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Abstract 

Prebiotic oligosaccharides are receiving immense attention due to their nutraceu-
tical and therapeutic potential associated with the food and pharmaceutical 
industry. Owing to increasing demand for prebiotic oligosaccharides, various 
strategies of their production are being pursued. Fungal enzymes, mainly 
fructosyltransferase, inulinase, mannanase, cellulases, galactosidase, and 
xylanase, are predominantly involved in the synthesis of various oligosaccharides 
such as fructooligosaccharides (FOS), inulooligosaccharides (IOS), 
mannooligosaccharides (MOS), cellooligosaccharides (COS), 
galactooligosaccharides (GOS), and xylooligosaccharides (XOS) through bio-
transformation of their respective precursor raw sugars. This chapter highlights 
modern approaches and production strategies of nutritional oligosaccharides 
using fungal enzymes and their nutritional values. 
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12.1 Introduction 

Nutritional dependencies of the modern lifestyle are major socioeconomic concerns 
in our day-to-day life. Incorporation of functional food ingredients as a part of daily 
diet may play crucial role in the well-being. Functional foods can be a better 
preventive measure for mitigating chronic health disorders, such as irritable bowel 
disease (IBD), inflammatory disorders, indigestion, colon cancer, gut epithelial 
dysfunction, etc. [1]. Prebiotic dietary fibers are selectively utilized by probiotic 
gut microflora which provide important health benefits to the host [2]. In a first, a 
study evidenced lactulose as a bifidogenic factor [3]. After several years, some 
non-digestible oligosaccharides were found as promising bifidogenic components 
[4, 5]. The term “prebiotic” was coined by Gibson and Roberfroid, and they defined 
prebiotics as non-digestible food components that beneficially affect the host by 
selectively stimulating the growth and/or activity of one or a limited number of 
bacteria in the colon, thus improving the host health [6]. 

Due to upsurge in their consumption all over the globe, the prebiotic market in 
2015 was estimated to be $200 million with a growth rate of 15% per year and is 
expected to reach $8.5 billion by the year 2024 [7]. Nutraceutical oligosaccharides 
are considered as non-digestible carbohydrates that help attain balanced microbial 
composition in the host gut and are responsible for a number of health benefits such 
as reduced risk of colon cancer, improved mineral absorption, antioxidant activities, 
inhibition in pathogenic microbes in the gut, generation of immunomodulatory 
compounds, reduction of neoplastic lesions and cancer risk, improvement of 
bowel movement, stimulation of immune system, improvement of gastrointestinal 
and urinary tract health, anti-inflammatory effects, reduction of blood pressure, 
maintenance of vision, antibacterial and antiviral activities, and reduction of osteo-
porosis and lipid levels [8, 9]. They also help in improving gut barrier function and 
gut-brain signaling in depressive disorders [10]. 

Among the functional food components, prebiotics and probiotics constitute a 
focus on contemporary advancements in human nutrition. The market of prebiotics 
in India is still emerging. A few fructooligosaccharide-based products are available 
in Indian market, and these continue to draw more attention by the health-conscious 
individual. All prebiotics are considered in the group of dietary fibers, but some 
dietary fibers do not exhibit prebiotic activity. Major prebiotics are 
fructooligosaccharides (FOS), inulin and inulooligosaccharides (IOS), 
galactooligosaccharides (GOS), xylooligosaccharides (XOS), 
mannooligosaccharides (MOS), and cellooligosaccharides (COS). In addition to 
these, maltooligosaccharides (MaOS), isomalto-oligosaccharides (IMaOS), human 
milk oligosaccharides (HMOS), pectin-derived oligosaccharides (POS), 
agarooligosaccharides (AOS), lactulose, and lactosucrose are also being evaluated 
for the purpose (Table 12.1). Among these, inulin, IOS, FOS, and GOS are the most 
popular prebiotics and are commonly used in food and feed, confectionary, and 
animal feed industries [21].
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Table 12.1 Natural sources of oligosaccharides 

Oligosaccharides Composition Sources References 

Fructooligosaccharides 
and 
inulooligosaccharides 

G-(F)n 
β (2–1) 
β (2–6) 

Asparagus, sugar beet, garlic, chicory, 
onion, Jerusalem artichoke, wheat, 
honey, banana, barley, tomato, and 
rye are special sources of 
fructooligosaccharides 

[8, 11–13] 

Mannooligosaccharides G-(M)n 
α (1–4) 
β (1–4) 

Yeast cell wall 
Locust bean gum, guar gum 

[14, 15] 

Xylooligosaccharides (X)n β (1–4) Bamboo shoots, husks, straws, and 
corncobs 

[16, 17] 

