
Chapter 1 
Liutex and Third Generation of Vortex 
Definition and Identification 

Chaoqun Liu, Habib Ahmari, Charles Nottage, Yifei Yu, Oscar Alvarez, 
and Vishwa Patel 

Abstract Liutex is a physical quantity like velocity, vorticity, pressure, tempera-
ture, etc., describing local fluid rotation or vortex, which was ignored for centuries. 
Liutex was defined by the University of Arlington at Texas (UTA) team in 2018 as 
a vector for vortex. Its direction is the local rotation axis, and magnitude is twice 
local angular rotation speed. As the third generation of vortex definition and iden-
tification, Liutex has been widely applied for visualization of vortex structure to 
replace the first generation or vorticity, which cannot distinguish shear from rota-
tion and the second generation such as Q, ∆, λ2, and λci methods, which are all 
scalar without rotation axis, dependent on threshold and contaminated by shear and 
stretching. Several new vortex identification methods have been developed, espe-
cially the modified Liutex-Omega method, which is threshold insensitive, and the 
Liutex-Core-Line method, which is unique and threshold-free. According to the 
Liutex vector, a unique coordinate system called Principal Coordinate can be set up, 
and consequent Principal Decomposition of velocity gradient tensor can be made. 
Different from classical fluid kinematics, the Liutex-based new fluid kinematics 
decomposes the fluid motion to a rotational part and a non-rotational part (UTA R-
NR decomposition). The non-rotational part can be further decomposed to stretching 
and shear consisting of symmetric shear and anti-symmetric shear in contrast with 
the classical fluid kinematics, which decomposes fluid motion to deformation and 
vorticity, that was misunderstood as rotation. According to the constitutive relation 
between stress and strain, the new fluid kinematics may give significant influence to 
new fluid dynamics. 

1.1 Introduction 

A vortex is intuitively recognized as a rotational/swirling motion of fluids. It is ubiq-
uitous in nature and viewed as the building blocks, muscles, and sinews of turbulent 
flows [1]. Quantitative understanding of vortex is essential for turbulence research
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and many engineering applications such as hydrodynamics, aerodynamics, ther-
modynamics, oceanography, meteorology, metallurgy, civil engineering, astronomy, 
biology, etc. In 1858, Helmholtz first defined vortex as tubes composed of so-called 
vortex filaments [2], which are, in fact, infinitesimal vorticity tubes. Vorticity has a 
rigorous mathematical definition with no clear physical meaning. 

Conversely, vortex has a physical meaning but no mathematical definition until 
recently. Science and engineering applications have shown that the correlation 
between vortex and vorticity is very weak, especially in the near-wall region [3]. 
Also, existing vortex identification methods, which are based on eigenvalues of the 
velocity gradient tensor, are scalars and therefore strongly depend on the arbitrary 
thresholds. 

Liutex is a new physical quantity introduced by Liu et al. in 2018 [4–6] that repre-
sents local fluid rotation, i.e., vortex, and is a mathematically rigorous tool for vortex 
characterization. The major idea of Liutex is to extract the rigid rotation part from the 
fluid motion to represent the vortex. Given the novelty of Liutex, it is inevitable that 
the vortex dynamics be re-examined to develop unique and accurate vortex identifi-
cation methods independent of thresholds. This chapter presents the existing vortex 
definition and identification methods and their limitations, and introduces Liutex, 
as the third generation of vortex definition, and Liutex-based vortex Identification 
methods. 

1.2 Three Generations of Vortex Definition 
and Identification 

There are three generations of vortex identification methods [6], and Helmholtz’s 
[2] definition of vortex is classified as the first. During the past four decades, several 
vortex identification criteria, such as Q, ∆, λ2, and λci methods, have been devel-
oped [7–11] and are classified as the second generation of vortex identification. 
They are all based on eigenvalues of the velocity gradient tensor; however, they are 
scalars and thus strongly dependent on the arbitrary thresholds when plotting the-
iso surface to represent vortical structures. They cannot show the vortex rotation 
axis, which is critical for vortex structure. Furthermore, they are all contaminated by 
stretching (compression) and shearing. Rotational axis and uniqueness in strength 
are two important issues for vortex definition that cannot be solved by either the first 
or second vortex identification methods. 

