaneously measure the water surface elevation 
(WSE) and river width (W), whilst other satellites do not have this ability. Conse-
quently, the SWOT simulator estimated the time series of water surface elevation 
and river width on the Gopalkheda gauge station of the Tapi river basin plot in Fig. 4.

In the present study, Eqs. (4 and 6), as illustrated in Figs. 5 and 6, are used, 
respectively, to derive the discharge from joint estimation using SWOT data products 
and solo estimation using in situ data water level for the Gopalkheda gauge station, 
as shown in Table 1.

Based on Eq. 6, the SWOT river width product and in situ water level are used 
to calculate discharge at the Gopalkheda gauge station. The result demonstrated 
a comparable estimated discharge value in comparison with actual discharge. On 
the other hand, Eq. 4 is used to estimate discharge from in situ water level data. 
This process has been done in order to check the accuracy of the river width and



188 T. Aawar et al.

45 

47 

49 

51 

53 

55 

57 

5-
Ju

l 

5-
Se

p 

5-
Ju

l 

5-
Se

p 

5-
Ju

l 

5-
Se

p 

5-
Ju

l 

5-
Se

p 

5-
Ju

l 

5-
Se

p 

5-
Ju

l 

5-
Se

p 

5-
Ju

l 

5-
Se

p 

5-
Ju

l 

5-
Se

p 

2010 2011 2012 2013 2014 2015 2016 2017 

242 

242.5 

243 

243.5 

244 

244.5 

245 

Ri
ve

r W
id

th
 (w

) 

W
SE

 

Water Surface Elevation (WSE) 
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Fig. 5 Discharge via width to the height power equation

performance of SWOT satellite data. Appropriately, estimated discharge is showing 
consistency, as shown in Figs. 5 and 6. 

Nush–Sutcliffe efficiency (NSE) coefficient, root mean square error (RMSE), and 
relative root mean square error (RRMSE) to calculate the performance of SWOT data 
products to estimate discharge using Eqs. 7, 8, and 9 are presented in Table 2.

Based on the NSE value, the result shows a consistency between the estimated 
discharge using SWOT data and in situ using Eq. 6. Figure 7 shows the estimated
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Fig. 6 Discharge via water level power equation

discharge using SWOT products and in situ observations. In addition, the RMSE in 
using SWOT satellite data shows improvement with respect to in situ data.

5 Conclusions 

Recently, satellite data products have been widely used in order to estimate discharge 
amongst the researchers. This research attempted to use SWOT satellite mission 
synthetic data products to evaluate the performance of this satellite mission, which 
will be launched in 2022. 

Although various methods to estimate river discharge from satellite data are used 
by many researchers, we used an empirical equation method to derive river discharge 
from the synthetic SWOT data products in the Gopalkheda gauge station in the Upper 
Tapi river basin. As shown in Fig. 7, the discharge is high during August, September, 
and October 2012, 2013, and 2015, which is the cause for the high value of RMSE 
by increasing the data time interval, this may decrease. NSE coefficient value for 
jointly used satellite river width and in situ water level express a good performance 
estimated value (0.94) near the ideal NSE value (1). Whilst for in situ data, NSE 
comes 0.94. Root mean square error indicates the improvement in the satellite data 
used compared with h solo in situ data. In order to obtain a temporally continuous 
estimate of water surface elevation using SWOT, it is recommended to input the 
height as a time series using Python wrapper to process the full time series through 
the CNES simulator quickly and efficiently [34]. The result of this study shows the 
applicability of SWOT satellite in Indian basin, promising to estimate river discharge 
reliably. The current study shall need to be scaled temporally and spatially to assess 
the performance of SWOT satellites data products in other basins of India.
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Table 2 Performance evaluation metrics 

Discharge 
estimate 
used 

n Qobs
∑

(Qobs − QEst)
2 ∑(

Qobs −Qobs
)2 

NSE RMSE (Cumecs)RRMSE (%) 

River 
width 
from 
SWOT 
data 

32 216.98 412,882.11 7,101,500.28 0.94 113.59 52.35 

Height 
from 
in situ 
data 

32 216.98 430,183.54 7,101,500.28 0.94 115.94 53.44
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Intercomparison of the Performance 
of CHIRPS Satellite Rainfall Data 
and Gauge Gridded IMD Data 
for Hydrological Modelling 

K. Gupta 

Abstract Precipitation is one of the primary inputs governing the hydrology of 
the basins. The hydrological models developed for Indian region utilize multiple 
sources of precipitation data with varying degrees of uncertainties. In this study, 
the two widely used sources of precipitation data such as Climate Hazards Group 
InfraRed Precipitation with station data (CHIRPS) satellite rainfall data and gauge 
gridded Indian Meteorological Department (IMD) data have been used for hydrolog-
ical modelling, and their performance has been compared in predicting the stream-
flow as compared to the observed streamflow data. Daily rainfall data over Payaswani 
River Basin for 30 years (1989–2018) has been used for analysis. The hydrological 
model is developed using DHI MIKE NAM (Nedbør—Afstrømnings-Model) model. 
Out of 30 years data, 20 years data is used for calibration, and 10 years data is used 
for validation. The performance of model can be evaluated using various perfor-
mance indicators such as overall volume error, peak flow root mean square error 
(RMSE), low flow RMSE, and aggregate objective error. The results indicated that 
gauge gridded IMD data performed better than CHIRPS data for all indices except 
overall volume error. 

Keywords Precipitation · Uncertainties · Hydrological model · CHIRPS · IMD 

1 Introduction 

The forecasting of streamflow is key to important decisions for hydrologist for plan-
ning water resources management for the basin as well as for carrying out any hydro-
dynamic studies. Although there are various hydrological models to study the rainfall 
runoff process, but the MIKE NAM model is quite popular amongst researchers as 
well as industry (Aredo et al. [1]).
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There have been various studies around the globe by usage of MIKE 11 NAM 
model for rainfall runoff modelling. Makungo et al. [2] applied MIKE 11 NAM 
model to obtain the runoff for the ungauged catchment in Nzhelele River, South 
Africa using regionalization of parameters and obtained best results. Aherwar and 
Aherwar [3] compared the modelling results of two models MIKE NAM and SCS-
CN for rainfall runoff modelling in Shipra River basin in Madhya Pradesh, India and 
found the MIKE NAM model outperformed SCS-CN model. Sajadi et al. [4] also  
investigated the rainfall runoff modelling in Gonbad Catchment in Hamedan and 
obtained satisfactory results. Ghosh et al. [5] applied MIKE NAM rainfall runoff 
model in the lower Gangetic plain, West Bengal and obtained a promising result 
as compared to the observed data. Kumar et al. [6] examined the performance of 
MIKE NAM model for the simulating the streamflow for temperate catchment such 
as Jhelum catchment and obtained the NSE of 0.96 and R-squared value of 0.9 when 
compared with the observed data. 

In all hydrological modelling studies, the precipitation data is the primary input 
for any hydrological model to forecast streamflow. There are various sources to 
obtain precipitation data in India such as ground-based rain gauge station data such 
as Indian Meteorological Department (IMD) gridded data as well as remote sensing-
based sources such as Climate Hazards Group InfraRed Precipitation with station 
data (CHIRPS) and Tropical Rainfall Measuring Mission (TRMM). Intercomparison 
of various sources of precipitation data for obtaining accurate hydrological model 
would enable better judgement to the hydrological modeller. In past, few hydrolog-
ical modelling studies have been carried out comparing various satellite products 
over different basins globally [7] and [8] and only few studies over Indian basins 
(Sulugodu & Dekas [9]; Shrannya et al. [10]). 

Shrannya et al [10] compared TRMM and CHIRPS data for streamflow modelling 
for Gurupura Basin, Western Ghats and showed that TRMM performs better than 
CHIRPS data. Sulugodu & Dekas [9] compared the IMD gridded precipitation data 
and CHIRPS precipitation data over Nethravati River basin and found the CHIRPS 
data performs better as compared to IMD data. However, the performance of the 
various sources of satellite data may also vary based on the catchment characteristics. 
Therefore, present study compares the IMD and CHIRPS precipitation data over 
Payaswani River basin in Kerala and Karnataka using MIKE 21 NAM (Nedbør-
Afstrømnings-Model) model.
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2 Materials and Method 

2.1 Study Area and Data Source 

2.1.1 Payaswani River Basin 

The origin of Payaswani river lies in Patti Ghat reserve forest which falls in the 
Coorg district of Karnataka at an altitude of about 1350 m above M.S.L. Payaswani 
river is a tributary to the Chandragiri. The length of river is 105 km. The river’s 
catchment area is 1538 sq km. There is one CWC Hydrological Observation Station 
at Erinjipuzha. The study area is a subbasin in Payaswani River basin draining the 
water to Erinipuzha station on this river. The study area of Payaswani River subbasin 
is shown below in the index map as shown in Fig. 1.

2.1.2 Data Collection 

The daily rainfall data was collected from CHIRPS database using Google Earth 
Engine for Erinjipuzha Basin as well as using IMD gridded (0.250 × 0.250) database 
for a period of 30 years, and the daily discharge data for stream gauging site at 
Erinjipuzha CWC station was obtained from India WRIS Website. The Hargreaves 
formula was used to derive potential evapotranspiration using IMD temperature 
gridded data (10 × 10). 

2.2 MIKE NAM Model 

The MIKE NAM (NedborAfstromnings Model) model is used in this study to simu-
late the hydrological process of rainfall runoff. This model is a lumped conceptual 
rainfall runoff model which is based on the consideration that the moisture content 
is stored in three mutually interrelated systems such as baseflow, interflow, and over-
land flow [11]. It considers each sub-catchment as one unit and therefore considers 
the average value of the parameters of the model as well as input and output variable 
over the entire catchment. The schematic showing its functioning is shown in Fig. 2.

2.3 Selection of Input Parameters 

There are 9 parameters which needs to be calibrated whilst running the NAM model, 
and these 9 parameters represent the storage at surface, root zone, and ground water. 
These 9 parameters are described in the Table 1.
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Fig. 1 Index map of study area

3 Results and Discussion 

The calibration of hydrological model NAM was carried out for 20 years (1989–2008) 
using both CHIRPS and IMD data as shown in Fig. 3.

The calibration statistics obtained for each precipitation source is shown in Table 
2. It can be observed that except overall water balance error (WBL), the IMD dataset 
shows lower error RMSE than CHIRPS dataset.

The calibrated model obtained using each of the dataset (IMD and CHIRPS) was 
used for validation for 10 years (2009–2018) with CWC station data at Erinjipuzha. 
The validation results are shown in Fig. 4.
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Fig. 2 Schematic of NAM model [11].

However, the Sulugodu & Dekas [9] showed that CHIRPS dataset performs better 
than IMD dataset in streamflow forecasting using hydrological model. The discrep-
ancy in the behaviour of the dataset for the different river basins indicates that the 
performance of precipitation dataset in streamflow forecasting can be attributed to 
the nature of catchments. 

4 Conclusions 

The main conclusions derived from the present study are discussed below: 

(i) The accuracy of hydrological model depends on the choice of precipitation 
dataset. 

(ii) It has been observed that IMD gridded precipitation dataset (0.250 × 0.250) 
yields lower RMSE error in peak flow, low flow as well as aggregate objective 
as compared to CHIRPS database for Payaswani River basin. 

(iii) The performance of the precipitation datasets for streamflow forecasting 
depends on the nature of catchments.
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Table 1 Different parameters of the NAM model 

Parameter Unit Description Effects 

Umax mm Maximum content of water in surface 
storage 

1. Flow overland 
2. Flow in infiltration 
3. Losses in evapotranspiration 
4. Flow in interflow 

Lmax mm Maximum content of water in lower 
zone/root storage 

1. Flow overland 
2. Flow in infiltration 
3. Losses in evapotranspiration 
4. Flow in base flow 

COOF Coefficient for overland flow 1. Volume of flow on overland flow 
2. Flow in infiltration 

CKIF Hrs Constant for interflow drainage Surface storage drains as interflow 

TOF Threshold of overland flow Minimum soil moisture over which 
overland flow occurs 

T IF Threshold of interflow flow Minimum soil moisture over which 
interflow flow occurs 

TG Threshold of groundwater recharge Minimum soil moisture over which 
groundwater recharge occurs 

CK1 Hrs Overland flow’s timing constant It has effect on routing of overland 
flow along different slopes of 
catchments as well as channels 

CK2 Hrs Interflow’s timing constant It is responsible to route interflow 
along various slopes of catchment 

CKBF Hrs Base flow’s timing constant It is responsible to route flow 
through linear groundwater 
recharge
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Fig. 3 Time series plot of observed and predicted discharge at Erinjipuzha CWC station 
(Calibration)
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Table 2 Calibration statistics 
for IMD as well as CHIRPS 
datasets 

Index Rainfall_IMD Rainfall_CHIRPS 

Overall water balance error 
(WBL) 

10.661 0.106 

RMSE 46.053 80.432 

Peak flow RMSE 46.053 80.432 

Low flow RMSE 1.414 2.261 

Aggregate objective 104.18 163.230
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Fig. 4 Time series plot of observed and predicted discharge at Erinjipuzha CWC station 
(Validation)

The future studies in this direction may be carried out by considering the different 
types of catchments and the impact of the nature of catchment on the performance of 
the rainfall runoff model. Moreover, the intercomparison of more number of rainfall 
datasets can be carried out for the hydrological modelling. 
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PMF Estimation for Extreme Events 
from PMP Atlas, a GIS, and Hydrologic 
Model-Based Case Study in Tehri 
Catchment 

Mohit Jani, Praveen K. Thakur, Arpit Chouksey, S. P. Aggarwal, 
P. Chauhan, and Atul Singh 

Abstract In the current generation due to climate change, many regions of the earth 
are facing extreme weather conditions. India also facing adverse effects like atyp-
ical floods and droughts due to climate change. Extreme floods are now a common 
phenomenon in lower Himalayan regions. Many cities and towns of the hills are 
adversely affected by these events. Central Water Commission (CWC) has published 
probable maximum precipitation (PMP) atlas for major river basins of India. In 
which, the current study is based on the PMP atlas for Ganga River Basin. CWC has 
provided the isohyetal maps of precipitation for various return periods and duration. 
It is difficult to have a specific precipitation estimation of any subbasin in this large 
river basin. So, the current study focuses on the precipitation value estimation of 
Tehri Subbasin of Ganga River. Isohyetal map of 24-h (1 day) duration and different 
return periods is used in this study. The hourly time distribution function is calculated 
from station wise rain spells. The catchment delineation is processed by taking Tehri 
Dam as an outlet. Each specific sub-watershed consists of a precipitation value. GIS 
tools are used to extract the precipitation value of each subbasin from the isohyetal 
map. The datasets were used to generate probable maximum flood (PMF) graphs
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from a calibrated hydrological model of the study area. The data validation has been 
done by performing hydrologic modeling of Tehri Catchment and comparing it with 
the designed PMF of Tehri Dam which is 15,500 cumec. The resulting hydrological 
model for the extreme event has generated 15,883 cumec of inflow at the Tehri Dam 
which showed quite similar results with the designed PMF of Tehri Dam. The results 
have shown that PMP atlas can be very useful to study the hydrological applications 
of extreme events. 

Keywords Hydrologic modeling · GIS · PMP atlas · PMF · Tehri catchment 

1 Introduction 

Extreme precipitation is a common phenomenon in India nowdays. The Himalayan 
region also faces frequent and uneven amount of rain fall across the year. Town and 
villages in these regions face a constant threat of their lives and livestock. In the recent 
years, specially, the mountainous regions of Himalayas have faced extreme weather 
events. Durga Rao et al. [1] suggested for development of the flood forecast models 
to enhance the preparedness in these vulnerable regions. The main reason for the 
sudden catastrophe is flash flood which occurs in relatively very small time-period 
and wash out a significant amount of area [2]. 

India Meteorological Department has developed PMP atlas for various river basins 
for Indian subcontinent. The major aim is to get an idea of the various duration 
rainfalls ranging from 12-h to 72-h and return periods. Rakhecha and Clark [3] have  
used in situ maximization and storm transportation method to develop the PMP for 
one day duration for different locations in India. This duo went a step further and 
since rainfall data for the heaviest storms that occurred in different parts of India 
during the period 1880–1983, improved estimates of one-, two-, and three-day point 
PMP for India have been made by Clark and Rakhecha [4]. 

The PMP atlas have supported datasets in many research areas. One significant 
study by Dauji et al. [5] showed that the accuracy of rainfall time distribution curve 
for a costal site where they have taken Standard Projected Storm (SPS) dataset from 
the PMP atlas. Kavya et al. [6] also estimated the designed flood at the reservoir 
outlet based on the CWC-based PMP atlas. The studies like this have shown the 
applicability of the PMP atlas in various discipline. 

2 Study Area and Methodology 

2.1 Study Area 

The present study is more focused in precipitation dataset generation from PMP atlas 
by CWC. In which, a calibrated hydrologic model is used to validate the datasets
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Fig. 1 Index map of study area 

with the generated results. The following map shows the study area which is Tehri 
Basin. The basin is stretched in districts of Uttarakhand State (i) Tehri-Gharwal, 
(ii) Uttarkashi, and (iii) Rudraprayag. The study area consists of two rivers, named 
Bhagiratahi and Bhilangana, which later forms the Ganges River (Fig. 1). 

2.2 Methodology 

Probable maximum flood is the flood that may be expected from the severe combi-
nation of hydrological and meteorological parameters that are possible in a drainage 
area. Probable maximum precipitation (PMP) atlas for Ganga River Basin is used 
to get the PMF hydrographs for the study area. The Central Water Commission of 
India develops PMP atlas for Ganga Basin. There is a total of two reports which 
are divided into volume-I and volume-II. Volume-I, the main report, consists of the 
theory part of generating the PMP atlas, and the volume-II consists of the maps and 
tables of the PMP atlas. The study area lies in the catchment 401A (Fig. 2).

Based on the orography and location if the catchment, rainstorm, which can affect 
this zone, has been analyzed using the depth duration (DD). As per the report of 
volume-I from the records, 20 severe rainstorms were found that contribute to the



206 M. Jani et al.

Fig. 2 Ganga river basin with catchment boundaries (PMP atlas Ganga basin Vol-II, page no. 19)

maximum average areal rainfall over this zone. Standard Projected Storm (SPS) 
obtained from the severe rainstorms and then adjusted with moisture maximization 
factors (MMF) to get PMP estimates. 

Hershfield statistical method is used to generate the PMP maps for the Ganga 
River Basin [7] (Fig. 3).

The maximum 1-day rainfall values for every station are plotted for each return 
period on separate maps. Smooth isohyets of rainfall were then drawn at the appro-
priate interval to prepare generalized maps. The spatial distribution of the point 
values prepared for maximum rain of return periods of 5, 25, 100, 10,000 years. The 
following methodology was adopted in getting out the precipitation value from the 
PMP atlas (Fig. 4).

The PMP values have been calculated for the duration of 1-day. The most affecting 
factor to the peak discharge is the variability of the rainfall in time. The time distri-
bution for the duration of 1-day is calculated from the station wise rain spells. This 
dataset is taken from PMP atlas (Fig. 5).

Based on this time distribution curve, the hourly precipitation values are derived 
or each watershed. There is total 52 number of watersheds present in the catchment. 
The total four isohyetal maps of return periods of 5, 25, 100, 10,000 years and 1-day 
duration are extracted and processed for the precipitation data. After the successful 
data extraction from the PMP atlas, the datasets then fed to the meteorologic model 
in the simulation software. Here, a calibrated hydrologic model is utilized to check
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Fig. 3 1-day rainfall (mm) for a 25-year return period (PMP atlas Ganga Basin Vol-II, page no. 
455)

Fig. 4 Extracting the precipitation value from isohyet map
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Fig. 5 1-day time duration (hours vs. %precipitation)

the scalability of the precipitation dataset. The hydrologic simulation was performed 
in HEC-HMS software. In which the simulation windows were taken as 48 h to get 
a smooth flood hydrograph (Fig. 6; Table 1).

The above table gives a brief description of the rainfall values in mm based on the 
time distribution graph. These values put into the meteorologic model, and the final 
simulation is calculated. 

3 Results and Discussion 

The following output was generated by performing hydrologic simulations for all 
four return periods (Table 2).

The following graphs represent the flood hydrographs and its peaks at various 
intervals. The maximum peak shown in the graph is of 10,000-year return period 
which is 15,883 m3/s (Fig. 7).

Tehri Dam has designed PMF of 15,540 cumec and the maximum result we 
obtained for 10,000-year return period and 24-h duration also 15,833 cumec. This 
dataset shows the reliability of the given method for simulations on various return 
periods [8].
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Fig. 6 Watershed in the Tehri Basin

4 Conclusions 

Based on the preceding results, it shows that PMP atlas is a very convenient tool to 
generate precipitation datasets for event-based hydrological model and can be useful 
to estimate PMF hydrograph for small catchments.
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Table 2 Flow output at various return periods 

Time Flow output (m3/s) 

(Hrs) 5 25 100 10,000 

0 520 520 520 520 

1 520 520 520 520 

2 520 520 520 520 

3 520 520 520 557 

4 520 520 520 715 

5 520 520 520 1058 

6 520 520 521 1950 

7 520 520 524 4311 

8 520 520 546 7674 

9 520 520 637 10,430 

10 520 521 915 12,506 

11 520 524 1428 14,050 

12 520 535 1993 15,020 

13 520 569 2443 15,571 

14 520 644 2786 15,809 

15 520 773 3054 15,883 

16 520 943 3272 15,822 

17 520 1112 3460 15,621 

18 520 1255 3616 15,240 

19 520 1372 3729 14,655 

20 520 1466 3782 13,885 

21 520 1529 3757 12,901 

22 520 1555 3646 11,696 

23 521 1548 3460 10,340 

24 521 1510 3211 8969 

25 522 1442 2914 7667 

26 523 1346 2596 6461 

27 525 1238 2285 5381 

28 526 1129 1998 4448 

29 526 1028 1742 3664 

30 526 936 1516 3021 

31 525 855 1323 2504 

32 524 785 1161 2093 

33 523 727 1028 1770 

34 522 679 920 1516

(continued)
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Table 2 (continued)

Time Flow output (m3/s)

(Hrs) 5 25 100 10,000

35 521 640 834 1317 

36 520 611 766 1159 

37 520 589 714 1033 

38 520 573 675 935 

39 520 563 646 864 

40 520 556 624 817 

41 520 550 609 793 

42 520 546 598 784 

43 520 543 593 785 

44 520 540 593 794 

45 520 541 599 796 

46 520 545 607 779 

47 520 552 612 757 

48 520 558 613 738 

Peak Flow 526 1555 3782 15,883
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Fig. 7 Runoff hydrographs at various return periods
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A Review: Contribution of HEC-HMS 
Model 

Mukul Kumar Sahu, H. R. Shwetha, and G. S. Dwarakish 

Abstract The rapid increase of population worldwide, urbanization, and industrial-
ization significantly impact hydrologic processes locally and globally. Thus, devel-
opment planning and managing various water resources are required to meet multiple 
water demands. However, acquiring gauge discharge data has always been difficult 
since measurements cannot be taken at every point along the river. Thus, HEC-HMS 
(Hydrologic Modeling System) is the hydrological model that can transform rain-
fall into a runoff by using known parameters, data, and appropriate mathematical 
equations to simulate flow records at the desired location. HEC-HMS was devel-
oped by the USACE and is freely accessible. It can estimate runoff from rainfall. 
In this paper, we review the studies carried out by researchers on the HEC-HMS 
model worldwide to ascertain its ability to simulate runoff with accuracy and use 
for making decisions. It could be seen that many researchers compared different 
modelling methods to obtain the best model suitable under different hydrological 
conditions and found HEC-HMS as a good model over others and recommended it 
for simulation of runoff. The reviews show that the HEC-HMS rainfall-runoff model 
has many flood modelling and water resource planning and management applica-
tions. In most studies, HEC-HMS rainfall-runoff modelling was found to be efficient 
and dependable in predicting runoff accuracy in various river basins. As a result, 
the model can simulate runoff in an ungauged basin for water resource planning, 
development, management, and decision-making. 
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1 Introduction 

Watershed models are required for proper assessment, development, and manage-
ment of water resources. Computer simulation of rainfall-runoff began in early 
1960 [5]. However, calculating runoff from an ungauged or poorly gauged water-
shed is problematic in developing nations like India. Hydrologic models help us in 
better understanding hydrological phenomenon occurring in the watershed. There 
are several components of the hydrologic cycle like surface runoff, infiltration, evap-
oration, sub-surface flow, depression storage, and baseflow. Integration of various 
hydrological processes helps in the management of water resources and also in the 
design of the hydraulic structure. The hydrological processes depend on rainfall 
patterns and land use land cover of the basin and vary in spatial and temporal scales. 

To simulate the various hydrological process of the basin, the development of the 
model came into existence in, 1992 [30]. In 1967, Leo R Beard and other Hydrological 
Engineers Circle staff members, with the US Army Corps of Engineers, developed a 
mathematical watershed model HEC-1 to simulate the flood hydrograph. HEC-1 was 
upgraded to increase its capabilities [31]. The initial release of HEC-HMS was known 
as version 1.0, and it included all the features of HEC-1 with minor improvements. 
The second release, version 2.0, introduced the Soil Moisture Accounting (SMA) 
approach, which expanded the programme’s capabilities from event-based simulation 
to continuous simulation. The third major update, version 3.0, introduced a new 
graphical interface to develop potential and snowmelt evapotranspiration methods. 
In addition, some new infiltration representation approaches were introduced in the 
model. The fourth, version 4.0, adds sediment movement, and surface erosion to 
the computation is an important update. After the fourth version, 4.0 of HEC-HMS, 
the 4.1 series of performances started, and HEC-HMS 4.9 is the latest version of the 
HEC-HMS programme and had the advantage that it does not overwrite the observed 
stage data with observed flow data as it done in its previous version 4.8. 

HEC-HMS is made up of four primary parts as follows. (a) An analytical model for 
calculating runoff and channel routing from overland flows, (b) an innovative graph-
ical user interface with interactive elements for demonstrating hydrological system 
components, (c) massive time-variable datasets require a framework for storing and 
managing them, and (d) a standard for showing and reporting model output in rainfall-
runoff simulations. Many alternatives are available in HEC-HMS, such as the basin 
model, which consists of three processes: loss, transform, and base flow. Runoff 
prediction and its response at the outlet are very challenging in hydrology. In any 
watershed modelling, its calibration and validation require many spatial and temporal 
data. There is a great challenge to assure modelling quality due to the non-availability 
of high-resolution data utilized in the model’s development, calibration, and valida-
tion. So, choosing a model that requires minimum input data is structured and highly 
precise for the present scenario. HEC-HMS is one of those models that require 
less data. Rainfall-runoff modelling can be done on an event-by-event basis or on a 
continuous basis. It can be utilized in both lumped and distributed parameter-based 
modelling scenarios. It can be used to investigate urban flooding, flood frequency,
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flood warning systems, reservoir spillway capacity, and stream restoration, amongst 
other things. This paper summarizes the literature reviews of the HEC-HMS model 
to depict rainfall-runoff dynamics in basins. 

2 Overview of Reviewed Papers 

The papers published across different journals from 1971 to 2021 were reviewed in 
this study. The areas of reviewed watersheds simulated using the HEC-HMS model 
were mainly between 100–5000 km2. The paper reviewed was fifty. 

The performance of HEC-HMS model outputs was assessed using several indices 
such as Nash–Sutcliffe Efficiency (NSE), Pearson’s Correlation Coefficient (R), Root 
Mean Square Error (RMSE), and Coefficient of Determination (R2). These were 
the most commonly used indices. Index of Agreement (IA), Relative Volume Error 
(RVE), Relative bias (r bias), Volume Ratio (VR), and Index of Volumetric Fit (IVF) 
were least used. 

The data required for the river basin modelling is divided into three groups, (i) 
basin information like the channel or the river’s topography, (ii) hydro-meteorological 
data, and (iii) data on flow rates and stages over time for model calibration and valida-
tion. These are used to establish model input and output boundary conditions. Recent 
advancements in remote sensing have enabled the acquisition of some of this data. 
Satellites and airborne remote sensing allow for the collection of spatially scattered 
data across broad areas and eliminate the need for expensive ground surveys. On the 
other hand, ground measurements are essential for validating satellite products. More 
and more geospatial datasets linked to hydrology such as topography, soil, and land 
use have become available through numerous open sources due to advancements in 
remote sensing in recent decades. 

The review was broadly categorized into two summary sections, based on the 
applications of the HEC-HMS model: (i) streamflow simulation, (ii) flood modelling. 

3 Application of HEC-HMS Model 

3.1 Application for Streamflow Simulation 

At various regional and national scales, research on water resources concentrated 
on extreme weather events (floods and droughts), rainfall-runoff models, stream-
flow modelling, and agriculture water ungauged basins. The HEC-HMS model was 
considered as adequately capable of simulating stream flows in ungauged basins 
[14] and to analyze runoff processes for the development and management of water 
resources [6, 16, 26, 28].
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In several river basins, the HEC-HMS model was employed in this research to 
understand hydrological processes better. Models are categorized based on how the 
representation of catchment processes (deterministic or stochastic), and how the 
catchment is spatially detached (lumped or distributed). The continuity, momentum, 
and data-driven techniques have been used to build routing models that estimate 
wave propagation along a river channel [27]. 

The Hydrologic Modeling System (HEC-HMS) is intended to simulate the 
precipitation runoff process of the dendritic watershed system. The system incor-
porates traditional hydrologic processes such as unit hydrographs, infiltration, 
hydrologic routing, and procedures for continuous simulation such as snowmelt, 
evapotranspiration, and soil moisture accounting. 

Before developing HEC-HMS software, the researchers used Geographic Infor-
mation Systems (GIS) with HEC-1 software. GIS handles the datasets (raster or grid-
based data, triangular irregular networks, vector, or contour-based line networks) 
used in hydrologic modelling. Grid cell or raster storage of information was used 
in the initial GIS applications in hydrologic modelling [24]. In other cases, infiltra-
tion, interflow, and overland flow processes in a sub-basin were regarded as discrete 
contributing processes. As a result, the processes in difficult terrain are physically 
considered as simple plane processes that happen on their own. The Soil Conserva-
tion Service Curve Numbers (SCS-CN) were created by evaluating small, reason-
ably uniform attribute watersheds, with the assumption of continuous rainfall [9]. 
After the release of HEC-HMS software, the researchers in their studies had used 
different methods to simulate the rainfall-runoff process using the soil conservation 
service curve number method and SCS-UH (Unit Hydrograph) to convert precipita-
tion excess into direct runoff [3, 6, 18]. Hamdan et al. [16] developed a hydrolog-
ical model combining HEC-HMS, the Geospatial Hydrologic modeling Extension 
(HEC-GeoHMS), and Geographical Information Systems to simulate the rainfall-
runoff process over the Al Adaim river basin and embankment dam in Iraq (GIS). 
The SCS-CN method was used to calculate loss parameters, the SCS-UH for runoff 
transformation, and the Muskingum method for routing purposes. For the embank-
ment dam, reservoir modelling was done. Both actual and simulated hydrographs 
were found to be strongly related, according to the findings. The dam’s discharge 
was successfully simulated for the period under consideration but slightly overstated. 

Combining the fine-scale event and coarse-scale continuous hydrologic modelling 
systems for Mona Lake watershed, West Michigan, Chu et al. [8] developed a 
strategy. The SCS-CN and Soil Moisture Accounting (SMA) methods were used 
as a loss model for the event and continuous hydrologic modelling. The Clark-
UH (Unit Hydrograph) for excess precipitation into direct hydrographs and the 
Watershed Modelling System (WMS) model developed basin model. For contin-
uous modelling, they had used the parameters of event modelling. Took five-minute 
time steps for event-based modelling, and hourly time steps were taken for contin-
uous hourly modelling. The results of their model imply that fine-scale (5 min time 
step) event hydrologic modelling, aided by extensive field data, aids coarse-scale 
(hourly time step) continuous modelling. De Silva et al. [11] also developed an event-
based and continuous hydrological model for the Kelani river basin, Sri Lanka. The
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study considered the Green and Ampt loss methods in event-based modelling and 
a five-layer SMA method for continuous modelling. The Clark-UH and the reces-
sion base flow method simulated direct runoff. Extremely high precipitation events 
in November 2005 were utilized to calibrate model parameters, and extremely high 
rainfall events were used to test the event model in April–May 2008, May–June 2008, 
and May 2010. Their results also concluded that event-based hydrologic modelling 
supported with intensive field data helps to improve continuous modelling. 

Majidi et al. [22] utilized the HEC-HMS software version 3.4 to simulate the 
rainfall-runoff mechanism in the Abnama watershed in southern Iran. The Green-
Ampt method for loss estimation, SCS Unit Hydrograph for transforming excess 
rainfall into the direct runoff, and Muskingum method for routing purposes. Consid-
ered five rainstorm events for the rainfall-runoff simulation and initially found that 
their results were not up to the requirement. So, they had used the optimization 
method for calibration, and sensitivity analysis was carried out. After that, the corre-
lation between the observed and simulated discharges indicated a good match and 
revealed that lag time was a susceptible component. Alhan et al. [20] developed the 
hydrological model to simulate an event that occurred over the Ayamama watershed, 
Istanbul, Turkey, on September 9, 2009. The methods used in basin modelling were 
the Green-Ampt method for infiltration loss, the Clark-UH method, and Kinematic 
wave routing. The Rational method was used to compare the outcomes (WMS). It 
was emphasized that the HEC-HMS model outperformed the Rational method. 

3.2 Application for Flood Modelling 

Flood modelling is essential to understand the possible impacts of floods of a given 
magnitude and initiate on the ground efforts to mitigate the effect. Progress in hydro-
dynamic modelling (HEC-HMS) during the last decade has led to considerable 
improvement to simulate flooding scenarios [27]. Changes in land use in a basin 
affect hydrological processes on various temporal and spatial dimensions. It can 
influence the frequency and intensity of floods by affecting runoff generation and 
flow patterns by changing hydrological parameters as interception, infiltration, and 
evaporation. At a watershed size, such affects on hydrological processes will have 
a considerable impact on the ecology, environment, and local economy. Therefore, 
it is critical to understand and assess the impacts of land use change on the water-
shed hydrologic process for anticipating flood potential and hazard reduction. These 
have become a crucial concern for watershed planning, management, and long-term 
development [7, 10, 32, 33]. 

The integrated GIS module, Watershed Modelling System (WMS), Hydrological 
Modeling System (HEC-HMS), and River Analysis System (HEC-RAS) models have 
been utilized in flood mapping and modelling [1, 2, 15, 21, 23, 25, 29]. GIS compo-
nents handle DEM processing and morphometric analysis, as well as producing 
inputs for the WMS programme. The WMS is in charge of delineations and model
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scenarios that are used as digital input data for the HEC-HMS. The hydrologic equa-
tions that manage the interactions between rainfall and runoff are controlled by the 
HEC-HMS, which generates hydrographs for various scenarios and rainfall return 
times. The HEC-RAS deals with hydraulic equations to calculate depth of flow and 
flood area and helps develop flood plains. Pistocchi and Mazzoli [25] performed their 
study on Romagna river basins; Knebel et al. [21] developed the San Antonio river 
basin framework. Gul et al. [15] introduced a combined hydrologic and hydraulic 
modelling approach for the Bostanli river basin in Izmir, Turkey, for testing the 
efficiency of structural flood control measures. Thakur et al. [29] developed the 
hydrologic model and flood plain for Copper Slough Watershed (CSW), Cham-
paign. Abdelkarim et al. [1] evaluated the impact of flash flood hazards on the Tabuk 
City, Kingdom of Saudi Arabia (KSA). Abdessamed and Abderrazak [2] studied the 
inundation behaviour during extreme flood events by considering concrete retaining 
walls developed by local authorities and without it for the Ain Sefra watershed in 
the southwest of Algeria. Niyazi et al. [23] evaluated the hydrological characteristics 
and mapped the flood-prone areas for different return periods over the Jazan basin 
in Jazan Province, Saudi Arabia. The aforementioned researchers’ findings demon-
strated the importance of employing an integrated modelling method to assess and 
minimize flash flood dangers in arid regions around the world. Dukic and Eric [13] 
compared the Systeme Hydrologique European Transport (SHETRAN) and Hydro-
logic Modeling System (HEC-HMS) models to simulate flash floods and to examine 
whether or not using a complicated hydrological model yields more accurate results. 
The SHETRAN and HEC-HMS models were calibrated for the storm in September 
2007 and validated the runoff results for the storm events in June 2009, May 2010, 
and June 2010. The St. Venant equation and SCS-CN method in the SHETRAN and 
HEC-HMS models were utilized, respectively. The results show that the SHETRAN 
model, which is more sophisticated, beats the simpler HEC-HMS model in the runoff 
but not for soil moisture. They came to the conclusion that more complex models do 
not always yield greater model performance. Depending on the hydrological variable 
under consideration, the dependability of hydrological model simulations can vary. 

Ali et al. [4] simulated rainfall-runoff to observe the effect of land use land cover 
(LULC) over the Lai Nullah basin. They used the SCS-CN method to estimate losses, 
the SCS-UH method for transformation, and the recession method for base flow 
development of a model. They considered five rainstorm events for calibration and 
validation. They forecasted the LULC using the calibrated result obtained by HEC-
HMS, based on the Islamabad master plan and growth pattern. Hejagi and Markus 
[17] highlighted the flood issues due to urbanization on 12 Northeastern Illunois, 
Chicago watershed. The percentage change of urbanization in the study area was 
very significant. Design peak flood was obtained with the help of the design storm 
method and HEC-HMS modelling. Sensitivity analyzes suggested that urbanization 
caused to arise in peak flow compared to that obtained due to climate variability, 
and discharge increased more than regular discharge. By including urbanization on 
annual runoff and flood events for the Quinhuai River watershed in Jiangsu Province, 
China, Du et al. [12] built a distributed hydrologic model and a dynamic land use 
change model. Future land use maps were created using a Markov chain and a
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Cellular Automata model (CA–Markov model), and HEC-HMS was used to compute 
the runoff. Flood volume also increases due to imperviousness for all flood events. 
Potential changes in the peak were linearly related to flood volume. Kabeja et al. 
[19] investigated the effect of land cover change on flash flood peak discharge using 
HEC-HMS in two medium-sized mountainous watersheds in China. The first one 
was the Yanhe catchment, and the second one was the Guangyuan catchment. Series 
of Landsat images were utilized to evaluate the land use changes between 1990 and 
2016. Hydrologic response of the basin and sub-basin scale was generated using 
Hydrologic Modeling System (HEC-HMS) under four LULC scenarios. The change 
in LULC occurred due to an increase in forest area resulted in a decrease in flood 
peak discharge. The results concluded that the LULC is vital in estimating peak 
discharge. As imperviousness increases, runoff increases. Developed models could 
evaluate the hydrological impacts and thus prove helpful in watershed management, 
water resources planning, and flood management. 

4 Limitations 

The limitations of HEC-HMS are as follows:

• Stream networks with branching or looping cannot be modelled.
• In the stream network, there is no way to model backwater.
• ArcGIS with the Spatial Analyst Extension is required for the additional tool 

HEC-GeoHMS.
• Other than the US Army Corps of Engineers, no support is offered.
• The model code is not available to the general public. 

5 Conclusions 

In general, Rainfall-runoff models are the most commonly used instruments for 
studying hydrological processes. The extensive review of the HEC-HMS rainfall-
runoff model concluded that intended output (hydrological variable) and data 
availability primarily determine the modelling method and approach. Researchers 
analyzed various modelling methods to find the optimum model for diverse hydro-
logical circumstances, found HEC-HMS superior to others, and recommended runoff 
simulation due to its automatic calibration technique. Many researchers evaluated 
using the HEC-GeoHMS tool for basin model construction and acquiring basin 
features. Some researchers used formulae to find model parameters value, while 
others optimized it during calibration. The majority of the researchers employed the 
auto-calibration technique in HEC-HMS to calibrate the model. The statistical anal-
ysis of HEC-HMS rainfall-runoff modelling indicates that the model is robust and 
capable of simulating accurate runoff in the best agreement with observed hydro-
graph in many watersheds. The HEC-GeoHMS tool may be used to construct river
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basin models and find basin characteristics. The auto-calibration and manual calibra-
tion both functions better in HEC-HMS. The soil moisture accounting loss method 
works more accurately for continuous modelling. 

Further research is going on to improve runoff predictions and face significant 
challenges like climate change, soil erosion, and floods. LULC is vital in calculating 
curve numbers, which helps calculate initial losses during precipitation. Due to urban-
ization, there is a significant change in land use patterns, which directly affects the 
peak of the hydrograph. Therefore, it is necessary to know at what rate the hydrograph 
peaks are changing and develop IDF curves for precipitation. Finally, import them 
into the model for learning peak hydrographs for different return periods. So that 
various measures can be taken according to peak hydrographs for safety purposes. 
Also, remote sensing and field data can be used in the HEC-HMS model. Each model 
has its strengths and weaknesses. Hence, the model should be chosen based on the 
research’s final purpose. 
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simulation in the Jičinka River Catchment (Czech Republic). Water 13(6):872



A Review: Contribution of HEC-HMS Model 225

14. Gumindoga W, Rwasoka DT, Nhapi I, Dube T (2017) Ungauged runoff simulation in Upper 
Manyame catchment, Zimbabwe: application of the HEC-HMS model. Phys Chem Earth, Parts 
A/B/C 100:371–382 

15. Gul GO, Harmancioglu N, Gul A (2010) A combined hydrologic and hydraulic modelling 
approach for testing efficiency of structural flood control measures. Nat Hazards 54(2):245–260 

16. Hamdan ANA, Almuktar S, Scholz M (2021) Rainfall-runoff modelling using the HEC-HMS 
model for the Al-Adhaim river catchment, northern Iraq. Hydrology 8(2):58 

17. Hejazi MI, Markus M (2009) Impacts of urbanization and climate variability on floods in 
Northeastern Illinois. J Hydrol Eng 14(6):606–616 

18. Ibrahim-Bathis K, Ahmed SA (2016) Rainfall-runoff modelling of Doddahalla watershed—an 
application of HEC-HMS and SCN-CN in ungauged agricultural watershed. Arab J Geosci 
9(3):170 

19. Kabeja C, Li R, Guo J, Rwatangabo DER, Manyifika M, Gao Z, Wang Y, Zhang Y (2020) The 
impact of reforestation induced land cover change (1990–2017) on flood peak discharge using 
HEC-HMS hydrological model and satellite observations: a study in two mountain basins, 
China. Water 12(5):1347 
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Simulation of Reservoir Inflow Using 
HEC-HMS 

Mahesh Shelke, S. N. Londhe, P. R. Dixit, and Pravin Kolhe 

Abstract Reservoir inflow plays a key role in hydrological predictions such as 
drought and flood predictions as well as in reservoir operations, and thus precise 
prediction of reservoir inflow is of utmost importance. As reservoir inflow pattern 
predominantly depends upon the rainfall-runoff process, land use and land cover 
pattern and climate change within a catchment area, accurate prediction of it, is 
a difficult task. Koyna dam reservoir is one of the major reservoirs in India which 
serves the multipurpose functions including hydroelectric power generation and thus 
for efficient reservoir operation; accurate inflow prediction is the need of the day. 
Consequently, present study aims in predicting the Koyna reservoir inflow using—a 
conceptual model, Hydrologic Engineering Centre’s Hydrologic Modelling System 
(HEC-HMS; version 4.8). The Soil Conservation Service Curve Number (SCS-CN), 
SCS unit hydrograph, and time interval were selected for each component of the 
inbuilt processes of loss method, transform method, and channel routing, respec-
tively, while developing the HEC-HMS model. To evaluate the model performance, 
relative error (%), root mean square error (RMSE), correlation coefficient (r), and 
Nash–Sutcliffe efficiency (CE-NSE) are used along with simulated and observed 
hydrographs and scatter plots. From all the results, it can be said that the overall 
performance of the HEC-HMS model is reasonable and trustworthy and can be 
applied in similar area of research interest.
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Keywords Reservoir inflow · Conceptual model HEC-HMS · SCS-CN · Koyna 
reservoir 

1 Introduction 

The reservoir plays a key role in overriding the effect of irregularities of inflow 
hydrograph and regulate it based on the user’s needs. Rainfall is the main cause for 
the streams to form in the watershed which then contribute to the reservoir inflow. 
The Indian subcontinent experiences monsoon every year from June to September 
in which most of the water is received. The mathematical model is an effective tech-
nique to predict the hydrologic parameter such as inflow into the reservoir. Since 
last few decades, computerized simulations are becoming very popular because of 
its simplicity. Since the last decade, a conceptual model, namely Hydrologic Engi-
neering Centre-Hydrologic Modelling System (HEC-HMS), developed by US army 
and corps has been used by many for prediction of the reservoir inflow. Oleyiblo 
and Li [1] presented a universal application of HEC-HMS and its potential applica-
bility and suitability for flood forecasting in catchments and stated the importance of 
hydrological parameters predictions for the effective reservoir management program. 
Castro and Maidment [2] mentioned that hydrological modeling is a frequently used 
tool to estimate the basin’s hydrological response to precipitation, and the HEC-
HMS computer model can be reliably used to simulate catchment flows. Gumin-
doga et al. [3] applied HEC-HMS to simulate runoff in ten gauged and ungauged 
upper Manyame sub-catchments in Zimbabwe, and noted that the HEC-HMS model 
adequately denotes the hydrological response of the catchment and can be used to 
consider the impact of other future land development scenarios. Rauf and Ghumman 
[4] developed the conceptual HEC-HMS model for runoff simulation in the Astore 
watershed of Pakistan’s Upper Indus River Basin using 20 years of dataset. Tassew 
et al. [5] applied HEC-HMS model for the flow simulation for tropical conditions 
for the Gilgel Abay Catchment (1609 km2), Upper Blue Nile Basin, Ethiopia. The 
model developed is based on the hydrological characteristics, topography, soil type, 
and land use of the study area. HEC-HMS is one of the most widely used modeling 
tools for simulating flood hydrology within the engineering community due to its 
applicability, capability, and suitability [1, 6–12]. Although the HEC-HMS model 
has been examined and calibrated at a global scale, little effort has been made in the 
context of the Western part of the state of Maharashtra in India which is home for the 
Koyna River catchment. It is said that since its inception in 1964 Koyna project has 
become the “powerhouse” of Mumbai, the largest city in India making this project 
and all the studies related to it very important. The Koyna River catchment covers an 
area of 891.78 km2. The Koyna River catchment has extensive agricultural practices; 
therefore, it is economically important and as it experienced the unpredicted flood 
events in past which makes this catchment more vulnerable for hydrological studies.
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2 Study Area 

The Koyna River basin stretches between 17,054,, to 17,016,, N and 73,042,, to 
74,006,, E. The river originates at Mahabaleshwar at an elevation of around 700 m 
from the mean sea level and meets Shivsagar reservoir formed due to Koyna dam at 
around 75 km from its origin. Koyna dam is ranked 17th in India considering height 
and live storage capacity. It has gross storage capacity of 2986.68 million cubic meter 
(MCM) and live storage capacity 2835.54 MCM. Figure 1 shows the study area. 

2.1 Data Used 

Daily rainfall, evaporation, and discharge of the catchment area under consideration 
was provided by from the Water Resource Department-Government of Maharashtra 
for the period of 1997–2015. For the present study, nine rain gauges and one discharge 
gauging station are considered. The rain gauges are installed at stations, namely

Fig. 1 Index map of study area 
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Fig. 2 Methodology chart 

Koyna Dam, Navaja, Kati, Kargaon, Bamnoli, Valvan, Sonat, Pratapgad, and Maha-
baleshwar. Daily discharge data of one gauging station at Koyna covers complete 
catchment. The details about the location of rain gauges and discharge station shown 
in Fig. 2. 

2.2 Methodology 

The inflow was simulated using the tool named Hydrologic Modelling System (HEC-
HMS) for the Koyna Catchment, Western part of Maharashtra, India. The river 
catchment was delineated, and its properties were extracted from a 30 m × 30 m 
CARTOSAT Digital Elevation Model (DEM) provided by ISRO-Bhuvan (https://bhu 
van-app3.nrsc.gov.in/data/download/index.php). The HEC-HMS consists of three 
sections of the modeling; first one named basin model consists of the catchment area 
details; second is meteorological section containing rainfall and discharge dataset, 
third control specification section for the definition of time of simulation run. To 
account for the loss, runoff estimation, and flow routing, Soil Conservation Service 
Curve Number (SCS-CN), Soil Conservation Service Unit Hydrograph (SCS-UH), 
and lag methods were used, respectively. Figure 2 explains the complete methodology 
adopted for present work.

https://bhuvan-app3.nrsc.gov.in/data/download/index.php
https://bhuvan-app3.nrsc.gov.in/data/download/index.php
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The two raster images, land use, and soil class are overlapped on each other, 
and CN value is calculated. The calculation of CN number was done using GDAL 
Raster Calculator available within QGIS open-source application [13]. Mean of CN 
number was taken using Zonal Statistics Tool. The land use land cover map prepared 
using the LISS-3 (Linear imaging self-scanning). The QGIS plugin named semi-
automatic classification was used which allows for the supervised classification of 
remote sensing images, providing tools for the download, the preprocessing, and post-
processing of images. The soil data were gathered from earthdata.nasa.gov. Based on 
data, it is concluded that the study area lies within soil class 3 (moderately high runoff 
potential: < 50% sand and 20–40% clay) and 4 (high runoff potential: < 50% sand 
and > 40% clay). The precipitation values were estimated by the most used Thiessen 
polygon method, and weights were worked out in QGIS 3.6 version software. The 
method was selected because of its easy-going application; correctness depends on 
the sampling density. Table 1 showed the weights for each subbasin. 

The Soil Conservation Service Curve Number (SCS-CN) loss method was 
preferred to estimate direct runoff from a specific rainfall. SCS unit hydrograph 
method is used to transform the precipitation into surface runoff. The lag time is 
calculated for each subbasin using Kirpich equation. Advantages of SCS-CN curve 
loss model are simple and conceptual model for the estimation of the direct runoff 
volume from a rainfall, sound supported by empirical data and relies only on the 
curve number, which is function of soil type and land use, land cover that are major 
runoff-creating watershed characteristics. It is commonly used on different environ-
ments and provides better results compared to initial and constant loss rate method. 
Prior to hydrological modeling, methodology can be separated into four main stages:

Table 1 Rain gauge weights 

Subbasin Rain gauge Weight Subbasin Rain gauge Weight 

Subbasin 1 Valvan 0.04 Subbasin_5 Valvan 0.21 

Bamnoli 0.06 Bamnoli 0.78 

Sonat 0.39 Sonat 0.01 

Pratapgad 0.24 Subbasin_6 Bamnoli 1.00 

Mahabaleshwar 0.27 Subbasin_7 Kati 0.31 

Subbasin 2 Bamnoli 0.13 Kargoan 0.56 

Sonat 0.74 Bamnoli 0.13 

Mahabaleshwar 0.14 Subbasin_8 Navaja 0.49 

Subbasin_3 Valvan 0.91 Kati 0.51 

Sonat 0.09 Subbasin_10 Kati 0.26 

Subbasin_4 Valvan 1.00 Koyna Dam 0.74 

Subbasin_9 Navaja 0.39 Subbasin_11 Navaja 0.18 

Kati 0.47 Koyna Dam 0.82 

Koyna Dam 0.14 
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terrain processing, preprocess sink, preprocess drainage, identify stream, and delin-
eate the subbasin. This process was done in latest version of HEC-HMS-4.8. Daily 
simulation time step was used in estimating the parameters of the selected models. 
Each model run combines a basin model, meteorological model, and control spec-
ifications with run options to obtain results. In this study, 7-year continuous data 
were used (5 year for calibration and 2 for validation) recorded in the period from 
1993–2014. 

3 Results and Discussions 

3.1 Calibration 

In reservoir operations, the very critical aspect of the hydrograph is the peak flow 
because the peak flow relates to the maximum downstream flooding. The inbuilt 
automatic simplex search algorithm is used for optimization. In present study, the 
percent error in peak discharge is used as statistical error measure to judge the perfor-
mance of optimized model where in objective goal was to minimize the percent error. 
(HEC-HMS User Manual 2021). The results of the hydrological model in this study 
showed a satisfactory fit between the model results and observations after optimiza-
tion; the hydrograph shape and timing of peaks coordinated well although the model 
tended to overestimate the runoff before optimization. The calibration of the model 
improved the results greatly by decreasing and increasing the overestimated and 
underestimated volume of the runoff, respectively. The modeling results of peak 
discharge, total volume, and their relative errors with respect to the observed data, 
the Nash–Sutcliffe efficiency and coefficient of determination values during calibra-
tion are mentioned in Table 2. Lag time of reaches and CN curve number are most 
sensitive parameters in HEC-HMS modeling [5]. Hence, those are considered for 
the calibration process. The calibration was done for five events (1997, 2001, 2002, 
2006, 2009). Results of this calibration are shown in Table 2, and Fig. 4 shows good 
correlation between simulated and observed inflow.

The calculated values of the percent error both in total volume and peak flow 
between simulated and observed flow values were very high before the optimization 
(> ± 20%) as well as the time of simulated peak discharge value was not matched 
with the observed dataset. The calibration was done on the basis of trials and error 
method for which the percent error both in volume and peak flow falls in the range 
between the value of −15.85 to 5.76% for the total volume and −5.86 to 8.48% for 
the peak flow, respectively. As per the statistical parameter values obtained for each 
event, it showed that the model performs well. The model simulation can be judged
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Table 2 Simulated and observed peak flow (m3/s) and volume (MM) for calibrated events 

Description Year 

1997 2001 2002 2006 2009 

Peak 
discharge 
(m3/s) 

BOP 2221.3 1777.9 1551 2254.7 2362.5 

AOP 2210.2 1715 1565.4 2290.7 2292.3 

Observed discharge 
(m3/s) 

2400.7 1873.9 1478.7 2468.8 2241 

Relative error (%) for 
peak 

7.94 8.48 −5.86 7.21 −2.29 

Total 
volume 
(MM) 

BOP 5542 3814 4093 6916 4143 

AOP 5286 3606 3906 6922 3942 

Observed volume 
(MM) 

5525.52 3112.23 3544.45 7345.25 3481.99 

Relative error (% for 
Volume) 

4.34 −15.85 −10.2 5.76 −13.2 

RMSE Std. Dev 0.3 0.4 0.4 0.3 0.4 

NSE 0.925 0.851 0.850 0.936 0.862 

R2 0.9263 0.8833 0.872 0.9472 0.8881 

Peak discharge 
simulated date 

31-Jul-97 09-Jul-01 07-Aug-02 03-Jul-09 15-Jul-09 

Peak discharge 
observed date 

31-Jul-97 09-Jul-01 07-Aug-02 03-Jul-09 15-Jul-09 

Note Before Optimization—BOP, After Optimization—AOP, Million Cubic Meter—MM

as satisfactory if Nash–Sutcliffe efficiency is greater than 50%, good if it is greater 
than 65%, and very good if it is greater than 75%. However, if the relative percent 
error is less than ± 20%, then it can be considered as a very good classification [5]. 

3.2 Validation 

The validation of the simulated results of peak discharge, total volume, and their 
relative errors of two events (2004 and 2010) with respect to the observed dataset, 
along with Nash–Sutcliffe efficiency (NSE) and the coefficient of determination 
(R2) values are presented in Table 3. As shown in the results Figs. 5 and 6, the  
model predicted peak discharge accurately based on the available historical flood 
data. Figure 7 shows the good correlation between observed and simulated inflow.
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Fig. 4 Scattered plots of simulated inflow verses observed inflow for calibration

4 Conclusions 

The present case study aimed to develop a hydrological model of the catchment area 
for River Koyna, Western Maharashtra, India, lying upstream of the Koyna Dam 
using HEC-HMS 4.8 version. According to performance criteria given by Rauf and
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Table 3 Simulated and 
observed peak flow (m3/s) 
and volume (MM) for 
validation events 

Description Year 

2004 2010 

Peak discharge (m3/s) 2393.5 1826.6 

Observed discharge (m3/s) 2301.8 1917.8 

Relative error (%) for peak −3.98 4.6 

Total volume (MM) 5181.24 4088.84 

Observed volume (MM) 4661.99 3774.51 

Relative error (% for Volume) −11.14 −8.33 

RMSE Std. Dev 0.3 0.4 

NSE 0.8940 0.8610 

R2 0.8671 0.8660 

Peak discharge simulated date 03-Aug-04 26-Jul-10 

Peak discharge observed date 03-Aug-04 26-Jul-10 

Note Before Optimization—BOP, After Optimization—AOP, 
Million Cubic Meter—MM 

Fig. 5 Predicted inflow verses time for duration June 1, 2004 to May 31, 2005

Ghumman [4], the results of calibration and validation, suggested that model has been 
found to be performed reasonably well for outlet location (i.e., Koyna), as RMSE, 
NSE, R2 all are within an acceptable range. After calibration, the value peak flow 
and total runoff volume for all events are satisfactorily close to the observations with 
a very small-scale error in peak and volume (< ± 20%). This shows that HEC-HMS 
is suitable for the studied catchment. Also, it is possible to suggest that the calibrated 
parameters values can be further used to other nearby basins. The satisfactory values 
of peak discharges corresponding to precipitation are obtained. Hence, it can be 
concluded that the proposed methodology is suitable for prediction of inflows of the 
river Koyna catchment.
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Fig. 6 Predicted inflow verses time for duration June 1, 2010 to May 31, 2011 

Fig. 7 Simulated inflow verses observed inflow scattered plots for validation
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Effect of Changes in Land Use/Land 
Cover on Runoff from Watershed Using 
CN Approach 

M. Velayudha Das and S. Poongothai 

Abstract Due to population explosion and economic development, the changes in 
land use/land cover (LULC) have an impact on storm water runoff characteristics 
naturally in the watershed hydrologic responses. The curve number (CN), which 
expresses the potential for runoff, is a function of LULC, soil type, and moisture 
content. Therefore, to investigate the effect of LULC changes in the rainfall-runoff 
simulation process, some models need CN as data input. The present study describes 
how to estimate the CN due to LULC changes during 1995–2019 and the runoff 
volume using NRCS-CN model and GIS tool in a part of the Manimuktha watershed 
of Tamil Nadu, India. IRS IC LISS III imagery data have been utilized for measuring 
the qualitative and quantitative spatial information on LULC changes and arrayed 
under the categories of agriculture, forests, settlements, wasteland, and water bodies. 
The result showed that from 1995 to 2019, the values of CN increased from 79.60 
to 81.61, which indicates that the LULC changed significantly and the runoff was 
more. This study also recommends suitable strategies to control the negative effects 
like the increase of soil erosion and flood risks in the study area. 