Galactooligosaccharides G-(Ga)n 
β (1–3) 
β (1–4) 

Milk, legumes, and sugar beet root [18, 19] 

Pectin (GaA)n 
α (1–4) 

Citrus peel, apple pomace, sugar beet [20] 

G glucose, F fructose, Ga galactose, X xylose, M mannose, A arabinose 

12.2 Production of Prebiotic Oligosaccharides 

Although prebiotic oligosaccharides are found in various natural sources 
(Table 12.1), the quantity and composition vary with respect to environmental 
conditions. The production of oligosaccharides may be done either by chemical 
synthesis by transglycosylation or by biocatalysis of raw sugars using various 
enzymes. Chemical synthesis of oligosaccharides may be attained by thioglycoside 
glycosylation, ortho-trichloroacetimidate method, orthoester method, condensation 
of tritylcyanothylidene, modified method of Koenigs-Knorr, etc. Chemical methods 
of oligosaccharide synthesis have disadvantages due to the uncontrolled stereochem-
istry and non-specificity [22]. 

Due to these limitations of chemical methods, oligosaccharide generation involv-
ing enzymatic bioprocesses is a very promising alternative. Several fungal enzymes 
such as fructosyltransferase, inulinase, mannanase, xylanase, β-galactosidase, and 
cellulase are being utilized for the generation of FOS, IOS, MOS, XOS, GOS, and 
COS, respectively (Fig. 12.1). Most of the prebiotic oligosaccharides are generated 
using enzymes belonging to three kinds of enzymes, viz., glycoside hydrolase (GH), 
glycosyltransferase (GT), and transglycosylase (TG) [23]. 

GH enzymes are involved in the hydrolysis of acetal linkages between two 
carbohydrates or between a carbohydrate and a non-carbohydrate moiety. GT 
enzymes catalyze the transfer of glycosidic moiety from activated donor to acceptor 
residue. GTs are sub-classified as inverting or retaining on the basis of the stereo-
chemistry of the glycosidic bond (α/β) in reaction product is maintained or altered. 
TGs are involved in similar catalytic reaction as the GHs, but the hydrolase versus 
transferase ratio differs in different TGs. The mechanism and biological role of TGs 
is still undistinguishable [24]. The production of different types of oligosaccharides



is commercially achieved using several enzymes based on their type of glycosidic 
linkage formation in the product oligosaccharide. The prebiotic and other nutritional 
properties or oligosaccharides depend upon the three-dimensional stereochemistry 
of the glycosidic bond, which could not be controlled by chemical catalysis. 
Enzymatic synthesis of oligosaccharides displays some properties such as selectiv-
ity, specificity, and energy minimized catalysis with high turnover number [24]. Fur-
thermore, several enzyme engineering approaches such as immobilization, genetic 
engineering, codon optimization, and mutagenesis have also been regularly utilized 
to improve catalytic properties of enzymes. 
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Fructooligosaccharides 
(FOS) 

Inulooligosaccharides 
(IOS) 

Mannooligosaccharides 
(MOS) 

Xylooligosaccharides 
(XOS) 

Maltooligosaccharides 
(MaOS) 

Cellooligosaccharides 
(COS) 

Galactooligosaccharides 
(GOS) 

Xylanase 

Endo-glucanase 

β-galactosidase 

Xylan 

Cellulose 

Lactose 

Fungal Enzyme Derived Nutraceutical Oligosaccharides 

FructosyltransferaseSucrose 

Endo-inulinaseInulin 

MannanaseMannan 

AmylaseStarch 

Substrate Enzyme Oligosaccharide 

Fig. 12.1 Types of nutraceutical oligosaccharides and fungal enzymes involved in their generation 

Oligosaccharides have been marketed since the 1980s as low-calorie agents and 
recently have gained interest in the pharmaceutical and food industry as functional 
sweeteners and prebiotic enriching population of Bifidobacteria. Currently, they 
have an approximated value of $ 200 per kg, and recently, inulin has been proposed 
as a feedstock for production of oligosaccharides through selective hydrolysis by 
action of endo-inulinase [25]. The influences of probiotic or pre-diet on the zebrafish 
gut-brain axis have reported. Zebrafish (Danio rerio) fed with probiotic were found 
with increased levels of serotonin and brain-derived neurotrophic factor [26]. Lacto-
bacillus rhamnosus IMC 501® (a probiotic strain) showed health-promoting 
properties such as decreased DNA damage, less oxidative stress, and increased



immune response including hepatic stress tolerance in zebrafish [27]. Some of the 
commercially available oligosaccharides are listed in Table 12.2. Details of some of 
the nutritionally important oligosaccharides and enzymes involved in their genera-
tion are presented in the following sections. 
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Table 12.2 Commercial oligosaccharides and their sources 