Liutex, the third generation of vortex definition and identification, was introduced 
by the first author Dr. Liu at the University of Texas at Arlington (UTA) [4–6]. It 
is defined as a vector that uses the real eigenvector of velocity gradient tensor as its 
direction and twice the local angular speed of the rigid rotation as its magnitude. 
The major idea of Liutex is to extract the rigid rotation part from fluid motion to 
represent vortex, which is a mathematically rigorous tool suitable for vortex charac-
terization [12]. The location of the rotation axis is then the local maxima of Liutex
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(not vorticity), and the Liutex magnitude is twice the vortex angular speed, which is 
uniquely defined. Although similar ideas of decomposition of vorticity tensor to a 
pure rotation and anti-symmetric shear have been given by [13, 14], they did not find 
a vector definition for flow rotation or Liutex. Several vortex identification methods 
have been developed based on the Liutex definition [4–6, 15–39]. Examples of these 
methods are modified Liutex-Omega and Liutex-Core-Line. The former is threshold 
insensitive, and the latter is threshold-free. These methods have been shown to accu-
rately visualize vortical structures in turbulent flows [40, 41]; however, schemes and 
software for automated generation and case-independent features are still open for 
research. The current methods still have parameters that need manual adjusting. 

1.2.1 First Generation of Vortex Identification Methods 
(Vorticity-Based Methods) 

Since Helmholtz proposed the concepts of vorticity tube and filament in 1858 [2], 
it has generally been believed that vortices consist of vorticity tubes, and vortex 
strength is measured by the magnitude of vorticity, i.e., ∇ ×  −→v [42]. Although 
vorticity is widely adopted for detecting vortices, one immediate counterexample is 
that the average shear force generated by the no-slip wall in the laminar boundary 
layer is so strong that a very large amount of vorticity exists. However, no rotation 
motions are observed in the near-wall regions. This implies that vortex cannot be 
represented by vorticity. Robinson [43] found that “the association between regions 
of strong vorticity and actual vortices can be rather weak in the turbulent boundary 
layer, especially in the near-wall region.“ In 1990. Wang et al. [30] showed that the 
magnitude of vorticity could be substantially reduced along vorticity lines by entering 
the vortex core region near the solid wall in a flat plate boundary layer. Figure 1.1 
clearly indicates that for a transitional flow over a flat plate in the near-wall region 
of the boundary layer, the local vorticity vector can deviate from the direction of 
vortical structures. Also, a vortex can appear in the region where the vorticity is 
smaller than the surrounding area in which the vorticity is larger than the vorticity 
inside the vortex. These results demonstrate that vorticity cannot be used to represent 
vortices, especially in the near-wall region of the boundary layers.

Vortex and vorticity are two different concepts. Vortex is a natural phenomenon, 
but vorticity is a mathematical definition. In fact, if a vortex cannot be ended inside 
the flow field, how can turbulence be generated by “vortex breakdown?” Vortex can 
break down, which means it is not vorticity tube. Although both vortex and vorticity 
are vectors, they are different vectors.
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Fig. 1.1 (a) Vortex appears in the area where vorticity is relatively smaller, (b) vorticity line is not 
aligned with vortex, (c) vorticity is smaller (green) than surrounding (yellow or red)

1.2.2 Second Generation of Vortex Identification 

Several vortex identification methods have been proposed during the past four 
decades, including the Q, λci , and λ2 methods. These methods are briefly explained 
in the following. 

Q Method. The  Q criterion is expressed by Eq. 1.1: 

Q = 
1 

2

(||B||2 F − ||A||2 F
)

(1.1) 

where A and B are the symmetric and antisymmetric parts of the velocity gradient 
tensor, respectively, and ||||2 F represents the Frobenius norm. Theoretically, Q > 0
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can identify the vortex boundary, but in practice, a threshold Qthreshold  must be spec-
ified to define the regions where Q > Qthreshold . Q-criterion shows the symmetric 
tensor roles that balance the anti-symmetric tensor. 

λci Method. The  λci method defines the strength of vortex as the imaginary part λci 

of the complex eigenvalue of the velocity gradient tensor ∇V [10]. 

