
Chapter 2 
Galilean Variance of Streamline 
in Vortex/Liutex Visualization 
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Abstract Intuitively, vortex exists at the position where the streamlines bend. This 
perception comes from the fact that people usually observe water flow, which is the 
streamline, by eyes. However, since streamline is a Galilean invariant quantity, this 
intuition may be incorrect in some situations. Galilean variance is the feature that the 
issue will be different under different coordinate systems, while Galilean invariance 
refers to keeping invariant under different inertial coordinate systems. No bending 
of the streamline can be identified when the streamwise speed is far larger than the 
speed produced by rotation; in other words, the speed produced by rotation can be 
omitted. In such a situation, streamline fails to detect vortex. Therefore, a proper 
vortex visualization method requires Galilean invariance. Liutex is a newly invented 
vortex identification method that is Galilean invariant, and as a result, it can capture 
vortex correctly regardless of the choice of coordinate systems. 

2.1 Introduction 

Vortices play an indispensable role in fluid dynamics research, especially turbulence. 
Therefore, vortex visualization has a very important research value. Influenced by 
the fact that vorticity represented twice angular speed for rigid bodies, scientists 
had first believed that vorticity is also a good indicator of fluid rotation. Using this 
cognitive, some successes were achieved in analyzing low-speed flow away from 
the boundary. At the same time, problems arose when scholars shifted their research 
focus to high-speed flow and flow near the boundary region. Robinson [1] found that 
the connection between vorticity and actual vortices can be very weak. Wang et al. 
[2] found vorticity strength is smaller inside the vortex region while bigger outside. 
The causes of this problem can be explained by R-S decomposition [3] of vorticity. 
R-S decomposition shows that vorticity can be decomposed into rigid rotation and 
shear. For rigid bodies and low-speed flow away from the boundary, the shear is small 
or zero if ideal, but for high-speed flow or flow near the boundary, the shear cannot
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be ignored. Later, some vortex visualization methods were developed to overcome 
this drawback of using vorticity for detecting vortices. Some popular methods of 
these are the Q criterion [4], λci criterion [5] and λ2 criterion [6]. Admittedly, using 
these methods can obtain more consistent results with the experimental results than 
vorticity, these methods also have some shortcomings. 

Firstly, these methods cannot reveal what the rotation axis, important rotation 
information, is since they are all scalar methods. Secondly, the physical meaning of 
the numbers calculated from these methods is unclear. People can only know the rela-
tive rotation strength but do not know the exact angular speed. These shortcomings 
motivate researchers to find more proper vortex indicators. In 2018, Liu et al. [7, 8] 
proposed a new method called “Liutex”, which is a vector. The direction of Liutex is 
the rotation axis, and the magnitude of Liutex represents twice rigid rotation angular 
speed. Many numerical and experimental results have shown that Liutex performs 
beyond the previous methods. In the experiments done by Guo et al. [9], Liutex is 
more consistent with the experimental results than other methods. 

Apart from all the methods discussed above, the most human intuitive way to 
identify vortices is the curving of the streamline; since what people can observe 
in daily life is the motion of fluids which is streamline or trace in fluid concepts. 
Streamline is based on velocity, which is dependent on the choice of coordinates. 
Due to this reason, some weird results can be obtained when using streamlines to 
detect vortices. 

People may conclude that there are no vortices within the iso-surface from 
Fig. 2.1a and apparent vortex from Fig. 2.1b, even though these two figures depict 
the same scene at the same moment. Choice of the coordinates is the only differ-
ence between these two figures. The boundary-fixed coordinate is used in Fig. 2.1a, 
while a uniform linear motion coordinate is used in Fig. 2.1b, and both coordi-
nates are inertial. Therefore, different choices of coordinates may lead to different 
vortices detections when applying streamline. This issue can be described by Galilean 
invariance.

Galilean invariance is a feature in that the variables are the same under different 
inertial coordinates. Obviously, streamline is Galilean variant since velocity is 
Galilean variant. Galilean invariance should be a vital property of vortex visualization 
to avoid the ambiguous vortex detection results shown in Fig. 2.1. 

In this paper, Galilean invariance is first introduced in Sect. 2.2. Section 2.3 
explains why streamline is Galilean variant, and the proof of Liutex being Galilean 
invariant is shown in Sect. 2.4. In Sect. 2.5, numerical examples illustrate that stream-
line is Galilean variant and Liutex is Galilean invariant. Conclusions are given in 
Sect. 2.6.
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Fig. 2.1 Streamline in the a original frame b the frame moving with the u speed of the intersection 
point

2.2 Galilean Invariance 

Galilean transformation is used to transform between two different inertial coordi-
nates or two coordinates that only differ by a constant translation within Newtonian 
physics. The Galilean transformation can be uniquely defined as the decomposition 
of a rotation, a translation, and a uniform motion of space–time. 
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where x, y, z are the coordinates in the original reference frame and x', y', z' are the 
coordinates in the new reference frame. 

Galilean invariance means variables are the same in different inertial coordinates, 
so in other words, variables need to be the same under Galilean transformations. 
The Galilean variances of streamline and Liutex are checked in Sects. 2.3 and 2.4, 
respectively. 

