
Chapter 7 
The Liutex Shear Interaction 
in Boundary Layer Transition 

Biyu Pang, Yuan Ding, and Yiqian Wang 

Abstract The third generation of vortex identification methods based on Liutex 
vector are superior to previous methods in that they overcome the drawbacks of 
previous methods including threshold problem, shear contamination, etc. with a 
clear physical meaning for the Liutex vector. The direction of Liutex represents the 
local axis of rotation, and its magnitude is equal to twice the angular velocity of 
rotation. The current study focuses on the interaction between Liutex represented 
rotation and the residual shear part during the development of ∆ vortex and hairpin 
vortex in boundary layer transition. The results show that shear plays an important 
role in the generation and dissipation of vortices and the proportion of Liutex in 
the whole vorticity affects the stability of a vortex. When the directions between 
Liutex and shear is approximately parallel, the vortex moves mainly along the flow 
direction and the offsets in other directions are relatively small. It is also shown that 
the Liutex vector can accurately extract the rigid rotation part from fluid motion and 
the third-generation vortex identification methods can serve as a powerful tool to 
study fluid dynamics. 

7.1 Introduction 

In both nature and industrial applications, vortex structure is everywhere, especially 
in turbulence. It plays an important role in the study of the generation and maintenance 
of turbulence. Therefore, a fully understanding and a mathematical definition of 
vortex with systematical methods to accurately identify the vortex structure are of 
great significance in understanding the flow mechanism, turbulent structures [1, 2]. 
So far, there is still no widely accepted vortex definition and identification method. 
The vorticity-based vortex identification methods, classified as the first generation 
here, confuse the concepts of vortex and vorticity, and regards the magnitude of 
vorticity as the intensity of local rotational motion. However, Robinson [3] found 
that there was a low correlation between the high vorticity region and the actual

B. Pang · Y. Ding · Y. Wang (B) 
School of Mathematical Science, Soochow University, Suzhou 215006, China 
e-mail: yiqian@suda.edu.cn 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
Y. Wang et al. (eds.), Liutex and Third Generation of Vortex Identification, 
Springer Proceedings in Physics 288, https://doi.org/10.1007/978-981-19-8955-1_7 

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8955-1_7&domain=pdf
mailto:yiqian@suda.edu.cn
https://doi.org/10.1007/978-981-19-8955-1_7


90 B. Pang et al.

vortex structure. Therefore, several vortex identification methods based on Cauchy-
Stokes decomposition were introduced, here categorized as the second-generation 
methods. These methods improve the visualization of vortices, but still suffer from 
some issues. Firstly, the physical meanings of the methods are not clear and different 
from each other. Secondly, as iso-surface based methods, the problem of threshold 
selection is introduced. Thirdly, the information of velocity gradient tensor ∇V is not 
fully utilized. These problems of traditional vortex identification methods need to be 
dealt with [4]. The first part of this paper revisits the vortex identification methods, 
mainly the new introduced third generation of vortex identification methods based on 
Liutex vector. The second part describes the shear contamination analysis under the 
Liutex-shear decomposition. In the third part, taking the boundary layer transition as 
an example, the interaction between Liutex and shear is discussed. The fourth part 
summarizes the conclusions of current study. 

7.2 Vortex Identification Method 

To deal with the issues of first and second-generation vortex identification methods, 
the team led by Professor Chaoqun Liu of the University of Texas at Arlington carried 
out various research works and proposed vortex identification methods, including �

vortex identification method, Liutex vector, �-Liutex method and so on [4–6]. Liu 
et al. [5] proposed the � vortex identification method to overcome the problem of 
threshold selection, and further proposed the Liutex vector that can accurately iden-
tify the vortex structure. This definition decomposes the vorticity ω into a rotating 
part R and a residual pure shear part ω − R. Liutex is a vector whose direction repre-
sents the local axis of rotation and whose magnitude represents twice the rotational 
angular velocity of rigid motion. It not only solves the problem of threshold selection, 
but also answers the problem of six elements of vortex definition. After that, Dong 
et al. [7] proposed a new normalized �R vortex identification method. 

