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1 Introduction 

Intelligent control strategies are very flexible for describing from an automation point 
of view. While the system performs critical functions, this concept is dynamically 
implemented in real-time. So it is different from traditional feedback. Thus, if the 
law of control is continuously updated, we can assume the classical adaptive control 
to be intelligent. This kind of system can be considered borderline according to 
the classification perspective [1]. If we trace intelligent control approaches from the 
source for mechatronics analysis, we will face analyzing and processing big data, the 
evolution of mathematic-based methods, and programming. The exponential growth 
process of this research area reached the early 2010s and did not stop declining [2]. 

Various artificial intelligence methods and areas are utilized in mechatronics 
and robotics, including artificial neural networks (ANNs), machine learning, evolu-
tionary computing algorithms, and fuzzy logic. Machine learning consists of deep 
learning, reinforcement learning, classical learning (unsupervised and supervised), 
neural networks (NN), and ensemble methods. Intelligent control algorithms analyze 
large data sets and exploit beneficial patterns from actions taken by utilizing a variety 
of probabilistic, statistical, and optimization methods [2]. In the automatic control 
field, reinforcement learning is practical. Ensemble strategies and classical learning 
are also used for classifying and processing data sets against neural networks [3– 
5]. Conversely, neural networks are practical in dealing with unlabeled features and 
complex data.
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In autonomous systems that interact with the real world, a critical challenge is the 
safety and reliability of utilizing intelligent control approaches. This problem is the 
subject of a review article [6] in which an asymptotic analysis of intelligent control 
approaches convergence is conducted. 

This chapter discusses modern intelligent control approaches in mechatronics to 
recognize open issues and trends in intelligent control. 

The chapter is constructed as follows: Sect. 2 recalls multiple intelligent control 
approaches. The applications of intelligent approaches in engineering control 
problems are presented in Sect. 3. The chapter is concluded in Sect. 4. 

2 Smart Control Methods 

Intelligent control is an apart discipline, but the application of new concepts, such as 
neural networks to control loops, utilizing different scientific approaches constructed 
based on automatic control theory, is required. Therefore, intelligent control can 
improve its performance every time by learning from previous experiences as a 
combined approach. 

In the framework of intellectual approaches, assume the most general modern 
control theory methods. This chapter pays the most attention to machine learning 
since some of them are well-known, and there is no further explanation. 

2.1 Adaptive Control Methods 

Like optimal control, adaptive control is constructed based on a well-developed 
mathematical and theoretical justification [2]. This method became the initial step 
for intelligent control, as an integration of adaptive controllers within the framework 
of the classical automatic control theory provides a quality of operation of the system 
given the conditions of the parameters of the object and the specification of the 
external environment are unknown or change indefinitely. The adaptation principle 
can be considered the heart of intelligent control processes, which evolves from 
self-optimizing controllers to adaptive learning systems [7]. 

Adaptive control algorithms for time-discrete systems were applied to artificial 
intelligence by Yakubovich, who received several algorithms for training linear clas-
sification models [2, 8–10]. The Stripe Algorithm (SA) proposed by Yakubovich 
in a recently published article [11] has shown acceptable performance in machine 
learning. SA achieves higher performance than traditional linear learning methods 
by numerical analysis in online machine learning, making it suitable for this field. 
Lipkovich [12] provides various strategies for the reduction of loss optimization 
problems in dealing with inequalities systems, considering both regression and clas-
sification problems. In reference [11], a comparison analysis is conducted between
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SA and modern linear analogs, including logistic and linear regression. Complex non-
linear models have the potential to outperform SA. However, the last one includes 
the common points of interest of linear models, like explainability, development, and 
implementation [12]. It can be noted that the presence of a hypothesis does not ensure 
practical application, especially in experimental conditions of control systems [12]. 