2.3 Galilean Variance of Streamline 

Let u', v', w' be the velocity after Galilean transformation, and u, v, w be the velocity 
in the original coordinate. From Eq. 2.1, it can be derived that
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A streamline is a line whose tangent direction is the velocity direction of the 
chosen point, thus it has the following relation 

d−→s × −→V = 0 (2.3) 

where −→s represents streamline. Since the velocities in different coordinates are 

different, 
−→
V /= 

−→
V ' , their streamlines are different. Thus, streamline is not a Galilean 

invariant physical quantity. 

2.4 Galilean Invariance of Liutex 

This section gives the proof of Liutex being Galilean invariant based on Wang’s paper 
[10]. Liutex [8] is a vector, which can be expressed as 

−→
R = R−→r (2.4) 

where R is the magnitude and −→r is the direction of Liutex. −→r is meanwhile the real 
eigenvector of the velocity gradient tensor with −→r ·−→ω >  0, and R can be calculated 
from [11] 

R = −→r · −→ω − 
/(−→r · −→ω 

)2 − 4λ2 
ci (2.5) 

where λci is the imaginary part of the complex conjugate eigenvalues. 
To prove Liutex is Galilean invariant, it needs to show that its direction and 

magnitude are Galilean invariant. 
Let∇−→v ' and ∇−→v be the velocity gradient tensor in the new and original reference 

frames, respectively. Let Q be the invertible rotation matrix of these two reference 
frames. Then ∇−→v ' and ∇−→v have the following relation 
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Suppose −→r is the Liutex direction in the original xyz coordinate, in other words,−→r is the eigenvector of ∇−→v . 

∇−→v · −→r = λr
−→r (2.7) 

Do the following manipulation, it has 

Q∇−→v · −→r = Q∇−→v (Q−1 Q
) · −→r = 
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Equation 2.7 both sides multiplied by Q from the left 
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Combine Eqs. 2.8 and 2.9, it can be obtained 
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From this, it can be seen that Q−→r is the real eigenvector of ∇−→v '. 
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where −→r ' 

is the corresponding vector of −→r after Galilean transformation. 
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So, −→r ' 
is the real eigenvector of ∇−→v '. 

In the expression of R (Eq. 2.5), it contains −→ω , −→r and λci . It has been proved 
that −→r is Galilean invariant, and it is known to us that −→ω and λci are both Galilean 
invariant physical quantities. So, R is Galilean invariant as well. 

It has been proved that both magnitude and direction of Liutex are Galilean 
invariant. Thus, Liutex is a Galilean invariant physical quantity.
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2.5 Numerical Example 

In a DNS research of boundary layer transition, the grid level is 1920 × 128 × 241, 
representing the total amount in streamwise(x), spanwise(y), and wall-normal(z) 
directions. The first interval length in the normal direction at the origin is 0.43 in 
wall units (Z+ = 0.43). The flow parameters are listed in Table 2.1, including Mach 
number, Reynolds number, and others. In this case, xin  = 300.79δin  represents the 
distance between the leading edge and the inlet, Lx, Ly, and Lzin are the lengths of 
the computational domain and Tw is the wall temperature. 

The streamline passing through a selected point is shown in Fig. 2.2. The iso-
surface is the iso-surface of Liutex, and the black line is the streamline. In this figure, 
the streamline looks like a straight line by eye observation which implies no rotation 
exists according to people’s intuition. 

However, if discussed in a new frame, the conclusion of rotation existence based 
on the curve of streamlines can be different. Establish a new frame such that the 
frame moves with the streamwise speed of the selected point (intersection of the 
plane and black line). The streamline in the new frame is shown in Fig. 2.3.

In the new figure, the streamline looks like a spiral. From these two figures, it can 
be seen clearly that streamlines are not Galilean invariant. 

To test the Galilean invariance of Liutex, a rotation matrix Q is selected. Let 
γ1 = 36◦, γ2 = 69◦, γ3 = 78◦, then

Table 2.1 Flow parameters 

M∞ Re xin Lx Ly Lzin Tw T∞ 

0.5 1000 300.79δin 798.03δin 22δin 40δin 273.15 K 273.15 K 

Fig. 2.2 Streamline in 
original frame 
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Fig. 2.3 Streamline in a 
frame moving with u speed 
of the intersection point
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The iso-surface of Liutex in the original frame and the frame after Galilean 
transformation are shown in Figs. 2.4 and 2.5, respectively. 

It can be clearly seen that it keeps the same after Galilean invariant.

Fig. 2.4 Liutex iso-surface 
in the original frame
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Fig. 2.5 Liutex iso-surface in the frame after Galilean transformation

2.6 Conclusion 

Liutex is Galilean invariant, while streamline is not. Being Galilean invariant is an 
important requirement of vortex identification methods. It is not proper to use the 
curve of the streamlines to detect vortices because different frames lead to different 
results. Liutex keeps the same after Galilean transformation, so Liutex is more reliable 
than streamlines. 
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