Keywords Watershed · Land use/land cover · Curve number · NRCS-CN model ·
GIS 

1 Introduction 

A watershed is a resource region that bounded vertically by topographical area influ-
enced by human activities and horizontally by a stream system that drains into a 
common point. Due to unprecedented population pressure, over exploitation and 
the increasing demand of society of land and water resources are affecting the 
stability of our ecosystems. Therefore, watershed managers and stakeholders now 
agree that understanding and managing natural resources on a watershed basis is 
the best method to safeguard important resources [3, 6]. Land use and land cover
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(LULC) has dramatically changed due to human activities and global climate change 
[5] and modify watershed hydrological processes and water availability [8] in a short 
period of recent years [14]. Different types of land use categories have been extracted 
by many researchers by remote sensing (RS) techniques using satellite imagery. 
Geographic Information System (GIS) analyzes all types of geographically spatial 
and temporal referenced data and gives planners a better grasp of the issues and aids 
in the development of a better solution for sustainable development [2, 9]. 

Integration of GIS with the Natural Resources Conservation Service-Curve 
Number (NRCS-CN) method is a powerful tool for estimating surface runoff from 
an ungauged watershed [1]. It is a conventional method for proper utilization and 
management of water [11] and primarily uses land use and soil mapping data as 
input factors in the estimation of precipitation runoff [15]. The curve number (CN) 
is a hydrologic parameter utilized to indicate the potential storm water runoff for 
drainage area as a function of land use, soil type, and soil moisture [4]. Therefore, 
it is necessary to quantify the effects of LULC changes in the runoff characteristics 
and the availability of water resource in recent years [7, 10]. The study’s objective 
is to assess the change in surface runoff characteristics based on the analysis of 
LULC changes in the Muktha River sub-watershed between the years 1995–2019. 
The study’s findings aid in the development of measures by watershed managers 
and decision-makers to deal with the harms brought on by excessive surface runoff 
brought on by LULC dynamics. 

2 Materials and Methods 

3 Study Area and Data Source 

3.1 Muktha River Sub-watershed 

The study region is the Muktha River sub-watershed (4CIA2e) in the Vellar basin, 
Kallakurichi district, Tamil Nadu, India (Fig. 1). With a total area of 251.151 km2 in 
the toposheets 58 I/9 and I/13, this rural sub-watershed area spans 78°43, 9.22,,–78° 
59, 21.73,, E and 11° 46, 12.80,,–11° 53, 42.38,, N. The sub-watershed has two major 
topographic regions such that the western part is covered by Kalrayan Hills (85.761 
km2), and the rest is almost plain terrain (165.390 km2).

3.2 Data Collection 

Remote sensing data-IRS IC LISS III Satellite data (year 1995 and 2019) were used 
to create land use/land cover maps (Source: IRS, Chennai). Daily rainfall data from 
the rain gauge stations of Gomukhi Dam and Manimuktha Dam during 1992–2019
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Fig. 1 Index map of the study area

were utilized to calculate the study area’s daily runoff (Source: IWS, Chennai). The 
field survey on infiltration rates of soil was conducted using double-ring infiltration 
method [13].
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3.2.1 LULC Data 

The two years IRS IC LISS III imagery in 1995 and 2019 (Figs. 3 and 4) data have 
been utilized for measuring the qualitative and quantitative spatial information on 
LULC changes and used to know the past patterns of LULC in the study area. The 
digitization of the LULC maps and its changing trends were analyzed using ArcGIS 
10.7 software and compared with ground truth. 

3.2.2 NRCS-CN Method 

Among the methods for estimating runoff from rainfall, an empirical approach, SCS-
CN method (Soil Conservation Service-Curve Number (National Engineering Hand-
book, USA) (USDA, 1972)) renamed as Natural Resources Conservation Service-
Curve Number (NRCS-CN) technique has largely been used to ungauged watersheds 
to establish the rainfall–runoff relations [12]. This runoff method depends on rain-
fall, hydrological soil groups (HSGs), LULC, and antecedent moisture conditions 
(AMCs). It combines the water balance equation with the relationship of infiltration 
losses and surface storage as 

Q = 
(P − Ia)2 

(P − Ia + S) 
(Q is valid for P ≥ Ia) (1) 

where Q—direct runoff in mm, P—rainfall in mm, Ia—initial abstraction in mm, 
and S—potential retention in mm. In practice, S is expressed in terms of the curve 
number (CN) as 

S = 
25400 

CN 
− 254 (2) 

The non-dimensional CN is derived from the tables of Chap. 7 in the SCS hand-
book (1972). The Indian Ministry of Agriculture (1976) adapted Ia = 0.3S in Eq. (1) 
to fit for Indian conditions as 

Q = 
(P − 0.3S)2 

(P + 0.7S) 
(3) 

The runoff from the sub-watershed is calculated using the value of CN. Figure 2 
shows the methodology of GIS-based NRCS-CN runoff method (Figs. 3 and 4).
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Estimation of Runoff from Sub-watershed 

Fig. 2 Flowchart showing the methodology of NRCS-CN method 

Fig. 3 LULC maps of years 
1995 and 2019

3.3 Antecedent Moisture Condition 

According to USCS, soil is grouped into HSG A, B, C, and D with regard to potential 
rate and minimum infiltration rate (Table 1). The AMC expressed in I, II, and III 
levels, according to 5 days antecedent precipitation limits (Table 2) and curve number 
for AMC-II in Indian condition (Table 3).
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Fig. 4 LULC maps of years 
1995 and 2019

Table 1 USDA-SCS soil classification 

HSG Soil type Runoff Infiltration 
rate (mm/hr) 

Water transmission 

A Well drained sands and 
gravels 

Low More than 7.5 High 

B Moderately coarse to fine 
textures 

Moderately low 3.8–7.5 Moderate 

C Clay loams—moderately 
fine 

Moderately high 1.3–3.8 Slow 

D Clay soils—swell when 
wet, heavy plastic 

High Less than 1.3 Very slow 

Table 2 Classification of AMC 

AMC group Soil characteristics Total 5 days antecedent rainfall 
(mm) 

Dormant season Growing season 

I Dry soil but not to wilting point Less than 13 Less than 36 

II Average conditions 13–28 36–53 

III Heavy rainfall or light rainfall—occurred 
within the last 5 days (Saturated soil) 

More than 28 More than 53

3.4 Area Weighted CN 

The area with a particular soil group type and LULC was multiplied, and its weight 
was found under AMC conditions for the year 1995 and 2019 as
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Table 3 CN for AMC-II (Indian condition) 

LULC Practices Conditions HSG 

A B C D 

Cultivation Row 76 86 90 93 

Contoured Poor/Good 70/65 79/75 84/82 88/86 

Terraced Poor/Good 66/62 74/71 80/77 82/81 

Bunded Poor/Good 67/59 75/69 81/76 83/79 

Rice 95 95 95 95 

Orchards Stony cover/Without stony 39/41 55/55 67/69 71/73 

Forest Dense/Open/Shrubs 26/28/33 40/44/47 58/60/64 61/64/67 

Pasture Poor/Fair/Good 68/49/39 79/69/61 86/79/74 89/84/80 

Wasted land 71 80 85 88 

Hard surface 7 86 91 93 

Water bodies 100 100 100 100

CN =
Σ

(CNi × Ai ) 

A 
(4) 

where CN—weighted CN, CNi—CN from the weighted area Ai, and A—total area 
of the watershed. 

4 Results and Discussions 

Change Detection of LULC 

Based on the resolution of IRS data, the information available was arrayed and 
grouped under five land use (level-1) categories, i.e., agriculture, forests, settlement 
(built up), wasteland, and water bodies have been identified for the years 1995 and 
2019 (Figs. 3 and 4). These level-1 classes were further converted into other land 
use classification systems level-2 and 3. The areas under different LULC classes of 
the study area were calculated in km2 and percentage (Table 4). The study area was 
dominated by agricultural land in 1995 was 142.742 km2 (56.83%) and increased 
to 153.162 km2 (60.99%) in 2019 due to a trend in change in agriculture. The crop 
land was increased to 19.29%, but the plantation area was reduced to 97.73% from 
1995 to 2019. Fallow lands were 3.86% in 1995 and increased to 8.63% in 2019. It 
was observed that the settlement area gradually increased from 3.471 km2 (1.38%) 
in 1995 to 5.213 km2 (2.07%) including rock-mining area of 0.137 km2 (0.06%) in 
2019. The forest area was covered 62.351 km2 (24.83%) of the study area in 1995 and 
declined to 59.398 km2 (23.65%) in 2019 due to competing land uses (agriculture and 
human settlements mainly), the rising unemployment problem, insufficient income 
from agriculture and also demand for fuel wood are the major causes of deforestation.



246 M. Velayudha Das and S. Poongothai

Table 4 Changes of LULC area in 1995 and 2019 

LULC level Area in 1995 Area in 2019 Change detection 
during 1995–2019 

km2 % km2 % km2 % 

Agricultural Lands Plantation 22.886 9.11 0.520 0.21 (-)22.366 (-)97.73 

Crop land 110.16 43.86 130.970 52.15 (+)21.805 (+)19.29 

Fallow 9.691 3.86 21.672 8.63 (+)11.981 (+)114.89 

Subtotal 142.74 56.83 153.162 60.99 (+)10.420 (+)7.30 

Built-up Lands 3.471 1.38 5.213 2.07 (+)1.742 (+)50.19 

Forest Lands Deciduous 10.745 4.28 7.647 3.05 (-)3.098 (-)28.83 

Scrub forest 0.575 0.23 4.386 1.75 (+)3.811 (+)662.78 

Tree clad area/Dense 51.031 20.32 47.365 18.85 (-)3.666 (-)7.18 

Subtotal 62.351 24.83 59.398 23.65 (-)2.953 (-)4.74 

Waste Lands Barren Rocky 0.721 0.29 1.650 0.66 (+)0.929 (+)128.85 

Scrub 16.184 6.44 7.624 3.03 (-)8.56 (-)52.89 

Salt affected 7.307 2.91 4.460 1.78 (-)2.847 (-)38.96 

Subtotal 24.212 9.64 13.734 5.47 (-)10.478 (-)43.28 

Water bodies Reservoir/Tank 8.908 3.55 15.624 6.22 (+)6.716 (+)75.39 

River/Stream 9.467 3.77 4.020 1.60 (-)5.447 (-)57.54 

Subtotal 18.375 7.32 19.644 7.82 (+)1.269 (+)6.91 

Total 251.15 100 251.151 100 – – 

Waste land in 1995 was 9.64% (24.212 km2), reduced to 5.47% in 2019. This was 
due to changes in forest lands and agricultural lands during that period. Water bodies 
covered 7.32% (18.375 km2) of the total area in 1995 and increased to 7.82% in 2019 
probably due to seasonal variation. 

Rainfall and Runoff 

The hydrological soil groups’ spatial distribution of A (26.383 km2), B (29.698 km2), 
C (83.631 km2), and D (111.439 km2) in the study area was obtained using ArcGIS 
10.7 software, as shown in Fig. 5. By overlaying tools of the ArcGIS 10.7 software, 
the HSG and LULC layers were overlaid, and the weighted CN (using Eq. (4)) 
of AMC-I, II, and III conditions from the LULC map of years 1995 and 2019 is 
presented in Table 5. From the results, it is inferred that between the years 1995 
and 2019, the agricultural land area expanded by 7.30%, while the forest land area 
declined by 4.74%, resulting in higher CN values in the year 2019.

The computed annual runoff with respect to rainfall values for the past 27 water 
years (1992–2019) is presented in Fig. 6. The annual runoff was more during 2005– 
2006 (1134.02 mm) and less during 2016–2017 (64.28 mm). The average annual 
surface runoff rate of the study area was 423.08 mm, which represented 35.01% 
of the normal annual rainfall (1106.69 mm). The correlation of annual rainfall and
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Fig. 5 Hydrological soil group map 

Table 5 Weighted CN of 
years 1995 and 2019 

Year CN 

AMC-I AMC-II AMC-III 

1995 62.52 79.60 91.68 

2019 65.25 81.61 92.64

estimated runoff using the NRCS-CN method is shown in Fig. 7. A straight line 
equation of y = 0.592x−292.9, where y-runoff, x-rainfall, and the coefficient of 
determination (r2) 0.89 were obtained, which was in good correlation [13].

5 Conclusions 

The following conclusions are derived from the foregoing study:

• LULC study has helped in understanding the dynamic human activities on land 
in space and time. Land use planning needs to be done according to the land 
suitability classes. Forest protection and replantation is necessary to preserve the 
environmental resources. 

• GIS-based NRCS-CN method can be used effectively to assess the runoff from 
the ungauged sub-watershed. The increasing value of CN indicates that the LULC 
changes significantly, and the runoff is more.
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Fig. 7 Correlation of annual rainfall and estimated runoff during 1992–2019

• The result showed that the LULC changes can generate negative impacts such as 
increase in surface runoff, soil erosion and flood risks, and reduction of base-flow. 

• Agronomic and engineering measures like contour-farming, vegetative barriers, 
strip-cropping, mixed-cropping, contour-bunding, and terraces are suggested to 
retard and reduce the overland runoff, soil erosion, and increase infiltration.
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Examining Curve Number-Based 
Modified Models for Runoff Estimation 

Pankaj Upreti and C. S. P. Ojha 

Abstract The curve number method is a universally accepted and widely explored 
model in the last four decades which is used to estimate event-based surface runoff. 
Its simplicity and versatility have made it popular, and the basic equation is used as an 
important part of various hydrological models. In the development of the SCS-CN 
model, various advanced and more data-intensive models were developed. These 
different versions introduced new parameters, but it cannot be applied directly in 
approximating real situations. To overcome these problems, this study has proposed 
two simple SCS-CN event-based runoff models. The two simple versions of the 
SCS-CN model (M1) are presented by taking initial abstraction as a function of P 
(Ia = αP) instead of S (M2) and by incorporating P5 in the fractional form to obviate 
undesirable sudden jump (M3). The performance of existing M1 and formulated M2 

and M3 models has been compared using root mean square error (RMSE), Nash– 
Sutcliffe efficiency (NSE), PBIAS statistics, and ranking and grading system. Based 
on their ranking score for M2 and M3, model scores were significantly higher than 
the M1 model. Based on all statistics criteria and r2 value, both M2 and M3 models 
performed significantly well over the existing model. 

Keywords Antecedent rainfall · Event-based model · Initial abstraction ·
Maximum potential retention 

1 Introduction 

In applied hydrology, runoff estimation from any catchment is an important and 
major activity and useful in water resources management, assessment and planning 
of flooding hazards, study of reservoir sedimentation at the downstream, etc. In
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the rainfall-runoff transformation process, the runoff pattern is totally dependent on 
rainfall amount, its duration and intensity, antecedent conditions, land use and land 
cover, infiltration capacity of soil, and uncounted multiple other factors. Different 
variables influence the runoff amount and different variables-based models exist in 
the literature. Among them, the soil conservation services-curve number (SCS-CN) 
method is the most common and widely used method across the globe. According to 
Ponce and Hawkins [1], method is very simple, and fewer parameters are required 
while estimating event-based runoff from ungauged watersheds. Ajmal and Kim [2] 
revealed that the conventional SCS-CN model has some misinterpretation due to 
the basic empirical assumption. Since its development, hydrologists still debate the 
physical basis of the model and its empirical framework to validate their mathematical 
consistency and application significance. The success of this model depends on the 
reliable estimation of curve number value or S, which describes the runoff potential 
of watershed. The value of S is assumed as constant in the original model and taken 
from NEH-4 table. But, in actual, it changes due to antecedent moisture availability. 
Therefore, Hawkins [3] recommended the use of curve number (CN) or S value 
derived from the rainfall-runoff dataset over tabulated CN value. Tedela et al. [4] 
established that S value is not constant for a watershed but varies with rainfall and 
watershed characteristics. Upreti and Ojha [5] investigated the role of antecedent 
precipitation in runoff estimation. In the present study, we identify two more simple, 
accurate, and reliable SCS-CN-based hybrid model and compare these performances 
with the existing SCS-CN model. The basic SCS-CN model described in this study is 
reference as M1 model. In model M2, one of the assumptions of the basic model has 
been changed, and model M3 incorporates 5-days previous rainfall, P5 in fractional 
form to obviate undesirable sudden jump (M3). The details of these models are 
presented here as: 

1.1 M1 Model 

This is the most popular and widely used method to calculate runoff depth from a 
rainfall event in numerous hydrologic studies. The two basic assumptions of this 
method are as follows: (a) The ratio of actual runoff (Q, mm) and maximum possible 
runoff (P−Ia) is equal to the ratio of actual retention (P−Ia−Q) and maximum 
potential retention (S, mm), and (b) Initial abstraction (Ia) is the function of S. The  
combination of both assumptions leads to general form of the SCS-CN equation and 
is given as: 

Q = 
(P − Ia)2 

P − Ia + S 
(1) 

where Ia = λS. The  value of  λ (initial abstraction coefficient) was taken as 0.2 
in application to both gauged and ungauged watershed, and the resulting equation 
becomes:
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Q = 
(P − 0.2S)2 

(P + 0.8S) 
(2) 

for P > Ia, otherwise Q = 0. 
This Eq. (2) is the most generally used form of SCS-CN method and the present 

study calibrates the parameter S instead of taking its value calculated from CN 
conversion to S. 

1.2 M2 Model 

In the original SCS-CN method (taken as M1 model in this study), one of the assump-
tions is that the initial abstraction (Ia = λS) is the function of S, and λ (initial abstrac-
tion coefficient) is taken as 0.2. Later, Woodward et al. [6] found better results with 
its value as 0.05. In the formulation of model M2, we assume that initial abstraction 
Ia is the function of rainfall amount P (Ia = αP) instead of S. The rationale behind 
this assumption is that the generated runoff is highly dependent on rainfall event 
distribution, so initial abstraction (Ia), which is a part of rainfall-runoff transforma-
tion process, should be a function of rainfall amount of that individual event. We 
assume α value as 0.05 suggested by Woodward et al. [6], and Eq. (2) becomes: 

Q = 
(P − 0.05P)2 

P − 0.05P + S 
(3) 

or 

Q = 
0.9025P2 

0.95P + S 
(4) 

Equation (4) characterizes both the effect of rainfall variation on runoff and the 
watershed characteristic in the form of S. 

1.3 M3 Model 

In the M3 model, P5 criterion was applied to analyze the effect of 5-days previous 
rainfall on runoff. Based on 5-days previous rainfall, we only know the watershed 
condition (AMC I or AMC II or AMC III) before runoff in the SCS-CN method. 
In this manner, these antecedent conditions and their corresponding S value create a  
sudden jump in runoff calculation. To avoid undesirable sudden jumps in runoff esti-
mation and improve the prediction efficiency, M3 model was developed by replacing 
S to S P 

(P+P5) and substituting it in fundamental SCS-CN equation. In this way, new
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expression varies storm-wise and with prior rainfall (P5) value. This M3 model gives 
the following equation as: 

Q =
(
P − 0.2S

{
P 

P+P5

})2

(
P + 0.8S

{
P 

P+P5

}) (5) 

After simplification, Eq. (5) yields 

Q = 
(P + P5 − 0.2S)2 

(P + P5 + 0.8S) 
. 

P 

(P + P5) 
(6) 

Replacement of S in this way changes runoff prediction for those events only for 
which P5 value is greater than zero. For P5 > 0 events, S value significantly changes 
with P5 amount. If P5 value tends to infinity (S → 0), then Q = P, which indicates 
that all rainfall converts into runoff since soil had no storage capacity. Similarly, if 
S value tends to infinity (CN → 0), there will be no runoff. In order to avoid sudden 
jump, above expression as Eq. (6) provides variation in S value. 

2 Material and Methods 

2.1 Watersheds and Data 

In the present study, the data used to evaluate model performance are taken from 
the USDA-ARS water database (http://www.ars.usda.gov/arsdb.html). This study 
considered a wide range of 114 USA watersheds which areas varying from 0.17 to 
30,351.45 ha. The proposed models examined over 28,849 rainfall-runoff events. 
All three models were applied to the rainfall-runoff dataset for their comparative 
evaluation. The maximum and minimum average rainfall (P) and runoff depth (Q), 
average 5-days previous rainfall (AMC-5), and average runoff coefficient (C) of all  
114 watersheds are presented in Table 1. 

Table 1 Average minimum and maximum values of P, Q, AMC-5, and C 

Rainfall, P (mm) Runoff, Q (mm) 5-days prior rainfall, 
AMC-5 (mm) 

Runoff coefficient, C 

Maximum 45.86 13.94 39.03 0.47 

Minimum 8.49 1.39 8.71 0.08

http://www.ars.usda.gov/arsdb.html
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2.2 Performance Evaluation 

Model prediction accuracy assessment is an important aspect in hydrological 
modeling. For evaluating model performance RMSE, NSE as well as PBIAS crite-
rion was used as indices of agreement between observed and computed runoff. These 
are given in Eqs. (7), (8), and (9), respectively, as follows: 

RMSE =
[
1 

n 

n∑
i=1 

(Qo − Qc)
2 
i

]1/2 

(7) 

NSE = 1  −
[ ∑n 

i=1(Qo − Qc)
2 
i∑n 

i=1

(
Qo − QO

)2 
i

]
(8) 

PBIAS =
[∑n 

i=1(Qo − Qc)i∑n 
i=1(Qo)i

]
(9) 

where QO is the observed runoff in mm, Qc is the computed or calculated runoff 
in mm, QO is the mean runoff value calculated from n number of events from that 
particular watershed, and i is an integer varying from 1 to n. 

Senbeta et al. [7] suggested r2 statistic to evaluate performance improvement of 
the modified model over the existing one and expressed as: 

r2 = 
(NSE2 − NSE1) 

1 − NSE1 
(10) 

where NSE1 and NSE2 are the efficiency of existing and modified models, respec-
tively. It value more than 10% indicates a significant improvement in model 
performance. 

2.3 Parameter Estimation 

In order to compute the optimized value of model parameter S, the least-square fitting 
technique was used to minimize the sum of squared difference between computed 
and observed runoff (Eq. (11)), employing Microsoft Excel (Solver) [8]. 

n∑
i 

(Qoi − Qci )
2 =

∑[
Qo −

{
(P − λS)2 

P + (1 − λS)

}]2 

⇒ Minimum (11) 

All three models M1, M2, and M3 allowed variation of parameter S in optimization. 
In model M1 and M3, an initial estimate of parameter S was taken as 250 mm and 
allowed to vary in the range of 1–2500. The parameter S ranged between 1 and 1000
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Table 2 Range of value of parameter S (mm) resulting from application of M1, M2, and  M3 models 

Model Value 90% confidence 
interval 

Mean Median Minimum Maximum Lower Upper 

M1 67.91 56.57 21.90 315.15 61.55 74.26 

M2 133.11 99.66 31.10 909.26 115.51 150.71 

M3 89.43 77.73 29.24 252.13 82.77 96.08 

with its initial estimate as 125 mm in the M2 model. It is noted that the parameter S in 
all model formulation was allowed to vary within the prescribed range. The range of 
calibrated parameter S resulting from the application of all three models is presented 
in Table 2. 

3 Results and Discussion 

In the present study, rainfall-runoff data having 28,849 total events were selected for 
application of the M1, M2, and M3 model to the 114 USA watersheds. The mean, 
median, maximum, minimum, and lower and upper bound (at 10% CI) values of 
RMSE, NSE, and PBIAS for all three models are presented in Table 3, and variation 
in these criterions is also drawn by Box and Whisker plot in Fig. 1. The RMSE value 
of 99 and 95 watersheds for M2 and M3 model was found lesser than M1. The mean 
value of RMSE for M2 and M3 was also found lesser than M1. The NSE value cannot 
be judged by their mean value since this is negative in some watersheds for all three 
models. There are 6, 1, and 5 watersheds in M1, M2, and M3 models, respectively, 
which exhibit negative NSE value. The NSE value less than 0.5 was found for 30, 20, 
24 watersheds for M1, M2, M3 models, respectively. Similarly, its value greater than 
0.8 was found 7, 7, 19 watersheds for M1, M2, M3 model, respectively. There are 55, 
65, and 59 watersheds for which NSE values lies in between 0.6 and 0.8. Although, 
the mean and median values of NSE were improved for M2 and M3 model over the 
existing M1 model. The average value of NSE reveals that both model M2 and M3 

performed equally well.
For PBIAS statistics, the M1 model indicated very good performance in 30 water-

sheds only, and it reaches up to 74 and 79 watersheds for M2 and M3 models. The 
PBIAS value is positive in 104 and negative in only 10 watersheds for model M1. 
It means the M1 model underestimated the runoff value in these watersheds but 
proposed M2 and M3 models underestimated (positive PBIAS) runoff in 71 and 74 
watersheds and overestimated (negative PBIAS) runoff in 43 and 40 watersheds. It 
means, from the PBIAS statistics point of view, M2 and M3 model performed well. 

When we see the overall collective performance of PBIAS using their mean value 
of all 114 watersheds, it decreased from + 15.10% (M1) to  + 3.67% and + 4.12% 
for M2 and M3 model, respectively.



Examining Curve Number-Based Modified Models for Runoff Estimation 257

Ta
bl
e 
3 

D
if
fe
re
nt
 s
ta
tis
tic
al
 v
al
ue
s 
of
 R
M
SE

, N
SE

, a
nd
 P
B
IA

S 
fo
r 
al
l t
hr
ee
 m

od
el
s 
ov
er
 1
14
 U
S 
w
at
er
sh
ed
s 

M
1

M
2

M
3 

R
M
SE

 (
m
m
)

N
SE

PB
IA

S 
(%

)
R
M
SE

 (
m
m
)

N
SE

PB
IA

S 
(%

)
R
M
SE

 (
m
m
)

N
SE

PB
IA

S 
(%

) 

M
ea
n

5.
60

0.
55
 (
0.
60
)

15
.1
0

5.
28

0.
62
 (
0.
63
)

3.
67

5.
17

0.
61
 (
0.
64
)

4.
12
 

M
ed
ia
n

5.
00

0.
62
 (
0.
63
)

14
.6
3

4.
71

0.
66
 (
0.
66
)

2.
76

4.
48

0.
68
 (
0.
69
)

1.
74
 

M
ax
im

um
11
.6
2

0.
92

50
.3
7

11
.3
8

0.
94

47
.8
0

10
.9
1

0.
94

41
.1
4 

M
in
im

um
1.
14

−1
.0
3

−2
7.
54

1.
24

−0
.2
5

−2
5.
22

1.
68

−0
.7
2

−2
4.
65
 

L
ow

er
 b
ou
nd
 (
10
%
 C
.I
.)

5.
27

0.
51

13
.1
7

4.
96

0.
59

1.
89

4.
87

0.
57

2.
22
 

U
pp
er
 b
ou
nd
 (
10
%
 C
.I
.)

5.
93

0.
59

17
.0
2

5.
61

0.
65

5.
46

5.
48

0.
64

6.
01
 

In
 b
ra
ck
et
, m

ea
n 
an
d 
m
ed
ia
n 
va
lu
es
 o
f 
al
l 1

14
 w
at
er
sh
ed
s 
ar
e 
gi
ve
n 
ex
cl
ud

in
g 
ne
ga
tiv

e 
N
SE



258 P. Upreti and C. S. P. Ojha

0 

2 

4 

6 

8 

10 

12 

14 

M1 M2 M3 

RM
SE

 (m
m

) 

Model 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

M1 M2 M3 

NS
E 

Model

-40
-30
-20
-10 

0 
10 
20 
30 
40 
50 
60 

M1 M2 M3 

PB
IA

S 
(%

) 

Model 

Fig. 1 Box and Whisker plot for variation of RMSE (mm), NSE, and PBIAS (%) for watersheds 
using different models

Based on the  r2 criterion, significant improvement was found in 56 and 71 water-
sheds for M2 and M3 models, respectively, over the existing M1 model. A total of 
99 watersheds for M2 and 95 for the M3 model show improvement in NSE over the 
M1 model. Figure 2 shows that how much M2 and M3 models performed well in 
terms of NSE, using  r2 criteria over the existing M1 model. Figure 3 illustrates the 
improvement in r2 as a cumulative percentage distribution in 114 US watershed.

The performance of the proposed model M2 and M3 was also investigated using 
the ranking and grading system. The first, second, and third rank assigned a grade 
3, 2, 1, respectively, to the model M1, M2, and M3 as per their NSE obtained in 
applications to all 114 watershed datasets. The first rank means maximum NSE and 
given to grade 3. Similarly, other grades (grade 1 assigned for minimum NSE) were 
given to each model for all watersheds. The assigned grades were added for ranking 
of all three models in order to assess their overall performance. Figure 4 shows that 
the M1 model gained score 1 (less score) for 86 watersheds, but M2 and M3 model 
gained scores 2 and 3 (high score) for 92 (66 + 26) and 108 (71 + 37) watersheds, 
respectively. Overall, M2 and M3 models attained 254 and 282 marks, respectively, 
while M1 scored only 148 marks. Based on the overall results obtained, both M2 and 
M3 models performed significantly well in comparison to the M1 model.
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Fig. 2 Percentage improvement of M2 and M3 model over M1 using r2 criteria
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The CN model (M1) generally underestimated the runoff value. It was evident 
that the CN model (M1) predicted runoff approaching zero for events having less 
amount of rainfall. Due to this fact, S obtained from the CN model does not predict 
runoff in a well manner. Based on all the above criteria, both M2 and M3 models 
performed slightly well in terms of RMSE and NSE and significantly well in PBIAS 
values compared to the CN model. 

4 Conclusions 

In this study, we investigated two simple models that are based on universally used 
NRCS model (M1). In the M2 model which is a refinement of the M1 model, we
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considered the effects of both rainfall variation and maximum potential retention 
on initial abstraction. To improve the prediction efficiency of estimated runoff and 
circumvent undesirable sudden jumps on runoff calculation, the M3 model considered 
the effect of antecedent 5-days rainfall which could vary with initial moisture condi-
tion for that rainfall-runoff event. Compared to CN model (M1), both formulated 
modified versions indicate significant improved performance in terms of RMSE, 
NSE, PBIAS, r2 statistics, and ranking and grading system criterion. Due to its 
simplicity (M2 model) and characteristics to obviate the undesirable sudden jump 
(M3 model) in a very simple way, both models may be recommended and endorsed 
for their application in small US agricultural watersheds. 
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Development of Short-Term Reservoir 
Level Forecasting Models: A Case Study 
of Ajwa-Pratappura Reservoir System 
of Vishwamitri River Basin of Central 
Gujarat 

Urvish P. Nagar and H. M. Patel 

Abstract Flood events in the rivers are increasing across the world due to the 
possible impact of climate change. In the case of reservoirs, flood routing is becoming 
very important to reduce the damage to the downstream area. The operation of reser-
voirs needs reliable information on inflow in real time. In the case of an ungauged 
catchment, it is difficult to apply rainfall-runoff simulation models. In small catch-
ments, the lag time is also very short, and long-term prediction is very difficult to 
operate reservoirs in case of flood situations. In this study, a hybrid reservoir inflow 
forecasting model is developed for the Ajwa-Pratappura twin reservoir system. Ajwa 
and Pratappura reservoirs are constructed to supply the drinking water to Vadodara 
City. The combined catchment area is 203 km2. Aasoj feeder canal diverts the water 
from Pratappura reservoir to Ajwa Reservoir. Ajwa Reservoir has a storage capacity 
of 2240 MCFT. During heavy flood events, both the reservoirs release water into 
the Vishwamitri River which is passing through the Vadodara City. A careful oper-
ation of the Ajwa Reservoir is very much required to manage the flood downstream 
covering the city area of Vadodara. The objective of the present study is to predict the 
reservoir water level based on a short-term inflow forecast at the Ajwa-Pratappura 
Reservoir system. A mathematical model based on the SCS curve number is devel-
oped to predict the inflows from the catchment of both the reservoirs during storm 
events. Catchment delineation is done using DEM data from ISRO-BHUVAN using 
QGIS. Major storm years from 2015 to 2020 are selected to calibrate and validate 
the model. The model is further coupled to use 3 h of forecast data of Vadodara 
Station from meteograms generated through the IMD-GFS model. The framework 
developed for the inflow prediction is found to have high applicability for generating 
early warnings and for reservoir operation. 
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1 Introduction 

We know that water is necessary for sustainable human development and the healthy 
functioning of the planet’s ecosystem. South Asia is one of the most disaster-prone 
regions in the world [5]. India is one of the worst flood-affected countries in the 
world. Building resilience to natural disasters is a pressing challenge for achieving 
sustainable development in the region. Floods are one of the natural disasters in India 
having devastating impacts on the vulnerable population, especially the poor, who 
live along the riverside and are dependent on agriculture for their livelihood. 

Flood events in the rivers are increasing across the world due to the possible 
impact of climate change. In the case of reservoirs, flood routing is becoming very 
important to reduce the damage to the downstream area [2]. Flood early warning 
is one of the most effective nonstructural flood disaster damage mitigation methods 
[10, 11]. In recent years, this approach has gained momentum due to the availability 
of space-based inputs, high-resolution digital terrain models, advanced modeling 
software, and high-end computing systems. Many researchers and engineers across 
the country are working on flood early warning activity in isolation using different 
methods and models [4, 8, 9]. Hence, there is a need to bring synergy among the 
modelers and researchers to understand the latest technological developments in flood 
early warning [1]. Early warning is an important measure for disaster risk reduction. 
The present study is to predict the reservoir water level based on a short-term inflow 
forecast at the Ajwa-Pratappura Reservoir system. A mathematical model based on 
the SCS curve number is developed to predict the inflows from the catchment of both 
the reservoirs during storm events. By conducting the present study, the water level 
at Ajwa Reservoir can be determined in advance, and thus flood management can be 
done. 

2 Materials and Methods 

2.1 Estimation of Runoff Using SCS-CN Method 

A mathematical model based on the SCS curve number is developed to predict 
the inflows from the catchment of both the reservoirs during storm events. In 
the early 1950s, the United States Department of Agriculture (USDA) Natural 
Resources Conservation Service (NRCS) (then named the Soil Conservation Service 
(SCS)) developed a method for estimating runoff from rainfall [3, 7, 12]. The SCS 
curve number method is based on the water balance equation and two fundamental 
hypotheses which are stated as, 

(1) Ratio of the actual direct runoff to the potential runoff is equal to the ratio of 
the actual infiltration to the potential infiltration,
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(2) The amount of initial abstraction is some fraction of the potential infiltration 
(Handbook of hydrology, 1972). 

Q/(P − Ia) = F/S (1) 

F = (P − Ia) − Q (2) 

Substituting Eq. (2) in Eq.  (1) and by solving; 

Q/(P − Ia)2 /(P − Ia + S) (3) 

where Q = Actual runoff (mm), P = rainfall (mm), and Ia = initial abstraction, 
which represents all the losses before the runoff begins and is given by the empirical 
equation. 

Ia = 0.2 S (4) 

Substituting Eq. (4) in Eq.  (3), Eq. (3) becomes 

Q = (P − Ia)2 /(P − Ia + S) (5) 

S = the potential infiltration after the runoff begins given by the following equation 
where CN is curve number. 

S = 25400/CN − 254 (6) 

3 Study Area and Data Source 

3.1 Ajwa Dam 

The area selected for the study to be conducted is the Ajwa Dam. The dam is located 
on the Surya River, in the Waghodia Taluka of the Vadodara district. The dam is an 
earthen dam constructed with the main aim to meet the water requirements of the 
people of Vadodara city. The dam was constructed in the year 1891 and was designed 
by Mr. Jagannath Sadashiv [6]. The reservoir created by the construction of the dam 
is named Sayaji Sarovar and has a total catchment area of 132 km2. The topography 
of the city is generally flat with a gentle slope from the Northeast to the Southwest, 
following the basin of the Vishwamitri River [13].
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The dam supplies water from the Pratappura dam via the Aasoj feeder canal and 
the Narmada canal in addition to the water coming from the catchment. The reservoir 
water is supplied to the Nimeta water treatment plant for purification from the intake 
structure provided to withdraw the water. The dam is provided with 62 numbers of 
spillways with gates that are operated as and when required. 

3.2 Data Used 

The daily rainfall data for nine rain gauge stations were collected from Vadodara 
Municipal Corporation (VMC), and the water level data for Ajwa and Pratappura 
Reservoir were obtained from VMC Office, to understand catchment characteristics 
like geology, soil, land use, and drainage digital elevation models (DEMs) of the 
study area are prepared using QGIS 3.12. For the development of the model, various 
features of the actual dam and its connected structures are studied (Fig. 1). 

Fig. 1 Location of study area—Ajwa Reservoir



Development of Short-Term Reservoir Level Forecasting Models: … 265

3.3 Rainfall and Reservoir Water Level Data 

Daily rainfall data for five years starting from July 2015 to October 2020 have been 
collected, and storm events are identified as having rainfall greater than 100 mm in 
a day. These storms are found to be resulting in a rise in reservoir level. The area 
under each rain gauge station is identified. The Thiessen polygon method is used to 
calculate the spatial distribution of rainfall storms; events with P ≥ 100 mm have 
been considered to determine CN values, and runoff is derived from SCS-CN model. 
After that total inflow is found, and from it, the water level is predicted by following 
the VMC chart of storage vs water level. 

3.4 Model Development 

A mathematical model based on the SCS curve number is developed to predict the 
inflows from the catchment of both the reservoirs during storm events. The runoff 
contribution from all rain gauge stations found then total runoff and runoff depth is 
calculated by considering the total combined catchment area of the Ajwa-Pratappura 
Reservoir system as 132 km2. After that total inflow is found, and from it, the water 
level is predicted by following the VMC chart of storage vs water level. In the 
modeling work, forecasted rainfall data are taken from the IMD Web site, and real-
time rainfall data are taken from the VMC Water Works department. In this project, 
total 3 types of the hybrid model framework are done: 

1) Daily water-level prediction model 
2) Hourly water-level prediction model 
3) 3-hourly water-level prediction model. 

The 3-hourly model is further developed to use 3 h forecast data of Vadodara 
station from meteograms generated through the IMD-GFS model. The framework 
developed for the inflow prediction is found to have high applicability for generating 
early warnings and for reservoir operation. 

Daily rainfall data from the meteorological station in Vishwamitri Basin are 
analyzed for the years from 2015 to 2020. Basic statistical analyses were conducted 
on the seasonal rainfall data. From the process of identification of independent storms, 
various storm events are selected for the study. The Thiessen polygon method is used 
to calculate the spatial distribution of rainfall and % area of influence for rainfall over 
different sub-basins is obtained, and runoff is derived from SCS-CN model. For the 
present study, a mathematical model based on the SCS curve number is developed 
to predict the inflow in the Ajwa Reservoir.
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4 Results and Discussions 

Major storm years from 2015 to 2020 are selected to calibrate the model. The model is 
further coupled to use forecast data of Vadodara Station from meteograms generated 
through the IMD-GFS model. The framework developed for the inflow prediction 
is found to have high applicability for generating early warnings and for reservoir 
operation. 

4.1 2019 Storm 

The simulation is carried out on 31st July 2019 rainstorm. On this day, catchment 
recorded 360 mm of rainfall in a day. Ajwa Reservoir reaches at rule level on this day. 
It is assumed that the rainfall occurring in Ajwa and internal catchments is consid-
ered accumulating into Ajwa Reservoir, whereas rainfall occurring in Pratappura 
catchment is only considered if the Vishwamitri gates are closed, and all the runoff 
is diverted into Ajwa Reservoir through the feeder channel. The calculated value of 
weighted CN is 86 for the study area. From the entered rainfall data, this mathe-
matical hybrid model based on SCS curve number is analyzed, and modified CN is 
obtained. From the present research, predicted water level and the actual observed 
water level are compared, and a graph of water level vs time is plotted. Inflow forecast 
calculation is also obtained by the model which is shown in Fig. 3. 

Figure 2 shows the water level variation with time. The graph of water level 
versus time indicates the reservoir level increases with time from 209.05 ft to 212.5 
ft. The comparison between observed and predicted water levels is shown. Water 
level is continuously rising due to the presence of inflow. Figure 3 shows that inflow 
is increasing with time, and after some time, it is reducing concerning the storm. 
Predicted inflow from forecasted rainfall and actual inflow with real-time rainfall is 
compared and shown in the graph.

In this case, the previous 5 days’ rainfall is 44.8 mm, so AMC-II condition is 
considered, and obtained CN is 72.92. The predicted level and the observed levels 
are matching with the observed level. 

The sum squared error for observed and computed values is minimised by 
calibrating the CN. Using calibrated value of CN (65.36), the water levels are 
predicted for 31 July 2019 event and compared with observed values as shown in 
Figs. 4 and 5.
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Fig. 2 Observed and predicted water level for 2019 storm 

Fig. 3 Observed and predicted inflow for 2019 storm

5 Conclusions 

The following conclusions are derived from the foregoing study:

• The present study reveals the nature of the rainfall-runoff process in the Ajwa 
Reservoir catchment. The Ajwa Reservoir receives water from 95 km2 catch-
ment area directly and 27 km2 of intermediate catchment area between Ajwa and 
Pratappura.
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Fig. 4 Water level after calibration for 2019 storm 

Fig. 5 Correlation performance of calibration

• The catchment is ungauged, and the natural flow is found to be affected by the 
SSP Main canal, Vadodara-Halol toll road, and Aasoj feeder canal. In absence 
of a clear channel network and gauging data, HEC-HMS or other sophisticated 
models are not feasible to predict storm runoff. 

• SCS-CN-based model is developed to predict the reservoir water level. The model 
is calibrated using the past 11 major storm events, and the curve number for the 
catchment is found to be varying from 60 to 90 for AMC Type-II. 

• The model is further developed to predict the water level in the Ajwa Reservoir 
using IMD-GFS model short-term forecast data. In the event of a heavy flood, the 
developed model can provide a very useful prediction of the reservoir elevation 
under the short-term forecast, particularly when the reservoir water level is near 
the rule level or FRL. 

• Short duration runoff estimation model is very much helpful to the authority for 
the management of reservoirs during heavy storm events.
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Performance Assessment of Modest 
Event-Based Rainfall-Runoff Model 

Pankaj Upreti and C. S. P. Ojha 

Abstract A very simple and widely used SCS-CN method is a time-independent 
method that is used to calculate accumulated runoff corresponding to a single rainfall 
event. The method requires only two parameters initial abstraction coefficient (λ) and 
the potential maximum retention (S) expressed in terms of curve number (CN). The 
CN value incorporates many factors in its own and can be adopted for different 
climatic conditions. In the present study, a modest and easy to use non-linear event-
based rainfall-runoff model is used which consist a single parameter α without taking 
into consideration of initial abstraction coefficient (λ) and curve number (CN). The 
quantitative model performance was assessed and compared based on RMSE, NSE 
and PBIAS (per cent bias) value. Based on the statistical criterion, the proposed model 
without CN concept reveals more statistically significant results (low RMSE, high 
NSE and statistically significant PBIAS values) and depicted improved performance 
than the conventional CN model. 

Keywords SCS-CN model · Antecedent moisture condition · Initial abstraction ·
Event-based non-linear model 

1 Introduction 

SCS-CN model is globally used and most reliable empirical-based lumped rainfall-
runoff model for calculating runoff from a rainfall event. Based on watershed and 
rainfall characteristics, this method estimates peak rate and volume of runoff from 
ungauged watersheds. Due to its simplicity, less data requirement, modesty in use and 
clearly stated assumptions, this methodology is used in various complex hydrological 
and ecological models. Therefore, this method has been used in design of various
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types of hydraulic and water harvesting structures, storm water modelling, water-
shed development and management, flood forecasting, river bank filtration, evapo-
transpiration modelling, problem to identify non-point source pollution, etc. Since 
its development, model evolved numerous refinements beyond original one. Verma 
et al. [1] integrated this model with RS and GIS techniques for runoff estimation 
of spatially and temporally varied gauged and ungauged watersheds. Since SCS-CN 
model produced inconsistent results, hydrologist of modern era cross examine the 
SCS-CN methodology with more field data. 

According to Hawkins and Ward [2], SCS-CN model require a key element as 
an input parameter called Curve Number (CN) which is basically a land condition 
coefficient, vary seasonally and its variation is depends on physiographic and climatic 
characteristics of watershed. It means variation in CN value is a function of rainfall 
amount and its duration, soil type, land cover condition and most importantly on 
antecedent moisture condition. The accurate and reliable estimation of curve number 
(CN) is required under different soil and land use condition for better result and overall 
acceptance of this model. The SCS consider curve number as a constant value for each 
watersheds with long term unchanged land use-land cover and hydrologic condition. 
Hawkins et al. [3] found in his study that due to change in moisture condition of a 
watershed as rainfall progressed, curve number value which is a scale of maximum 
potential retention S, can also varies between storms. Upreti and Ojha [4] formulated a 
model that incorporated 5-days antecedent rainfall in the SCS-CN model and improve 
model efficiency. Jain et al. [5] assess and compared the performance of various 
curve number-based methods by employing National Engineering Handbook (NEH-
4) procedure for US watersheds. Ali and Sharda [6] compared five CN estimation 
methods, i.e., NEH-4, rank order, storm event, lognormal frequency and S-probability 
methods, and predicted runoff with lognormal frequency method found better than 
other method for small catchments in the semi-arid regions of India. Overall, to 
predict somewhat correct value of curve number, a critical study is needed under 
different watersheds. The curve number value obtained from NEH-4 table shows 
poorer prediction of runoff than CN value calculated from measured rainfall-runoff 
data. Kim et al. [7] suggest CN value should be calibrated before its use since tabulated 
CN value overestimate the hydrologic system. Upreti and Ojha [8] proposed a SCS-
CN-based hybrid model and improve the prediction efficiency. Soulis and Valiantzas 
[9] suggested curve number value should be obtained from measured storm events. 

Due to ambiguity in the selection of best possible curve number (CN) value, 
present study suggest a modest and easy to use non-linear event based and single 
parameter required rainfall-runoff model without taking into consideration of curve 
number (CN). This model performance were checked over existing NRCS-CN model 
and a relationship was developed between CN and constant parameter of proposed 
model.
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1.1 NRCS-CN Model 

When partial amount of water from an event rainfall (P) flow over land surface in 
form of direct surface runoff (Q) after satisfying initial abstraction and infiltration of 
water into soil, the water balance equation can be expressed as: 

P = Ia + F + Q (1) 

The two fundamental hypothesis of a Soil Conservation Services-Curve Number 
(SCS-CN) method can be written as: 

Q 

P − Ia 
= 

F 

S 
or 

(P − Ia − Q) 
S 

(2) 

Ia = λS (3) 

where Ia = initial abstraction, F = total infiltration, S = maximum potential retention 
and λ is initial abstraction coefficient. After combining Eq. (2) and Eq. (3), makes 
the popular and universally used SCS-CN equation as: 

Q = 
(P − Ia)2 

P − Ia + S 
for P > Ia, otherwise Q = 0 (4)  

Considering Ia = λS and assuming λ value as 0.2, Eq. (4) becomes: 

Q = 
(P − 0.2S)2 

(P + 0.8S) 
(5) 

Equation (5) is popularly known as NRCS-CN model equation. The value of S 
can be obtained using CN value with following equation 

S = 
25400 

CN 
− 254 (6) 

For measured values of event rainfall (P) and its corresponding runoff (Q) for gauged 
watershed, the value of S can be obtained by below given Eq. (7) 

S = 5
[
(P + 2Q) −

/(
4Q2 + 5PQ

)]
(7) 

This S value obtained from Eq. (7), can be transformed into curve number using 
Eq. (6).
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1.2 Proposed Model 

Instead of using most commonly event-based rainfall-runoff NRCS-CN model, a 
modest and easy to use non-linear event-based rainfall-runoff model was proposed 
in this study without taking into consideration of both curve number (CN) and initial 
abstraction coefficient (λ), using least square Marquarted algorithm after randomized 
configuration. The general form of this model was expressed as: 

Q = α P2 

(α P + 1) 
(8) 

where P and α are rainfall and model constant, respectively, and both are greater than 
zero. If this condition is not satisfied then Q becomes zero. In order to find optimized 
value of α, least square fitting technique is used in this study. The detailed procedure 
is given in the methodology section. 

2 Materials and Methods 

2.1 Study Area 

To study the performance of both models, data is taken from the United State Depart-
ment of Agriculture-Agricultural Research Service (USDA-ARS) water database. 
A total 114 watersheds have been selected for this study with areas varying from 
0.17 ha to 30,351.45 ha. Both models were applied to this event-based dataset for 
their comparative evaluation. 

2.2 Data Selection 

In this study only larger events for which rainfall amount is greater than 25.4 mm have 
been selected. In this way we can avoid the biasing effects of small storm towards 
high CN value (lower S value). A total 7314 events were sorted which rainfall value 
is greater than 25.4 mm. 

2.3 Parameter Estimation 

In order to compute optimized value of curve number (CN) for NRCS-CN model and 
α value of proposed model, least square fitting technique was used to minimize the 
sum of squared difference between predicted and observed runoff amount employing
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Microsoft Excel (Solver) [9]. 

nΣ
i 

(Qoi − Qci )
2 =

Σ[
Qo −

{
(P − λS)2 

P + (1 − λS)

}]2 

⇒ Minimum (9) 

In NRCS-CN model, initial value of CN considered as 50 and allowed to vary in 
between 0 and 100, however in proposed model, starting value of α is taken as 0.01 
and acceptable range to vary in between 0 and 1. The optimized values of CN and 
α, resulting from both models are presented in Table 1.

2.4 Performance Evaluation 

For evaluating model performance, root mean square error (RMSE), Nash–Sutcliffe 
efficiency (NSE) and PBIAS criterion were used as indices of agreement between 
observed and predicted runoff. These are given in Eqs. (8), (9) and (10), respectively, 
as follows: 

RMSE =
[
1 

n 

nΣ
i=1 

(Qo − Qc)
2 
i

]1/2 

(10) 

NSE = 1 −
[ Σn 

i=1(Qo − Qc)
2 
iΣn 

i=1

(
Qo − QO

)2 
i

]
(11) 

PBIAS =
[Σn 

i=1(Qo − Qc)iΣn 
i=1(Qo)i

]
(12) 

where QO is the observed runoff in mm, Qc is the computed or calculated runoff 
in mm, QO is the mean runoff value calculated from n number of events from that 
particular watershed and i is an integer varying from 1 to n. 

2.5 Methodology 

The following steps were taken to perform this study:

i. Selected those events for which rainfall amount is greater than 25.4 mm. 
ii. Calculate curve number of each such events using Eq. (7) for rainfall and its 

corresponding runoff dataset for a particular watershed. 
iii. Calculate average (CNave) and median curve number (CNmedian) of a watershed 

using all event CN values. This work have been done for all 114 watersheds 
(mean, median, standard deviation and confidence interval at 10% value of 
CNave and CNmedian is given in Table 1).
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iv. Using Eqs. (5) and (6), optimized and a constant value of curve number 
(applying criteria given in Eq. (9)) for NRCS-CN model was calculated for 
all watersheds. Similarly, a constant and optimized value of α was calculated 
using Eq. (8) for proposed model for all the watersheds. 

v. A scatter plot was constructed which shows the relationship between curve 
number value of NRCS-CN model and α (model constant) value of proposed 
model. 

vi. The RMSE, NSE and PBIAS values were determined for both models using 
Eqs. (10), (11) and (12). 

vii. All these data were characterize according to different watersheds sizes and 
a comparable table were made to assess proposed model performance over 
existing NRCS-CN model. 

3 Results and Discussion 

Due to simplicity and one parameter requirement in the proposed non-linear event-
based rainfall-runoff model, it is necessary to check its performance using three 
most commonly statistical criterion, i.e. RMSE, NSE and PBIAS in order to find the 
degree of agreement between the observed and predicted direct runoff and compared 
the results with most generally used existing NRCS-CN model. The comparison of 
data for both models is shown in Table 1. The average and median value of CN were 
obtained (using step ii and iii in methodology section) and presented in column (i) 
and (ii) of Table 1. The optimized value of CN and α after applying step (iv) of 
methodology section, also presented in column (iii) and (vii) of Table 1. The range 
of optimized constant parameter ‘α’ for proposed model after minimizing the sum 
of squared difference between predicted and observed runoff amount were found 
in between 0.001 to 0.0289 with a mean and median value of 0.0095 and 0.0088, 
respectively. When we grouped value of ‘α’ in a certain range, i.e., 0–0.005, 0.005– 
0.01, 0.01–0.015, 0.015–0.02, 0.02–0.025 and 0.025–0.03, out of 114 watersheds 
maximum 46 watersheds (40.35%) lies their value in between 0.005–0.01 (Fig. 1) 
with a mean and median value as 0.0075 and 0.0078, respectively.

Since ‘α’ of proposed model depicted CN characteristics of NRCS-CN model. 
It means ‘α’ inherently shows the dependency of rainfall-runoff behaviour on soil-
moisture interaction with maximum potential retention. To show the relationship 
between α and CN, a scatter plot was draw. This graph (Fig. 2) with α and CN values 
shows a polynomial equation of second order with R2 value of 0.88. It also revealed 
that α value decreases with increased CN up to its value as 58 and then increases. 
The second order polynomial equation can be represented as: 

α = 2∗10−5 CN2 − 0.0022CN  + 0.0637 (13)
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Fig. 2 Scatter plot between optimized CN of NRCS-CN model and α of proposed model 

Using Eq. (13), we can directly convert CN value obtained from rainfall-runoff 
dataset (using Eqs. (6) and (7)) into α (model constant) of proposed model. This 
generated α value, put into proposed non-linear Eq. (8) will calculate runoff for any 
rainfall value. 

The values of RMSE, NSE and PBIAS of all 114 watersheds for both models have 
been shown in Figs. 3, 4 and 5. These figures and Table 1 revealed the significant 
improvement of proposed model over NRCS-CN model for all three statistical crite-
rion. All 114 watersheds are classified into six categories according to watersheds 
area. These are less than 1 ha area (15WS), in between 1–2 ha (36WS), 2–10 ha 
(20WS), 10–100 ha (19WS) and 100–1000 ha (17WS) area and more than 1000 ha 
(7WS) size.

The mean value of RMSE is decreased from 9.21 to 8.87 and out of 114 watersheds, 
84 watersheds have less RMSE value (Fig. 3). It shows that mean and median RMSE 
value is less for proposed model than NRCS-CN model for all 114 watersheds. If
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we classify the watersheds based on its area, RMSE value still less for all sizes of 
watershed with proposed model. The NSE values of proposed model are higher than 
the existing NRCS-CN model. The mean NSE value shows improvement with a 
value from 0.43 for NRCS-CN model to 0.50 for proposed model (Fig. 4). 

Overall, 84 watersheds shows improvement with proposed model. The value of 
PBIAS which revealed the over prediction or under prediction behaviour of a model, 
significantly towards zero for proposed model (Fig. 5). The mean PBIAS value 
declined from + 10.25 to just + 0.47. Its value near to zero is a good assessment of 
model. The range of watershed area in between 100 and 1000 ha, predicted significant 
better runoff result for proposed model in term of mean value of RMSE, NSE and 
PBIAS. 

4 Conclusions 

In this study, we proposed a very simple and easy to use non-linear model to predict 
runoff from an event rainfall. The CN value of NRCS-CN model, incorporates many 
factors in its own and can be adopted for different climatic conditions. Due to uncer-
tainty in curve number value, this study suggest a model without curve number 
concept and incorporating a new constant parameter α, to calculate effective runoff. 
This model performance were checked over existing NRCS-CN model. The quanti-
tative model performance was assessed and compared based on the root mean square 
error (RMSE), Nash–Sutcliffe efficiency (NSE) and per cent bias (PBIAS). Based 
on the statistical criterion, proposed model without CN concept reveals more statis-
tically significant results (low RMSE, high NSE and statistically significant PBIAS 
values) and depicted improved performance than the conventional CN model. A 
relationship was proposed between CN of NRCS-CN model and constant parameter 
α of proposed model to directly convert curve number value into α value. Due to 
simplicity of this model, α value can be determine for another biomes and check 
model efficacy and suitability for other regions. 
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(GR) Hydrological Models 
for Streamflow Simulation 

Akash Singh Raghuvanshi, Siddik Ahmed Barbhuiya, and H. L. Tiwari 

Abstract Hydrological modeling is essential for water resources management, 
impact assessment and risk evaluation. From the point of view of water resources 
planning, estimation of runoff from a watershed is of great importance in most hydro-
logical analysis. Due to the model’s complex structure and huge data requirement 
in semi-distributed or distributed models, nowadays lumped conceptual models are 
frequently used for operational applications because they represent and transform 
catchment scale rainfall-runoff in a simplified way. As a result, these models usually 
require less data and can be readily implemented. The present study uses package 
airGR which facilitate the daily versions of the GR lumped hydrological models, 
namely GR4J, GR5J and GR6J and compares their performance for streamflow 
simulation within RStudio interface. The Bharathapuzha river’s sub-basin in Kerala 
is selected for this study. The models are calibrated and validated using observed 
data of daily rainfall, and daily discharge and estimates of daily potential evapotran-
spiration for a period of 27 years (1987–2013). Daily potential evapotranspiration 
is estimated using FAO ET0 calculator (version 3.2). The performance of the model 
streamflow predictions is evaluated based on various statistical measures. Results of 
the analysis are presented and discussed. 
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1 Introduction 

The hydrological models have been used widely to examine the influence of climate 
and land-use change on water budgets, as well as to forecast severe occurrences 
such as floods and droughts [6]. Many scientific fields employ hydrological models 
to simplify the description of hydrological systems and to forecast the behavior of 
hydrological systems [14]. Among various hydrological models, lumped models 
are being commonly used for various applications because they represent catch-
ment scale rainfall-runoff in a simplified way. As a result, these models require less 
input data (primarily climatic inputs and streamflow) and are simple to apply. For 
these reasons, such models are frequently used in hydrological science training and 
teaching [3]. CEMAGREF, a French national applied research agency, has created a 
collection of lumped hydrological models known as the Genie Rural (GR) hydrolog-
ical models [14]. These are conceptual hydrological models that may be implemented 
at different time scales ranging from daily to yearly. This is the goal of the airGR 
package given in this paper, which makes GR models open-source in R [2, 3]. This 
study evaluates the performance of three daily version of GR models in estimating 
streamflow in Bharathapuzha river sub-basin in Kerala. 

