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Abstract. The underground coal mine is an extremely hard environ-
ment for workers due to geological hazard, poisonous gas, and harm-
ful dusts. In such environment, coal mining robots are very helpful for
coal mines to reduce the number of onsite workers, enhance safety, and
improve efficiency. However, the autonomous movement of coal mine
robots in the underground tunnel is still a big challenge. This paper gives
a detailed evaluation of the commonly used motion planning algorithms
for underground mobile robots. Firstly, the motion planning framework
for mine mobile robots is proposed. It considers the global path plan-
ning, local path planning ,and the recovery behavior. Then, a motion
testing framework in a simulated coal mine environment is constructed
based on the ROS platform to test the commonly used motion planning
algorithms, such as the the Dijistra, A*, rrt* and Hybrid A* algorithms.
The test results shows that RRT* of DWA algorithm runs faster than
other algorithm but Hybrid A* of DWA algorithm gets the shortest and
smoothest path.

Keywords: Motion planning · Coal mine robot · Evaluation · ROS

1 Introduction

Coal is the most important energy in China, which accounts for 56% of the total
primary energy consumption in 2021. Coal consumption is expected to grow at
a compound annual growth rate of 2.3 % between 2021 and 2025 to reach 5.6
billion in 2025 [1]. However, the labor shortages due to aging population become
the biggest challenge in the mining industry. To solve the problem, intelligent
robots can be used in a variety of mining scenarios, such as tunnelling, excavating
and inspection [2]. Consequently, the use of robotic devices powered by artificial
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intelligence will transformed the coal industry, where safety and efficiency are
the main issues.

The basic function for a coal mining robot is autonomously and agilely in the
underground tunnel [3]. The autonomous movement of robots is a comprehensive
engineering problem including perception, localization, planning, and control,
shown as Fig. 1. The coal mine robot gets the environmental information of
the mining space through cameras or lidars, and position and orientation of
robot are calculated by positioning fusion algorithms such as Kalman filtering.
By calculating a passable path used the motion planning algorithm, the robot
is able to avoids obstacles such as hydraulic struts on the coal mine face, and
sends motion commands to the motion controller for execution [4].

Coal mine is make up of curvy, irregular tunnel, meanwhile obstacles are var-
ious and complicate. Due to the special underground tunnel environment, min-
ing robots need to travel in complex and rugged areas, making motion planning
become a difficult problem. Many mature algorithms commonly used by ground
robots may be not suitable for coal mine environment, and never be experimen-
tal tested before. This paper mainly focuses on the research on motion planning
of the coal mine robot.

The paper is organized as follows. Related work was given in Sect. 2. The
motion planning framework illustrated in Sect. 3. Then, in Sect. 4, it was shown
how to test the real robot in simulated coal mine environment and evaluated the
operation effect of various motion planning algorithms. Finally, the experiment
results was analyzed in Sect. 5.

Fig. 1. The framework of autonomous movement
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2 Related Work

Over the past few decades, many path planning technologies have been proposed,
such as search-based method,sampling-based methods, potential field method
and intelligent algorithm method.

Search-based method is a classic global path planning algorithm in the two-
dimensional grid map. Representative algorithm include Dijkstra algorithm [5],
A* algorithm [6], Hybrid A* [7] algorithm, D* algorithm [8], etc. Among them,
A* is an improved version of Dijkstra, aimed at solving Dijkstra’s inefficiency.
Hybrid A* algorithm is combination of A* algorithm and vehicle kinematics
to deal with kinematic constraint. D* is Dynamic A Star to apply at dynamic
environment. a two level A-path planning calculation method to overcome com-
putation complexity has been proposed [9].

Sampling-based methods is path planning algorithm based on graph struc-
ture. Representative algorithm include Probabilistic Roadmap Method(PRM),
Rapidly-Exploring Random Trees(RRT), and their improved algorithm RRT*
[10]. These algorithms find not relatively optimized paths but feasible paths.

The artificial potential field method is an collision avoidance approach, which
the obstacle gives the robot a repulsive force and the target points give it attrac-
tive force. However, the artificial potential field method suffers from the local
minimum and goal non-reachable with obstacles nearby problem. A improved
artificial potential field method has been proposed to make mining robot go out
of local minimum point autonomously [11]. Y. Lei proposed a fuzzy logic-based
adaptive DWA, which considering obstacle avoidance is designing by taking Ack-
ermann steering constraint into account [12].