2.2 Optimization Techniques 

Optimization techniques emerged before machine learning historically and were 
utilized to discover the extrema of a function [13]. Most machine learning problems 
are based on the theory of optimality. This theory can be generally formulated as the 
minimization of multiple features J regarding multiple parameters θ = J (θ ) → min 

θeX 
. 

The form of the minimized value is determined by the machine learning approach. As 
an example, the prediction error on the existing sample is minimized in a regression or 
classification problem, while the greatest advantage from the activities of the plant 
is discovered in reinforcement learning. This can be accomplished by any search 
algorithm. As you can see, there are many types, methods, and uses of mathematical 
optimization. 

2.3 ANNs 

ANNs inspire biological networks as powerful artificial intelligence tools. ANN is 
an object that imitates the neural network constituting the human brain so that the 
computer can learn and make decisions like a human. An input layer, a hidden layer 
or more, and nodes or neurons as numerous simple computational components as an 
output layer construct an ANN structure. A simple ANN with two inputs and two 
hidden layers is presented in Fig. 1. This additionally includes relationships between 
neurons in consecutive layers through the weights. These weights can change the 
signal sent from one node to another and increase or decrease the impact of a particular 
relationship. A weighted input plus one bias from each neuron in the previous layer 
is received by each hidden layer neuron. The output of neurons is determined by 
their activation function. An ANN structure is shown below

Y = f

(
nΣ 

i=1 

wi vi − b

)
(1) 

In Eq. 1, f refers to the activation function, vi and wi are shown the input values 
and the weights of neurons, respectively. Also, y refers to the network’s output, b is 
the bias, and n indicates the neuron’s number in the hidden layers. The performance
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Fig. 1 A simple ANN structure

of the model can be enhanced by updating the network weights during the training 
phase. ANN’s neuron weights determine how the input data affects output data. The 
primary weights are selected randomly [14]. 

The network’s internal weights are tuned using a learning algorithm. Backprop-
agation (BP) algorithms are today’s most common form of training in ANNs. Also, 
optimization methods such as genetic algorithm and particle swarm optimization are 
practical in optimizing the ANN [14]. 

Using NNs is effective for noisy and non-linear system controls, and adaptability is 
provided for the system. The NN can work in real time after training. The constant NS 
advancement in properties and structure aims to overcome the existing shortcomings. 
The heuristic learning methods for NN can lead to deadlocks and vague solutions, and 
it needs a training sample to be prepared. Long training time is the principal disad-
vantage of NN in robotics, increasing the risk of inappropriate control of expensive 
equipment, the uniformity of training results for predictions, and the current imple-
mentation of NN can only be implemented in a very large-scale integration circuit 
form. 

2.4 Fuzzy Logic Method 

Zadeh proposed the fuzzy logic as an object with an element membership function 
in ranges [0, 1] to a set based on the fuzzy set concept [15, 16]. It turns out that fuzzy 
logic inference can be expressed in the NN form using the membership function to 
perform the task of neurons and the activation function, considering the neurons’ 
connections as signal transmission. Currently, a lot of fuzzy neural networks roughly 
explained by the widespread shape of approximators have been developed [17].
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2.5 Reinforcement Learning 

Reinforcement learning is an approach for handling hybrid optimization problems in 
machine learning, a structure in which the operator learns how to perform successive 
decision-making tasks online through interaction with the environment. Reinforce-
ment learning in agent planning is provided by receiving feedback on the outcome 
of choices made as a reward or punishment without specifying how to achieve the 
outcome. The reinforcement learning procedure is that the agent first chooses an 
action from the limited and possible action collection based on observing a situation 
in the environment and performing that action. Then, the agent receives a predeter-
mined signal from the environment, demonstrating the quality of the operator’s action 
as a reward or punishment. In the next step, the agent transfers to a new environmental 
status based on the current state [18–20]. In this approach, the agent interacts with 
the environment by performing a series of actions to find solutions [21, 22]. MDP 
provides a widely utilized mathematical framework for modeling such problems and 
consists of four stages [21–23]: 

1. A set of states, S = {s1, s2, ...., sd} 
2. A set of actions, A = {a1, a2, ...., am} 
3. A state transfer function T = (s '|s, a) is a possibility distribution function that 

a given state s and action into a state s'. 
4. A reward function R = S × A × S → R gives an instant reward when an agent 

performs an activity and moves from state to state s'. 