λ2 Method. The  λ2 method defines the strength of vortex by using the second 
negatively largest eigenvalue λ2 of A2 + B2, where A and B are the symmetric 
and anti-symmetric parts of the velocity gradient tensor [9]. Assuming the fluid is 
incompressible, steady, and non-viscous, the Navier–Stokes equation is converted to 
A2 + B2 = −∇( p)/ρ, where p and ρ represent pressure and density, respectively. 
The rotational area is defined by the existence of two negative eigenvalues of the 
symmetric tensor A2 + B2 [9]. 

1.2.3 Limitations of Existing Vortex Identification Methods 

Thresholds. Without exception, the abovementioned vortex identification methods 
require user-specified thresholds. Since different thresholds indicate different vortical 
structures, it is critical to determine an appropriate threshold. When a large threshold 
for Q criterion is used, vortex breakdown occurs in the late boundary layer transition 
(Fig. 1.2a); however, when a small threshold is applied, no vortex breakdown occurs 
(Fig. 1.2b), which means that an appropriate threshold is vital to these vortex identifi-
cation methods. Many computational results have revealed that the threshold is case-
related, empirical, sensitive, time step-related, and hard to adjust. Furthermore, it is 
unclear whether the specified threshold is proper or improper. There may be no single 
proper threshold, especially if strong and weak vortices co-exist. If the threshold is 
too small, weak vortices may be captured, but strong vortices could be smeared and 
become vague. If the threshold is too large, weak vortices will be wiped out.

Direction of Rotation. The other limitation of these vortex identification methods 
is that they can only provide iso-surface; no information is given about the rotation 
axis or vortex direction. 

Strength of Vortex. A more serious question is whether the iso-surface represents 
the rotation strength. The answer is that they do not, because they are different from 
each other, though not unique; are contaminated by shear and stretching in different 
degrees and fail to represent the rigid rotation strength of fluid motion.
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Fig. 1.2 Vortex breakdown with a large threshold of Q= 0.024 and no vortex breakdown with a 
small threshold of Q = 0.002 (same DNS dataset)

1.2.4 Mathematical Misunderstandings of the First 
and Second Generation of Vortex Identification 
Methods 

The classical theory considers the vorticity vector as the rotation axis and vorticity 
magnitude as the strength of the vortex (angular speed) [42]. This is correct for solids 
but not for fluids. It can be shown mathematically that vorticity is not a fluid rotation 
axis, and the first and second generation of vortex identification methods (Q, λci , and 
λ2) cannot be used as the fluid rotation strength. These methods are contaminated 
by shear and have different dimensions from the fluid angular speed. 

1.2.5 Contaminations of First and Second Generations 
of Vortex Identification Methods 

Contamination of Vorticity. In a principal coordinate, vorticity ω and its magnitude
||ω|| can be expressed by Eqs. 1.2 and 1.3, respectively: 

ω = (η, −ξ,  R + ϵ )T (1.2)

||ω|| =
/

η2 + ξ 2 + (R + ϵ )2 (1.3)
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From Eqs. 1.2 and 1.3, it can be concluded that a vorticity vector not only includes 
rotation but also claims shear as part of the vortical structure. Here, ξ,  η, ϵ are all 
shears but not rotations. 

Contamination of Q Method. In a principal coordinate, the velocity gradient tensor 
∇−→
V and Q value can be written as Eqs. 1.4 and 1.5: 

∇−→
V = 

⎡ 

⎢ 
⎣ 

λcr − 1 
2 R 0 

1 
2 R + ϵ λcr 0 

ξ η λr 

⎤ 

⎥ 
⎦ = 

⎡ 

⎢ 
⎣ 

λcr 
1 
2 ϵ 1 

2 ξ 
1 
2 ϵ λcr 

1 
2 η 

1 
2 ξ 

1 
2 η λr 

⎤ 

⎥ 
⎦ + 

⎡ 

⎢ 
⎣ 

0 − 1 
2 R − 1 2 ϵ − 1 

2 ξ 
1 
2 R + 1 2 ϵ 0 − 1 

2 η 
1 
2 ξ

1 
2 η 0 

⎤ 

⎥ 
⎦ = A Q + B Q 

(1.4) 

Q = 
1 

2

(||||B Q
||||2 
F 

− ||||AQ

||||2 
F

)
= 

1 

2

[

2

(
R 

2 
+ 

ε 
2

)
+ 2

(
ξ 
2

)2 

+ 2
(η 
2

)2
]

− 
1 

2

[

2λ2 
cr + λ2 

r + 2
(ε 
2

)2 + 2
(

ξ 
2

)2 

+ 2
(η 
2

)2
]

=
(
R 

2

)2 

+ 
1 

2 
R · ε − λ2 

cr − 
1 

2 
λ2 
r (1.5) 

Therefore, the value of Q is contaminated by shear and stretching. In addition, Q 
contains the term of square of (R/2) indicating dimensional inconsistency with fluid 
rotation, as R/2 is the angular speed. 