Oligosaccharide Trade name Source/company 

FOS Actilight® Baghin-Meji industries, Paris, France 

Meioligo® Meiji Seika Kaisha, Tokyo, Japan 

NutraFlora® GTC Nutrition, Golden Colorado, US 

Inulin GlaxoSmithkline, 
Philadelphia 

FiberChoice 

MOS Bio-MOSR Alltech, US 

ActiveMOSR Orffa, the Netherlands 

AgriMOS Lallemand Inc., Canada 

GOS Oligomate ® Yakult Pharmaceutical Industry Co., Ltd. 
(Japan) 

Cup Oligo Nissin Sugar Co., Ltd. (Japan) 

Vivinal® GOS Friesland Campinas (the Netherlands) 

XOS PreneXOS™ Shandong Longlive Bio-Tech Co., Ltd., 
China 

XOS Van Wankum Ingredients, the Netherlands 

COS D (+) Cellotriose 
Cellotetraose 

Megazyme (Bray, Ireland) 

MaOS Sigma-Aldrich (St. Louis, MO) 

12.3 Types of Prebiotic Oligosaccharides 

12.3.1 Fructooligosaccharides (FOS) and Inulooligosaccharides (IOS) 

Fructooligosaccharides (FOS) are considered to be the most important among 
various prebiotics due to their nutraceutical properties such as hypolipidemic 
(cholesterol-lowering) and enhanced calcium absorption [28, 29]. FOS consist of a 
series of oligosaccharides that are composed of 1-kestose (GF2), nystose (GF3), and 
1F-β-fructofuranosyl nystose (GF4), in which two, three, and four fructosyl units are 
bound at the β-2,1 position of glucose, respectively. FOS are obtained either by 
extraction from various plant materials or by enzymatic synthesis from different 
substrates. Enzymatically, these can be obtained either from sucrose using FTase or 
from inulin hydrolysis by endo-inulinase [11]. Increasing demand for an alternative 
healthy sweetener and multifunctional fructooligosaccharides has prompted 
investigators to explore microorganisms for inulinase and FTase production and to 
develop bioprocesses for the production of high-fructose syrup [8].
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Current commercial production of FOS is carried out by fructofuranosidase 
(FFase, EC 3.2.1.26) or fructosyltransferase (FTase, EC 2.4.1.9) using sucrose as 
the raw material [30, 31]. Fructosyltransferase (FTase; EC 2.4.1.9) hydrolyzes 
sucrose and transfers fructosyl group to an acceptor molecule to generate 
fructooligosaccharides (FOS) along with glucose and fructose [32]. Hidaka et al. 
[33] reported that Aspergillus niger ATCC 20611 produces β-fructofuranosidase 
(FopA) with high transfructosylation activity. A. niger ATCC 20611 is being 
exploited at industrial scale for FOS production in the last two decades as commer-
cial FOS producer [34]. Recently, genetically modified Pichia, expressing plant 
fructosyltransferase, was designed for industrial production of FOS [35]. Another 
recent report describes neo-series FOS production using β-fructofuranosidase 
(FFase) derived from Xanthophyllomyces dendrorhous. For industrial application, 
the gene encoding FFase has been cloned in Pichia, and the expressed enzyme was 
immobilized on polyvinyl alcohol matrix and used for continuous generation of FOS 
[36]. A cold-active FTase from Aspergillus tamarii generated a maximum of 55% 
(325 g/L) FOS from sucrose under optimized biotransformation parameters 
[37]. Another fungus Penicillium citrinum produced FTase units in fermentation 
media containing banana peel (6.9 U/mL) and sugarcane molasses (7.3 U/mL) [38]. 

