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Abstract. Aiming at the dynamic scheduling problem in workshop production,
we propose amulti-objective schedulingmethod. By analyzing the actual dynamic
scheduling problem, a mathematical model is constructed. Then the dynamic
interference factors in the actual production environment are classified, and the
interference intensity and its parameters are designed. On this basis, a dynamic
scheduling oriented process model is established by using reinforcement learning
and scheduling rules, and the design of its state space, state action value table
and reward function is introduced. Finally, the model is trained and we analyze
the simulation results of different methods. The results show that the dynamic
scheduling method based on reinforcement learning has good performance under
different periods and disturbance intensity, which shows this method is effective
and feasible for dynamic scheduling problem.

Keywords: Reinforcement learning · Dynamic disturbance · Dynamic
scheduling · Scheduling rules · Multi-objective

1 Introduction

Due to the complexity of the actual production process, uncertain factors such as equip-
ment downtime, urgent orders, repairing due to quality problems, time adjustment and
other factors are difficult to avoid. Job shop scheduling is often shown as complex
dynamic scheduling, which needs to adjust the job plan at any time according to the
changes of production conditions. For the dynamic scheduling problem, the traditional
methods are simplifying the problem, ignoring the disturbance and uncertainty, and
transforming the complex problem into a static scheduling problem. These methods
need to be redesigned according to the current new state, and models are needed to
readjusted according to the changes in the production environment. Since the distur-
bance of the system state is not considered in traditional methods, the actual production
needs cannot be met. In addition, for large-scale production workshops, the order tasks
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are complex and a great number of resources are involved, which will geometrically
increase the difficulty of scheduling problems. For these large-scale and more complex
scheduling problems, traditional methods are not easy to be applied. Therefore, it is of
great significance to study the dynamic scheduling problem for actual production.

Scheduling rule is a priority allocation rule, which has the characteristics of low
time complexity and high robustness, and is applicable to solve dynamic scheduling
problems. In recent years, scheduling rules are often used to solve job shop scheduling
problems. Durasevic et al. [1] studied the applicability of different scheduling rules,
and found out the scheduling standards suitable for each scheduling rule by testing nine
standards and four job types. Kuck et al. [2] proposed an optimization method based on
adaptive simulation to select appropriate scheduling rules for production control in the
case of equipment failure in complex manufacturing systems. Zhang et al. [3] proposed
a semantic-based scheduling rule selection system, which associated scheduling rules
with optimization objectives through semantic similarity and semantic expressions, and
realized the generation of scheduling rule combinations for a given production target.
Rolf et al. [4] presented a method of scheduling rule allocation in solving the hybrid flow
shop problem with sequence-related setup times. Lee et al. [5] proposed a sequential
searchmethod to set appropriate weight sets for scheduling rules, and used decision trees
and hierarchical clustering to improve search efficiency. Braune et al. [6] proposed a tree
based scheduling priority rule generation method, which realized the decision-making
of job allocation and machine sequencing through single tree and multiple.

Reinforcement learning algorithm is a kind of method that does not rely on samples.
Compared with traditional intelligent algorithm, it has higher efficiency and generaliza-
tion ability. Q-learning (QL) is one of the main methods of reinforcement learning. It is a
model-free learning method, which can avoid the huge amount of computation of large-
scale scheduling, and is applicable to dynamic scheduling problems. At present, there are
more and more researches on reinforcement learning for scheduling problems. Bouazza
et al. [7] selected reasonable equipment and process routes for the dynamic schedul-
ing by improving the state-action value table of the reinforcement learning algorithm.
Shahrabi et al. [8] usedQL algorithm to find the appropriate parameters for problemwith
equipment failure and dynamic arrival of workpieces. Shiue et al. [9] studied the prob-
lem of real-time scheduling (TRS) and proposed a real-time scheduling system using a
multiple scheduling rules (MDR) mechanism to ensure that the knowledge base (KB)
can respond to changes in the workshop environment in real time. Wang [10] proposed
an adaptive scheduling strategy, which avoided the blind search problem of the tradi-
tional method through dynamic greedy search, and realized the weighted iteration of Q
function by defining state error, which improved the speed and accuracy of the learning
algorithm. Qu et al. [11] proposed amulti-agent method for the scheduling of production
system coveringmultiple types of products, equipment and labor, which could adaptively
update production plans in real time. Chen et al. [12] proposed a method for flexible job
shop scheduling, which took genetic algorithm as the key and intelligently adjusted its
parameters based on reinforcement learning. Kardos et al. [13] proposed a new method
to select machines according to real-time information, so as to reduce the delay time of
the workpiece in production.
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The current research on dynamic scheduling problems is mostly based on specific
workshop scenarios, and the scheduling scheme is only suitable for special environments,
which is not universal. By analyzing the above research, this paper proposes a multi-
objective dynamic schedulingmethod based onQL. ThroughQL technology, the optimal
scheduling strategy under dynamic disturbance is obtained, and the real-time matching
between the scheduling strategy and the production environment is realized.