Contamination of λci Method. In a principal coordinate, we have: 

R 

2

(
R 

2 
+ ϵ 

)
= λ2 

ci (1.6) 

thus, 

λci = 

/
R 

2

(
R 

2 
+ ϵ 

)
(1.7) 

The expression of λci includes ϵ , which is a component of the shear part and thus 
it is contaminated by shear.
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1.2.6 Liutex 

1.2.6.1 Definition of Liutex 

Liutex is defined as the rigid rotation part of fluid motion [4–6]. The mathematical 
definition of Liutex is presented by Eq. 1.8 [32]: 

−→
R = R−→r (1.8a) 

R = ( →ω · →r ) −
/

( →ω · →r )2 − 4λ2 
ci , →ω · →r > 0 (1.8b) 

where 
−→
R and R are Liutex vector and magnitude, −→r is the real eigenvector of ∇−→v ,−→ω = ∇  ×  −→v is vorticity, and λci is the imaginary part of the conjugate complex 

eigenvalues of ∇−→v . The condition −→ω · −→r > 0 is used to keep the definition unique 
and consistent when the fluid motion is pure rotation. 

1.2.6.2 Vorticity Versus Vortex 

The major mathematical misunderstanding of the first generation of vortex identifi-
cation methods is the consideration of vorticity vector as the fluid rotation axis and 
vorticity magnitude as the vortex strength (angular speed). In the following, it is 
shown that vorticity is not the fluid rotation axis. 

Definition 1.1 At a moment, a local fluid rotation axis is defined as a vector that can 
only have stretching (compression) along its length. 

It is basic math that the increment of−→v in the direction of d−→r is d−→v = ∇−→v .d−→r . 
Theorem 1.1 Liutex is the local fluid rotation axis. 

Proof In the Liutex direction, which is the real eigenvector, d−→v = ∇−→v .−→r = λr
−→r . 

According to Definition 1.1, Liutex is the local rotation axis as 
−→
R = R−→r . 

Theorem 1.2 Vorticity is, in general, not the local fluid rotation axis. 

Proof 

d→v =∇→v · →ω = A · →ω + B · →ω = A · (
a1

−→r1 + a2−→r2 + a3−→r3
) + (∇ × →v) × →ω 

= a1λ1
−→r1 + a2λ2

−→r2 + a3λ3
−→r3 + 0 /= λ

(
a1

−→r1 + a2−→r2 + a3−→r3
) = λ →ω (1.9) 

Unless λ1 = λ2 = λ3 = λ or for rigid rotation where λ1 = λ2 = 0.
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Fig. 1.3 Principal 
coordinates 

1.2.6.3 Principal Coordinate and Principal Decomposition 

Principal Coordinate. In the vortex area, the velocity gradient tensor must have one 
real eigenvalue and two conjugate complex eigenvalues [44]. In Fig. 1.3, the Z-axis 
of a principal coordinate (X, Y, Z) is aligned with the real eigenvector of ∇−→v and 
two diagonal elements that are equal to each other. In the principal coordinate: 

∇−→
V = 

⎡ 

⎣ 
∂U 
∂ X 

∂U 
∂Y 0 

∂ V 
∂ X 

∂ V 
∂Y 0 

∂ W 
∂ X 

∂ W 
∂Y 

∂ W 
∂ Z 

⎤ 

⎦ = 

⎡ 

⎣ 
∂U 
∂ X 

∂U 
∂Y 0 

∂V 
∂ X 

∂V 
∂Y 0 

∂ W 
∂ X 

∂ W 
∂Y λr 

⎤ 

⎦ (1.10) 

∇ →Vθ = 

⎡ 

⎣ 
λcr − 1 

2 R 0 
1 
2 R + ε λcr 0 

ξ η λr 

⎤ 

⎦ (1.11) 

where R is the Liutex magnitude, λr is the real eigenvalue, λcr is the real part of the 
conjugated complex eigenvalues, and ξ,  η, ϵ are shears. 

