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Abstract The proper orthogonal decomposition (POD) is a data decomposition 
method to investigate and analyze complex turbulent flow. The POD method offers 
the optimal low-dimensional approximation of a given data set. In our case, POD is 
used with Liutex vector as an input instead of velocity vector to extract the coherent 
structure of late boundary layer flow transition. Mathematically, the Liutex vector 
field is decomposed into a sum of basis functions (spatial modes) multiplied by 
time coefficients (Fourier-splitting method). A singular value decomposition (SVD) 
algorithm is used to perform the POD method. Our studies show that fluid motion 
can be modeled/reconstructed by a few leading modes as they contain a large portion 
of total rotational intensity. Trailing modes can be neglected as they do not contribute 
to the total rotational strength of the flow. From the reconstructed vortex structure in 
the flow transition, the loss of symmetry of vortex is investigated, and it is found that 
the asymmetry of vortex develops at the flow transition. In fact, our study shows that 
the antisymmetric of the vortex starts from the middle, and then the antisymmetric 
structure of the bottom part starts and spreads to the top level. 

6.1 Introduction 

The proper orthogonal decomposition (POD) method is a highly applied data analysis 
and modeling method in fluid mechanics. The POD method allows us to reconstruct 
a flow with the first few most energetic modes, keeping the data structure intact. 
Sometimes, the fluid motion is not easily visible in raw data; in this case, reconstructed 
POD modes can model the fluid motion accurately and efficiently. This method 
essentially offers an orthogonal basis to represent a given set of data where optimal 
low-dimensional approximations for the given data set are calculated [1, 2]. The 
bases are also known as POD modes. These POD modes best represent the data. 
The leading modes represent most of the rotational intensity of incompressible flow, 
whereas high-ordered POD modes represent very few portions of total rotational
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strength. We choose the Liutex vector as an input vector instead of a velocity vector 
[3]. Most POD analysis has been done with the velocity vector as an input. However, 
in this study, we use the Liutex vector as an input as Liutex represents the local rigid 
rotation part of fluid motion without shear and stretching/compression contamination 
[4]. The velocity modes are related to the kinetic energy content, whereas the Liutex 
mode represents the rotation intensity. Since the Liutex vector represents local rigid 
rotation of fluids without any shear or stretching contamination, the Liutex vector is 
applied instead of the velocity vector as an input for POD analysis. 

A vortex is known as the rotational fluid movement. Over the past three decades, 
several vortex identification methods such as Q, ∆, λ2, andλci have been suggested 
and used in direct numerical simulation (DNS) data to analyze and visualize the 
vortex structure numerically in the transitional boundary layer [5–8]. These methods 
are based on scalar quantities and need a proper threshold to capture the vortex 
boundary. According to Liu et al. [9], vorticity-based methods are classified as the 
first generation (1G) of vortex identification methods, eigenvalue -based methods 
such as Q, ∆, λ2, andλci are regarded as the second generation (2G) of vortex 
identification methods, and the Liutex method [10, 11], Liutex-Core–Line method, 
and other Liutex-based methods [12, 13] are regarded as the third-generation (3G) of 
vortex identification methods. The third generation of vortex identification methods 
is considered the best among the prevalent methods as it can present accurate vortex 
boundaries along with the direction [14, 15]. Since then, the novel Liutex has been 
used abundantly in the literature by many fellow researchers and scientists [16–18]. 

