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About This Book 

This book aimed to cover the application of artificial intelligence and simulation 
techniques in Engineering. The book highlights the successful implementation of 
different soft computing techniques in various areas of engineering more especially 
in Civil, Electronic, Mechatronic, and Mining Engineering. This book comprises nine 
chapters which, in overall, shed lights on the importance of simulation techniques in 
solving complex engineering problems. 

Chapter “Optical Resistance Switch for Optical Sensing” deals with optical resis-
tance switch for optical sensing. As regards optical switches can be suitable candi-
dates for optical sensing applications. This chapter focuses on optical switch devices 
for optical sensing applications. The optical structures studied are photonic crystal, 
plasmonic, and graphene structures which are good platforms for the realization 
of optical devices such as optical switches and sensors. Photonic crystals can be 
considered as an efficient basis for the realization of optical switches and sensors. 
It is because photonic band-gaps with sharp transient edges which are suitable for 
switching and sensing mechanisms can be generated at their transmission spectra. 
Surface plasmon polaritons have drawn extensive attention in recent decades due to 
their ability to break the traditional diffraction limit of light. Graphene structures have 
remarkable advantages such as ultra-low ohmic losses, thin thickness, tunability of 
complex conductivity, and mechanical strength. In this chapter, relying on theoret-
ical models and numerical simulations, it is shown that optical sensing mechanism 
can be achieved by using optical devices such as graphene switches, nanomate-
rial heterostructures (plasmonic and PC structures)-based switch, and plasmonic 
amplitude modulators. 

Chapter “Empirical, Statistical, and Machine Learning Techniques for Predicting 
Surface Settlement Induced by Tunnelling” deals with the application of simulation 
techniques in assessing the tunnelling-induced settlement in urban areas. Tunnels 
have been constructed in many countries around the world for different purposes, such 
as the metro system to mitigate traffic congestion. Since the construction of urban 
tunnels is typically conducted at shallow depths, specific concerns such as struc-
tural damage inevitably arise. Surface settlement induced by tunnelling is one of the 
common problems encountered during and after tunnelling construction. Therefore,
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accuracy in the prediction of surface settlement induced by tunnelling is important 
to prevent structural damage. Several methods have been previously proposed to 
compute tunnelling-induced surface settlement, such as empirical, numerical, labo-
ratory, statistical, and machine learning. Each of these models has advantages and 
disadvantages. This study deeply investigates the available techniques to estimate 
settlement induced by tunnelling and reviews the most important findings and solu-
tions. Among the existing techniques, machine learning seems to be the most suit-
able technique in estimating settlement induced by tunnelling. These techniques, 
with their behind calculations and assumptions, are able to identify the best relations 
between independent and dependent parameters and, therefore, to solve complex and 
non-linear problems. The discussion provided in this chapter can be advantageous 
to those who are interested to conduct research or design in the same field. 

Chapter “A Review on the Feasibility of Artificial Intelligence in Mechatronics” 
deals with a review on the application of artificial intelligence in mechatronic. Arti-
ficial intelligence has become a valuable tool in various fields with the increasing 
progress of science and information production. With the processing of big data and 
increased productivity, new challenges have appeared in the design and application 
of control systems. In some systems, the interaction between humans and robots 
is essential, while real-time decision-making plays a vital role in other types of 
systems. This chapter presents a review of artificial intelligence methods in mecha-
tronics. For this purpose, the leading intelligent control methods in technical systems 
are reviewed and discussed in the initial part of this chapter, including reinforcement 
learning, fuzzy logic method, artificial neural networks, optimization techniques, 
and adaptive control methods. The rest of the chapter reviews the applications of 
intelligent approaches in engineering control problems. This part is categorized into 
five subsections: iterative learning, parametric optimization, identification, controller 
tuning, and control problems as stabilization. Finally, in the conclusion of the chapter, 
the main challenges in improvements of intelligent control methods are listed. 