2 Study Area and Data Source 

2.1 Bharathapuzha River Sub-Basin 

The study area is a part of the Bharathapuzha river basin in Kerala extending from 
10° 45, to 11° 30, N and 75° 45, to 76° 45, E. Bharathapuzha River is the second 
longest river of Kerala. The main tributary in the study area is Thuthapuzha. This 
tributary starts from the Silent Valley hills. The geographical extent of the sub-basin 
considered in this study is approximately 913 km2 and its boundary covers a perimeter 
of 226 km. 

2.2 Data Used 

Lumped conceptual models incorporates rainfall and potential evapotranspiration 
(PET) information. The daily Meteorological data (rainfall, maximum & minimum 
temperature, wind speed, relative humidity and no. of sunshine hours) were collected 
from Regional Agriculture Research Station, Pattambi for the period of 27 years 
(1987–2013). It is assumed to be uniform throughout the catchment. The daily 
discharge data for stream gaging site at Pulamanthole was obtained from Central 
Water Commission (CWC) for the period of 27 years (1987–2013). Daily poten-
tial evapotranspiration is estimated using FAO ETo calculator (version 3.2). PET
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Fig. 1 Index map of the study area 

was computed based on FAO Penman–Monteith equation from meteorological data 
using the ETo calculator software [1]. In this study, it was assumed that the reference 
crop evapotranspiration is equal to the potential evapotranspiration due to lack of 
readily available detailed information on the crops, plantations, forests, their aerial 
spread, etc. 

3 Materials and Methods 

3.1 Rainfall-Runoff Models 

The hydrological models evaluated in this study are; GR4J, GR5J and GR6J (Fig. 1). 
The conceptual models are set up in RStudio interface using an R-package, airGR 
[2, 3]. These models work at daily scale, are parsimonious in data and are easy 
to calibrate and validate thus making them very popular among hydrologist [14]. 
The description of parameters involved in every model are in the following section 
(Fig. 2).

3.2 GR4J Model 

The GR4J model is a lumped conceptual model used for rainfall-runoff modeling 
[11]. The GR4J conceptual model comprises four parameters: production store 
maximum capacity (mm) [x1], the groundwater exchange coefficient (mm) [x2], 
routing store maximum capacity one day ahead (mm) [x3] and the time span of the 
unit hydrograph (day) [x4] [11]. This model was run using the airGR package [2, 3] 
in R software [13] (Fig. 3).
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Fig. 2 Daily precipitation, potential evapotranspiration and streamflows data for the study area 
(1987–2013)

Fig. 3 Schematic representation of the GR4J, GR5J (Left) and GR6J (Right) hydrological model 
[12] 

3.3 GR5J Model 

The GR5J model is a five-parameter enhanced daily lumped conceptual model (x1, 
x2, x3, x4 and x5). The first four parameters are identical to those of the GR4J 
model. The extra parameter x5 represents the change in the sign of the F (ground 
water exchange term) [8]. Le Moine [8] developed the GR5J model to increase the
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low flow simulation performance over the GR4J model. The GR5J daily rainfall-
runoff modeling in this work was also carried out in R software using the airGR 
package [2, 3, 13]. 

3.4 GR6J Model 

The GR6J model is a six-parameter enhanced daily lumped conceptual model (x1, 
x2, x3, x4, x5 and x6). Apart from initial four parameters which are the same as 
those of the GR4J model. The additional parameters (x5 and x6) denote the change 
in the F (ground water exchange term) sign threshold and the new routing storage, 
respectively [11, 12]. The GR6J model was developed to improve the low flow 
simulation performance [12]. In this investigation, the GR6J rainfall-runoff modeling 
was also carried out using the airGR package [2, 3] in R software [13]. 

3.5 Calibration and Validation Procedure 

The GR4J, GR5J and GR6J models’ parameters are calibrated using Michel algorithm 
[9] which optimizes the error criterion selected as objective function. The algorithm 
combines a global and a local approach. First, a screening is performed using either 
a rough predefined grid or a list of parameter sets. Then a steepest descent local 
search algorithm is performed, starting from the result of the screening procedure. 
In this study, calibration was carried out using Nash–Sutcliffe efficiency (NSE) as 
the objective function. The calibration period was considered as 1988–2006 and the 
validation period as 2008–2013. The one-year warm up period was considered for 
all three models while performing calibration (1987) and validation (2007). 

3.6 Assessment of Model Performance 

Model performance evaluation is essential in order to provide an estimate of its 
ability to replicate historic and future watershed response, it is a means for evaluating 
improvements to the modeling approach by adjusting the model parameter values, 
model structural modifications, the inclusion of additional observational information 
and representation of important spatial and temporal characteristics representation 
of the watershed as well as to compare current modeling efforts with previous study 
results [5]. In the present study, Nash–Sutcliffe Efficiency (NSE), coefficient of 
correlation (R) and percentage bias (PBIAS) are used as mathematical measures to 
assess how well the results of model simulation is close to the available observations. 
NSE (Eq. 1) is a measure to evaluate the predictive power of hydrological model. 
An efficiency of 1 indicates a perfect fit between observed and predicted value.
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Coefficient of correlation (Eq. 2) is a measure of the linear relation between two 
variables. A correlation of 1 indicates perfect linear relation between the observed 
and the predicted values. Percentage bias (Eq. 3) is a measure to evaluate whether the 
model is under-predicting or over-predicting with respect to observed value. A value 
of PBIAS > 0 and PBIAS < 0 indicates that the model is under-predicting and over-
predicting, respectively. Moriasi et al. [10] specified model performance guidelines 
for evaluations performed with monthly time step. According to the guidelines, model 
simulation can be defined satisfactorily if NSE > 0.5 and PBIAS = ±  25% for 
streamflow. 

NSE = 1 −
ΣN 

i

[
Qobs,i − Qsim,i

]

ΣN 
i [Qobs,i − Qobs]

(1) 

R =
ΣN 

i (Qsim,i − Qsim)(Qobs,i − Qobs)/ΣN 
i (Qsim,i − Qsim)

2
ΣN 

i (Qobs,i − Qobs)
2 

(2) 

PBIAS =
ΣN 

i

[
Qobs,i − Qsim,i

] × 100
ΣN 

i Qobs,i 

(3) 

where Qobs,i and Qsim,i are observed discharge at time i and simulated discharge at 
time I, respectively, Qobs and Qsim are mean observed discharge and mean simulated 
discharge, respectively. 

4 Results and Discussion 

For the present study, calibration is performed using data of 19 years starting from 
January 1st 1988 and ending on December 31st 2006. A total of four parameters 
related to GR4J, five parameters related to GR5J and six parameters related to GR6J 
are estimated through the calibration algorithm described by C. Michel (1991). The 
values of these parameters are presented in Table 1. 

The values of the GR model parameters have been fixed such that a reasonably 
good agreement is obtained between the observed and computed streamflow. The

Table 1 Calibrated 
parameters 

Parameters GR4J GR5J GR6J 

x1 742.483 523.182 559.584 

x2 3.665 − 0.767 1.661 

x3 159.174 159.539 65.560 

x4 1.632 1.424 1.739 

x5 – 1.000 0.361 

x6 – – 23.405 
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observed and computed values of streamflow are presented in Figs. 4, 5 and 6. 
Overall, there is reasonably good agreement between the observed and computed 
streamflow. It can be seen that the all three models slightly underestimate peak flows 
in few years, and overestimates low flows. The values of the statistical measures for 
the model performance during calibration and validation periods are given in Table 
2. 

Validation of the three GR models is performed using streamflow data for 6 years 
from January 1st 2008 to December 31st 2013. Figures 7, 8 & 9 illustrates the plot 
of observed and simulated streamflow for the validation period for GR4J, GR5J and 
GR6J model, respectively.

The efficacy of GR4J, GR5J and GR6J model is compared by calculating the 
statistical measures of performance, i.e., NSE, PBIAS and coefficient of correlation 
(R). NSE for GR4J, GR5J and GR6J varies between 0.65 and 0.71. The best perfor-
mance is obtained by the GR4J model in terms of NSE, PBIAS and R. NSE and R 
values during validation period are better than calibration period for all three GR

Fig. 4 Results of calibration of GR4J—observed and computed streamflow—period (1988–2006) 

Fig. 5 Results of calibration of GR5J—observed and computed streamflow—period (1988–2006)
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Fig. 6 Results of calibration of GR6J—observed and computed streamflow—period (1988–2006) 

Table 2 Summary statistics of model performance 

Performance criteria Calibration (1988–2006) Validation (2008–2013) 

GR4J GR5J GR6J GR4J GR5J GR6J 

PBIAS − 0.4 − 3.7 − 1.1 − 10.6 − 13 − 11.2 
NSE 0.67 0.65 0.67 0.72 0.71 0.71 

R 0.83 0.81 0.83 0.85 0.85 0.85

Fig. 7 Results of validation of GR4J—observed and computed streamflow—period (2008–2013)

models. PBIAS values during calibration period are better than validation period for 
all three GR models. Negative values of PBIAS indicate the overestimation in simu-
lated runoff by the models. Among all the three models, GR4J model overestimated 
streamflow least. GR4J and GR6J model performed better than the GR5J in terms of 
NSE, PBIAS and R.
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Fig. 8 Results of validation of GR5J—observed and computed streamflow—period (2008–2013) 

Fig. 9 Results of validation of GR6J—observed and computed streamflow—period (2008–2013)

5 Conclusions 

This study compared GR4J, GR5J and GR6J lumped conceptual rainfall-runoff 
models in estimating the runoff in a sub-basin of the Bharathapuzha river basin 
in Kerala. The following conclusions are derived from the foregoing study: 

• The performance of GR4J model in estimating streamflow was better than GR5J 
and GR6J model. 

• NSE and R values during validation period were better than calibration period for 
all three GR models. 

• PBIAS values during calibration period were better than validation period for all 
three GR models. All three GR model overestimated the streamflow. 

• Among all the three models, GR4J model overestimated streamflow least.
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• GR4J and GR6J model performed better than GR5J model in terms of NSE, 
PBIAS and R values. 

• From the statistical indices evaluated, it can be concluded that all the three GR 
models have given a satisfactory result. 
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Spatio-Temporal Variability Analysis 
of Snow Cover in Sutlej Basin Using 
MODIS Snow Cover Data 

V. Madhavi Supriya, B. Simhadri Rao, Ch. Sai Krishna, P. Venkat Raju, 
and V. Venkateshwar Rao 

Abstract Snow is a crucial component of the cryosphere and is an Essential Climate 
Variable (ECV), an indicator of climate change. Large number of studies suggests 
climate change is affecting the snow cover and the resulting snowmelt runoff in 
Himalaya mountainous region. Monitoring the snow cover area dynamics becomes 
very essential amidst the growing importance of the snow and glaciers in Indian 
Himalayan region and its efficient utilization of water resources. The present study 
examines the spatial and temporal variations of Snow Cover Area (SCA) in the 
Sutlej basin, using eight-day snow cover products derived from Moderate Reso-
lution Imaging Spectroradiometer (MODIS) aboard Terra (MOD10A2) and Aqua 
(MYD10A2) with a spatial resolution of 500 m (version-6) for the period 2002– 
2020 (18 years). The cloud cover quantity is minimized by means of taking the 
combination of Terra and Aqua MODIS snow cover products. The analysis is done 
on a monthly, seasonal and annual time scale along with the elevation, slope and 
aspect SCA variation in the basin. The average SCA in Sutlej basin is 41.03% of 
the total basin area (52,553 km2). It is observed that the minimum annual average 
SCA is 33.26% in 2015–2016 and the maximum annual average SCA is 49.95% in 
2014–2015. The trend analysis was performed for elevation, slope, aspect and the 
result doesn’t indicate any significant trend for the period 2002–2020 (18 years).
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The average inter-annual seasonal variability over the decade (2002–2011) is more 
as compared to other decade (2011–2020). 

Keywords Snow Cover · MODIS · Elevation · Slope · Trend 

1 Introduction 

Snow cover is a vital water resource for agricultural crops and fresh water resources 
in the mid and high latitude areas [1] making the snow cover monitoring essential for 
its proper utilization. Global Climate Observation System (GCOS) has recognized 
snow as an Essential Climate Variable (ECV) due to its crucial function in energy 
exchange and weather change. The snow cover is characterized by high reflectance 
in visible bands and low reflectance in shortwave infrared band. The primary factor 
of the earth’s atmospheric circulation system is the spatial and temporal variability 
of seasonal snow cover upon land that plays a key role in governing the earth’s 
global radiation balance. The high albedo of snow cover influences land surface 
temperature by using reflecting incoming short wave solar radiation. The snowmelt, 
snow distribution and snow cover depletion are inter related according to Liston [2]. 
In snowmelt hydrology models the timing and magnitude of snowmelt runoff and 
the end of winter snow distribution which is determined by the snow distribution [3]. 
It is important to monitor the seasonal snow cover to assess the distribution of water 
in north Indian rivers [4] such as Indus, Ganga and Brahmaputra as these originate 
in the high altitude regions such as Himalayas. The analysis of spatial and temporal 
variability of snow cover is used to forecast snowmelt runoff in spring period [5] 
to evaluate changes in flood regime. Because of extreme weather conditions in the 
Himalayan region the ground measurements of snow are very limited due to which 
satellite-based remote sensing takes the advantage. The present study was taken up 
with the principal objectives to study the Inter-Annual and Intra-Annual snow cover 
area variability in Sutlej basin at different temporal scales (monthly, seasonal and 
annual) and also with respect to different zones of elevation, slope and aspect. 

2 Study Area and Data Source 

2.1 Sutlej River Basin 

The Sutlej is one of the longest rivers among the five rivers of Punjab state and one of 
the most important eastern tributary of the river Indus. Sutlej along with its tributaries 
is known as the “Power House of Himalayas”. Its origin is near the Mansarovar Lake 
which enters Zaskar range and flows through the Tibetan Plateau at an elevation 
about 4500 m (mean sea level—msl) before entering India in Himachal Pradesh and 
flows generally from west and south-west.
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Fig. 1 Location of the study area 

The Tibetan plateau is characterized by a cold desert winter climate except for the 
Spiti (major tributary) in Himachal Pradesh. The major snowfall contribution is due 
to westerly weather disturbances mostly happening in spring season [6]. The study 
area is extending from 30° 22, N to 32° 42, N and 76° 57, E to 82° 51, E and covers 
an area of 52,553 km2 explained in Fig. 1. The hypsometry of the basin area along 
with the glaciers shows that maximum area lies between 4000 and 5000 m. 

3 Data Used 

3.1 Satellite Snow Cover Product 

The National Aeronautics and Space Administration (NASA) launched a Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra and Aqua 
satellites viewing the earth every one to two days with swath width of 2330 km and 
acquiring data in 36 spectral bands ranging between 0.405 and 14.385 µm (visible 
to thermal infrared sensor). Aqua sensor crosses the equator from south to north 
(ascending node) at approximately 1.30 P.M. local time whereas Terra sensor crosses 
the equator from north to south (descending node) at approximately 10.30 A.M. local 
time. The MODIS Terra and Aqua data specifications are explained in Table 1.



296 V. Madhavi Supriya et al.

Table 1 MODIS Terra and Aqua data specifications 

Satellite Product Nominal data 
Array 
dimensions 

Spatial 
resolution 

Temporal 
resolution 

Starting period of 
acquisition 

Terra MOD10A2 1200 km × 
1200 km 

500 m Eight-day February 24th 
2000 

Aqua MYD10A2 1200 km × 
1200 km 

500 m Eight-day July 4th 2002 

Table 2 Pixel values categorized in MODIS snow cover product [7] 

Pixel 
value 

0 1 11 25 37 39 50 100 200 254 255 

Category Missing 
data 

No 
decision 

Night No 
snow 

Lake Ocean Cloud Lake 
Ice 

Snow Detector 
saturated 

Fill 

MODIS provides a composite 8-day (MOD10A2/MYD10A2) global snow cover 
datasets as two layer namely as maximum snow extent and chronology of snow/no 
snow occurrence observations during an eight-day period. In our study the algorithm 
maps a pixel value as snow, if any one of the days during the entire 8-day period is 
mapped as snow. The pixel is mapped as cloud, if observed as a cloud on all the days 
during the entire 8-day period. The pixels are categorized as snow, no snow, cloud, 
ocean, snow covered lake, lake ice or other state [7] as described in Table 2. 

The 8-day SCP of MODIS Terra (MOD10A2) and Aqua (MYD10A2) from 
September 2002 to August 2020 (18 years) data are only used for the analysis. There 
are 46 scenes available in a one particular year. Therefore a total of 3308 scenes are 
obtained for our study area covered in two scenes (h24v05 & h25v05) from both 
Aqua and Terra. MODIS SCP datasets are missing on two days, i.e., February 18th 
2016 and August 21st 2020. 

3.2 Digital Elevation Model (DEM) 

The elevation information is derived from the Shuttle Radar Topography Mission 
(SRTM) global data coverage with 90 m resolution (3 Arc—second) in C-band 
wavelength (5.6 cm). The Geo—TIFF files are used to delineate basin boundaries 
for the study area at its original resolution of 90 m. The DEM is re-sampled from 
90 to 500 m resolution (using Nearest Neighborhood) which corresponds to the grid 
size of MODIS snow cover product for the preparation of elevation, slope and aspect 
classified images as explained in Fig. 2.
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Monthly SCA 

Annual SCA 

Combining Terra & Aqua 

SCA for cloud pixel minimization 

MODIS Terra (MOD10A2) & 

Aqua (MYD10A2) snow cover 

Aspect 

Aspect SCA 

Binary Snow Cover Map 

Re-project to 

ACEA projection 

Clip to the study 

area from image 

Elevation SCA Slope SCA 

SRTM DEM (90 m) 

Re-sampled to 500 m 

of MODIS 

Elevation 
(Re-classified) 

Slope 

Seasonal SCA 

Annual SCA 

(Re-classified) (Re-classified) 

Fig. 2 Flowchart of methodology 

4 Methodology 

The preprocessing of the MODIS data includes projection transformation from sinu-
soidal to the Albers Conical Equal Area (ACEA) and clipping to the study area extent 
using ERDAS Imagine software. The detailed methodology is explained in Fig. 2. 

4.1 Terra and Aqua Combination for Minimizing Cloud 
Pixels 

A frequently used approach in different literatures to minimize the cloud cover is 
combining Terra and Aqua SCP [8–11]. The approach can be illustrated as follows 
if a pixel in MOD10A2 is classified as cloud and the same pixel is cloud-free (i.e., 
either snow or land) in MYD10A2, the cloud-free observation is assumed [12]. 
Since MYD10A2 uses band 7 instead of band 6 in deriving the NDSI index it suffers 
from inaccuracies. Thereby better input is provided by MOD10A2 compared to 
MOD10A1 [13–15] through cloud suppression by minimizing the cloud cover and
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Table 3 Classification of 
seasons 

Season Months 

Winter October to March 

Spring April to June 

Summer July to September 

maximizing snow cover resulting in higher classification accuracy for snow. Yang 
et al. [16] also demonstrates the higher accurate retrievals than the MYD10A2. 
Hence, the methodology gives priority to MOD10A2 observations due to the previous 
validation studies [12]. 

4.2 Generation of Binary Snow Cover Map 

There are only two classes namely snow covered area with snow pixels and non-snow 
covered area (cloud pixels) in the binary snow cover map [17]. Binary snow cover 
is generated by retaining only snow class as ‘1’ and non-snow cover pixels as ‘0’. 

The snow hydrological year is considered from September to August as the snow 
cover is lowest in September. The annual Snow Cover Area (SCA) is taken as the 
average of the snow hydrological year. Monthly SCA are derived from the 8-day 
snow cover maps taking average from 8-days spanned period in each month from 
2002–2020. Table 3 explains the seasonal analysis of the months in a year categorized 
into the three seasons as winter, spring and summer using the previous studies [18, 
19]. 

4.3 Elevation, Slope and Aspect Zonation 

A decisive role is played by Elevation during snow accumulation [18]. The elevation 
map is classified into the class interval of 1000 m of each into seven zones. Slope is 
measured in degrees with the convention of 0° for horizontal plane. The slope zones 
are generated at 11.25° intervals to analyze the slope-based snow distribution and 
depletion analysis. The aspect is defined as the orientation of the slope representing 
the compass eight directions, i.e., North (N), North-East (NE), East (E), South-East 
(SE), South (S), South-West (SW), West (W), North-West (NW) that a slope faces. 
Zone classes used for SCA analysis in elevation, slope, and aspect are explained in 
detail in Table 4.
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Table 4 Zone classes used 
for SCA analysis 

Zone Elevation range (km) Slope range 
(degrees) 

Aspect 

1 < 1 0.3–11.25 N 

2 1–2 11.25–22.5 NE 

3 2–3 22.5–33.75 E 

4 3–4 33.75–45 SE 

5 4–5 45–56.25 S 

6 5–6 56.25–67.5 SW 

7 > 6 67.5–78.75 W 

8 – 78.75–90 NW 

4.4 Mann–Kendall Test 

A broadly used long term non-parametric trend analysis is Mann–Kendall test [20]. It 
is used for SCA trend analysis during the period 2002–2020 (18 years). The relative 
importance of the sample data magnitude instead of the information values itself. 
This statistically assess if there is a monotonically increasing or decreasing trend. 

5 Results and Discussion 

5.1 Intra-Annual Variations of Snow Cover Area 

The maximum 8-day SCA is observed on Feb 11th 2015 to Feb 18th 2015 with area 
of 46.41 × 103 km2 reaching upto 88.32% of the total Sutlej basin area and minimum 
8-day SCA is 4.14 × 103 km2 during July 13th 2004 to 20th July 2004 reaching upto 
7.88%. Figure 3 represents the SCA from September 2002 to August 2020. 

Fig. 3 The intra-annual 8-day SCA variations from September 2002 to August 2020
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Fig. 4 The monthly mean SCA variations from September to August 

5.2 Monthly Variations of Snow Cover Area 

The monthly estimates in Fig. 4 show that maximum SCA in February and least SCA 
in August. The monthly SCA variations showed that from September to February 
the SCA increases due to the fresh snowfalls. From March the SCA decreases as 
the melting period commences and melting continues till June. The SCA reaches 
minimum in July and August. 

5.3 Inter-Annual Variations of Snow Cover Area 

Inter-Annual SCA variation was analyzed for the years 2002 to 2020 using average 
annual values. The maximum SCA is in 2014–15 with an area of 26.25 × 103 km2 

(49.95%) and minimum SCA is in 2003–04 with area of 17.42 × 103 km2 (33.14%). 
The Mean SCA from 2002 to 2020 is 21.57 × 103 km2 (41.03%). This shows that 
SCA is higher in the 2002–2011 decade when compared to the decade of 2011–2020 
as shown in Fig. 5. 

Fig. 5 Inter-annual mean SCA variations from 2002 to 2020
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Fig. 6 The seasonal SCA variations from 2003 to 2020 

5.4 Seasonal Variations of Snow Cover Area 

Further SCA was analyzed for different seasons. The fresh snowfall during winter is 
the main controlling factor for the more seasonal variations of snow when compared 
to the other seasons. Figure 6 represents that the maximum SCA is observed during 
the winter, followed by spring and monsoon. During spring the SCA decreases 
because of the melting of snow. 

5.5 Elevation Variations of Snow Cover Area 

A significant role is played in snow accumulation during winter months by elevation. 
The Inter-annual variation of the snow cover was analyzed for the seven elevation 
zones is shown in Fig. 7. The higher elevation ranges such as above 4000 m have 
more favorable conditions for the formation and persistence of snow cover due to 
lower air temperature and higher precipitation [21]. During the accumulation period 
because of higher temperatures there is less snow in lower elevations and latitudes. 
The hypsometric curve reveals that basin area is more in 4–5 km and followed by 
5–6 km. We observe that there is a higher SCA in 5–6 km due to the presence of 
glacier area.

5.6 Slope Variations of Snow Cover Area 

The slope of 0.32°–11.25° SCA has the maximum SCA when compared to the other 
slope classes in Fig. 8. The quantitative variation is almost similar in 11.25°–22.5°and 
22.5°–33.75° classes. The SCA in greater than 33.75° class is smaller SCA compared 
to other classes.
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Fig. 7 Inter—annual SCA variations in each elevation zone of 1 km

Fig. 8 Inter—annual SCA variations in different slopes 

5.7 Aspect Variations of Snow Cover Area 

The NE and E have higher SCA. SE, S, W, N and NW have less SCA compared to 
NE & E. The Fig. 9 shows that the years 2003–04, 2011–12, 2013–14, 2015–16 have 
decreasing SCA whereas 2005–09 and 2015–18 SCA is consistent. We observe that 
the quantitative changes in the SCA are following a similar pattern in all the aspects.

6 Conclusions 

The present study is analyzed over Sutlej basin during 2002–2020 (18 years) using 
MODIS Terra and Aqua data combination for cloud reduction. There are no signifi-
cant trends in Inter-annual, seasonal, monthly SCA with respect to elevation, slope 
and aspect with the Mann–Kendall test. The SCA in the lower elevations have 
less SCA as compared to the higher elevations. Though 2014–2015 showed the 
highest annual, winter and spring SCA whereas monsoon showed a less SCA. It was
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Fig. 9 Inter-annual SCA variations in different aspects

observed that aspect has major impact on snow accumulation. According to Jain 
et al. [19] the highest SCA is in NE due to the reason that north facing slopes are 
less exposed to insolation and warm wind, which provides favorable conditions for 
snow accumulation even though the highest basin area exists in the SW. 
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River and Inlets Cross-Sections 
Extraction Using Stereo Pair Images 
for Hydraulic Modeling 

Mark Prabhakar Vuppati, Shubham Dixit, Rajani B. Deogade, 
and Prabhat Chandra 

Abstract In order to conduct a hydraulic model simulation for gage and discharge, 
a very essential part is the bathymetry data of river channel. Ground survey of these 
rivers for their cross-sections is a very tedious and expensive task and continuous 
availability of these cross-sections data for longer river stretch is sometimes hard 
to find. This paper presents an approach to extract the cross-sections with the help 
of Cartosat-1 Stereo pair images procured from NRSC. This approach was used to 
extract the portions of missing cross-sections for the main river and its inlet channels 
for the 127 km stretch of Mula-Mutha river flowing through Pune city and suburbs 
starting from Khadakwasla dam up to Daund, located in upper Bhima Basin. This 
study is a part of Purpose Driven Study (PDS), under National Hydrology Project 
(NHP). Freely available DEMs like ASTER DEM and SRTM DEM does not give 
satisfactory results when it comes to extracting the cross-sections for small inlets, 
therefore, Cartosat-1 stereo pair images were used to generate DEM of 5 m resolution 
using ERDAS IMAGINE 2014. Further, to extract the cross sections, QGIS2RAS 
(A Plugin for Q-GIS) was used. Out of the total reach length of 127 km, a good 
quality surveyed data was available for 77 km in parts, this data was used for the 
required corrections and verification of extracted data. With a few modifications for 
fine tuning, the cross-sections produced were of satisfactory quality. 
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1 Introduction 

To successfully simulate the river flow processes onto a mathematical model, one 
of the very basic yet crucial requirement to precisely predict the depth of water 
corresponding to the flow magnitude and vice versa, is a good quality Geometry 
data. The best source for this geometry data is always the physically surveyed data, 
but such surveys tend to be very expensive and difficult to execute. To overcome 
this, a few GIS tools are developed to extract geometrical features from various 
remotely sensed datasets [1]. Many studies are done that try to extract the missing 
datasets using such tools. The main products mostly used for this purpose are Digital 
Elevation Model incorporated with GIS. [1–4]. A digital elevation model is spatial 
representation of elevations of ground surface, it is a raster image whose pixels store 
the value of elevation, of corresponding point on ground. Freely available DEMs 
in public domain have poor resolution for the purpose of cross-sections extraction, 
these free DEMs can be used for very wide channels, but for better accuracy and for 
cross sections of narrow lateral inlets, DEMs with high resolution is required. NRSC 
publically provides CartoDEM of 30 m resolution, and stereo pair images of 2.5 m 
resolution. These stereo pair images can be used to produce high resolution DEM, 
however vertical elevation correction will further be required [5]. 

This paper presents a part of study which was carried out under a purpose driven 
study for NHP titled “River Rejuvenation of Mula-Mutha river flowing through Pune 
city and suburbs”, The said study is to be conducted on a 127 km river stretch from 
Khadawasla dam to Daund. For preparation of hydrodynamic model, a good quality 
surveyed cross-sections data was available from Khadakwasla dam to Mundhwa 
(27 km) and from Loni to Pargaon (50 km) and for rest of the river stretch, cross-
section data was missing. To extract the cross-section data where it is missing, the 
present study was carried out with the following objectives. 

a. To prepare high resolution DEM using stereo pair images, 
b. To extract the cross-sections for missing portions of river and small lateral inlets, 
c. To identify the required elevation correction for extracted cross-sections, 
d. To apply correction and smoothen cross-sections for irregularities (if any). 

2 Materials and Methods 

2.1 Study Area and Data Source 

2.1.1 Mula-Mutha River 

Mula-Mutha river flows through Pune city and suburbs and acts as the major source of 
water for Pune city for various activities. Mula river originates from Mulshi dam and 
flows for around 64 km to meet Mutha river at Sangamwadi. Mutha river originates 
from Khadawasla Dam and after flowing for around 15 km through Pune city, it meets
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Fig. 1 Index map of study area 

with Mula river. After the confluence point at Sangamwadi the river now called as 
Mula-Mutha river, which travels 50 km to meet Bhima river at a point near Pargaon. 
The scope of our study ends at Daund where the river completes a total reach of 
127 km, for this river stretch, the delineated watershed area is around 11,340 km2 

(Fig. 1). 

2.1.2 Data Collection 

The high quality surveyed cross-section data for the river was sourced from Irrigation 
Department, Pune. The various software and datasets used in the study are listed in 
Tables 1 and 2. 

Table 1 Software used and their applications 

Software Application 

Erdas Imagine 2014 (Imagine photogrammetry 
toolbox) 

To process stereo pair images and prepare 
DEM 

Q-GIS and Q-SWAT Q-SWAT model was used for creation of all 
streams and delineation of watershed using the 
prepared DEM 
With the help of vector file of streams, Q-GIS 
software was used to prepare, input files 
required for QGIS2RAS 

QGIS2RAS (GIS plugin) To extract cross-sections from DEM 

HEC-RAS To process the extracted cross-sections
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Table 2 Data used for the study 

Surveyed cross section data 

From To Distance and interval 

Khadakwasla Dam Mundhwa 885 cross-sections across 27 km at 
30 m interval 

Loni Pargaon 500 cross-sections across 50 km at 
100 m interval 

Satellite data 

Band A Band F 

Satellite ID P5 P5 

Sensor PAA PAF 

Date of imageries Jan 2nd 2018–Jan 21st 2019 Jan 2nd 2018–Jan 21st 2019 

Path-Row 517—308, 309, 310, 311 
518—307, 308,309, 310, 311, 312 
519—307, 308, 309, 310, 311 
520—308, 309, 310, 311 
521—308, 309, 310, 311 
522—309, 310, 311 
523—309, 310, 311 

517—308, 309, 310, 311 
518—307, 308, 309, 310, 311, 312 
519—307, 308, 309, 310, 311 
520—308, 309, 310, 311 
521—308, 309, 310, 311 
522—309, 310, 311 
523—309, 310, 311 

2.2 Methodology 

The whole study can broadly be divided into two parts: 

1. The first step consists of DEM generation and 
2. The second step consists extraction of cross-sections from generated DEM. 

The methodology adopted in this study is shown in Fig. 2:

2.2.1 DEM Generation 

For generation of DEM using Cartosat-I stereo pair images (Fig. 3), Imagine 
photogrammetry toolbox of Erdas Imagine 2014 [6] was used. 

DEM can be generated by performing the following steps in Imagine photogram-
metry: 

1. Create a new block (.blk) file. 
2. Add a new frame to input images. 
3. Provide Rational Polynomial Coefficients (RPC) file. 
4. Calculation of Pyramid Layers and generate automatic tie points. 
5. Triangulation and Generate DEM.
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Fig. 2 Methodology flow chart

To start the DEM generation procedure, a block file was created, with geometric 
model category set to ‘rational functions’, because sensors in Cartosat-I are based 
on rational functions. The stereo pair images were given as input via adding a new 
frame. Since, the geometry model was set to rational functions, the software asks for 
a rational polynomial coefficients (RPC) files, which were provided with the stereo 
pair images. 

These RPC files contains coefficients that relate the image pixels (rows and 
columns) with the latitude, longitude and elevation on the ground. These coeffi-
cients are the ratios of cubic polynomial expressions, which represents the image 
and actual objects parameters [7]. 

After providing the RPC file, automatic Tie points were generated by software, 
these are the points responsible for tying together the two images of stereo pair. More 
the number of tie points higher will be the accuracy of DEM generated. Software 
generates these tie points by identifying similar points on the two images, which
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represent the same point on ground. DEM generation cannot proceed if no tie points 
are found in stereo pair. Tie points can also be given manually with the help of some 
additional field data for better accuracy. 

These tie points are then used by software to start block triangulation process, 
where a mathematical relation is established between the image captured and ground. 
The error is reported by software in the form of root mean square error (RMSE). 
This RMSE value should be less than one to prepare a DEM with good accuracy. 
After completing the block triangulation process, DEM can be generated. 

2.2.2 Cross-Section Extraction 

For extraction of cross-sections, A GIS plugin named “QGIS2RAS” was used, the 
input required for this plugin is: 

1. DEM for the concerned area. 
2. A vector file marking centerline of flow path for which cross-sections are to be 

extracted. 
3. A vector file of the cross-sections, each cross-section marked as individual 

attributes on the above-mentioned centerline. 

The output of QGIS2RAS was obtained in GIS format as a geometry file (.sdf) 
which can be accessed in HEC-RAS using the import function. 

2.2.3 Cross-Section Comparison 

Cross-sections that were generated using imagine photogrammetry toolbox on Erdas 
imagine 2014 were checked for accuracy, by comparing the geometry and elevation 
values with that of existing high quality surveyed cross-sections. 25 cross-sections 
were checked and in each cross-section, elevations of lowest point, left bank and right 
bank were used to compare with that of extracted cross-section. After the comparison, 
a weighted average value of vertical elevation correction was adopted and applied in 
all extracted cross-sections using the HEC-RAS geometry editor. The cross-sections 
after the applied correction and additional smoothening were ready to use for further 
modeling purposes.

3 Results and Discussion 

3.1 DEM Generation 

The tie points were generated automatically by Imagine photogrammetry tool and 
using these tie points, triangulation was performed, for a DEM with good accuracy
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Fig. 3 Stereo pair image obtained

the RMSE for triangulation process is suggested to be less than 1. In this study, for 
a total of 29 pair of images, the RMSE values obtained were ranged between 0.246 
and 0.769. After successful triangulation DEM was generated as shown in Fig. 4.

3.2 Cross-Section Extraction 

The generated DEM was used to extract cross-section using GIS plugin QGIS2RAS, 
for this purpose vector files of centerline of flow path and cross-sections as shown 
in Fig. 5, were used. The extracted cross-section from QGIS2RAS without vertical 
elevation correction and smoothening is shown in Fig. 6.

3.3 Cross-Section Comparison 

A total of 25 cross-sections were compared for geometry and were found to be having 
nearly same width and shape of section, the elevation difference observed in these
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Fig. 4 DEM generated from stereo pair using Erdas Photogrammetry tool

Fig. 5 Input vector files for Q-RAS
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Fig. 6 Raw extracted 
cross-section
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sections was such that the extracted cross-sections were having elevation lower that 
the surveyed sections. The difference in elevations of station points came out to be 
in range of 59–64 m, so a weighted average value of + 62.01 m was adopted as 
vertical elevation correction for all the extracted cross-section. Few cross-sections 
before and after application of correction and smoothening are shown in Fig. 7

4 Conclusion 

The present study showcased an economical and efficient approach that can be used 
when dealing with the case of missing cross sections data. Since the requirement 
of the study was to obtain high quality cross-sections for river reach as well as the 
narrow inlets, a DEM of 5 m resolution was generated using the Cartosat-I stereo pair 
images, with the help of Imagine Photogrammetry toolbox. The RMSE value for the 
generated DEMs was found to be between 0.246 and 0.769, which is in the desirable 
limits. This DEM is used to extract the cross-sections of river and its inlets using 
the GIS plugin named QGIS2RAS, the cross-sections obtained, were found to be at 
lower elevation than the actual surveyed cross-sections, so with the help of the data 
from existing cross-sections, a suitable vertical elevation correction of + 62.01 m 
was adopted as an average value and applied to all extracted cross-sections, and the 
smoothening of corrected sections was carried out in HEC-RAS geometry editor. 
The final prepared cross-sections were found to be satisfactory for use. For wider 
river channels, the publically available DEM can also be used, where the distance 
between points of elevation in a cross-section will be equal to the resolution of DEM, 
so more number of station points along the width of river will be available for wider 
sections.
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Fig. 7 Showing a the raw extracted cross-section and b corrected extracted cross-sections v/s 
surveyed cross-section at some major locations
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Flood Routing Using Numerical 
Methods: A Review 

Ekant Sarkar, Biswajit Pradhan, and Kishanjit Kumar Khatua 

Abstract Many water resource management problems require river flow projec-
tions. For river flow analysis, the partial differential equations of continuity and 
momentum, defining free surface flow in open channels were presented by French 
engineer Saint–Venant. Because these equations are quite nonlinear, they have no 
analytical solutions. These equations can be solved for flood routing by numerical 
methods which consist of wave models and numerical models. The numerical model 
consists of two methods: the finite difference method and the characteristic method. 
This paper aims on comparative study of the various numerical models based on 
the works done previously on the flood routing numerical modelling. The numer-
ical methods available to solve these equations for river discharge calculations are 
reviewed in this literature. The findings from various literatures show that the finite 
difference method is more accurate than the characteristic method, and larger mesh 
size can be handled more efficiently by the finite difference models. On further 
investigation of the finite difference models, the explicit simplified dynamic model 
yields similar outflow hydrograph characteristics as the other models under the same 
conditions. Furthermore, it is found that the simplified dynamic model is easier to 
formulate and simpler to calculate than the other ones. Newer numerical models 
were also studied, and the lack of use of artificial intelligence in flood routing was a 
critical review of this study. 

Keywords Flood routing · Numerical models · Simplified dynamic model · Wave 
models 

1 Introduction 

Urban, commercial, and agricultural regions may sustain harm as a result of flooding 
near rivers. Along the major rivers, a number of buildings are built to reduce flood
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damage. The design of these structures depends heavily on the estimation of floods 
as well as the impact of stream channels on floods. The fluctuation of discharge 
with time at a place on a stream channel can be calculated by taking into account 
comparable data from a point upstream. Flood routing is the mechanism by which 
storage in the reach between any two places changes the shape of the flood as it 
proceeds downstream through river reaches. In hydrology and hydraulics, it’s crucial 
to understand flood wave routing theory and solve the governing equations correctly. 
The velocity and water depth change with time and longitudinal position in unsteady 
open channel flows. The relevant flow parameters, like the depth of flow and velocity 
of flow, for one-dimensional applications are functions of time and longitudinal 
distance. The Saint–Venant equations, which consist of a continuity equation that 
conserves the mass of the flow and a momentum equation that conserves the flow 
momentum, are the basic equations that describe gradually varied unsteady flow in 
open channel for flood routing problems. 

Various approximations to the Saint–Venant equations have been proposed given 
the complex nature of the Saint–Venant equations. Mathematical models must prop-
erly represent physical processes and offer a numerical solution to a system of differ-
ential equations, which must be solved using appropriate boundary conditions and 
empirical connections to characterise flow and turbulence resistance. River mechan-
ical issues are usually described by partial differential equations with two independent 
variables, which are simplified versions of the conservation of mass and momentum 
equations (time and space or 2D space variables). 

Wave models that solve various approximations of the St. Venant equations and 
numerical models that solve the St. Venant equations for gradually varied, unsteady 
flow are the two types of mathematical models that are now practical for resolving 
gradually varied, unsteady flow problems. Two wave models are the diffusion wave 
method and the kinematic wave approach. The solutions of the consolidated Saint– 
Venant equations are used in the kinematic wave and diffusion wave techniques. 
While the diffusion wave technique disregards variations in velocity as a function 
of time and place, the kinematic wave approach ignores all differential components 
in the momentum equation. The Saint–Venant equations were solved by Greco and 
Panatoni [6] using an implicit framework. The kinematic and diffusion wave models 
were employed by Akan et al. [1] for their research. In order to determine runoff, Akan 
et al. [2] employed the kinematic wave method. Both the diffusion approximation 
and kinematic wave routing [3], which utilise simplifications to the full momentum 
equation, are prevalent techniques (Akan and Yen et al. [1]). The validity of these 
approximations to the momentum effects in flood routing is covered in a number of 
publications, including Ponce et al. [12] and Chagas et al. [13]. 

The Saint–Venant equations, on the other hand, have been solved using a variety of 
numerical methods without any simplification. The numerical model mainly consists 
of Finite Difference method and the Method of Characteristics. Previous research 
has focused on comparing two or three different schemes. The accuracy and stability 
of the method of characteristics were improved by Kibler [7] using the technique of 
lines solution along the method of characteristics (MOLAC). To predict flood wave 
propagation, Greco and Panatoni [6] and Lee et al. [8] used an implicit method and
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compared the results to laboratory data from a physical model. They demonstrated 
that the implicit method of solution could accurately predict the depth hydrograph. 

2 Materials and Methods 

Flood routing in terms of channel length and duration is entirely defined by the 
Saint–Venant equations, which model one-dimensional unsteady flow in an open 
channel. As illustrated in the diagram below, these equations, sometimes referred to 
as dynamic wave equations (Cunge et al. [5]), can be expressed as continuity Eq. (1) 
and momentum Eq. (2). 

Continuity equation 

∂ A 
∂t 

+ 
∂ Q 
∂ x 

= 0 (1)  

Momentum equation 

∂ Q 
∂t 

+
(
β Q

2 

A

)

∂x 
+ gA

[
∂ y 
∂x 

− S0 + S f
]

− qβ Vx = 0 (2)  

where 

Q Flow discharge 
S f Friction slope 
x Longitudinal coordinate 
g Acceleration dur to gravity 
S0 Bed slope 
A The cross-section area 

The mathematical models that are currently available to treat problems involving 
gradually varying, unsteady flow can be broadly categorised into two groups: (a) 
numerical models, which solve the St. Venant equations for progressively varying, 
unsteady flow; and (b) wave models, which solve various approximations of the St. 
Venant equations. 

2.1 Wave Models 

2.1.1 Kinematic Wave Model 

Equation (2) may be expressed as Eq. (1) when the pressure and acceleration parts 
of the momentum equation are eliminated and the slope of the energy line matches
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the slope of the beds (3) (Soleymani et al. [13]). 

S0 = S f (3) 

Solving Eqs. (2) and (3) gives  Eq. (4), 

∂ Q 
∂x 

+ αβ Qβ−1 ∂ Q 
∂t 

= 0 (4)  

The explicit discretisation of (4) gives  Eq. (5), 

Q j+1 
i+1 =

Δt
Δx Q 

j+1 
i + αβ Q j i+1

(
Q j i+1+Q j i +1 

2

)β−1

Δt
Δx + αβ

(
Q j i+1+Q j+1 

i 

2

)β−1 (5) 

α and β are constant coefficient and their values can be given by Eq. (6). 

α =
[
np2/3 √

s0

]
and β = 0.6 (6)  

The downstream boundary condition is not required for the kinematic wave 
method. This model can be used in a river basin with a steep inclination. 

Figure 1 shows the hydrographs plotted by the kinematic wave method where 
some assumptions are taken in the Saint–Venant’s Equation, and the dynamic wave 
method where all the terms in the momentum equation are taken into consideration. 
From the above hydrograph, it can be easily seen that the attenuation provided by 
the dynamic wave method is more than that of the kinematic wave method. Hence, 
the dynamic wave approach is more practical for real-life application and hence is 
widely used as compared to any other method for flood routing applications. 

Fig. 1 Comparision 
hydrographs by kinematic 
and dynamic wave method 
Solmeyani et al.  [13]
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2.1.2 Diffusion Wave Model 

The first two terms in Eq. (2) left hand side are assumed to be zero. As the dynamic 
equation for the diffusive model, we get the following Eq. (7) (Majumdar et al. [9]). 

s f = s0 − 
∂y 

∂x 
(7) 

Equations (1) and (7) can be resulted in the following equation 

∂ Q 
∂t 

+ C 
∂ Q 
∂x 

= M 
∂2 Q 

∂x2 
(8) 

M and C in Eq. (8) change as the flood time progresses. Equation (9) could be 
used to calculate M and C.where 

M = Q 

2BS0 
and C = 

5 

3 

R2/ 3 

n 
s1/ 2 (9) 

Final model of diffusive scheme is given by Eq. (10). 

Q j+1 
i =

[
1 − Δt

Δx 
C j i − 2M j i

Δt

Δx2

]
Q j i +

[
Δt

Δx 
C j i + M j i

Δt

Δx2

]
Q j i−1 

+ M j i
Δt

Δx 
Q j i−1 (10) 

In Fig. 2, the four-point implicit scheme for diffusive wave model is shown. The 
space co-ordinates are shown in the x-axis with spatial nodal notation as ‘i’ and the 
spatial interval is given asΔx. The vertical axis shows the temporal components with 
notation as ‘j’ and temporal interval as Δt. The given grid formation is called as the 
implicit scheme because of the unknown internal nodal value of discharge at (j + 1) 
time step. All the internal node values at the jth time step are known. For calculating 
the discharge value at the next time step and next spatial node which is given as 
Q j+1 

i+1 , , which means that the discharge value at the internal node at (i + 1)th spatial 
step and (j + 1)th temporal step. From the previous known time and spatial step 
values, the next time step value of discharge can be calculated using simultaneous 
equations involving variables from jth and (j + 1)th time step which will give the 
required discharge values at desired nodes of the grids. The diffusive model scheme 
using four-point implicit formula is given in Eq. (10).

In Fig. 3, the flowchart showing the diffusion wave model scheme is shown. After 
the collection of required input data, the model is started. The initial conditions for 
the ith spatial step and the jth temporal steps are defined as the inflow hydrograph. 
The Courant stability condition is applied for the discretised numerical equation of 
the diffusive wave model and is checked for stability of the hyperbolic Saint-Venants 
equation. After the satisfaction of the model stability conditions, the internal nodal
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Fig. 2 Grids and nodes for four-point implicit scheme for diffusive wave model (Applied hydrology 
by Ven Te Chow, 1988)

values of unknown discharges at various spatial and temporal nodes are calculated 
using the simultaneous discretised equations obtained for the diffusive wave model. 
Subsequently, the process is repeated until all the discharges values are known for 
all the designated nodal points on the generated mesh grid. After the completion of 
the model run, the data are checked for the convergence and hence the downstream 
discharge values are henceforth calculated. After reaching the last time step for 
a particular spatial node, the model run is stop for that spatial node and hence a 
hydrograph is generated at the desired location downstream by the diffusive wave 
model.

2.2 Numerical Models 

The numerical models are classified as follows which are given in the subsequent 
sections (Ostad et. al. [11]).
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Fig. 3 Flowchart showing the process of Diffusive Wave Model (Majumdar [9])

2.2.1 Finite Difference Method 

The finite difference model is mainly classified as classical dynamic model and the 
simplified dynamic model. The detailed review of both the models under the finite 
difference numerical model is given in the subsequent sections. 

2.2.2 Classical Dynamic Model 

The governing equations are derived using the subsequent assumptions: 

(i) Hydrostatic pressure distribution 
(ii) Uniform velocity distribution over a channel section 
(iii) Small average channel bed slope 
(iv) Homogeneous and incompressible flow 
(v) No lateral flow.



324 E. Sarkar et al.

Equations (1) and (2) can have numerical solutions if the proper beginning and 
boundary conditions are given. In the numerical study of one-dimensional unsteady 
flow in rivers with a free surface, implicit finite difference techniques are demon-
strated to be more effective than explicit and characteristic methods (Cunge et al. 
[5], Nyogen [10], Chagas et al. [4]) Since finite difference equations have a high 
degree of numerical stability, the implicit technique, for instance, theoretically has 
no restrictions on the size of the time step. Because the time steps are bigger, the 
implicit technique is more computationally effective than other methods, especially 
for long-duration floods. The weighted four-point system approximates the time and 
spatial derivative and non-derivative terms of the Saint–Venant equations as Eq. (11) 
and (12). 

∂ D 
∂t 

=
(
D j+1 

i + D j+1 
i+1

)
−

(
D j i + D j i+1

)

2Δt 
(11) 

∂ D 
∂x 

= 
θ
(
D j+1 

i+1 + D j+1 
i

)
+ (1 − θ )

(
D j i+1 − D j i

)

Δx 
(12) 

where t is the time step, x denotes the spatial step, I denotes the spatial index, D 
denotes a general parameter that represents the dependent variables, j denotes the 
temporal index, and θ denotes the weighting factor, which has a range of 0 to 1.0. 
A completely implicit system is produced when θ = 1. A highly clear scheme is 
created when θ = 0, whereas a box scheme is produced when θ = 0.5 (Barati et al. 
[2]). The four-point implicit approach is unconditionally stable when θ is between 
0.5 and 1.0 (Akan et. al [1]). A set of nonlinear algebraic equations is produced 
by including the aforementioned finite difference approximations and coefficients 
into the equations of gradually changing unsteady flow and specifying the beginning 
and boundary conditions. These equations can be resolved by an iterative functional 
approach, such as the Newton–Raphson method. 

2.2.3 Simplified Dynamic Model 

Another form of the momentum equation is created to estimate flood routing for a 
rectangular channel with constant width, and then the resulting momentum equation 
and the continuity equation are solved using an explicit finite difference technique. To 
construct this model from the classical dynamic equation, the derivative of friction 
slope is considered to be small in comparison to other parts of the equation. A 
dynamic cascade is a simplified dynamic model that is built as a series of discrete 
channel segments with flood routing explained using dynamic wave equations. In the 
solution, a simple numerical cascade approach similar to the kinematic one (Kibler 
[7]) is utilised.
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In the simplified dynamic model, momentum equation is revised as given in 
Eq. (13) 

∂ Q 
∂t 

+ α 
∂ Q 
∂ x 

+ β = 0 (13) 

where, 

α = 2 
Q 

A 
+ 

gA  
b

( Q 
A

)2 
Q 
A

(
5 
3 − 4R 3b

) (14) 

β = gA
(
S f − S0

)
(15) 

The governing equations are solved numerically using an explicit finite difference 
approach. The discretisation for the space derivative in explicit form is given as 
Eq. (16). 

∂ f (x, t) 
∂x 

= 
f j i − f j i−1

Δt 
(16) 

The discretisation for the time derivative in explicit form is given as Eq. (17). 

∂ f (x, t) 
∂t

= 
f j+1 
i − f j−1 

i

Δt 
(17) 

in which, Δx and Δt are space and time increments, respectively. Substitution of 
Eqs. (17) and (18) into modified momentum equation, Eq. (14), and into continuity 
equation, Eq. (1), one obtains Eqs. (18) and (19). 

Q j+1 
i = Q j i −

Δt

Δx 
α j i

(
Q j i − Q j i−1

)
+ β j i Δt (18) 

A j+1 
i = A j i −

Δt

Δx

(
Q j+1 

i − Q j+1 
i−1

)
(19) 

It is clear that α and β are obtained from Eqs. (14) and (15). Using the given initial 
and boundary conditions at the start of (i, j), Q j+1 

i from Eq. (18) is obtained. From 
Q( j+1) 

i , A( j+1) 
i will be calculated from Eq. (19). This system is repeated for each 

value of (i, j). Within the suggested simplified dynamic model, the discharge from 
the downstream boundary reaches the upstream boundary of the adjacent segment, 
providing the upstream condition for flow on that segment.
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2.2.4 Method of Characteristics 

In this method, using the C = √
gy, Saint–Venant equations are changed into two 

complete differential equations given by Eqs. (20) and (21). 

dx 

dt 
= V ± C (20) 

d(V ± 2C) 
dt

= g
(
s0 − s f

)
(21) 

where C is velocity of wave transfer (m/s). 
If the flow characteristics at the S and R points at time t1 are known in Fig. 4, the  

flow characteristics at the point P at time t2 may be estimated. The lines illustrated 
in Fig. 4 are the distinctive lines. The line crossing from P to R has a positive 
characteristic, and its significant equations are used with the positive sign, whereas 
the line crossing from S to P has a negative characteristic, and its significant equations 
are used with the negative sign. The separation of Eqs. (20) and (21) yields four 
algebraic equations, the solutions to which yield the values of the four unknowns vP, 
cP, xP, and tP. 

After obtaining Cp, the  value of  yP can be also obtained from the Eq. (22). 

yP = 
C2 

P 

g 
(22) 

Finally, the flow rate can be calculated. This is done for all points at the time t2 
and flows characteristic being known at the time t2, it can be also computed at the 
time t3 and this can be continued. Therefore, at each time, the water surface profile 
and hydrograph of the flow can be drawn (Ponce et al. [12]).

Fig. 4 Characteristics Curve K. Ostad-Ali-Askari [11] 
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2.3 Muskingum Method Hybridised with Improved Bat 
Algorithm 

Chagas et al. [4] developed a model by hybridising Muskingum method with 
improved bat algorithm. The Bat Algorithm (BA) is based on the replication and 
reflection of bat sounds. The bat can distinguish the barrier from food based on 
the difference in loudness from the surrounding surroundings. Bats create very loud 
sound pulses and listen for them to return from the things in their environment. 
Each pulse lasts barely a fraction of a second. The chaos is a strategy for developing 
various algorithms in which the core concept is based on the exchange of members 
in the range of (1, 1). The algorithms are modulated using the logic mapping func-
tion. Individuals are then added to the chaotic sequence to ensure that it satisfies the 
chaos variable space. The members are then returned to their original positions using 
linear transformation. The sole usage of the aforementioned algorithm is to select 
appropriate coefficient values numerically which are associated with the conventional 
Muskingum method of flood routing. 

2.4 Two-Dimensional Flood Routing by McCormack Scheme 

Nyugen et al. [10] developed a model to demonstrate two-dimensional flood routing. 
In the study, the model simulated flood routing in two dimensions. The model was 
based on the shallow water equations which were solved using the finite difference 
method. It employed the explicit McCormack scheme which proved to have a substan-
tial amount of stability in the calculation procedure. The McCormack scheme was 
modified in this study by accommodating artificial viscosity as an additional param-
eter through a diffusion factor so as to remove the oscillations which were one of the 
main concerns of the previous researches. In order to identify the wet and dry cells of 
the computational domain, a water depth threshold was also implemented. The model 
could provide maps of the area of inundation, water depths, and depth-averaged water 
velocities. Finally, the research showed rigorous testing of the model in real-world 
flood simulation studies by comparing it to analytical solutions and experimental 
data. 

2.5 Flood Routing Using Artificial Intelligence 

Greco et al. [6] developed an artificial neural network (ANN) using genetic algo-
rithm (GA) which was combined with conventionally available numerical models to 
develop the flood hydrograph. The goal of this research was to offer an integrated 
technique for flood modelling that includes an optimization model and a hydrody-
namic numerical model to calculate the upstream hydrograph using the downstream
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hydrograph observed along a river. The goal of this research was to offer an integrated 
technique for flood modelling that included an optimization model and a hydrody-
namic numerical model to calculate the upstream hydrograph using the downstream 
hydrograph observed along a river. The flood routing procedure was broken down 
into three steps: (1) generating a hypothetical upstream hydrograph using the genetic 
algorithm method; (2) hydrodynamic modelling using a numerical simulation model 
for flood routing based on the hypothetical hydrograph generated in the first step; 
and (3) comparing the calculated and observed hydrograph in the downstream using 
a fitness function. The reverse flood routing method (RFRM) was called after this 
proposed approach, which was later used on the Karun River, Iran’s greatest river. 
The great accuracy of the proposed model in the research was demonstrated by a 
comparison of the final generated upstream hydrograph using the RFRM model with 
the corresponding measured hydrograph at the upstream boundary. 

3 Research Gaps 

In this literature review, many literatures were studied for flood routing models. There 
are many conventional mathematical models available which linearly relates the 
inflow hydrograph to obtain the output hydrograph. Since the hydro-climatic param-
eters shoes complex nonlinear relationships, these linear mathematical models can 
falter for predicting the actual discharge. To overcome the issue of non-linear rela-
tionship of the hydro-climatic parameters which is affecting the discharge, hybridised 
artificial intelligence models can be used. Such a hybridised intelligence model is 
the Adaptive Neuro-Fuzzy Inference System (ANFIS) which can accurately study 
the nonlinear and complex relationship between the input and the target parameter 
with very high accuracy. Fuzzy logic can accurately study the uncertainties in the 
hydro-climatic parameters which is an essential part of any natural process. Flood 
routing models using such algorithms are lacking. Hence, attempts can be made to 
incorporate ANFIS for flood routing studies to enhance the predictive capabilities of 
the models. 

4 Conclusions 

This literature is an attempt to study the various methods of computational flood 
routing by reviewing the various works performed by the researchers over the years. 
The method of flood routing is broadly classified as wave models and numerical 
models. From the literature review, it was found that: 

• The attenuation of the wave model is very small, and is due to numerical error) 
when compared to the numerical models. Among the numerical models, the find-
ings were that both the models, i.e., the finite difference method and the charac-
teristic curve method can determine and plot the water surface profile as well as
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the flow hydrograph, but finite difference method being the more accurate as finer 
mesh size can be handled by the finite difference models when compared to the 
characteristic curve method. 