7.2.1 Vortex, Vorticity, Velocity Gradient Tensor 

Broadly speaking, vortex refers to the rotational motion of fluid, and vorticity is 
defined as the curl of velocity vector (i.e., ω = ∇  ×  V ). Its physical meaning is not 
clear. Robinson [3] pointed out that near the wall of the turbulent boundary layer, the 
correlation between the vorticity concentration area and the actual vortices is rather 
low. Wang et al. [8] found in the boundary layer transition the ∆ vortex has smaller 
vorticity at the vortex core than that in the surroundings. This shows that vortex and 
vorticity are different, and vorticity cannot represent the rotational motion of fluid. 
The pattern of local fluid motion can be derived from the velocity gradient tensor ∇V 
[9], and most Eulerian vortex identification methods are dependent on the velocity 
gradient tensor.
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7.2.2 Cauchy-Stokes Decomposition 

The first and major second-generation methods are generally based on Cauchy-Stokes 
decomposition, including vorticity-based vortex identification method, Q method, 
λ2 method and � method. The most fundamental problem of these methods is that 
Cauchy-Stokes decomposition cannot represent the decomposition of fluid motion. 
Generally, Cauchy-Stokes decomposition is understood as twice the angular velocity 
of rigid rotation of fluid element around its center. However, in practical application, 
there is a contradiction between the fluid rotation motion based on Cauchy-Stokes 
decomposition and vorticity. For example, in the two-dimensional simple shear layer, 
there is a fluid rotation part according to Cauchy-Stokes decomposition, but in fact, 
there is no rotational motion in the flow field [9]. 

7.2.3 Velocity Gradient Tensor 

The other approach is based on the analysis of the velocity gradient tensor ∇V itself, 
including∆methods and λci method. Both of them define vortex as the region where 
∇V has two complex conjugate eigenvalues. They are scalar vortex identification 
methods, which ignore the information such as the rotation axis of fluid rotation. Q, 
λ2,∆ and λci methods are fuzzy to represent the rotation intensity of vortex structure, 
and they are different from each other. In fact, these methods contain varying degrees 
of shear contamination [9, 10]. 

7.2.4 Liutex Vector 

Liu et al. [6] pointed out that the vorticity should be decomposed into a rotating part 
and a non-rotating part, and proposed the Liutex vector which can accurately capture 
the vortex structure. Liutex is a vector that can accurately describe the local rigid 
rotational motion of the fluid. The definition of Liutex vector can be summarized as 
follows. 

7.2.4.1 Direction of Liutex 

In the initial xyz  coordinate system, the velocity gradient tensor ∇V and its eigen-
values are calculated. When ∇V has a real eigenvalue λr and two complex conjugate 
eigenvalues λcr ±iλci , there would only tension or compression in the direction of the 
real eigenvector vr corresponding to the real eigenvalue λr , and there is no rotational 
motion in this direction. The rotational motion can only occur in the plane perpen-
dicular to the real eigenvector vr , that is, vr is the rotation axis of the local fluid
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element, The complex conjugate eigenvalues λcr ± i λci indicate that the instanta-
neous streamline presents a circular or spiral shape, that is, there is a vortex structure. 
The unit direction vector of Liutex vector is r = vr and we require 〈ω · vr 〉 > 0. 

7.2.4.2 Strength of Liutex 

Firstly, Q rotation is used to rotate the initial xyz  coordinate system to xQ yQzQ , so  
that the rotated zQ is in the same direction as the rotation axis r , and the velocity 
gradient tensor ∇V Q after rotation becomes 

∇V Q = 

⎡ 

⎢⎣ 

∂uQ 

∂ xQ 
∂uQ 

∂ yQ 0 
∂vQ 

∂ xQ 
∂vQ 

∂ yQ 0 
∂wQ 
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∂wQ 

∂ zQ 
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⎥⎦ (7.1)

(
uQ, vQ, wQ

)
is the velocity component in xQ yQzQ coordinate system after Q rota-

tion. Here, the formula of Rodrigues is used to solve Q. Q is the coordinate rotation 
matrix. See [4] for specific expressions. 

