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Abstract. Product process design relies upon the process knowledge support
acquired by process designers and enterprises. Process knowledge recommen-
dation has been attached more importance by enterprises in that it can quickly
provide process designers with accurate and appropriate process knowledge. In
this paper, a “scene-label-classification” knowledge recommendation scheme for
process knowledge graph is established, and a knowledge contentmatching degree
calculation method supporting process knowledge recommendation is proposed.
Design requirements are described by parameterized characteristics from vari-
ous dimensions such as material, precision requirements. Based on knowledge
coding, the attribute characteristics of process knowledge are uniformly identified
and associated with requirement scene characteristics. A requirements-knowledge
semantic vector space model is established, and a calculation method of matching
degree between design requirements and knowledge content is proposed based
on improved cosine distance. This scheme enables quickly positioning the cor-
responding process knowledge based on coding labels, and final process knowl-
edge recommendation candidate set is obtained through matching degree calcula-
tion and filtering sort, which thus enables dynamic classification and appropriate
recommendation of process knowledge.

Keywords: Knowledge recommendation · Knowledge coding · Matching
degree calculation

1 Introduction

As a bridge connecting product design and product manufacturing, the current process
design process relies upon the experience of process designers, as well as guide of exist-
ing process knowledge of the enterprise. During this process, inexperienced process
designers frequently need to spend a lot of time searching for the required knowledge,
resulting in the efficiency and quality difference of process design. In this case, due to
the capacity to quickly provide appropriate process knowledge for process designers
according to process design requirement, process knowledge recommendation technol-
ogy has been widely used in machining [1], assembly [2], sheet metal and other different
process.
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With the continuous development andwide application, knowledge recommendation
oriented to process knowledge graph has become a research focus, including process
design requirement analysis, rapid positioning of requirements and knowledge, and
knowledge matching algorithm design. According to the systematic analysis of process
design requirements, Zhou et al. [3] obtained process requirements from five aspects
such as users and design information, and converted them into corresponding process
characteristics. Guo et al. [4] obtained hidden user requirements from user require-
ment data and established association mapping for product attributes. However, most of
current process design requirements analysis is limited to the part information or user
requirement, short of comprehensive analysis of design requirements. For the rapid posi-
tioning of requirements and knowledge, it is an effective method to construct the unified
representation of knowledge attributes [5, 6]. For the matching between process knowl-
edge and design requirements, currently semantic matching calculation methods such as
vector space model-based matching calculation [7], ontology-based semantic matching
calculation [8] and deep learn-based matching calculation are commonly used. Wang
et al. [9] applied TF-IDF algorithm based on vector space model in the matching pro-
cess of manufacturing knowledge and design requirements. Renu et al. [10] used the
text matching algorithm to realize the knowledge retrieval and sharing of the text-based
assembly process scheme.

To support the fast and high matching degree process knowledge recommendation,
this paper proposes a method to map between process design requirements and process
knowledge attributes by constructing the coding label of process knowledge graph. A
requirements-knowledge semantic vector space model is established and the matching
degree between requirements and knowledge is calculated based on improved cosine
distance.

2 “Scene-Label-Classification” Process Knowledge
Recommendation Framework

Oriented to knowledge graph, this paper proposed a process knowledge recommendation
scheme-“scenario-label-classification”, which is shown in Fig. 1. Different dimensions
of process design requirements are described by parametric characteristics such as mate-
rial, size characteristic, part type, precision, etc.At the same time, unified identification of
process knowledge attributes are constructed using knowledge coding label, and param-
eterized requirement scenes are correlated with process knowledge attributes. Therefore,
rapid positioning from process design requirements to process knowledge attributes is
achieved and initial process knowledge recommendation candidate is generated. Process
design requirement semantic vector is obtained by analyzing parameterized requirement
scene. Meanwhile, process knowledge semantic vector of initial candidates is gener-
ated by TransE algorithm and dimensionality reduction to the same dimension as the
process design requirement semantic vectors. Based on the improved cosine distance,
the matching degree between them can calculated and filtrated according to matching
degree threshold value. The final process knowledge recommendation candidate set is
obtained so as to enable the dynamic classification of process knowledge under different
requirement scenarios.
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Fig. 1. “Scene-label-classification” process knowledge recommendation framework

3 Correlation Between Requirement Scenarios and Process
Knowledge Attributes

The process design requirements of different dimensions are analyzed, and require-
ment scenarios of process knowledge recommendation are described through materials,
dimension characteristics, part types and other parameterized characteristics. Mean-
while, the process knowledge attribute characteristics are identified uniformly by knowl-
edge coding, and then requirement scene characteristics and process knowledge attribute
characteristics are expressed in correlation.