• On further investigation of the finite difference models, the simplified dynamic 
model yields similar outflow hydrograph characteristics as the classical dynamic 
model under the same initial and boundary conditions, but it is found that the 
simplified dynamic model is easier to formulate and is simpler to calculate than 
the former. 

• Hence, to conclude the literature review of the various researchers that this study 
dealt with, it can be said that the simplified dynamic model is the most accu-
rate computational model which gives realistic results with higher computational 
stability. 

• Also, among the new models, to calculate the Muskingum coefficients, an 
improved bat algorithm has been introduced which eases the randomness in the 
conventional bat algorithm. 

• It was also seen that various efforts have been put into two-dimensional flood 
routing which is a complex phenomenon to deal with. McCormack Explicit solu-
tion using the finite difference solution has shown the best results as compared to 
the other methods available for two-dimensional flood routing. 

• The gap in the literatures was found to be the lack of use of ANFIS model for 
flood routing. 
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Application of the HEC-RAS Model 
for the Floodplain Delineation in a Flat 
Semi-Arid River Basin 

Mohamedmaroof P. Shaikh, Sanjaykumar M. Yadav, and Vivek L. Manekar 

Abstract Floods in a semi-arid region with flat terrain have been examined in this 
study. The Rel River is a river that runs through Dhanera town and vanishes in 
the little desert of Kutch (which is almost flat). There was a lot of rain in July of 
2017, and huge damages were noted in the Dhanera town and surrounding areas. 
The floodwater covers many square kilometres in the Rel River Basin. The current 
study has been used two-dimensional (2D) hydraulic modelling to simulate the flood 
of 2017. For this event, the Hydraulic Engineering Centre-River Analysis System 
(HEC-RAS) model has been utilised to simulate 2D overland flow. The Shuttle 
Radar Topography Mission (SRTM) digital elevation model (DEM), which has been 
acquired from the earth explorer, has been utilised for this study. Upstream boundary 
conditions are based on flow hydrograph of Dhanera highway bridge gauge station, 
whereas downstream boundary condition is based on normal depth. The HEC-RAS 
model has been calibrated and validated using field survey data collection. During 
the flood in the year 2017, the Dhanera town was 75–77% submerged. Due to the 
villagers’ encroachment on the floodplains to conduct farming, the observed flood 
depths in rural areas were high. Streams and nullahs in urban areas had been blocked, 
resulting in greater flood depth and a longer flood recession time. To deal with severe 
flooding scenarios, it is believed that significant mitigating measures are necessary. 
The findings of this 2D hydraulic model may be used to recommend flood mitigation 
techniques. 
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River Basin · SRTM DEM

M. P. Shaikh (B) · S. M. Yadav · V. L. Manekar 
Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology Surat, 
Surat 395007, India 
e-mail: shaikhmaroof034@gmail.com 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
P. V. Timbadiya et al. (eds.), Hydrology and Hydrologic Modelling, 
Lecture Notes in Civil Engineering 312, 
https://doi.org/10.1007/978-981-19-9147-9_26 

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9147-9_26&domain=pdf
mailto:shaikhmaroof034@gmail.com
https://doi.org/10.1007/978-981-19-9147-9_26


332 M. P. Shaikh et al.

1 Introduction 

Worldwide, flooding has become one of the most frequent, recurrent, and widespread 
hazards. The flood is one of the most destructive natural disasters in the world, 
affecting both developing and developed countries [1]. Thousands of human lives 
are lost every year due to floods, which damage and destroy a great deal of property. 
Flood maps enable communities to learn about flood hazards consistent with the area 
they live in. By doing so, losses and hazards can be minimised [2]. With one-fifth 
of the world’s flood-related deaths occurring in India, it is one of the most flood-
affected countries after Bangladesh. The area of the country that is subject to flooding 
is approximately 0.4 million km2 [3]. The main causes of floods in urban areas are 
extreme precipitation and human intervention [4]. In addition to the acceleration 
and intensification of the hydrological system, climate change also increases the 
frequency and magnitude of floods [5]. 

Hydrodynamic models such as HEC-RAS 2D are widely used in flood analyses. 
A big advantage of the HEC-RAS tool is that it is open source. In 2D models, the 
water flow is allowed to move in a longitudinal and transverse direction. The velocity 
along the longitudinal and transverse directions is simulated, and the vertical velocity 
is expected to be negligible. 2D models represent the topography as a continuous 
surface through a finite mesh component. 2D models can solve the lateral interface 
of the water flow between the main river or channel and the floodplain due to the 
continuous representation of the terrain. Flow can be simulated in two-dimensions 
with RAS Mapper by using a continuous surface. The terrain data or mesh resolution 
in the 2D model have a major influence on the inundation result [6]. Flood maps are a 
very important tool for analysing urban growth, municipal planning, flood insurance, 
emergency action plans, and environmental research [7]; however, developing flood 
maps is a difficult task due to data scarcity [8]. Several studies about 2D hydraulic 
modelling have been conducted in recent years [9–13]. 

The objective of this study was to develop a 2D hydraulic model of a data-scarce 
semi-arid region. The developed models are proposed to calibrate and validate by 
the collection of field data because no data is available for the basin. 

2 Study Area and Data Collection 

2.1 Rel River Basin 

The Rel River originates near the village of Keshua, Rajasthan (Fig. 1). The area 
of the catchment of the river is 570 km2 around. The average annual rainfall of the 
Rel River Basin is 600 mm. Flooding in this river is due to rainfall as well as lower 
and undefined banks where overtopping of floodwater takes place and generates 
sheet flow by joining with an adjacent river. One small irrigation scheme, namely 
the Jetpura weir, is situated on this river near village Jetpura. The Dhanera gauge
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Fig. 1 Index map of study area [15] 

discharge station is the sole gauge discharge station across the Rel River. This river 
is passing through the Dhanera town meeting little run of Kutch [14]. 

2.2 Data Collection 

The discharge data of site Dhanera Stage-Discharge Station has been collected 
from the river gauging section in Palanpur for the flood event 2017. The SRTM 
DEM with a resolution of 30 × 30 m2 has been downloaded from the website 
earthexplorer.usgs.gov.
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3 Methodology 

The theory of continuity and momentum is used to derive the governing formula for 
unsteady open-channel flow in a 2D model. The HEC-RAS is fully resolved using 
the 2D Saint–Venant formula [10]: 
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where h = depth of water (m); p = specific flow in the x-direction (m/s); q = specific 
flow in the y-direction (m/s); ξ = surface elevation (m); g = gravitational acceleration 
(m/s2); n = Manning roughness; ρ = density of water (kg/m3); and τxx  , τyy, and τxy  
= components of effective shear stress. 

The detail methodology used in this study is shown in Fig. 2. The DEM is the main 
input of 2D hydraulic modelling (Fig. 3). A computation mesh was first developed 
for the Rel basin. Closed polygon and computing cells were constrained in the down-
loaded SRTM DEM. The computational mesh can be combined from a minimum of 
three to a maximum of eight sides of the cells. Thousands of grid cells were gener-
ated for the 30 × 30-m2 DEM of the Rel river basin by computing the point spacing. 
An implicit finite-volume algorithm was used to solve such equations. A finite-
volume solution approximates the average integral to the reference volume, which 
extends the application of an unstructured mesh [11]. For each cell, the hydraulic 
property tables were calculated. The relationships between the elevation and volume 
properties and between the elevation and hydraulic properties were determined for 
computational cell sides. In the next step, the options of storage area and 2D flow 
area connection (SA/2D Area Conn) were used to pinpoint the bank and retaining 
wall inside the 2D flow areas. The Rel River does not include any levees or retaining 
walls. Thus, the results of the aforementioned step were not considered in this study. 
A 2D flow area was created, and thousands of cells were generated for the 30 × 
30-m2 DEM grid. Equations (1)–(3) were then solved using the iteration scheme. 
In the iteration scheme, 20 iterations were generated using 1 h as the initial time 
step. In the initial condition, the fraction was assumed to increase by 0.5 for the 2D 
simulation of Mevada to Dhanera. The flow hydrograph of Dhanera highway bridge 
gauge station was considered as an upstream boundary condition, and the normal
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Fig. 2 Methodology

depth was considered as the downstream boundary condition. Boundary conditions 
permit hydraulic modelling software to start doing calculations; therefore, they’re 
an important element of the process. The flow hydrograph is a graph that shows 
the relationship between time and discharge. In this case, a flow hydrograph was 
used to determine the flood extent. The most widely used boundary condition is 
normal depth. For normal depth, only the river slope is necessary. The HEC-RAS 
will utilise Manning’s formula to calculate depth by using these boundary condi-
tions. The unsteady flow condition was implemented, and the models were simu-
lated. The water surface elevation (WSE), flood inundation depth, and flood velocity 
were measured for each hour. 

4 Results and Discussions 

The major flood of July 2017 was simulated for the Rel basin. The period of this flood 
was from 23 to 30 July 2017 [16]. The WSE, flood inundation (depth), and flood 
velocity were simulated. The simulated results were validated with the observed 
flood depth in Dhanera for 2D hydraulic modelling. 

The flood of July 2017 was simulated under the 2D unsteady flow condition for 
Mevada to Dhanera. The depth of water was simulated by deducting the bottom 
level from the corresponding WSE. The area near the highway bridge and some of 
the surrounding villages were the initial areas affected by the flood. These areas 
exhibited a rapid rise in water levels. Dhanera is located 40 km downstream of the 
Jetpura weir, and the water released from the Jetpura weir requires approximately
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Fig. 3 Digital elevation model of study area

3–4 h to reach Dhanera. An extreme flow of 3355 m3/s passed over the Jetpura weir. 
The water flowed with an average velocity of 3.5 m/s in the Rel River and 0.5 m/s 
in the floodplain to reach Dhanera and flood the town. The flood inundation, WSE, 
and velocity maps are illustrated in Figs. 4, 5 and 6, respectively. 

Fig. 4 Inundation depth (m) map
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Fig. 5 Water surface elevation (m) map 

Fig. 6 Velocity (m/s) magnitude map 

Good agreement (Correlation Coefficient (R2) and root mean square error 
(RMSE)) was observed between the simulated and observed water depths (Fig. 7). 
The R2 has been calculated for the model performance. As an alternative, R2 can be 
expressed as a squared ratio of covariance to standard deviation multiplied together. 
Usually, the range is 0–1 for R2. When a R2 is zero, it indicates no correlation at all, 
and when a R2 is one, it means perfect correlation. The R2 for this modelling was 
0.8361. The RMSE has been also calculated for the model performance. A common
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Fig. 7 Correlation between 
observed and simulated 
depth 

metric used to compare simulated values to observed values is the RMSE. Individual 
differences are also called residuals, and by using RMSE, they are aggregated to 
yield a single predictive power measure. We can measure the error level between 
two sets of data with the RMSE, and ranges from 0 to ∞. Observational values and 
predicted values are perfectly matched when the RMSE value is zero. The RMSE for 
this modelling was 0.42 m. The main reason behind this difference between observed 
and simulated, is low resolution (30 m) of DEM. If high resolution DEM will used 
for this study, might be these differences could be minimised. The other reason is 
less number of observed data. Here, only ten values have been surveyed for model 
calibration and model validation. If more observation will consider for this study, 
then model can be performed excellent and might be get more better result. 

5 Conclusions 

The Rel River at Dhanera would have very limited carrying capacity. Due to this, 
floods occur in many low-lying areas of the river basin when a high discharge 
occurs. Both the observed and simulated depths are in good agreement with each 
other. Levees constructed at low-lying cross-sections are essential for increasing the 
flood capacity of rivers experiencing high-magnitude discharges. 2D modelling indi-
cates that 32 villages on either side of the Rel River can be inundated. Therefore, 
emphasis must be placed on building levees on either bank of the river. The flood 
damage was assessed using a synthetic method. This synthetic approach involves 
using data obtained from real field scenarios and secondary sources. Integrated flood 
management (economic, technological, and social) was suitable for assessing the
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flood damage in this study. The flood area was identified using a GIS and the HEC-
RAS. In addition, the total damage caused to the affected people by the 2017 flood 
in the Rel River was determined. The results of this study can be used to develop 
plans and policies for rapidly evacuating people during flood and reducing losses 
due to floods. The analysis method used in this study is novel in the sense that it can 
be applied to a data-scarce river basin. The developed model accurately provided the 
breach of the river as well as the depth of floods in a number of villages in the Rel 
River Basin. 
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Assessment of Drought Using Drought 
Indices and Analysing the Relationship 
Between Groundwater Levels 
and Drought Indices: A Case Study 
of Ahmedabad District 

Viraj V. Bhuva, B. R. Andharia, and T. M. V. Suryanarayana 

Abstract Drought is a natural and frequently occurring phenomenon in many parts 
of the country. Drought also affects a lot to the economy, environment, agriculture, 
industries, and the community. Also, a great part of the country depends a lot on the 
groundwater for their water requirement, be it agriculture, industrial, or municipal. 
Groundwater levels change with the number of parameters like rainfall, tempera-
ture, streamflow, etc. Very little work has been done on the effect of drought on 
groundwater fluctuations. Hence, it becomes important to assess the co-relationship 
between groundwater levels and drought severity. Viramgam and Dhandhuka talukas 
of Ahmedabad district in Gujarat state are selected for the present study. In the first 
part, the quantification of the drought using various drought indices, i.e., Standard 
Precipitation Index (SPI), Reconnaissance Drought Index (RDI) and drought assess-
ment using their respective values is done. The second part deals with analysing the 
relationship of drought indices with groundwater levels in the Viramgam and Dhand-
huka regions. Rainfall and temperature data from 1981 to 2020 were used for the 
calculation of SPI and RDI using “DrinC” software. In Viramgam, extreme drought 
was recorded in 1986–87 and 2017–18, according to both SPI and RDI. In Dhand-
huka, extreme drought was recorded in 1981–82 and 1986–87 according to SPI, 
whereas according to RDI in Dhandhuka extreme drought was recorded in 1986–87. 
In this paper, a total of eight regression models were developed for the relationship 
between SPI, RDI, and groundwater (GW) levels for Viramgam and Dhandhuka 
talukas (two models each for SPI and RDI for both talukas). In Viramgam, correla-
tion coefficients were found to be 0.63, 0.6 and 0.65, 0.63, respectively, for SPI and
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RDI models. In Dhandhuka, correlation coefficients were found to be 0.64, 0.62 and 
0.75, 0.73, respectively, for SPI and RDI models. 

Keywords Drought · SPI · RDI · GW levels · RMSE 

1 Introduction 

India is a groundwater economy. India is the leading country in using groundwater 
globally ahead of the US and China. India uses 260 cubic km per year of ground-
water which is around 25% of total groundwater extracted globally. The water from 
the precipitation infiltrates into the ground because of which groundwater levels 
ultimately depends upon the amount of precipitation. So, when drought occurs, it 
can cause depletion of groundwater levels. Drought is a recurring phenomenon that 
can last for years months or even days. In India, most of the country is prone to 
the drought of different degrees (around 68%). 35% of the total area in the country 
which gets precipitation between 750 and 1125 mm is considered drought-prone 
while 33% which gets precipitation between less than 750 mm is considered chroni-
cally drought-prone. To understand the severity of the drought, it becomes important 
to calculate its severity. Drought is water deficiency compared to demand and drought 
severity is nothing but reduction of water availability from its normal condition [9, 
16]. Indices are used to predict drought severity. Drought indices that are developed 
to give a succinct overall idea of droughts are mainly derived from hydroclimatic 
data and are used for making decisions on water resources management and water 
allocations for mitigating the impact of droughts [14]. 

Different drought indices have their strengths and weaknesses. Selection of the 
drought index depends on factors, i.e., available data, region of interest, the purpose 
of the drought assessment, etc. Researchers have found ut that as RDI uses PET data, 
it can represent drought more accurately [4, 13]. In most cases, RDI and SPI show 
similar behaviour but as RDI includes PET, it is very sensitive to climate variability 
and shows more critical results for “extremely dry” classes [8]. However, it was found 
that affinity between SPI and RDI decreases from hyper-arid zones to humid zones 
[2]. Other than this, many researchers have worked on assessing drought severity 
using different indices [1, 3, 5–7, 11, 12, 15, 17]. 

In the present study, two indices, namely SPI and RDI were calculated using rain-
fall and temperature data collected from State Water Data Centre (SWDC), Gandhi-
nagar for Viramgam and Dhandhuka talukas of Ahmedabad district. The collected 
indices were used for the purpose of assessing drought severity in the area. Later on, 
the relationship between these calculated indices and the groundwater levels were 
developed using regression models. About 70% of the data of drought indices and 
groundwater levels were used for model development, and 30% of data were used for 
testing of developed regression models. The evaluation of the developed regression 
models for the Dhandhuka and Viramgam region was carried out using RMSE and 
correlation coefficient.
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2 Study Area and Data Source 

2.1 Study Area 

Ahmedabad district is chosen considering the low average annual rainfall of 795 mm 
and because it is the drought-prone area for the study of drought assessment and 
its relationship with groundwater fluctuations. It is the most populated city in the 
Gujarat state in India. 

Ahmedabad is located at 23.03° N 72.58° E in the western part of India (Fig. 1). 
It is located 53 m above sea level. Two talukas, namely Viramgam and Dhandhuka 
were selected for the purpose of this study Ahmedabad is the district that has faced 
depletion in the groundwater level over the years. Also, it has seen irregularities in 
rainfall; therefore, it was chosen for the present study. 

2.2 Data Collection 

This study is classified into two aspects, one is the assessment of drought, and the 
second is its relationship with groundwater fluctuation. The data of precipitation, 
temperature (for PET) and groundwater levels were collected for the study. Timespan 
from 1981–82 to 2019–20 is selected for the calculation of SPI and RDI. SPI 
requires monthly rainfall data, whereas RDI requires monthly rainfall and potential 
evapotranspiration data for its calculation. 

Rainfall data for the Viramgam and Dhandhuka was collected from State Water 
Data Centre, Gandhinagar. The temperature data was acquired from the NASA power 
portal. Central Ground Water Board (CGWB) monitors 15,640 groundwater observa-
tion wells in the country (four times a year—January, April/May, August, November), 
which were used to develop the model with calculated indices. 

Fig. 1 Geographic location of the present study area of Ahmedabad district
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3 Methodology 

The principal objective of this study is to assess the severity of drought using drought 
indices and test the relationship between drought in terms of drought indices and 
groundwater levels. For this, the steps involved are listed in chronological order in 
Fig. 2. 

3.1 Procedure

Step 1: Calculation of drought indices 
The software for the calculation of drought indices, DrinC, was used for the 
deriving values of SPI and RDI utilising the input data of monthly rainfall and 
Temperature data (from the years 1981 to 2020) for the Viramgam and Dhndhuka 
talukas. 

Step 2: Assessing the drought severity 
From the calculated values of the drought indices, drought severity can be 
assessed. Different values of the indices suggest different dryness of the season, 
month and year, from which drought classification has been carried out. Origin 
2019 software has been used for plotting the graphs. 

Step 3: Development of regression models for the prediction of drought severity 
by formulating correlation between calculated drought indices and GW levels 
The eight regression models have been developed using 70% of data from 1996 to 
2012 using calculated SPI and RDI values and GW levels for the Viramgam and 
Dhandhuka talukas. The relationship has been developed between GW levels and 
drought indices using nonlinear regression models, i.e., polynomial regression 
model, truncated fourier series, and rational model.

Collection of data i.e. Rainfall, Temperature, GW level Calculation of drought indices (SPI & RDI) and their 
interpretation 

Assessing the drought severity fromdrought indices 
(SPI & RDI) values 

Development of regression models for assessing drought 
severity using drought indices and GW levels for the study area 

Evaluation of developed models for Dhandhuka and Viramgam 
using statistical index 

Fig. 2 Methodology applied for the present study 
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Step 4 Validation of developed regression models for the prediction of drought 
severity 
The developed eight regression models were validated and tested using 30% of 
data from 2013 to 2020 for calculated SPI, RDI, and GW levels. The perfor-
mance of the developed models has been assessed using statistical indices for the 
recommendation for the best-performing model.

Step 5: Evaluation and performance assessment of the developed models 
The statistical indices, root mean squared error (RMSE) and correlation coeffi-
cient (r) have been calculated and compared during the model development and 
validation for all eight regression models. 

4 Results and Analysis 

4.1 Drought Assessment 

For classification of the drought in the Viramgam and Dhandhuka talukas of 
Ahmedabad district from 1981 to 2020 values of the drought indices are used. 

1. Standard Precipitation Index (SPI) 

SPI 12 annual values have been calculated from the DrinC for Viramgam and Dhand-
huka talukas of Ahmedabad district for the timespan 1981–82 to 2019–20, as per 
Figs. 3a and 4a.

The trend observed for the given values of SPI for the Viramgam and Dhandhuka 
is shown in Figs. 3b and 4b. The trend for the Viramgam shows a slightly downward 
slope which means the drought situation in the Viramgam has increased over the 
years. While the trend for Dhandhuka shows an upward slope with reference to 
increasing years which means the drought severity decreases from the years 1981–82 
to 2019–2020. 

For the classification of the drought pre-defined classification is used. Drought is 
classified as mild for the values of SPI between − 0.99 to 0, moderate for values of 
SPI between − 1.49 and − 1, severe for values of SPI between − 1.99 and − 1.5 
and extreme for values of SPI less than − 2 [10]. 

From the results, it is observed that there were dry periods in both Viramgam and 
Dhandhuka. Viramgam reported severe drought in the year 2001–02, and extreme 
drought was reported in the year 1986–87 and 2017–18. Dhandhuka reported severe 
drought in the year 1984–85 and 2017–18, and extreme droughts were recorded in 
the year 1981–82 and 1986–87. Full details of all the droughts, i.e., mild, moderate, 
severe, and extreme as per SPI are as per Table 1,

It is observed from Fig. 5 that when the SPI-12 values suggest drought period, 
the groundwater levels are lower and vise versa, i.e., in the drought period, the 
groundwater levels are lowering and vise versa.
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Fig. 3 a SPI 12 values and b their trend analysis for Viramgam taluka 

Fig. 4 a SPI 12 values and b their trend analysis for Dhandhuka taluka
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Table 1 Drought categorisation based on SPI for Viramgam and Dhandhuka 

Classification Viramgam Dhandhuka 

Mild 1981–82, 1983–84, 1984–85, 1985–86, 
1988–89, 1994–95, 1995–96, 1997–98, 
1998–99, 2005–06, 2008–09, 2011–12, 
2015–16, 2018–19, 2019–20 

1992–93, 1994–95, 1995–96, 1998–99, 
1999–00, 2001–02, 2002–03, 2005–06, 
2009–10, 2015–16 

Moderate 1990–91, 2008–09, 2011–12, 2014–15 

Severe 2001–02 1984–85, 2017–18 

Extreme 1986–87, 2017–18 1981–82, 1986–87
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Fig. 5 Comparision of values of SPI-12 and GW levels for Dhandhuka and Viramgam 

2. Reconnaissance Drought Index (RDI) 

RDI 12 annual values have been calculated from the DrinC for Viramgam and Dhand-
huka taluka of Ahmedabad district for the period of 1981–82 to 2019–20, as shown 
in Figs. 6a and 7a.

The trend observed for the given values of RDI for the Viramgam and Dhandhuka 
can be drawn as Figs. 6b and 7b. The trend for Viramgam shows an almost zero 
slope which means that the drought situation in the Viramgam has almost remained 
the same over the years. While the trend for Dhandhuka shows an upward slope (the 
drought severity decreases from 1981–82 to 2019–20). 

For the classification of the drought pre-defined table is used. Drought is classified 
as mild for the values of RDI between − 0.5 and − 1, moderate for values of RDI 
between − 1 and − 1.5, severe for values of RDI between − 1.5 and − 2 and extreme 
for values of SPI less than − 2 [16]. 

From the results, it is observed that there were dry periods in both Viramgam and 
Dhandhuka. Viramgam reported severe drought in the year 2001–02, and extreme 
drought was reported in the year 1986–87 and 2017–18. Dhandhuka reported severe 
droughts in the year 1981–82, 1984–85, and 2017–18 and extreme drought was
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Fig. 6 a RDI 12 values and b their trend analysis for Viramgam taluka 

Fig. 7 a RDI 12 values and b their trend analysis for Dhandhuka taluka
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Table 2 Drought categorisation based on RDI 

Classification Viramgam Dhandhuka 

Mild 1984–85, 2008–09, 2011–12, 2015–16 1995–96, 1998–99, 2001–02, 2011–12, 
2014–15, 2015–16 

Moderate 1990–91, 2008–09 

Severe 2001–02 1981–82, 1984–85, 2017–18 

Extreme 1986–87, 2017–18 1986–87 
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Fig. 8 Comparision of values of RDI-12 and GW levels for Dhandhuka and Viramgam 

reported in the year 1986–87. Full details of all the droughts, i.e., mild, moderate, 
severe, and extreme as per RDI is as per Table 2, 

It is observed from Fig. 8 that when the RDI-12 values suggest drought period, 
the groundwater levels are lower and vise versa, i.e., in the drought period, the 
groundwater levels are lowering and vise versa. 

4.2 Analysing Relationship of Drought Indices and GW 
Levels 

Total eight nonlinear regression models have been developed using calculated values 
of RDI and SPI values and groundwater levels using 70% of the data from the year 
1996 to 2012, and their performance has been evaluated using 30% data from the 
year 2013 to 2020 for Viramgam and Dhandhuka talukas. 

Model 1 and 2 have been developed for calculated values of RDI and SPI of 
both talukas in the study area using CurveExpert Professional 2.6.5 software. For 
Viramgam, model 1 is the truncated fourier series, and model 2 is the polynomial 
regression of degree 4, whereas, for Dhandhuka, model 1 is the polynomial regression 
of degree 5, and model 2 is the rational model.
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Fig. 9 Model 1 and Model 2 for SPI vs GW levels of Viramgam 

1. SPI versus GW models for Viramgam 

The regression models developed using calculated SPI values and GW levels for 
Viramgam taluka are shown in Eqs. (1–2) and Fig. 9. 

SPI = −  0.9429 cos(GW + 1.2155) − 0.6176cos(2GW + 1.2155) 
− 0.412cos(3GW + 1.2155) (1) 

SPI = −  0.1833 + 2.2155 GW − 1.5723 GW 2 + 0.3999 GW 3 

− 0.03574 GW 4 (2) 

2. SPI versus GW models for Dhandhuka 

The regression models developed using calculated SPI values and GW levels for 
Dhandhuka taluka are shown in Eqs. (3–4) and Fig. 10. 

SPI =12.7741 − 10.4958 GW + 3.3802 GW 2 − 0.4994 GW 3 

+ 0.03392 GW 4 − 0.00086 GW 5 (3) 

SPI = 0.475 − 0.0573 GW 

1 − 0.2438 GW + 0.01699 GW 2 
(4)

3. RDI versus GW models for Viramgam 

The regression models developed using calculated RDI values and GW levels for 
Viramgam taluka are shown in Eqs. (5–6) and Fig. 11. 

RDI = −  1.0059 cos(GW + 1.2314) − 0.5928(2GW + 1.2314) 
− 0.4117cos(3GW + 1.2314) (5)
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Fig. 10 Model 1 and Model 2 for SPI vs GW levels of Dhandhuka

RDI = −  0.02573 + 2.0372 GW − 1.4145 GW 2 + 0.3448GW 3 

− 0.02986 GW 4 (6) 

4. RDI versus GW models for Dhandhuka 

The regression models developed using calculated RDI values and GW levels for 
Dhandhuka taluka are shown in Eqs. (7–8) and Fig. 12. 

RDI =14.046 − 11.494 GW + 3.6589 GW 2 − 0.5311 GW 3 

+ 0.03528 GW 4 − 0.00087 GW 5 (7) 

RDI = 0.5248 − 0.06267 GW 

1 − 0.2318 GW + 0.01503 GW 2 
(8)

The performance of the developed eight regression models have been assessed 
using statistical indices, i.e., root mean squared error (RMSE) and coefficient of 
correlation (r) (refer Table 3). RMSE has been calculated for both development

Fig. 11 Model 1 and 2 for RDI versus GW levels for Viramgam 
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Fig. 12 Model 1 and 2 for RDI versus GW levels for Dhandhuka

Table 3 Performance of developed models using statistical indices 

Statistical 
index 

Viramgam Dhandhuka Viramgam Dhandhuka 

SPI RDI 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

r 0.63 0.60 0.65 0.63 0.64 0.62 0.75 0.73 

RMSEd 0.54 0.56 0.65 0.66 0.57 0.58 0.82 0.59 

RMSEv 0.72 0.67 1.06 0.66 0.77 0.71 1.22 0.81 

Diff 0.17 0.11 0.41 0.002 0.20 0.13 0.40 0.22 

(RMSEd) and validation (RMSEv) of the models, and the difference between both 
of them have been shown in Table 3. RMSE and r can be calculated using Eq. (9) 
and (10), respectively. 

RMSE =

∑N 
i=1 (Ci − Ai )

2 

N 
(9) 

where (Ci − Ai)2 = Squared difference between the calculated and actual value 

N = Size of data set 

r =
∑

[(xi − x)(yi − y)]
√∑

(xi − x)2 ∗ ∑
(yi − y)2 

(10) 

where 

xi values of x variables 
y values of y variables 
x mean of values of x variables 
y mean of values of y variables. 

Figures 13, 14, 15 and 16 shows accuracy of various developed models.
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Fig. 13 Calculated versus predicted SPI for rational model and Polynomial model in Dhandhuka
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Fig. 14 Calculated versus predicted RDI for rational model and polynomial model in Dhandhuka
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Fig. 15 Calculated versus predicted SPI for truncated fourier and polynomial model in Dhandhuka

5 Conclusions

(a) The drought indices SPI and RDI have been calculated using monthly rain-
fall and temperature data of Viramgam and Dhandhuka talukas of Ahmedabad 
district.
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Fig. 16 Calculated versus predicted RDI for truncated fourier and polynomial model in Viramgam

(b) The classification of the drought severity from mild to extreme was derived for 
the specific region of the Viramgam and Dhandhuka talukas. 

(c) As RDI incorporates temperature data along with rainfall data, it gives better 
prediction of drought severity as compared to SPI. 

(d) From the results, it can be concluded that when the values of drought indices 
indicate dry periods, the values of groundwater levels decrease, which shows 
the close relationship between drought indices and groundwater levels. 

(e) The eight nonlinear regression models have been developed to assess the drought 
severity using drought indices (SPI and RDI) and groundwater fluctuations for 
the Viramgam and Dhundhuka talukas of Ahmedabad district. The RMSE and 
r values for the developed models show the satisfactory performance of the 
developed models. 

(f) Polynomial regression models of degree four and degree five have been found to 
be the best fitting curve for the prediction of drought severity for the Viramgam 
and Dhandhuka, respectively. 

(g) It has been concluded from the analysis of the results of drought indices that 
there is a close interdependency and co-relation between drought occurrence 
and groundwater fluctuations for the Ahemdabad district. 
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Meteorological Drought Analysis 
of Sabarmati Basin, India 

Jakka Sai Priya, Madhu Priya Aedla, Theertha Ravi, P. L. Patel, 
and Alka Sharma 

Abstract Drought intensity and severity are significant in agriculture, especially 
in predicting irrigation needs. In the present study, the meteorological drought is 
analyzed district-wise by using the Standardized Precipitation Index (SPI) at various 
time scales for the semi-arid Sabarmati basin, India. Daily gridded precipitation 
information of spatial resolution 0.25° × 0.25° is collected from the Indian Mete-
orological Department (IMD), Pune. Monthly rainfall values of 14 districts of the 
basin for the years 1980–2019 are used to compute SPI-6 (June-Nov) and SPI-12 
(June-May) using Drought Indices Calculator (DrinC) software for the analysis of 
meteorological drought. SPI values are classified as dry or wet, according to McKee 
et al. (Proceedings of the 8th Conference on Applied Climatology, pp. 179–183, 
1993) classification. The observed drought years are 1983–84, 1985–86, 1986–87, 
1987–88, 2000–01, 2002–03, and 2009–10. According to SPI results, the severely 
dry and extreme dry periods are reported in 1983–84, 1986–87, and 1987–88. The 
drought severity and drought intensity are extreme for most of the districts during 
the drought years 1987–1988 for SPI-6 and SPI-12. Such research would be useful 
for water resource management in the semi-arid river basins. 
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1 Introduction 

Drought is a natural catastrophic with significant economic and human consequences 
[2–4]. Extreme heat, strong winds, minimum relative humidity, rainfall frequency, 
climate change, and population expansion are all factors that contribute to drought. 
Droughts are common in several places of the world [5]. Droughts affect an esti-
mated 55 million people worldwide each year, and it pose a threat to animals and 
crops in almost every country. According to World Health Organization, drought 
might force 700 million people to flee their homes by 2030, affecting 40% of the 
world’s population. Droughts have an influence on both surface and groundwater 
resources, resulting in minimizing water availability, degraded quality of the water, 
crop deterioration, low production, limited power generation, disturbed ecosystems, 
and plenty of other socio-economic impacts [6]. 

Based on the American Meteorological Society, drought is classified into four 
classifications: meteorological, agricultural, hydrological, and socio-economic [7]. 
The Indian Meteorological Department (IMD) defined meteorological drought as 
when seasonal rainfall falls below 75% of its long-term mean value over a given 
area. It also stated that if the rainfall deficit is between 26 and 50%, the drought is 
classified as ‘moderate’, and if the deficit exceeds 50%, the drought is classified as 
‘severe’. 

The drought characteristics include severity, intensity and duration which can 
be determined using drought indices. The mathematical formula for calculating the 
amount of water irregularity in a hydrometeorological variable is a drought index [5]. 
Among the meteorological indices, the Standardized Precipitation Index (SPI) is the 
most often used which was developed by McKee et al. [1] to assess the inadequacy of 
rainfall over various intervals of time. Both short-term droughts, like the agricultural 
drought, and long-term droughts, like the hydrological drought, are examined using 
SPI [8]. 

Livada and Assimakopoulos [9] applied SPI to identify the drought periods in 
Greece, based on drought intensity and duration and found that on 3, 6 and 12 month 
time scale, the frequency of mild, moderate, and severe droughts was observed, 
respectively. For the drought assessment, 35 years of rainfall data of Amreli station 
was used to compute SPI in DrinC software, and concluded that Amreli had a mild 
drought situation, but its duration and intensity were above average [10]. Over the 
Krishna basin in Maharashtra, Mahajan and Dodamani [11], employed SPI to detect 
the spatio-temporal evaluation of drought events at several time steps and the analysis 
led to the preparation of layouts of drought to identify the drought severity across 
the basin. For 3, 6 and 9 month time series SPI was calculated using DrinC software 
for Madurai district, Tamil Nadu, and found that 20 years out of 100 years were 
drought affected and periodic in nature and happened for nearly every 3−7 years 
[12]. Daily precipitation data (1971–2011) for 14 districts were used to calculate the 
SPI in the Gomti basin, Uttar Pradesh, India at the spatial and temporal scales and 
the results revealed that severe drought was in upper regions during (1971–2000) and 
frequency of drought was maximum in central and lower parts of the basin during
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(2001–2011) [13]. From past studies, it is clear that SPI is a powerful and flexible 
index for analyzing the meteorological drought. 

The Sabarmati River basin is one of the foremost seriously water stressed river 
basins in India, because the need for water has steadily increased as a result of the 
population rise, agricultural, energy, and industrial sectors expansion, and in part due 
to climate impacts and tainting of water sources [14]. Therefore, it is important to 
understand the drought and its characteristics for better water resource planning and 
management. The key objectives of the present study are (i) Analyzing the meteoro-
logical drought, district wise by employing Standardized Precipitation Index (SPI) at 
6-month and 12-month scale of time over a period of 1980–2019 for Sabarmati basin 
and (ii) Characterizing drought severity, duration, and intensity at spatial–temporal 
scales across the basin. 

2 Study Area and Data Source 

2.1 Sabarmati River Basin 

Sabarmati River Basin is one among the 20 significant river basins in India. It is 
an inter-state river basin. Sabarmati stream originates within the Aravalli hills in 
Mount Abu area, and flows in a southwesterly direction. Sabarmati basin stretches 
between 70.97° to 73.85° east longitudes and 22.25° to 24.78° north latitudes. 
Sabarmati basin is situated in the semi-arid zone of western part of India that 
extends over states of Gujarat and Rajasthan. In the Rajasthan part, the basin covers 
Dungarpur, Sirohi, and Udaipur districts and in the part of Gujarat, the basin covers 
Sabarkantha, Banaskantha, Mahesana, Surendranagar, Gandhinagar, Ahmedabad, 
Kheda, Bhavnagar, Rajkot, Anand, and Panchmahal. 

The catchment area of the Sabarmati basin is 31,674 km2. Sabarmati basin receives 
a high to moderate rainfall with mean annual rainfall of 787.5 mm. The basin is 
divided into three sub-basins: Dharoi, Hathmati, and Watrak. The average annual 
rainfall for the Watrak, Dharoi, and Hathmati sub-basins was 794 mm, 729 mm, and 
692 mm, respectively. Vital part of the Sabarmati basin is balanced with agricultural 
land with an area of 16,186.38 km2 (74.68% of total area). Forest cover in the basin 
is 2595.69 km2 (11.98% of total area). Wasteland covers an area of 1549.13 km2 

(7.15% of total area). There are 50 Dams in the Sabarmati basin among which 17 
dams fall in Sabarmati lower sub-basin and 33 dams, 10 weirs, 2 barrages fall in 
the Sabarmati upper sub-basin. Around 91.67% dams are used for the purpose of 
irrigation. The longest dam in the basin is Sabarmati (Dharoi) dam located in Gujarat 
with a total length of 1207 m and 908.6 MCM total capacity. The index map of the 
Sabarmati basin is depicted in Fig. 1.
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Fig. 1 Index map of study area and Köppen–Geiger climate classification of Sabarmati basin 

2.2 Köppen–Geiger Climate Classification 

The Köppen–Geiger climate classification system, which was classified using 
monthly averages of mean temperature and precipitation from 1951–1980 and 1981– 
2010, is the most extensively used climatic classification system. The Köppen climate 
classification separates the world’s climate into five major categories. A: tropical 
climate, B: dry climate, C: temperate climate, D: continental climate, and E: polar 
climate are indicated by the first letter of the KG classification. For a total of 30 
classes, the system was divided into five subclasses and identified with a second and 
third letter. The second letter denotes the type of seasonal precipitation, while the 
third denotes the degree of heat. Summers are defined as the six months between April 
and September and/or October and March that are warmer, while winters are defined 
as the six months between October and March that are cooler. This classification
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is useful for describing climatic conditions that are determined by temperature and 
precipitation. This classification system has been widely used to map the worldwide 
distribution of long-term climate and ecosystem conditions [15]. 

In this study, Sabarmati basin climate falls in 3 classes of KG climate classification. 
Major part of the basin has Hot Semi-Arid Climate (Bsh), and other part of the basin 
has Tropical Wet Climate (Aw) and Monsoon influenced Humid Subtropical Climate 
(Cwa) (Fig. 1). 

2.3 Data Source 

The 0.25° × 0.25° daily gridded data of precipitation was collected from India 
Meteorological Department (IMD), Pune and used to develop monthly rainfall data 
for 14 districts of Sabarmati basin during the period of 1980–2019 for SPI calculation 
in analyzing drought conditions in Sabarmati basin. 

3 Methodology 

3.1 DrinC 

Drought Indices Calculator (DrinC) is a user-friendly software system for calculating 
a variety of drought indices. The broadest potential applicability for various forms 
of drought (meteorological, hydrological, and agricultural) is the key objective in 
its design. This software requires relatively little data, and their results are simple 
to understand and can be used in planning and operational implementations. Hence, 
it can be used to carry out the drought studies even in the arid and semi-arid areas, 
where information is often scarce [16]. In this research, DrinC software is utilized 
to find the SPI for semi-arid, Sabarmati Basin. 

3.2 Standardized Precipitation Index (SPI) 

Generally, SPI can be computed from the following equations: 

SPI = 
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G(x) = 1 

βγ  ⎡(γ )0 
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x > 0,  ⎡(γ ) = 
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0 

xγ −1 e−x dx (4) 

where x denotes rainfall values, β and γ are the scale and shape parameters of the
 ⎡ function, respectively. C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 
1.432788, d2 = 0.189269, and d3 = 0.001308. G(x) is the cumulative probability of 
precipitation distribution. S = 1 when G(x) > 0.5, H(x) = 1−G(x) and S = –1 when 
G(x) ≤ 0.5, H(x) = G(x). According to McKee et al. [1] drought starts when the SPI 
value approaches −1 or less and ends when it becomes positive. 

In the present study, DrinC software was used to find the SPI. The daily gridded 
rainfall data of 0.25° × 0.25° of Sabarmati basin obtained from IMD, Pune is 
converted to monthly district-wise rainfall data of 1980–2019 using thiessen weights 
and used as input in DrinC software. SPI has been calculated for each district during 
the period 1980–2019 for 6-month and 12-month time scales in DrinC software and 
classified as dry or wet according to McKee et al. [1] classification (Fig. 2).

The drought analysis can be performed using spatial and temporal analysis. Spatio-
temporal analysis is the integration of the series of time events into aggregated 
drought regions, and computation of the percentage of area of drought in every 
timestep [17]. SPI has positive and negative values, whereas the positive values 
indicate wetness and the negative values indicates dry events [18]. Maps showing 
drought severity are produced to analyze the severity of the drought for various 
drought years spatially using QGIS software. The number of months during which 
SPI remains under the threshold value is the drought duration (D). In this study, the 
threshold value was taken as −1.00 [17]. The duration of the drought event lasts till 
the SPI value will be positive. The ratio of drought severity to drought duration is 
known as drought intensity. 

4 Results and Discussion 

4.1 Temporal Analysis of Drought 

For the Sabarmati basin, the drought severity values were determined using DrinC 
software for 6 and 12-month temporal scales for each and every individual year with 
respect to the classification recommended by Mc Kee et al. [1]. The drought severity 
values of SPI-6 and SPI-12 were plotted against the time series graph. A dry year 
happens if SPI value ≤ −1.00. The periods whose drought severity values below
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STANDARDIZED PRECIPITATION INDEX (SPI) 

INPUT: Monthly Precipitation Data 

Calculation of SPI using DrinC Software 

Results of SPI Values Classification 
SPI Values Class 

>2 Extremely Wet 
1.5 to 1.99 Very Wet 
1 to 1.49 Moderately Wet

-0.99 to 0.99 Near Normal
-1 to -1.499 Moderately Dry

-1.499 to -1.99 Severely Dry 
<-2 Extremely Dry 

Temporal Distribution of Drought Spatial Distribution of Drought 

Plotting Graphs of 
SPI-6 and 12 Time Series 

Development of Drought Se-
verity Maps using QGIS 

Drought Severity, Duration and Intensity 

Fig. 2 Flowchart of methodology

threshold value of −1.00 for SPI-6 and SPI-12 time series (Figs. 3, 4 and 5) are  
classified into three classes of drought periods as, moderately dry year, severely dry 
year and extremely dry year.

From Fig. 3, 1987–1988 is an extremely dry year with a drought severity value of 
−2.281, 1986–87 is the severely dry year with a drought severity value of −1.541, 
and 2002–03 is observed as a moderately dry year with a drought severity value of 
−1.369 using SPI-6 (June-Nov). 

From the Fig. 4, 1983–84 is the severely dry year with a drought severity value 
of −1.564 and 2001–02 is observed as moderately dry year with a drought severity 
value of −1.093 using SPI-6 (Dec-May). 

For SPI-12 (June-May) (Fig. 5), it can be inferred that 2002–03, 2009–10, and 
1985–86 are observed as moderately dry years with a drought severity value of − 
1.369, −1.008, −1.001, respectively, whereas 1986–87 is the severely dry year with 
a drought severity value of −1.672 and 1987–1988 is an extremely dry year with a 
drought severity value of −2.202.
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Fig. 3 Drought severity for the years 1980–2019 using SPI-6 (June–Nov) 

Fig. 4 Drought severity for the years 1980–2019 using SPI-6 (Dec–May)

4.2 Spatial Analysis of Drought 

The maps of drought severity representing the spatial variation of drought for the 
whole Sabarmati basin are prepared using QGIS for the drought years obtained from 
12 and 6-month SPI values during the interval 1980–2019 as shown in the Fig. 6.

From Fig. 6, it was observed that all the districts except Anand, Bhavnagar, 
Dungarpur, Panch Mahal and Rajkot experienced extremely dry situation during 
1987–88 period with respect to 6-month SPI (June-Nov). Whereas, all the districts 
except Anand, Dungarpur, Panch Mahal, Rajkot, and Sabar Kantha faced extremely 
dry conditions during 1987–88 with respect to 12-month SPI (June-May).
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Fig. 5 Drought severity for the years 1980–2019 using SPI-12 (June–May)

5 Conclusions 

The following conclusions are derived from the foregoing research:

• The spatial and temporal variability of drought is considered for the Sabarmati 
basin. 

• According to SPI-6 (June-Nov and Dec-May) values, observed drought years 
are 1983–84, 1986–87, 1987–88, 2001–02, and 2002–03 for drought event of 
6 months. 

• According to SPI-12 (June-Nov) values, observed drought years are 1985–86, 
1986–87, 1987–88, 2002–03, and 2009–10 for drought event of 12 months. 

• From SPI-6 (Dec-May), hydrological years of 1983–84 and 2001–02 are observed 
as seasonal drought years. 

• Drought severity of -2.202 and drought intensity of -0.366 occurred during the 
extreme dry year 1987–88 using SPI-12 (June-May). 

• Maximum drought severity of -2.281 and maximum drought intensity of -0.380 
occurred during extreme dry year 1987–1988 using SPI-6 (June-Nov) in Sabarmati 
basin. 

• From the drought severity maps, it can be concluded that nine districts except 
Anand, Bhavnagar, Dungarpur, Panch Mahals and Rajkot faced extreme dry 
situation during 1987–88 period with respect to 6-month SPI (June-Nov). 

• From the drought severity maps, it can also be concluded that 9 districts except 
Anand, Dungarpur, Panch Mahals, Rajkot, and Sabar Kantha faced extreme dry 
conditions during 1987–88 with respect to 12-month SPI (June-May).
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SPI-6 (June-Nov) 1986-
87 

SPI-6 (June-Nov) 
1987-88 

SPI-6 (June-Nov) 2002-03 
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84 
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Fig. 6 Drought severity maps based on 12 and 6-month SPI (June-November and December-May) 
for observed drought years
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• Understanding drought severity and intensity is critical in agriculture, particularly 
in determining irrigation needs. 

• It is possible to evaluate the accessibility of soil dampness at the border of the 
hydrological year. Thus, drought investigation can have additional influence in 
controlling the productivity of summer crops. 
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Drought Analysis for the Region 
in and Around of Mizoram State, India 

Vanlalhmuaka Ralte and Briti Sundar Sil 

Abstract Drought is a climatic condition characterized by a lack of precipitation. 
In the last few years, it is found that some areas of the state of Mizoram and its 
vicinity is facing scarcity of water. A study is conducted to see the present drought 
condition using simple techniques. The present study shows the frequency of drought 
by analyzing standardized precipitation index (SPI) of the Mizoram state. The rainfall 
data were taken from twenty-two rain gauge stations for almost thirty years (1986– 
2015). The study helps in understanding the importance of SPI and rainfall regarding 
climate change impacts and droughts which helps in the assessment and management 
aspects for the society. 

Keywords Rainfall analysis · Drought · Standardized precipitation index (SPI) ·
DrinC · Mizoram 

1 Introduction 

Drought can be defined as a natural disaster which leads to food, fodder, and water 
shortages along with destruction of vital ecological system. It is a natural hazard 
having negative effect on society and environment which is intensified by increasing 
water demand [1]. In simple words, we can say that it is a situation when there is 
scarcity of water and insufficiency in quantity to meet the demand [2].
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Especially nowadays due to climate change issues droughts are occurring very 
frequently worldwide and have become a severe hazard in many areas. In India, 
around 68% area is drought susceptible. If a region receives rainfall less than 750 mm 
in a year, then it is chronically drought-prone area, and the worst drought years in 
India happened in the years 1877, 1899, 1918, 1972, 1987, 2002, 2009 [3]. 

The economy of Mizoram depends largely on agriculture. Based on the economic 
classification of workers—2011 census, more than 60% of the total workers are 
engaged in agriculture and allied sector [4]. Therefore, abundance of water in the 
areas are necessary and a lots of problems may arise if the water demand is not met. 

In this paper, SPI method is used to determine the drought index over the entire 
Mizoram state, and a software called DrinC is used for the study. 

2 Materials and Methodology 

2.1 Standardized Precipitation Index (SPI) 

The SPI and its characteristics are explained by McKee et al. [5] for drought moni-
toring and analysis. SPI can be characterized in multiple time scales (1, 3, 6, 12, 
24, 48 months, etc.). For example, the SPI of October time scale represents the stan-
dard deviation of precipitation for October. The SPI of 3 month time scale in October 
represents the standard deviation of precipitation in October-December. The October 
12-month time scale SPI represents the standard deviation of October-September 
precipitation. This paper mainly analyzes the 1-month and 12-month time scale SPI. 
The larger time scale, i.e., the 9-month and 12-month time scale SPI can give a 
clearer reflect of the stage changes of drought and flood, and shorter time scale like 
the 1-month and 3-month time scale SPI can reflect the seasonal drought, which is 
closely related to agricultural drought [6]. 

Drought index calculator (DrinC) software is used for calculating the SPI. 
The structure details and calculation steps of the software can be referred from 
Tigkas et al. [7]. DrinC is a straightforward software which can calculate the 
drought indices by considering all the variables through the adaptable interface 
and giving a simple and justifiable output. However, for better output, it is preferable 
to have input of long-term datasets [8]. DrinC can be used to calculate the indices in 
terms of deciles, Standardized Precipitation Index (SPI), Streamflow Drought Index 
(SDI), and Reconnaissance Drought Index (RDI), based on which the intensity of 
drought can be assessed and the trend of drought occurrence can be predicted, which 
can then be used further for drought monitoring, drought spatial distribution assess-
ment, investigation of climatic and drought scenarios and declaration of drought for 
subsidy related issues.
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2.2 Study Area and Data Source 

2.3 Mizoram State 

The study area is Mizoram (area ≈ 21,087 km2) and its location range at Latitude 
21° 58, and 24° 35, N Longitude 92° 15, and 93° 29, E and is one of the seven states 
of the Northeast India. The index map of the Mizoram is shown in Fig. 1. 

Fig. 1 Index map of Mizoram
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2.4 Data Collection 

The monthly rainfall data for twenty two rain gauge stations were collected from 
meteorological data of Mizoram compiled by the State Meteorological Centre, Direc-
torate of Science and Technology. The data were taken for a period of almost thirty 
years (1986–2015), except for the data for the district of Mamit which is taken for only 
16 years (1999–2015). Details of rain gauge stations and their district headquarters 
are given in Table 1. 

Table 1 Rain gauge stations with their respective district headquarters 

Sl. no. Name of rain gauge 
station 

Name of district Area of district District headquarters 
coordinates 

1 2 3 4 5 

1 Reiek Mamit 2967 km2 23.9294°N, 92.4906°E 

2 Mamit Mamit 

3 Zawlnuam Mamit 

4 W. Phaileng Mamit 

5 Bilkhawthlir Kolasib 1386 km2 24.2246°N, 92.6760°E 

6 Kolasib Kolasib 

7 Bukpui Kolasib 

8 Aibawk Aizawl 3577 km2 23.8789°N, 92.8976°E 

9 Darlawn Aizawl 

10 Thingsulthliah Aizawl 

11 Aizawl Aizawl 

12 Khawzawl Champhai 3168 km2 23.4566°N, 93.3282°E 

13 Champhai Champhai 

14 Vaphai Champhai 

15 Ngopa Champhai 

16 Serchhip Serchhip 1424 km2 23.3417°N, 92.8502°E 

17 Lunglei Lunglei 4572 km2 22.8671°N, 92.7655°E 

18 Hnahthial Lunglei 

19 Lungsen Lunglei 

20 Lawngtlai Lawngtlai 2519 km2 22.5284°N, 92.8926°E 

21 Sangau Lawngtlai 

22 Siaha Siaha 1414 km2 22.4897°N, 92.9793°E
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Table 2 Weather classification based on SPI 

SPI values Class 

> 2 Extremely wet 

1.5−1.99 Very wet 

1.0−1.49 Moderately wet 

− 0.99−0.99 Near normal 

− 1 to  −1.49 Moderately dry 

− 1.5 to −1.99 Severely dry 

< −2 Extremely dry 

2.5 Selection of Input Parameters 

A specified recurrence distribution of rainfall totals at a climate station was used 
to fit a gamma probability density function to calculate SPI [9]. SPI is normalized 
by keeping mean value 0 and standard deviation value unity that is beneficial to 
identify wet and dry periods equally. For any observed precipitation data, probability 
is calculated from the gamma function and this is used to estimate the precipitation 
deviation by SPI normalized. Positive values of SPI shows greater precipitation and 
negative values shows lesser precipitation than average precipitation [10]. The ranges 
of SPI values for different classification of drought conditions are given in Table 2 
[5]. 

3 Results and Discussions 

The detailed analysis has been carried out for the state of Mizoram using DrinC 
software, and the results are described in following paragraphs. 

From Fig. 2 SPI-1 for the 1-month time scale shows that extremely dry and 
severely dry conditions occurs only in one occasion in the year 1997–98 and 1994– 
95, respectively. However, moderate dry conditions occurs in four occasionsin the 
years 1990–91, 2002–03, 2004–05, and 2006–07 (Fig. 3).

From Figure SPI-3 for the 3-month time scale shows that severely dry conditions 
occurs in two occasions in the year 2004-05 and 2006–07. However, moderate dry 
conditions occurs in five occasions in the year 1994–95, 1997–98, 1998–99, 2011–12, 
and 2014–15. 

From Fig. 4, SPI-9 for the 9-month time scale shows that severely dry conditions 
occurs in two occasions in the year 2006–07 and 2014–15 and moderately dry condi-
tions occurs in five occasions in the year 1994–95, 1998–99, 2008–09, 2011–12, and 
2013–14 (Fig. 5).

From Fig. 3, SPI-12 for the 12-month time scale shows that extremely dry condi-
tions occurs only in one occasion in the year 2008–09 and severely dry conditions
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Fig. 5 12-month SPI value for Mizoram

occurs in four occasion in the year 1993–94, 2004–05, 2013–14, and 2014–15. 
However, no moderate dry conditions occurs. 

From the SPI-1, SPI-3, SPI-6, SPI-9, and SPI-12 value for each district based 
on the 16 years (1999–2015) data, the rank for the most drought-prone area is 
determined. 

The following are the discussions made based on the above results of the study: 

(i) From the shorter time scale assessment, the SPI-1 in Fig. 2 shows a more 
positive skew; it shows an extremely dry condition during the year 1997–1998. 
However, conditions remain normal but on the drier side every 2 years after 
that. We can say that the area is on the safer side against short term or seasonal 
drought. However, looking at the fluctuations that may occur it is advised that 
further assessment and analysis for the upcoming years is advisable. 

(ii) The SPI-12 in Fig. 3 shows a more negatively skewed graph, and it shows that 
severe dry condition occurs during the period of 1993–1994 and conditions 
remain favorable for the next 9 years; however, from the 10th year, it shows 
severe to extreme dry conditions every 4 to 5 years. 

(iii) From the shorter time scale assessment (SPI-1 and SPI-3) from the period 
between 1999 and 2015 Champhai and Kolasib have observed eight seasonal 
drought years which is more than the other districts, and from the longer time 
scale assessment (SPI-9 and SPI-12) Kolasib, Lunglei, and Aizawl faced the 
most drought years of 8 years each. 

4 Conclusions 

Taking our analysis into consideration it is recommended that the state authorities 
take certain measures such as giving awareness to the local communities and farmers 
concerning water management and providing necessary infrastructures for irrigation 
purposes. The rankings in Table 3 show the most drought prone areas which can be 
used for administrators and water managers for allocation of funds and to decide for 
further drought mitigation works.
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Table 3 Ranking of rain gauge stations as per Local droughts at multiple time scales 

District SPI-1 SPI-3 SPI-6 SPI-9 SPI-12 Total Rank 

Aizawl 2 4 5 4 4 19 2 

Lunglei 1 4 3 4 4 16 4 

Champhai 4 4 3 2 4 17 3 

Kolasib 3 5 6 4 4 22 1 

Lawngtlai 2 2 0 3 3 10 7 

Siaha 4 3 1 4 3 15 5 

Mamit 2 3 3 3 2 13 6 
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Implementation of Rainfall-Based 
Drought Indices for Regional Drought 
Assessment 

Shradhanjalee Pradhan and Bibhuti Bhusan Sahoo 

Abstract Regional drought monitoring is a vital constituent of drought risk manage-
ment. The effects of drought on the environment and ecosystem may cause disasters 
and result in socio-economic problems. Drought indices are an extremely useful tool 
for regional drought assessment. In this study, various rainfall-based drought indices 
are used for drought assessment of its four districts of the state of Odisha India. The 
six indices Standardized Precipitation” Index (SPI), Percent of Normal Index (PN), 
China-Z index (CZI), modified CZI (MCZI), Z- Score Index (ZSI), and deciles index 
(DI)”differ in their exposure and classification of drought procedures in the study 
area. Further, a comparative analysis has been done among all the rainfall-based 
indices. The differences mention among the drought indices in noticing drought in 
the events in the study area can be reduced by using numerous drought indices in 
computation to the use of SPI, in drought taxations. It is observed that SPI captured 
the historical extreme and severe drought periods successfully, and can be suggested 
to be applied to this district as drought assessment tools. 