Using the Markov chain in reinforcement learning, the agent’s choice of action is 
subject to a policy that determines the probability of choosing the action in a specific 
status. In other words, it determines the effect of the action in an independent state in 
such a way that the reinforcing learning agent learns to maximize all future rewards 
[24, 25]. 

Rt = rt+1 + γ rt+2 + γ 2 rt+3 +  · · ·  =  
∞Σ 
k=0 

γ k . rt+k+1, (2) 

where t is the time stage and rt+1, rt+2, rt+3, … is the sequence of rewards after the 
time stage t , and γ ∈ [0, 1] is a deterrent that handles the significance of instant 
rewards compared to coming rewards and prevents the reward from going to infinity. 

One of the best techniques for solving the Markov decision chain problem is 
the temporal difference technique, which is notable for its good performance, low 
computational cost, and plain interpretation. The value of a state or action is estimated 
using the value of other states or actions [26, 27]. Since the proposed technique basis 
on temporal difference, we express TD as follows: 

V(St ) = V(St ) + α
[
rt+1 + γ V(St+1) − V(St )

]
(3)
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where parameter α is the learning rate that determines how many errors must accept 
at every step. Parameter γ is the discount rate that characterizes the influence of the 
following case. The value inside the bracket is a calculation error in the calculation. It 
calculates the difference between the worth of case V (St ) and the estimate of the 
subsequent step and the subsequent reward rt+1+γ V(St+1)−V(St ) that the operator 
tries to minimize this time. 

3 Application of Intelligent Approaches in Engineering 
Control Problems 

In this section, we will discuss the applications of intelligent approaches in 
engineering control problems by reviewing a few works in the literature. 

3.1 Stabilization and Program Control Problems 

Program control and stabilization operations require feedback in the loop. In general, 
system state vectors are not provided for evaluation, so the available measurement 
outputs define the control strategy. The robotics and mechatronics standard tasks 
are similar to speed trajectory tracking and stabilization tasks. These variables can 
be easily measured at the output of the system. Reference [28] presents a machine 
learning method for quadcopters. This article presented the approach πθ using θ 
as the parameter and is differentiable on parameters. J (πθ ) is the objective function 
differentiable to θ , for example, the optimization is conducted by the gradient method. 
For this purpose, probabilistic estimation of the strategy parameters and the mean 
reward gradient formula is used. The most common method of gradient estimation 
is formulated as follows: 

ĝ = Et

Λ[
∇θ logπθ 

(at |st ) Ât

]
(4) 

where Et

Λ

is the experimental mean for a finite set of instances, Â(st , at ) = 
Q(st , at ) − V̂ (st ) represents the advantage function value in time t by changing the 
sample generation process, and πθ is the policy enhancement. The dynamic model 
may be non-differentiable or unknown in this reinforcement learning problem. Thus, 
the model should be trained, which leads to increasing the gradient estimates vari-
ance. For policy optimization in the mentioned article, a solid approach is proposed 
by incrementally enhancing agent performance. After differentiation of Eq. 4, the  
objective function is formulated below. 

J (θ ) = Et

Λ[
min

(
r (θ ) Ât , cli p(r (θ ), 1 − ε, 1 + ε)

)]
(5)
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where r (θ ) = πθ /πθold and ε is the hyperparameter. 
By differentiation of Eq. 5, gradient ĝ is obtained. The reward function is 

formulated as follows: 

rt
(
ext  , eyt , ezt

) = α −
/
e2 xt  + e2 yt + e2 zt (6) 

where α is a constant to make sure that each quadcopter is assigned a reward, and 
ext  , eyt , ezt are the coordinates of the quadcopter. 