1.2.6.4 UTA R-NR Principal Tensor Decomposition 

The first author Dr. Liu has proposed a new Liutex-based tensor decomposi-
tion, i.e., UTA R-NR tenser, to replace the traditional Cauchy-Stokes (Helmholtz) 
decomposition. The UTA R-NR velocity gradient tensor decomposition can be 
written as: 

∇−→
V = R + NR (1.12) 

where
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R = 

⎡ 

⎣ 
0 −R/2 0  

R/2 0 0  
0 0 0  

⎤ 

⎦ (1.13) 

and 

NR  = 

⎡ 

⎣ 
λcr 0 0
ϵ λcr 0 
ξ η  λr 

⎤ 

⎦ (1.14) 

therefore, 

∇−→
V = 

⎡ 

⎣ 
λcr −R/2 0  

R/2 + ϵ λcr 0 
ξ η λr 

⎤ 

⎦ (1.15) 

where R stands for the rotational part of the local fluid motion, which is the tensor 
version of Liutex, and NR is the non-rotational part. It is clear that NR has three real 
eigenvalues, so NR itself implies no local rotation. The UTA R-NR decomposition is 
important to vortical flow and turbulent flow. 

1.2.6.5 Vorticity RS Decomposition 

Vorticity cannot be applied to represent flow rotation; otherwise, we would not need 
vortex identification methods like Q, λci , λ2,∆. The vorticity vector must be decom-
posed to a rotational part (Liutex) and a non-rotational part (shear). The vorticity RS 
decomposition can be obtained from Eq. 1.16. 

−→
ω = ∇  ×  −→V = −→R + 

−→
S = 

⎡ 

⎣ 
0 
0 
R 

⎤ 

⎦ + 

⎡ 

⎣ 
η 

−ξ

ϵ 

⎤ 

⎦ (1.16) 

where 
−→
S = −→ω − −→R can be considered as a shearing vector since the components 

of 
−→
S indicate the strengths of the simple shear along different axes. Note that the 

vorticity in the vortex legs is almost shear 
−→
S , but not rotation 

−→
R (Fig. 1.4). Again, 

vorticity cannot represent vortex.

1.2.6.6 Liutex-Based Vortex Identification Methods 

Liutex Iso-surface. Since Liutex is the rigid rotational part that is extracted from fluid 
motion, the Liutex vector, Liutex vector lines, Liutex tubes, and Liutex iso-surface
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Fig. 1.4 Illustration of vorticity vector decomposition at Point A

can all be applied to display the vortex structure (Fig. 1.5). The advantage of the 
Liutex method is that Liutex is a vector, unlike others which are all scalar. Another 
benefit of Liutex is that it represents pure rotation without contamination by shears, 
while all other vortex identification methods are contaminated by shears. Of course, 
the Liutex iso-surface still needs thresholds like other scalar methods, but it is the 
pure rotation strength.

Omega Method. The  Ω method is given by Eq. 1.17: 

Ω = ||B||2 F
||A||2 F + ||B||2 F + ε 

(1.17) 

where A and B are the symmetric and antisymmetric parts from Cauchy-Stokes 
decomposition, ε is a small positive number introduced to avoid division by zero or 
extremely small numbers, and ||A||F is the Frobenius norm ε that can be determined 
at each time step from Eq. 1.18 [19]. 

ε = 0.001
(||B||2 F − ||A||2 F

)
max (1.18) 

The advantages of the Ω method include: (i) it is easily performed, (ii) it has 
a clear physical meaning, (iii) it is normalized from 0 to 1, (iv) it is insensitive to 
threshold adjustments by setting Ω= 0.52, and (v) it can capture both strong and 
weak vortices simultaneously. 

Modified Liutex-Omega Method. The modified Liutex-Omega method combines the 
ideas of both the Liutex and Omega methods, which is normalized, not contaminated, 
by shear and is insensitive to threshold selection. The modified Liutex-Omega method 
is defined by Eq. 1.19.