A second rotation (P rotation) is used to rotate the reference frame around the 
zQ-axis and the corresponding velocity gradient tensor ∇V P can be written as 

∇V P = P∇V Q PT (7.2) 

with 

∇V θ = P r∇V Q PT 
r = 

⎡ 

⎢⎢⎢⎣ 

∂u 
∂ x

∣∣
θ 

∂u 
∂ y

∣∣∣
θ 

0 

∂v 
∂ x

∣∣
θ 

∂v 
∂ y

∣∣∣
θ 

0 

∂w 
∂ x

∣∣
θ 

∂w 
∂ y

∣∣∣
θ 

∂w 
∂ z

∣∣
θ 

⎤ 

⎥⎥⎥⎦ (7.3) 

where the rotation matrix P r is given by 

P r = 

⎡ 

⎣ 
cosθ sinθ 0 

−sinθ cosθ 0 
0 0 1  

⎤ 

⎦ (7.4) 

And α and β are defined as [10] 
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Then, according to Liu et al. [11] the Liutex magnitude/rotational strength is 
defined as 

R =
{
2(β − α), α2 − β2 < 0 
0, α2 − β2 ≥ 0 

(7.7) 

and here we assume β >  0 (if β <  0, we can first rotate the local axis to the opposite 
direction of vr to make it positive). 

7.2.4.3 Explicit Formula for the Liutex Vector 

Liutex is a vector defined as R = Rr , where R is the magnitude of Liutex, and r is 
the direction of Liutex. r is the normalized real eigenvector of the velocity gradient 
tensor such that ω · r > 0. From Wang et al. [11] study on the explicit formula 
for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear 
decomposition, an explicit formula of the Liutex vector can be derived as 

R =
(

ω · r −
/

(ω · r)2 − 4λ2 
ci

)
r (7.8) 

7.2.4.4 Advantage of Liutex 

As the third-generation vortex identification methods, Liutex-based vortex identifi-
cation system outperforms the previous two generations, as mainly reflected by: 

• Liutex vector is an accurate representation of the physical amount of vortex with 
a clear physical meaning. 

• The vortex identification method represented by Liutex solves the problem of 
threshold selection for the second-generation of vortex identification methods. 

• The Liutex method is able to represent quantitatively the six elements of vortex. 

7.3 Shear Contamination 

According to the concept of Liutex vector, the vorticity is decomposed into rotating 
part and non-rotating part. The non-rotating part is pure shear. Mathematically, 
Cauchy-Stokes decomposition is correct, but the physical meaning is not clear and 
depends on the choice of coordinates. In different coordinate systems, the forms of 
rotation matrix, tension matrix, shear matrix and deformation matrix generated by
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Table 7.1 Contamination by stretching and shearing on different criteria 

Methods Q ∆ λ2 λci Liutex 

Contamination by stretching Yes Yes Yes No No 

Contamination by shearing Yes Yes Yes Yes No 

Source Copy of Table 1, Page 18, Stretching and shearing contamination analysis for Liutex and 
other vortex identification methods by Pushpa Shrestha et al. [10] 

velocity gradient tensor decomposition will also be different, which makes the anal-
ysis of pollution uncertain. Shrestha et al. [10] studied the pollution matrix in the 
principal coordinate system and obtained the theoretical pollution analysis results in 
the principal coordinate system (see Table 7.1). 

7.3.1 Principal Decomposition 

Because of the uniqueness of the principal coordinates, we selected the principal 
coordinates for analysis, i.e., by coordinate rotation so that the new z axis points in 
the direction of the local axis of rotation and so that the x and y axis are stretched or 
compressed the same in the plane of rotation. 

Definition 1. The Principal Decomposition is the decomposition of velocity gradient 
tensor under the Principal Coordinates [10] i.e., 

∇V = 

⎡ 

⎣ 
λcr − R 

2 0 
R 
2 + ε λcr 0 

ξ η λr 

⎤ 

⎦ = 

⎡ 
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2 0 
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2 0 0  
0 0  0  

⎤ 

⎦ + 

⎡ 

⎣ 
0 0  0  
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ξ η  0 

⎤ 

⎦ + 

⎡ 

⎣ 
λcr 0 0  
0 λcr 0 
0 0  λr 

⎤ 

⎦ 

= R + S + C 

Here R represents the rotation part, S represents the shear part, and C repre-
sents the stretching and compression part in three axis directions. ε, λcr and λr are 
components of either the shear part or stretching part, or both [12]. 

Shrestha et al. [10] studied the influence of shear or tension on different vortex 
identification methods through theoretical contamination analysis, and the results 
are shown in Table 7.1. 