According to the requirement scene of process knowledge recommendation, this
paper divides process design requirement into three aspects: part information, product
information and other information. Among them, part information contains the geo-
metric information and non-geometric information including surface shape, size, preci-
sion information, part materials, technical requirements, etc. Compared with the part,
product information contains the number of parts, the position relationship between
parts, and the assembly relationship between parts, etc. Other information includes pro-
cessing/assembly time limits, types of knowledge required, etc. Through parameterized
characteristic description, the requirement scenarios set R(R1,R2,…,Rq) is established,
whereR1,R2,…,Rq represent the parameterized requirements characteristics,which facil-
itates the construction of association mapping between process design requirements and
process knowledge attributes.

In this paper, process knowledge attributes are uniformly identified by construct-
ing coding labels in the knowledge graph, enabling the quick positioning of knowledge
attribute characteristics according to design requirements. However, when there are too
many parameterized demand features, it may be impossible to find the process knowl-
edge that meets all the demand characteristics. Therefore, the quantity threshold value Sn
meeting the requirements of parameterized characteristics is set. And process knowledge
that meets the conditions (including the number of requirement features≥Sn) is selected
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according to the demand scenario, so as to generate an initial process knowledge rec-
ommendation candidate set K(K1,K2,…,Km), where K1,K2,…,Km represent contained
process knowledge.

4 Construction of Requirements-Knowledge Semantic VSM

Vector space model (VSM) is an information retrieval model which is widely used and
effective in recent years. The core idea of VSM is to represent text content with vectors
and map it to n-dimensional vector space, thus transforming the similarity problem
between texts into the similarity problem between vectors in multi-dimensional space.
In this paper, semantic vector expression and dimensionality reduction are respectively
conducted for requirements scenarios and initial process knowledge recommendation
candidate set, thus obtaining requirement semantic vector and several process knowledge
semantic vectors. Then the requirements-knowledge semantic VSM is established so
as to calculate the matching degree between process design requirements and process
knowledge.

4.1 Construction of Requirement Semantic VSM

The construction idea of semantic VSM is that text is regarded as a combination of
several independent characteristic terms, and a high-dimensional space is constructed
with these different characteristic terms. Each characteristic term is one dimension of
this space, and text is regarded as a space vector. In this paper, parameterized charac-
teristics such as material, dimension feature and part type are utilized to describe the
process design requirements, so each parameterized characteristic is the characteristic
term of requirement semantic VSM. Assuming that process design requirements consist
of independent parameterized characteristics, it can be expressed as:

R = {r1, d1 ; r2, d2; . . . . . . ; rn, dn} (1)

Therein ri(1≤ i≤ n) represents the parameterized characteristic name, and di(1≤ i≤ n)
represents each parameter value/description content. For the parameterized characteris-
tics such as technical requirements, the content is described in natural language, like “pay
attention to temperature control and quenching transfer time of aluminum alloy materi-
als in heat treatment process”. In order to enable the matching between parameterized
requirement characteristics described in natural language and the process knowledge
content, it is necessary to generate text vector using NLP to calculate semantic matching
degree.

Given different weights for each parameterized characteristic as the vector com-
ponent, the text vector Vr used to represent the process design requirements can be
expressed as:

Vr = {Wr1, d1 ;Wr2, d2; . . . . . . ;Wrn, dn} (2)

Therein wri(1≤ i≤ n) represents the weight of each parameterized characteristic, which
is generally set by process designer according to the importance of each parameter-
ized characteristic. Therefore, process design requirements can be represented by an
N-dimensional characteristic vector.
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4.2 Construction of Process Knowledge Semantic VSM

Aiming at each process knowledge graph in the process knowledge recommendation
candidate set, the vector representation method of process knowledge graph based on
TransE algorithm is adopted, so that each process knowledge could be represented by
a p-dimension vector Vtrans(P ≥ N). In order to calculate the matching degree between
requirement vector and process knowledge vector, dimensionality reduction methods
such as PCA is adopted to keep the dimension number and meanings of two vectors con-
sistent. For the ith process knowledge of the initial process knowledge recommendation
candidate set, its semantic vector Vk-i(1 ≤ i ≤ m) can be expressed as:

Vk−i = {
r1, d

′
1; r2, d ′

2; . . . . . . ; rn, d ′
n

}
(3)

Therein ri(1≤ i≤n) represents n parameterized characteristics of process design require-
ments, and d’i(1 ≤ i ≤ n) represents the value/description content of this parameter
(empty if no content). Different from requirement semantic vector, the weight of each
parameterized characteristic of knowledge semantic vector is calculated based on statis-
tics, among which the most commonly used method is TF-IDFmethod. Term Frequency
(TF) weight indicates the number of times a characteristic item appears in this document.
The more times it appears, the more important it is. However, for process knowledge,
high appearance frequency of parameterized characteristic does not necessarily mean
that it is more important. Therefore, in order to reduce the influence of TF weight, when
the occurrence frequency of parameterized requirement characteristic is not 0, it can be
expressed as:

TF(i−k) = 1 + log(1 + logj) (4)

Therein j represents the number of occurrences of parameterized characteristic rk in
process knowledge Ki. If this parameterized requirement characteristic is not included
in Ki, then TF(i-k) = 0.

IDF (Inverse Document Frequency) weight refers to the frequency of all process
knowledge contained in initial knowledge candidate set for one parameterized charac-
teristic. If this parameterized characteristic appears in multiple process knowledge, it
proves that its distinguishing ability is low, and therefore, IDF weight is expressed as:

IDF(i−k) = log(
N

n
+ α) (5)

Therein α is a constant. In the similarity calculation between texts, if a keyword appears
in all texts, its IDF value is extremely low. However, in the matching of requirements and
process knowledge, if a parameterized characteristic appears in all process knowledge,
it does not mean that this characteristic is unimportant. According to Formula (5), the
larger α is, the weaker the distinguishing ability of this parameterized characteristic is.
Therefore,α is set as 1 in this paper,N represents the number of process knowledge in the
initial knowledge candidate set, and n represents the number of process knowledge with
this parameterized characteristic. Finally, the weight of parameterized characteristic rk
in process knowledge Ki is:

wi−k = TF(i−k) ∗ IDF(i−k) (6)
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The semantic vector Vk used to represent a process knowledge can be expressed as:

Vk = {
wk1, d

′
1; wk2, d

′
2; . . . . . . ;wkn, d

′
n
}

(7)

Therein wki(1≤i≤n) represents the weight of each parameterized characteristic
obtained through Formula (6). For an initial process knowledge recommendation can-
didate set containing m process knowledge, a m*n knowledge semantic VSM can be
finally constructed:

Vk−m =
⎧
⎨

⎩

wk11, d
′
11; · · · ;wk1n, d

′
1n

· · ·
wkm1, d

′
m1; · · · ;wkmn, d

′
mn

⎫
⎬

⎭
(8)

5 Knowledge Content Matching Degree Calculation

The calculation process of matching degree between requirements semantic vector and
semantic vector of each process knowledge is shown in Fig. 2: Based on improved cosine
distance, the matching degree of each process knowledge content in the initial candidate
set and process design requirement is calculated. The matching degree thresholdMt and
quantity threshold Nq is set in advance for comparison to filter out the process knowl-
edge with low matching degree. The reserved process knowledge is sorted according to
the matching degree value, and final process knowledge recommendation candidate set
K’(K1,K2,…,Kq) is obtained and pushed to the process designer.

Fig. 2. The calculation process of matching degree
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5.1 Matched-Degree Calculation Based on Improved Cosine Distance

After obtaining Vr and Vk-i, the semantic matching degree between requirements and
process knowledge content can be expressed according to the matching degree between
the vectors. In this paper, cosine distance between vectors is utilized:

M (i, k − i) = cos θ = Vr ∗ Vk−i

|Vr||Vk−i| (9)