˜ ΩR = β2 

β2 + α2 + λ2 
cr + 1 2 λ2 

r + ε 
(1.19) 

where
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Fig. 1.5 (a) Liutex iso-surface and Liutex lines (color represents the rotation strength), and 
(b) Liutex iso-surface for the vortex structure in early transition (R = 0.1)

α = 
1 

2

/(
∂V 

∂Y 
− 

∂U 

∂ X

)2 

+
(

∂V 

∂ X 
+ 

∂U 

∂Y

)2 

(1.20a) 

β = 
1 

2

(
∂ V 
∂ X 

− 
∂U 

∂Y

)
(1.20b) 

Equation 1.20 is equivalent to

˜ ΩR =
(−→ω · −→r )2 

2
[(−→ω · −→r )2 − 2λ2 

ci + 2λ2 
cr + λ2 

r

]
+ ε 

(1.21) 

Liutex Core Line Method. All iso-surface methods are threshold-dependent. A 
Liutex core line is defined as the rotation axis of each vortex and is unique and 
threshold-free. The vortex core line is defined as a special Liutex line that passes
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through the points satisfying the condition expressed by Eq. 1.22. 

∇ R × →r = 0, →r /= 0 (1.22) 

where −→r represents the direction of the Liutex vector. The Liutex (vortex) rotation 
core lines are uniquely defined without any threshold requirement (Fig. 1.6). There-
fore, the Liutex core rotation axis lines with Liutex strength are derived uniquely 
and are believed to be the only entity capable of cleanly and unambiguously repre-
senting vortex structures. Figure 1.6c shows that it is possible to use the automatic 
Liutex- core-line method to show the vortex structure; still, we have a long way to 
go from improving the method enough that it shows the vortex structure uniquely 
and automatically for turbulence. Figure 1.7 provides a comparison of Q-criteria and 
Liutex-core-line methods and indicates that the Q-criteria is threshold-dependent and 
unable to capture weak vortices, in contrast to the Liutex-core-line method, which is 
threshold-free and able to capture both strong and weak vortices. 

Fig. 1.6 Vortex structure in flow transition displayed by Liutex core line methods (color represents 
Liutex strength): (a) Liutex iso-surface and core lines, (b) Liutex core lines, c Liutex core lines for 
flow transition (preliminary results)
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Fig. 1.7 Comparison of Q-criteria and Liutex-core-line methods (a) Q = 0.005, (b) Q = 0.05, c 
Liutex-core-line 

1.3 Future Research Plan 

Future research on Liutex and Litex-based vortex identification methods is inevitable. 
The following are expected to be achieved through the future research: 

(a) a transformational improvement in the knowledge of fluid kinematics and fluid 
dynamics through a combination of mathematical approaches, computational 
simulations, and experimental studies, and uncover and quantify the true nature 
of vortex and its mathematical definition; 

(b) new vortex identification methods that provide an accurate and unique vortical 
structure of turbulence; 

(c) quantification of the evolution of vortex geometries and topologies; and 
(d) determination of how the new definition of vortex can be used to quantify 

turbulent flows and vortex dynamics. 

The future research may include the following areas. 

1.3.1 Develop Unique, Accurate, and Threshold-Free Vortex 
Identification Methods 

Vortex identification methods that are accurate and threshold-free need to be devel-
oped. Liutex is a mathematical definition for fluid rotation or vortex, but the iso-
surface of Liutex is still threshold-dependent for vortex identification. The modified 
Liutex-Omega method is insensitive to threshold change and a nice tool for vortex 
identification; however, it has a small adjustable number of ε and thus is still not 
unique, as a threshold is still needed. The Liutex core line and tube method is the 
only one that provides a unique vortex structure by defining a special Liutex line that 
satisfies ∇ R × −→r = 0, −→r /= 0. However, Liutex core lines and tubes are currently
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located by manual methods, which is not realistic for sophisticated vortex structures 
in turbulent flow. Several efforts have been made, but the outcome is not yet satisfac-
tory. The key issue is how to find the local maxima of Liutex in a 3-D flow field. The 
Liutex core line should pass the local Liutex maxima. For 1-D problems, the local 
maxima should have a first-order derivative of zero and second derivative negative. 
For 2-D and 3-D problems, the local maxima should have a gradient of Liutex equal 
to zero and the Hessian matrix, which has all negative eigenvalues. 

1.3.2 Characterize Vortex Structure 

The vortex structure can be studied using experimental modeling and numerical 
simulations to characterize the vortex structure in flow transition and turbulent flows. 
The mechanism of flow transition and turbulence generation and sustenance should 
be explored using experimental and numerical techniques. 