7.3.2 Shear in Boundary Layer Transition 

Boundary layer transition is a transition process from laminar flow to turbulence, 
during which ∆ vortex structure, hairpin vortex and annular vortex are generated. 
With the emergence of high frequency annular vortex in the outer layer, the flow
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near the wall of the boundary layer first appears disorder. The research shows that 
in the initial stage of flow disorder, the flow disorder is affected by the instability of 
local high shear layer. Therefore, it is necessary to study the effect of Liutex shear 
interaction in boundary layer transition [13–17]. In the transition phase, the inflow 
boundary is disturbed by T-S waves, and the unstable two-dimensional T-S waves 
develop along the flow direction, and there is only high shear near the wall without 
rotational motion. As the flow develops downstream, the 2-D T-S waves begin to 
show spanwise changes from 2-D disturbance to 3-D disturbance, and accompanied 
by the emergence of spikes and decay. The schematic of flow transition on a flat 
plan can be described in the Book of Boundary Layer Theory by Schlichting and 
Gersten [18]. Next, taking the boundary layer transition as an example, we calculate 
the cosine values of the angle between Liutex and shear by making the inner product 
of Liutex vector and shear vector. Specific vortices are selected as the research object, 
and the cosine value change of ∆ vortex moving along the flow direction at a certain 
time, the development and change of hairpin vortex with time are analyzed. Take the 
position where the inclined angle is approximately 0 as vortex core lines, the trend 
for percentage of Liutex over vorticity, and the Liutex shear interaction in the process 
of boundary layer transition are detailed. 

7.4 Numerical Study and Observation 

In order to study the transition process of flat plate boundary layer, the numerical data 
satisfying the characteristics of small-scale vortex and chaos are selected to represent 
the fully developed turbulence. Meyer et al. [19] believe that the chaos is that “the 
inclined high shear layer between the ∆ vortex legs shows an increased phase jitter 
from its tip to the wall region.” The visualization results in the transition process are 
displayed by carefully observing and analyzing DNS data [20–25]. 

7.4.1 Case Setup 

The grid level is 1280 × 256 × 241, representing the number of grids in stream-
wise (x), spanwise (y), and wall normal (z) directions. The grid is stretched 
in the normal direction and uniform in the streamwise and spanwise directions. 
Here, xin  = 300.792δin  represents the distance between leading edge and inlet, 
Lx  = 672.021δin , Ly  = 22δin , Lzin  = 40δin  are the lengths of the computational 
domain in x-, y-, and z-directions, respectively, δin  represents inflow displacement 
thickness [16].
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Fig. 7.1 Multiple ring generation and vortex structures 

7.4.2 Visualization of Simulation Results 

The DNS code “DNSUTA” has been carefully verified by NASA Langley and UTA 
researchers to ensure that the DNS results are correct and reliable. The following are 
the visualization results and analysis of the simulation [16]. 

7.4.2.1 Vortex Structures and Flow Transition 

Figure 7.1 shows the visualization of flow transition by an iso-surface of Liutex 
magnitude equal to 0.1. It includes ∆ vortex, hairpin vortex and annular vortex. We 
can see hairpin structures are pretty clear. In particular, the Liutex lines can accurately 
describe the structure of vortex. In order to study the role of Liutex and shear in the 
formation and development of small-scale vortices, we need to pay attention to the 
location and change information of Liutex and shear. 

7.4.2.2 Liutex and Shear Interaction 

In the boundary layer transition, two slices x = 408.98δin  and y = 10.99δin  are 
selected, and the point with the largest Liutex magnitude is taken as the seed points
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of the Liutex respectively. The cosθ values of Liutex and shear at the vortex core of
∆ vortex and hairpin vortex are calculated and compared. 

The structure of∆ vortex and hairpin vortex is shown in Fig. 7.2. Through numer-
ical simulation, we get that the integral average value of cosθ is 0.723 on the vortex 
core line in Fig.  7.2a, and the integral average value of cosθ is 0.962 on the vortex 
core line in Fig. 7.2b.

Next, we take∆ vortex as the research object and extract the Liutex core line data 
representing the vortex core, as listed in Table 7.2. The variation of cosθ values on 
Liutex core line with flow direction is studied when t = 5.5T (T is the period of T-S 
wave), as shown in the Fig. 7.3. Variation of shear magnitude value on the Liutex 
core line with flow direction is shown in Fig. 7.3.