But those algorithms commonly may be not suitable for coal mine environ-
ment,and need to be tested and evaluated practically.

3 Motion Planning Framework

The motion planning problem can be described as looking for the optimal motion
trajectory of the robot from the initial state to the target state. Generally, it
also needs to meet some motion constraints [13]. For example, they need to
avoid the fixed mining machines and the moving miners in the narrow tunnel.
The constrained planning problems also maintain constraints corresponding to
motion with a bounded turning angle. This section will discuss global planners,
local planners, and recovery behaviors in sequence.

Many mature algorithms have been applied to a variety of robots [14]. Our
algorithms adopt the framework of global planner, local planner, and recovery
behaviors, shown as Fig. 2:

– Global planner: Through global planner, the robot has gained a map to
plan out a feasible path roughly, known as the global route.

– Local planner: Within the scope of the local sensor detection, local planner
detects dynamic obstacles and actual traffic area around the robot’s motion,
as well as follows control rules and global path to calculate a local path.
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– Recovery behaviors: Vehicle controller algorithm transforms the planning
path into the control instruction. If the robot encounters an impassable path
or gets lost, the recovery system is activated to reset the robot situation.

Fig. 2. The framework of motion planning

3.1 Global Planner

The global planner gives information about obstacles and environments con-
tained in the map, the robot’s position, and targets in the world.It creates a
global path to reach the target position. The generated paths do not consider
the dynamics and kinematics of the vehicle, resulting in a impassable path for
the robot. Commonly used algorithms are Dijkstra, A*, rrt*, Hybrid A*.

– Dijkstra: Dijkstra is a shortest path algorithm for searching one vertex to
other vertexes, which solves the shortest path problem in directed graph. The
main characteristic of Dijkstra algorithm is that it starts from the starting
point to traverse to the adjacent nodes of the nearest and unvisited vertex at
the beginning point each time until it extends to the end point. The Dijkstra
algorithm is breadth-first search, which is a kind of divergent search, so the
space complexity and time complexity of Dijkstra algorithm are relatively
high.

– A*: A* algorithm is classical heuristic search algorithm, which is the improve-
ment algorithm from classical search algorithm Dijkstra. The most significant
characteristic of the algorithm is that the heuristic function is given in the
process of search to reduce the search nodes, thus improving the efficiency
of path search. Beginning from the start point, A* algorithm targets at the
terminal point with iterating over the adjacent points around the start point
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and the traversed starting point, and calculates the total movement cost from
the starting point to each node.
In each iteration of the main loop, A * needs to decide which paths to extend.
It based on an estimate of the cost of the path and extending the path to the
goal. Specifically, A * selects the minimal path. A * stop the operation when
a path to expand from the start to the end, or when there are no paths to
expand. If the heuristic function is properly, it absolutely does not overstate
the actual cost of reaching the goal, then A * ensures the least costly path
back to the goal from the beginning.

– RRT*: RRT* algorithm is a sampling-based path planning algorithm. An
RRT* generates sampling points randomly near the start point and connects
the start point with the sampling point to generate a tree. After drawing the
random tree, check that the path of the branch is passable. If the connection
is feasible (completely through free space and with constraints), this results
in the addition of the new state to the tree. Repeat the process until you have
a path that leads from the beginning to the end.

– Hybrid A*: The Hybrid A* algorithm considers the limitation of vehicle
kinematic model in node expansion, and extends the 2-dimensional search to
3-dimensional space [x, y, θ ], where θ is the vehicle orientation, which can
plan the continuous pose change of unmanned parking spaces in discrete grid.
Based on Hybrid A* algorithm, node expansion mode, collision detection,
design of cost function and other aspects are improved to make the improved
algorithm can faster search for the initial path.

3.2 Local Planner

The global path planner generates the general path of the vehicle motion without
fast obstacle avoidance. The effect is not ideal when the vehicle directly executes
the global path. On the one hand, the robustness of the global path planner is poor,
reflected in the weak ability to avoid dynamic obstacles, and leads to planning on
inaccurate maps. On the other hand, the search time of the global planner increases
greatly with the search space. When searching in a high-dimensional search space,
considering the increase in the amount of computation, the increase in computa-
tion time brought by re-planning is unbearable [15].