For requirements semantic vector Vr and process knowledge semantic vector Vk-i,
besides containing weights wri(1 ≤ i ≤ n) and wki(1 ≤ i ≤ n) of parameterized charac-
teristics, descriptions di(1 ≤ i ≤ n) and d’i(1 ≤ i ≤ n) of parameterized characteristics
are also included. Compared with classical semantic calculation process based on cosine
distance, this process also needs to calculate the matching degree between di(1 ≤ i ≤
n) and d’i(1 ≤ i ≤ n). In this regard, this paper summarizes several situations that may
occur when di(1 ≤ i ≤ n) and d’i(1 ≤ i ≤ n) match:

a) Numericalmatching. In this case, di(1≤ i≤ n) and d’i(1≤ i≤ n) can be directly com-
pared, which is applicable to parameterized requirement characteristics described
by numerical values such as surface roughness and machining accuracy. The result
has two cases: a match of 1 and a mismatch of 0.

b) Semantic matching. For parts material, parts type and other parameterized require-
ment characteristics described by simple text, di(1 ≤ i ≤ n) and d’i(1 ≤ i ≤ n) can
be directly compared, which is consistent with numerical matching. For parame-
terized requirement characteristics such as technical requirements that need to be
processed by natural language, semantic matching degree between them should be
calculated based on cosine distance. The matching result range is [0,1], where 0
indicates complete mismatch and 1 indicates complete match.

Therefore, based on classical cosine distance, this paper proposes a calculation
method of matching degree between the requirements semantic vector Vr and the pro-
cess knowledge semantic vector Vk-i(1 ≤ i ≤ m) based on improved cosine distance.
The calculation formula is:

M (r, k − i) = Vr ∗ Vk−i

|Vr||Vk−i| =

n∑

j=1

[
wrj ∗ w(k−i)j ∗ M (drj , d(k−i)j )

]

(

√
n∑

j=1
(wrj )

2 ∗ (

√
n∑

j=1
(w(k−i)j )

2

(10)

Therein M(drj,d(k-i)j ,1 ≤ j ≤ n) represents the matching degree between parameterized
characteristics description contents of two vectors. The range of M(r,k-i) is [0,1], and
the larger M(r,k-i) is, the higher matching degree between requirements and process
knowledge is.
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5.2 Candidate Process Knowledge Filtering Ranking

Thematching degreeM(r,k-i) between each knowledge and process design requirements
is calculated and compared with threshold value Mt . If the matching degree value is
greater than, the corresponding process knowledge is retained.Otherwise, corresponding
process knowledge is eliminated. The reserved process knowledge is sorted from large
to small according to matching degree value, and according to quantity threshold Nq,
the final process knowledge recommendation candidate set is obtained and pushed to
the designer.

6 Experimental Verification and Analysis

The validity of the proposed process knowledge recommendation scheme and knowledge
content matching calculation method is verified by a shaft-hole part example of machin-
ing design. Firstly, according to the process specification of the part, the parameterized
requirement characteristics information used to describe its process design requirements
is summarized, as shown in Table 1.

Table 1. Parameterized requirement characteristics of a shaft-hole part

Requirement characteristics
type

Requirement characteristics
name

Description content

Part information Part type Shaft-hole

Part material 45 steel

Shape characteristic 1 Outer circle

Dimensional information 1 ∅40 mm × 180 mm

Machining precision 1 IT7

Surface roughness 1 1.6 µm

Shape characteristic 2 Inner hole

Dimensional information 2 ∅20 mm × 180 mm

Machining precision 2 IT8

Surface roughness 2 3.2 µm

Non-part information Technical requirement Modulation hardness 220–250
HBW. Sharp edges blunt,
remove edges and corners burrs

The corresponding process knowledge attributes are located in the knowledge base
according to the knowledge coding, and the quantity threshold Sn value that meets the
parameterized requirement characteristics is set as 8, and four characteristics including
recommended knowledge category (machining route), part type (axle hole), and shape
feature (1 is outer circle, 2 is inner hole) aremust contained.An initial process knowledge
recommendation candidate set containing 12 process knowledge is generated, and its
description in “Machining Route” is shown in Table 2.
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Table 2. Information of initial knowledge recommendation candidate set K(K1,K2,…,K12)

Serial number Process knowledge information

1 Rough turning - Semi-finish turning - Drilling - Reaming - Semi-fine hinge -
Finish turning

2 Rough turning - Semi-finish turning - Drilling - Reaming - Semi-fine hinge -
Rough grinding – Semi-finish grinding

3 Rough turning - Semi-finish turning - Drilling - Semi-fine hinge - Finish hinge
- Finish turning

4 Rough turning - Semi-finish turning - Drilling - Semi-fine hinge - Finish hinge
- Rough grinding – Semi-finish grinding