2 Description of Dynamic Scheduling Problem

Job shop dynamic scheduling is a complex optimization problem, which can be
described as: n workpieces Q = {Q1,Q2,...,Qn} are processed on m equipment
M = {M1,M2,...,Mn}. Each workpiece Qi has its corresponding process route and
process, and each process corresponds to an optional equipment set. At the same time, it
is necessary to consider the disturbance factors in actual production, such as equipment
failure, urgent orders, etc. The goal of scheduling is to select the appropriate process-
ing equipment for the workpiece under various constraints and dynamic disturbances,
to determine the processing sequence of the workpiece and its working time, and to
continuously improve the scheduling index through optimization to meet the expected
index requirements.

For the universality of the problem, the dynamic scheduling problem in this paper is
based on the several conditions:

• The workpieces arrive dynamically, and the arrival times of the workpieces are ran-
dom, regardless of the delivery time of the material. The processing time of the
operation includes the preparation time.

• Each process of the workpiece corresponds to an optional equipment set, and only
one of the equipment can be selected to complete the process.

• The process cannot be stopped halfway after it starts.
• Each equipment can only be used for the processing of one workpiece at the same
time, and other workpieces are not allowed to preempt after the processing starts.

• Each workpiece has a definite process route, and the processing is carried out in the
order specified in the process route. The next process can only be carried out after its
previous process.

• The processing time of an operation has nothing to do with the process route.

To define the dynamic scheduling problem, the definitions of relevant parameters
are shown in Table 1:

For the dynamic scheduling problem, the constraints can be described as follows:

TQsij + Xijk × TQijk ≤ TQeij (1)

TQeij ≤ TQsi(j+1) (2)

TQeiLi ≤ Cmax (3)
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Table 1. Parameter definition of dynamic scheduling problem

Symbol Represention

Qi Workpiece i, i = 1,2,…n;

Qij The jth process of workpiece i, j = 1,2,…Li

Mk The kth equipment, k = 1,…,m

Kij Optional equipment set of Qij

Hij Number of equipment in the optional equipment set of Qij

TQijk Time of the jth process of Pi on equipment k

TQsij The start time of Qij

TQeij The end time of Qij

Tei Delivery time requirements of workpiece i

Ci Actual completion time of workpiece i

Gi Arrival time of workpiece i

Cmax Maximum makespan

Ta Total operation amount of all workpieces

Xijk 1, Qij processing on equipment k
0, Qij is not processed on device k

Yijkhr 1, Qij is processed before Ohr
0, Qij is not processed before Ohr

inf Positive infinity

TQsij + TQijk ≤ TQshr + inf ·(1 − Yijkhr) (4)

TQeij ≤ TQsi(j+1) + inf ·(1 − Yikhr(j+1)) (5)

Hij∑

k=1

Xijk = 1 (6)

n∑

i=1

Li∑

k=1

Yijkhr = Xhrk (7)

n∑

h=1

Lh∑

r=1

Yijkhr = Xijk (8)

In the above constraints, Eqs. 1 and 2 represent the production route constraints of
the workpiece; Eq. 3 represents the constraint of the completion time of the process;
Eqs. 4 and 5 indicate that a piece of equipment can only be used for one process at the
same time; Eq. 6 represents the exclusive constraint of a process; Eqs. 7 and 8 represent
the usability constraints of the equipment.
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The goal of defining dynamic scheduling is to facilitate the evaluation of the effect of
scheduling. Common scheduling performance evaluation includes production efficiency,
such as maximum makespan; Stability of production process, such as deviation index;
Economic indicators, such as production cost, total processing energy consumption and
so on. This paper uses the synthesis of multiple indicators as the evaluation indicators.

f1 = min(max(Ci)) (9)

f2 = min(
1

n

n∑

i=1

(Ci − Gi)) (10)

f3 = min(
n

max
i=1

(max(Ci − Tei))) (11)