Prebiotic fructooligosaccharides can also be obtained by one-step hydrolysis of 
inulin by endo-acting inulinases (endo-inulinases). Inulin serves as a storage poly-
saccharide in many plants of Composite and Gramineae. It consists of β-(2–1)-D-
fructosyl-fructose links terminated by a sucrose residue [8, 39, 40]. This fructan is a 
potential substrate for generation of high fructose syrup (HFS) and prebiotic 
inulooligosaccharides (IOS). Inulin is acted upon by two types of inulinases, i.e., 
endo-inulinase (2,1-β-D-fructanfructanohydrolase, EC 3.2.1.7) and exoinulinase 
(β-D-fructanfructohydrolase, EC 3.2.1.80). Endo-inulinases liberate IOS as the 
main product [8], while exoinulinases hydrolyze the terminal linkages to yield 
fructose as the main product. Pertaining to the high demand of FOS, their cost-
effective production is assuming greater challenges. In this context, development of 
an enzyme-based process using microbial transferases and hydrolases can help 
achieving the target of producing FOS using cost-effective indigenous technology. 
High fructose syrup can be biotransformed into value added products such as ethanol 
and single-cell protein, while IOS are indicated in nutraceutical industry as 
prebiotics [41]. Bhalla et al. [42] reported FOS generation using Saccharomyces 
cerevisiae isolated from local fermented beverage called Chaang. It was selected 
after screening for high invertase activity. Highest yield was obtained from 250 mg 
sucrose concentration and 2.5 U of invertase in 1 ml reaction at pH 5.5 and 40 °C. 
Production of an extracellular, thermostable inulinase was carried out by Aspergillus 
tubingensis CR16 using wheat bran and corn steep liquor (CSL) under solid-state 
fermentation (SSF). The fungus produced 1358.6 ± 0.8 U/g inulinase after 
parametric optimization which was fivefold higher [43]. Bacillus safensis AS-08 
grown on dahlia inulin produced inulinases which hydrolyzed inulin to mixture of 
fructooligosaccharides [44]. 

A. niger NK-126 showed high inulinase activity on dandelion tap root extract 
(52.3 U/ml) and produced a mixture of fructose and FOS from chicory inulin [45]. In



silico studies of Singh and Shukla [46] have shown that exo- and endo-inulinases 
from Penicillium sp. TN-88 have different arrangement of amino acids in the active 
site for recognition of substrate. Dilipkumar et al. [47] have used sugarcane press 
mud for the production of inulinase in solid-state fermentation (SSF). The optimized 
medium with sugarcane juice at 20% (v/v) and casein peptone at 2% (w/v) was found 
to be optimal at an initial pH 7.0 and incubation temperature 35 °C for 48 h. The 
produced inulin-type FOS (kestose and neokestose) and levan were characterized by 
Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance 
(NMR) analysis. The study revealed that the levansucrase could form FOS from 
sucrose [48]. Aspergillus fumigatus NFCCI 2426 was found to produce 68 U/ml of 
FTase activity on a medium containing 20% w/v sucrose. The enzyme was partially 
purified (acetone precipitation followed by DEAE-Cellulose anion exchange chro-
matography) and immobilized in calcium alginate for continuous transfructosylation 
of food grade sucrose to generate FOS (GF5, GF4, GF3, GF2) and gluco-fructose 
(our unpublished results). The research in the field of FOS is gaining momentum 
among researchers because of their tremendous potential as nutraceuticals. Purama 
et al. [49] summarized pathways of colorectal cancer (CRC) inhibition by FOS. 
These oligos also play crucial role in immune health maintenance by increasing the 
concentration of interleukins and IgG. They inhibit cancer cell growth by activating 
caspase pathway for apoptotic death of CRC cells [49]. 

12 Fungal Enzyme-Based Nutraceutical Oligosaccharides 351

12.3.2 Galactooligosaccharides (GOS) and Other Lactose-Derived 
Oligosaccharides 

GOS are non-digestible oligosaccharides composed of 2–8 galactose moieties linked 
by β (1 → 4) and β (1 → 6) bonds with a terminal glucose residue, while β (1 → 2) 
and β (1 → 3) glycosidic linkages may be found in some GOS [24]. GOS are usually 
produced by the transgalactosylation catalyzed by β-galactosidase (βG; EC 3.2.1.23) 
using lactose-rich solutions. The βG catalyzes transgalactosylation in a similar way 
to the fructosyltransferase in a kinetically controlled manner [50]. The 
transgalactosylation reaction proceeds through the release of galactose from lactose 
followed by its transfer to another lactose molecule to generate trisaccharide (GOS 
3). Subsequent formation of GOS 4, 5, and 6 occurs with GOS 3, 4, and 5 as an 
acceptor molecule. βGs are obtained from a variety of microorganisms mainly 
from Aspergillus spp. (A. niger and A. oryzae), yeasts (Kluyveromyces spp.), and 
bacteria (Bacillus circulans) as prominent producers. 