Keywords Drought · SPI · EDI · DI 

1 Introduction 

Droughts are usually periods that rainfall is below typical, leading to extended stages 
of water storage. It is every so often generally defined as a brief meteorological event 
that branches from the lack of rush over an extended historical compared with some 
continuing average condition of precipitation. However, drought develops slowly, is 
difficult to determine, and has many facets in any single area. The victory of drought
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preparedness and reduction depends, largely, based on current information on the 
commencement, progress, and region affected by the drought. Drought monitoring 
can provide you with this piece of communication. Drought indices are commonly 
used for monitoring. Drought indices provide information on the severity of drought 
to decision-makers and, if accessible, can be used to trigger drought eventuality 
measures. To date, many drought indexes have been established. 

The Palmer Drought Severity Index (PDSI) [13] is a frequently used drought 
severity index in the U. S.. The decile index [4], that is, used in Australia, the Surface 
Water Supply Index (SWSI), Shafer and Dezman [16], which was adopted by many 
states in the U.S., as well as the standardized precipitation index (SPI) [9], which 
has achieved worldwide acclaim, the China-Z index (CZI), which is castoff by the 
National Meteorological Center of China (Wu The majority of these indicators are 
dependent on weather information (temperature and rainfall). There is no such thing 
as an ideal or all-encompassing index. The index’s ability to consistently discern 
regional and temporal variations during a drought, as well as the volume of weather 
data available in the event should ultimately guide the selection of indices for drought 
nursing in a specific area. 

Drought is one of the devastating expected disaster in India affecting various 
dimensions of society. It has major impacts on the environment, agriculture, the 
economy, and society as a whole. In recent decades, the severity and the frequency 
of droughts have increased due to erratic rainfall [10, 18]. To know the spatiotemporal 
behavior of drought over India, multiple drought indices have been used in the past” 
[1, 6, 8, 19]. SPI is one of the most commonly used drought index for assessment 
of drought [3, 12, 14, 15]. Some of the other studies on drought assessment in India 
context include the use of various drought indices for example PDSI, Integrated 
Drought Index (IDI), Standard Precipitation Evapotranspiration (SPEI), Effective 
Drought Index (‘EDI), and many more [7, 17, 22]. Nevertheless, a drought index is 
appropriate for one region may not be applicable for other region or basin [20, 22]. 
Therefore, numerous researchers across the globe have compared different drought 
indices with an aim of discovery suitable drought index for a certain region or basin 
[2, 11, 21]. Morid et al. [11] used EDI, SPI, Percent Departure from Normal, Deciles 
Index, Z-index, modified CZI (MCZI), and China Z index (CZI) for six locations in 
Iran. They found that the EDI outperformed other indices. Barua et al. [2] compared 
Percent Departure from Normal, Deciles Index. Used for the Yarra River Catchment 
in Australia, Aggregated Drought Index (ADI), SPI, and the SWSI were used. They 
accomplish that the ADI performed better in sensing fraud based on decision criteria 
of historic droughts. 

This drought assessment in the four selected districts of Odisha has never been 
the subject of a serious scientific study. In addition, nothing is known about the 
features of drought in the observed area. Therefore, the objective of this observed is 
to evaluate the drought situation in the four selected district as shown in Fig. 1. As  
there is no universal index for drought assessment it’s more preferred to do a regional 
assessment and check which index fits the best for that area.
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Fig. 1 Study area map 

2 Study Area and Data Collection 

An attempt was finished to perform drought susceptibility analysis in four districts 
of Odisha as shown in Fig. 1. The study area Long monsoon breaks (dry spells) in the 
course of the crop increasing in rich, as well as huge variations in rainfall quantity 
from year to year, outcome in crop failure on a regular basis, making the entire area 
drought prone. However, there is a need to analyze the spatial and secular distinction 
of drought in this area so that water users can frame drought alleviation plans and 
make decisions based on the future skyline to decrease the harmful footprint of 
drought. The rainfall data were collected from the Indian meteorological department. 

3 Drought Indices 

The goal of this study was to evaluate whether six indices “Standardized Precipita-
tion Index (SPI), deciles index (DI), Percent of Normal Index (PN), China-Z index 
(CZI), “modified CZI (MCZI), Z-Score Index (ZSI)” detect and arrange droughts 
occurrences. One aspect that all of the carefully chosen indices have in mind is that 
they really rely only on precipitation data. Every one of the indexes examined have
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indeed been applied to the study’s different measurement variables. Each monthly 
has a separate time scale. The drought’s point-by-point and spatial scope were deter-
mined correspondingly. The resulting text includes a summary of a indices of these 
values. 

3.1 The Percent of Normal (PN) 

The percent of normal index is one of the most simple ways to determine how 
far rainfall has deviated from its long-term average rainfall. ‘Normal’ is commonly 
set to a location’s long-term mean rush value. The value of ‘normal’ is 100% and 
can be determined for a month, a season, or a period. Because the same PN might 
have various specific implications in different places, it’s a bit of a crude metric of 
precipitation shortfall. In addition, what is normal may be perceived differently in 
divergent regions. 

3.2 The Decile Index (DI) 

Gibbs and Maher [4] proposed the Decile Index approach, which is widely used 
in Australia. Seasonal rainfall totals from a long track record are first ranked from 
highest to lowest to construct a cumulative probability dispensation. After then, the 
dispensation is divided into eleven pieces (tenths of distribution or deciles). The first 
decile is the quantity of precipitation that is not exceeded by the lowest 10% of all 
precipitation readings in a period. The second decile, which varies from 10% in terms 
to 20%, is situated between both the lowest and highest deciles. When evaluating 
the amount of precipitation in a month (or over several months) with the long-term 
cumulative dispersal of precipitation quantities in that period, the severity of drought 
can be determined. 

There are five classes of deciles, each with two deciles. If precipitation falls 
into the lowest 20 percentage points of year, it is considered significantly below 
normal (deciles 1 and 2). Below-normal rainfall is noted by deciles three to four 
(20–40%), close precipitation is noted by deciles 5–6 (40–60 percent), above-normal 
precipitation is indicated by deciles 7 and 8 (60–80 percent), and substantially above-
normal rush is indicated by deciles 9 and 10 (80–100%). 

3.3 The Standard Precipitation Index (SPI) 

A long-term rush record at the selected station is first fitted to a probability distri-
bution, which will then be transformed into a normal distribution with mean zero 
SPI [9]. A variety of time periods could be used to determine the SPI (e.g., 1 month,



Implementation of Rainfall-Based Drought Indices for Regional … 381

3 months, and 24 months). Also with long-term sets of data, Guttman [5] showed that 
employing SPI at extra duration increments is not recommended so because sample 
size diminishes. Different timeframes can be used to examine the effects of a precip-
itation shortage on different water resource elements (groundwater, soil moisture, 
reservoir storage, and streamflow). The dryness section of the SPI scale is classified 
at random into ‘very dry’ (SPI2.0), ‘severely dry’ (1.5 > SPI > 1.99), ‘moderately 
dry’ (1.0 > SPI > 1.49), and ‘near normal’ (0.99 > SPI > 0.99) conditions. 

Positive SPI values show more precipitation than average, while negative results 
suggest less precipitation. 

3.4 China-Z Index (CZI), Modified CZI (MCZI) and Z-Score 

The CZI is constructed on the Wilson-Hilferty cube-root transformation. Undertake 
that haste data follow the Pearson Type III dissemination, the index is calculated as: 
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where i is the present month, Sc” is coefficient of unevenness, n is the total number 
of months in the data, �i is standard variate, also called the Z-Score and xi is precip-
itation of i month.” Instead of using the mean of precipitation in the CZI calculation, 
the median of precipitation is used to calculate the MCZI (i.e., Med is substituted for 
x in Eqs.  2 and 3). Wu et al. [23] attempted to lessen the discrepancies between the 
SPI and the MCZI by doing so. They determined, however, that the gaps between 
these two indexes did not narrow as much as the discrepancies between the CZI and 
the SPI. 

4 Result and Discussion 

The values obtained of the MCZI, CZI, Z-Score, and SPI all are almost identical 
(Table 1). As a consequence, they are all on the same page in this respect. The 
DI and PN, on the other side, have broad variations than the SPI, as previously 
established. To make the DI and PN values comparable to the SPI classes, they have 
indeed been organized into similar classes (Table 1). DI classes of 60–70% (slightly
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Table 1 Different classes of various drought indices based on the index value 

SPI CZI MCZI Z score DI (%) PN (%) Classes 

≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 90 Extremely 
wet 

1.5–1.99 1.5–1.99 1.5–1.99 1.5–1.99 80–90 Severely wet 

1–1.49 1–1.49 1–1.49 1–1.49 70–80 ≥ 110a Moderately 
wet 

− 0.99–0.99 − 0.99–0.99 − 0.99–0.99 − 0.99–0.99 30–70 80–110 Normal 

− 1–1.49 − 1–1.49 − 1–1.49 − 1–1.49 20–30 55–80 Moderately 
dry 

− 1.5–1.99 − 1.5–1.99 − 1.5–1.99 − 1.5–1.99 10–20 40–55 Very dry 

≤ -2 ≤ -2 ≤ -2 ≤ -2 ≤ 10 ≤ 40 Extremely 
dry 

a ≥ 110 considered as WET 

above normal), 50–60% (normal), and 30–40% (slightly below normal) have been 
combined to form a broader ‘normal’ DI class of 30–70% (which correlates to the 
‘normal’ SPI range). High PN values were not classified for this investigation, and 
all value higher than 110% were considered ‘wet’ circumstances (Table 1). 

In all of the four districts SPI out performed in the year 1995, 2000, 2005, 2010, 
2015 among all indices considered in this study. The SPI shows close resemblance 
with the actual percentage of drought affected in all the four districts. In most of the 
districts the CZI, MCZI and Z score overestimated than the actual area affected by 
drought. For example, in case of Sundargarh district the actual drought affected is 
35% in the year 1995, while the SPI estimation shows 38% of the drought-affected 
area. Meanwhile CZI, MCZI and Z shows 41, 44 and 47%, that is, quite higher than the 
actual data. Which can be easily interpreted from the Fig. 2 and for other districts and 
for other years. Figure 2 shows a comparison between the actual drought percentage 
and various drought indices used in this study. All four districts rainfall-based drought 
indices (SPI, DI, PN, MCZI, CZI, and Z SCORE) are shown in Fig. 3.

5 Conclusions

• In this study, six drought indice” Standardized Precipitation Index (SPI), deciles 
index (DI), Percent” of Normal Index (PN), China-Z index (CZI), modified CZI 
(MCZI), and Z-Score Index (ZSI) were evaluated for monitoring and detecting 
drought periods, four districts of Odisha. The SPI method gives the superior result 
as compared to other rainfall-based results. 

• Results derived by the SPI method are more similar to actual drought in the study 
districts. Therefore, SPI can be a suitable drought index for the four districts.
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Fig. 2 Comparison between actual drought and rainfall-based drought indices for all the fore 
districts 

Fig. 3 All four districts rainfall-based drought indices (SPI, DI, PN, MCZI, CZI, Z SCORE)
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The SPI index is capable drought nursing and describing attribute of drought 
circumstances.

• Having concerns to the effects of weather change, deficiency of comforting about 
various drought condition or span in various parts of the world is connected with 
climate change of climatical factors and requires estimation in a longer period. 
Totally, the occurrence of droughts is unavoidable, but observe and forecast of 
drought can be give rise to improve adversarial impressions of drought. 
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Investigation of Crop Evapotranspiration 
and Irrigation Water Requirement 
in the Ukai-Kakrapar Command Area, 
India 

K. B. Baladaniya, P. L. Patel, and P. V. Timbadiya 

Abstract Water shortage and competing demand of water need judicious usage of 
water in the agriculture sector. The present study includes crop water estimate and 
irrigation water requirements for Ukai left bank command area (ULBCA), Ukai right 
bank command area (URBCA), Kakrapar left bank command area (KLBCA), and 
Kakrapar right bank command area (KRBCA) using meteorological data for period 
from 2010 to 2019. Using daily climatic data, the FAO Penman–Monteith technique 
has been used to determine reference evapotranspiration (ET0). The crop coefficient 
is used to determine the crop evapotranspiration (ETc) of various types of crop 
types. The effective rainfall is calculated using the Soil Conservation Service (SCS) 
method. Then, net irrigation requirement (NIR) has been calculated using effective 
rainfall and estimated crop water requirements. The maximum gross irrigation water 
requirement (GIWR) in ULBCA, URBCA, KLBCA, and KRBCA has been estimated 
to be 149.31 MCM, 103.72 MCM, 269.43 MCM, and 205.42 MCM, respectively, by 
considering the water conveyance efficiency of 70% and water application efficiency 
of 60% (flood irrigation). Crop water requirement (CWR) estimated in lakh mm Ha. 
Such irrigation water demand would be useful for optimization of reservoir releases 
in optimal growth of crops in the command area. 

Keywords Crop evapotranspiration · Crop water requirement · Gross irrigation 
requirement · Ukai-Kakrapar command area · FAO Penman–Monteith
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1 Introduction 

The developing and underdeveloped countries across the globe are experiencing 
severe water shortages, particularly, in agricultural sectors. The requirement water is 
increasingly becoming limited due to rising water demands in various sectors [10]. 
Irrigation is an essential component of inland river basin water resource manage-
ment, and it is crucial to agricultural policy formations. Water security in arid places 
is very vulnerable to climate change and increased human activity [11]. Agriculture 
consumes major share of water in India (approximately 81%) and thus forms a major 
focus for effective water usage in agriculture in coming years [9]. Crop production 
in the agricultural industry can be increased by making better use of current land 
and water resources. Furthermore, determining the water demand for the crops and 
supplying them, accordingly, can help in minimizing large-scale wastage of water in 
crop watering [2, 7]. Evapotranspiration is one of the greatest indicators for quanti-
fying the consequences of climate change and estimating the agricultural water usage 
[4, 5]. 

Accurate information on crop water needs, irrigation withdrawal based on crop, 
soil type, and meteorological conditions is required for successful water resource 
planning. Rainfall and evapotranspiration eventually affect the region’s water balance 
and irrigation water requirements for various crops. Such climate parameter studies 
are therefore useful in establishing degrees of risk in arable agriculture. The FAO 
Penman–Monteith [3] is used in this work to determine ET0, since it has been 
shown to produce values that are extremely consistent with real crop water consump-
tion across the world [1, 6]. The objectives of the present study are to explore the 
spatiotemporal variations in crop evapotranspiration (ETc) with special water needs 
for leaching for the primary crops in Ukai-Kakrapar canal command area. The ETc 
of sugarcane, plantain, groundnut, paddy, cotton, wheat, juwar/bajari, vegetables, 
and other perennial crop; other crop net irrigation requirement (NIR); and gross irri-
gation water requirement (GIWR) were assessed throughout the growing seasons 
from 2010 to 2019. Such irrigation water demand would be beneficial for optimizing 
reservoir releases for maximizing crop yield from the command area. 

2 Study Area and Data Collection 

2.1 Description of Study Reach 

After the Narmada, the Tapi River is India’s second biggest west-flowing river. Tapti 
and Surya Putri are other names for the Tapi River. From the Multai forest in Betul 
district, the Tapi River flows into Madhya Pradesh, Maharashtra, and Gujarat. The 
elevation at the start is approximately 752 m above mean sea level. The Tapi River 
flows 724 km from its sources to its mouth in the ocean. It runs 282 km through 
M.P., 228 km through Maharashtra, and 214 km through Gujarat before joining the
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Fig. 1 Index map of study area 

Arabian Sea near Dumas. The Tapi basin is having a total catchment area of 65,145 
km2, out of which 79.1% of the area is in Maharashtra, 15% of the area is in Madhya 
Pradesh, and 5.9% of the area is in Gujarat. Gujarat’s second largest multipurpose 
project is the Ukai-Kakrapar Irrigation Project on the Tapi River. The Kakrapar weir 
(latitude 21°16,9.72,,N and longitude 73°21,54.66,,E) lies 24 km downstream of 
the Ukai Dam (latitude 21°15,12.21,,N and longitude 73°35,35.49,,E), which served 
as multipurposes, like irrigation, hydropower, domestic and industrial sectors, and 
hydropower. 

The current study considers the ULBCA, URBCA, KLBCA, and KRBCA as 
shown in Fig. 1. The gross command area (GCA) of ULBCA, URBCA, KLBCA, 
and KRBCA is 1,21,458 ha, 84,686 ha, 2,47,000 ha, and 1,18,838 ha, respectively, 
and culturable command area (CCA) of ULBCA, URBCA, KLBCA, and KRBCA 
is 66,168 ha, 48,117 ha, 1,45,335 ha, and 71,937 ha, respectively. 

2.2 Data Source and Collection of Data 

The data required for present research work were collected from different agen-
cies/institutions in India. The data required for present study and their sources are 
described in Table 1.
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Table 1 Data sources for the present study 

Data type Data source

• Crop-wise irrigation area in various 
command areas for Rabi, Kharif, and hot 
seasons:

• KLBMC command area
• KRBMC command area
• ULBMC command area
• URBMC command area

• Surat canal division, Surat, Gujarat
• Ambica division, Navsari, Gujarat
• Kakrapar right bank canal division, Surat, 
Gujarat

• Ukai left bank canal division, Valod, Gujarat
• Ukai right bank canal division, Ankleshwar, 
Gujarat

• Meteorological data
• RHmin and RHmax(relative humidity)
• Tmax and Tmin (temperature)
• AW (average wind speed)
• Daily sunshine hours
• Rainfall

• Navsari Agricultural University, Navsari, 
Gujarat

• State Water Data Center, Hydrology Project, 
Gandhinagar, Gujarat

• Crop coefficient • Navsari Agricultural University, Navsari, 
Gujarat 

3 Methodology 

3.1 Reference Evapotranspiration (ET0) 

When the reference surface is not depleted of water, the rate of evapotranspiration 
is called reference evapotranspiration. A hypothetical grass reference crop that is 
constantly rising and entirely shading the ground is used as the reference surface, with 
parameters such as 0.12 m crop height, surface resistance is set at 70 s/m, and albedo 
is 0.23. The ‘FAO Irrigation and Drainage Paper No. 56 for Crop Evapotranspiration’ 
recommends the Penman–Monteith method for calculating ET  o. The FAO Penman– 
Monteith approach was used to determine ETo Eq. (1) for the daily time scale. 

ET  o  = 
0.408∗Δ∗(Rn − G) + γ ∗( 900 

T +273 )∗u2∗(es − ea)
Δ + γ ∗(1 + 0.34∗u2) (1) 

ETo is an abbreviation for reference evapotranspiration [mm day-1], T denotes 
mean daily air temperature at 2 m elevation [°C], u2 denotes wind speed at 2 m 
elevation [m s−1], Rn is an abbreviation for net radiation at the crop surface [MJ 
m-2 day-1], es denotes saturation vapor pressure [kPa], G is an abbreviation for soil 
heat flux density [MJ m-2 day-1], and ea denotes actual vapor pressure [kPa], and 
Eqs. (2 and 3) are used to compute the mean saturation vapor pressure (es). 

e◦(T ) = 0.6108*exp
(

17.27∗T 
T + 237.3

)
(2) 

es = 
e∗(Tmax) + e∗(Tmin) 

2 
(3)
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where Tmax denotes the highest temperature (°C), Tmin denotes the minimum temper-
ature (°C), and es denotes the saturation vapor pressure [kPa]. The computed real 
vapor pressure (ea) is derived using Eq. (4). 

ea = 
eo(Tmin) RHmax 

100 + eo(Tmax) RHmin 
100 

2 
(4) 

where RHmax is the highest relative humidity (%), RHmin is the minimum relative 
humidity (%), and ea is the actual vapor pressure (kPa). Equation (5) is used to  
compute the slope of the saturation vapor pressure curve.

Δ = 
4098∗0.6108∗ exp

(
17.27T 
T +237.3

)
(T + 237.3)2 

(5) 

where Δ is the slope of the saturation vapor pressure curve at air temperature T [kPa 
°C−1], and T is the air temperature in °C. 

The rate of longwave energy emission is proportional to the surface’s absolute 
temperature raised to the fourth power; this connection is defined by the Stefan– 
Boltzmann equation, which is represented as Eq. (6). 

Rnl = σ∗ (Tmax + 273.3)4 + (Tmin + 273.3)4 

2
∗(
0.34 − 0.14 

√
ea

)

∗
(
1.35 

Rs 

Rso 
− 0.35

)
(6) 

where Rn = Rns−Rnl; Rns = 0.77 × Rs; Rs = 0.75 × Ra; Rns is the net shortwave 
radiation (MJ/(m2.d)); Rnl denotes net longwave radiation (MJ/(m2.d)), whereas 
Rs denotes incoming solar radiation (MJ/(m2.d)). The Stefan–Boltzmann constant 
(4.90310–9 MJ/(m2.d)); Tmax and Tmin are the maximum and lowest temperatures 
(°C), respectively; and Rso is the solar radiation from the clear sky (MJ/m2. d). 

3.2 Crop Water Requirement (CWR) 

Crop water demand is the quantity of water lost from a crop owing to evapotranspi-
ration (ETc), which may be determined using Eq. (7): 

CWR = ETc = Kc × ETo (7) 

ETc denotes crop evapotranspiration (mm), Kc denotes crop coefficient at a certain 
development stage (dimensionless), and ETo denotes reference evapotranspiration 
(mm).
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3.3 Effective Precipitation (Peff) 

The Soil Conservation Service (SCS) method, as defined in Eq. (8) below, was used 
to determine effective rainfall. 

Pefft = 
Pt 
125

∗(125 − 0.2∗Pt ) Pt ≤ 250 mm 

Pefft = 125 + 0.1∗Pt Pt > 250 mm (8) 

where Pefft = effective rainfall in tth month, and Pt = rainfall in tth month. 

3.4 Net Irrigation Requirement (NIR) 

Net irrigation need is the amount of irrigation water required to fulfill a crop’s evap-
otranspiration demand as well as additional needs such as leaching (special needs), 
as expressed in Eq. (9). 

NIR = CWR − Peff + Special needs (9) 

Filed irrigation requirement (FIR) and gross irrigation water requirement are 
calculated as per Eqs. (10) and (11). 

FIR = 
NIR 

na 
(10) 

GIWR = 
FIR 

nc 
(11) 

where NIR = net irrigation requirement; FIR = field irrigation requirement; GIWR 
= gross irrigation water requirement; na = application efficiency (60% for flood 
irrigation); and nc = conveyance efficiency (70% considered for the present study). 

4 Data Analysis, Results, and Discussions 

4.1 Estimation of ET0 

The potential evapotranspiration was calculated using 10 years’ (2010 to 2019) 
climate data by FAO 56. The weighted average potential evapotranspiration for each 
canal command area was estimated using Thiessen polygon approach (Subramanya 
K., 1991). The weighted area was calculated using ArcGIS 10.5. On daily time
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Fig. 2 Bimonthly ETo in a KLBCA, b KRBCA, c ULBCA, and d URBCA. The box and whisker 
plots show the median, first (lower) quartile, third (upper) quartile, minimum score, and maximum 
score 

scale, the ETo values were calculated and converted to bimonthly (shown in Fig. 2). 
The maximum value of ETo in May, KLBCA, KRBCA, ULBCA, and URBCA is 
122.80 mm, 135.72 mm, 149.5 mm, and 150.99 mm respectively, and the corre-
sponding minimum value is 34.20 mm (September), 35.11 mm (August), 35.85 mm 
(December), and 35.67 mm (August), respectively. 

4.2 Estimation of Monthly Effective Rainfall (Peff) 
and Gross Irrigation Water Requirement (GIWR) 

i. Monthly effective rainfall was calculated using SCS method (CROPWAT soft-
ware), the maximum effective rainfall in KLBCA, KRBCA, ULBCA, and 
URBCA has been calculated as 206.90 mm (July), 182.44 mm (August), 
214.53 mm (July), and 176.99 mm (August), respectively, which are shown in 
Fig. 3. The maximum monthly gross irrigation water requirement in KLBCA, 
KRBCA, ULBCA, and URBCA has been found to be 269.43 MCM (April), 
205.42 MCM (May), 149.31 MCM (May), and 103.72 MCM (March), respec-
tively, which are shown in Fig. 4.
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Fig. 3 Effective rainfall (Peff) in a KLBCA, b KRBCA, c ULBCA, and d URBCA 

Fig. 4 Monthly GIWR in a KLBCA, b KRBCA, c ULBCA, and d URBCA
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Fig. 5 Bimonthly CWR in a KLBCA, b KRBCA, c ULBCA, and d URBCA 

4.3 Estimation of Crop Water Requirement (CWR) 

CWR values for several crop kinds were estimated independently for the Ukai-
Kakrapar command region from 2010 to 2019. Maximum bimonthly major crop 
(sugarcane) in KLBCA, KRBCA, ULBCA, and URBCA has been estimated to be 
3.24 million mm Ha, 3.36 million mm Ha, 2.31 million mm Ha, and 1.79 million 
mm Ha, respectively, and other crop CWR is shown in Fig. 5. 

5 Conclusions 

The following are the important findings of the preceding study: 

i. The maximum effective rainfall in KLBCA, KRBCA, ULBCA, and URBCA 
has been estimated to be 206.90 mm (July), 182.44 mm (August), 214.53 mm 
(July), and 176.99 mm (August), respectively. 

ii. The maximum monthly gross irrigation water requirement in KLBCA, KRBCA, 
ULBCA, and URBCA has been found to be 269.43 MCM (April), 205.42 MCM 
(May), 149.31 MCM (May), and 103.72 MCM (March), respectively. 

iii. The sugarcane has been found to have maximum CWR values in the command 
area, and its bimonthly CWR values in KLBCA, KRBCA, ULBCA, and URBCA 
have been estimated to be 3.24 million mm Ha, 3.36 million mm Ha, 2.31 million 
mm Ha, and 1.79 million mm Ha, respectively, for sugarcane crop.
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iv. Such estimated crop water requirement would be useful for development of 
optimal irrigation planning in the command area. 
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Estimation of Crop Evapotranspiration 
and Irrigation Water Requirement 
for Dharoi Command Area, India 

Payal B. Bhujbal, K. B. Baladaniya, P. L. Patel, and P. V. Timbadiya 

Abstract The Sabarmati River basin is one of India’s most water-scarce delicate 
basins as far as water availability is concerned. The major source of water in Dharoi 
command area is storage of water in Dharoi reservoir. The mean rainfall in the 
Dharoi command area is 633 mm. Optimal water allocation plays a crucial role in 
irrigation water management. In this study, crop water requirement and irrigation 
water requirement of different crops are estimated for Dharoi left bank main canal 
(LBMC) and Dharoi right bank main canal (RBMC) of the command area using the 
data of period 2001–2016. FAO Penman–Monteith method is used for estimating 
reference crop evapotranspiration (ETo) in the command area. The estimated values 
of reference evapotranspiration (ETo) have been multiplied with crop coefficient (Kc) 
of respective crops to obtain their crop evapotranspiration (ETc) or consumptive use 
on daily time scale. Further, effective rainfall is estimated using SCS method on 
monthly time scale. It is subtracted with ETc of same time scale to obtain the net 
irrigation requirement (NIR) of the crops in the command area. The results showed 
that lower ETo values were found in month of August, while maximum values were 
reported for May month. Maximum monthly NIR of Dharoi LBMC and RBMC 
command area is found to be 7.63 MCM and 39.34 MCM, respectively. 
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1 Introduction 

The water is one of the precious resources and became vulnerable due to changing 
climatic condition and anthropogenic changes across the globe. Nature has limited 
amount of water accessible for our usage. Spatiotemporal availability of water has 
become another challenge for the water user. As water consumption is rising day by 
day due to overgrowing population, there is a need to have proper water planning 
to cater the increasing demands of water. Agriculture activity consumes major part 
of the water in India up to 81 percent, and hence, efficient water management in 
agriculture sector should be the top focus [13]. Due to urbanization, climate vari-
ability, and overgrowing population, water competition has increased significantly in 
India. For an agricultural field to grow the crops effectively along with rainfall, some 
supplementary water is required which is supplied through irrigation. Some soils 
have low water holding capacity which requires frequent irrigation. The command 
areas having hot weather with low rainfall require significant irrigation. Rabi crops 
which are mostly cultivated in dry and winter seasons need irrigation. Proper irri-
gation scheduling increases crop productivity, and fallow land may be converted to 
cultivable land. Canal irrigation in one of the prevalent irrigation systems in India. 
It is most popular irrigation system in India after well irrigation [7]. Irrigation water 
management is a challenging task which includes optimal water allocation to the 
various crops grown in the command area. 

The optimal irrigation planning of a command area can be formulated using the 
metaheuristics approaches. The availability of water for the irrigation is one of the 
prerequisites for development of optimal irrigation planning of a command area. The 
present study aims to obtain the net irrigation requirement of the Dharoi command 
area using the availability of data on cropping pattern, rainfall, and weather data of 
the same command area. The results will be useful for optimal water allocation and 
increasing the efficiency of the irrigation system. 

2 Study Area and Data Collection 

2.1 Study Area 

The Sabarmati River, one of India’s major west-flowing rivers, rises from the Aravalli 
Mountains at an elevation of 762 m near Tepur in Rajasthan’s Udaipur district. The 
Sabarmati basin spans the states of Rajasthan and Gujarat, covering 21674 km2 with 
maximum length and width of 300 and 150 km, respectively. Sabarmati basin lies 
between 70°58, to 73°51, east and 22°15, to 24°47, north, and the total length of 
river from origin to outfall into the Arabian Sea is 371 km. The Sabarmati (Dharoi) 
irrigation project is located on the Sabarmati River near village Dharoi in Kheralu 
taluka of Mehsana district, which is 103 km from the river’s source. The project 
comprised a composite dam across Sabarmati River having ogee-type spillway of
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Fig. 1 Index map of study area 

length 219 m. The length at the top of dam is 1207 m, and maximum height above 
the lowest point of foundation is 46 m. The catchment area of this project is 5539.98 
square kilometers with live storage capacity of the reservoir which is 776.5 MCM 
and gross storage capacity which is 908.6 MCM. The estimated cost of the project is 
Rs. 125.74 crores. Total CCA of the project is 57.99*103 ha with ultimate irrigation 
potential of 64.75*103 ha. The index map of the Dharoi catchment is shown in Fig. 1. 

Despite significant surface water supply difference, the cropping pattern in the 
Dharoi Irrigation Project is fairly similar; groundwater is exploited to make up for 
the deficiency in surface water supplies. Major crops present in Dharoi command 
area are castor, wheat, cotton, mustered, fennel, fodder, sesame. Cropping patterns 
and area allocated to various crops are estimated to remain relatively unchanged, 
although increasing surface water availability combined with agricultural support 
will result into increase in yields.
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2.2 Data Collection 

2.3 Meteorological Data 

The daily meteorological data from 2001 to 2016 of Dharoi catchment are collected 
from State Water Data Center (SWDC), Gandhinagar. The data included rainfall data 
of various stations and other weather data. Badoli, Dharoi (Sabarmati Dam), Himat-
nagar, Kabola, Khandiol, Khedbrahma, Kundla campo, Lalpur, Mankadi, Prantij, 
Ransipur, Red Laxmi, Sabli, Vajepur, Virpur are the rain gauging stations contributed 
to Dharoi LBMC. Ambaliyasan, Dharoi (Sabarmati Dam), Dhinoj, Gadh, Kanodar, 
Katosan (Dhanpura), Khandosan, Lalpur, Mansa, Patan, Prantij, Ransipur, Ranuj, 
Red Laxmi, Sitapur, Umbari, Vadgam are the rain gauging stations contributed to 
Dharoi RBMC as shown in Fig. 2. 

Daily maximum temperature, daily minimum temperature, average wind speed, 
daily sunshine hours, daily maximum relative humidity, daily minimum relative 
humidity are included in weather data. Dharoi (Sabarmati Dam), Kabola, Khan-
diol, Khedbrahma, Mankadi, Prantij, Red Laxmi, Vajepur are the weather stations 
contributed to Dharoi LBMC, and Dharoi (Sabarmati Dam), Gandhinagar, Khandiol, 
Prantij, Red Laxmi, Sanand are the weather stations contributed to Dharoi RBMC 
as shown in Fig. 3.

Fig. 2 Rainfall stations in study area 
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Fig. 3 Weather stations in study area 

2.4 Crop Data 

The crop data included crop coefficients and present cropping pattern in Dharoi 
command area. These data are collected from Dharoi irrigation office, Visnagar. 

2.5 Weighted Average Data 

The station rainfall data are converted to areal rainfall using Thiessen polygon 
method. Thiessen polygon is created using rainfall stations to determine the area 
that is contributed to each station. The weightages are given to the stations according 
to the area contributed to the rainfall as per Thiessen polygon. Weighted average 
rainfall is calculated on daily basis. In similar manner, weighted average reference 
evapotranspiration is calculated.
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3 Methodology 

3.1 Reference Evapotranspiration (ETo) 

ETo is estimated for daily time scale using Eq. (1). The data required for calculations 
are daily maximum and minimum temperatures, relative humidity, actual duration 
of sunshine and average wind speed [5]. 

ETo = 
0.408Δ(Rn − G) + γ 900 

T +273 u2(es − ea)
Δ + γ (1 + 0.34u2) 

(1) 

where ETo is reference evapotranspiration [mm/day], Rn is net radiation at the crop 
surface [MJ/m2/day], G is soil heat flux density [MJ/m2/day], T is mean daily air 
temperature at 2 m height [°C], u2 is wind speed at 2 m height [m/s], es is satu-
ration vapor pressure [kPa], ea is actual vapor pressure [kPa], (es−ea) is saturation 
vapor pressure deficit [kPa], Δ is slope vapor pressure curve [kPa/°C], and γ is 
psychrometric constant [kPa/°C]. 

es is calculated using maximum and minimum temperatures as per Eq. (2) and 
Eq. (3), and ea is given by Eq. (4). 

eo (T ) = 0.6108 exp
(

17.27T 

T + 237.3

)
(2) 

es = 
e(Tmax) + e(Tmin) 

2 
(3) 

where Tmax is the maximum temperature (°C), Tmin is the minimum temperature 
(°C), and es is saturation vapor pressure [kPa]. 

ea = 
e(Tmin) RHmax 

100 + e(Tmax) RHmin 
100 

2 
(4) 

where RHmax is maximum relative humidity [%], RHmin is minimum relative 
humidity [%], and ea is actual vapor pressure [kPa].

Δ = 
4098(0.6108 exp

(
17.27T 
T+237.3

)
(T + 237.3)2 

(5) 

whereΔ is slope of saturation vapor pressure curve at air temperature T [kPa/°C], and 
T is air temperature [°C] in Eq. (5). Net radiation, net shortwave radiation, incoming 
solar radiation, and net longwave radiation are calculated using Eqs. (6), (7), (8) and 
(9), respectively. 

Rn = Rns − Rnl (6)
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Rns = 0.77 × Rs (7) 

Rs = 0.75 × Ra (8) 

Rnl = σ 
(Tmax + 273.3)4 + (Tmin + 273.3)4 

2 

× (
0.34 − 0.14 

√
ea

) ×
(
1.35 

Rs 

Rso 
− 0.35

)
(9) 

where Rns is the net shortwave radiation [MJ/m2/day]; Rnl is the net longwave radia-
tion [MJ/m2/day]; Rs is the incoming solar radiation [MJ/m2/day]; Ra is the extrater-
restrial solar radiation [MJ/m2/day], σ is the Stefan–Boltzmann constant [4.903 × 
10–9 MJ/m2/day]; Tmax and Tmin are the maximum and minimum temperatures, 
respectively [°C]; and Rso is the clear sky solar radiation [MJ/m2/day]. 

3.2 Crop Water Requirement 

It is the amount of water lost from a crop during evapotranspiration (ETc) and given 
by Eq. (10) [5]. 

CWR = ETc = Kc × ETo (10) 

where ETc is the crop evapotranspiration [mm]; Kc is the crop coefficient at a partic-
ular growing stage (dimensionless); and ETo is the reference evapotranspiration 
[mm]. 

3.3 Effective Precipitation (Peff) 

Effective precipitation (Peff) is calculated for daily scale using Soil Conservation 
Service (SCS) method [3] in Eqs. (11) and (12). 

Peff = 
P × (125 − 0.2P) 

125 
P ≤ 250 mm (11) 

Peff = 125 + 0.1 × P P  > 250 mm (12) 

where Peff is monthly average effective rainfall, and P is total monthly rainfall.
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3.4 Net Irrigation Requirement (NIR) 

NIR is IWR to meet evapotranspiration need of a crop as well as other needs such 
as leaching (special needs) as Eq. (13) [5]. 

NIR = CWR − Peff + Special needs (13) 

where NIR is net irrigation requirement [mm], CWR is crop water requirement [mm], 
and Peff is effective rainfall [mm]. 

4 Results and Discussions 

4.1 Estimation of ETo 

On daily time scale, the ETo values are calculated and later converted to monthly 
scale. The maximum value of ETo is found in May (i.e., 481.85 mm) and the minimum 
value is observed in August (i.e., 78.88 mm) for Dharoi LBMC command area. The 
maximum value of ETo is found in May (i.e., 471.62 mm) and the minimum value is 
observed in August (i.e., 78.28 mm) for Dharoi RBMC command area as per Fig. 4. 
X-axis is plotted as per calendar year (January to December). 
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Fig. 4 ETo of Dharoi a LBMC b RBMC command area
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Fig. 5 CWR of Dharoi a LBMC b RBMC command area. (where 1 = cotton/tobacco; 2 = 
castor/raido; 3 = wheat; 4 = other; 5 = variyali/vegetable; 6 = juwar/bajari) 

4.2 Estimation of CWR 

CWR value for Dharoi LBMC and Dharoi RBMC command areas is computed 
separately for each crop from 2001 to 2016. Maximum yearly CWR values for 
cotton/tobacco (kharif + rabi), castor/raido (kharif + rabi), wheat, and other 
(kharif + rabi) present in LBMC command area are 2494.3, 1146.8, 614.7, and 
2763.2 mm, respectively, and minimum value observed is 436.7 for wheat. Maximum 
yearly CWR values for cotton/tobacco (kharif + rabi), castor/raido (kharif + rabi), 
variyali/vegetable, juwar/bajari, mustered/ rajko, wheat, and other (kharif + rabi) 
present in RBMC command area are 1015.9, 1097.5, 862.6, 477.2, 563.3, 624.6, and 
1455.5 mm, respectively, and minimum value observed is 282.6 mm for juwar/ bajari 
as shown in Fig. 5. 

4.3 Estimation of the Peff and NIR 

Irrigation water requirement is decided by effective rainfall. Lower the effective 
rainfall, higher the water required for irrigation. Maximum monthly NIR of Dharoi 
LBMC and RBMC command areas is 7.63 MCM and 39.34 MCM, respectively, as 
per Fig. 6. The X-axis is plotted as per calendar year (January to December).
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Fig. 6 NIR of Dharoi a LBMC b RBMC command area 

5 Conclusions 

In the present study, crop water requirement and irrigation water requirements of 
Dharoi LBMC and RBMC command areas are computed. The following are the key 
findings of the present study: 

• The Dharoi LBMC and RBMC command areas have higher reference evapo-
transpiration (ETo) in month of May (481.85 mm and 471.62 mm for LBMC 
and RBMC command areas, respectively) and lower ETo in August (78.88 and 
78.28 mm for LBMC and RBMC command areas, respectively). 

• From June month onward, ETo values are found to decrease consistently till 
December month. 

• Maximum monthly NIR of Dharoi LBMC and RBMC command areas is 7.63 
and 39.34 MCM, respectively, during January month. 

Acknowledgements The authors are thankful to State Water Data Center (SWDC) and Dharoi irri-
gation office, Visnagar, for providing necessary daily meteorological data and crop data, respectively, 
to conduct the present study. 

References 

1. Allen RG, Pereira LS, Smith M, Raes D, Wright JL (2005) FAO-56 dual crop coefficient method 
for estimating evaporation from soil and application extensions. J Irrig Drain Eng 131(1):2–13 

2. Allen RG (2006) FAO irrigation and drainage paper crop by 56 
3. Ashofteh PS, Haddad OB, A Mariño M (2013) Climate change impact on reservoir performance 

Indexesin agricultural water supply. J Irrigation and Drainage Eng 139(2):85–97 
4. Beshir S (2017) Review on estimation of crop water requirement, irrigation frequency and 

water use efficiency of cabbage production. J Geosci Environ Protect 05(07):59–69



Estimation of Crop Evapotranspiration and Irrigation Water … 407

5. FAO (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO 
irrigation and drainage paper 56. Rome, Italy 

6. FAO (2009) Cropwat 8.0 for windows user guide. Rome, Italy 
7. Garg SK (2005) Irrigation engineering and hydraulic structure 
8. Khaydar D, Chen X, Huang Y, Ilkhom M, Liu T, Friday O, Farkhod A, Khusen G, Gulkaiyr O 

(2021) Investigation of crop evapotranspiration and irrigation water requirement in the lower 
Amu Darya River Basin Central Asia. J Arid Land 13(1):23–39 

9. López-Urrea R, Montoro A, Mañas F, López-Fuster P, Fereres E (2012) Evapotranspiration 
and crop coefficients from lysimeter measurements of mature ‘Tempranillo’wine grapes. Agric 
Water Manag 112:13–20 

10. Mehta R, Pandey V (2016) Crop water requirement (ETc) of different crops of middle Gujarat. 
J Agrometeorol 18(1):83–87 

11. Moratiel R, Martínez-Cob A, Tarquis AM, Snyder RL (2016) Soil water balance correction 
due to light rainfall, dew and fog in Ebro river basin (Spain). Agric Water Manag 170:61–67 

12. Srivastava RK, Panda RK, Chakraborty A, Halder D (2018) Comparison of actual evapotran-
spiration of irrigated maize in a sub-humid region using four different canopy resistance based 
approaches. Agric Water Manag 202:156–165 

13. Surendran U, Sushanth CM, Mammen G, Joseph E J (2015) Modelling the crop water require-
ment using FAO-CROPWAT and assessment of water resources for sustainable water resource 
management: a case study in Palakkad District of Humid Tropical Kerala, India. Aquatic Proc 
4(Icwrcoe):1211–1219 

14. Tan M, Zheng L (2019) Increase in economic efficiency of water use caused by crop structure 
adjustment in arid areas. J Environ Manage 230:386–391



Spatiotemporal Variation of Interception 
in an Agriculture 
Watershed—Tadepalligudem, West 
Godavari, India 

Rajkumar Tammisetti, Reshma Talari, and Savitha Chirasmayee 

Abstract Interception refers to the quantity of rainfall prevented by vegetation 
from reaching the soil surface, which is one of the significant and integral parts 
of the hydrological cycle. Most hydrological models depend on the water balance 
components, where the rainfall intercepted by vegetation is considered a loss. It is 
an essential and controlling parameter in hydrological modeling studies and flood 
forecasting analysis, thus establishing that its impacts at local, regional, and global 
scales are imminent. Remote sensing is one of the advanced techniques that helps 
generate a spatiotemporal variation of interception by vegetation canopy. The present 
study aimed to generate spatiotemporal variation interception maps for an agricul-
tural watershed covering 53.75 km2 of the area near Tadepalligudem, West Godavari 
district, Andhra Pradesh. The study area is covered with vegetation cover that consti-
tutes about 40–55% of the total catchment; thus, interception is a critical component 
in hydrological modeling studies in this watershed. Landsat 8 datasets acquired from 
USGS EarthExplorer during different months of 2020 are used in this study. Leaf 
area index (LAI) and canopy storage capacity (Smax) are the influential parameters in 
estimating canopy rainfall interception. The interception maps at varying spatial and 
temporal scales are generated using MATLAB programming platform. The result 
obtained gives a better understanding of the spatiotemporal variation of interception 
and its importance at a regional scale. The canopy rainfall interception model derived 
can be applied to various agriculture watersheds. Further, results obtained from the 
analysis can be used in rainfall–runoff modeling and water resource management 
studies. 
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1 Introduction 

Interception is one of the critical parameters of the hydrological process, which indi-
cates the amount of precipitation lost due to vegetation interception. Interception is a 
crucial process because it influences other hydrological processes like an infiltration, 
evapotranspiration, runoff generation, and flood generation [1, 2]. Considering inter-
ception by vegetation as an essential parameter of the hydrological processes in the 
water balance cycle helps achieve accurate runoff estimation analysis [3]. Intercep-
tion also plays a vital role in water resource management and climate change. The 
appraisal of vegetation canopy interception is remarkably significant for describing 
and interpreting water cycling and has possible suggestions for land use–land cover 
planning and water and soil conservation [4]. 

The interception by vegetation cannot be determined directly. Interception is 
usually estimated as the difference between total rainfall and the sum of stem flow 
and through fall [5, 6] which is generally determined by studying an individual 
plant or group of plantations. Although collecting data from individual plants or 
groups of plantations gives high estimation accuracy, it is an expensive and time-
consuming process and also interpolating it to a large study area becomes a difficult 
task. Modeling provides an excellent solution to generate a spatiotemporal variation 
of interception to a large study area in a short time [7, 8]. Canopy storage capacity 
(Smax) is one of the critical parameters mentioned in best existing models like the 
Rutter model [9, 10] and Gash model [11], which indicated that excess rainfall would 
most likely result in water overflow through the canopy and toward the canopy ground 
surface [3, 5]. So, canopy storage capacity controls the rainfall interception by vege-
tation cover [12–14]. Studies showed that canopy storage capacity could be derived 
using leaf area index (LAI), which is generated using remote sensing data [15, 16]. 
Remote sensing is emerging as an effective tool for studying spatial and temporal 
variations of the land surface, which covers a wide range of vegetation indices used 
in this study. The study area (Tadepalligudem region) falls tropical part of India and 
is also close to Godavari delta regions with very fertile soil. The study area is covered 
a quality amount of vegetation throughout the year, so rainfall interception by the 
canopy plays a significant part in runoff analysis. 

Most studies have been focused on estimating interception using a Geographic 
Information System (ArcGIS), which requires you to give the numerical equations as 
input in using a Raster Calculator tool each time to perform the analysis. The present 
study is aimed to develop a canopy rainfall interception model using a program-
ming language for the estimation of rainfall loss due to vegetation in the form of 
interception. Landsat 8 satellite data with 30 m resolution is used as an input in the 
model. Maps are generated for different periods in 2019, 2020 and 2021, using the 
canopy rainfall interception model for three different precipitation scenarios. This 
model gives a better understanding of the relation between canopy storage capacity 
(Smax), canopy rainfall interception (Sv), and precipitation. This estimated intercep-
tion by vegetation could be further used in assessing the water balance cycle and 
hydrological analysis within this study region.
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2 Materials and Methods 

2.1 Study Area 

The study area falls between 81° 28, and 81° 32, 30,, east longitude and 16°48,
30,, and 16° 54, 30,, north latitude. Figure 1 shows the location of the study area 
in the Tadepalligudem region of West Godavari district (Andhra Pradesh). The total 
area covered under the study region is about 53.75 km2. It experiences tropical 
climate conditions with summer temperatures ranging from 38° to 45°C and winter 
temperatures ranging from 15° to 28°C. 

The soil distribution in the region mainly falls under the clay soil’s (black cotton 
soils) category with a mix of silt. The grounds are very fertile, which produce about 
two to three harvests in a year. Rice is the major crop in this region. Though there are 
enough rainfalls in the area, most agriculture depends on groundwater due to the lack 
of proper rainfall water storage, watershed management practices, and distribution 
network.

Fig. 1 Location map of study area 
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Table 1 Details of data used 

Type Details Source 

Toposheets Nos. 65 H/9 SW and 65 H/5 SE at 
1:25,000 scale 

Survey of India (SOI) 

Satellite data Landsat 8 band data for the years 2019, 
2020 and 2021 at 30 m resolution 

USGS EarthExplorer 

Rainfall data Rainfall in mm Automatic Weather Station at NIT 
Andhra Pradesh, Tadepalligudem 

2.2 Data Collection 

Table 1 shows the details of the data used and its sources. Toposheets of no’s 65 H/9 
SW and 65 H/5 SE, which are of 1:25,000 scale, were purchased from the Survey of 
India (SOI). 

These toposheets are used in delineating watershed boundary as shown in Fig. 1. 
USGS EarthExplorer, an open-source (https://earthexplorer.usgs.gov/), is used to 
acquire the Landsat 8 satellite data. Downloaded Landsat 8 cloud-free band datasets 
are covering the study area during November 2019, October 2020, and March 2021 
which are used in the study. Rainfall data used in the study are collected from Auto-
matic Weather Station which located at 16O50,02.7,, north latitude and 81O29,09,,
east longitude covering the study region. 

2.3 Methodology 

Figure 2 shows the flowchart representation of the methodology followed in this 
study. Watershed boundary is delineated using the toposheets purchased. The 
boundary delineated is further used on Landsat 8 band data to clip the datasets to the 
boundary scale. Landsat 8 datasets are used in the generation of Normalized Differ-
ence Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) maps. 
SAVI is used in the generation of LAI maps; this LAI is further used in the gener-
ation of canopy storage capacity (Smax). LAI, canopy storage capacity, and rainfall 
data are used in the interception model to generate spatiotemporal variation maps of 
canopy rainfall interception.

https://earthexplorer.usgs.gov/
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Data 
Collection 

Toposheets data from 
Survey of India (No. 65 
H/9 SW and 65 H/5 SE) 

Landsat 8 band data 
sets from USGS Earth 

Explorer 

Rainfall data from 
Automatic Weather 
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Delineating 
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Difference Vegetation 
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Canopy Storage 
Capacity (Smax) 

Canopy Rainfall 
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Spatiotemporal variation of 
canopy rainfall Interception 

(Sv) maps 

Fig.2 Flow chart of methodology
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2.4 Selection of Input parameters 

2.5 Normalized Difference Vegetation Index (NDVI) 

Normalized Difference Vegetation Index (NDVI) is one of the indexes derived using 
remote sensing data. It is a dimensionless parameter that ranges from −1 to  + 1. It is 
used as an indicator to understand the density of vegetation cover. The higher value 
of NDVI indicates healthy vegetation cover. The NDVI map for Landsat 8 satellite 
is generated using Eq. (1). 

NDVI = 
Band 5 − Band 4 
Band 5 + Band 4 

(1) 

Band 5 indicated near-infrared (NIR) band, and Band 4 indicated red band. 

2.6 Soil-Adjusted Vegetation Index (SAVI) 

Soil-Adjusted Vegetation Index (SAVI) is another vegetation index derived using 
remote sensing data. It is used as a correction to NDVI to minimize the impact of soil 
brightness in low vegetation cover regions by using the soil brightness correction 
factor. SAVI is given by Delegido et al. [17], as shown in Eq. (2). 

SAVI = (Band 5 − Band 4) 
(Band 5 + Band 4 + L) 

× (1 + L) (2) 

Band 5 indicated the near-infrared (NIR) band, Band 4 indicated the red band, 
and L is the soil brightness correction factor. L is taken as 1 in case of no vegetation, 
0.5 in moderate vegetation conditions, and 0 in high dense vegetation scenarios [17]. 
In this study area, L is taken as 0.5. 

2.7 Leaf Area Index (LAI) 

Leaf area index (LAI) is used to indicate the rate of vegetation growth in an area. It 
is defined as the total one-sided leaf area per unit ground surface area [18, 19]. LAI 
from the METRIC method is given by De Wasseige et al. [20], as shown in Eq. (3). 

LAI = −  
ln( 0.69−SAVI 

0.59 ) 
0.91 

(3) 

where SAVI is the Soil-Adjusted Vegetation Index.
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2.8 Canopy Rainfall Interception Model 

The primary factor in estimation interception by vegetation is the canopy storage 
capacity (Smax). Canopy storage capacity, also known as the maximum interception 
storage capacity, is given by [21], as shown in Eq. (4). 

Smax = 0.935 + (0.498 × LAI) − (
0.00575 × LAI2

)
(4) 

where LAI is the leaf area index. 
Canopy cumulative interception during a rainfall event is given by Aston [22] 

which is modified from [23] as shown  in  Eq. (5). 

Sv = Smax ×
[
1 − e−η Pcum 

Smax

]
(5) 

where Sv represents canopy rainfall interception in mm, Pcum shows the value of 
cumulative precipitation in mm for a rainfall event, and η is the correction factor (η 
= 0.046 × LAI). 

The assumption made by Aston [22] for  Eq. (5) is: if cumulative rainfall is equal 
to zero, then canopy rainfall interception is also zero. But, in the case of cumulative 
rainfall approaching infinity, then canopy rainfall interception is equal to canopy 
storage capacity. 

3 Results and Discussions 

3.1 Spatiotemporal Variation Patterns of NDVI 

NDVI maps are generated using Eq. (1). The maps are generated for the years 2019, 
2020, and 2021 as shown in Fig. 3. It is observed that the value of NDVI is within the 
range of −1 to  + 1. The maximum value of NDVI is 0.548, 0.39, and 0.45 in the year 
2019, 2020, and 2021, respectively. There is a decrease in NDVI value in the year 
2020, because it is crop harvesting and sowing period. The study area contains fertile 
soil with good agricultural conditions, and it is observed that vegetation coverage 
is seen at almost 75% (considering three months as the gap between harvesting and 
sowing for each crop season) of the year. It is noted that the maximum NDVI value 
ranges from 0.4 to 0.55 in the study area, indicating a good density of vegetation 
cover in the study area.
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Fig. 3 Spatial patterns of NDVI in study area 

3.2 Spatiotemporal Variation Patterns of LAI 

LAI maps are generated using Eqs. (3) and (4). LAI maps for the years 2019, 2020 
and 2021 are shown in Fig. 4. The LAI indicates the growth rate of vegetation, so 
the high value indicates a reasonable growth rate. It can be observed that for the year 
2019, though the maximum LAI value is 9.55, the area under that category of high 
LAI value is very low; most of the study area is in the range of −0.325 to 4.612, so 
the average LAI is approximately 2.143. For 2020, it can be spotted that most of the 
study area is under the LAI value of 0.75 or below. But, for 2021, the maximum LAI 
value of 4.07 is observed in 50% of the study area. The average LAI value decreased 
from 2.143 in 2019 to 0.75 in 2020, mainly because the data collected for 2020 are 
in October, during which seasonal crop change occurs. The average value of LAI in 
2021 increased to 2.01. LAI values generated can support the study area which has 
good fertile soil, which can harvest two or three crop seasons in a year. 

Fig. 4 Spatial patterns of LAI in study area
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Fig. 5 Spatial patterns of canopy storage capacity (Smax) in study area 

3.3 Spatiotemporal Variation Patterns of Canopy Storage 
Capacity (Smax) 

Canopy storage capacity (Smax) is the maximum quantity of interception that the 
canopy can store. Canopy storage capacity maps are generated using Eq. (4) of  
canopy rainfall interception model. Canopy storage capacity maps for the years 
2019, 2020, and 2021 are shown in Fig. 5. Similar to the LAI maps, though the 
maximum canopy storage capacity value was high in 2019, the area covered under 
that increased value is minimal. So, it is better to consider average values for all the 
years. The average canopy storage capacity value for 2019, 2020, and 2021 is 1.726, 
1.28, and 1.71, respectively. It is a good indicator that interception plays a crucial role 
in the hydrological cycle. So, interception cannot be neglected in the hydrological 
studies for this region. 

3.4 Spatiotemporal Variation Patterns of Canopy Rainfall 
Interception (Sv) 

Canopy rainfall interception (Sv) maps are generated using Eq. (5) of canopy rain-
fall interception model. The value ranges in the maps indicate the canopy rainfall 
interception with the unit of mm. One of the components in canopy rainfall intercep-
tion estimation is cumulative rainfall (mm). The study is conducted for three rainfall 
events to understand the variation in canopy rainfall interception with changes in 
precipitation. The rainfall events over the years 2019, 2020 and 2020 are categorized 
as maximum cumulative rainfall event, moderate cumulative rainfall event, and low 
cumulative rainfall event. The cumulative rainfall amounts considered in the study 
are: 

(i) Maximum cumulative rainfall = 165.25 mm 
(ii) Moderate cumulative rainfall = 40 mm 
(iii) Low cumulative rainfall = 15 mm
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Fig. 6 Spatial patterns of canopy rainfall interception (Sv) for 15 mm rainfall event in study area 

The maximum rainfall of 165.25 mm in the study area occurred during the 12th and 
13th of October 2020. The maps are generated for each rainfall event. A total of nine 
maps are developed for different periods and with varying amounts of precipitation. 

Canopy rainfall interception (Sv) maps during 15 mm of precipitation for the 
years 2019, 2020, and 2021 are shown in Fig. 6. From the generated maps, it is 
observed that a significant portion of the surface area is contributing to interception. 
The canopy rainfall interception values for 15 mm rainfall event are 1.83, 0.95 and 
1.81 mm during 2019, 2020, and 2021, respectively. It indicates that for the 15 mm 
quantity of rainfall received, on average, 1.53 mm of rainfall received is lost in the 
form of interception. 

Canopy rainfall interception (Sv) maps during 40 mm of precipitation for the 
years 2019, 2020, and 2021 are shown in Fig. 7. From the generated maps, it is 
observed that a significant portion of the surface area is contributing to interception. 
The canopy rainfall interception values for 40 mm rainfall events are 2.26, 1.6 and 
2.72 mm during 2019, 2020, and 2021, respectively. It indicates that for the 40 mm 
quantity of rainfall received, on average, 2.2 mm of rainfall received is lost in the 
form of interception.

Canopy rainfall interception (Sv) maps during 165 mm of precipitation for the 
years 2019, 2020, and 2021 are shown in Fig. 8. From the generated maps, it is 
observed that the maps of the canopy rainfall interception values for 165 mm rainfall 
events are 5.69, 1.89 and 2.96 mm during 2019, 2020, and 2021, respectively. It 
indicates that for the 165 mm quantity of rainfall received, on average, 3.5 mm of 
rainfall is lost in the form of interception.