Chapter “Feasibility of Artificial Intelligence Techniques in Rock Characteri-
zation” deals with the feasibility of soft computing and simulation techniques in 
assessing the rock engineering properties. This chapter reviews the recent works 
which highlight the workability of the aforementioned techniques in predicting 
unconfined compressive strength of rock samples. Based on the provided discus-
sion in this chapter, the artificial intelligence-based predictive models are quick, 
economic, and feasible tools in rock characterization. 

Chapter “A Review on the Application of Soft Computing Techniques in Founda-
tion Engineering” reviews the application of artificial intelligence methods in founda-
tion engineering. This chapter shed light on many studies which underline the feasi-
bility of simulation-based techniques in assessing the bearing capacity and settlement 
of various types of foundation including shallow, deep, and skirted foundations. 

Chapter “Application of a Data Augmentation Technique on Blast-Induced 
Fly-Rock Distance Prediction” deals with the application of a data augmentation 
technique on blast-induced fly-rock distance prediction. Fly-rock induced by blasting 
is an inevitable phenomenon in quarry mining, which can give rise to severe hazards,
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for example, causing damage to buildings and human life. Thus, successful esti-
mation of fly-rock distance is crucial. In this regard, many researchers attempt to 
develop empirical, statistical, or machine learning models to accurately predict fly-
rock distance. However, for most previous research, a worrying drawback is that 
the amount of data related to fly-rock distance prediction is insufficient because 
the measurement work of fly-rock distance is costly for manpower and material 
resources. In Chapter six, to deal with the problem of data shortage, authors first 
separated the original dataset which was collected from four granite quarry sites in 
Malaysia into two parts, i.e., the training and testing sets, and then adopted a data 
augmentation technique termed tabular variational autoencoder (TVAE) to augment 
the amount of the training (true) data, so as to generate a fresh synthetic data set. 
Subsequently, we utilized several statistical methods or plots, such as the boxplot 
method, kernel density estimation, cumulative distribution function, and heatmap 
method, to testify to the effectiveness of the synthetic data generated by the TVAE 
model. Lastly, several commonly used machine learning models were developed to 
verify whether the mixed data set which is obtained by merging the training and 
synthetic data sets can benefit from the addition of the synthetic data. The work of 
verification is implemented on the testing data set. The results demonstrate that the 
size of the training data set has increased from the initial 131 to 1000 to obtain a 
synthetic data set, and the results of statistical methods proved that the synthetic 
data set not only preserves the inner characteristics of the training data set but also 
generalizes more diversities compared to the training data set. Further, by comparing 
the performance of five machine learning model on three data sets (i.e., the training, 
synthetic, and mixed data sets), it can be concluded that the overall performance of 
all machine learning models on the mixed data set outperforms that on the training 
and synthetic data sets. Consequently, it can be asserted that the application of the 
data augmentation technique on the fly-rock distance issue is fruitful in the present 
study and has profound engineering application value. 

Chapter “Forecast of Modern Concrete Properties Using Machine Learning 
Methods” reviews machine learning methods that have been used in the previous 
researches to forecast concrete properties. Major classifications and main steps 
of machine learning techniques are introduced then their application in concrete 
science is discussed. Artificial neural network, fuzzy logic, decision tree, support 
vector machine, gene expression programing, bagging, and boosting are the most 
commonly machine learning methods. A typical machine learning-based studies 
comprise problem description, data collection, data pre-processing, model devel-
opment, and model assessment. Concretes noticed in this review include ordinary, 
self-consolidation, ultra-high-performance, alkali-activated, and recycled aggregate 
types. Inputs, prediction methods, and outputs for each concrete type is reviewed 
in different researches and summarized as review result. The chapter illustrates 
that machine learning techniques are capable of predicting a wide range of proper-
ties, including mechanical properties, freshness properties, and durability properties. 
According to this chapter, concrete compressive strength is the most frequent prop-
erty and artificial neural network is the most frequently machine learning method that 
different researchers dealt with. Activation functions, network architecture, learning
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rules, and hybrid models of artificial neural network are discussed in details. In 
general, this chapter suggests that machine learning methods perform better than 
classical regression models. 