GOS are frequently used as functional food ingredient in dairy products, bakery, 
and beverages. Recently, a novel β-galactosidase from the fungus 
Thermothielavioides terrestris was heterologously expressed for the production of 
GOS. The recombinant enzyme resulted in 19.4% and 14.8% GOS yield from 
lactose solutions and acid whey, respectively [51]. On the other hand, bacterial 
galactosidase (GH family 42) from Pantoea anthophila resulted in 40% GOS yield 
corresponding to 86% lactose conversion from 400 g/L lactose. The lactose hydro-
lysate was composed of 14% GOS, 5.7% 6-galactobiose, 20.2% allolactose, 46.7%



mixed monosugars (glucose and galactose), and 13.3% residual lactose [52]. Another 
acidic β-galactosidase from A. oryzae (ENZECO), having optimum pH 4.5, pro-
duced a maximum of 26.73% GOS (DP 3 and 4) from lactose solution [53]. β-Galac-
tosidase from A. oryzae (≥8 IU mg-1 ; Sigma Chemicals Co, USA) was utilized to 
generate GOS from whey powder substrate. Maximum yield of 62 g L-1 of GOS 
was obtained from 40% sweet whey powder bioconversion. Also, the immobiliza-
tion of this enzyme on a synthetic methacrylic immobilization carrier (Lifetech 
ECR8409) resulted in 2.5-fold enhanced GOS productivity and recyclability over 
4 cycles [54]. Commercial β-galactosidase preparations sourced from Aspergillus 
aculeatus, A. oryzae, A. niger, B. circulans, and Kluyveromyces lactis have been 
employed for GOS production from lactose and lactulose solutions. Among all the 
tested enzyme preparations, fungal lactase sourced from A. oryzae yielded maximum 
GOS (0.29 g g-1 from lactose and 0.38 g g-1 from lactulose) [55]. 
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12.3.3 Cellooligosaccharides (COS) 

Cellulose is the most abundant structural polysaccharide on the earth. Cellulose 
(poly β-1,4-glucopyranose) is composed of closely knit linear chains of anhydro-
glucose monomers linked by β-1,4-glycosidic linkages at the C1 and C4 positions. 
Cellooligosaccharides (COS) display the same chemical structure as cellulose but 
have DP in the range of 2–6. Although cellulose is insoluble in water, due to smaller 
DP, COS are fairly soluble in water at room temperature. COS are generated by 
depolymerization and glycosylation of cellulose polymer. Glycosidic linkages other 
than β-1,4 glycosidic bonds such as α-1,4, α/β-1,3, α/β-1,6, and α/β-1,2-glycosidic 
linkages may be found in COS [56]. COS are mainly derived by controlled 
de-polymerization from plant cellulose. COS can be obtained by acid or enzymatic 
hydrolysis of plant cellulose. Partial hydrolysis of cellulosic biomass is based on the 
protonation of glycosidic bond by acidic or enzymatic catalysis. Among the entire 
COS synthesis approaches, enzymatic de-polymerization of cellulose is the most 
promising, eco-friendly, and economical approach. 

COS synthesis by enzymatic catalysis is generally done either from sucrose and 
glucose biotransformation employing a catalytic cascade involving three glycoside 
phosphorylases, namely, sucrose phosphorylase (ScP; GH 13 family), cellobiose 
phosphorylase (CbP; GH 94 family), and cellodextrin phosphorylase (CdP; GH 
94 family) [57–59] or by hydrolyzing cellulose using cellulases [60]. Cellulase 
consortium predominantly contains three enzymes: (1) endo-1,4-glucanase 
(EG) (EC 3.2.1.4), responsible for the endo-hydrolysis of cellulose polymer at 
internal amorphous sites generating cello-oligomers (high DP); 
(2) cellobiohydrolases (CBH) (EC 3.2.1.91) or exo-1,4-glucanases, catalyze the 
exo-hydrolysis of crystalline cellulose at the reducing end to generate cellobiose 
and short-chain COS; and (3) β-glucosidases (βG) (E.C. 3.2.1.21), which hydrolyze 
the produced cellobiose to glucose monomers [61]. A controlled enzymatic hydro-
lysis of cellulose using different commercial cellulase combinations (CBH from 
Trichoderma longibrachiatum and EG from Thermothelomyces thermophila) has