It can be seen that the cosθ value of ∆ vortex leg begins to decrease in the 
middle and rear section, indicating that the inclined angle between Liutex and shear 
increases, and the shear value in the front section is greater than that in the middle 
and rear section (see Fig. 7.3). The shear magnitude value in the rear section of ∆

vortex leg increases, while the cosine value decreases. Combined with the structural 
evolution of vortex in Fig. 7.4, it can be seen that the effect of shear in the rear section 
of ∆ vortex leg affects the shape of vortex. An indication is that if the angle between 
Liutex and shear vectors in the vortex core is approximately zero, then this part of the 
vortex is more likely to be stable in the sense that the shape would basically remain 
the same. On the contrary, the vortex core where the angle is large tend to deform. 

7.4.2.3 Comparison Between Different Times 

In order to quantitatively study the change of the angle between Liutex and shear 
with different times and understand the interaction of Liutex and shear, we select 
five points on the ∆ vortex core, and track the value of cosθ and shear magnitude at 
the same position but different time. The values are shown in Table 7.3. In addition, 
for the hairpin vortex, we select the maximum point of Liutex magnitude on the 
plane perpendicular to the y-axis as shown in Fig. 7.2b, and record the development 
of Liutex and shear on this particular point. It is found that on this point Liutex 
is approximately parallel to the shear. The time development of Liutex and shear 
magnitudes is listed in Table 7.5.

∆ vortex 

We select five positions, which are x1 = 403.397δin , x2 = 406.396δin , x3 = 
409.326δin , x5 = 412.349δin  and x6 = 415.397δin . 

It can be seen that the structure of hairpin vortex is gradually generated at the rear 
end of ∆ vortex leg in Fig. 7.4b. In Fig. 7.4c, the ∆ vortex leg dissipates. Combined 
with Fig. 7.5, we find that the cosθ value of the front end (1cos, 2cos) of the leg is 
decreasing, the cosθ value of the middle and rear end (3cos, 4cos, 5cos) of the leg is 
increasing, and the angle between Liutex and shear is gradually decreasing.

It can be seen from the Fig. 7.6 that the closer to the rear end of the ∆ vortex leg, 
the smaller the change value of shear with time. According to Fig. 7.4a, we find that
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(a)  vortex and slice at the position 

(b) Hairpin vortex and slice at the position 

Fig. 7.2 ∆ vortex, hairpin vortex and Liutex lines (t = 5.5T )
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Table 7.2 Distribution of Liutex, vorticity, shear magnitudes on the ∆ vortex core (t = 5.5T ) 
X Liutex_mag Vorticity Shear_mag cosθ 
394.325 0.089 0.414 0.345 0.718 

395.321 0.129 0.448 0.334 0.839 

396.338 0.154 0.465 0.323 0.884 

397.355 0.161 0.457 0.308 0.894 

398.457 0.160 0.431 0.281 0.901 

399.476 0.153 0.399 0.255 0.905 

400.326 0.146 0.372 0.235 0.910 

401.349 0.137 0.345 0.215 0.915 

402.373 0.132 0.323 0.197 0.929 

403.397 0.127 0.309 0.187 0.931 

404.338 0.127 0.300 0.177 0.937 

405.366 0.129 0.295 0.172 0.927 

406.396 0.133 0.296 0.170 0.907 

407.342 0.138 0.300 0.172 0.873 

408.376 0.150 0.310 0.175 0.830 

409.326 0.165 0.322 0.177 0.784 

410.362 0.193 0.342 0.177 0.713 

411.398 0.240 0.372 0.172 0.620 

412.349 0.300 0.425 0.177 0.553 

413.394 0.333 0.472 0.187 0.615 

414.356 0.342 0.480 0.184 0.627 

415.397 0.379 0.460 0.158 0.359 

416.421 0.321 0.448 0.233 0.290 

417.345 0.161 0.402 0.333 0.220

the shear value at the front end of the leg is relatively large and the evolution of ∆

vortex structure of phase transition can be clearly seen (Figs. 7.4b and 7.4c).

Hairpin vortex 

We select a hairpin vortex in the boundary layer transition process, extract the Liutex 
line data when t = 5.5T (see in Table 7.4), and plot the value of cosθ varies with Y 
coordinate, as shown in the Fig. 7.7. It can be seen from the figure that the hairpin 
vortex is relatively stable, and the cosθ values on the vortex ring is between 0.93 and 
1, indicating that the inclined angle between Liutex and shear at the vortex is quite 
small, and the angle at the highest part of the hairpin vortex is 0, with the highest point 
as the axis, and the cosθ values on both sides are very symmetrical (see Fig. 7.7).