Vortex structure is still a mystery. Even very simple questions, e.g., whether hairpin 
vortices exist in turbulent flows, remain unanswered. In fact, not all researchers 
believe that hairpin packets exist in turbulent flow. In recent studies, large numbers 
of hairpin packets were observed in low Reynolds number flows [44], but no hairpin 
vortices were observed at high Reynolds numbers [45, 46]. This disagreement exists 
since there is no rigorous mathematical vortex definition. Additionally, the iso-surface 
of existing vortex identification methods are all threshold-dependent but not unique. 
The new vortex identification may be used to find unique vortex structures. Flow visu-
alization can provide hints on how large vortices are generated and how they become 
non-symmetric and chaotic. A qualitative comparison between the results from PIV 
and DNS and statistical analysis of flow field can be used to extract vortex charac-
teristics at the range of Reδ = 500–4000. This range of friction Reynolds number 
covers transitional flows and low-to-high Reynolds number turbulent flows. The 
vortex structure and its temporal and spatial evolution can be studied by conducting 
experiments to capture the hairpin structure, multi-layer vortices, and vortex merging. 

1.3.3 Liutex Similarity 

The energy transformation paths between the large and small vortices will be inves-
tigated by DNS and experiments. The most successful theory of turbulence is the 
second Kolmogorov similarity K41 [47] in the inertial subrange (lE I  > l > lDI  ). 
According to K41, the energy spectrum Ek( f ) of turbulence must be of the form of 
Eq. 1.23, which is the famous −5/3 law. 

Ek( f ) = Cε 
2 
3 
0 f 

− 5 
3 (1.23)



18 C. Liu et al.

where f is the wavenumber and ε0 is the turbulence energy dissipation. The simi-
larity is based on Kolmogorov’s third hypothesis, which assumes that in the inertial 
subrange, the turbulence energy spectrum is solely determined by energy dissipation 
and the wave number, independent of viscosity. This will give Ek( f ) = Cεa 0 f 

b, 
where the dimension of wave number f is 1/m. The power coefficients a and b 
are easily obtained by dimensional analysis; however, Kolmogorov’s law requires 
homogeneous incompressible flow with a very high Reynolds number and is for the 
inertial subrange. It is hard to match DNS data and experimental results in a turbulent 
boundary layer. 

There is no similarity for vorticity and Q-criterion (Fig. 1.8a, b); however, the 
Liutex similarity [36] is found in a low Reynolds number turbulent boundary layer in 
the subrange of dissipation (Fig. 1.8c), which is important for a subgrid model in LES. 
The Liutex similarity, which has been reported by a number of authors, cannot be an 
accident because it is very meaningful for finding turbulence structure and turbulence 
sub-grid modeling. However, it is still unknown why the Liutex spectrum meets the 
−5/3 law and how the Liutex −5/3 law can be used for turbulence modeling. The 
exact Liutex similarity provides a powerful tool for studying turbulence structure 
and developing a reliable subgrid model of large eddy simulation, which is one of 
the goals of this research. Similarity is the foundation for subgrid modeling.

1.3.4 Correlation Analysis of Pressure Fluctuation (Noise 
Generation) and Liutex Spectrum by Mathematical 
Analysis and Experimental Modeling 

A high-order large eddy simulation (LES) of a micro vortex generator (MVG) 
is conducted to control the flow separation induced by shock and the turbulent 
boundary layer interaction (SBLI) at Mach number 2.4 in a compression corner. 
A low frequency of pressure oscillation caused by SBLI has been one of the major 
hurdles of supersonic commercial aircraft design for decades. Liutex is a kinematic 
definition that works for both incompressible and compressible flow. We found that 
pressure oscillation and the Liutex spectrum are closely correlated, over 0.9 at most 
points (Fig. 1.9 and Table 1.1), which could help in finding the mechanism of the 
low-frequency noise generation and learning how to reduce or remove the noise. It 
cannot be an accident that the correlation is high for the turbulent boundary layer, 
as shown in a recent study. As the pressure fluctuation is found closely correlated 
with the Liutex spectrum, it is hoped that a new theory can be developed on shock 
waves and turbulent boundary layer interactions that will lead to new technology for 
controlling SBLI, which is the bottleneck of commercial aircraft design. The theory 
and control of SBLI require additional research.