Local planners are responsible for getting trajectory to move the robot tar-
get position safely. The local planner tries to follow the global planner’s plan
while taking into account the kinematics and dynamics of the robot. To generate
safe speed instructions, the local planner uses the Dynamic Window Approach
(DWA) or Trajectory Rollout to simulate and select possible path according to
the cost function.

– Trajectory Rollout: Trajectory Rollout discretely sample in the robot’s
control space, and generate a series of tracks. The set of trajectories is gen-
erated by changing the turning angle while maintaining a certain speed.
The positions of trajectories are determined by calculating the turning angle
every time step.After that, the Trajectory Rollout will identify which path
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collision-free. In this case, the optimization algorithm elects the shortest path
between the ideal future position and the final position of the trajectory.

– DWA: The principle of the DWA algorithm is to search in the state space,
constrain the search space to a suitable range, generate multiple prediction
paths, select the optimal path according to the path evaluation function, and
send the state control command of the optimal path directly to the chassis
implement.
Just like Trajectory Rollout, DWA searchs for commands controlling the robot
in the space of velocities. Firstly, the search space is reduced in circular tra-
jectories, admissible velocities and dynamic window. Secondly, the trajectory
is chosen which maximize objective function from the remaining trajectory.
The objective function as:

G(v, ω) = α · heading(v, ω) + β · dist(v, ω) + γ · vel(v, ω) (1)

heading represents the deviation towards target, and is the largest when the
robot moves towards the target. dist is the distance to the nearest obstacle on
the trajectory. The shorter the distance to the obstacle, the greater the desire
of the robot to move around the obstacle. vel is the forward speed of the
robot and supports high speed movement. The larger the value, the faster
the movement speed. α,β,γ denotes adjustable coefficient for heading, dist
and vel, setting as defaults. v and ω are the vehicle speed and orientation.

3.3 Recovery Behavior

The motion planning system can works well in most cases. However, when there
are some dramatically changes in the mine, the robot need to reset. To make
the system robust, the recovery system was built into the mine motion planning
framework.

– Rotation: When the robot gets trapped,the robot rotates to scan for free
space. If this fail,a more aggressive recovery behavior will be attempted.

– Back to the start point: The robot returns along the path that it has
traveled, meanwhile, it robot reroutes based on real-time environment. When
if find another path, it will execute it. If this fail,a more aggressive recovery
behavior will be attempted.

– Rebuild the map: The robot will abandon the previous map and re-plan
the path with the real-time surrounding environment map.

4 Performance of Simulated Environment Experiment

In this section, we present the setup, evaluation environment and detailed exper-
iment results.
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4.1 Platform

Our experimental platform is built upon an Autolabor differential vehicle with
an embedded computer(NVIDIA Jetson AGX Xavier), 2d Lidia(Slamtec RPLI-
DAR A2), high precision MEMS Inertial Sensor(ADIS16495), and 360 pulse per
revolution wheel odometer attached in wheels.

The platform is driven by some subsystems: hardware drivers, controllers,
perception, planning, higher-level control. We use ros to communicate between
subsystems, which is a common communication framework for robots. Experi-
ments in this paper were performed with an Autolabor Pro 1 mobile platform,
The maximum speed of the Pro1 base is 0.8 m/s (Figs. 3 and 4).

Fig. 3. The overview of autonomous robot Fig. 4. The static obstacle avoidance test

4.2 Test Method of Coal Mine Simulation Conditions

Limited by the requirements of coal mine safety regulations, it is inconvenient
to test on the actual site. However, to meet the actual production needs of
coal mines, the production conditions of coal mines are imitated and 3 test
experiments are set up to simulate the actual scene of coal mine roadways.

– Roadway following test: The operation of coal mine robot needs to reach
the position accurately, so we carry out the inspection test of the task point.
The task is to set the different target point in the corridor. The whole journey
is 50 m in total. Every time the car reaches a target point, it will automatically
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go to the path planned for the next target point. When it reaches a target
point, it will be recorded as a successful navigation plan. The path released
by the car and relevant data of operation are recorded.