If you observe Figs. 5 and 8, the maximum values for both canopy storage capacity 
(Smax) and canopy rainfall interception (Sv) for 165 mm rainfall events are the same 
proving the assumption made by [22]. In the study area, it is recognized that the 
maximum storage capacity of vegetation is reached when the cumulative rainfall is 
above 40 mm and under 165 mm.
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Fig. 7 Spatial patterns of canopy rainfall interception (Sv) for 40 mm rainfall event in study area

Fig. 8 Spatial patterns of canopy rainfall interception (Sv) for 165 mm rainfall event in study area

4 Conclusions 

The canopy rainfall interception is being effectively assessed with the combination 
of remote sensing and interception model. The outcomes offer insight into the vari-
ation of canopy rainfall interception at both spatial and temporal scales within the 
study area. Depending on the rainfall event, nearly 1–5.7 mm of rainfall received 
is being lost due to the interception by vegetation over the years 2019–2021; it is 
apparent that a significant quantity of precipitation is lost in the form of intercep-
tion in areas covered with vegetation and crops. Hence, it can be acknowledged that 
interception plays a significant role in the hydrological processes even at a regional 
scale. The present methodology applies to micro to medium level watersheds in 
different geographical regions. The interception results obtained from this study will 
be helpful for rainfall and runoff studies within the study area. 
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A Dual Porosity Lumped Parameter 
Model of Hillslope Hydrological 
Processes—A Case Study 

S. Raazia and R. Khosa 

Abstract The components of hydrological cycle remain more or less the same in 
almost all kinds of terrains. However, the redistribution of precipitation over hill-
slopes differs from that over moderate terrains in a number of ways. On hillslopes, 
non-horizontal water table and non-uniform soil saturation levels over the length of 
slope lead to simultaneous occurrence of infiltration and overland flow over different 
parts of the slope. Flow paths of a hillslope differ greatly in length, direction and 
response time, and the path taken by precipitation depends on the soil cover, the 
slope and the underlying geological setup. Moreover, the existence of preferential 
flow paths also modifies the hydrological response. In the present study, an attempt 
was carried out to model runoff generation processes on hillslopes. The model was 
applied to simulate the hydrology of Zabarwan hillslope, a part of the catchment of 
the Dal Lake in India. The model could successfully capture the physically observed 
hydrological phenomena in the study area. 

Keywords Hillslope hydrology · Hillslope runoff · Dual porosity model · Dal 
Lake catchment · Lumped hydrological model 

1 Introduction 

Hydrology is mainly concerned with the transformation and redistribution of precip-
itation as it approaches the ground surface. Water reaching the ground surface redis-
tributes by means of interception, infiltration, surface detention and runoff, evapo-
transpiration, deep percolation and base flow. Hydrological modeling aims at under-
standing the behavior of a catchment in generating a hydrological response in terms 
of these components of a hydrological cycle. Of all the hydrological components,
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infiltration is considered to be the most important since it is responsible for distribu-
tion of precipitation into portions flowing above and below the ground surface and 
hence for determining runoff. Thus, most hydrological models rely on quantifying 
runoff by Horton’s [1] infiltration excess mechanism. However, on hillslopes, in addi-
tion to infiltration excess overland flow, other processes may significantly contribute 
to the production of runoff. 

Hydrological response of hillslopes differs from that of plain to moderate terrains 
for the following reasons. 1. The water table on hillslopes is not horizontal. More-
over, the lower end of the slope receives water flowing down the slope in addition 
to the precipitation infiltrating directly into the ground. Thus, the entire depth at this 
end may get saturated allowing no more infiltration and generating runoff, known as 
saturation excess overland flow, while the higher parts are still experiencing infiltra-
tion. This leads to variable response simultaneously in different parts of the hillslope 
unlike plain to moderate terrains where only one process occurs at one time. 2. 
Precipitation approaching the higher end of the hillslope may take different flow 
paths [2] that differ in length, medium and hence response time. Precipitation (or 
melting snow) in excess of the absorbing capacity of the ground flows over the ground 
surface within the shortest time to the outlet/lower end of the slope. The portion that 
percolates down the soil moves vertically or takes a curved path till it joins the water 
table wherefrom it moves with the longest response time to the outlet, known as base 
flow. However, if the percolating water encounters an impediment such as a shallow 
rocky layer, it moves nearly parallel to the ground slope causing the water table at the 
lower end of the slope to rise and even intercept the slope. This portion of flow that 
contributes to runoff at the lower end of the slope is known as the return flow. This 
phenomenon is responsible for the formation of springs. 3. Presence of preferential 
flow paths such as cracks/fissures in the rocks, burrow holes, decayed root holes 
referred to as macropores significantly affects the response time of subsurface flow 
since water moves rapidly through these pores without mixing with the water in the 
pores of the soil matrix [3–5]. Bypassing of flow through these macropores leads to 
a high perceivable permeability of the soil medium. 

2 Hillslope Runoff Model 

Catchments may be thought of a series of moisture stores, wherein water passes 
from one domain to another by ways of surface detention and runoff, infiltration, 
unsaturated vertical percolation, saturated downslope flow and channel flow [6]. 
However, the hydrological response of the catchment may be dominated by the 
stores with the longest response time. Hence, hydrology of small catchments may 
be efficiently modeled by taking infiltration, percolation and downslope flow into 
account. 

Runoff generation processes on hillslopes include infiltration excess overland 
flow, saturation excess overland flow, lateral subsurface flow and return flow. In 
the present study, a physically based lumped parameter model was developed that
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calculates each of these components of runoff separately to give the total runoff from 
the catchment. 

2.1 Conceptualization of a Hillslope 

Where hillslope runoff processes are significant, a convenient and efficient method 
of catchment modeling is to discretize the catchment into a set of parallel flow 
strips [7] assumed to have negligible hydrological interactions with each other. The 
overall hillslope response is then derived by integrating the outputs of the individual 
hillslopes, assuming homogeneous response. 

A unit width of hillslope has been considered as a prismatic storage element of 
length L, a constant slope angle α and a constant depth D to the impervious layer 
over the entire length of the slope (Fig. 1). Two cases arise: (i) water table is below 
the ground surface for the entire slope, and its height above the impervious layer 
varies from 0 at the top to H at the bottom. (ii) Water table intersects the slope at a 
distance Ls known as the saturated slope length, from the lower end of the slope. 

Fig. 1 Prismatic element of hillslope
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2.2 Net Precipitation Input 

The precipitation volumes, Pv, s and Pv, u (m3/m) received by the saturated and the 
unsaturated portions of the slope length, respectively, in a unit time stepΔt are given 
by Eqs. (1) and (2). 

Pv,s = PLs cos α (1) 

Pv,u = P(L − Ls) cos α (2) 

2.3 Redistribution Over the Unsaturated Slope Length 

On the unsaturated ground surface, precipitation is partitioned into surface runoff 
and the amount that moves into the soil medium through its primary and secondary 
porosities (micropores and macropores, respectively). Where macropores are signif-
icant as is the case with hillslopes, Shakya and Chander [8] and Jain et al. [9] suggest 
to model micropores and macropores separately as two domains, as has been done 
in the present study. 

The capacity of the micropore domain depends on the infiltration capacity of the 
soil as well as the conductivity of the soil medium beneath the surface. The Horton’s 
[1] model is the most common approach to model infiltration. However, this model 
is valid only when precipitation occurs at a rate greater than the infiltration capacity 
of the soil such that infiltration occurs at potential rate. Moreover, the model is based 
on a decreasing infiltration capacity which is a valid assumption in case of single 
storm events. However, in the time gap between storms, the soil regains its infiltration 
capacity as the water drains down. Thus, the Horton’s infiltration model was modified 
to account for infiltration occurring at a rate less than or equal to the potential rate 
as well as for the regain of infiltration capacity of soil. Moisture movement in the 
unsaturated zone is largely regulated by the conducting capacity of the soil matrix. 
Hydraulic conductivity of unsaturated soil, which is less than the saturated hydraulic 
conductivity, is a function of soil matric potential. The present model uses Van 
Genuchten [10] soil constitutive relationships for unsaturated hydraulic conductivity 
of the soil. 

Water in the macropore domain partly moves down the pores and is partly absorbed 
by the walls of the macropores into the primary pores of the soil matrix. To quan-
tify the water moving down the macropores, the macropore domain is assumed to 
constitute of only two sized pores [8]. Flow through each minimum size pore is esti-
mated by the Poisecille’s equation, whereas that through each maximum size pore is 
estimated using Manning’s equation. Then, the total flow through the macropores, 
Qm, is estimated to be equal to the average of the flows that would occur when either 
only the minimum size pores or the maximum size pores would exist (Eq. 3).
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where Am is the area of the unsaturated part of the prismatic slope element of unit 
width covered with macropores and depends on the macroporosity ηmac of the soil 
as given by Eq. (4). 

Am = ηmac(L − Ls) cos α (4) 

rmin is the radius of each minimum size macropore, and rmax is the radius of each 
maximum size macropore. 

The lateral transactional flow through the walls of the macropores into the soil 
matrix, Qmac−mic, 

trans depends on the sorption capacity of the soil matrix and the net 
effective area of the macropore walls and is estimated using Eq. 5, with the above 
assumptions of minimum and maximum size pores. 

Qmac−mic 
trans = ih
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1 
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1 
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)
Am Deff (5) 

Here, the rate of absorption, ih, which depends on sorptivity, Sr, is given by Philip’s 
[11] equation (Eq. 6). 

ih = 
1 

2 

Sr 

t 
1 
2 

(6) 

where t is the time elapsed since the beginning of absorption process. Sorptivity is 
a function of soil moisture deficit and is estimated using Eq. 7 given by Youngs and 
Price [12]. 

Sr = 6.3(θs − θu)0.5 K 0.25 sh (7) 

For both the two cases of water table intersecting or not intersecting the hillslope, the 
effective depth, Deff, in Eq. 5 is taken as the average depth of the unsaturated zone in 
each case. Also, in Eq. 7, θ s and θ u represent the saturated and the actual soil water 
content and Ksh represents the saturated hydraulic conductivity of the soil. 

The maximum capacity of the macroporedomain, Qmax 
m,in , would be the total of the 

quantity of water that can flow through the macropores and the amount of water that 
is absorbed by the soil matrix from the macropore wall (Eq. 8). 

Qmax 
m,in  = Qm + Qmac−mic 

trans (8)



428 S. Raazia and R. Khosa

2.4 Flow Situations Over the Unsaturated Zone 

For non-zero precipitation, four types of flow situations as identified by Shakya 
and Chander [8] may exist over the unsaturated length of the hillslope, depending 
on the amount of precipitation and the capacity of the micropore and the macropore 
domains. We define F as the cumulative infiltration depth obtained from the modified 
Horton’s model that can infiltrate into the soil in time interval Δt, V max 

m,in  = Qmax 
m,in.Δt 

as the maximum volume of water that can flow into the macropore domain per 
unit width of the hillslope in time interval Δt and Kh as the unsaturated hydraulic 
conductivity of the soil matrix. 

1. When the net precipitation volume received in a time interval exceeds the 
combined maximum capacities of the soil matrix and the macropores, that is, 

Pv,u > F(L − Ls) cos α + V max 
m,in, 

it leads to infiltration excess overland flow. 
2. If this capacity is not exceeded, but the soil matrix has low conducting capacity 

such that 

Kh(L − Ls) cos αΔt + V max 
m,in  < Pv,u < F(L − Ls) + V max 

m,in, 

then most of the flow is bypassed through the macropores leading to their 
saturation or near-saturation condition. 

3. If the soil matrix has significant conducting capacity but cannot alone handle the 
entire precipitation volume, that is, 

Kh(L − Ls) cos αΔt < Pv,u < Kh(L − Ls) cos αΔt + V max 
m,in, 

then the soil matrix carries flow to the maximum of its capacity, while the 
remaining flow occurs through the macropores. Flow is dominated by transaction 
between the macropores and the soil matrix. In this case, all macropores are not 
involved in carrying the flow. 

4. Lastly, if the soil matrix can alone conduct the entire precipitation volume, that 
is, 

Pv,u < Kh(L − Ls) cos αΔt , 
this situation is characterized by empty macropores. 

2.5 Redistribution Beneath the Ground Surface 

For flow situations (1) and (2) discussed above, flow into the macropore domain 
during a given time interval equals its maximum capacity. Inflow into the soil matrix 
for situation (1) equals its potential infiltration, and for situation (2), it equals the
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input precipitation less by the maximum capacity of the macropore domain. For flow 
situation (3), flow into the soil matrix equals its conducting capacity and that into 
the macropore domain equals precipitation less by the amount flowing into the soil 
matrix. In this case, the area of macropore domain involved carrying the flow is 
assumed to be proportional to the flow into the macropore domain, and the trans-
actional flow between the macropores and the soil matrix is calculated accordingly. 
For flow situation (4), flow into the soil matrix equals the net precipitation while the 
inflow and outflow of the macropore domain are both zero. The outflow from the soil 
matrix is taken equal to the vertical gravity drainage above the field capacity of the 
soil, which is a valid assumption if shallow water table is present. The outflow from 
the macropore domain for all cases except (4) equals the inflow less by an amount 
that is absorbed by the soil matrix through macropore walls. The net outflow from 
the unsaturated zone recharges the saturated zone and causes the water table to rise. 

Return flow through seepage face for both the cases of the water table fully below 
the slope and the water table intersecting the slope is computed using the kinematic 
storage model of Sloan and Moore [5]. Fluctuation in water table and change in the 
saturated slope length are calculated by applying continuity equation and geometrical 
concepts. 

2.6 Runoff 

The net overland flow is calculated as the sum of infiltration excess overland flow and 
saturation excess overland flow which equals the precipitation approaching saturated 
slope length. The model includes a nonlinear reservoir routing equation of the form 
given in Eq. 9 to incorporate the storage effect of the catchment on the overland flow 
that causes attenuation, smoothening and delay of the outflow hydrograph. 

Snlr = knlr Qnnlr (9) 

Snlr is the stored volume, that is, the overland flow volume, and Q is the outflow 
rate. knlr and nnlr are the adjustable parameters for calibration. 

Total runoff per unit width of the hillslope is obtained by adding the return flow 
component to the overland flow. Total catchment runoff is obtained by multiplying 
the runoff per unit width by the effective width of the hillslope, which equals the 
catchment area divided by the average slope length. 

The model was programmed and executed using Fortran 90. 

3 Study Area 

The Zabarwan mountain range is situated in the central part of the Kashmir Valley 
in the state of Jammu and Kashmir. It is a sub-mountain range of the Zanskar
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Fig. 2 Location of the study 
area 

Range. The Zabarwan borders the world famous Dal Lake along its eastern shore 
and hosts a number of gardens including Asia’s largest tulip garden. The region has 
a rocky geology with a very shallow soil cover. Dominant land covers on the slopes 
include forest cover and bare exposed rock devoid of any vegetation. The foothills are 
mostly used for cultivation of vegetable. Residential setups too exist in lower reaches 
constrained by the highly mountainous terrain. The climate is of sub-mediterranean 
type with two dry spells from April to June and September to November. Annual 
average rainfall in this region is 870 mm. The west-facing slope of this range drains 
directly into the Dal Lake with the average flow direction from east toward west and 
has been considered for hydrological modeling. The region is situated between 74o 

49, 47.68,, and 74o 55, 53.1,, E longitudes and 34o 3, 53.79,, and 34o 9, 31.95,, N 
latitudes (Fig. 2). 

3.1 Regional Hydrology 

This region is devoid of a prominent drainage network resulting in a diffused runoff 
flowing toward the lake. Slopes vary from gentle to very steep with mild slopes 
occurring in the region in close vicinity of the Dal Lake having a backdrop of highly 
steep mountains further from the lake (Fig. 3). Forested peaks have a spatial network 
of large connected soil pores formed as a result of activities of soil fauna, decay 
of plant roots and soil cracking, which provide preferential flow paths conducting 
appreciable amounts of flow to the saturated zone. Presence of a rocky bed at a 
very shallow depth results in a shallow water table. Water percolating downward and
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Fig. 3 Variation of slope in 
the study area 

impeded by the shallow rocky layers flows toward the lower reaches nearly parallel to 
the hillslope with a very short response time. This lateral subsurface flow from upper 
reaches together with the water added into the groundwater regime from vertical 
percolation saturates the soil profile up to the surface level in the lower reaches. As 
a result, the soil appears mostly wet in the foothill region of the Zabarwan hillslope. 
The saturated soil profile behaves as an impervious surface obstructing infiltration 
and generating runoff by saturation overland flow. 

Water can also be seen impounded in regions of profile concavities near the 
foothills. A large number of very small streams of not more than 1 m width are 
seen flowing through the vegetated gardens in the foothills. Fed mostly by the return 
flow seeping in from below the land surface, these streams form as a result of local 
undulations. 

The hillslope is ungauged, and also for the fact that the runoff is diffused, it 
is impractical to directly measure the hillslope runoff. However, some important 
observed physical phenomena are a significant aid in developing and evaluating a 
hydrological model for this hillslope. 

3.2 Hydrological Modeling 

The Zabarwan hillslope can be topographically divided into two regions: the gently 
sloping foothills and the steep mountains [13]. These two regions were modeled 
separately using the hillslope runoff model developed in the present study. The steep
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region was first considered for evaluation of precipitation redistribution, and the 
surface and subsurface outflows from this region were suitably routed through the 
various domains of the lower region in addition to the precipitation received by that 
region. Higher macroporosity was considered for the first region due to the presence 
of vegetated surface. Soil parameters of dominant soil groups were used to run the 
model. Average values of slope and slope length used in the model were calculated 
using the geographical mapping software ArcGIS. Moreover, a number of initial 
conditions including both water table intersecting the slope surface and otherwise 
were tested. Simulation was carried out using daily precipitation data from January 
1990 to December 2010. However, the period up to December 2000 was considered 
to be the warm-up period for the model as indicated in the next section. Only the 
model results from January 2001 onward were considered to be representative of the 
hydrology for the study area. 

The model was used to identify the dominant flow situation as well as the dominant 
runoff generation process in each of the two regions of the study domain. 

4 Results and Discussions 

4.1 Steep Region Hydrology 

The model results indicated that infiltration excess overland flow rarely occurred 
on the steep region, which is true to the observation. Similar observation has been 
reported by Dunne and Black [14] in Sleepers River watershed. Absence of surface 
drainage channels also indicates that Hortonian overland flow is a rare process here. 
During wet days, most of the flow is conducted through the primary porosity of the 
soil while the macropores either remain empty or conduct the flow partially. 

For all the tested initial conditions of water table, the model stabilized around 
125 m of saturated slope length after a warm-up period (Fig. 4), the total average 
length of slope is being 2000 m. Thus, a value of 100 m saturated slope length 
was finalized to be used as initial condition. The presence of springs in this region 
including the famous spring Chesma Shahi is indicative of the fact that the water 
table intersects the slope and hence confirms that the model is capable of simulating 
the actual hillslope behavior.

Figures 5, 6 and 7 show the total overland flow, which in this case is the saturation 
excess overland flow, return flow and total outflow from the steep region. Results 
have been presented for different time scales so as to reflect the response of various 
moisture storages to precipitation fluctuations. Surface processes are more sensitive 
to precipitation fluctuations and have very short response time as is evident from 
Fig. 5. On the other hand, subsurface processes are less sensitive to precipitation 
fluctuation and have a longer response time as indicated by Fig. 6.

Figure 7 indicates that the return flow contributes a significant proportion of the 
total catchment outflow with the overland flow contributing only a small portion. This
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Fig. 4 Saturated slope length in steep region for different initial conditions

Fig. 5 Overland flow from the steep region

is because most of the precipitation infiltrates into the ground over the unsaturated 
part of the hillslope and moves down as subsurface flow. This return flow feeds the 
perennial springs in this region.
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Fig. 6 Return flow from the steep region 

Fig. 7 Total outflow from the steep region

4.2 Foothill Hydrology and the Net Hillslope Runoff 

Figure 8 shows that the entire slope length of the foothill, which is 1200 m, is saturated 
up to the ground surface throughout the modeled period. This is also evident from 
the presence of near-surface water table and perennial streams fed by return flow.

Figures 9 and 10, respectively, show the total overland flow and total outflow of 
the entire hillslope. A non-zero overland flow on days without precipitation occurs 
from the part of the return flow from the steep region that seeps out of the ground and 
flows as overland flow in the foothill region. In the net response of the hillslope, the 
overland flow contributes a significant proportion to the outflow hydrograph because 
of the saturation excess overland flow occurring over the entire slope length of the 
foothill region.
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Fig. 8 Saturated slope length in the foothills

Fig. 9 Net overland flow from the hillslope

5 Conclusions 

A hillslope hydrological model has been developed to predict the average hydrolog-
ical behavior of an ungauged hillslope. The model is based on average topographical, 
geological and soil conditions, thus having lesser number of parameters compared to 
the commonly used distributed hydrological models. Moreover, the model considers 
only the most significant processes affecting redistribution of precipitation over a 
hillslope. The model considers flow in two domains within the soil, one due to the 
primary porosity of the soil and the other due to the preferential flow paths which are a 
characteristic of hillslopes, formed as a result of faunal activities, decayed vegetative 
matter in the vadose zone and cracking of rocks.
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Fig. 10 Net runoff from the hillslope

The model was used to identify runoff generating processes and the total outflow 
of the Zabarwan hillslope that feeds the world famous Dal Lake on its eastern side. 
Two regions of the hillslope with significant topographical difference were modeled 
separately. Though the results of the model could not be objectively validated, the 
observed phenomena were well simulated, and hence, the model can be considered 
to be an effective tool to depict the hydrological behavior of this hillslope. 
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Investigations on Hydraulic Conductivity 
Assessment of Porous Media Treated 
with Fly Ash 

Abhishish Chandel, Vijay Shankar, and M. A. Alam 

Abstract Hydraulic conductivity (K) is important in many tasks involving the 
flow of fluids through porous media, including dissolved contaminant transport and 
groundwater investigations. Experimental investigations concerning fly ash mixed 
porous media result in decreasing the K value and can be used as a barrier to different 
compaction characteristics. The investigation focuses on the compaction properties 
and K of porous media with varying quantities of fly ash content. The standard Proctor 
compaction test (SPCT) was performed on two different porous media with varying 
fly ash contents ranging from 10 to 50%. According to the SPCT, when the fly ash 
content increases, the maximum dry density declines, and the associated optimum 
moisture content increases. The optimum content of fly ash in soil samples 1 and 2 
was found to be 30% and 40%, respectively, because the K value reduces uniformly. 
Further increases in fly ash content result in a minimal fall in K value. The obtained 
K values of soil–fly ash mix at optimum content lie within the domains of silt, which 
substantiate its use for constructing impervious embankments or groynes. 

Keywords Compaction · Hydraulic conductivity · Groundwater 

1 Introduction 

The term hydraulic conductivity (K) describes flow-through porous media and is 
considered an important metric in the building of water-retaining and drainage struc-
tures, stability and settlement assessments of embankment dams, and groundwater 
management [1]. Henry Darcy originally proposed flow via the porous media in 1856 
[2]. Flow velocity is proportional to the tangent of the hydraulic gradient, and the 
proportionality constant in that equation is referred to as K [3, 4]. Furthermore, the
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flow regime is governed by the computation of the friction factor and the Reynolds 
number of porous sediments [5]. 

A waste by-product, i.e., fly ash is obtained from the explosion of naturally cemen-
titious coal and is collected in the smoke vessels via electrostatic precipitators to 
minimize its influence on the environmental ecosystem [6]. Increasing demand for 
electrical energy and coal is being the main source of energy consequences in the 
establishment of many thermal power plants [7]. Generally, in India, a large quantity 
of fly ash is produced per year, and as per estimates, this generation of fly ash is 
expected to increase to about 190MT per year by the year 2022. Numerous studies 
and analyses have been conducted to utilize this waste product in building sectors, 
but basically, it is most commonly used in cement concrete works and manufacturing 
of lightweight bricks industries [8]. In the present scenario, only 15% of fly ash is 
used in various engineering sectors. Hence, it is important to investigate new ideas 
and approaches so that this waste product can be effectively used [9]. Landfilling 
is the primary disposal method for fly ash, but due to higher treatment costs and 
limited space, alternate fly ash usage is encouraged [10]. The most important limita-
tion governing the acceptability of employing the soil–fly ash mix at the optimal fly 
ash content in various water retention structures and for constructing impermeable 
embankments is the K [11, 12]. 

Various studies related to the utilization of fly ash in water-retaining structures and 
impermeable embankment construction have been carried out. Gupta and Alam [7] 
studied the seepage and hydraulic analyses of fly ash treated with various cement and 
lime proportions. The K of fly ash decreases with the addition of lime and cement 
up to certain content. Lime and cement proportions of 40% and 15% were found 
to be optimum content in this study. Muhunthan et al. [9] studied the influence of 
various proportions of bottom ash on the K of fly ash. The K of fly ash at 40% 
bottom ash content was found to be the least and is relatively equivalent to that of 
silt. Fly ash’s hydraulic properties were studied by Sivapllaiah and Lakshmikantha 
[6], who also examined how the bentonite affected these characteristics. Marto et al. 
[13] examined the K and compaction behavior of ash blends (fly ash and bottom ash). 
It was revealed that the K of compacted ash blends decreases as the fly ash content 
increases. Ige and Ajamu [14] studied the K and strength properties of sand treated 
with various proportions of fly ash. The K value of sand was found to be lowest at 
40% fly ash content and had the greatest influence on sand strength increase. Wasil 
[15] examined the effect of varied bentonite contents on the K of fly ash ranging 
from 0 to 15%. 

According to the literature study, several researchers investigate the potential 
application of fly ash, such as mixing fly ash with cement, bentonite, and lime to 
reduce the K value. Furthermore, the effect of different quantities of fly ash by 
weight, followed by typical compaction conditions, on the K of porous media must 
be investigated. The objectives of this investigation are to (1) study the compaction 
characteristics of porous media with different proportions of fly ash content and (2) 
determine the optimum content of fly ash in the porous media, at which the K values 
reduce to a significant value.
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2 Porous Material and Experimental Methodology 

2.1 Porous Material 

Two different porous media were acquired from two different riverbanks in Himachal 
Pradesh, India, for this study. The first sand sample was collected from the Sutlej 
River in Bilaspur district and the second sample from the Beas River in Mandi 
district of Himachal Pradesh, respectively. The obtained sand samples were tested 
in the laboratory for analysis of the fundamental engineering properties. The fly 
ash was gathered from the Guru Har Gobind Thermal Plant in the Punjab region of 
Bhatinda. The fly ash particles are generally finer than the sand particles. Initially, 
the dry sieve analysis was carried out on the sand samples to determine the various 
particle sizes, i.e., d10, d30, and d60. Also, based on the computed values of particle 
size, the uniformity and curvature coefficients (Cu and Cc) were determined as per 
standard procedure [16]. The standard expressions to compute the value of Cu and 
Cc are given: 

Cu = 
d60 
d10 

(1) 

Cc = d2 
30 

d60 ∗ d10 
(2) 

where d10, d30, and d60 are the particle sizes equivalent to 10%, 30%, and 60% finer 
by weight. Table 1 represents the basic engineering properties of the collected sand 
samples and fly ash.

2.2 Experimental Methodology 

Initially, various proportions of sand samples with the fly ash content were 
prepared, i.e., in increments of 5% from 10 to 50% by weight, and then, the standard 
Proctor compaction test (SPCT) was performed on each sand–fly ash mix. The SPCT 
test is useful for identifying the optimum moisture content (OMC) and maximum dry 
density (MDD) for a mix. For SPCT, an oven-dried sample of 3 kg has been mixed 
with water to reach the water content of 6%. The sample was then placed for 24 h in a 
sealed container for maturing. Further, the sample was packed in the mold uniformly 
with 25 blows for every three layers. The weight of the mixture was determined. To 
determine the moisture content of the mix, two samples were collected from the top 
and bottom of the mold and placed in an oven for 24 h, with the mean value of the 
sample corresponding to the moisture content of the mix. For each mix, four to five 
readings were recorded at different moisture contents. To determine the OMC and
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Table 1 Basic engineering properties of collected sand samples and fly ash 

S. No. Properties Sample 1 Sample 2 Fly ash 

1 Maximum dry density (kN/m3) 14.79 15.46 8.63 

2 Minimum dry density (kN/m3) 12.83 13.58 6.76 

3 Optimum moisture content (%) 9.73 11.58 35.85 

4 Sand (%) 97.58 78.73 48.85 

5 Silt (%) 2.42 15.84 47.73 

6 Clay (%) 0.00 5.43 3.42 

7 d10 (mm) 0.09 0.06 0.03 

8 d30 (mm) 0.19 0.08 0.06 

9 d60 (mm) 0.25 0.18 0.11 

10 Uniformity coefficienta (Cu) 2.78 3.00 3.67 

11 Curvature coefficienta (Cc) 1.60 0.59 1.09 

12 Specific Gravitya 2.64 2.67 1.97 

(a represents the dimensionless properties)

MDD value of the mix, a plot between water content and dry weight was plotted 
[17]. 

Further, the hydraulic conductivity of each mix was determined using the constant 
head permeameter test. The diameter and test height of the permeameter column are 
15.3 and 46.5 cm, respectively, as shown in Fig. 1. The sand–fly ash mixtures were 
compacted in the permeameter to get the MDD value, which was obtained during the 
SPCT test. Further, the compacted specimen was saturated initially to maintain the 
steady conditions of flow, and then, the discharge value was measured at different 
constant heads. The mean value of discharge helps to compute the value of K for each 
mix. The K of each mix was calculated using the general methodology as explained 
by Chandel and Shankar [18] and ASTM [19]. The standard equation to compute 
the K is defined as: 

K = 
q ∗ L 
a ∗ h 

(3)

where q = volume of discharge, L = test height, h = pressure taps head difference, 
and a = cross-sectional area of sample. 

3 Results and Discussion 

Grain-size analyses of soil samples and fly ash are among the experimental experi-
ments. The flow regime was determined by examining the variation between Fr and 
Re. Further, the SPCT and the hydraulic conductivity tests were performed on the
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Fig. 1 Line diagram of K measuring setup

various proportions of the sand–fly ash mixes. The primary purpose of this study is 
to establish the optimal fly ash quantity at which K declines significantly. 

3.1 Grain-Size Analysis 

The obtained soil samples were first examined using a mechanical shaker, and a sieve 
with bigger openings on the top and smaller ones below was arranged. The curve 
shows that roughly 48% of fly ash is retained on a 75-micron sieve opening. The 
various particle sizes, i.e., d10, d30, and d60 for fly ash, and samples 1 and 2 have 
been computed as mentioned in Table 1. By using the values of particle size, the Cu 

and Cc were determined. The Cu and Cc values help to govern the soil samples to be
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Fig. 2 Grain-size distribution of soil samples and fly ash 

well or poorly graded. For a well-graded sample, the uniformity coefficient value is 
greater than 6, and the Cc value ranges from 1 to 3. For samples 1 and 2, the Cu and 
Cc values are 2.78 and 1.60 and 3.00 and 0.59, respectively. The computed values of 
Cu and Cc show that the collected soil samples are poorly graded. Figure 2 depicts 
the grain-size curve for soil samples and fly ash. 

3.2 Compaction Characteristics Analysis 

Various mixes of sand–fly ash were prepared by varying the proportions of fly ash in 
increments of 5% from 10 to 50% by weight. Then, the SPCT has been conducted 
on these mixes to determine the OMC and the MDD of each mix. Table 2 represents 
the MDD and OMC values for the various mixes. The curve between the dry density 
and water content indicates that the MDD value increases initially with the addition 
of a small quantity of water, and then, the curve reaches a maximum value that 
corresponds to the MDD and OMC value of the mix. Further, as demonstrated in 
Fig. 3, increasing the water content results in a drop in the dry density value. For 
samples 1 and 2, with the increases in the fly ash content from 10 to 50% in the 
increments of 5%, the MDD value decreases from 13.60 to 11.50 kN/m3 and 14.78 
to 10.46 kN/m3 and the associated OMC increases from 9.10 to 15.20% and 13.20 
to 17.40%, respectively, as shown in Table 2.

Because fly ash is a lighter material than sand, the MDD value decreases as the 
content of fly ash increases, whereas an increase in the OMC value was observed 
which is linked with the notion that the fly ash has dust-like sediments having more
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Table 2 MDD and OMC for various sand–fly ash mixes 

S. No Fly ash content (%) Sample 1 Sample 2 

OMC (%) MDD (kN/m3) OMC (%) MDD (kN/m3) 

1 10 9.10 13.60 13.20 14.78 

2 15 9.80 13.40 13.60 14.18 

3 20 10.90 13.00 14.20 13.62 

4 25 11.43 12.70 14.66 13.05 

5 30 12.00 12.39 15.10 12.44 

6 35 12.60 12.15 15.50 11.93 

7 40 13.20 11.94 16.10 11.38 

8 45 14.30 11.69 16.76 10.94 

9 50 15.20 11.50 17.40 10.46

contact area to be enclosed by fluid particles. Notably, the fly ash particles absorb 
more fluid, which increases the water content of the mix [9]. 

3.3 Flow-Regime Investigation 

To determine the flow regime, Fr and Re values were computed. Figure 4 depicts a 
logarithmic plot of these quantities to govern the flow regime. The general expression 
for calculating Fr and Re is as follows: 

Fr = 
hi ∗ g ∗ d50 ∗ 2 

U 2 
(4) 

Re = 
Ud50 

ϕ 
(5)

where hi = hydraulic gradient, d50 = mean size, g = constant of gravity, U = velocity 
of flow, and ϕ = kinematic viscosity. 

Figure 4 shows that the variation between Fr and Re indicates a straight-line 
behavior with a Reynolds number less than one, implying that the flow regime is 
Darcy’s or laminar regime [20]. 

3.4 Hydraulic Conductivity Determination 

The hydraulic conductivity of both the samples was determined with the different 
proportions of fly ash by compacting the sand–fly ash mixture in the permeameter at 
the obtained values of OMC and MDD during SPCT. The K of samples 1 and 2 was
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Fig. 3 Compaction curves of sand–fly ash mixes a sample 1 b sample 2

observed to be 7.32 × 10–3 cm/s and 4.51 × 10–3 cm/s as given in Table 3. In samples 
1 and 2, with the addition of fly ash in the increments of 5% up to 30% and 40%, the 
K value reduces uniformly to 2.13 × 10–3 cm/s and 1.31 × 10–3 cm/s, respectively, 
whereas further increases in the fly ash content result in a negligible change in the
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Fig. 4 Plot between Fr and Re for a sample 1 and b sample 2

K value as shown in Fig. 5. The optimum content of the fly ash in samples 1 and 2 
was found to be 30% and 40%, respectively.

For samples 1 and 2, the MDD and OMC values at the optimum content of fly ash 
were obtained as 12.39 kN/m3 and 12% and 11.38 kN/m3 and 16.10%, respectively. 
The obtained values from the compaction analysis at the optimum content postulated 
that the observed weight is much lower than those of silt and clays. The K value drops 
with the addition of fly ash up to the optimum level in both soil samples because the
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Table 3 Hydraulic 
conductivity values for 
various sand–fly ash mixes 

S. No Fly ash content (%) K (cm/s) (1*10–3) 

Sample 1 Sample 2 

1 0 7.32 4.51 

2 10 5.88 3.49 

3 15 4.96 2.95 

4 20 4.07 2.57 

5 25 3.06 2.10 

6 30 2.13 1.70 

7 35 2.09 1.52 

8 40 2.07 1.31 

9 45 2.06 1.28 

10 50 2.05 1.27 

Fig. 5 K variations of samples 1 and 2 with different fly ash contents

specific contact area of the sand particle increases with the addition of tiny fly ash 
particles, giving more hindrance to fluid particles moving through the interconnected 
pores [8]. 

4 Conclusions 

The purpose of this research is to determine how adding fly ash to sand changes its 
K and compaction properties. In addition, the study found the following results:
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• Addition of fly ash in sand results in decreases in the MDD value, whereas the 
corresponding OMC value increases in various mixes. 

• Friction factor and Reynolds number suggest laminar flow because Reynolds 
number is smaller than 1 for all mixes. 

• The K of sand samples 1 and 2 reduces gradually with the addition of fly ash 
up to a particular point, i.e., 30% and 40%, respectively, which is referred to as 
the optimum fly ash content. The addition of more fly ash results in a minimal 
decrease in the K value. 

• In samples 1 and 2, the MDD, OMC, and K value at the optimum content of fly 
ash are observed to be 12.39 kN/m3, 12%, and 2.13 × 10–3 cm/s and 11.38 kN/m3, 
16.10%, and 1.31 × 10–3 cm/s, respectively. 

• The acquired K values at the optimal content fall inside the domain of silts, 
indicating that it can be used to build impermeable embankments and fills. 
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Permeability of Sloping Soil Layer: 
An Experimental Study 

M. Kafi, J. Alam, M. Muzzammil, and M. U. Haque 

Abstract Permeability is an important property influencing flow-through porous 
media. Seepage of water through earth dams, stability of slopes and ground water 
recharge are some of the problems related to permeability of soil. The accurate 
determination of permeability is a cause of concern to the hydraulic engineers. As 
the stratification of earth crust exists in any direction, the study of permeability of 
soil is imminent in multiple directions. Although ample work has been reported 
regarding the permeability of soil in horizontal and vertical directions, the work 
on inclined layer seems to be sparse in the literature. Therefore, permeability of 
sloping soil layer has been investigated in this paper. Four samples of fine sand 
were selected from different sites for the experimentation. Permeability has been 
determined for horizontal layer, for positively as well as negatively sloped layer. 
Inclination of layer was varied from 0° to ± 20°. With the increase in inclination 
with respect to horizontal, the permeability of positively sloped layer was found to 
increase, whereas for the negatively sloped layer, it was found to decrease. When 
the slope was increased from 0° to + 20°, the maximum deviation of − 27% was 
observed between the observed permeabilities of horizontal and positively sloped 
layer, whereas for the opposite slope, i.e., from 0° to − 20°, the maximum deviation 
found was 34%. For a constant slope, the permeability of the said layers was found 
to increase with the particle size. 

Keywords Observed permeability · Horizontal layer · Sloping layer · Porous 
media

M. Kafi · M. Muzzammil 
University Polytechnic, Aligarh Muslim University, Aligarh 202002, India 

J. Alam · M. U. Haque (B) 
Department of Civil Engineering, Aligarh Muslim University, Aligarh 202002, India 
e-mail: misbahnnc@gmail.com 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
P. V. Timbadiya et al. (eds.), Hydrology and Hydrologic Modelling, 
Lecture Notes in Civil Engineering 312, 
https://doi.org/10.1007/978-981-19-9147-9_36 

451

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9147-9_36&domain=pdf
mailto:misbahnnc@gmail.com
https://doi.org/10.1007/978-981-19-9147-9_36


452 M. Kafi et al.

1 Introduction 

Permeability is an intrinsic soil property. This property plays a major role in seepage 
of water through the earth dams, foundations, soil erosion, soil pollution, settlement 
of buildings, stability of roads and even yield of crop. Its importance has further 
been increased due to its pivotal role in presenting a solution to the problems of 
environmental control, dewatering and filtration process. The drainage through soil 
and thus the permeability assume a matter of high significance to hydraulic engineers, 
hydrologist and geologists. 

The flow of water in earth crust takes place in vertical and horizontal directions 
and at any inclination. Determination of permeability thus becomes imminent in 
all the directions. A number of investigators have worked for the de6termination of 
permeability in vertical directions as Kenney [1], Shepherd [2], Okagbue [3], Srid-
haran and Prakash [4], Gupta et al. [5], Koomishi and Azarhoosh [6]. Alam et al. 
[7] carried out experiments to find out the horizontal permeability of some materials 
along with CFD simulation. Alam et al. [8] carried out the experimental work on strat-
ified soils to determine the permeability in horizontal as well as in vertical directions 
with CFD simulation. Many investigators have determined the permeability both in 
vertical and horizontal directions, notable among them are Aronvici and Donman 
[9], Evans [10], Chan and Kenney [11], Dungca and Galpino [12], Shedid [13]. But, 
the work on permeability for sloping soil layers seems scarce in the literature. Thus, 
the present study was undertaken to investigate the pattern of permeability of sloping 
layers. Experiments have been conducted on the positively sloped layers as well as 
negatively sloped layers. 

2 Methodology and Experimental Setup 

The material selected for the study was fine sand as this material is frequently found 
in the water bearing strata. Thus, the study of movement of water through fine sand 
will be more useful as compared to other soil types. The material was collected from 
four different sites. Sieve analysis of the selected material was carried out as per 
IS: 2720 Part-IV 1985. The gradation curve for the said materials was plotted to 
ascertain the particle size range, as shown in Fig. 1.

The samples have been named as FS-1, FS-2, FS-3 and FS-4 on the basis of 
range of particle size. FS-1 is being the sample having finest particle size and FS-4 
was having the coarser particles as evident from the figure. For the determination 
of permeability for the sloping layer, as no standard equipment was available, the 
horizontal permeameter fabricated at the Department of Civil Engineering, Aligarh 
Muslim University, was used for the purpose with slight modification. A layer of clay 
was laid at a slope of 10° and 20° to the horizontal, respectively, and the sample of 
fine sand layer with 15 cm thickness was placed over clay layer. Thereafter, another 
clay layer was placed above the sample. So, the fine sand layer was sandwiched
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Fig. 1 Grain-size distribution curves for four samples of fine sand

between the clay layers. Water was allowed to flow through the sand layer to make it 
completely saturated. Sufficient time was allowed to stabilize the water level in inlet 
as well as outlet tube to get the accurate head loss occurring through the sample. For 
the accurate measurement of discharge, the measurement of time interval and the 
volume of water collected were done with utmost care. The arrangement is shown 
in Fig. 2. 

Fig. 2 Permeability determination for inclined fine sand layer
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Fig. 3 Variation of horizontal velocity with hydraulic gradient for materials at 0º slope

The permeability of sand layer was initially determined keeping the layers in 
horizontal direction or 0° slope. For the determination of permeability, the variation 
of velocity was plotted against the hydraulic gradient of the sample at 0° slope. This 
variation is shown in Fig. 3. The slope of the curve gives the average permeability 
of the sample. Similarly, the variation of velocity with hydraulic gradient for +10° 
slope and −10° slope is shown in Figs. 4 and 5, respectively, and for the slope of + 
20° and −20° is shown in Figs. 6 and 7, respectively. 

Initially, the layer of fine sand was placed at a slope of +10° and then −10° with 
respect to horizontal. Thereafter, the slope of the layers was increased to +20° and − 
20°. The observations were recorded and permeability was determined for the above 
four cases for all the samples with the help of above figures. 

3 Results and Discussion 

The analysis of the experimental data of permeability of sloping layers on designated 
inclination and the obtained inferences are presented below.
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Table 1 Permeability of fine sand inclined at 0º and at 10º 

S. No. Soil combinations Observed permeability (m/s) Percent deviation 

0° slope 10° positive slope 

1 Fine sand-1 (FS-1) 3.90E−05 4.07E−05 − 4.36 
2 Fine sand-2 (FS-2) 6.74E−05 7.73E−05 − 14.7 
3 Fine sand-3 (FS-3) 7.20E−05 8.37E−05 − 16.3 
4 Fine sand-4 (FS-4) 1.55E−04 1.89E−04 − 21.9 

Table 2 Permeability of fine sand inclined at 0º and at − 10º 
S. No. Soil combinations Observed permeability (m/s) Percent deviation 

0º slope 10º negative slope 

1 Fine sand-1 (FS-1) 3.90E−05 3.39E−05 13.1 

2 Fine sand-2 (FS-2) 6.74E−05 5.63E−05 16.5 

3 Fine sand-3 (FS-3) 7.20E−05 5.26E−05 26.9 

4 Fine sand-4 (FS-4) 1.55E−04 1.01E−04 34.8 

3.1 Permeability at 10° Slope 

The permeability of fine sand layer in horizontal direction and at +10° slope is 
presented in Table 1. It can be seen from Table 1 that permeability of positively 
sloped layer has increased with respect to the permeability in horizontal direction. 
Moreover, the permeability of the samples can be seen on a rising trend with increase 
in particle size. The deviation between horizontal permeability and positively sloped 
layer is thus found to have negative values. 

Thereafter, the slope was reversed, i.e., fine sand layer was placed at −10° slope. 
The values of permeability obtained for this case are presented in Table 2 along with 
the values of permeability of same material in horizontal direction. 

The permeability of negatively sloped layer was found to decrease as compared 
with the horizontal permeability. The percentage deviation was thus positive. 
However, with the increase in particle size, a rise in permeability was noticed for 
negative slope case. The maximum deviation observed in case of negative slope of 
10° was obtained as 34.8%, whereas for the case of positive slope, the maximum 
deviation was found as −21.9%. 

3.2 Permeability at 20° Slope 

The slope of the fine sand layer was increased to 20°. In this case also, the permeability 
of positively sloped layer was found to increase when compared with corresponding 
horizontal permeability values. Thus, the percent deviation was negative as shown in
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Table 3 Permeability of fine sand inclined at 0º and at 20º 

S. No. Soil combinations Observed permeability (m/s) Percent deviation 

0º slope 20º positive slope 

1 Fine sand-1 (FS-1) 3.90E−05 4.52E−05 − 15.9 
2 Fine sand-2 (FS-2) 6.74E−05 8.03E−05 − 19.1 
3 Fine sand-3 (FS-3) 7.20E−05 8.65E−05 − 20.1 
4 Fine sand-4 (FS-4) 1.55E−04 1.97E−04 − 27.1 

Table 4 Permeability of fine sand inclined at 0º and at − 20º 
S. No. Soil combinations Observed permeability (m/s) Percent deviation 

0º slope 20º negative slope 

1 Fine sand-1 (FS-1) 3.90E −05 3.24E−05 16.9 

2 Fine sand-2 (FS-2) 6.74E−05 5.32E−05 21.1 

3 Fine sand-3 (FS-3) 7.20E−05 5.51E−05 23.5 

4 Fine sand-4 (FS-4) 1.55E−04 1.02E−04 34.2 

Table 3. But, the deviation in values of permeability horizontal layers and the perme-
ability of sloping layer at 20° slope was found to be higher than the corresponding 
values of deviation at 10°. In the former case, the maximum deviation was −21.9%, 
while for latter case, it was −27.1% (Tables 1 and 3). 

After the experiment on positive slope of fine sand layer, the slope was changed 
to −20°. The values of permeability obtained for negative slope case is presented in 
Table 4 along with the values of permeability of same material in horizontal direction. 

In general, the values of permeability for negatively sloped layer were found to be 
lesser than the corresponding values of horizontal permeability of the same layers. 
For −20° slope, the deviation between horizontal permeability and the permeability 
of sloped layer was found to be higher than the corresponding layers at−10° slope but 
only for the finer particle fragment. For coarser particle fragment, the corresponding 
deviation for −20° slope was slightly lesser as compared to −10° slope (Tables 2 
and 4). 

Comparison of deviation of permeability of layers inclined at +10° and − 10° 
with the deviation of permeability of layers in horizontal direction is shown in Table 
5 and for the layers at slope of +20° with − 20° with horizontal layers is shown in 
Table 6.

With increase in slope from 10° to 20°, an increase in values of percent deviation 
was noticed for positively sloped layers. But for negatively sloped layers, the increase 
in percent deviation was noticed only for finer fraction of sand, while for coarser frac-
tion, a slight decrease was observed. The minimum percent deviation was obtained 
for the finest sand (FS-1), and an increase in percent deviation was observed with the 
increase in particle size. Maximum percent deviation was obtained for the coarser 
sand (FS-4). When the permeability of +10° sloped layer and −10° sloped layer was
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Table 5 Deviation of 
permeability of fine sand 
inclined at 10º and − 10º with 
horizontal 

S. No. Soil 
combinations 

Deviation of permeability (%) 

10º positive 
slope 

10º negative 
slope 

1 Fine sand-1 
(FS-1) 

− 4.36 13.1 

2 Fine sand-2 
(FS-2) 

− 14.7 16.5 

3 Fine sand-3 
(FS-3) 

− 16.3 26.9 

4 Fine sand-4 
(FS-4) 

− 21.9 34.8 

Table 6 Deviation of 
permeability of fine sand 
inclined at 20º and − 20º with 
horizontal 

S. No. Soil 
combinations 

Deviation of permeability (%) 

20º positive 
slope 

20º negative 
slope 

1 Fine sand-1 
(FS-1) 

− 15.9 16.9 

2 Fine sand-2 
(FS-2) 

− 19.1 21.1 

3 Fine sand-3 
(FS-3) 

− 20.1 23.5 

4 Fine sand-4 
(FS-4) 

− 27.1 34.2

compared with respective permeability of horizontal layer (Table 5), it was found 
that the magnitude of the deviation of negatively sloped layer was more as compared 
to the deviation of positively sloped layer. Similar trend can be observed in Table 
6, where the deviation of positive 20° sloped layer is lesser than the deviation of 
negative 20° sloped layer. It indicates that for positively sloped layer, the percentage 
increase in permeability is less than the percentage decrease in permeability for nega-
tively sloped layer when compared with respective horizontal permeabilities. If the 
slope is kept constant, the difference between deviation of permeability of positive 
and negative sloping layers increases with increase in particle size. 

4 Conclusion 

From the present study, the following conclusions may be drawn:

• Permeability of positively sloped layer was found to increase, whereas for nega-
tively sloped layer the permeability was found to decrease with respect to 
horizontal permeability of same layers.
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• For positively sloped layer, at the same slope, the percentage increase in perme-
ability is less than the percentage decrease in permeability for negatively sloped 
layer when compared with respective horizontal permeabilities.

• At constant slope, the deviation of permeability between positively and negatively 
sloped layers was found to increase with increase in particle size. 
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Groundwater Flow Modeling 
for Evaluating Specific Yield Sensitivity 
of a Sandstone Aquifer System 
in Gunderu Sub-basin 

S. V. Vijaya Kumar, A. Vara Prasada Rao, N. Srinivas, and D. Srija 

Abstract Gunderu is an important minor stream in West Godavari district and drains 
through upland region. It finally joins the Kolleru Lake, a freshwater lake sandwiched 
between Krishna and Godavari deltas. Gunderu sub-basin considered has an aerial 
extent of 297 km2 with stream length 35 km. Intensive irrigation with ground water is 
prevailing in the study area, and the long term water levels are in depleting nature. The 
overall rates and magnitude of groundwater depletion in most of the aquifers are not 
well characterized. To understand the groundwater flow in the study area, modeling 
is carried using FREEWAT based on QGIS and MODFLOW to simulate the effect of 
different stress conditions of pumping and recharge. In this paper, an attempt is made 
to determine the sensitivity of specific yield of the model in satisfying continuity of 
groundwater flow for variation of pumping to simulate the different groundwater 
developments in the aquifer. The analysis helped to understand the existing behavior 
of ground water flow, and various scenarios are performed to observe the sensitivity 
of model by taking different specific yield conditions such as 3, 4, 5, 10, and 15% to 
determine its influence under various stress conditions such as wells, river, recharge 
due to rainfall, and tanks. Any change in volume of water in the aquifer due to 
pumping and recharge is associated with the specific yield of the aquifer. From the 
model same is analyzed for different specific yield values. Thus, with pumping, 
for different specific yield of aquifer formation, the change in aquifer volume and 
hydraulic heads changes differently in the aquifer system. The sensitivity of aquifer 
system to spatial variation in specific yield and thus variation in piezometric heads 
in the study area is presented in the paper. 
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1 Introduction 

In any aquifer system, the natural consequence of recharge results in addition of 
groundwater storage. Similarly, the natural consequence of groundwater withdrawal 
is the removal of water from subsurface storage. Knowledge of geologic structure is 
very important to understand aquifer characteristics and its groundwater flow and its 
water level fluctuation. The scenario is complex in multi-aquifer systems. Ground-
water flow is mainly controlled by the continuity and interconnectedness of the 
aquifers, particularly in the vertical direction, rather than the hydraulic conductivity. 
Variation of specific yield also makes it more complex. 

A groundwater flow model can simulate hydraulic heads (and water table eleva-
tions in the case of unconfined aquifers) and groundwater flow rates within and across 
the boundaries of the system under consideration. It can provide estimates of water 
balance and travel times along flow paths [7]. Groundwater models, however, even 
as approximations are a useful investigation tool that groundwater hydrologists may 
use for a number of applications [6]. 

1.1 FREEWAT Model 

The FREEWAT (Free and open source software tools for water resource management) 
platform integrates a hydrological model in the QGIS GIS interface, where data are 
managed through a SpatiaLite Data Base Management System (DBMS), enabling 
the assessment of water balances and the availability of water resources in space 
and time, in order to support the management and planning processes [2]. Input and 
output data are managed through the SpatiaLite Data Base Management System [3]. 
Koltsida and Kallioras [5] demonstrated using the FREEWAT plug-in directly in the 
QGIS environment, to easily archive, pre-process, and analyzes large datasets, build 
a set of models, and post-process results. 

2 Study Area and Data Source 

Gunderu is an important minor stream in West Godavari district and drains through 
upland region. It finally joins the Kolleru Lake, a freshwater lake sandwiched between 
Krishna and Godavari deltas. Gunderu sub-basin considered has an aerial extent of 
297 km2 with stream length 35 km (Fig. 1). Groundwater is the main irrigation source 
in this area, and utilization of groundwater is very high with more than 70% stage 
development. The overall rates and magnitude of groundwater depletion in most 
of the aquifers are not well characterized [1]. Hence, it is necessary to model the 
pattern of the groundwater flow in multi-aquifer systems of Gunderu sub-basin for 
sustainable development of groundwater resources.
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Fig. 1 Location map of the study area 

The SRTM DEM (Shuttle radar topography mission digital elevation model) of 
30 m resolution is used for hydrological processing of the Gunderu river basin. Using 
HEC-Geo HMS software, DEM is processed to obtain boundary and river line. The 
maximum area in which river streams outcropped from the hilly areas is extracted 
based on Survey of India (SOI) toposheets and DEM. The catchment extracted has 
an area of 297.16 km2 and the length of the river is 35 km. A slope map is also 
prepared using DEM. 

In the study area, the piezometer readings are observed at Kamavarapukota, K. 
Gokavaram, Kallacheruvu, and Munduru. These readings represent piezometric head 
with respect to m.s.l. To get the piezometric head, the depth of groundwater level is 
subtracted from an elevation of measuring point or ground level. Using piezometers 
data, contours are generated for the post-monsoon period (Dec 2019), pre-monsoon 
(May 2020), and groundwater slope maps are prepared (Fig. 2). Piezometric head 
variation of 90 m at upland sandstone aquifers to 20 m at the downstream of the basin 
in December 2019 and 85 m to 15 m in May 2020 is observed in the study area.

Well density is a crucial factor from the supply as well as the demand side. Well 
density is defined as the number of wells present per square kilometer area. The well 
density for each village in the study area is considered for modeling. A variation 
of well density from 71 to 5 wells/km2 is observed at different locations in the 
study area. Landsat 8 satellite image of 30 m resolution dated 06/05/2019 is used 
for the preparation of land use/land cover maps using supervised classification in 
an image processing software after field visits for ground truth verification for each 
classification.
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Fig. 2 Groundwater level contours on slope map in December 2019 and May 2020

3 Methodology 

The SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) of 
30 m resolution is used for hydrological processing of the Gunderu river basin. Using 
HEC-Geo HMS software, DEM is processed to obtain boundary and river lines. The 
maximum area in which river streams are outcropped from the hilly areas is extracted 
based on SOI toposheets and DEM. The catchment extracted has an area of 297.16 
km2, and the length of the river is 35 km. According to GEC-2015, Hilly areas having 
slopes > 20% contribute to direct runoff rather to groundwater recharge. So the areas 
having a slope > 20% are identified from the slope map and taken as the inactive 
zone for model simulation. 

Other thematic layers (Fig. 3) such as tanks and wells are prepared based on 
observed data and land use/land cover map. According to GEC-2015 norms, seepage 
from tanks and ponds can be taken as 1.4 mm/day [8]. The return flow factor consid-
ered for recharge is 33% in non-monsoon. According to GEC-2015, the specific 
yield for sandstone formations in Gunderu basin is taken as 3% or 0.03. Various 
scenarios are performed by taking different specific yield conditions such as 3, 4, 
5, 10 and 15% to determine its sensitivity under various stress conditions such as 
wells, river, recharge due to rainfall, and tanks using FREEWAT model. The influ-
ence of wells, river, and tanks is determined for a one-year simulation consisting of 
six stress periods (SP’s). The impact due to river recharge (SP3-SP2), impact due to 
no pumping (SP5-SP4), and impact due to tank recharge (SP6-SP5) are determined 
by performing raster analysis.
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Fig. 3 Thematic layers used as input in model 

4 Groundwater Modeling 

FREEWAT software through the application of MODFLOW-2005 [ 4 ] is used for 
the analysis. The grid cell size taken for modeling is 500 m * 500 m. The two model 
layers considered for modeling are the upper aquifer and lower aquifer, respectively. 
The initial surface elevation of the upper aquifer and lower aquifers is 90 m and 70 m 
above the m.s.l, respectively (Table 1). To represent the real conditions of aquifer 
geometry, the surface elevation of the upper aquifer is varied 120 m at the upstream 
to 80 m at downstream, and similarly surface elevation of the lower aquifer is varied 
100 m at the upstream to 60 m at the downstream. Aquifer parameters considered 
are hydraulic conductivity in x, y, and z directions, i.e., Kx, KY , and Kz, initial head, 
specific yield and taken accordingly with the field observed data. Specific yield is 
taken as 0.03 and hydraulic conductivity is taken as 1 km/year or 2.74 m/d. Initial 
head is considered as 75 m above m.s.l (according to observed piezometric data).
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Table 1 Modeled aquifer layers (initial values) 

S. No. Layer name Top w.r.t m.s.l Bottom w.r.t m.s.l Thickness 

1 Upper_Aquifer 90 70 20 

2 Lower_Aquifer 70 0 70 

To match with the real conditions of the aquifer, the actual pumping rate of the well 
is not considered directly. Instead, the pumping rate from each well for simulation 
is taken as 12.5% of what has been pumped from the observed well and gradually 
increased the pumping stage up to 100% to represent the past and present situations 
and thus evaluating groundwater development changes in the aquifer. 