5 Rough turning - Semi-finish turning - Drilling - Semi-fine hinge - Rough
grinding hole - Rough grinding outer circle

6 Rough turning - Semi-finish turning - Drilling - Semi-fine hinge – Rough
grinding hole - Finish turning

7 Rough milling - Semi-finish milling - Drilling - Reaming - Semi-fine hinge -
Finish milling

8 Rough milling - Semi-finish milling - Drilling - Semi-fine hinge - Finish hinge
- Finish milling

9 Rough milling - Semi-finish milling - Drilling - Semi-fine hinge - Rough
grinding hole - Finish milling

10 Rough turning - Semi-finish turning - Rough pulling - Finish pulling – Finish
turning

11 Rough turning - Semi-finish turning - Rough grinding - Rough pulling - Finish
pulling – Semi-finish grinding

12 Rough milling - Semi-finish milling - Rough pulling - Finish pulling – Finish
milling

According to Table 1 and the generated initial process knowledge recommendation
candidate set, the requirements semantic vector Vr = {wr1,d1;wr2,d2;…;wr12,d12} and
knowledge semantic vectorVk-i = {wr1,d’1;wr2,d’2;…;wr12,d’12} are respectively estab-
lished. For requirements semantic vector Vr , its weight coefficient represents the key
degree of this characteristic. Under the condition that the knowledge attributes of the
parts type, material and shape characteristics must meet the requirement, it is assumed
that the machining accuracy, surface roughness and technical requirements are the focus
of the process designer to pay attention to whether the requirements and knowledge
match. The weight coefficients of the machining accuracy, surface roughness and tech-
nical requirements are set as 0.2, and the weight coefficients of the other parameterized
requirements are set as 0.1.

After the semantic vector weight coefficient of each process knowledge Vk-i in initial
knowledge candidate set is calculated, the matching degree threshold Mt = 0.7 and
quantity threshold Nq = 6 are set. By the matching degree calculation method based on
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improved cosine distance, the matching degree between requirements and each process
knowledge is calculated. The results are shown as Fig. 3.

Fig. 3. Matching degree results between requirements and each process knowledge

Table 3. Information of final knowledge recommendation candidate set K’(K1,K2,…,K6)

Serial number Process knowledge information Matching degree value

1 Rough turning - Semi-finish turning - Drilling -
Reaming - Semi-fine hinge - Finish turning

0.9413

2 Rough turning - Semi-finish turning - Drilling -
Reaming - Semi-fine hinge - Rough grinding
– Semi-finish grinding

0.9226

3 Rough turning - Semi-finish turning - Drilling -
Semi-fine hinge - Finish hinge - Finish turning

0.8346

4 Rough turning - Semi-finish turning - Rough
pulling - Finish pulling – Finish turning

0.8251

5 Rough turning - Semi-finish turning - Rough
grinding - Rough pulling - Finish pulling
– Semi-finish grinding

0.8251

6 Rough turning - Semi-finish turning - Drilling -
Semi-fine hinge - Finish hinge - Rough grinding
– Semi-finish grinding

0.8156

According to thematching degree thresholdMt = 0.7, 5th and 9th process knowledge
are filtered out. Process knowledge numbered 6th, 7th, 8th and 12th process knowledge
are filtered out according to the required process knowledge quantity threshold Nq = 6.
The final process knowledge recommendation candidate set was obtained after reorder-
ing according to the matching degree from large to small, as shown in Table 3. After
verification, the candidate set of process knowledge meets the machining requirements
of the shaft-hole part.
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7 Conclusion

In this paper, the “scene-label-classification” knowledge recommendation scheme for
process knowledge graph is established to enable dynamic classification of process
knowledge for different requirements scenarios. The multi-dimensional requirements
for process knowledge recommendation are fully considered, and correlation mapping
between requirements and process knowledge attributes was established by parame-
terized requirement characteristics and coding labels. The demand-knowledge semantic
vector spacemodel was constructed by taking parameterized requirement characteristics
as dimensions of the space. The matching degree calculation method based on improved
cosine distance is proposed, which considered both parameterized requirement charac-
teristics and description content. A verification example with shaft-hole part showed
that based on specific requirement scenarios, the proposed method achieved the process
knowledge recommendation with strong pertinence and flexible number of knowledge
candidates.
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