In reference [29], entropy-based reinforcement learning is considered with a soft 
membrane vibrating drive for ultra-fast tripod robot gait. Data collection for learning 
and controller development with feedback are needed for this type of problem. A 
Gaussian normal distribution policy is defined as the controller: fϕ(st ) = (μt , σt ) 
in which ϕ is the controller parameter, σt and μt refer to the standard deviation and 
mean, respectively. The action strategies for starting are defined as N

(
at , fϕ(st )

)
and 

function fϕ is constructed as a neural network. The reward function is presented as 
follows: 

r (st ) = −dt − δθt + c (7) 

where the root mean square error between the current position of the robot and its 
final position is shown by dt , c is the coefficient, and the angular difference between 
the current and desired position is shown by δθt . To Maximize Entropy Solution, the 
optimal solutions policy is formulated as follows: 

π ∗ 
α = arg max 

π 
Eτ P,π

[ ∞Σ 
t=0 

γ t
(
r̂ (st , at )

) + α H(π (.|st ))
]

(8) 

H
(
πϕ(.|st )

) = Eα∼πϕ

[−logπϕ(a|s)] (9) 

where α is the entropy temperature in ranges [0, ∞) and r̂ (st , at ) = 
Eś∼P(π ( .|s,a))

[
r
(
ś
)]
. The function value should be minimized by stochastic gradient 

descent. 
If we have control goal changing repeatedly, the mentioned reinforcement learning 

method is not applicable. To solve this problem, you can use a set of state-action-
reward, which can be trained to mimic a specific objective in each set. This solution 
is presented by Puccetti et al. [30] and is tried on a speed control framework. 

Bayesian statistical methods are very effective in intelligent systems [31]. A new 
hypothesis is achieved by recent data from human brain research led to that in specific 
types of sensorimotor learning, the brain uses Bayesian internal models to optimize 
performance on specific tasks. The resulting activity of a particular neuronal popula-
tion can be modeled as a coordinated Bayesian process. The concept of neural signal 
processing can be utilized in a variety of applications, from rehabilitation engineering 
to artificial intelligence.
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3.2 Controller Tuning 

Utilizing fuzzy and adaptive controllers and PID is common in the industry. In 
adaptive control schemes, both the controller parameters and structure can be changed 
in response to parameters alteration of the disturbances or controlled object. An 
overview provides a historical viewpoint on learning methods and adaptive control 
[7]. In many cases, the structure of the controller is fixed, and only its parameters 
need to be tuned. It is known how to tune the controller based on a description of 
the system dynamics. Therefore, it is not easy to obtain in practice, requiring deep 
system knowledge and potentially open-loop, large-scale measurements. The first 
proposed algorithm in this area tries to tune a PID controller with the quick reaction 
of the system model and the sufficiency and cycle of the closed control-loop natural 
oscillation [32, 33]. Subsequently, an adaptive PID controller and a discriminative 
adaptive control algorithm were proposed, and the model parameter estimates were 
used to adjust coefficients [34, 35]. In some cases, especially if the system is unstable, 
only feedback measurements are possible. The alteration gets to be cumbersome and 
wasteful in this connection as the operating conditions of the system change. It, 
therefore, relies on automated methods that can rapidly decide the parameters of the 
controller without human intercession based on the task. A self-regulating structure 
starts work in this area. 

In reference [36], a multi-parameter self-tuning controller is proposed to control an 
injection molding machine. The dynamics of a system are explained by the following 
probabilistic model of discrete time. 