The POD method is one of the most broadly applied modal decomposition 
and dimensionality reduction techniques to analyze vortex structure. There are two 
versions of the POD method. Initially, the POD method was proposed by Lumley 
[1] in 1967 to explore the turbulent flow. In 1987 Sirovich [2] introduced the other 
version of POD known as snapshot POD. Both versions of POD are equivalent to 
the singular value decomposition (SVD) method. So SVD method is used in this 
paper for POD analysis of late flow transition. In the POD method with Liutex input 
vector, the orthogonal modes are ranked according to their rotational intensity. The 
first mode contains the largest rotational intensity of the flow and gradually decreases 
as we go on to the next mode. Due to limited computer memory, POD modes with 
high intensity are used to optimize the computation. Many researchers have used 
the POD method to study the flow structure. POD was used in research [19, 20] to  
analyze the flow structures in various cases and scenarios. Dong et al. applied POD 
analysis on vortical structures in MVG wake by Liutex core line identification [21]. 
The POD method has also been applied to flow transition in the boundary layer. 
Gunes used the POD method to reconstruct a transitional boundary layer with and 
without control [19]. Yang et al. studied the POD analyses on vortex structure in the 
late transition [20].
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In this paper, POD is applied to study and analyze the conversion of the symmetric 
vortex to asymmetry in the flow transition with a Liutex input vector to reconstruct 
the data. The modified Liutex-Omega vortex identification method is applied to DNS 
data to capture the vortex structure of flow transition with iso-surfaces of �L = 0.52 
and ε = 0.001(b − a)max . Due to the limited computer memory capacity, snapshot 
POD is used here. 

6.2 Numerical Setup 

First, a snapshot matrix A is taken from DNS data of the flat plate boundary layer 
with 100 snapshots in time between t = 20.505T to t = 21.00T , where T is the 
period of Tollmein-Schlichting wave, to study orthogonal basis functions (POD 
modes) of the coherent vortex structures in the transitional flow. Then, we have 
chosen the proper subzone in the late boundary layer transition defined by the 
parameters given in Table 6.1 to study the POD of flow structure (Fig. 6.1). 

The table gives the starting and ending points of index i, j, k along x, y and z 
directions. 

The snapshot matrix A between the timesteps t = 20.5T to t = 21.0T is given by,

Fig. 6.1 Vortex structure of transitional boundary layer by modified Liutex-Omega method 

Table 6.1 Parameters of 
subzone 

Grid direction Starting index Ending index 

i 500 580 

j 1 128 

k 1 200 
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A = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

Lx 
( j) 
500,1,1 
... 

Lx 
( j ) 
580,128,200 

L y 
( j ) 
500,1,1 
... 

L y 
( j) 
580,128,200 

Lz 
( j) 
500,1,1 
... 

Lz 
( j) 
580,128,200 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

for j = 1, . . . ,  100, 

where Lx 
( j) , L y ( j) and Lz 

( j) are Liutex vectors in x, y, z directions in the flow fields 
at several time steps t = (20.50 + 0.005 j )T where j is from 1 to 100. 

6.3 Proper Orthogonal Decomposition (POD) 

The POD modes, also known as the orthogonal basis, are ranked by fluctuating 
rotational intensity, where leading modes have the dominant rotational intensity, and 
trailing modes have weak or no rotational intensity. 

Definition 6.1 POD modes are the orthogonal basis for the given data set. In fluid 
mechanics, they are a set of deterministic spatial functions received from the decom-
position of the random vector field representing the turbulent fluid motion. Each of 
these functions, also known as POD modes, can capture some portion of the rotational 
strength of the flow. 

Let u(x, y, z, t) denote the vector field in the flow with fluctuating velocity. Then, 

u(x, y, z, t) = U (x, y, z) − U ′(x, y, z), (6.1) 

where U (x, y, z) is the velocity vector, and U ′(x, y, z) is the temporal mean velocity 
vector (assumed to be stationary). Then, the POD method decomposes the random 
vector field u(x, y, z, t) into a sum of orthogonal basis functions/POD modes
�k(x, y, z) multiplied by random time coefficients ak(t), i.e., 

u(x, y, z, t) = 
∞∑
k=1 

ak(t)�k(x, y, z) (6.2) 

Here, �k is the matrix of eigenvectors of the covariance matrix 1 
m−1U 

T U , where m 
is rows of U. 

In matrix form, it can be written as:
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A = �Q (6.3) 

where the matrix � contains the spatial modes �k(x, y, z) and Q contains the 
temporal coefficients ak(t). 