Equation 9 represents the maximum makespan requirement, Eq. 10 represents the
index of average flow time, and Eq. 11 represents the index of delayed delivery time. We
construct the final scheduling performance index by synthesizing the above indicators,
as shown in formula 12, and f is the objective function of comprehensive optimization.

f = minF(f1, f2, f3) (12)

3 Dynamic Disturbance and Scheduling Rules

3.1 Analysis of Dynamic Disturbance Factors

The dynamic disturbance factors in actual production can be divided into indirect dis-
turbance and direct disturbance according to their performance characteristics. Indirect
disturbances, such as processing time deviation, poor material turnover, and equipment
efficiency decline, etc., will affect the execution of scheduling only when these factors
accumulate to a certain extent. Direct disturbance will significantly interfere with the
scheduling and cause the adjustment of the plan. Direct disturbance can be divided into
two types. One is related to resources, such as equipment failure, operation interruption,
personnel absence, material shortage or delay, etc. The other is related to the workpiece,
such as emergency order insertion, random arrival of workpiece, task cancellation, deliv-
ery date adjustment, working hours change, workpiece repair, etc. Common dynamic
disturbance factors are shown in Table 2.

This papermainly studies the direct disturbance, focusing on four typical disturbance
factors: the dynamic arrival of the workpiece, urgent order, equipment maintenance and
workpiece repair. In the actual production process, the workpiece arrives randomly. In
this paper, the arrival time of the workpiece is set so that they are uniformly distributed.
For urgent order, it can be set by proportion R1 and advance its delivery date. The
equipment is not available if it is under the maintenance period, and the disturbance
can be set by the maintenance time proportion R2. For the quality problems in actual
production, it is achieved by setting a certain number of workpieces with a proportion
of F for rework. Considering the difference of disturbance degree in actual production,
this paper reflects it through different disturbance intensity.
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Table 2. Classification of dynamic disturbance factors

General category Subclass Disturbance factor Impact on production

Direct disturbance Workpiece related Random arrival of
workpiece

Plan deviation

Order change Production adjustment

Delivery date
adjustment

Change the number of
batch tasks

Work hours change Plan ahead or behind
schedule

Workpiece rework Increase in production
tasks

Urgent order insertion Subsequent task
rescheduling

Process change Workpiece process route
change

Resource related Equipment failure Reduction in the number
of equipment

Operating disturbance Postponement of related
tasks

Personnel absenteeism Increased manpower load

Material shortage Delay of material waiting
task

Indirect disturbance Resource related Poor material turnover Continuous accumulation
will disrupt the original
production progress

Equipment performance
degradation

Deviation accumulation
will affect the production
schedule

Time dependent Processing time
deviation

The accumulation of time
error will affect the
implementation of the
plan

3.2 Scheduling Rules

The scheduling rules are to calculate the priority of the workpiece according to the
selection of processing time, process quantity, delivery period, etc., and select workpiece
to be processed for idle equipment.

For dynamic scheduling problems, the evaluation method based on scheduling rules
can be used. This method is relatively easy to implement in the actual production envi-
ronment. It belongs to an efficient closed-loop control method, so it can be used for
real-time job shop scheduling. In the process of scheduling, we need to consider the
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selection of equipment and the allocation of jobs. This paper analyzes the scheduling
rules for these two types of problems, studies the performance differences of different
scheduling rules under dynamic disturbance, and finally selects the rules with excellent
performance. Common scheduling rules are shown in Table 3.

Table 3. Typical scheduling rules

Rule Description

FIFO Give priority to the workpiece that arrives first

SPT The workpiece with the Minimum processing time is selected

LPT The workpiece with the Maximum processing time is selected

EDD The workpiece with the earliest delivery date is selected

MST The workpiece with the least delay time is selected

MOR Give priority to the workpiece with the most remaining operations

LOR Give priority to the workpiece with the least remaining process

LRM Give priority to the workpiece with the most remaining processing time

SRM The workpiece with the least remaining processing time is selected

4 Dynamic Scheduling Problem Solving Based on Reinforcement
Learning

4.1 State Space Definition

The job shop scheduling process is transformed through the state space to express the
system environment of reinforcement learning. The definition of state needs to reflect
the features and process of the scheduling environment, and it needs to be able to express
different scenarios. In this paper, according to the state of the equipment and the work-
piece. The state space is defined by means of feature vectors. The state space includes 5
features, which are shown as follows.