It can be seen from Fig. 7.8 that the shear magnitude value and vorticity have the 
same change trend. The Liutex magnitude value, shear magnitude value, vorticity and 
cosθ value have good symmetry with respect to the section Y = 10.99δin . The high
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Fig. 7.3 The distribution of cosθ and shear magnitude on the Liutex core line of ∆ vortex (t = 
5.5T ) 

(a) 

(b)                                           (c) 

Fig. 7.4 The evolution of ∆ vortex structure of transition (where T is the period of T-S wave)
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Table 7.3 The value of cosθ and shear magnitude development at selected points 

t T 1 = 5.5T T 2 = 5.6T T 3 = 5.75T T 4 = 6.0T T 5 = 6.1T 
cosθ1 0.931 0.908 0.724 0.821 0.432 

cosθ2 0.907 0.915 0.740 0.834 0.816 

cosθ3 0.784 0.881 0.819 0.882 0.886 

cosθ4 0.553 0.805 0.853 0.928 0.937 

cosθ5 0.359 0.406 0.871 0.966 0.979 

Shear_mag1 0.187 0.213 0.286 0.210 0.213 

Shear_mag2 0.170 0.183 0.227 0.249 0.240 

Shear_mag3 0.177 0.172 0.186 0.214 0.232 

Shear_mag4 0.177 0.164 0.166 0.164 0.193 

Shear_mag5 0.158 0.127 0.155 0.153 0.147 

cosθ# represents the cosθ value of the #-th point, Shear_mag # represents the shear magnitude 
value of the #-th point. (# = 1, 2, 3, 4, 5)

Fig. 7.5 The value of cosθ varies with five different times

shear value is mainly concentrated near the wall. The farther away from the wall, 
the smaller the shear magnitude value, and the Liutex magnitude value increases 
accordingly, but on the whole, the change range of Liutex magnitude value is far less 
than the shear value.

The above Fig. 7.9 shows the evolution of hairpin vortex structure of transition 
over time. Before t = 6.1T , the shape of hairpin vortex is relatively stable. When 
t = 6.1T to t = 6.3T , the legs of hairpin vortex become thinner and fold inward,
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Fig. 7.6 The value of shear magnitude varies with five different times

and the integral mean value of cosθ decreases. After t = 6.3T , the legs of hairpin 
vortex begin to disappear and the shape becomes ring vortex. The integral average 
value of cosθ on the Liutex core line gradually increases, and the shear magnitude 
value at the maximum point of Liutex magnitude gradually decreases to 0 over time, 
while the size of Liutex magnitude is almost unchanged. As shown in Fig. 7.2b, at 
the different time, the cosθ values of the maximum Liutex magnitude at the slice 
at the position Y = 10.99δin  are 1. According to the mathematical definition of 
vortex in the third-generation vortex identification method, the proportion of Liutex 
magnitude over vorticity can be analyzed since for the considered points they are in 
the same direction.

The proportion of Liutex magnitude in the hairpin vortex increases with time as 
shown in Fig. 7.10. When Liutex and shear vectors are approximately parallel, the 
vortex moves greatly along the flow direction and the offset in other directions is very 
small. Combined with Fig. 7.9, we can find that the hairpin vortex and the induced 
annular vortex are relatively stable.

7.5 Conclusion 

According to the analysis of the specific vortices in the boundary layer transition, 
the following conclusions can be summarized.
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Table 7.4 Distribution of Liutex, vorticity, shear magnitudes on a hairpin vortex core (t = 5.5T ) 
Y Liutex_mag Vorticity Shear_mag cosθ 
9.933 0.205 0.656 0.452 0.995 