– Static obstacle avoidance test: In the coal mine production environment,
the single hydraulic prop is widely used in underground mining support equip-
ment. The diameter of the commonly used single hydraulic prop cylinder is
10cm. As simulating a single hydraulic prop cylinder, paper cylinders of the
same size are set in the middle to simulate the mining environment obstacles.
The operation ability of various algorithms is tested in the narrow passages
between the obstacles of the props.

– Dynamic obstacle avoidance test: In the coal mine environment, workers
often move around when they at work, and the moving person is a dynamic
obstacle that the robot must avoid. This paper takes the moving person as
the moving obstacle and tests the obstacle avoidance capability.

4.3 Evaluation Metrics

For performance evaluation, we use the following metrics, shown as Table 1.
Table 1. Evaluation metrics

Evaluation metrics Description

Success rate The proportion of no intervention or collision in trial

Path length Average length of the walking route when the task is successfully completed

Runtime The whole time from sending the target point command to running to the

final point

Global path planning

time

The time between the acceptance of the target point and

the release of the first planned route by the global planner

Number of Obstacle

collision

Number of collisions during running tests including dynamic and static

obstacles

Minimum/maximum

allowable width

The minimum passing distance without collision/

no collision will occur through space that exceed this width

Temporal coefficient The ratio of the actual time to the minimum travel time

representing the time of planner execution

Spatial coefficient Spatial coefficient is the ratio of the actual distance traveled to the planned

distance

representing the efficiency of local planner execution

Smooth coefficient The ratio of the actual Angle turned to the accumulated Angle of the planned

path

representing the curvature of the path executed by the local planner

– Success rate: Success rate refers to the proportion of no intervention or
collision in trial.

– Path length: The length of the path is the key to evaluating the quality of
the route. is recorded as the average length of the walking route when the task
is successfully completed, and if it cannot be completed, the longest distance
traveled is recorded.

– Runtime: The running time is the whole time from sending the target point
command to running to the final point.

– Global path planning time: The time between the acceptance of the target
point and the release of the first planned route by the global planner.



376 D. Zhu et al.

– Number of obstacle collision: Number of collisions during running tests,
including dynamic and static obstacles.

– Minimum/maximum allowable width: The minimum allowable width
refers to the minimum passing distance without collision. The maximum
allowable width means that no collision will occur through roadways that
exceed this width.

– Temporal coefficient: Spatial coefficient is the ratio of the actual time to
the minimum travel time, representing the time of planner execution.

– Spatial coefficient: Spatial coefficient is the ratio of the actual distance
traveled to the planned distance, representing the efficiency of local planner
execution.

– Smooth coefficient: Smooth coefficient is the ratio of the actual Angle
turned to the accumulated Angle of the planned path, representing the cur-
vature of the path executed by the local planner.

4.4 Experiment Results

To evaluate the moiton planning framework on our test vehicle described in
Sect. 3, the combination algorithms are run based on the simulation mining robot
tasks in Sect. 4.2. We test our framework used the mentioned metrics in Table 1,
the running state of the test is shown as Figs. 5, 6, 7 and 8.

As shown in the Table 2, all of the global planner can gain connected path.
RRT* has the highest planning efficiency, with planning time of 230.1 ms, while
Hybrid A* is tens of times longer than RRT*, that of 5957.2 ms. In the same plan-
ning task, the performance of the four algorithms is relatively close, so the global
path searched by all used algorithms is relatively close to the optimal path in the
coal mine roadway. A* and RRT* can more suitable for global path planning.

Table 3 shows that in the static obstacle avoidance test, DWA has more
collisions than Trajectory Rollout. As the DWA algorithm is more aggressive
in plan, it can get through narrower tunnels. The minimum passable distance
of DWA is 80 cm, but DWA needs a wider safety pass width to ensure stable
and safe passage. To meet the safety requirement of mine, mining robots are
forbidden to collide and fall down the safety supports to the ground. However,
there are lots of hydraulic props in mines. So the operation of the mining robot
must ensure that it can not hit the safety support. The robust Trajectory Rollout
algorithm is more suitable for the complex down-hole environment.