6.4 POD Analysis Inflow Transition by Modified Liutex 
Omega Method 

We have used SVD to perform the POD method, and the singular values are ordered 
in ascending order. Figure 6.2 shows the contribution of each mode to total fluid 
rotational intensity. The amount of the rotational intensity possessed by higher modes 
gradually decreases, and ultimately, they converge to zero. 

The following figures represent the structure of the first six POD modes. The other 
modes have similar vortex structures, so we have not included them (Fig. 6.3).

Mode 1, also known as mean flow, has the dominant streamwise vortex stricture. 
Mode 2, 3, and 4 also have the streamwise vortex structure but are less intense than 
mode 1. Spanwise characteristic dominates the vortex structure in higher modes 
as higher modes show more fluctuation distributions of vortex structures. In other 
words, the streamwise vortex structure is dominant in the leading modes, whereas 
the spanwise characteristic is dominant in the trailing modes. This nature of POD 
modes can be seen through the interior vortex structure, shown in Fig. 6.4.

Since the leading modes with streamwise structures possess significantly higher 
rotational strength than the other trailing modes, the original vortex structures can 
be reconstructed by a few leading modes. So, we can model the original flow by 
reconstructing the data of the first few POD modes that have major contribution to
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Fig. 6.2 a Rotational intensity at various POD modes. b Cumulative rotational strength of POD 
modes 
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Mode 3 Mode 2Mode 1 

Mode 4 Mode 5 Mode 6 

Fig. 6.3 Vortex structures of the first 10 modes with iso-surfaces of 
∼
�L = 0.52

Mode 1 Mode 2 

Mode 3 Mode 4 

Fig. 6.4 Interior structure of some POD modes by XY-cross section

the fluid rotation. This will reduce the size of the original data, keeping most of 
the features of data (fluctuating vortex strength) intact. This can be seen in Fig. 6.5, 
where the first five POD modes model the original fluid flow.

Definition 6.2 The coefficients that we get when the eigenvector matrix�k in Eq. 6.2 
are scaled by the singular values of the original matrix are known as POD time 
coefficients. The POD time coefficients ak(t) function as a weight factor for each 
mode.



6 POD Analysis on Losing Symmetry of Vortex Structure … 83

Original flow (b) Reconstructed flowMode 2 (a) 

Fig. 6.5 Vortex structures of original and reconstructed flow by first five modes with of 
∼
�L = 0.52

The time coefficients are representative of flow dynamics. Each column of matrix
�k represents the time evolution of the respective mode. The first column gives the 
time coefficient of the mean flow (1st mode). Similarly, the second column of the 
eigenvector matrix �k gives the time coefficient of the second mode, and so on. 
Then, these modes are scaled by the corresponding singular values. The following 
graphs show the POD time coefficients of the first five modes. The remaining time 
coefficients show a similar fluctuating structure, so they are omitted (Fig. 6.6). 

These graphs demonstrate the dynamics (fluctuations) of fluid motion. The 
mean flow has the least fluctuation, while the higher modes have more significant 
fluctuations. Some similar fluctuations can be seen in the trailing modes.

Fig. 6.6 POD time coefficients of mode 1 to mode 5, where the x-axis represents time steps, and 
the y-axis represents time coefficients 
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6.5 POD Analysis on Losing Symmetry of Vortex Structure 

The vortex structure in the early stage is symmetric. However, it starts to lose the 
symmetry in the transition stage, and at the late transition stage, the vortex structure 
is entirely chaotic, making it asymmetric. We have probed the zone where vortex 
symmetry is being lost and examined the areas from where it starts to lose symmetry. 
The following figure shows that the top part of the vortex structure is symmetric near 
X = 470, but the bottom is already antisymmetric at the same time step and position 
(Fig. 6.7). 

From Fig. 6.8a, it can be seen that at X = 470, the vortex structure at the top, 
middle, and bottom are all symmetric. In Fig. 6.8b the middle part is antisymmetric 
while the top and bottom are still symmetric. However, in Fig. 6.8c, we can see that 
the top, middle, and bottom are completely antisymmetric. The index for grid-level 
along the z-axis for bottom, middle and top are k = 0–1, k = 1–4 and k = 4+ 
respectively. 