A
(
q−1

)
y(t) = B

(
q−1

)
u(t − d − 1) + C

(
q−1

)
e(t) (10) 

where an output vector of dimension p is shown by y(t), an input vector of dimension 
s is indicated by u(t), q−1 is the reverse shift operator, e(t) is white Gaussian noise 
of dimension p, d is the unit time delay, and (q−1y(t)) = y(t − 1). The model 
presented in Eq. 8 is presented by the self-tuning estimation strategy with recursion 
in k-step as follows: 

ý(t + k|t) = 
naΣ 
i=1 

Âi ŷ(t + k − i |t) + 
nbΣ 
i=d 

B̂i u(t + k − i ) + 
ncΣ 
i=d 

Ĉi ê(t + k − i ) 

(11) 

where Âi , B̂i , Ĉi indicates the estimated matrices for Eq. 10 and k = 1, 2, ..., d. 
Thus, the optimization problem is reformulated as follows: 

J =
||||||D0 B̂du(t) + L̂(t)

||||||2 

Q1 
+

||||||||||G0u(t) + 
rΣ 

i=1 

Gi u(t − 1)

||||||||||
2 

Q1 

(12)
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This turns a stochastic optimization problem into a deterministic problem: 
∂ J/∂u(t), in which the output of the self-tuning controller indicates by u(t): 

u(t) = −
[(

D0 B̂d

)T 
Q1 D0 B̂d + GT 

0 Q2G0

]−1

[(
d0 B̂d

)T 
Q1 L̂(t) + GT 

0 Q2 

rΣ 
i=1 

Gi u(t − 1)

]
(13) 

The structure adjustment capabilities and additional control of the learning 
controller must be utilized to fulfill the needs of more complex machines based 
on the simulation results. 

In a study dedicated to self-tuning controllers [37], algorithms were obtained and 
analyzed by aggregating the least squares estimation (LSE) and tuning the minimum 
oscillations achieved by the dynamics model. Two theorems are achieved by the 
primary results assuming convergence of estimating parameters and defining a closed 
system. Some cross-covariance and output of the output control variable will vanish 
from the little presumptions of the registry in the first theorem. The second theorem 
assumes that the control framework may be a common linear likelihood framework 
of order n. When the parameter estimation process is converged, we show that the 
resulting control law is the control law of most minor variability that can be computed 
with the known parameters. 

3.3 Identification Problems 

In reference [38], a method using the bee swarm algorithm to identify linear systems 
described by differential equations is proposed. To get a model and parameter set 
that minimizes the prediction error between the model output and the real object, an 
optimization problem is defined based on the identification problem. The result of 
the algorithm operation is displayed on the DC motor model. 

In reference [39], to adjust the parameters of the PID controller of an evapo-
rator control system while minimizing the system tracking absolute squared error, 
a heuristic colony competition algorithm was used. The genetic algorithm and 
Ziegler–Nichols method demonstrate this algorithm’s effectiveness. 

To determine the lasting magnet synchronous motor model parameters in real time, 
Rahimi et al. [40] used a heuristic competition algorithm. For this, a minimization 
process is conducted based on the mean squared error of the system state vector 
control.
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3.4 Optimization Problems 

Gradientless search algorithms are widely utilized for all optimization problems due 
to their versatility. This also applies to NN because NN does not utilize the gradient 
of the function and does not consider it is differentiable [41]. Their characteristic 
is that the optimization problem solution is worthy but not ideal. Recently, various 
biomimetic solutions that borrow ideas from nature are gaining popularity [42, 43]. 
These include populations [44], swarm and colony algorithms [45–47], evolutionary, 
etc. A bat algorithm [44] is also known and is related to echolocation-based swarm 
intelligence. The cuckoo swarm algorithm tunes the PID controller in thyristor series 
compensation [48] and DC motor control systems [49]. The former was more efficient 
compared to the Swarm algorithm with the heuristic algorithm. 