Table 2. Comparison of global planning

Gobal planner Success rate Path length Spatial coefficient

A* 100% 289.9 ms 1.02

Dijkstra 100% 306.3 ms 1.03

RRT* 100% 230.1 ms 1.02

Hybrid A* 100% 5957.2 ms 1.04
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Fig. 5. Dijstra of DWA Fig. 6. A* of DWA

Fig. 7. RRT* of Trajectory Rollout Fig. 8. Hybrid A* of Trajectory Rollout

Table 3. Comparison of local planning

Gobal
planner

Success
rate

Recovery
behavior

Static
obstacle
collision

Dynamic
obstacle
Collision

Minimum
allow
width

Maximum
allow
width

Trajectory
rollout

98.3% 4 1 0 86 cm 86 cm

DWA 85.8% 2 6 0 80 cm 95 cm

Table 4. Comparison of assembly planner

Gobal planner Local planner Runtime Temporal coefficient Travel distance Spatial coefficient Smooth coefficient

Dijkstra Trajectory rollout 9.3 min 5.44 76.39 m 1.49 1.67

A* 9.1 min 5.41 69.46m 1.38 1.41

RRT* 10.7 min 6.26 74.73 m 1.46 5.32

Hybrid A* 8min 4.70 72.34 m 1.42 1.80

Dijkstra DWA 8.6 min 4.99 94.66 m 2.25 2.05

A* 7.5min 4.37 72.07 m 1.40 1.65

RRT* 6.1min 3.55 67.77 m 1.31 1.74

Hybrid A* 12.2 min 6.98 62.03m 1.18 1.63
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Table 4 is a comparison of assembly planner, runtime, travel distance, and
path smoothness. The global path generated by RRT* and Hybrid A* is the most
suitable for the local planner of DWA. The running time of RRT* of DWA is the
shortest, which is 6.1 min, indicating RRT* of DWA has the highest planning
efficiency. The running distance and smoothness indexes of Hybrid A* of DWA
are the best, indicating that DWA can best follow the global path of Hybrid
A*. The travel distance of Hybrid A* of DWA is the shortest, which is 62.03 m.
However, Hybrid A* of DWA has the longest running time to reach each task
point due to excessive constraints and long operation time. In terms of running
distance results, little difference is founded between the two assembly planners
but RRT* of DWA is considerably faster than Hybrid A* of DWA. So RRT* of
DWA is the best among the four DWA combination algorithms tested.

The most suitable global path for Trajectory Rollout is generated by A* and
Hybrid A*. A* of Trajectory Rollout has the shortest running distance (69.46 m),
and its running time is second only to that of Hybrid A* of Trajectory Rollout.
Hybrid A* of Trajectory Rollout has the shortest running time, which is 8 minus,
and the shortest running distance after A* of Trajectory Rollout. This indicates
that Trajectory Rollout is very suitable for A* and its improved algorithm.

As the shortest runtimes of the two groups, Hybrid A* of Trajectory Rollout
has a better perform than RRT* of DWA. Meanwhile, Hybrid A* of DWA’s
path is shorter than the A*-Trajectory Rollout’s path. Among the measured
algorithms, RRT* of DWA’s running time has obvious advantages compared
with other algorithms, which is suitable for the requirements of fast passage
tasks such as underground rescue. Additionally, Hybrid A* of DWA has the
shortest distance and better smoothness, but the execution time is the longest,
indicating that it is suitable for the application of narrow tunneled traffic and
other scenarios that need to strictly follow the route.

5 Conclusion

This paper set a mining robot motion testing framework for simulated conditions
of the coal mine, including roadway following test, static obstacle avoidance test,
and dynamic obstacle avoidance test. This paper using a differential wheeled
robot platform to test the effect of the assembly planner. Several indicators,
planning speed, travel distance, and trajectory smoothness have been evaluated.
This paper provides some guidelines for the application of coal mine robots.

In the study findings, it is clear that RRT* is the fastest planning global
path. Additionally, RRT* of DWA can reach the target point faster than other
algorithm combinations in the simulated mining environment. It is suitable for
fast arrival scenarios, such as rescue and transport missions. Due to considering
kinematic constraints, the planning time of Hybrid A* is much longer than that
of other algorithms, but the path by Hybrid A* is the easiest to execute. Among
various algorithm combinations, Hybrid A* of DWA algorithm has the shortest
travel distance and the smoothest path, indicating that it is suitable for slow but
strict path implementation scenes, such as narrow roadways with many obstacles.
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