9.938 0.203 0.665 0.463 0.995 

9.948 0.202 0.673 0.472 0.995 

9.962 0.202 0.680 0.479 0.992 

9.982 0.202 0.675 0.475 0.984 

10.006 0.204 0.666 0.466 0.975 

10.034 0.206 0.661 0.460 0.967 

10.066 0.209 0.655 0.453 0.957 

10.102 0.211 0.638 0.435 0.947 

10.142 0.214 0.628 0.423 0.940 

10.185 0.215 0.604 0.398 0.932 

10.232 0.217 0.590 0.383 0.930 

10.281 0.218 0.570 0.361 0.930 

10.334 0.218 0.550 0.341 0.932 

10.391 0.219 0.535 0.324 0.939 

10.451 0.220 0.521 0.307 0.949 

10.515 0.221 0.509 0.294 0.960 

10.584 0.222 0.500 0.282 0.971 

10.657 0.224 0.495 0.273 0.981 

10.735 0.225 0.489 0.266 0.988 

10.817 0.226 0.489 0.263 0.994 

10.903 0.228 0.490 0.262 0.998 

10.990 0.228 0.490 0.262 1.000 

11.078 0.228 0.489 0.262 0.999 

11.164 0.227 0.488 0.262 0.996 

11.247 0.225 0.489 0.265 0.990 

11.326 0.224 0.494 0.272 0.983 

11.400 0.223 0.499 0.280 0.983 

11.470 0.221 0.505 0.289 0.962 

11.535 0.220 0.520 0.305 0.952 

11.596 0.219 0.533 0.321 0.941 

11.653 0.218 0.546 0.336 0.934 

11.707 0.218 0.565 0.357 0.930 

11.757 0.217 0.584 0.377 0.929 

11.804 0.216 0.602 0.396 0.932 

11.848 0.214 0.623 0.418 0.938

(continued)
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Table 7.4 (continued)

Y Liutex_mag Vorticity Shear_mag cosθ

11.889 0.211 0.633 0.430 0.945 

11.926 0.209 0.650 0.447 0.955 

11.959 0.207 0.662 0.460 0.965 

11.988 0.204 0.666 0.465 0.973 

12.013 0.203 0.673 0.473 0.982 

12.033 0.202 0.682 0.481 0.991 

12.049 0.201 0.674 0.473 0.994 

12.060 0.202 0.666 0.465 0.996 

Table 7.5 Liutex core line data at hairpin vortex core with times 

t Shear_mag Liutex_mag Vorticity Percentage (%) Integral average of cosθ 
5.5T 0.262 0.229 0.49 46.73 0.962 

5.55T 0.225 0.208 0.433 48.04 0.946 

5.6T 0.183 0.218 0.4 54.50 0.962 

5.65T 0.172 0.207 0.379 54.62 0.961 

5.7T 0.136 0.184 0.32 57.50 0.936 

5.75T 0.141 0.186 0.324 57.41 0.941 

5.8T 0.129 0.175 0.304 57.57 0.941 

5.85T 0.14 0.159 0.299 53.18 0.939 

5.9T 0.099 0.163 0.262 62.21 0.883 

5.95T 0.099 0.163 0.263 61.98 0.85 

6T 0.112 0.159 0.271 58.67 0.789 

6.05T 0.113 0.153 0.265 57.74 0.747 

6.1T 0.111 0.155 0.266 58.27 0.724 

6.15T 0.104 0.159 0.263 60.46 0.680 

6.2T 0.058 0.165 0.223 73.99 0.564 

6.25T 0.057 0.174 0.231 75.32 0.428 

6.3T 0.062 0.18 0.241 74.69 0.486 

6.35T 0.069 0.183 0.252 72.62 0.643 

6.4T 0.064 0.189 0.253 74.70 0.745 

6.45T 0.057 0.192 0.249 77.11 0.750

1. Liutex can well capture vortices in boundary layer transition with its direction 
as the local rotational axis and magnitude as twice the angular velocity speed of 
local rotational motion. 

2. Different from other vortex identification methods, Liutex is not contaminated 
by shear.
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Fig. 7.7 The cosθ distribution on the Liutex core line of hairpin vortex (t = 5.5T )

Fig. 7.8 The distribution of Liutex, vorticity, shear magnitudes on a hairpin vortex core (t = 5.5T )
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(a) 

(b)                                                      (c)   

Fig. 7.9 The evolution of hairpin vortex structure of transition (where T is the period of T-S wave)

Fig. 7.10 The proportion of Liutex_mag/Vorticity varies with times
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3. In the process of boundary layer transition, from the data, the inclined angle 
between Liutex and shear ranges from 0 to π/2. High shear is mainly concentrated 
before vortex generation and vortex dissipation, indicating that shear plays an 
important role in vortex formation and development. 

4. Because of the Liutex shear interaction,∆ vortex gradually develops into hairpin 
vortex and some parts of it dissipates with time. At the same time, the hairpin 
vortex will generally maintain a stable state because the inclined angle between 
Liutex and shear is approximately zero, and then slowly become ring vortex. 
When the inclined angle between Liutex and shear is approximately parallel, the 
vortex mainly moves along the flow direction and the offset in other directions 
is very small. 
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