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Abstract In computational fluid dynamics, many researchers and textbooks 
accepted that vorticity is vortex. However, this is a misunderstanding of the tensors 
derived from the Cauchy-Stokes decomposition of the velocity gradient tensor. It 
was believed that the symmetric tensor A and antisymmetric tensor B (vorticity 
tensor) represented stretching/compression and rotation, respectively. Decomposing 
the vorticity tensor yields R (rotation part) and S (antisymmetric shear deformation 
part). Liutex, on the other hand, represents rigid rotation and the Liutex magni-
tude represents twice the angular speed. We analyze three flow areas in boundary-
layer transition: laminar, transitional, and turbulent. In laminar flow, there is no 
vortex structure. In transitional flow, the formation of hairpin vortex rings will 
begin. Finally, in turbulent flow, many vortex rings have formed. In this paper, 
a DNS simulation of boundary transition is conducted, then statistical analysis is 
performed on the recorded results for Liutex, shear, and vorticity. The resulting values 
for Liutex followed the proper growth trend, starting at zero in laminar flow and 
steadily increasing through the transitional and turbulent flows. On the other hand, 
the vorticity values were much greater and remained consistent with little change 
throughout the flow transition periods. The analysis also revealed that the shear 
component negatively relates with Liutex, i.e., as Liutex increases, shear decreases. 
Since shear substantially impacts the vorticity value where it can be misrepresented 
as rotation in laminar flow, vorticity, in general, should not be considered vortex. 

11.1 Introduction 

A vortex is recognized as the rotational motion of fluids. Many vortex identifi-
cation methods have been developed within the last several decades to track the 
vortical structure in a fluid flow; however, we still lacked unambiguous and univer-
sally accepted vortex identification criteria. This obstacle caused a lot of confusion 
and misunderstandings in turbulence research [1]. These methods are characterized
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into three generations starting with vorticity-based methods as the first generation, 
eigenvalue-based such as ∆    [2, 3], Q [4], λ2 [5], λci [6], and � [7, 8], as the second 
generation, and the recently developed Liutex methods as the third generation of 
vortex identification methods [9]. The Liutex method is a novel eigenvector-based 
method that is local, accurate, unique, and systematic [10]. 

In Computational fluid dynamics, many researchers and textbooks accept that 
vorticity is vortex. This is due to a misunderstanding from the Cauchy-Stokes decom-
position of the velocity gradient tensor. It was understood that the symmetric tensor 
A represented stretching/compression, and the antisymmetric tensor B (vorticity 
tensor) represented rotation [11]. In this paper, we will show that antisymmetric tensor 
B (vorticity tensor) does not represent only rotation and investigate the behavior of 
shear, Liutex, and vorticity in the boundary layer from laminar flow to turbulent flow. 

This manuscript is split into sections, where Sect. 11.2 is a review of vorticity and 
Liutex, Sect. 11.3 shows that vorticity is not strictly rotation, Sect. 11.4 shows the 
data structure for the DNS study, and Sect. 11.5 is the results of the investigation of 
the behavior of shear Liutex, and vorticity. 

11.2 Review of Related Vortex Identification Methods 

The vortex identification methods that we will analyze in this paper are vorticity and 
Liutex. We will review these methods in this section. 

11.2.1 Vorticity 

In 1858, Helmholtz introduced the concept of the vorticity tube/filament [12]. Since 
then, many researchers have believed that vortices consist of small vorticity tubes 
called vortex filaments, and the magnitude of vorticity gives the vortex strength. 

11.2.1.1 Vorticity Vector 

The vorticity vector is mathematically defined as the curl of the velocity. i.e., 

vortivity = ∇  × ⇀
v =
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The vorticity vector is also derived as follows [5]:
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11.2.1.2 Vorticity Magnitude 

The vorticity magnitude is defined as
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11.2.1.3 Vorticity Tensor 

The vorticity tensor is the antisymmetric tensor B from the traditional Cauchy-Stokes 

decomposition of the velocity gradient tensor ∇ ⇀
v [13]: 
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11.2.2 Liutex 

Liutex [9, 10] is a vector defined as
⇀

R = R
⇀
r . R represents the Liutex magnitude 

defined as twice the angular velocity, and
⇀
r represents the directional unit vector of 

Liutex. According to Wang [14],
⇀
r is the real eigenvector of the velocity gradient 

tensor, and the explicit formula of R is 
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Liutex, as a vector, overcomes the drawbacks of the scalar methods, e.g., the 
threshold requirement when creating and analyzing graphics. 

11.3 Vorticity Versus Rotation 

In this section, we will decompose vorticity in the principal coordinate to show that 
vorticity is not strictly rotational. 

11.3.1 Vorticity Tensor in the Principal Coordinate 

The Vorticity tensor in the Principal Coordinate has the following form: 
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and can be decomposed further into this form: 
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where R &AS represent the rotation and antisymmetric shear deformation part, 
respectively. This implies that the vorticity tensor is not strictly rotation [15]. 

11.3.2 Vorticity Vector in the Principal Coordinate 

Using Eq. 11.2 from Sect. 11.2.1.1 and applying the Principal Coordinate yields:
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where
⇀

R is a rotational vector and
⇀

S is a non-rotational shear vector. This implies 

that
⇀
ω contains shearing and rotation components. Therefore, the vorticity vector is 

not strictly rotational [5, 11, 16]. 