Time discretization in MODFLOW is based on stress periods (SP), namely time 
intervals during which boundary conditions and sink/source terms are constant. Each 
SP can be further subdivided into time steps (TS’s), namely shorter time intervals 
which allow evaluating the time evolution of the solution. The length of duration 
for initial stress conditions referred as SP1 and followed by SP2, SP3, SP4, SP5, 
and SP6. In this study, SP1 is defined for 10 days consisting of 2 time steps with 
evapotranspiration, rainfall recharge, recharge due to tanks, and well pumping as 
stress conditions. SP2 is defined for 60 days consisting of 8 time steps with evapo-
transpiration, rainfall recharge, and recharge due to tanks and well pumping as stress 
conditions. SP3 is defined for 10 days consisting of 2 time steps with river flow 
having stage of 1 m, evapotranspiration, rainfall recharge, and recharge due to tanks 
and well pumping as stress conditions. SP4 is defined for 60 days consisting of 8 time 
steps with evapotranspiration, rainfall recharge, and recharge due to tanks and well 
pumping as stress conditions. SP5 is defined for 114 days consisting of 15 time steps 
with evapotranspiration, recharge due to tank, and recharge due to return flow from 
groundwater irrigation as stress conditions. SP6 is defined for 110 days consisting 15 
time steps with evapotranspiration, and recharge due to tanks, recharge due to return 
flow from groundwater irrigation, and well pumping as stress conditions (Tables 2 
and 3). 

Table 2 Initial stress condition 

Initial stress conditions considered for one-year simulation 

SP State Length Time 
steps 

Stress conditions 

RIVER in terms of stage 
w.r.t bed level in m 

EVTR 
m/d 

WELL in terms of % draft 
considered from each well 

1 Transient 10 2 0 0.003 12.5 

2 Transient 60 8 0 0.003 12.5 

3 Transient 10 2 1 0.003 12.5 

4 Transient 60 8 0 0.003 12.5 

5 Transient 114 15 0 0.003 0 

6 Transient 110 15 0 0.003 12.5
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Table 3 Recharge conditions 

Recharge conditions: initial values 

SP Recharge due to rainfall in 
m/d 

Recharge due to tanks in m/d Recharge due to return flow 
from ground water irrigation 
in m/d 

1 0.002 0.0014 0 

2 0.002 0.0014 0 

3 0.002 0.0014 0 

4 0.002 0.0014 0 

5 0 0.0014 0.00066 

6 0 0 0.00066 

Here, Rch is the rainfall recharge in m/d and EVTR is the evapotranspiration rate 
from upper aquifer in m/d. WELL is Pumping Rate or Recharge Rate in m3/d. For 
pumping negative sign is considered and for recharge positive sign is considered. 

To determine the impact due to river recharge, raster analysis is performed by 
subtracting the head calculated for the lower aquifer layer at the end of SP 3 and the 
head calculated for each model layer at the end of SP 2, i.e., SP3-SP2. To determine 
the impact due to no pumping, raster analysis is performed by subtracting the head 
calculated for the lower aquifer layer at the end of SP 5 and the head calculated for 
each model layer at the end of SP 4, i.e., SP5-SP4. Similarly, to determine the impact 
due to tank recharge, raster analysis is performed by subtracting the head calculated 
for the lower aquifer layer at the end of SP 6 and the head calculated for each model 
layer at the end of SP 5, i.e., SP6-SP5. The same procedure is repeated for specific 
yields 0.04, 0.05, 0.10, and 0.15 with well-pumping rates 12.5%, 25%, 37.5%, 50%, 
75% and 100%, respectively. 

5 Results and Discussions 

The impact due to river recharge (SP3-SP2), impact due to no pumping (SP5-SP4), 
and impact due to tank recharge (SP6-SP5) are determined by performing raster 
analysis between various stress periods. Volumetric changes at the end of one-year 
simulation when wells pumping rate taken from 12.5 to 100.0% for specific yield 
values 3, 4, 5, 10 and 15% are given in Table 4.

5.1 The Pattern of Hydraulic Heads 

Hydraulic heads obtained from the model under various stress conditions with 
pumping rates 12.5, 25, 37.5, 50, 75 and 100% when specific yield values 3, 4, 
5, 10 and 15% are considered to determine the behavior flow (Table 5).



468 S. V. Vijaya Kumar et al.

Table 4 Quantitative aspects in lower aquifer at the end of one-year simulation 

(a) Change in aquifer volume in MCM due to impact of river recharge (SP3-SP2) 

Sy/pumping stage 12.50% 25% 37.50% 50% 75% 100% 

0.15 3.9639 −3.0515 −10.055 −17.19 −31.623 −45.999 

0.1 3.5102 −6.915 −17.507 −28.381 −49.859 −72.166 

0.05 1.7233 −19.499 −41.442 −63.164 −106.7 −151.45 

0.04 −0.5257 −25.422 −52.418 −79.885 −133.62 −187.55 

0.03 −6.2276 −41.81 −80.212 −117.71 −193.37 −270.22 

(b) Change in aquifer volume in MCM due to impact of no pumping (SP5-SP4) 

Sy/pumping stage (%) 12.50 25 37.50 50 75 100 

0.15 38.5505 40.5745 41.6949 43.374 46.7742 50.5039 

0.1 43.9003 48.7675 52.4403 53.2051 58.1634 64.0073 

0.05 46.7754 59.9112 72.8779 77.8556 97.8867 114.736 

0.04 54.0506 65.2637 82.1243 91.2791 119.442 140.548 

0.03 69.7271 77.5003 100.408 122.753 167.022 202.469 

(c) Change in aquifer volume in MCM due to impact of tank recharge (SP6-SP5) 

Sy/pumping stage (%) 12.50 25 37.50 50 75 100 

0.15 −57.77 −141.18 −225.03 −312.2 −491.99 −669.4 

0.1 −94.656 −218.9 −345.57 −474.31 −741.7 −1005.9 

0.05 −187.28 −446.44 −699.97 −963.65 −1483.4 −2018.6 

0.04 −228.29 −549.33 −859.12 −1182.9 −1824.7 −2493.8 

0.03 −328.49 −779.99 −1216.6 −1677.8 −2601.1 −3556.6

5.2 Normalization of Results 

Normalization basically means bringing all the values to one scale. In this analysis, 
normalization is used for determining the impact of change in the average head with 
an increase in specific yield and pumping stage (Fig. 4). The change in the average 
hydraulic head is scaled from 0 to 1 with corresponding to an increase in specific 
yield and well pumping. Normalized value (Y ,) is given  as  follows:  

Y , = 
Y − Ymin 

Ymax − Ymin

For any normalized factor between 1 and 0, the change in the average head in meters 
and specific yield (Sy) corresponding to that factor can be determined at a particular 
pumping rate using this analysis. For example at 12.5% pumping for a normalized 
head factor 0.3 (Y ,), the corresponding change in the average head (Y ) due to impact 
of river recharge can be determined by substituting Ymax = 0.0133 and Ymin = −  
0.0210 from Table 5(a) in the above equation. The change in the average head due 
to impact of river recharge corresponding to normalized head factor 0.3 is −0.0107,
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Table 5 Change in the average head of lower aquifer at the end of one-year simulation 

(a) Change in average head in m due to impact of river recharge (SP3-SP2) 

Sy/pumping stage 0.125 0.25 0.375 0.5 0.75 1 

0.15 0.0133 −0.0103 −0.0338 −0.0578 −0.1064 −0.1548 

0.1 0.0118 −0.0233 −0.0589 −0.0955 −0.1678 −0.2428 

0.05 0.0058 −0.0656 −0.1395 −0.2126 −0.3591 −0.5096 

0.04 −0.0018 −0.0855 −0.1764 −0.2688 −0.4497 −0.6311 

0.03 −0.021 −0.1407 −0.2699 −0.3961 −0.6507 −0.9093 

(b) Change in average head in m due to impact of no pumping (SP5-SP4) 

Sy/pumping stage 0.125 0.25 0.375 0.5 0.75 1 

0.15 0.1297 0.1365 0.1403 0.146 0.1574 0.17 

0.1 0.1477 0.1641 0.1765 0.179 0.1957 0.2154 

0.05 0.1574 0.2016 0.2452 0.262 0.3294 0.3861 

0.04 0.1819 0.2196 0.2764 0.3072 0.4019 0.473 

0.03 0.2346 0.2608 0.3379 0.4131 0.5621 0.6813 

(c) Change in average head in m due to impact of tank recharge (SP6-SP5) 

Sy/pumping stage 0.125 0.25 0.375 0.5 0.75 1 

0.15 −0.1944 −0.4751 −0.7573 −1.0506 −1.6556 −2.2526 

0.1 −0.3185 −0.7366 −1.1629 −1.5961 −2.4959 −3.3851 

0.05 −0.6302 −1.5023 −2.3555 −3.2428 −4.9918 −6.7928 

0.04 −0.7682 −1.8486 −2.8911 −3.9806 −6.1403 −8.3921 

0.03 −1.1054 −2.6248 −4.0939 −5.6459 −8.753 −11.9686

and the corresponding specific yield by interpolating the adjacent values is 0.035, 
i.e., 3.5%. Similarly, the change in the average head (Y ) due to the impact of no 
pumping can be determined by substituting Ymax = 0.2346 and Ymin = 0.1297 from 
Table 5(b) in the above equation. The change in the average head due to impact of no 
pumping corresponding to normalized head factor 0.3 is 0.1612, and corresponding 
specific yield by interpolating the adjacent values is 0.042, i.e., 4.2%. Similarly, the 
change in the average head (Y ) due to impact of tank recharge can be determined by 
substituting Ymax = −0.1944 and Ymin = −1.1054 from Table 5(c) in the above equa-
tion. The change in the average head due to impact of tank recharge corresponding to 
normalized head factor 0.3 is −0.8321 corresponding specific yield by interpolating 
the adjacent values is 0.038, i.e., 3.8%. 

5.3 Depth to Water Level 

The patterns of depth to water level (DWL) with respect to the piezometric surface 
when there is no pumping are evaluated from modeling to observe the change in
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Fig. 4 Normalized change in the average head with specific yield and stages of pumping

ground water elevation. The DWL is changed from 20 m at the downstream sub-
basin to 15 m at upland aquifers is observed when pumping is stopped at the stage of 
12.5% which has shown a significant variation of 25 m to 15 m over the study area 
when pumping is stopped at the stage of 100% (Fig. 5).

Further, the variation of maximum depth to piezometric head with specific yield 
is analyzed (Fig. 6) at each pumping stage. The maximum depth to water level varies 
from 30 m at 3% specific yield to 25 m at 15% specific yield is observed when 
pumping stopped at the stage 100%. These details helped to evaluate the storage of 
the aquifer in terms of the head and sensitivity of the specific yield of the aquifer.
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At 12.5% pumping stage At 100% pumping stage 

Fig. 5 Depth to water level w.r.t piezometric surface resulted from 12.5% pumping and 100% 
pumping, respectively, when pumping stopped at 3% specific yield (SP5-SP4)
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Fig. 6 Depth to water level w.r.t piezometric surface resulted from different pumping stages 
respectively when pumping stopped (SP5-SP4) 

6 Conclusions 

In this paper, an attempt is made to understand the sensitivity of the model in satisfying 
continuity of groundwater flow for variation of pumping from past 12.5% to present 
100% at an incremental pumping of 25, 37.5, 50 and 75% to simulate the different 
groundwater developments in the aquifer. Various scenarios are performed by taking 
different specific yield conditions such as 3, 4, 5, 10 and 15% to determine its 
influence under various stress conditions such as wells, river, recharge due to rainfall, 
and tanks using FREEWAT model. The minimum depth to the piezometric surface
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when pumping stopped at 100% pumping rate and 3% specific yield is nearly−0.7 m, 
i.e., the water level is raised to 0.7 m above the ground surface at that region which is 
actually 15 m below the earth surface, whereas the minimum depth to the piezometric 
surface when pumping stopped at 12.5% pumping rate and 3% specific yield is nearly 
5 m, i.e., this resulted in 10 m rise of the head at that region. The minimum depth 
to the piezometric surface when pumping stopped at 100% pumping rate and 15% 
specific yield is nearly 11 m, i.e., this resulted in 4 m rise of the head at that region, 
whereas the minimum depth to the piezometric surface when pumping stopped at 
12.5% pumping rate and 15% specific yield is nearly 11 m, i.e., this resulted in 5 m 
rise of the head at that region. It is observed from the analysis that the amount of water 
pumped is constant as it is to meet the crop water requirement and is irrespective of 
the specific yield of the aquifer. The change in aquifer volume and the average head 
keeps on increasing as specific yield increases at a certain pumping rate. The change 
in water volume keeps on decreasing as specific yield increases at a certain pumping 
rate. With an increase in well-pumping rate and specific yield, there is a reduction in 
change in aquifer volume and hydraulic heads and the relationship is presented. 
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Groundwater Flow Modeling 
in a Heterogeneous Porous Medium 
Using Meshless Method 

Tinesh Pathania and T. I. Eldho 

Abstract Groundwater flow modeling plays an important role in managing the 
groundwater resources. Several numerical models have been used to model the 
groundwater flow in hypothetical and field aquifers. These models can predict future 
groundwater level in an aquifer system using the available groundwater information 
and incoming/outgoing water into it for the selected time period. In most of the past 
studies, finite difference (FDM) and finite element methods (FEM) have been used to 
solve the variety of groundwater problems. In the last two decades, meshless methods 
have been successfully used to model the groundwater flow in porous media. These 
methods represent the problem domain with scattered and unconnected nodes in 
contrast to the mesh/grids in FDM/FEM. In the present study, meshless element-free 
Galerkin method (EFGM) is used to model the groundwater flow in a hypothetical 
heterogeneous porous medium. The considered flow domain is assumed to consist of 
zones of different hydraulic conductivities and also has a few pumping and recharge 
wells. In this study, both finer and coarser nodes are also used to represent the compu-
tational domain and compare their EFGM solution. The results of the EFGM flow 
model are checked against those with MODFLOW model, and it showed a good 
agreement, showing the applicability of EFGM. 

Keywords Element-free Galerkin method · Groundwater flow · Heterogeneous 
aquifer ·Meshless method
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1 Introduction 

Groundwater resources store the fresh water and hence, extensively used to meet the 
daily water needs of large population of the world. These resources also play a crucial 
role in the industrial and agricultural sectors. Worldwide increasing dependency on 
the groundwater resources demands for proper management of these resources. To 
manage these resources, numerical models are effective in simulating the response of 
precipitation and groundwater withdrawals in real aquifer systems. The mesh-based 
finite difference method (FDM) and finite element method (FEM) have been used 
to model the groundwater flow in many studies [1–4]. The other type of numerical 
methods known as meshless methods have shown significant potential to solve the 
variety of groundwater problems in the last two decades. These methods solve the 
governing groundwater flow equation using a set of scattered field nodes in the 
computational domain. They do not require computational mesh unlike FDM/FEM, 
and it makes them more flexible to represent complex aquifer shapes. 

Meshless methods have been applied to develop the several meshless ground-
water models in the recent years. A variety of meshless methods such as meshless 
element-free Galerkin method (EFGM), point collocation method (PCM), meshless 
local Petrov–Galerkin method (MLPGM), radial point collocation method (RPCM) 
have been used to develop these models. Park and Leap [5] used the meshless EFGM 
to model the confined groundwater flow for a hypothetical problem. Praveen Kumar 
and Dodagoudar [6] used the meshless EFGM to analyze the contaminant trans-
port in an unsaturated porous media. Meenal and Eldho [7] used the meshless PCM 
to solve the groundwater flow problems. They solved the hypothetical as well as 
real case studies. Meenal and Eldho [8] extended the application of PCM to solve 
the coupled groundwater flow and contaminant transport equations and successfully 
tested it over the real field problem. Mategaonkar and Eldho [9] designed the opti-
mized in-situ bioremediation system using the PCM simulations and particle swarm 
optimization (PSO). Swathi and Eldho [10] estimated the groundwater levels with 
the MLPGM. They also used it for the real aquifer simulations. Guneshwor Singh 
et al. [11] presented the coupled flow and transport simulations of meshless RPCM 
in different problems. Boddula and Eldho [12] successfully applied the MLPG to 
different types of contaminant transport problems. Pathania et al. [13] modeled the 
unconfined flow using the EFGM and also applied it to a real field sloping aquifer. 
Seyedpour et al. [14] combined the RPCM simulations of flow and transport models 
with the genetic algorithm (GA) for optimal groundwater remediation. Pathania and 
Eldho [15] coupled the EFGM simulations of flow and transport models and applied 
it to both hypothetical and real aquifers. Anshuman and Eldho [16] integrated the 
RPCM simulations of flow and multispecies reactive transport models. Pathania et al. 
[17] solved the coupled flow and reactive transport equations by EFGM. Pathania 
et al. [18] developed a BIOEFGM model for aerobic biodegradation of petroleum
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hydrocarbons in groundwater and integrated it with PSO to estimate the optimized 
cost of in-situ bioremediation operation. 

In the above studies, meshless EFGM has been tested over several types of flow and 
transport problems. In the present study, EFGM is selected to demonstrate its potential 
to model the groundwater flow in a heterogeneous porous medium. For verification 
purpose, EFGM results are tested against those with MODFLOW results. EFGM 
performance with both finer and coarser nodal distribution in the heterogeneous 
aquifer is also tested in this study. 

2 Governing Equation 

The steady state groundwater flow equation for the unconfined aquifer is expressed 
as [19] 

∂ 
∂ x

(
Kx h 

∂h 

∂x

)
+ ∂ 

∂y

(
Kyh 

∂h 

∂y

)
= Qw (1) 

The Dirichlet and Neumann types of boundaries for Eq. (1) are, respectively, 
expressed as 

h(x, y) = h1(x, y) x, y ∈ ∂Ω1 (2a) 

Kh  
∂h 

∂n 
= q1(x, y) x, y ∈ ∂Ω2 (2b) 

where h(x, y) is the groundwater head (m), Kx and Ky denote the hydraulic conduc-
tivity in the x- and y-axis, respectively, (m/d), Qw represents the pumping (negative) 
or recharge (positive) rate per unit area of the well (m3/d/m2), h1 is the given head 
at the Dirichlet boundaries (m), and q1(x, y) represents the inflow/outflow at the 
Neumann boundaries (m3/d/m2). 

3  EFGM Flow Model  

The meshless EFGM uses the Galerkin weak integral form and shape functions 
computed by the moving least approximation (MLS) method [20]. The resultant 
system thus obtained is finally solved for unknown variable [21]. EFGM formulation 
of Eq. (1) is given  by

∫
Ω

(
∂ 
∂ x

(
Kx h 

∂h 

∂x

)
+ ∂ 

∂y

(
Kyh 

∂h 

∂y

)
− Qw

)
ΦdΩ = 0 (3)
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In this study, cubic spline weight functions are used to derive the EFGM shape 
functions (Φ) in the MLS method [5]. The groundwater flow model formulated 
through Eq. (3) is available in Pathania et al. [13], and its resultant expression is 
given below

([
K (1)

] + [
K (2)

]){h J } = { f J } (4) 

In Eq. (4), components of two global matrices, i.e.,
[
K (1)

]
and

[
K (2)

]
for x and y 

directions, respectively, and a global flux vector { f } are evaluated as 

K (1) I J  =
∫
Ω

(
Kxb 

∂φI (x, y) 
∂x 

∂φJ (x, y) 
∂x

)
dΩ (5a) 

K (2) I J  =
∫
Ω

(
Kyb 

∂φI (x, y) 
∂ y 

∂φJ (x, y) 
∂y

)
dΩ (5b) 

f J = q1
∫

∂Ω2 

φJ (x, y)dΩ −
∫
Ω

QwφI (x, y)φJ (x, y)dΩ (5c) 

where I and J vary from 1 to N , i.e., total nodes (N) in the computational domain. 
Here, b denotes the saturated thickness of the unconfined aquifer (m). The integrals 
terms are evaluated using the Gauss quadrature method in the EFGM model. The 
Dirichlet boundaries are included in Eq. (4) with the help of penalty method. In 
EFGM model, solution of Eq. (4) represents the groundwater head (h J ) at  N nodes 
for steady state condition. 

4 Numerical Problem 

Here, a heterogeneous and unconfined aquifer (1000 m × 500 m) as shown in Fig. 1 
is selected to model the groundwater flow using the meshless EFGM. This aquifer is 
divided into ten zones of different hydraulic conductivity, and it varies from 7 m/d 
to 25 m/d as shown in Fig. 1. Here, the saturated thickness of this aquifer is taken 
as 20 m. This problem assumes the steady state flow condition and groundwater 
movement toward the eastern side of the aquifer. Therefore, western and eastern 
aquifer boundaries are assumed to have the constant head values of 40 m and 32 m, 
respectively, and the other two boundaries are satisfying the no-flow condition. Here, 
three pumping and two recharge wells are also assumed in the flow domain and their 
locations are also shown in Fig. 1. The pumping rate of all pumping/extraction wells
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Fig. 1 Aquifer of size 1000 m × 500 m with ten zones of different hydraulic conductivity

is considered as 450 m3/d and that of both injection wells is taken as 350 m3/d. 
To apply the EFGM, the flow domain is represented with uniformly distributed 
nodes in such a way that internodal spacing is 25 m in both longitudinal (x-axis) 
and transverse (y-axis) directions (Fig. 2). This arrangement uses 861 nodes in the 
flow domain. The contours of groundwater head at steady state by the EFGM flow 
model are shown in Fig. 3. These are verified with those obtained with MODFLOW 
model [22] and shown in Fig. 4. Both EFGM and MODFLOW estimated the similar 
groundwater distribution. It indicates the ability of EFGM to successfully model the 
groundwater flow in heterogeneous aquifers. The head values given by the EFGM 
and MODFLOW at six observation points are also shown in Table 1, and these are 
very close to each other. A coarser nodal distribution with internodal spacing of 50 m 
in longitudinal direction (x-axis) and 25 m in transverse (y-axis) direction is also 
tested in the EFGM model. It can be seen in Fig. 5 that groundwater head profiles at 
three different sections using both finer and coarser nodes in EFGM are also closely 
matching to those with MODFLOW. 

5 Conclusions 

In the current study, the application of the meshless EFGM model is presented to 
model the steady state groundwater flow in a heterogeneous porous medium. For the 
studied problem on an unconfined aquifer, the simulated groundwater distribution
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Fig. 3 EFGM-based steady state groundwater head in heterogeneous aquifer

with the EFGM model is found to be closer to that of the MODFLOW model. The 
pumping and recharge wells are also assumed in the aquifer, and results show that 
the presented model is capable of successfully including the groundwater source and 
sink terms. EFGM solutions with both finer and coarser nodal arrangements are also 
found almost same. It indicates that suitable coarse nodes can also be used in EFGM 
model to solve similar aquifer problems, and it will reduce the computational time of 
the model. This study thus shows that EFGM flow model can be applied to estimate 
the groundwater distribution in a highly heterogeneous porous media.
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Fig. 4 MODFLOW-based steady state groundwater head in heterogeneous aquifer 

Table 1 Head (in m) at six 
observation points by EFGM 
and MODFLOW models 

Observation point EFGM MODFLOW 

O1 37.00 36.97 

O2 36.28 36.23 

O3 34.93 34.84 

O4 34.52 34.42 

O5 33.82 33.69 

O6 33.66 33.51
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Fig. 5 EFGM-based groundwater head profiles along three different longitudinal axis for finer and 
coarser nodes, and their comparison with MODFLOW solution
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Characteristics and Frequency Analysis 
of Annual Daily Maximum Rainfall 
at Surat, Gujarat, India 

K. B. Bobade and S. G. Manjunatha 

Abstract The technical and engineering suitability of infrastructure projects such 
as nuclear/hydro/thermal power plants, dams, bridges, storm water drains and flood 
control measures need to be carried out during the planning and formulation stages 
of such projects. In a hydrological point of view, it is well recognised that whatever 
extreme the design loading, more sever conditions are likely to be encountered in 
nature. For the reason, frequency analysis of recorded hydro meteorological data such 
as flood discharge, rainfall, wind speed and temperature relating to the geograph-
ical region where the project is located, is a basic requirement for assessing such 
phenomena and arriving at structural and other design parameters for the project. 
The annual daily maximum rainfall data recorded at Surat for a period of 38 years 
(1969–2006) were used in this study. The statistical parameters viz. mean, standard 
deviation, coefficient of skewness, coefficient of kurtosis and correlation coefficient 
of original and log transformed rainfall series have been computed. The annual rain-
fall series has been checked for randomness and homogeneity by parametric and 
nonparametric test viz. median crossing tests, turning point test, rank difference test, 
run test, Wald-Wolfowitz test, runs above and below median test, Van Neuman ratio 
test, auto correlation test, Man Kendall test, Spearman’s Rho test, Kendall’s rank 
correlation test, etc. For long persistence evolution, Hurst coefficient test has been 
used. To explore the forms of relationships between time and rainfall, linear regres-
sion test has been used. The magnitudes of daily maximum rainfall corresponding 
to 10, 20, 25, 50 and 100 years return period were estimated using various distribu-
tions viz. Gumbel, Frechit, normal, log normal, GEV, Wakeby, logistic, G. logistic, 
G. Pareto, etc. Analytical procedures such as order statistics, probability weighted 
moments, L-moments and method of least square are applied for determination of 
estimators of the distribution. The adequacy of fitting of probability distribution 
to the recorded rainfall data is assessed by D-index goodness-of-fit test. Based on 
the identified frequency distribution rainfall amounts for different return periods
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were estimated. The analysis of annual daily maximum rainfall data and results are 
discussed in detail in this paper. The results of this study could be beneficial for 
design engineers and hydrologists for planning and design of small and medium 
hydrologic structures at Surat, Gujarat, India. 

Keywords Probability · Hydrology · Return period · Parametric test · D-index test 

1 Introduction 

Meteorological parameters like wind speed, rainfall intensity as well as total rainfall, 
storms, cyclones, maximum and minimum temperature play a major role in the design 
of the various hydraulic structures from the safety point of view. Structural safety 
requires that structures shall be designed to withstand the extreme values of these 
parameters likely to occur during the life of generation of revenue of the project. The 
plans of hydraulic structures are to be intended in such a way that they can withstand 
the occurrence of extreme values of the above parameters during their lifetime. It 
is, therefore, essential that safety of design of hydraulic structure is assessed for 
flooding. 

Most of the hydrological events occurring as natural wonders are observed only 
once. One of the important problems in hydrology deals with understanding past 
records of hydrological events for the future probabilities of occurrences. Flood 
frequency analysis refers to approximation of floods of various return periods. The 
primary objective of frequency analysis is to relate the magnitude of extreme events to 
their frequency of incidence through the use of probability distributions. Frequency 
distribution is fitting observed data series into a theoretical frequency distribution. 
The applicability of the theoretical distribution lies in the fact that it can be generalised 
for obtaining values of future events. Annual daily maximum rainfall corresponding 
to return period varying from 10, 20, 25, 50 and 100 years is used by project engineers 
and hydrologists for the economic planning, design of small and medium hydrologic 
structures and determination of drainage coefficient for agricultural fields. Statistical 
frequency analysis assumes that the record to be analysed is a reliable set of sizes 
of independent random events from a stationary population. The validity of this 
assumption can be verified using various statistical tests of short and long-term 
independence. 

The study was taken up with the objective of estimation of rainfall quantities 
for different return periods for Surat city, Gujarat, India. The study also includes 
identifying features of the data used in this study and suitable probability distribution 
function for frequency analysis. 

Foster [1] gave the theoretic frequency analysis. Hazen [2] discovered that if the 
logarithms representing the annual floods are used instead of the number themselves, 
the contract with the normal mistake is closer. This is true because the frequency 
distributions of annual floods are usually slanted and the distribution can be suitably 
represented by such frequency distribution law as the log normal probability law.
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Also, he proposed the use of log normal probability paper for graphical fitting of 
the data. In 1941, Gumbel [3] published the first of a countless number of papers 
on the application of a Fisher Tippett theory of extreme values of flood frequency 
analysis. Both the logarithmic (lognormal) probability law and extreme value law 
have been used extensively in recent years. From a theoretic point of view, Chow 
[4] had revealed that the extreme value probability law is practically a special case 
of the lognormal probability law. Jenkinson [5] gave concept of general extreme 
value distribution and applied the same to annual maximum and minimum values of 
meteorological elements. Nash and Shaw [6] made estimates of the accuracy of the 
prediction of floods at a high return period using extreme value distribution with pros-
ecutions from finite to large samples and arrived at the conclusion that extrapolation 
of frequency estimate is not hazardous even with finite sample if the assumed distri-
bution is correctly chosen. Benson [7] explained that no regional statistical criteria 
exist on which a comparison of distribution can be based and therefore, the choice of 
log Pearson type III was to some extent particular. Houghton [8] introduced a five-
parameter distribution known as Wakeby distribution for modelling of flood flows. 
This is becoming popular among investigators because of its capabilities to model 
both the extremity ends of the flood series separately. The large numbers of parame-
ters in the Wakeby distribution permit better fitting of data than by fewer parameters. 
It can house a variety of flows ranging from low flows to floods. Landwehr et al. [9] 
used probability weighted moments (PWMs) which avoid using higher order conven-
tional moments to estimate Wakeby parameters. Rao [10] used method of mixed 
moments to estimate parameters of log Pearson type III distribution. This method 
attempts to avoid effect of regional variation of skewness coefficient by intermixing 
the first two moments of data which is mean and variance, with the mean of loga-
rithmically transformed data to estimate indirectly coefficient of skewness of the log 
transformed series. Such estimate is not subject to distortion due to transformation 
for the five-parameter Wakeby distribution. Rossi et al. [11] introduced two compo-
nent extreme value distributions for flood frequency analysis for the rivers where 
floods are caused by two distinct physical mechanisms. Ahmad et al. [12] introduced 
a new distribution named log-logistic distribution and compared it with GEV, LN III 
and PT III distribution. They further recommended the use of this distribution for 
flood frequency analysis. Hosking [13] first introduced the L-moments. L-moments 
are linear mixtures of probability weighted moments (PWMs). It can be seen that the 
L-moments can be estimated directly from the PWMs. However, the L-moments are 
more suitable, as they are directly interpretable as measures of the scale and shape 
of probability distributions. L-moments can be used to estimate parameters when 
fitting a distribution to a sample, by equating the first p-sample L-moments to corre-
sponding population L-moments. Parameter estimation with L-moments has been 
found more precise than maximum likelihood estimate, in case of small sample. Rao 
and Hamed [14] mention that the data observed over an extended period of time in a 
river system or hydro meteorologically standardised region are analysed in frequency 
analysis. The data are assumed to be independent and identically distributed. The 
flood data are considered to be stochastic and space and time dependent. Further, it 
is assumed that the floods have not been affected by natural or manmade changes
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in the hydrological regime in the system. The authors’ further mention that in prac-
tice, the true probability distribution of the data at a site or a region is unknown. 
The assumption that data in a given system arise from a single-parent distribution 
may be questionable when data from large watershed are analysed. In such cases, 
more than one type of rainfall or flow may contribute to extreme events in a region. 
However, for the analysis to be of practical use, simpler distributions are frequently 
used to describe the relation between flood magnitudes and their frequencies. The 
performance of distributions is evaluated by using different statistical test. 

2 Study Area Data Availability 

Surat located approximately at latitude 21°17, N and longitude 72°83, E. The height 
above mean sea level is 13 m. Figure 1 shows the location map of the study area. 
The climate of Surat is characterised by a hot summer and general dryness except 
during the southwest monsoon season. The period from June to September is the 
southwest season. About 96% of the annual rainfall in the district is received during 
the southwest monsoon months June to September, July being the rainiest month. 
The average annual rainfall in the district is 1384.3 mm. The heaviest rainfall in 24 h 
recorded at Surat was 467.7 mm on 7 September 1970 from 1901 to 2006 [15].

The daily rainfall data for Surat meteorological station for a period of 38 years 
(1969–2006) was procured from India Meteorological Data (IMD), Pune and were 
used in this study [16]. 

3 Methodology 

The frequency analysis of annual daily maximum rainfall for Surat involves fitting 
of probability distribution to the recorded data. Briefly, the methodology adopted is 
given below. 

1. Processing of data for missing value. 
2. Preparation of data series of maximum from the processed data. 
3. Data validation using statistical tests for randomness, homogeneity, etc. 
4. Fitting of probability distribution using order statistic approach, present worth 

moments, least square and L-moments, etc. 
5. Assessing the suitability of fitting of probability distribution using goodness-of-fit 

(GoF tests) 
6. Selection of probability distribution.
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Surat 

Fig. 1 Location map of study area. Source www.mapsofindia.com

3.1 Missing Data 

The data set has been studied for determination of annual daily maximum rainfall 
values and assessment of its quality from the reliability and completeness point of 
view. Some data for interim periods in the overall time span were not available. For 
conservation, it has been assumed that the missing values of the rainfall were the 
highest observed during the entire period of data set in case of maximum extreme 
and lowest for minimum of the extreme.

http://www.mapsofindia.com
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3.2 Statistical Parameters 

The statistical parameters viz. mean, standard deviation, coefficient of skewness, 
coefficient of kurtosis and correlation coefficient of original and log transformed 
series were computed [17]. 

3.3 Short-Term and Long-Term Dependence Tests 

The parametric and nonparametric tests were used for checking the randomness 
and homogeneity of the data series. Following tests were applied to annual daily 
maximum rainfall series to test short-term and long-term dependence. The first 
ten tests are nonparametric, and the last two tests are parametric to test short-term 
dependence. The last test is used to test long-term dependence. 

3.3.1 Median Crossing Test 

X is replaced by zero if xi < x (median), and X is replaced by one if xi > x. If the  
original sequence of Xs has been generated by a purely random process, then m, the  
number of times zero is followed by one or one is followed by zero, is approximately 
normally distributed, i.e. 

m ≈ N

[
n − 1 
2 

,

(
n − 1 
4

)1/2
]

(1) 

3.3.2 Turning Point Test 

Kendall’s test is based on binary series. If xi − 1 <  xi > xi + 1 or  xi − 1 >  xi < xi + 
1, then xi is assigned the value one, otherwise it is assumed to be zero. The number 
of ones, m, is approximately normally distributed, i.e. 

m ≈ N
{
2(n − 2) 

3 
, 
(16n − 29) 

90 

1/2}
(2) 

3.3.3 Length of Runs Test 

A run length s is defined by a set of s consecutive flows either above or below the 
median. If ms denotes the total number of runs above and below the median length 
s, then for a random process
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E(ms) = 
(n + 3 − s) 

2s+1 
(3) 

sΣ
s=1 

[ms − E(ms)]2 /E(ms) ≈ X2 (s − 1) (4) 

3.3.4 Rank Difference Test 

Flows are replaced by their relative ranks Ri with the lowest being denoted by Rank 
1. The U statistic is calculated by 

U = 
nΣ

i=2 

|Ri − Ri − 1| (5) 

For large n, 

N

{
(n + 1)(n − 1) 

3 
,

[
(n − 2)(n + 1)(4n − 7) 

90

]1/2
}

(6) 

3.3.5 Wald-Wolfowitz Test 

For a sample of size n, 

R = 
n−1Σ
i=1 

Xi ∗ Xi − 1 + xi ∗ xn (7) 

If the elements of the sample are independent, 

R ≈ N

{
S2 1 − S2 
n − 1 

,

[
S2 2 − S4 
n − 1 

−
(
S2 1 − S2 
n − 1

)
+ 

S4 1 − 4S2 1 S2 + 4S1S1 + S2 2 − 2S4 
(n − 1)(n − 2)

]1/2
}

(8) 

where S1 = Xr 
1 + Xr 

2 +  · · ·  +  Xr 
n 

3.3.6 Runs Above and Below the Median Test for General Randomness 

Data are ranked in chronological order. An A or B is assigned according to whether 
the corresponding data is above or below or equal to the median. The number of
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runs, RUNAB, is determined. For n1 A and for n2 B with n1 and n2 both greater than 
20, the sampling distribution of RUNAB tends to normally distribute with 

Z = |RUNAB − |(2n1n2)/(n1 + n2) + 1|| 
2n1n2(2n1n2 − n1 − n2)/

[
(n1 + n2)2 (n1 + n2 − 1)

]1/2 (9) 

Z is an N (0, 1) variate and as used in this programme the region of rejection is z 
> 1.96 for  α = 0.05, z > 1.645 for α = 0.10. 

3.3.7 Rank Von Neuman Ratio Test 

Let r1… rn denote the ranks associated with the xi values. The rank Van Neumann 
ratio is given by 

v =
Σn 

i=2 (ri − ri−1)
2 

n(n2 − 1)/12 
(10) 

Critical values of c = (n (n2 − 1)/12) v and approximate critical values of v were 
given by Madansky (1988). For large n, v is approximately distributed as N (2, 4/n), 
although Bartels recommended 20/(5n + 7) as a better approximation to the variance 
of v. 

3.3.8 Mann Kendall Test 

The MK test is based on the test statistic. S defined as follows 

S = 
n−1Σ
i=1 

nΣ
j=i+1 

sgn(x j − xi ) (11) 

where the xj are the sequential data values, n is the length of the data set, and 
sgn(θ ) = {1 if  θ >  0, 0 if  θ = 0, −1 if  θ <  0} Mann (1945) and Kendall (1975) have 
documented that when n ≥ 8, the statistic S is approximately normally distributed 
with the man and the variance as follows: E(S) = 0 

V (S) = 
n(n − 1)(2n + 5) − Σn 

i=1 tii (i − 1)(2i + 5) 
18 

(12) 

where ti is the number of ties of extent i. The standardised test statistic Z is computed 
by 

ZMK =
{

S − 1 √
Var(S) 

if S > 0, 0 if  S = 0, 
S + 1 √
Var(S) 

S < 0
}

(13)
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The standardised MK statistic Z follows the standard normal distribution with 
mean zero and variance of one. 

3.3.9 Spearman’s Rho test 

SR test is another nonparametric rank order test. Given a sample data set (Xi, i = 
1, 2, n) the null hypothesis H0 of the SR test against trend test is that all the Xi, are  
independent and identically distributed. The alternative hypothesis is that Xi increase 
or decrease with i, that is, trend exists. The test statistic is given by 

D = 1 − 
6
Σn 

i=1 [R(Xi ) − i]2 

n(n2 −1) 
(14) 

where R (Xi) is the rank of the ith observation Xi in the sample size n. Under the 
null hypothesis, the distribution of D is asymptotically normal with the mean and 
variance as follows, E(D) = 0 and V (D) = 1/(n − 1). 

3.3.10 Kendall’s Rank Correlation Test 

Kendall’s rank correlation test is applied to check trend of time series 

τ = 
4 p 

n(n − 1) 
− 1 (15) 

where p is the number of times exceeding xi in the time series. 

Var τ = 
2(2n + 5) 
9n(n − 1) 

, (16) 

Z = τ √
Var τ 

(17) 

Test criteria: If, −1.96 ≤ Z ≤ 1.96, no trend exists, the time series is stationary. 
If, Z ≤ −1.96, the trend is falling and if Z ≥ +1.96, the trend is rising in the time 
series. 

3.3.11 Auto Correlation Test 

Short-term dependence is usually measured by the magnitude of the low order 
autocorrelation coefficient (rk).
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rk =
[
n−kΣ
i=1 

(xi − x)(xi + k − x

]/[
nΣ

i=1 

(xi − x)(xi − x)

]
(18) 

where k is lag, xi is annual flow at time i, n is sample size, and 

x = 1/n 
nΣ

i=1 

xi (19) 

The lag-one autocorrelation, r1, is calculated from Eq. 3.15 and is normally 
distributed. 

r1 = N

{
− 
1 

n 
,

[
n3 −3 n2 +4 
n2(n2 −1)

]1/2
}

(20) 

rk is checked whether or not it is significantly different from the expected value. 

3.3.12 Von Neumann Ratio Test 

Let, 

V =
Σn 

i=2 (xi − xi−1)
2Σn 

i=1 (xi − x̂)2
(21) 

If data are independent, V is approximately normally distributed with E(V ) = 2 
and Var(V ) = 4(n − 2)/(n2 – 1), i.e. 

Z = V − 2[
4(n − 2)/

(
n2 − 1

)](1/2) (22) 

These tests are used by Lye and Lin (1994) for analysis of peak flow series of 90 
Canadian rivers for short-term dependence. The Mann Kendall test and Spearman’s 
Rho test are used for detection of monotonic trends in hydrological series (Sheng 
Yue, 2002). 

3.3.13 Hurst Coefficient 

Long-term dependence is measured by the magnitude of Hurst coefficient (K). 

K = 
log(R/s) 
log(n/2) 

(23)
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where R is the range of cumulative departures from the mean, s is the standard 
deviation and n is the sample length. K is theoretically 0.5 for series of independent 
data; it increases when there is greater degree of dependence and cannot exceed 1.0. 
The Hurst coefficient is at present the only measurement available for long-term 
dependence. These tests are used by Lye and Lin (1994) for analysis of peak flow 
series of 90 Canadian rivers for short-term dependence. The details of long-term 
dependence tests are given in the literatures. To explore the forms of relationships 
between time and rainfall, linear regression test has been used. 

3.4 Frequency Analysis 

The following distributions are used for estimation of quantities for different return 
periods [17–19]. 

3.4.1 Gumbel or Extreme Value Type I or Fisher Tippet Type I 
Distribution 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eqs. 24 and 25. 

Gumbal(maxima): XT  = u + α
{
− ln

[
− ln

(
1 − 

1 

T

)]}
(24) 

Gumbal(minima): XT  = u − α
{
− ln

[
− ln

(
1 − 

1 

T

)]}
(25) 

3.4.2 Frechet or Extreme Value Type II or Fisher Tippet Type II 
Distribution 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained by using Eqs. 26 and 27. 

Frechet(maxima): XT = β ∗ e 
− ln[− ln(1− 1 T )] 

k (26) 

Frechet(minima): XT = u − β ∗ e 
− ln[− ln(1− 1 T )] 

k (27)
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3.4.3 The Five-Parameter Wakeby Distribution (WAK 5) 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eq. 28. 

XT = m + a
[
1 − T −b

] − c
[
1 − T d

]
(28) 

3.4.4 The Four-Parameter Wakeby Distribution (WAK 4) 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eq. 29. 

XT = a
[
1 − T −b

] − c
[
1 − T d

]
(29) 

3.4.5 Generalised Extreme Value Distribution (GEV) 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eq. 30. 

XT = u + α ∗ (1 − (− ln(1 − 1/T ))−k )/k (30) 

where u, α and k are the location, scale and shape parameters of the distribution. 

3.4.6 Normal Distribution 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eq. 31. 

XT = α1 + uα2 (31) 

3.4.7 Log Normal Distribution 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eq. 32. 

Xp = u + exp(μy + σ y Φ
−1 ( p)) (32)
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3.4.8 Generalised Pareto Distribution 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eq. 33. 

Xp = u + 
α 
k

[
1 − (1 − p)k

]
(33) 

3.4.9 Logistic Distribution 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eq. 34. 

XT = m + a log(T − 1) (34) 

3.4.10 Generalised Logistic Distribution 

The estimates of meteorological parameters for different periods of T (years) of 2, 
5, 10, 20, 25, 50 and 100 were obtained using Eq. 34. 

XT  = ε + 
α 
k

[
1 − (T − 1)−k

]
(35) 

3.5 Parameter Estimation Methods 

The following methods are used for estimation various parameters of the distribution. 
The procedures in detail are given in the literatures. 

1. Order statistics alternatively known as Lieblein technique: It is used to estimate 
the parameters of Gumbel and Frechet distributions. 

2. Method of Moment: It is used to estimate the parameters of Gumbel distributions. 
3. Least Square: It is used to estimate the parameters of Gumbel distributions. 
4. Probability Weighted Moments: It is used to estimate the parameters of Gumbel, 

generalised extreme value, Wakbay (4) and Wakbay (5) distributions. 
5. L-moments: It is used to estimate the parameters of Gumbel alternatively known 

as extreme value I, generalised extreme value, logistic, generalised logistic, 
generalised Pareto, normal and log normal distributions.
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3.6 Goodness-of-Fit Test 

The validity of a probability distribution function proposed to fit the empirical 
frequency distribution of a given sample may be tested graphical and analytical 
methods. A number of analytical tests have been proposed for testing the goodness-
of-fit of proposed distribution. Some of the commonly used tests are (1) chi-square 
test and (2) Kolmogorov–Smirnov tests. These tests are not very powerful in the 
sense that the probability of accepting the hypothesis when it is in fact false is very 
high when these tests are used. In this light, D-index test is bit better. Hence, it is 
used in this paper. The D-index for the comparison of the fit of various distributions 
in upper tail is given as 

D-insdex = (
1/X

) 6Σ
i=1 

Abs
(
Xi − Xi

Δ)
(36) 

where Xi and X
Δ

i are the ith highest observed and computed values for the distribution. 
The distribution giving the least D-index is considered to be the best fit distribution. 

4 Results and Discussions 

The annual daily maximum rainfall data recorded at Surat for a period of 38 years 
(1969–2006) were used in this study. The data was missing for the years 1992–95. 
The missing data has been filled by extreme value of daily rainfall for the period. The 
daily rainfall data for the period from 1969 to 2006 of Surat meteorological station 
were analysed, and annual daily maximum rainfall is given in Table 1. Figure 2 shows 
the series of observed annual daily maximum rainfall at Surat.

4.1 The Statistical Parameters 

The statistical parameters viz., mean, standard deviation, coefficient of skewness, 
coefficient of kurtosis and correlation coefficient of original and log transformed 
series are computed for the rainfall data recorded at Surat and given in Table 2.

4.2 Short-Term and Long-Term Dependence Tests 

These tests were applied to rainfall series of Surat station. The results obtained 
thereof are given in Table 3. Table 3 indicates that rainfall series is random and trend 
free. Regarding long-term persistence, it shows no long-term persistence in rainfall 
series of stations. Randomness indicates that data is original, not manipulated and
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Table 1 Annual daily maximum rainfall (mm/day) at Surat 

Year Annual daily maximum rainfall (mm) Year Annual daily maximum rainfall (mm) 

1969 140.8 1988 326.4 

1970 247.5 1989 63.2 

1971 88.8 1990 110.4 

1972 155.6 1991 130.5 

1973 202.6 1992 326.4a 

1974 109.0 1993 326.4a 

1975 192.8 1994 326.4a 

1976 240.8 1995 326.4a 

1977 133.0 1996 90.4 

1978 191.4 1997 82.6 

1979 129.2 1998 208.6 

1980 105.8 1999 187.8 

1981 154.3 2000 96.4 

1982 221.4 2001 82.0 

1983 183.2 2002 146.6 

1984 186.8 2003 261.5 

1985 59.6 2004 245.0 

1986 115.8 2005 224.0 

1987 164.4 2006 144.1 

a Missing data 
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Fig. 2 Annual daily maximum rainfall (mm/day)

homogeneous. Trend free indicates that data has no trend. Correlation indicates, 
does data has any relation with each other. Persistence indicates weather data has 
indepedent or not.
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Table 2 Statistics of annual daily maximum rainfall 

Statistical 
parameters 

Mean Standard 
deviation 

Coefficient of 
skewness 

Coefficient of 
kurtosis 

Coefficient of 
correlation 

(α) (δ) (Cs) (Ck) (r) 

Original series 159.5 63.8 0.5 3.1 0.0 

Log 
transformed 
series 

5.0 0.4 –0.3 2.7 0.0

Table 3 Tests results on rainfall series at Surat, Gujarat 

S. No. Tests Result Remark 

1 Median crossing test −0.1741 Random 

2 Turning point test −0.9754 Random 

3 Rank difference test −0.2995 Random 

4 Kendall’s rank correlation test −0.22237 Trend free 

5 Linear regression test 0.0081 Positive correlation 

6 Run test −0.6966 Random 

7 Wald-Wolfowitz test 0.378 Random 

8 Runs above and below median test −0.0012 Random 

9 Rank Van Neuman ratio test −0.4828 Random 

10 Van Neuman ratio  test −0.1967 Random 

11 Auto correlation test 0.366 Random 

12 Mann Kendall test −0.2075 Random 

13 Spearman’s Rho test −0.0781 Random 

14 Hurst coefficient 0.6498 No persistence 

4.3 Frequency Analysis 

The frequency analysis of daily rainfall recorded at Surat has been carried out by 
using Gumbel, Frechet, Wakbay (4), Wakbay (5), Generalised extreme value (GEV), 
logistic, generalised logistic (G. logistic), generalised Pareto, normal and log normal 
probability model. The distribution parameters were estimated using order statis-
tics alternatively known as Lieblein technique, least square, probability weighted 
moments (PWM) and L-moments (LM) techniques. Table 4 gives the rainfall esti-
mates for different return periods of 10, 20, 25, 50 and 100 years. Figure 3 shows 
the probability plot of estimated annual daily rainfall at Surat by using logistic and 
normal distributions. From Table 4, it may be noted that the rainfall estimates using 
Frechet distribution are on the higher side.
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Table 4 Estimated daily maximum rainfall (mm) 

Distribution Parameter estimation method Return period (year) 

10 20 25 50 100 

Gumbel Order statistic approach 298.0 349.5 365.8 416.1 465.9 

Least square 292.7 341.5 356.9 404.5 451.8 

Present worth method 248.6 287.0 299.1 336.6 373.8 

L-moments 248.6 287.0 299.1 336.6 373.8 

Frechet Order statistic approach 369.3 524.0 585.5 824.2 1157.3 

Wakbay (4) Present worth method 254.0 282.0 289.48 308.6 323.1 

Wakbay (5) Present worth method 247.4 279.0 288.6 317.2 343.7 

GEV Present worth method 248.2 281.0 291.0 320.4 347.8 

L-moments 248.2 281.0 291.0 320.4 347.8 

Logistic L-moments 240.6 268.2 276.8 303.2 329.2 

G. logistic L-moments 242.8 279.1 291.0 329.7 370.9 

G. Pareto L-moments 255.3 277.5 283.0 295.9 304.5 

Normal L-moments 243.3 267.1 274.1 293.9 311.7 

Log normal L-moments 247.5 280.2 290.3 320.5 349.6 

Fig. 3 Logistic and normal probability plot
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Table 5 D-index goodness-of-fit test results 

Distribution Test results Distribution Test results 

Wakbay (4) 
distribution—PW M 

0.46 Generalised extreme value—LM 0.53 

Wakbay (5)—PWM 0.47 Logistic—LM 0.31 

Extreme value 
I/Gumbel-PWM 

0.79 Generalised logistic—LM 0.72 

Generalised extreme 
value—PWM 

0.53 Generalised Pareto—LM 0.60 

Extreme value 
I/Gumbel—LM 

0.79 Normal—LM 0.31 

Log normal—LM 0.53 

4.4 Goodness-of-Fit Test 

Goodness-of-fit of distributions is tested using D-index test. The results are presented 
in Table 5. Table indicates that logistic and normal distribution are suitable for 
frequency analysis of rainfall at Surat, Gujarat. 

5 Conclusions 

This paper details the methodology used for determination of characteristics of rain-
fall prevailing at Surat by using short-term and long-term parametric and nonpara-
metric tests and frequency analysis. The results of parametric and nonparametric 
tests were showed that the data were random and homogeneous. From the results 
of D-index test, it is found that logistic and normal distribution are better suited for 
frequency analysis in this region. A daily maximum rainfall of 240.6, 268.2, 276.8, 
303.2 and 329.2 mm is predicted to occur at Surat for a return period of 10, 20, 25, 
50 and 100 years, respectively. 

The results of this study could be beneficial for design engineers and hydrologists 
for planning and design of small and medium hydrologic structures at Surat, Gujarat, 
India. 
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Groundwater Flow Simulation 
in an Unconfined Aquifer Using Local 
Radial Point Interpolation Meshless 
Method (LRPIM) 

K. Swetha, T. I. Eldho, L. Guneshwor Singh, and A. Vinod Kumar 

Abstract To tackle the groundwater flow issues, numerical approaches like the 
finite difference method and the finite element method are frequently utilized. The 
pre-processing portion of these traditional methods involves the usage of elements 
or a grid to solve the issue. Pre-processing or re-meshing process consumes more 
time and computationally complex. In order to avoid these difficulties, meshless 
techniques are evolved. Based on the formulation procedure, meshless methods were 
classified into strong form and weak form. In this paper, one of the weak form method 
known as local radial point interpolation method (LRPIM) is used to simulate the 
groundwater flow in an unconfined aquifer. The LRPIM flow model is developed 
using the MATLAB® platform and applied to a hypothetical unconfined aquifer 
problem. The results obtained from the model is compared with finite difference 
method (FDM) and found to be satisfactory. The LRPIM model takes the advantage 
of having shape functions with weaker consistency because of the reduced order 
of the governing equation in the weak form formulation. Background cells are not 
needed for interpolation and integration in LRPIM. Implementation of both essential 
and Neumann boundary condition is easier because of Kronecker delta property and 
weak form formulation. In LRPIM, multi-quadratics radial basis function (MQ-RBF) 
is used for calculating the shape function and the approach provided high accuracy. 
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1 Introduction 

Natural resources like groundwater are mostly used in agriculture and irrigation. 
Wells and springs are the main sources of groundwater. When the rainfall occurs, 
part of the water drains as run off whereas the part of the water penetrates or infiltrated 
through the various layers of sand, stones, and rocks. This infiltrated water is collected 
and stored in a hydro geological formation called aquifers. In recent decades, because 
of over extraction of groundwater, the quality and quantity of water in the aquifer 
are not maintained. Hence, there is a need for groundwater models to solve these 
problems. 

Groundwater models are developed using various techniques such as the finite 
difference method (FDM), finite element method (FEM), meshless methods, etc. 
Groundwater modeling is used to simulate the exact aquifer condition and for 
predicting the changes in the aquifer. Finite difference and finite element method 
involve computational complexities, and it leads to the usage of the meshless method. 
Meshless method involves generation of nodes and establishing the relation between 
the nodes in terms of shape function using support domain. It does not require any 
mesh or grid formation. 

Several types of meshless methods are available as given by Liu and Gu [1]. Most 
commonly used meshless methods in groundwater are the radial point collocation 
method (RPCM), meshless local Petrov–Galerkin method (MLPG), and element 
free Galerkin methods (EFG). Based on the local weak forms, the local radial point 
interpolation method (LRPIM) is described in Liu and Gu [1]. The implementation 
procedure of LRPIM is easier and gives higher accuracy as other strong form methods 
[1]. 

LRPIM has been effectively applied to solid mechanics by Liu and Gu [2], fluid 
mechanics by Wu and Liu [3], and soil mechanics by Wang et al. [4]. Wang et al. 
[4] analyzed the dissipation process of excess pore water pressure in porous media 
using the local radial point interpolation method and found that the LRPIM is having 
advantage over collocation methods. It requires lower order derivatives, easier in 
handling the boundary conditions and is a true meshless method. Saeedpanah et al. 
[5] studied the influence of leakage on tidal response in the coastal leaky aquifer 
system with LRPIM. The results are discussed with numerical solution. Saeedpanah 
and Jabbari [6] used LRPIM with the local Heaviside weight function to conduct 
numerical tests in groundwater and fluid flows. The results obtained are compared 
with finite element method. In order to determine the effects of the sizes of the local 
sub-domain and interpolation domain, authors have also performed a sensitivity 
study. 

This paper develops the local radial point interpolation approach for two-
dimensional unconfined aquifer flow problems. The generated model is then used 
to simulate groundwater flow in an imaginary unconfined aquifer problem, and the 
results are compared with those of a conventional FDM model.
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2 Governing Equations and Boundary Conditions 

It is derived using the continuity equation and Darcy’s law. The governing equation 
for an unconfined aquifer is stated as [7] 

∂ 
∂x

[
Kx h 

∂h 

∂x

]
+ 

∂ 
∂y

[
Kyh 

∂h 

∂y

]
= Sy 

∂h 

∂t 
+ 

nΣ
w=1 

Qwδ(r − rw) − f (1) 

The boundary conditions for unconfined aquifer problems are 

h(x, y, t) = h1(x, y, t) where x, y ∈ ∂Ω1(Dirichlet boundary) (2) 

Kh  
∂h 

∂n 
= q(x, y, t) where x, y ∈ ∂Ω2(Neumann boundary) (3) 

where Kx , Ky are the hydraulic conductivities in x and y directions; h(x, y, t) is the 
piezometric head (m) which is the state variable; Qw is the source or sink term 
(m3/d/m2); ∂ 

∂n denotes the normal derivative to the boundary; Sy is the specific 
yield; h1(x, y, t) is the known head value at the boundary head (m); q(x, y, t) is 
the known inflow rate (m3/d/m). The boundary is denoted by ∂Ω and the flow region 
is represented by Ω. 

3 LRPIM Formulation for an Unconfined Aquifer 

There are two types of approximation functions to find out shape functions. They 
are polynomial point interpolation functions and radial point interpolation function. 
Among these two, radial point interpolation function can be used for both strong 
and weak form meshless methods. Because of the radial basis function (RBF) used 
in radial point interpolation function, and it overcomes the singularity problem [1]. 
The approximation function of a variable h(x) inside a local support domain can be 
constructed as a linear combination of n RBF and m polynomial basis functions. 

h(x) = 
nΣ

i=1 

ai Ri (x) + 
mΣ
j=1 

b j Pj (x) = RT (x)a + PT (x)b (4) 

where Ri (x) is a RBF such as a multi-quadrics, exponential or Gaussian function, 
thin plate spline, and logarithmic RBF [8–11]; n is the number of points in the support 
domain; ai and b j are the unknown coefficients and can be determined by enforcing 
the interpolation function to pass through all the n nodes within the support domain 
[1]; Pj (x) are polynomial basis functions; m is the number of polynomial basis 
function [1]. The variable ri (x) in RBF (for 2D) is the distance between the point of
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interest x (data site) and a node at xi (center point) 

ri =
/

(x − xi )2 + (y − yi )2 (5) 

The expression for multi-quadratics (MQ) is given as 

Ri (x, y) =
[
r2 i + C2 

s

]q = [
(x − xi )2 + (y − yi )2 + C2 

s

]q 
(6) 

The shape parameters of the RBF are q and Cs . In this study, the parameter q has 
been kept as 1.03 as in [1]. The shape parameter of the MQ-RBF, Cs is usually given 
as a characteristic length (dc), i.e., 

Cs = αcdc (7) 

The characteristic length (dc) is the nodal spacing in the local support domain. 
The accuracy of the solution depends upon the shape parameter value. The best value 
for the shape parameter must therefore be determined via sensitivity or parametric 
studies. Rippa [12], Schaback and Wendland [13–14] explain how to choose the 
shape parameter. 