Chapter “Reliability-Based Design Optimization of Detention Rockfill Dams 
and Investigation of the Effect of Uncertainty on Their Performance Using 
Meta-Heuristic Algorithm” deals with Reliability-based design optimization of 
detention rockfill dams. Detention rockfill dams are one of the most popular struc-
tures which are used for reducing the flood peak and also increasing the downstream 
response time against the occurrence of floods. Designing such structures is a crit-
ical issue because of the complex interaction between the coarse porous rockfill 
material and the flow, the non-Darcian flow in rockfills, their stable encounter with 
floods, reliable flood peak reduction, and safe flood discharge release downstream. 
In this chapter, the preliminary design is performed using a simulation model in 
order to obtain the initial height and length of the dam and then using a simulation-
optimization model, the optimization of the dams is done to provide structural safety 
factors. Also, both preliminary and optimal designs are investigated for their reli-
abilities under uncertain conditions. Using the Monte Carlo simulation method as 
well as the simulation and optimization models, the effects of uncertainty in design 
parameters are investigated. In this step, LHS is used for generating samples, and 
the rejection rule is implied for deleting some samples which are greater than 15% 
uncertainty. The uncertainty of input parameters in model design consideration is 
investigated including the uncertainties of inlet hydrograph, volume-elevation rela-
tion of the reservoir, non-Darcian stage-discharge equation in coarse rockfill material, 
and non-linear flood routing in detention rockfill dams. At the end of this chapter, 
a reliability-based design optimization (RBDO) of the detention rockfill dam was 
carried out using self-adaptive NSGA-||. The first objective function in this multi-
objective algorithm is the minimization of the dam cost and the second one is the 
maximization of the reliability function. 

Chapter “Machine Learning in Mechatronics and Robotics and Its Application 
in Face-Related Projects” deals with various aspects of face-related projects. Imple-
menting non-verbal information is one of the ways to create communication between 
people. Using this type of information can improve the interaction process in human– 
robot interaction. One of the aspects of people’s non-verbal information is facial 
images, which can play an essential role in the development of mechatronic and 
robotic systems. This chapter discusses some uses of facial images, such as facial 
recognition, and facial expression recognition. Using these images and applica-
tions, authors explored and developed mechatronic and robotic systems which were 
based on special access for different persons and changes in facial expressions. 
As mentioned earlier, in chapter nine, different aspects of face-related projects are 
explored, apart from that, some ideas that can be applied to create new approaches 
are discussed. Since these projects perform based on a procedure, the flow of the 
facial projects from face detection to facial expression recognition and other appli-
cations are discussed. This chapter helps the readers get acquainted with using facial 
images in human–robot interaction. Furthermore, enough information is provided 
to understand the process of the methods used before, from traditional to modern
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approaches, and to know the process of developing new methods. In the different 
parts, the datasets related to each application are introduced to have a complete 
view of facial image-based projects. By understanding these applications and how 
to create innovative methods, the way to use facial images is paved to provide new 
face image-based systems.
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Optical Resistance Switch for Optical 
Sensing 