11.3.3 Vorticity Magnitude in the Principal Coordinate 

The vorticity magnitude in the Principal Coordinate is

|| ⇀
ω || =  

/

(η)2 + (ξ )2 + (R + ε)2 . (11.9) 

The vorticity magnitude contains rotation R and shearing components η, ξ , ε; 
therefore, the vorticity magnitude does not only represent rotational strength [11]. 

11.4 Data Structure 

The computational domain has the grid number 1920 ×128 × 241, representing the 
number of grids in streamwise (x), spanwise (y), and wall-normal (z) directions. 
In normal direction, these grids are stretched, while in streamwise and spanwise 
directions, they are uniform. The length of the first grid interval in the normal direction 
at the entrance is 0.43 in wall units (Z+ = 0.43) (see Fig. 11.1). 

Fig. 11.1 Computation 
domain
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Table 11.1 DNS parameters 

M∞ Re xin Lx Ly Lzin Tw T∞ 

0.5 1000 300.79 δin 798.03 δin 22 δin 40 δin 273.15 K 273.15 K 

Fig. 11.2 Vortex structures by modified Liutex-Omega with 
∼
�L = 0.52 at t = 13.00 T 

The flow parameters are listed in Table 11.1. Here, M∞ is Mach number, Re is 
Reynolds number and, Tw and T∞ are wall and free stream temperature, respectively. 
Likewise, xin  represents the distance between the leading edge and the inlet of the 
flat plate. Lx, Ly  and Lzin  are the lengths of computational domain in x, y, and z 
directions. δin  is the inflow displacement thickness [1, 17]. 

Figure 11.2 shows the formation of the vortex structures from the Y direction view 
in laminar, transitional, and turbulent flow. In laminar flow, little to no vortex activity 
is detected. In transitional flow, the formation of hairpin vortex rings begins, and this 
is where weak to strong vortex activity starts to be detected. Then in turbulent flow, 
many vortex rings have formed. This area is more chaotic and complicated. This 
means the strength of the vortex should increase from laminar flow to turbulent flow. 
According to Dong et al., the spanwise Y direction is the most prominent since it 
contributes the most to the value of the magnitudes [8]. 

11.5 Results 

There are two objectives of this study; by using the DNS simulation of boundary 
layer transition we: 

1. Investigate the behavior of shear, Liutex, and Vorticity from laminar flow to 
turbulent flow. 

2. Analyze the effect of shear on vorticity. 

Statistical analysis is performed over the whole grid domain and across time 
domain T. The Statistical integration formula is
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∑
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τi jkt voli jk  = ιt , (11.10) 

where τi jkt  is a point in the grid, i = 1 to 1920, j = 1 to 128, k = 1 to 241 and t 
represents the step-in time. voli jk  is the volume of the space around the point τi jkt . 
ιt is the integration output value at time step t. 

The results of the Direct Numerical Simulation are recorded, Statistical Analysis 
is performed over the whole grid domain, and the data is plotted across time domain 
T for: 

• lmag = Liutex magnitude component 
• ωmag = Vorticity magnitude component 
• smag = Shear magnitude component 
• l y = Liutex component in the y direction 
• ω y = Vorticity component in the y direction 
• s y = Shear component in the y direction 

The difference in the values of vorticity and Liutex is significantly high, so the 
relative values are used to compare the change in the values over period T. 

Figures 11.3 and 11.4 show the behavior of vorticity, shear, and Liutex from the y 
direction. It is observed that the relative l y values increased significantly over period 
T, which is the T-S wave period. While ω y showed no significant change throughout 
period T. The  s y values were observed to be decreasing. This change is negative in 
nature and coincides with the increase in l y and the behavior of ω y. The period T 
travels from laminar flow to turbulent flow. There should be minuscule rotation or 
vortex activity in laminar flow and an increasing trend of vortex activity as we move 
into transitional flow, where hairpin vortex rings are formed, and on to turbulent flow. 
This behavior only coincides with the behavior of the l y relative values.

It can be observed from Figs. 11.5 and 11.6 that the relative change in lmag across 
time is much greater than ωmag . As we moved from laminar flow to turbulent flow 
in time, the values of lmag continually increased, showing that lmag picked up the 
formation of vortex rings, whereas ωmag barely changed.

11.6 Conclusion 

The effect of shear on vorticity can be substantial, leading to a misrepresentation 
of vortex indication in the laminar flow where there is basically no rotation. The Y 
direction graphs show that vorticity had little to no change in value over time, while 
Liutex increased as time progressed. The shear was observed to be decreasing as 
Liutex increased. This shows that Liutex has a negative relation with Shear defor-
mation. The magnitude graphs show that the increase in Liutex as time progressed is 
more significant than the increase in vorticity and shear. Therefore, vorticity should 
not be considered as Vortex.
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Fig. 11.3 Relative integration values for ω y, l y & s y plotted over time domain T 

Fig. 11.4 Relative integration values for ω y, l y & s y plotted over time domain T - individual 
graphs
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Fig. 11.5 Relative integration values for ωmag , lmag & smag plotted over time domain T 

Fig. 11.6 Relative integration values for ωmag , lmag & smag plotted over time domain T -
individual graphs
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