It is stated that the interpolation expression is 

h(x) = ΦT (x)hi (8) 

where the shape functions, denoted by Φ(x), is as follows:

ΦT (x) =
{

Φ1(x, y) Φ2(x, y) . . . Φn(x, y)
}

(9) 

The function’s nodal values at the support domain nodes are represented by hi = 
{h1, h2, . . .  hn}T . The derivatives of h(x, y) at any point x(xI , yI ) are given as below 

h(xI ) = ΦT (x)hs = 
nΣ

i=1

Φi hi (10) 

∂hI 

∂x 
= 

∂ΦT 

∂ x 
hi = 

nΣ
i=1 

∂Φi 

∂x 
hi ; ∂2hI 

∂x2 
= 

∂2ΦT 

∂ x2 
hi = 

nΣ
i=1 

∂2Φi 

∂x2 
hi (11) 

∂hI 

∂y 
= 

∂ΦT 

∂y 
hi = 

nΣ
i=1 

∂Φi 

∂y 
hi ; ∂

2hI 

∂y2 
= 

∂2ΦT 

∂y2 
hi = 

nΣ
i=1 

∂2Φi 

∂y2 
hi (12) 

The weighted residual approach for LRPIM formulation can be used to write Eq. 1 
and is given as
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∫
Ωs 

∇ ·  (Kh∇h)vdΩ =
∫
Ωs 

wΣ
w=1 

Qwδ(r − rw)vdΩ −
∫
Ωs 

f vdΩ +
∫
Ωs 

Sy 
∂h 

∂t 
vdΩ (13) 

where v is the so-called heavy step function, which represents weight. The LHS of 
Eq. (13) is subjected to the divergence theorem.

∫
∂Ωs 

(Kh∇h).nvdΩ −
∫
Ωs 

(Kh∇h).∇vdΩ

=
∫
Ωs 

wΣ
w=1 

Qwδ(r − rw)vdΩ −
∫
Ωs 

f vdΩ +
∫
Ωs 

Sy 
∂h 

∂t 
vdΩ (14) 

The value of Heaviside step function (v) is taken as 1 for r in Ωs , zero elsewhere 
and the LRPIM formulation is made simpler by setting ∇v = 0. Eq. (14), thus 
becomes

∫
∂Ωs 

(Kh∇h).ndΩ =
∫
Ωs 

wΣ
w=1 

Qwδ(r − rw)vdΩ −
∫
Ωs 

f dΩ +
∫
Ωs 

Sy 
∂h 

∂t 
dΩ (15) 

where the normal vector n pointing away from the boundary and ∂Ωs is the boundary 
of the sub-domainΩs . Within the sub-domain, the parameters K and f are fixed. Thus, 
Eq. (15) becomes 

K j

∫
∂Ωs 

∂h 

∂n 
hdΩ j =

∫
Ωs 

wΣ
w=1 

Qwδ(r − rw)vdΩ − f j AΩ +
∫
Ωs 

Sy 
∂h 

∂t 
dΩ (16) 

where AΩ is the sub-domain area and the node’s index is represented by j. The 
derivative of h with regard to the positive outward-facing normal directions (nx , ny) 
represents the index of the node considered. 

∂h 

∂n 
= (∇h) · n = 

∂h 

∂x 
nx + 

∂h 

∂y 
ny (17) 

The suggested dependent variable is written as 

h(r ) = 
nΣ

i=1 

ϕ1(r)hi (18) 

Using the time–space derivative, we obtain
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K j 
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Sy
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i − ht i

Δt

]
dΩ (19) 

Rearranging the terms in Eq. 19, the resulting equation is 

K j 

⎛ 
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The system of equations that result from Eq. 20 is 

K
[
ht+Δt

] = f (21) 

where K = K j 
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4 Model Development 

LRPIM model has been developed for an unconfined aquifer based on the formula-
tion given in Sect. 3 using MATLAB® platform. The groundwater flow simulation 
methodology is shown in Fig. 1. It explains the model development procedure. 

1. Data collection is the initial step, during which aquifer and model parame-
ters, including porosity, permeability, aquifer thickness, specific conductivity, 
stresses, such as recharge and outflow, total simulation period, and time step, 
were obtained. 

2. The next step is to generate the interior and boundary nodes at an interval in the 
problem domain. 

3. Initialization of groundwater head throughout the problem domain has to be 
done. The size and shape of the support domain are finalized. 

4. Using the support domain, the stiffness matrix is calculated for every individual 
node in the problem domain. There are different shapes for support domain such 
as square, rectangular, or circular. Here, circular domain is used with a support

Fig. 1 Flow chart for groundwater flow model
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Fig. 2 Problem domain representation for LRPIM 

and sub-domain factor as 4 and 0.6, respectively. Figure 2 represents the problem 
domain for LRPIM method.

5. The essential and Neumann boundary conditions are imposed directly to the 
boundary nodes. The elements of global matrix are assembled with Eq. 21. 

6. The global matrix is solved to give the head values throughout the domain. 

The steady state head values were used as a beginning head for unsteady flow. 
The method is repeated throughout the whole simulation period using the head 

values obtained from the previous time step as an initial head for the following time 
step. 

5 Case Study 

A heterogeneous irregularly shaped unconfined aquifer of dimensions 1650 m × 
1050 m is considered here as a case study. The aquifer configuration is as shown in 
Fig. 3. The value of specific yield is 0.2. The hydraulic conductivity varies in the 
range of 5 m/d in zone 1 and zone 3, 10 m/d in zone 2. Porosity values in these zones 
1–3 are 0.22, 0.2, and 0.25, respectively. Areal recharge of 0.00013 m/d in zone 1, 
0.0002 m/d in zone 2, 0.0003 m/d in Zone 3 are considered. For the LRPIM model, 
559 nodes with a uniform nodal interval of 50 m along the x- and y-axes are taken 
into account. Figure 4 depicts the nodal distribution that was employed. The model 
is created in MODFLOW similarly, with 532 grids spaced 50 m apart in the x and 
y directions. The MODFLOW grid configuration is depicted in Fig. 5. The steady 
state simulation of the groundwater flow model produced the flow contours shown 
in Fig. 6.

At nodes 172, 247, 436, and 445, respectively, four pumping wells that extract 
water at rates of 500, 800, 600, and 1000 m3/day are taken into consideration (Fig. 4). 
At nodes 241 and 373, two recharge wells with daily recharge rates of 500 and
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Fig. 3 Aquifer configurations 

Fig. 4 Nodal distribution

800 m3/day are located. A time period of 10 days is used for the transient scenario, 
and the simulation is conducted for 10,000 days. After 10,000 days, the head variation 
is measured in relation to pumping. 

The head variation in the aquifer due to pumping for 10,000 days obtained from 
LRPIM is shown in Fig. 7. For comparison of the LRPIM model, a model using 
FDM in MODFLOW [15] is developed (Fig. 5). The head variation obtained after 
10,000 days is compared with FDM results as given in Table 1. The application of
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Fig. 5 Grid arrangement for MODFLOW 

Fig. 6 Steady state head 
variation

the LRPIM model for simulating groundwater flow has been verified by the findings, 
as can be seen from the comparison (Fig. 8).

A total of 10,000 days are used to evaluate the transient state groundwater flow 
model with a different time interval such as 2, 5, and 10 days. The result obtained 
from the LRPIM model is shown in Table 2. The deviation is found to be very less, 
which shows the developed model is stable.

By changing the value from 2 to 6, the best shape parameters for multi-quadric 
RBF are examined. The RMSE error obtained is as shown in Fig. 9. The analysis 
yields 4 as the ideal value for the form parameter.

By altering the size from 2 to 6, a sensitivity research is conducted to determine 
the support domain size. The RMSE value obtained is plotted against the support
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Fig. 7 Head variation in the aquifer after 10,000 days 

Table 1 Nodal head 
variation after 10,000 days 

Node No. FDM (m) LRPIM (m) Percentage difference 

172 93.15 92.38 0.82 

238 92.73 92.60 0.15 

301 92.35 92.24 0.12 

370 91.91 91.87 0.04 

436 91.49 90.69 0.88 

493 91.08 90.94 0.15 

Fig. 8 Head variation in aquifer using MODFLOW



514 K. Swetha et al.

Table 2 Variation in head for different time intervals 

Node No. X Co-ordinate Y Co-ordinate Δt = 2 day Δt = 5 days Δt = 10 days 
172 600 300 92.38 92.38 92.38 

238 750 300 92.61 92.61 92.60 

301 900 150 92.24 92.24 92.24 

370 1050 300 91.87 91.87 91.87 

436 1200 300 90.69 90.69 90.69 

493 1350 300 90.94 90.94 90.94

Fig. 9 Shape parameter 
versus RMSE
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Fig. 10 Support domain 
size versus RMSE 
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domain size as shown in Fig. 10. The ideal size can be assumed to be 4 when the 
processing time and RMSE value are taken into account. 

6 Discussion 

In this study, a MATLAB®-based LRPIM model is created to simulate groundwater 
flow in an unconfined aquifer. One potential case study was taken into account using 
the model that was established. With the identical input parameters, the PMWIN 
MODFLOW software also creates the standard FDM model. As seen, both FDM 
and LRPIM predict that the head distribution in the domain will be close to the same 
value. 

This studies shown that the LRPIM model can simulate groundwater flow rather 
than using other numerical techniques. The LRPIM model does not require any grid 
or element generation. The LRPIM model can solve the problem by simple node 
generation and there is no need for pre-processing of data, there is no meshing and 
re-meshing issue, but simply we can add nodes wherever required. The process of 
implementation is simpler, and accuracy is comparable to other strong form methods. 
It takes longer to solve the asymmetric matrix and calculate the shape function using
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the radial point interpolation technique. The method can be easily used with Neumann 
type boundary value problems more accurately compared strong form methods. It 
takes less time for data preparation, which made use of this method for solving 
large-scale field type groundwater problems. 

7 Conclusion 

In recent years, LRPIM has been used to tackle several issues in solid mechanics and 
incompressible fluid flows. In this study, the groundwater flow problem in an uncon-
fined aquifer is solved using LRPIM with multi-quadratics function. The LRPIM 
formulation is used to create MATLAB® code for a fictitious issue. The FDM 
result from PMWIN MODFLOW software is compared with the LRPIM results. 
By adjusting the time interval during the simulation period, the shape parameters, 
and the support domain size, a sensitivity analysis is conducted. In comparison with 
other numerical methods, the outcome demonstrates that the LRPIM may be used 
to tackle the groundwater problem successfully. When the hydraulic parameters 
are more different, the LRPIM approach is unable to capture the variation in flow 
contours inside the problem region (such as hydraulic conductivity). The ability of 
the RBFs to smooth data, which decreases accuracy in some locations. The general 
asymmetries of the system matrix affect the computation cost efficiency. Alternative 
interpolation techniques may be the focus of future study to solve the drawbacks 
outlined above. Further, numerical investigations on the optimal shape parameters 
for each interpolation method must also be determined. 
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Quality Assessment of Collected 
Groundwater Samples Around Naregaon 
Dumping Yard, Aurangabad, 
Maharashtra, India 

Sanju R. Phulpagar and K. A. Patil 

Abstract The growth of Municipal Solid Waste (MSW) generation in India has 
increased due to dominantly increasing population in recent years. The solid waste 
management is a very important aspect. Improper solid waste management creates 
many environmental and human health problems. In the present study, assessment of 
groundwater (GW) contamination due to solid waste dumping site around Naregaon, 
Aurangabad district of Maharashtra state, India, is carried out. In the present study, 
GW samples are collected at 15 days interval during June 10, 2016 to May 25, 2017 
(i.e., pre as well as post monsoon season). These collected samples are tested by 
standard methods of testing, and each sample is analyzed for nine parameters: pH, 
EC, TDS, Cl, SO4, Ca,  NO3, Pb, and Zn. The variation in contamination levels of 
corresponding samples with respect to the distance of collected sample from MSW 
dumping site is also analyzed. The analyses of collected water samples shown that 
the GW were highly contaminated. Especially during the August to November, wells 
nearer to the MSW dumping site are highly contaminated, which may cause many 
waterborne diseases and other environmental problems. 

Keywords Leachate · Groundwater pollution · Water quality · Seasonal variation 

1 Introduction 

The groundwater (GW) is one of the most essential water resources [1]. GW is 
the prime source for industrial, human consumption, and agriculture purposes [2]. 
Nowadays the risk of GW pollution has become one of the most vital environmental 
concerns, particularly in developing countries [1]. The quantity of industrial and
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municipal waste originated by society is continuously increasing [3]. The enlarge-
ment of Municipal Solid Waste (MSW) generation in India has increased due to 
dominantly incrementing population in current years [3]. In India, due to fast urban-
ization and industrialization, more than ninety percent of MSW is produced directly, 
and its dumping on the land in an unsatisfactory manner poses an environmental risk 
[4]. As per the Water Quality Status of Maharashtra (WQSM) 2017–18, Maharashtra 
is the second state in India in terms of population (11.24 crores) [5]. Aurangabad 
is one of the largest districts in Maharashtra state with a population of around 1.2 
million [6]. The Aurangabad city generates around four hundred tons of solid waste 
[6]. There is no engineered and scientific landfill site in the Aurangabad district, 
and the capacity of the existing dump site cannot satisfy the future requirement of 
the produced waste [6]. If the MSW dumping ground site is not properly managed, 
then it may cause GW and surface water pollution [7]. The landfills and municipal 
disposal sites have a greater possibility of GW pollution in the area of MSW dumping 
sites because the leachate originated from the decomposition of the organic wastes 
is disposed at MSW dumping sites and then infiltrate into the surrounding aquifers 
[7]. The leachate produced in such a way has a high concentration of pathogenic 
microorganisms and toxic substances [8]. The concentration of these components and 
compounds in leachate and the adjacent GW relies on the composition of the dumped 
waste [8]. This GW contamination causes a sustainable risk to the surrounding envi-
ronment and local resource users [7]. The assessment of the influence of GW source 
near to MSW dumps is of considerable significance in the disposal and management 
of solid waste [9]. Thus, the Aurangabad district of Maharashtra is selected for the 
current study. Many researchers have carried out studies on the topic of GW quality 
assessment near MSW dumping ground at various locations in India [1–4, 6–15, etc].  

Following research gaps are found from reviewed literature: (1) None of the 
reviewed studies have studied the effect of MSW dumping site of Naregaon, 
Aurangabad district, Maharashtra on GW quality of nearby wells, (2) most of the 
reviewed studies have collected GW samples only twice in a year, i.e., pre-monsoon 
(PREMON) and post-monsoon seasons, and (3) most of the reviewed studies have 
not shown variation in contamination levels corresponding to distance of GW sample 
collection site from the MSW dumping site in PREMON and post-monsoon seasons. 
Aforesaid research gaps are addressed in the present study by assessing the effect of 
MSW dumping at Naregaon dumping site on the GW quality of nearby nine wells. 
The variation in contamination levels of corresponding samples with respect to the 
distance of collected sample from the MSW dumping site is studied through the 
analysis of GW samples collected for 15 days interval during June 10, 2016 to May 
25, 2017. 

2 Study Area 

The surrounding area of the Naregaon MSW dumping site of Aurangabad district 
is selected as the study area for GW quality assessment. Aurangabad is one of the
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Fig. 1 Location map of study area (not to the scale) 

crucial, rapidly growing city of Maharashtra states, India. The waste gathered from 
Aurangabad city is dumped on the Naregaon MSW dumping ground. The Naregaon 
is located six kilometers away from the Aurangabad city boundary and having an 
area of around 46 acres. The study area is located at latitudes 19°53,35,, North and 
longitude 75˚23,55,, East (http://shodhganga.inflibnet.ac.in/bitstream/10603/78863/ 
10/10_chapter%202.pdf [16] assessed on April 17, 2021). The location of the study 
area is shown in Fig. 1. 

3 Methodology 

The GW samples are collected at a regular interval of 15 days for the year 2016–2017 
(PREMON and post-monsoon). The collection of GW samples are collected from 
June 10, 2016 and continued up to May 25, 2017. The GW samples are collected 
for twenty-four times in a year for each well, and analysis of each sample was 
performed for nine parameters: pH, EC, TDS, Cl, SO4, calcium (Ca), nitrate (NO3), 
lead (Pb), and zinc (Zn). After collection of GW samples, these are transported to 
the laboratory on the same day for the analysis. The standard methods of testing are 
used for assessment of GW quality. In this study, GW samples from nine different 
wells are collected which are located near the MSW dumping site. In this study, the 
Quantum Geographic Information System (Q-GIS 2.6) software is used to exhibit the

http://shodhganga.inflibnet.ac.in/bitstream/10603/78863/10/10_chapter%202.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/78863/10/10_chapter%202.pdf
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spatial variations of selected parameters and to identify the permissible GW quality 
zones near the MSW dumping yard, based on the analyzed data. 

4 Results and Discussions 

The study of GW contamination has become more efficient due to the small-time 
interval of 15 days. The distance of wells from the boundary of the MSW dumping 
ground is also very essential for detecting contamination. In the present study, GW 
samples from nine different wells (i.e., W1, W2, …, W9) are collected which are 
located near the MSW dumping site at the distances as 1400, 800, 750, 700, 330, 
380, 420, 450, 310 m, respectively. Figure 2 shows spatial distribution of seasonal 
average of pH (a, b), TDS (c, d), and Cl (e, f) for PREMON (a, c, e) and post-monsoon 
(b, d, f), respectively. Figure 3 shows seasonally average EC (a), TDS (b), NO3 (c), 
SO4 (d), Ca (e), and Cl (f) values for PREMON and post-monsoon season. Figure 4 
shows the variation of pH (a), NO3 (b), and Cl (c) corresponding to 15 days interval. 
Because of space restriction spatial and seasonal variations are shown for only few 
parameters.

4.1 pH 

The pH value exhibits the balance among basic and acids in water. It is controlled 
by carbonate, bicarbonate equilibrium, and carbon dioxide (CO2). The combination 
of carbon dioxide with water forms carbonic acid, which affects the value of pH 
parameter of water [8]. As per BIS-10500:2012 [17], the permissible limit of pH value 
is 6.5–8.5. The pH value of the GW is found to vary from 6.87 to 8.41 (seasonal 
average value: 7.51–7.87) in PREMON season and 7.26–10.09 (seasonal average 
value: 7.59–9.01) in the post-monsoon season, respectively. In the PREMON season, 
the pH value GW is found within the acceptable limit for all nine wells. In the post-
monsoon, the pH of GW was found more than the permissible limit at W5, W6, W7, 
W8, and W9 wells. The spatial distribution of the seasonal average of pH parameter 
for PREMON and post-monsoon seasons are shown in Fig. 2a, b, respectively. 

The variation of pH value corresponding to 15 days interval is shown in Fig. 3a. 
Noticeable variation in the pH value of the wells is observed for the period July 
10, 2016 to January 10, 2017, for all adjacent wells. In this period, precipitation is 
observed in the study area due to which the contaminated water may be mixed with 
the GW of the surrounding area, and it may be the reason for higher pH value of the 
adjacent wells.
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Fig. 2 Spatial distribution of seasonal average of pH (a, b), TDS (c, d), and Cl (e, f) for  PREMON  
(a, c, e) and post-monsoon (b, d, f), respectively

4.2 Electric Conductivity (EC) 

The EC is a measure of the capacity of water to convert the electric current and is a 
function of temperature, the concentration of various ions, and type of ions present in 
the water. The GW sample having EC values less than 2000 µm hos/cm at 25 °C are 
usually take into consideration as freshwater [8]. The EC value is found to vary from
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Fig. 3 Variation of pH (a), NO3 (b), and Cl (c) corresponding to 15 days interval
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Fig. 4 Seasonally average EC (a), TDS (b), NO3 (c), SO4 (d), Ca (e), and Cl (f) values for 
PREMON and post-monsoon season

1200 to 2980 µm hos/cm (seasonal average value: 1415–2171 µm hos/cm) and 1350– 
4350 µmhos/cm (seasonal average value: 1944–3341 µmhos/cm) are the PREMON 
and post-monsoon seasons, respectively. EC in GW was higher at W2, W3, …, W9 
wells for post-monsoon season, whereas in PREMON, W4, W5, W6, W7, W8, and 
W9 wells have shown a higher value of the EC. The variation of a seasonal average 
of EC in GW for PREMON and post-monsoon season with corresponding to wells 
is shown in Fig. 4a. It indicates that contamination of EC in GW in post-monsoon is 
more than the PREMON season. 

4.3 Total Dissolved Solids (TDS) 

The TDS refers to matter dissolved or suspended in water with high content is inferior 
and maybe polluted [8]. The TDS in GW varies from 1030 to 2589 mg/l (seasonal 
average value: 1366–1774 mg/l) in PREMON, whereas it is 1245–4020 mg/l 
(seasonal average value: 1866–2788 mg/l) in the post-monsoon seasons. The GW 
at the wells W4, W5, W6, W7, W8, and W9 is found to be contaminated in post-
monsoon only. The variation of the seasonal average of TDS in GW for PREMON 
and post-monsoon season across the corresponding to wells is shown in Fig. 4b. It
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indicates the difference between PREMON and post-monsoon contamination corre-
sponding to wells in the aforesaid study area. The spatial distribution of the TDS 
for PREMON and post-monsoon are shown in Fig. 2c, d, respectively. It indicates 
that W2 well is less contaminated as compared to the W9 well, which clearly shows 
that due to contamination TDS in GW changes corresponding to the distance. In the 
post-monsoon, a number of wells which are adjacent to the MSW dumping ground 
are found to have TDS beyond the acceptable limit. It may be due to the downward 
transfer of leachate that impacts the GW quality. 

4.4 Nitrate (NO3) 

In subsurface environment, the nitrogen is the most widespread contaminant. It is 
primarily originating from multipoint and non-point agricultural sources. The exces-
sive concentration of NO3 in drinking water causes various diseases, like gastric 
cancer, diabetes, blue baby syndrome (methemoglobinemia), and thyroid disease [8]. 
The NO3 value for the PREMON season varies from 12 to 37 mg/l (seasonal average 
value: 19–28 mg/l), and all wells are found to have NO3 within the permissible 
limit, while in post-monsoon season corresponding values are 16–74 mg/l (seasonal 
average value: 31–56 mg/l). The GW in the wells W7, W8, and W9 is found to be 
contaminated in post-monsoon only. The variation of the seasonal average of NO3 

in GW for PREMON and post-monsoon season corresponding to wells is shown 
in Fig. 4c. The figure shows the difference between PREMON and post-monsoon 
contamination across the wells in the aforesaid study area. The wells which are adja-
cent to the MSW dumping site (> 450 m) are found to be more affected than that of 
wells which are having a distance more than 450 m. Figure 3b shows the variation of 
NO3 value corresponding to 15 days interval. It is observed that the contamination 
of GW due to NO3 is higher during the period July 25, 2016 to November 25, 2016, 
especially in adjacent wells. Due to the MSW dumping site, the GW quality is slowly 
deteriorating, especially after the precipitation occurrence in the study area. 

4.5 Sulfate (SO4) 

The permissible limit of SO4 parameter is 200–400 mg/l [17]. The SO4 value for the 
in PREMON season varies from 53 to 287 mg/l, whereas in post-monsoon season, 
it varies between 120 and 641 mg/l. The variation of the seasonal average of SO4 

in GW for PREMON and post-monsoon season corresponding to wells is shown in 
Fig. 4d. It indicates that the SO4 value for the post-monsoon season is higher than that 
of the PREMON season. This indicated that the monsoon precipitation reasonably 
affects the contamination at the study area.
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4.6 Calcium (Ca) 

The permissible limit of Ca is 75–200 mg/l for drinking water [17]. The Ca concen-
tration varies from 35 to 192 mg/l for PREMON season and 34–214 mg/l for post-
monsoon season. In the PREMON and post-monsoon, the Ca in GW was found 
nearer to the acceptable limit; however, in post-monsoon season, contamination is 
found to be more than the PREMON season as shown in Fig. 4e. 

4.7 Chloride (Cl) 

The results show that Cl concentration in GW varies between 43 and 690 mg/l 
(seasonal avg. value: 128–336 mg/l) in PREMON season and 32–1059 mg/l (seasonal 
avg. value: 234–722 mg/l) for post-monsoon. The spatial distribution of the seasonal 
average of Cl parameter for PREMON and post-monsoon seasons are shown in 
Fig. 2e, f, respectively. It indicates that adjacent wells are more contaminated as 
compared to the far distance wells, it clearly shows that the contamination of Cl in 
GW changes corresponding to distance. In the PREMON and post-monsoon, the Cl in 
GW is found to be within the acceptable limit, but in post-monsoon the contamination 
is more than that of the PREMON. The variation of the seasonal average of Cl in GW 
for PREMON and post-monsoon seasons across the wells is shown in Fig. 4f. The 
variation of GW contamination corresponding to 15 days interval is shown in Fig. 3c. 
It indicates that contamination of Cl in GW varies over the period July 25, 2016 to 
March 10, 2017, especially in adjacent wells contamination is found to be higher. 
Due to the MSW dumping site, the GW quality is slowly deteriorating, especially 
after the precipitation occurrence in the study area. 

4.8 Zinc (Zn) and Lead (Pb) 

Zinc and lead concentrations of the GW are found to be within the permissible limits 
for both aforesaid seasons. The seasonal averages of each parameter for PREMON 
and post-monsoon seasons are given in Tables 1 and 2, respectively.

The seasonally averaged GW quality parameters for PREMON and post-monsoon 
seasons are compared with corresponding permissible limits prescribed by Indian 
Standard BIS:IS:10500-2012 [17] for drinking purposes. The values of parameters 
are higher than their corresponding permissible limit, given in BIS. It will create 
undesirable effects on the human health and environment. The contaminated wells 
(having contamination more than permissible limits) in the aforesaid study area are 
given in Table 3.

The analyzed parameter values of GW are found to be higher than acceptable limit, 
for wells which are situated nearer to the MSW dumping ground site. The analyzed
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Table 1 Seasonal averages of GW quality parameters across the wells for PREMON season 

Parameter Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8 Well 9 

pH 7.59 7.78 7.63 7.54 7.66 7.54 7.87 7.52 7.51 

EC 1415 1791 1947 2015 2026 2032 2163 2094 2171 

TDS 1430 1542 1523 1692 1421 1458 1366 1774 1731 

NO3 21 25 19 24 25 25 28 27 25 

SO4 158 177 182 137 152 173 205 196 189 

Ca 52 51 76 67 48 51 60 59 57 

Cl 170 156 128 172 216 336 329 214 326 

Zn – – – – – – – – – 

Pb – – – – – – – – – 

Note (–) i.e., within the permissible limit 

Table 2 Seasonal averages of GW quality parameters across the wells for post-monsoon season 

Parameter Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8 Well 9 

pH 7.61 7.62 7.59 7.74 8.54 8.51 8.62 9.01 8.78 

EC 1944 2554 2296 2611 3060 2980 3341 3286 3119 

TDS 1866 1891 1906 2194 2410 2592 2549 2631 2788 

NO3 31 32 34 37 42 42 46 56 56 

SO4 222 213 213 223 257 244 243 239 249 

Ca 62 68 80 69 80 75 80 73 75 

Cl 234 249 313 432 353 604 639 582 722 

Zn – – – – – – – – – 

Pb – – – – – – – – – 

Note (–) i.e., within the permissible limit

GW samples are found to be less contaminated in wells which are located far from 
the MSW dumping ground site. Especially in August to November month maximum 
leachate is formed in the MSW dumping ground site; therefore, the contamination 
of wells is found to be high. 

5 Conclusions 

In the study area, GW is found to be mainly alkaline in nature. The concentrations of 
parameters such as pH, NO3, EC, and TDS are found to be exceeded the maximum 
allowable limits. Thus, water is not suitable for drinking purpose. The concentrations 
of water quality parameters are found to be reciprocal of distance of well from the
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Table 3 Suitability of GW as per IS:10500-2012 [17] code for drinking purposes and contaminated 
wells in the study area 

Parameter Indian standard (BIS) 
IS:10500:2012 [17] 

Wells exceeding permissible 
limits 

Undesirable 
effects [18] 

Most 
probable 
limit 

Maximum 
allowable 
limit 

PREMON Post-monsoon 

pH 6.5 8.5 Nil W5, W6, W7, 
W8, W9 

Taste 

EC – – W4, W5, W6, 
W7, W8, W9 

W2, W3, W4, 
W5, W6, W7, 
W8, W9 

– 

TDS 500 2000 Nil W4, W5, W6, 
W7, W8, W9 

Gastrointestinal 
irritation 

Ca 75 200 Nil Nil Scale formation 

Cl 250 1000 Nil Nil – 

SO4 200 400 Nil Nil Laxative effect 

NO3 45 No 
relaxation 

Nil W7, W8, W9 Blue baby 
syndrome [8] 

Zn 05 15 Nil Nil – 

Pb 0.01 No 
relaxation 

Nil Nil –

MSW dumping site. The contamination of GW is found to be predominant in post-
monsoon season as compared to the PREMON season. The study recommends that 
serious steps for the control of GW pollution by concerned authorities are needed 
in general, and more attention should be given on controlling GW pollution during 
August to November months. Also, it is concluded that, for MSW dumping ground 
site, establishing the suitable site and proper design are important for controlling the 
leachate. 
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Appraisal of Soil Salinity in Haryana 
State by Using Electromagnetic 
Induction Tool 

Hemant Raheja, Arun Goel, Mahesh Pal, and D. S. Bundela 

Abstract This paper aimed to analyze the soil salinity of the Siwanamal village 
subsurface drainage site in the Jind district of Haryana. Also, a spatial salinity 
diagram was applied to observe soil characteristics and controlling constituents of 
the underground aqua region. In Haryana, more than 50,000 ha area is a water-
logged saline area having a shallow water table at a depth 1.5 m; due to this fact, the 
natural drainage system is not sufficient for controlling the salinity trouble. There-
fore, subsurface drainage (SSD) technology, a synthetic drainage method, is wanted 
to reclaim waterlogged saline lands in the Haryana region for enhancing crop produc-
tivity and controlling the soil salinity. A SSD system is designed to control soil 
salinity and waterlogging in an affected area. In Haryana, about 10,584 ha water-
logged saline area in nine districts of the state has been reclaimed by SSD technology. 
In this study, one SSD site (i.e., Siwanamal in Jind district) is selected and measured 
the soil salinity from Electromagnetic Induction Tool (EM-38) along with the GPS 
coordinates from Block 3 and 4. Further, it is used in mapping software to develop 
maps and analyze the status of the selected site. Largest area 64.51% of Block 4 is 
under moderately saline soil (Ec = 8–16 dS/m) and largest are of Block 3, i.e., 57.28 
is under moderately saline soil (Ec = 8–16 dS/m). The area under Ec > 16 dS/m 
is 1.08% in Block 4 (full pumping) compared to 26.36% area in Block 3 (partial 
pumping) at SSD site in Siwanamal.
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Keywords Oil salinity ·Waterlogging · Electromagnetic Induction Tool (EM-38) ·
Subsurface drainage (SSD) 

1 Introduction 

Soil salinity is one of the huge environmental troubles which influence the crop yield 
and health, mainly of the farming network [1, 2]. So monitoring the soil salinity 
(quantitatively) within the command place is critical. The assessment of soil salinity 
in irrigation commands is primarily based on the quantity of waterlogging. The soil 
conservation and survey departments found the water table records [3–5]. Assessment 
of soil salinity troubles primarily based on such a technique could not outline the 
clean photograph in an irrigation command location. Presently, the measurement 
of soil salinity relies on outdated visual methods or by evaluating the samples in 
the laboratory. The laboratory methods are comparatively slow, require skilled labor 
and capital, which is a severe disadvantage in large scale or periodic monitoring. 
Therefore, there is a dire need to develop and standardize the techniques, which can 
be fast, non-destructive, and quantify the soil salinity directly inside the area. EM-38 
is one of the methods which, without delay, ascertain the soil salinity from the field. 
EM-38 uses electromagnetic energy to assess and map spatial and temporal versions 
in the plain conductivity of soils [6, 7]. Geonics EM-38 was procured from Geonics 
Limited. It could be very lightweight and calls for only one person to perform. 
The EM-38 m is reasonably light in weight of 2.5 kg. The EM-38 m operates at a 
frequency of 14,600 Hz. The spacing between the inner coil is 1 m. The advantage 
of such techniques over the currently available strategies ought to be their fastness, 
restricted effect of spatial variability on the measurement, and the opportunity to use 
underneath dry moist, stone covered, cropped, and uncropped soil conditions [8]. 

2 Materials and Methods 

Electromagnetic Induction Tool (EM-38) probe was used to find out the salinity 
levels in the selected Blocks from the Siwanamal SSD site. The field was surveyed 
on approximate 100 m by 100 m grid spacing using EM-38 m along with the GPS 
coordinates of the location. Horizontal and vertical Ec measured with EM-38 device 
by placing in horizontal and vertical positions at the soil surface. As a precaution, 
any metal objects that might come within the field of influence of the electromagnetic 
device were removed. EM-38 horizontal and vertical readings at ground level were 
taken at about locations 110 from Block number 3 and 93 from Block number 4. 

Surfer 13 software was used for the pictorial representation of spatial salinity 
levels in given Blocks. Spatial salinity maps of Ec value have been developed for 
different directions with a contour interval of 4 ds/m in Block no. 3 (partial pumping) 
and 4 (full pumping) of SSD site at Siwanamal in Jind district of Haryana.
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3 Study Area and Data Source 

Jind is a part of the Indo-Gangetic plain. The district lies between 29.3255° N and 
76.2998° E and 226 m above the mean sea level. The area of Jind district is 2702 km2, 
and the normal annual rainfall is approximately 515 mm. The soil texture of the Jind 
district is sandy loam to loam [9]. A subsurface drainage (SSD) site at Siwanamal 
village in Jind district of Haryana was selected as shown in Fig. 1. The subsurface 
drainage system consisting of a network of underground corrugated perforated pipes 
(i.e., laterals and collectors) was installed at a designed drain depth and spacing. The 
outlet of the SSD system can be pumped outlet type or gravity outlet type. Before 
the installation of the SSD system, the Siwanamal area had a shallow water table 
(< 1.5 m). There are seven drainage Blocks, as shown in Fig. 1, and each Block was 
having three manholes and one sump. Drainage Block no. 3 (area 42.5 ha) and 4 
(area 42 ha) in Siwanamal were selected for the study area. The subsurface drainage 
system has been installed in the year 2012 and covered the 290 ha area. The outlet 
of Siwanamal site is gravity type Partial water pumping in Block no. 3 and full 
pumping in Block 4 are being done by some group of farmers. Drained water having 
salt content, which is collected in sump through a network of laterals and collectors, 
is lying at a depth below the root zone of crop sown. This water from the sump is 
then discharged into the nearby surface drain. Thus, the drainage area is reclaimed 
from waterlogging and salinity by adopting the SSD system. Two Blocks (3 and 4) 
were selected because in the Block (4), full pumping was done, and while in Block 
no. 3 partial pumping was done, so that by characterizing salinity levels in these 
Blocks through EM 38 investigation, we could observe the effect of the SSD system 
in reducing the salinity levels in different layers of the soil profile.

4 Results and Discussions 

The study has been conducted in the area of Siwanamal Jind. At present, approxi-
mately 2.96 M ha areas in India are highly affected by the soil salinity problem, and 
very few organizations have the resources to work upon this practical problem. Jind 
is the agricultural capital of Haryana in terms of the crops cultivated there since the 
yield of the area has decreased over the recent years and is greatly affected by the 
soil salinity problem in the area, and a portentous demand has arisen for research in 
the area for the agricultural boom in coming years. Table 1 shows the salinity levels 
in partial pumping (Block 3) and full pumping (Block 4) at SSD site in Siwanamal 
village. From Table 1, the largest area 64.51% of Block 4 is under moderately saline 
soil (Ec = 8–16 dS/m) and largest area of Block 3, i.e., 57.28 is under moderately 
saline soil (Ec = 8–16 dS/m). The area under Ec > 16 dS/m is 1.08% in Block 4 
(full pumping) compared to 26.36% area in Block 3 (partial pumping) at SSD site 
in Siwanamal. Figures 2 and 3 show the spatial maps of soil salinity in Block 3
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Fig. 1 Location map of the study area (Block 3 and 4)

Table 1 Salinity levels in partial pumping (Block 3) and full pumping (Block 4) at SSD site in 
Siwanamal village 

Location Normal soil 
(ECe < 4) 
(dS/m) 

Slightly 
Saline 
(ECe = 4–8) 
(dS/m) 

Moderately 
saline 
(ECe = 8–16) 
(dS/m) 

Highly saline 
(ECe > 16) 
(dS/m) 

Total % age of 
area 

Block 3 
horizontal 

6.36 30.91 54.55 8.18 100 

Block 3 
vertical 

00 16.36 57.28 26.36 100 

Block 4 
horizontal 

5.38 47.31 46.23 1.08 100 

Block 4 
vertical 

2.15 30.11 64.51 3.23 100

horizontal and vertical direction, respectively. Figures 4 and 5 show the spatial maps 
of soil salinity in Block 4 horizontal and vertical direction, respectively. 

5 Conclusions 

The study has been conducted in the area of Siwanamal Jind, and the study concludes 
the following points:
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Fig. 2 Spatial map showing 
improvement in soil salinity 
in Block 3 horizontal 
direction 

Fig. 3 Spatial map showing 
improvement in soil salinity 
in Block 3 vertical direction

• Largest area 64.51% of Block 4 is under moderately saline soil (Ec = 8–16 dS/m) 
and largest area of Block 3, i.e., 57.28 is under moderately saline soil (Ec = 
8–16 dS/m). The area under Ec > 16 dS/m is 1.08% in Block 4 (full pumping) 
compared to 26.36% area in Block 3 (partial pumping) at SSD site in Siwanamal.

• Soil salinity is an intricate parameter for judging the soil’s fitness for different 
types of crops; hence, a dire need has arisen for soil salinity data that can be 
referred for macro-level research for the state of Haryana that could benefit the 
farmer.
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Fig. 4 Spatial map showing 
improvement in soil salinity 
in Block 4 horizontal 
direction 

Fig. 5 Spatial map showing 
improvement in soil salinity 
in Block 4 vertical direction

• The dataset of the computed electrical conductivity pre-eminence elements can 
be useful for irrigation purposes. Spatial contour maps are plotted and are color 
coded for reference of the future researchers to find out the area affected and to 
further evaluate salinity characteristics of the soil. 
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Rain-Gauge Network Design 
and Rainfall Estimation—Case Study 
of Odisha Basins 

Biswajit Choudhury and Anil Kumar Kar 

Abstract Rainfall data are important inputs for effective planning, designing and 
operation of water resources projects. A well-designed optimal rain-gauge network is 
being difficult task for hydrologist, as comprises rainfall values. Rain-gauge network 
provides rainfall measurement with high degree of accuracy at specific location, but 
most cases, the rain-gauge is too sparely distributed to capture accurate high spatial 
and temporal rainfall data. Therefore, a number of guidelines for setting up rain-gauge 
network from India Meteorological Department (IMD) and World Meteorological 
Organization (WMO), still the question is being arisen, where to effectively deploy 
new or change the current position of RG network. A new rain-gauge network set-up 
over different part is challenging job for hydrologist and meteorologist. As per the 
IMD and WMO guidelines, area with high elevation has a greater number of rain-
gauge as compared with plain area. Thus, the study demonstrates the designing of 
the rain-gauge network in different locations and estimating the rainfall with desire 
accuracy. The results obtained optimal rain-gauge network design through combined 
use of added and redundant station is equally applicable to any other catchment area. 
The study represents the guidelines and rainfall estimation utilizing different methods 
and techniques in a case-to-case basis with respect to basins of Odisha which will 
help in better flow computation and flood forecasting. 

Keywords Torm · Rainfall estimation · Optimum RG · IMD · WMO 

1 Introduction 

Collection of rainfall data is a continuous process over different basin in Odisha. As 
rainfall data are very important aspect for hydrologist and hydrometeorologist for 
prediction of accurate data in spatio-temporal scale. For quantification of rainfall data 
in an area is very significant for inflow as well as developed a saturated rain-gauge 
network [1]. As its study define the development of saturated rain-gauge network
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over different basin is key challenges of many hydrologists for place the rain-gauge in 
accurate places. The objectives to be accomplished were to maximize the estimation 
accuracy and placing of rain-gauge stations. There are several ways to define the 
objective of the hydrological network design, but the essential is to take in most of 
the cases, selection of an optimum, key and saturated number of rain-gauge stations 
[2]. The rainfall variability depends on the topography, wind, direction of storm 
movement and type of storm. The location and spacing of gauge depend not only the 
above factor but also upon the use of that data for that region [3]. 

In many areas, it may not be feasible to design even an optimum network. So, 
in case an optimum network may have to be redesigned and the distribution of 
the available rain-gauges in the various catchments required a good climatological 
knowledge. In this regards Indian Meteorological Department (IMD) and World 
Meteorological Organization (WMO) have been given different elevation for putting 
rain-gauges over different area [4, 5]. 

WMO recommended for putting rain-gauges densities: 

Flat regions 1 station for 600–900 km2. 
Mountainous regions 1 station for 100–250 km2. 
Arid and polar Zones 1 station for 1500–10,000 km2. 

IMD recommended for putting rain-gauges densities: 

Flat regions 1 station per 520 km2. 
Regions of average elevation 1 station for 260–390 km2. 
Hilly area 1 station per 130 km2. 

Note: 10% of rain-gauge stations should be equipped with self-recording rain-gauges. 

2 Study Area, Data Set and Methodology 

2.1 Study Area 

The river Baitarani is one of the medium-sized east flowing rivers draining an area 
of 14,218 km2. An area of 736 km2 of Singhbhum district of Jharkhand state lies 
in the upper part of the basin. The catchment area of the basin is oval shaped. The 
river Baitarani originates from Guptaganga hills in Keonjhar district Orissa, about 
2 km from Gonasika village at an elevation of 900 m at latitude 21°-31,-00,, N and 
longitude 85°-33,-00,, E (Fig. 1).
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Fig. 1 Showing DEM of Baitarani basin with RG stations 

2.2 Data Set 

The observed daily rainfall records of the 12 rain-gauges stations located within and 
neighbouring the Baitarani basin were obtained from Water Resources Department 
and IMD. 

The rain-gauge and their latitude, longitude and elevation are given in Table 1.
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Table 1 Rain-gauge site with their elevation 

S. No. RG_SITE LAT Long Elevation (feet) 

1 Akhuapada 20.9417 86.2667 54 

2 Anandpur 21.2205 86.1095 135 

3 Champua 22.0792 85.5483 1375 

4 Chnandbali 20.7955 86.7458 7 

5 Ghatgoan 21.3998 85.8778 1115 

6 Jajpur 20.8524 86.3237 52 

7 Jhumpura 21.8222 85.5722 1383 

8 Joshipur 21.9763 86.0529 1302 

9 Karanjia 21.7649 85.96 1300 

10 Keonjhargarh 21.6378 85.5778 1593 

11 Swampatna 21.6333 85.9 1044 

12 Thakurmunda 21.5257 86.1345 1083 

The daily rainfall data of 12 rain-gauges of the study area have been collected 
for 10 years (2007–2017). The individual RGs have their chosen IDs as fixing by 
concerned department (Department of Water Resources, Government of Odisha, 
India). 

3 Methodology 

A rain-gauge network design methodology was developed in this study using cluster 
analysis and geostatistical approach which is being used for further analysis. The 
daily rainfall data of the proposed RG stations are evaluated on the basis of spatial 
scale and temporal scale. In case of seasonal analysis, evaluated and compared 
the performance of each RG stations of this area. Considering the topography 
and sparsely distributed rain-gauge stations, adopted a geo-statistical approach [6], 
co-kriging for estimation of areal average RG-based rainfall. 

A detailed procedure of co-kriging is presented in this paper, i.e. Continuous 
Evaluation Indices. 

3.1 Continuous Evaluation Indices (CEI) 

The consistency between storm and elevation profile of RG stations data was quan-
tified by mean error (ME), mean absolute error (MAE), the root mean square 
error (RMSE), normalized root mean square error (NRMSE) and normalized mean 
absolute error (NMAE).
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3.2 Variogram 

The random nature of spatial variation of many natural phenomena can be described 
by a random filed Z (x), where x represents the spatial location and z is the random 
phenomenon under investigation. It describes how the data are related with distance. 

Y (h) = 1 

|2N (h)| 
nΣ

N (h) 

(Zi − Z j )2 

A Variogram is mathematical function of the distance and direction separating two 
locations used to quantify the spatial autocorrelation in regionalized variables. The 
theoretical Variogram function Y ∗(h) allows the analytical estimation of Variogram 
values for any distance and provide the unique solution for weights required for 
kriging interpolation. Spherical Variogram models are mostly used in Hydrology 
and expressed as 

Y ∗(h) = C0 + C1

[
1.5

(
h 

a

)
− 0.5

(
h3 

a3

)]
... Spherical 

where c0, aand(c0 + c1) represent nugget, range and sill, respectively, commonly 
called as Variogram parameters. 

Nugget represents measurement error and/or micro-scale variation at spatial scales 
that are too fine to detect and is seen as a discontinuity at the origin of the Variogram 
model. Range is a distance beyond which there is little or no autocorrelation among 
variables. Sill is the constant semi-variance of the regionalized variables. 

4 Results and Discussion 

4.1 Continuous Evaluation Indices (CEI) 

In the first phase of study, co-kriging interpolation was used to interpolate in between 
elevation profile of each RG stations and storm rainfall for each individual stations. It 
illustrates co-kriging interpolation; interpolation result of typical scenarios is shown 
in Fig. 2.

The above CEI graph indicates that elevation (distances) increases with increases 
in rainfall, where the less rainfall area having a smaller number of rain-gauge stations 
(Fig. 3).

The predicted error is showing in between measured values and predicted values 
of different storm and their corresponding elevation. The standard equation/function 
for co-kriging is 0.695998542457126* × +275.560497991316, Root-Mean-Square
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Fig. 2 Graph shows covariance between elevation versus storm rainfall

Fig. 3 Graph showing measure values versus predicted values

266.34, Mean Standardized 0.086, Root-Mean-Square Standardized 0.673, Average 
Standard Error 354.85. 

4.2 Variogram 

In this study, Variogram is independent of spatial location, i.e. dependents on the 
distance between two points. From the digital elevation model (DEM) of Baitarani
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Fig. 4 Graph shows 
elevation versus strom-1 
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basin, latitude, longitude and elevation of RG’s sites (Table 1) have been extracted. 
The above data, i.e. latitude and longitude data to get Euclidian distance. The formula 
is given below: 

d(x, y) = d(y, x) =
/

(X1 − X2)
2 + (Y1−Y 2)

2 

where 

X1 and X2 = Longitude between two points. 

Y1 and Y2= Latitude between two points. 
Above, this formula to get Euclidian distance of all the point installed inside the 

basin boundary. The squared difference was found by the help of this formula is 
given below: 

Squared difference = (E2 − E1)
2 

where E1 and E2 are elevation difference. 
Above is the Squared difference formula to get the possible difference between 

all the points. In Variogram method, the average daily rainfall data and elevation data 
of each rain-gauge station were compared, and it was found that higher elevation has 
less amount of rainfall and lower elevation has good amount of rainfall shown in 
below graph, concluded that in Baitarani basin higher elevation RG site has to put 
more number of rain-gauge stations (Fig. 4). 

Figures 3 and 4 are shows that Variogram analysis of different storms occurred 
in two different years and conclude that higher elevation site has higher number of 
rain-gauge stations, and lower elevation has a smaller number of rain-gauge stations. 

4.3 Kriging Interpolation 

Kriging is an optimal surface interpolation technique based on spatially dependent 
variance. In the help of ARC GIS, It was found that the deep brown color has low
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Fig. 5 Kriging interpolation of Baitarani basin 

line area shows in Fig. 5. This kriging interpolation technique is used in the form of 
spherical shape. 

4.4 Inverse Distance Weighted (IDW) 

IDW is an optimal surface interpolation technique based on spatially dependent 
variance. In this case green colour area is low line area as compared to the white and 
pink area as shown in Fig. 6. In pink colour area has more number of RG stations, 
therefore there is high rainfall intensity area. This IDW interpolation technique is 
used in the form of spherical shape.

4.5 Adequacy of Raingauge Stations 

In this study, the Baitarani basin has already some existing RG stations. The optimal 
no of stations should be calculated on the basis of percentage error of estimation of 
mean rainfall.

N =
(
Cv 

E

)2
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Fig. 6 IDW of Baitarani basin

CV = 
100 ∗ σm 

P

From the daily rainfall data to identify the storm analysis of all RG stations and 
average daily rainfall being calculated from storm rainfall using above formulae. If 
the degree of allowable error in mean rain fall is 10, 8, 6 and 5%, then the optimal 
number of rain-gauge is 10, 15, 25 and 36 numbers, respectively. 

5 Conclusion 

On the basis of results obtained in this study, the following conclusion can be drawn: 

• In this study suggests a Co-kriging and entropy-based approach which not only 
use in the kriging method as an interpolator but also determine rainfall data at 
ungauged postings with the highest estimation error. 

• In Variogram methods used the elevation data compared with storm data, and it 
is found that the elevation is co-related with distance between two points. 

• Adequate number of rain-gauge was calculated and found, if percentage degree 
of error is high then less number of RG is obtained.
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• Thus, this study has established an optimal rainfall network for the Baitarani 
catchment that consist of more number of rain-gauge stations in higher elevation 
area. 

The recommendation arising from the results obtained in this study is to install 
and maintain additional RG stations in the Baitarani basin. The concept proposed in 
this study for optimal design of RG network through combined use of additional and 
redundant stations together is equally applicable to any other catchment. 
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Capacity Assessment of Khoupum 
Reservoir, Manipur, Using Hydrographic 
Survey—A Case Study 
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Abstract The Khoupum Dam is an irrigation project constructed across the 
Manchen Diu River in Manchen in Tamenglong district of Manipur state in India. The 
purpose of the dam is to cater the needs of water supplying for irrigation and drinking 
water to nearby surrounding villages. The dam was built and commissioned by the 
then Chief Minister, Rishang Keishing, in the year 1982–83. Since after operation of 
more than 37 years, the dam authority decided to conduct hydrographic survey for 
evaluation of actual storage capacity and estimation of silt deposited in the reservoir. 
The purpose of the hydrographic survey was to find out the actual storage capacity of 
the reservoir so the use of water for irrigation and drinking purpose can be planned 
optimally. The CWPRS, Pune, carried out hydrographic survey of Khoupum in 2020 
by using modern Integrated Bathymetry System (IBS) and collected the survey data. 
The survey was done by using the bathymetry survey equipment consisting of echo 
sounder, DGPS, with antenna mounted on a motorized boat and data acquisition 
system for survey data logging. The survey equipment had accuracy in submeters 
and in cms for position. The bathymetric survey was done at FRL 724.22 m. The anal-
ysis was carried out at CWPRS using software Hypack, Eiva Surfer for volume, area 
calculation, and graph plotting, whereas Global Mapper, Google earth and imagery 
were used for plotting reservoir survey area boundary of and plotting grid lines 
for data collection. After the analysis, it was found that the reservoir gross storage 
capacity during survey at FRL 724.22 m is 2.725 MCM for water spread area of 
0.5320 km2 and with comparing with the original data, it was concluded that there 
was a negligible reduction of approximation 2% in the reservoir live storage capacity. 
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1 Introduction 

Sedimentation in reservoirs is a serious problem as it reduces the utility period of 
the reservoir, which is also termed at its useful life. Dam and storage reservoirs 
are built-up at enormous cost for augmentation of water resources, and these play 
a vital role in development of nation. A large quantity of water stored at minimum 
cost will give rise to maximum output and in turn better return for capital invested 
on the reservoir project. The life of the reservoir cannot be forecasted precisely 
as the process of sedimentation is a complex phenomenon which also cannot be so 
precisely estimated. The rate of sedimentation depends on the various factor including 
geographical features of the terrain, rain fall, de-forestation, etc. The complexity of 
various parameters in the process of reservoir such as the space and position occupied 
by sediment, lack of knowledge regarding contribution of sediment by water from 
each of the tributaries, the variability of sediment flow from year to year, season 
to season, the inability to evaluate accurately suspended sediment and bed load, 
and all prevent the hydraulic engineer from forming definite conclusions regarding 
useful life of reservoir. It is therefore essential to monitor the actual rate of sediment 
deposition in the reservoir and redefine the volume–elevation–capacity curves. 

Thus the sedimentation survey studies are useful in 

1. Ascertaining useful life of reservoir. 
2. Revised the capacity curve for more efficient operation of the reservoir. 
3. In enforcing better watershed management and understanding climate factors on 

the rate of sedimentation. 
4. Assessing regional silt indices for developing design data for planning of new 

reservoir. 
5. In bringing efficiency and economy in control measures. 
6. Forecasting hydropower generating capacity year to year. 

The Khoupum Dam construction was completed in the year 1983 and since 
then dam has been catering the need for providing the water for irrigation and 
drinking purpose through canal networks to different villages and its nearby area. 
The Executive Engineer, Water Resources Department, Govt. of Manipur after oper-
ational of dam over a period of 37 years, has requested National Project Monitoring 
Unit (NPMU), of ministry of Jal Shakti Govt. of India, New Delhi, for conducting 
bathymetry survey of Khoupum dam, Manipur. Subsequently after forwarding the 
proposal to CWPRS, Pune, and accepted by CWPRS, the CWPRS team carried out 
hydrographic survey of Khoupum reservoir from January 21 to 22, 2020. 

The CWPRS team conducted the hydrographic survey by deploying Integrated 
Bathymetry System (IBS) consisting of dual frequency echo sounder (210 and 
33 kHz) for measuring the water depth and a Global Positioning System (GPS) 
for finding the accurate location of boat moving on the predefined grid lines loaded 
on the software in laptop. The survey data (depth and position) collected at reser-
voir was logged in real time mode in laptop with survey software. Processing and 
calculations are done later by processing software such as Hypack, surfer Auto CAD 
[1]. The Khoupum Dam boundary extracted from Google Earth with logged data is 
shown in Fig. 1.
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Fig. 1 Google image of Khoupum Dam boundary with data points 

2 Components and Methodology 

The hydrographic survey was carried out with a boat equipped with the ultrasonic 
single beam dual frequency echo sounder [2] Mobile GPS system with beacon correc-
tion and a laptop for logging the real time data. The IBS system used during survey 
consists of the following components: 

(i) Single beam dual-frequency echo sounder (210, 33 kHz), Knudsen make 
(ii) GPS make Trimble using beacon correction [3] 
(iii) Data collection laptop with Hypack software [4] used for real-time data 

acquisition. 

A motorized boat was used for deploying the survey equipment during survey. 
The echo sounder sensor with special fixture was fitted on one side of the boat, and 
the GPS antenna was mounted on boat for receiving the satellite signal. The Hypack 
survey software was used for fixing of grid lines and interfacing of echo sounder and 
GPS equipment. The software logged the boat position longitude, latitude (x, y) data, 
and water depth (z) values at grid of 10 m. The depth and position data is logged in 
real time mode in laptop with survey software. Figure 2 shows GPS equipment with 
antenna fixed in boat, and Figs. 3 and 4 show echo sounder and recorder and laptop 
screen showing data logging, respectively.

The echo sounder was calibrated for its accuracy before using it on every day 
before start of survey. The GPS accuracy for boat location was achieved in submeter 
with the help of beacon correction from near seashore reference station. 

The survey equipment setup consisting of echo sounder, GPS, antenna, battery, 
invertor, etc., in a survey boat is shown in Fig. 5.
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Fig. 2 GPS equipment with antenna

The survey was carried out by running the boat on the predefined straight grid line 
with the help of software. This included feeding the survey boundary, assigning the 
proper coordinate system for the Global Positioning System, setting the data logging 
protocol, zone, coordinate system, etc., in the software. Similarly, the echo sounder 
needed to be calibrated for the sound velocity before actual depth measurement and 
data logging. Boat navigation was also controlled by the software, so that boat could 
track the grid line closely while data logging during survey. The bathymetric survey 
was carried out during the month of January 2020 at the EL of 724.22 m with a 
survey grid line of 10 m. The boundary profile was extracted from Google Earth at 
CWPRS prior to the site visit. The same has been verified by running the boat on the 
actual cross section at site. After confirmation, the actual survey lines were carried 
out on the required cross-section, and the bathymetry data collection was completed 
during survey.
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Fig. 3 Echo sounder and recorder 

Fig. 4 Laptop screen showing data logging

3 Analysis and Results 

After collecting the data at site, the analysis was done at CWPRS. The data filtered and 
noised were removed using software such as Surfer Auto [5]/Hypack/Eiva. During 
analyzing the data, the bathymetry raw data were converted in Excel/XYZ format. 
The grids were made using Kriging method, and volume and corresponding area 
were calculated at survey EL of 724.22 m using Simpson 1/3 method and Simpson 
1/6 method. The different volume value was calculated below survey level with an 
interval of 1 m up to reservoir bottom. The elevation–volume-capacity, elevation– 
area curve, Digital Elevation Model (DEM) were plotted. The volumes at survey level 
and at dead storage level were calculated and compared with original one. Figure 6
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Fig. 5 Hydrographic equipments’ setup in boat

shows surface map of Khoupum reservoir. Figures 7 and 8 show elevation–capacity 
curve and elevation–area–capacity curve [6] of Khoupum reservoir, respectively. 

Fig. 6 Surface map of Khoupum reservoir
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4 Conclusions 

The collected data was edited and filtered and analyzed using HYPACK, Surfer. The 
volume-capacity curves, DEM, surface map, and depth profile were drawn.

• The reservoir gross storage capacity calculated was 2.7252 M.CM for water spread 
area of 0.5320 km2 at survey level 724.22 m RL.

• After comparing with the original data, it was found that there is a negligible 
reduction in volume of 2% compared with the original gross storage capacity. 
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