been demonstrated to generate cellobiose. Cellulase combination (CBHI/EG5) in a 
ratio of 80:20 led to the generation of optimal yields (49.7% w/w) of cellobiose with 
the cellobiose/glucose ratio of 9.4 [60]. Details on the production of COS from 
lignocellulosic biomass and their prebiotic applications have been compiled by 
Avila et al. [62]. Production of cellobiose from organosolv-pretreated birch ligno-
cellulose hydrolysis using an optimum combination of cellulases (GH family 
5 endoglucanase sourced from Talaromyces emersonii, GH family 
6 cellobiohydrolase from Podospora anserina, GH family 7 cellobiohydrolase, 
and GH family 7 endoglucanase from T. thermophila with an accessory enzyme 
lytic polysaccharide monooxygenase from T. thermophila) led to production of 
cellobiose (22.3%) [63]. Zhou et al. [64] demonstrated an effective strategy to 
produce purified COS by simultaneous production of sugar monoesters to remove 
monosugars. This strategy resulted in an improvement in COS production from 33.3 
to 74.3%. On the other hand, controlled synthesis of ammonia- pretreated wheat 
straw depolymerization had been achieved using some of the adsorbed activities of 
cellulase cocktail obtained from A. niger. Cellulase adsorption (majorly 
exocellulase) on cellulosic biomass favored cellobiose synthesis, while the 
unadsorbed liquid fraction predominantly produced other COS [65]. Selective 
removal of β-glucosidase activity from cellulase pool resulted in a 36% increased 
COS production from corncob residue with a yield of 51.78% than single-stage 
hydrolysis [66]. 
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12.3.4 Mannooligosaccharides (MOS) 

Mannans, consisting of D-mannose linked by β-1,4 mannosidic linkages, are found 
in coffee beans, locust bean gum (LBG), guar gum (GG), palm kernel cake (PKC), 
konjac gum (KG), ivory nuts, sugar beets, soybeans, etc. Mannans are of four types 
based on their glycosidic linkage and branching patterns [67, 68]. Oligomers of 
mannose, mannooligosaccharides (MOS), are classified into alpha or beta types. The 
α-MOS are mainly obtained by hydrolysis of yeast cell wall, while β-MOS are 
mainly produced by hydrolysis of plant mannans by chemical (acid/alkaline), 
physical (ultrasonic), or enzymatic (mannanase) means [69]. 

β-MOS are generated using enzyme consortia consisting of β-1, 4-mannanase 
(EC 3.2.1.78), β-mannosidase (EC3.2.1.25), α-galactosidase (EC 3.2.1.22), and 
β-glucosidase (EC 3.2.1.21) [15, 70]. According to the sequence similarity database 
of catalytic sequences, they are grouped into glycoside hydrolase (GH) families – 
5, 26, 113, and 134 (http://www.cazy.org/)  [71]. Several reports describe the pro-
duction of MOS from agro-industrial wastes using microbial β-mannanases 
[72]. Among these, fungal mannanases are for high-yield generation of MOS. 
Many fungal sources have been reported to produce β-mannanases that belong to 
family GH-5 and GH-26. Mannanases from Yunnania penicillata, Aspergillus 
nidulans, A. niger, A. oryzae, and Rhizomucor miehei have been reported to produce 
MOS [67, 71, 73–76]. Li and co-workers [77] engineered R. miehei β-mannanase 
and heterologously expressed in Pichia pastoris. This engineered mannanase

http://www.cazy.org/


produced 34.8 g MOS per 100 g dry palm kernel cake with 80.6% hydrolysis yield. 
Additionally, Penicillium oxalicum β-mannanase was employed to generate MOS 
from copra meal and coffee rests. Their hydrolyzed products were composed of 
mannose, M2, M4, and M6. Recombinant mannanase (1625 U/mL) was utilized for 
the production of MOS from copra meal and palm kernel meal. Copra meal 
generated M2 as major product, while mannose and M2 were the major products 
with smaller amounts of M3 in case of palm kernel meal [78]. β-Mannanase from 
Talaromyces trachyspermus generated mainly mannose and M2 from coffee waste 
and M2, M3, and M4 from locust bean gum [79]. 
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Among microbial sources, mannanases (mainly GH5 and GH26) from filamen-
tous fungus A. niger are the most widely studied for MOS production. Commercial 
production of MOS requires robust enzyme which is suitable for industrial 
applications [76]. A codon-optimized mannanase (AnMan26) from A. niger was 
expressed in Pichia pastoris, and titers to the tune of 22,100 U mL-1 were obtained 
in a 5-L fermenter. It had maximum specific activity toward locust bean gum and 
produced mannooligosaccharides from locust bean galactomannan (LBG). More-
over, it also resulted in the production of high DP MOS (1.8 × 103 Da) from partial 
hydrolysis of fenugreek gum [76]. β-Mannanases from A. oryzae, A. quadrilineatus, 
Aspergillus terreus, and thermophilic Malbranchea cinnamomea were characterized 
and used to produce MOS from LBG, guar gum, palm kernel cake, and copra meal 
[67, 80–82]. 