sk,1 = nk
/
n (13)

sk,2 = Ta
k

/
Ta (14)

sk,3 =
Li∑

j=1

TQijk

/
∑∑

TQij (15)

sk,4 =
Li∑

h=j+1

TQih

/
Li∑

j=1

TQij (16)
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sk,5 = ndk

/
n (17)

The above equations describe the current state of the system, where nk represents
the number of workpieces processed by the equipment k at the current moment; Ta

k
indicates the number of processing operations of equipment k; ndk indicates the number
of delayed workpieces processed by equipment k. Equation 13 reflects the distribution
of processed workpieces on each equipment; Eq. 14 reflects the distribution of processes
on the equipment; Eq. 15 reflects the proportion of processing time of the equipment;
Eq. 16 reflects the proportion of remaining time of work in process; Eq. 17 reflects the
distribution state of delayed workpieces.

The state values constitute a vector [s11, s12,…, s15, s21, s22,…, s25, s31,…, sm5].
The state vector can be transformed into a state value located in a certain numerical
interval (such as [0,100]) by using neural network, and the state value can be used as a
criterion to distinguish the state of the scheduling environment.

4.2 Q-value Table

The action space of QL can be expressed as the scheduling behavior in the current state.
This paper selects seven typical scheduling rules as the action space of QL. According
to the aforementioned priority rules, the Q(s, a) table can be established by combining
the state values. In this paper, 11 states are used to construct the Q(s, a) table, as shown
in Table 4.

Table 4. Q(s, a) table

State Range Scheduling rule

FIFO SPT LPT EDD MST LRM SRM

0 Tv = 0 0 0 0 0 0 0 0

1 0 ≤ Tv ≤ 10 Q(1,1) Q(1,2) Q(1,3) Q(1,4) Q(1,5) Q(1,6) Q(1,7)

2 10 < Tv ≤ 20 Q(2,1) Q(2,2) Q(2,3) Q(2,4) Q(2,5) Q(2,6) Q(2,7)

3 20 < Tv ≤ 30 Q(3,1) Q(3,2) Q(3,3) Q(3,4) Q(3,5) Q(3,6) Q(3,7)

4 30 < Tv ≤ 40 Q(4,1) Q(4,2) Q(4,3) Q(4,4) Q(4,5) Q(4,6) Q(4,7)

5 40 < Tv ≤ 50 Q(5,1) Q(5,2) Q(5,3) Q(5,4) Q(5,5) Q(5,6) Q(5,7)

6 50 < Tv ≤ 60 Q(6,1) Q(6,2) Q(6,3) Q(6,4) Q(6,5) Q(6,6) Q(6,7)

7 60 < Tv ≤ 70 Q(7,1) Q(7,2) Q(7,3) Q(7,4) Q(7,5) Q(7,6) Q(7,7)

8 70 < Tv ≤ 80 Q(8,1) Q(8,2) Q(8,3) Q(8,4) Q(8,5) Q(8,6) Q(8,7)

9 80 < Tv ≤ 90 Q(9,1) Q(9,2) Q(9,3) Q(9,4) Q(9,5) Q(9,6) Q(9,7)

10 90 < Tv ≤ 100 Q(10,1) Q(10,2) Q(10,3) Q(10,4) Q(10,5) Q(10,6) Q(10,7)

For state 0, that is, the scheduling action has not yet started. This state is empty and
is also the initial state, so its value is 0.
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4.3 Design of Reward Function

For the reward function R, its construction needs to consider the performance indicators
of the scheduling system, and the function needs to reflect the impact of action selec-
tion on the scheduling results. Therefore, the design of R needs to reflect not only the
immediate reward of the action, but also the cumulative impact on the production cycle,
and it should also be suitable for scheduling problems of all sizes. For the production
efficiency indicators related to time, because these indicators are related to the utilization
of equipment, it can be considered to take the working state of equipment as a reward
and punishment function, and the equipment state can be defined as follows.

δi(t) =
{−1, Equipment i is idle at time t
0, Equipment i is in working state at time t

The reward and punishment function are as follows.

rk = 1

m

m∑

i=1

∫ tk

τ=tk−1

δi(τ ) (18)

In Eq. 18,m is the number of devices, and rk represents the rewardwhen it transitions
from sk-1 to sk . The absolute value of rk is the same as the average time that each device
is idle when the two states are transferred. It can be seen that the production cycle is
negatively correlated with the cumulative return.