In reference [50], using support vector algorithms, an optimal control approach 
is proposed to minimize the bipedal robot’s power consumption under a small 
data sample size and an unknown system dynamics model. The new controller has 
been integrated into the optimal controller, constraining the robot’s joint angles to 
minimize the energy-related cost function. The energy functional is 

JEE  = 
T∫

0 

1 

2 
τ T τ dt, τ  = g(Θ) (14) 

where g(.) is parameterized by NN and Q is a vector of generalized coordinates. The 
quadratic form support vector machine quality function is 

JSV M = min 
1 

2 
W T W + 

1 

2 
C 

NΣ 
i=1 

ξ 2 i as, τi = wT ϕ(Θi ) + ξi (15) 

where ξi is a positive variable, w is a vector of weights, C is a penalty factor, N refers 
to the training instances number, and ϕ(.) refers to the transformation function of 
the input space to the input space of higher-order features. The resulting functional 
includes the aggregation of JEE  and JSV M . 

In Ref. [51], an improved “learn-learn” search algorithm is utilized by multi-
objective optimization of PID controller parameters. This prevents function values 
from getting stuck in local minima. To this end, there are not only two learners in 
the learning, but it includes an additional state. Also, parameters ear to inconsistent 
targets is combined with a blocked device phase where they are blocked. This ensures 
that each objective cannot collide with another [52]. The results of comparative 
studies on optimizing the parameters of the PID controller of the DC motor control 
system utilizing the particle swarm method, the honey bee colony algorithm, and the 
learning-learning. The last one showed the best results.
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3.5 Problems of Iterative Learning 

Machine learning is known as one form of artificial intelligence, which is that rather 
than being explicitly programmed, the systems can be trained by data stored in 
memory [53]. Based on processing the training data set, a more accurate model is 
constructed. This allows you to train the model before and on an ongoing basis. The 
iterative model training process continuously improves the types of relationships 
between data items, no matter how complex or large. You can continue training in 
real time using models trained offline. 

In Ref. [54], a fault-tolerant control approach is proposed according to the itera-
tive current-loop learning control for recovering the execution of polyphase perma-
nent magnet drives under open-circuit conditions. This method does not need diag-
nostics and troubleshooting as its main advantage, and torque measurements are 
sufficient. Iterative learning management, therefore, provides comprehensive knowl-
edge on reliability for modeling uncertainty and the system. We developed a flex-
ible trajectory-assisted control scheme using iterative learning control for a cloud-
wheeled robot system to move along a given trajectory and transport cargo simulta-
neously and performed a system stability analysis [55]. In [56], a human-led iterative 
learning framework is presented for a trajectory-tracking task in which a controller 
gets input from the activities of a human agent. Hladowski et al. [57] considered the 
influence of noise to achieve new results for the dynamic enhancement of iterative 
learning control laws. 

An iterative procedure is presented for planning the milling process in reference 
[3]. For that, it is necessary to know the machine’s technical parameters and the 
parts’ geometrical parameters to form the machine tool trajectory. Tool deviation is a 
severe problem in which the milling process requires constant review and planning. 
Dittrich et al. [3] presented the following solution that reduces processing errors by 
up to 50% by predicting the error between a model of machined shape and actual 
surface measurements using machine learning methods. Thus, a statistical support 
vector machine uses the previous process dataset as the training dataset. 

4 Conclusions 

The modern world trend towards organizations of advanced production types is 
reflected in intelligent control scientific publications methods in electromechanical 
systems. Using AI methods, it is possible to solve previously impossible problems of 
controlling mechatronic systems while at the same time increasing ease of implemen-
tation and computational efficiency. The complexities of control tasks for multi-agent 
systems are inherently non-linear, uncertain, or influenced by external environments 
and require individual approaches to solving specific problems, for which many 
tools are proposed. Only by actual experiments, the effectiveness of these learning 
algorithms on complex systems can be measured. The development of the algorithm
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itself aims not only to increase the accuracy and speed of learning but also to increase 
independence from adaptation to various goals and learning strategies that humans 
strictly set. Developers try to recreate the behavior of living organisms by utilizing 
natural thoughts in algorithms. Future research establishes a task, usually referred 
to as “learning for learning,” when agents need to select learning strategies and tune 
meta-parameters. 
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