12.3.5 Xylooligosaccharides (XOS) 

Xylan is a low molecular weight (DP 80–200) plant polysaccharide mainly found in 
the form of cell wall hemicellulose. Xylans are branched polymers of (1 → 4) linked 
β-D-xylopyranosyl backbones. Branched chains may be substituted with ferulic 
acid, acetyl, 4-O-methyl glucuronic acid, p-coumaric acid, or an arabinose side 
group [8, 83, 84]. Plant hemicelluloses having xylose and arabinose with traces of 
uronic acid (glucuronic acid and 4-O-methyl derivative) are termed as 
arabinoxylans, while glucose linked xylan are termed as gluco-xylans 
[85, 86]. Xylooligosaccharides are (1 → 4) linked β-D-xylopyranose oligomers 
(DP 2–7) with varying properties such as degree of polymerization and structural 
properties depending upon the raw source used. Xylan may be extracted from plant 
cell wall using water [87], acid treatment [88], alkali [89, 90], dimethyl sulfoxide 
(DMSO) [91, 92], or hot and cold water under pressure [93]. Xylooligosaccharides 
can be produced by enzymatic hydrolysis of β-1,4-xylosidic bonds of xylan by endo-
1,4-β-D-xylanases (EC 3.2.1.8). Endo-xylanases mainly belong to glycoside hydro-
lase (GH) families 10 and 11, while some xylanases also belong to other GH families 
(5, 7, 8, 16, 26, 30, 43, 52, and 62) [94]. As an emerging prebiotic, XOS exhibit 
health benefitting properties such as bifidogenic potential [95] and increased calcium 
absorptivity, minimize colon cancer risk, and confer immune-regulatory properties 
[96]. They also display some other medicinal properties such as antioxidant, anti-
allergic, anti-inflammatory, and cytotoxic properties [94, 97]. Several fungal strains



such as Paecilomyces variotii, A. terreus, A. fumigatus, Penicillium glabrum, 
Sorangium cellulosum, Thermomyces lanuginosus, and M. cinnamomea have been 
reported to produce high titers of xylanases [98–103]. Xylanase secreted by 
P. variotii resulted in the generation of XOS composed of xylobiose (X2 14%), 
xylotriose (X3 27%), and xylotetrose (X4 23%), together with a small amount of 
xylopentaose (X5 18%) and xylohexose (X6 13%) and xylose (X1 0.8%) in 0.5 h 
hydrolysis of 1% w/v beechwood at 55 °C [94]. 
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Brenelli et al. [104] described an interesting approach using slight acetylation 
followed by hydrothermal pretreatment for improved XOS production from sugar-
cane straw (SS) catalyzed by Aspergillus nidulans xylanase (GH 10). The 
pretreatment strategy promoted 81.5% hemicellulose solubilization and resulted in 
XOS (X2, X3) yield up to 9.8%. Xylanase from T. lanuginosus produced XOS 
composed of X2 (66.46%), X3 (25.10%), and small amount of xylose (4.97%) from 
beechwood xylan [105]. Commercial xylanase from T. longibrachiatum produced 
44.43% XOS from Brewers’ spent grain over 12 h hydrolysis [106]. Endoxylanase 
from Streptomyces thermovulgaris was utilized to produce XOS (10.66%) from 
pretreated corn cobs [107]. Other raw sources such as coconut husk, finger millet 
seed coat, rice bran, sugarcane bagasse, wheat straw, etc. have been utilized for XOS 
production using bacterial and fungal xylanases [108–111]. Corn cob xylan (2% 
w/v) treated with partially purified T. lanuginosus xylanase for 8 h at 45 °C yielded 
6.9 mg/ml of XOS (X2, X3) [112]. 

12.3.6 Maltooligosaccharides (MaOS) 

Maltooligosaccharides (MaOS) are composed of 2–10 units of α-1,4-linked 
glucopyranose monomers. MaOS are generally produced from starch by the catalytic 
action of α-amylase (EC 3.2.1.1) [113]. MaOS generating amylases have been 
described from several bacterial species [114] and also from a few fungal species 
such as A. niger and A. nidulans [56, 115]. Kazim et al. [115] characterized the 
MaOS generating ability of an amylase (AmyG) sourced from A. nidulans. The 
AmyG generated DP3 to DP6 MaOS from starch hydrolysis. In another study, high 
concentration (1 μM) of A. niger amylase has been applied to hydrolyze corn starch, 
potato starch, and wheat starch for 12 h to generate MaOS (DP 1–3). The enzyme 
treatment produced a maximum of 16 mg/mL MaOS from potato starch while 
14 mg mL-1 from corn and wheat starch with trace amounts of DP 4 MaOS [56]. 