Ra =
K∑

k=1

rk = 1

m

K∑

k=1

m∑

i=1

∫ tk

τ=tk−1

δi(τ ) = 1

m

m∑

i=1

∫ cmax

τ=0
δi(τ )

= − 1

m

m∑

k=1

(Cmax −
n∑

i=1

Li∑

j=1

TQijk) = 1

m

m∑

k=1

n∑

i=1

Li∑

j=1

TQijk − Cmax

(19)

In Eq. 19, Ra represents the cumulative return. It can be seen that the smaller the
Cmax , the greater the cumulative return Ra.

5 Case Study

To verify the effectiveness of the method, we carry out simulation analysis through
MATLAB.TheQLalgorithmparameters settings:α =0.05,β =0.9, ε =0.15. The initial
state-action reward value is zero. For the experimental data, the number of processes of
a single workpiece is between 1 and 4, the total number of equipment is 10, the process
processing time is between 10 and 25, and the workpiece cache is 100. The processing
time, the time interval of arrival, and the required completion time data all meet the
normal distribution. The dynamic disturbance parameter settings are shown in Table 5.
The training data of QL is randomly generated by the system, with a total of 100000
pieces of workpiece data (the unit of time-related data is hour). In the test phase, seven
sets of workpiece data such as 300, 600, 1000, 1500, 2000, 2500 and 3000 are used
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Table 5. Dynamic disturbance parameter setting

Parameter Setting

Time interval from workpiece
to random arrival

Mean 15

Date of delivery Tight period:
working hours of workpiece × 3

Medium period:
work hours of workpiece × 5

Loose period:
working hours of workpiece × 8

Disturbance intensity S(%) Strength 1: S(R1, R2, F) = [2]

Strength 2: S(R1, R2, F) = [4]

Strength 3: S(R1, R2, F) = [6]

Table 6. Performance comparison of different rules and QL

Rule number of workpieces FIFO SPT LPT EDD MST LRM SRM QL

300 4681 4827 4560 4644 4263 4580 5120 4525

600 8835 9030 8875 8864 8531 8826 9275 8690

1000 14680 14501 14732 14680 14237 14653 15023 14271

1500 23684 22561 22490 23661 21649 23598 24061 21701

2000 31553 29553 30642 31508 29009 30801 31609 28902

2500 36952 36025 36201 36891 35803 36538 37568 35355

3000 43725 42845 42339 43356 42647 43228 44187 42208

respectively, and a single scheduling rule and the QL lgorithm in this paper are used for
scheduling.

Table 6 shows the makespan data obtained by different scheduling rules and the QL
algorithm in this paper. It can be seen that the advantage of QL is not obvious when the
number of workpieces is small, but with the increase of the number of workpieces, the
performance advantage of QL scheduling becomes obvious. Through QL, the frequency
of the system selects different rules in different delivery periods is shown in Table 7.

It can be seen that there are differences in the selection frequency of scheduling
rules. The rule of MST, EDD and LPT are used more frequently under tight period, and
MST, LPT, EDD and SPT are used more frequently under medium period, and MST
and SPT are used more frequently under loose period. MST has the highest frequency
of use under the three periods. These rules with higher frequency contribute the most to
the solution of QL algorithm, while other rules are used less frequently and contribute
less to the solution of the system.
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Table 7. Selection frequency of dispatching rules

Rule
period

FIFO SPT LPT EDD MST LRM SRM

Tight 2.7% 17.7% 20.9% 23.5% 29.5% 2.8% 2.9%

Medium 3.0% 18.2% 21.3% 19.6% 32.3% 3.0% 2.6%

Loose 2.4% 26.4% 13.1% 11.4% 38.1% 4.7% 3.9%

Table 8 analyzes the comparison of the time limit and completion of QL and MST
under the three periods. It can be seen that QL has better effect in the actual time limit,
the tardiness and the advance.