Fig. 6.7 Top and bottom views of the vortex structure at the same position 

(a) (c)(b) 

Fig. 6.8 YZ-slice of flow structure at X = 470, X = 475, and X = 480
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Definition 6.3 The function f (x, y, z) is symmetric about plane y = 0 axis along 
the spanwise direction in the domain −π ≤ y ≤ π if f (x, −y, z) = f (x, y, z) for 
∀x, y, zεZ+. 

Definition 6.4 Let Li, j,k be the Liutex magnitude where i, j, k are indexes for grid 
points along the x, y, and z directions, respectively. Let the domain of grid points be 
i ∈ [i1, i2], j ∈ [2, 128], and k ∈ [1, 200]. The YZ plane at y = 0 (i.e. j = 64) is the  
axis of symmetry.  L j,k and L128− j,k are the Liutex magnitudes for j = 2, 3, . . . ,  64 
in the YZ-plane on the left and right of the axis of symmetry, respectively. 

Two points, x(:,j, k) and x(:, 128-j, k), at any i ∈ [i1, i2] are symmetric about the 
plane y = 0 at z = k for k = 1, 2, . . . ,  200 if

∣∣L j,k − L130− j,k

∣∣ < 0.001; otherwise, 
these two points are not symmetric about the plane y = 0. 

Let m(di ) and n(di ) are the number of pairs of points that are symmetric and 
antisymmetric, respectively. The antisymmetric index is defined by 

αi =
(

n(di ) 
m(di ) + n(di )

)
. (6.4) 

For i ∈ [i1, i2], the contour of Liutex magnitude in the YZ-plane is symmetric about 
the plane y = 0 if αi < 0.01. Otherwise, the contour of Liutex magnitude in the 
YZ-plane is antisymmetric about y = 0. So, the vortex structure is symmetric about 
y = 0 if αi < 1, ∀i ∈ [i1, i2]. Otherwise, the vortex structure is antisymmetric about 
y = 0. 

From the above definition, if αi ≥ 1, the vortex structure is antisymmetric. The 
higher the value of αi , the more antisymmetric the vortex structure is. If αi < 1, 
symmetric vortex exists (Figs. 6.9 and 6.10).

The figure is the YZ-slice contour of the reconstruction of the vortex structure by 
the first five modes at timestep t = 20.00 T, where T is the period of T-S wave. 

This figure shows that in reconstructed data, the bottom part has crossed the 
antisymmetric index threshold (i.e., 0.01) at around X = 468. Then the middle and 
top part crosses that limit at X = 470 and X = 475, respectively, indicating that the 
antisymmetric vortex structure starts from the middle, then spreads to the bottom, 
and then to the top of the boundary layer vortex structure in transitional flow. 

6.6 Conclusion 

POD can be used to reduce the dimension of the large data, keeping most of the 
features intact. This will reduce the cost and time of computation. So, this technique 
has been so effectively applied in the literature. From the POD analysis on losing 
symmetry of vortex structure in the boundary layer transition, we can conclude the 
followings:
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Fig. 6.9 YZ-slice of reconstructed flow by the first five POD modes at X = 470 

Fig. 6.10 The antisymmetric index of the top, bottom, and middle part of the reconstructed vortex 
structure by the first five POD modes

1. Mode 1, known as the mean flow, has most of the rotational intensity of the 
flow. Leading modes have dominant rotational strength, while trailing modes 
contribute less to fluid rotation. 

2. The first three/four modes have streamwise characteristic, but when we take 
higher modes, the spanwise characteristic of the flow becomes dominant.
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3. The antisymmetry of the vortex structure starts from the middle of the boundary 
layer, and then the antisymmetric structure of the bottom part starts and spreads 
to the top level. In the late transition stage of the boundary layer, the vortex 
structure is entirely asymmetric. 
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