On the other hand, some reports of MaOS generating amylosucrase (EC 2.4.1.4, 
ASase) are also available. This enzyme exhibits glucosyltransferase activity and 
catalyzes MaOS synthesis using sucrose as the substrate. A comparative study on 
two-step and one-step production strategies of MaOS (DP 3–6) using bacterial 
amylases has been carried out by Zhu et al. [113].
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12.4 Nutritional Aspects of Prebiotic Oligosaccharides 

Pro-health properties of oligosaccharides made them a very important ingredient 
among functional foods. Most of the oligosaccharides are known to exhibit 
multifarious nutritional benefits through modulation of the gut microbiota towards 
healthy-gut environment [116, 117] and imparting antioxidant, immune-
booster effects, and high mineral (especially calcium and magnesium) absorptivity 
through gut epithelium [118]. Moreover, they also help in reduction of some 
metabolic disorders such as cardiovascular diseases (CVD) [119], inflammable 
Bowel’s disease (IBD), major depressive disorder (MDD) [120], and obesity 
[121, 122]. These properties have highlighted oligosaccharides as an important 
nutraceutical additive in food and feed industry, juice and beverage industry, 
cosmetic applications, medicinal applications, animal feed and livestock 
applications, etc. Recently, fructooligosaccharides and inulin (dried Jerusalem arti-
choke tubers) have been shown to produce positive effect on the pork quality and 
fatty acid profile. Improved antioxidant status, water-holding capacity, and a reduced 
shear force was observed. Furthermore, prebiotic addition in the pig diet improved 
the quality and shelf-life of the pork [122]. Prebiotic-enriched diet also contributed 
to a better weight gain and inhibition in diarrhea in piglets [123]. Inulin 
oligosaccharides may reduce the activity and expression of fat-generating enzymes 
in liver and inhibit the fatty acid synthesis and, therefore, can be used in fatteners 
[124]. XOS catalyzed from P. variotii xylanase exhibited potent antioxidant activity 
toward DPPH free radicals [94]. Gao et al. [118] determined the effect of GOS on the 
colonic mucosa of LPS-challenged piglets. GOS consumption resulted in reduction 
of reactive oxygen species (ROS) and malondialdehyde (MDA) and improvement in 
total antioxidant capacity in the injured piglets. Also, enhanced production of total 
short-chain fatty acids (SCFAs) was observed in LPS-challenged suckling piglets. 
Additionally, GOS significantly played role in immune modulation via reduced 
production of inflammatory molecules, interleukin 1β (IL-1β), interleukin 6 (IL-6), 
myeloid differentiation primary response 88 (MyD88), tumor necrosis factor-α 
(TNF-α), and cluster of differentiation 14 (CD14) in injured piglets. Recently, 
GOS have also been demonstrated to be beneficial in modulating gut microbiome 
of lactose-intolerant patients [116]. Probiotic growth promotion, anticancer, and 
antioxidant potential of MOS produced using fungal mannanase has been 
investigated by Jana et al. [125]. Another study described the evaluation of 
MOS-enriched diet for 60 days over the white leg Litopenaeus vannamei shrimp. 
MOS diet amended the productivity by 30% improved survival of shrimps. Next-
generation sequencing suggested that MOS improved the Actinobacteria (28%) as 
predominant gut microbiota and inhibition in opportunistic pathogens such as 
Bergeyella, Vibrio, Aeromonas, and Shewanella [126]. Prebiotic potential of birch-
and spruce-derived COS against Lactobacillus and Bifidobacterium has been 
demonstrated. Growth rate and cell density of probiotic strains was improved in 
the medium comprising COS as sole carbon source [63]. Similar to other 
oligosaccharides, MaOS are important functional food ingredient with low sweet-
ness and osmolality and high water-holding capacity which may be utilized as



sucrose substitute [127–129]. They also exhibit immunomodulatory properties and 
participate in improved colonic microbiome with the reduction in pathogenic 
microbes [113, 130]. 
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12.5 Conclusions and Future Prospects 

Oligosaccharides, particularly FOS and GOS, are most explored prebiotics, while 
nutraceutical propertied of MOS, COS, XOS, and MaOS are being explored toward 
disease alleviation. Fungal enzymes (either hydrolases or transferases) are a good 
source for commercial preparation of these oligosaccharides from raw agro-waste 
sources. Production yield, biological properties, and the ease of commercialized 
production of nutraceutical oligosaccharides are majorly dependent on the source 
and catalytic properties of these fungal enzymes. Industrial process requires 
improved catalytic properties such as stability over a broad range of pH and 
temperature, high product yield, utilization of waste biomass as substrate, high 
shelf life, etc. Fungal enzymes are suitable with respect to these parameters; there-
fore, they are being a hot-spot for applied research on oligosaccharides for functional 
food industries. 
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