Table 8. Comparison of time limit and completion under three periods

Workpiece Period Method Planned
duration

Actual construction
period

Delayed completion Early completion

Mean
value

Mean
value

Mean
square
deviation

Mean
value

Mean
square
deviation

Mean
value

Mean
square
deviation

1000 Tight QL 213 244.5 625.6 832.9 854.7 123.5 54.9

MST 213 290.3 854.2 791.8 1542.7 100 62.2

Medium QL 391 196 431.3 550.8 697.3 206.3 122.1

MST 391 297.8 906.7 1152.4 1764.6 162.4 104.6

Loose QL 568 170 314.4 514.3 502 285.4 189

MST 568 307.7 910.9 1958.9 1908.2 351.6 136.4

2000 Tight QL 183 267.5 946.2 855.8 1188.6 106.9 51.9

MST 183 336.9 1100 711.2 1481.1 93.8 54

Medium QL 336 202.8 571.2 656.8 1020.3 180.8 95.3

MST 336 334 1114.2 908.5 1842.3 138.8 96.2

Loose QL 488 174.4 464.9 712.4 865.9 251.2 156.4

MST 488 319.4 1068.3 1525.1 2280.7 279.5 128.4

Figure 1 shows the tardiness of QL and MST under different workpiece cache,
including tight period andmedium period. It is obvious that the tardiness of twomethods
increase with the expansion of the cache capacity, and the tardiness of tight period is
worse than that of medium period. In addition, the QL curve rises gently than MST in
both periods. In the medium period, the MST curve quickly crosses the QL curve when
the workpiece cache capacity reaches 70, and it crosses the QL curve when the capacity
is only 30 in the tight period.
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Fig. 1. Comparison of tardiness rate under different cache capacity

Figures 2, 3 and 4 shows the comparison betweenQL andMST in terms of the change
of overdue rate with the number of workpieces under different disturbance intensity
and different periods. It can be seen that under the three periods, the overdue rate of
both methods increases with the increase of disturbance intensity. When the number of
workpieces increases from 200 to 1000, the overdue rate of each period and disturbance
intensity increases rapidly. The higher the disturbance intensity, the greater the slope
of the curve. After the number of workpieces exceeds 1000, the overdue rate decreases
slightly, but remains at a high level.During this period, the overdue rate ofQL is generally
lower than that of MST. After the number of workpieces exceeds 2000, the overdue rate
of QL and MST gradually decreases and stabilizes, and it decreases faster using QL
under tight period and high disturbance intensity. By comparison, it is obvious that QL
has better effect under tight period and high disturbance intensity.

Fig. 2. Comparison of over time of different disturbance intensities under tight period
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Fig. 3. Comparison of over time conditions of different disturbance intensities under medium
period

Fig. 4. Comparison of over time conditions of different disturbance intensities under loose period

Figure 5 is a comparative analysis of the maximum makespan of QL, GA and PSO
under different workpiece cache capacities in the medium period, in which the number
of the workpieces is 1000, the number of genetic algorithm population is 20, and the
crossover and mutation parameters are 0.4 and 0.2, the acceleration index is 1.5. The
particle size of PSO is 40, the acceleration factor is 2, the inertia weight is 0.5, the
maximum particle speed is 0.7, and the number of iterations is 100. From Fig. 5 we
can see that when the workpiece is 1000, GA and PSO have advantages over QL in
terms of completion time optimization. However, from Fig. 6, the scheduling running
time of GA and PSO is much higher than that of QL. When the workpiece cache is
low, GA method is about 12 times the running time of QL. When the cache capacity is
80–150, the running time decreases slightly, and when the cache capacity is more than
150, it enters an upward trend. The performance of PSO is worse, and the running time
increases sharply after the cache capacity exceeds 40. The running time of QL is always
maintained at 2 s, which is only related to the number of workpieces and has nothing to
do with the cache. It can be seen that QL is slightly weaker than GA and PSO in terms
of completion time, but QL has a better time efficiency advantage in the case of large
number of workpiece production and large workpiece cache.
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Fig. 5. Comparison of makespan of three algorithms

Fig. 6. Comparison of running time of three algorithms

6 Conclusion

This paper studies the dynamic scheduling problem based on reinforcement learning
technology and scheduling rules. Typical production disturbances are classified and
described through disturbance parameters, the dynamic scheduling problem and its opti-
mization objectives can be consequently represented. On this basis, the state space, Q-
value table and reward function of reinforcement learning scheduling are designed. The
algorithm is carried out with simulation analysis by using the example data. Through
the case study, the method proposed in this paper shows far superior to the traditional
intelligent algorithm in time efficiency, and also has a good dynamic scheduling effect.
This paper provides a new idea for large-scale job shop dynamic scheduling. For the
selection of equipment, this paper adopts the method of man-hour priority, which still
lacks the overall analysis of man-hour and load under the complete process route, and
further in-depth research can be continued from this direction in the future.
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