A new technique for controlling the supersonic boundary layer flow is to distribute 
an array of MVGs, whose height is less than the boundary layer thickness, ahead 
of the region with adverse flow conditions. In contrast to the conventional vortex
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Fig. 1.8 Energy spectrum: (a) vorticity, (b) Q-criterion, (c) Liutex −5/3 similarity and 
(d) Kolmogorov K41 similarity

generator with a height comparable to the boundary layer thickness, an MVG’s 
height is about 20–60% of the boundary layer thickness. 

An MVG appears to reduce the size of the separation zone. It has been suggested 
that the boundary layer is energized by the MVGs from a system of streamwise 
counter-rotating vortices. Such a mechanism has recently been studied in detail in 
low-speed experiments. A series of ring-like vortices (Fig. 1.8b) generated behind 
MVG was discovered by our previous LES, and the numerical discoveries of the 
ring-like vortex structure were confirmed by the 3-D PIV experiment. A V-shaped 
separation zone was discovered on the wall boundary by the LES. The length of 
the separation at the two spanwise sides of the domain was estimated to be around 
6–6.5 h (height of the MVG), and the length at the centerline was estimated to be 
around 5 h in supersonic flow with Ma = 2.5. Compared with the value of 8.2– 
8.4 h for the ramp-only case, the MVG significantly reduces the separation region. 
It was also confirmed that the interaction between ring-like vortices and a ramp 
shock wave is the mechanism for forming the V-shaped separation zone and the flow
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(a) (b) 

(c) 

Fig. 1.9 Correlation of spectrum of pressure fluctuation and Liutex: (a) 13 sample points, 
(b) shock boundary layer interaction, (c) spectrum of pressure, and Liutex at Point 5 

Table 1.1 Correlation Coefficient (r) of the Spectra at the First Seven Points in Fig. 1.9a 

Point # 1 2 3 4 5 6 7 

r 88.4% 86.3% 93.7% 95.5% 94.6% 97.0% 91.4%

separation reduction at the ramp corner. The vortex structure in MVG needs to be 
examined through numerical simulations and be compared the results with those 
from experiments. 

1.4 Conclusions and Future Work 

Based on abovementioned understanding, following conclusions can be made: 

1. As the first generation of vortex identification, vorticity is a vector, but cannot be 
used to represent vortex. Vorticity is curl of velocity, but vortex is fluid rotation. 
They are two different vectors. 

2. As the second generation of vortex identification criteria, Q, ∆, λ2, and λci 
methods are all scalars and thus strongly dependent on the arbitrary thresholds. 
They cannot show the vortex rotation axis, and are all contaminated by stretching 
(compression) and shearing. 

3. Liutex is the third generation of vortex definition and identification, which is 
the only quantified and mathematical definition of local fluid rotation or vortex 
vector.
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4. Liutex can give right direction and strength for group fluid rotation or natural 
vortices. In other words, vortex core is a special Liutex vector, Liutex tube, and 
concentration of Liutex lines. 

5. Liutex vector, line, tube, core lines can all be correctly applied for vortex structure, 
but vortex structure cannot be visualized by the first and second generations since 
they are threshold-dependent, not unique, and shear-contaminated. 

6. Modified Liutex-Omega method is insensitive to threshold change. 
7. Liutex-core-line method is unique, threshold-free, accurate to visualize vortex 

structure including direction and strength. 

Future research should integrate mathematical analysis, direct measurements, and 
numerical simulations to advance the knowledge and understanding of vortex struc-
ture and evolution. These advancements will improve vortex identification and quan-
tification methods. The new vortex identification methods are accurate, unique, and 
threshold-free and will be used to formulate Liutex dynamics for quantified research 
on vortex and turbulence. The Liutex similarity will provide a powerful tool for 
studying turbulence structure and developing a reliable sub-grid model of LES. The 
results from future research will lead to quantified research of turbulence generation 
and sustenance and pave the way for developing new governing equations using 
Liutex, which may enhance turbulence calculations and modeling. These outcomes 
will significantly impact basic mathematics and fundamental fluid mechanics by 
introducing a new definition of vortex into turbulence research. New fluid kine-
matics can be established using the Liutex theoretical system to replace existing 
fluid kinematics and possibly launch new turbulence dynamics. 
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