Shiva Khani , Ali Farmani , and Pejman Rezaei 

1 Introduction 

Optical components [1–3] are superior to semiconductor electronic ones [4, 5] in  
terms of higher computational speeds and lower noise values. Consequently, the 
development of optical devices is growing in prosperity. Photonic crystal (PC) struc-
tures [6–8] can be a suitable candidate for the realization of different passive and 
active optical devices such as PC filters [9, 10], sensors [11–13], splitters [14, 15], 
slow lights [16], demultiplexers [17, 18], switches [19–21], modulators [22, 23], 
logic gates [24, 25], and so on. PCs are periodic arrangements of dielectric layers 
with alternating refractive indexes. The distribution of the dielectric layers’ refrac-
tive index is periodic in one, two, or three dimensions [26]. Due to the remarkable 
capability to appear photonic band-gaps (PBGs) with sharp transient edges, PCs are 
considered as an efficient basis for the realization of optical switches and sensors [27]. 
In the frequency range of the PBG, no optical wave is allowed to propagate through 
the PC structure. The refractive index and structural parameters of the PC structure 
determine the PBG frequency range [28]. The relatively large size (micrometer size) 
of the PC structures is their main drawback compared to other optical structures such 
as plasmonic [29–31] and graphene [32, 33] structures. 

Surface plasmon polaritons (SPPs) due to their remarkable capabilities to over-
come the diffraction limit and manipulate light in a nano-scale domain are considered 
as an efficient basis for the realization of highly integrated optical circuits [34–36].
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SPPs are created at the interface between an insulator and a metal layer with different 
signs of dielectric constants through the interaction of surface electrons and incident 
photons [37]. Accordingly, all of the conventional PC components can be redesigned 
based on SPPs with more miniaturized footprints. Over the last few years, a variety 
of devices based on SPPs have been proposed, i.e., plasmonic filters [38, 39], Bragg 
reflectors [40, 41], sensors [42–44], demultiplexers [45, 46], Mach–Zehnder inter-
ferometers [47], and Switches [48–51]. Another advantage of metal–insulator-metal 
(MIM) plasmonic structures is the possibility of integrating such configurations with 
microwave circuits [52, 53]. It is because MIM structures have also been used for 
the realization of previous microwave microstrip components [54]. 

Due to the large negative real part and small imaginary part of permittivity of 
the noble metals such as silver and gold in optical frequencies, such metal materials 
have been widely used in plasmonic devices [55]. However, plasmonic components 
designed using these metals have some drawbacks. First of all, such structures are 
inherently lossy [56]. Secondly, these structures cannot be tuned freely when the 
geometry parameters of them are fixed [57–59]. This motivates researchers to use 
other materials with low ohmic losses and tunability property such as graphene 
structures [33, 60, 61]. 

Graphene is a two-dimensional (2D) monolayer sheet of carbon atoms packed 
into a honeycomb lattice [62, 63]. Graphene can behave like a thin metal film with 
negative permittivity by means of chemical doping, electric and magnetic fields 
[64, 65]. Meanwhile, graphene structures have remarkable advantages compared 
to noble metals. Such features include ultra-low ohmic losses of graphene, much 
thinner thickness of graphene than metal layers, tunability of graphene’s complex 
conductivity, and mechanical strength of graphene structures. The mentioned prop-
erties of graphene make it an appropriate choice to design highly integrated 
graphene-plasmonic (GP) devices [66–69]. 

Among the various optical devices, optical switches [70, 71] and sensors [72– 
74] are popular topics and have a wide range of applications. Up to now, various 
approaches based on different structures such as PC [75, 76], plasmonic [77, 78], 
graphene [79, 80], etc., have been adopted to design optical switches and sensors. 
An all-optical switch based on a directional coupler structure in a 2D PC lattice 
with Kerr optical nonlinearity has been proposed in [21]. In the proposed struc-
ture reported in [21], the high switching speed and low reflection coefficient for 
the control signal makes the presented switch suitable for all-optical integration 
purposes. In other approaches [2, 29, 48, 50], novel plasmonic topologies using two 
isolated MIM waveguides to pass the data and control signals have been proposed 
for all-optical switching applications. Using such a method (isolated data and control 
paths) prevents the intermodulation between the data and control signals and reduces 
harmonic distortion. Other methods including optical switches using a deposited 
graphene nanoribbon on a silica (SiO2)/ silicon (Si) substrate [81], a terahertz switch 
based on a graphene monolayer, poly-methyl methacrylate (PMMA) [82], all-optical 
multi-channel switch using square ring resonators [83], and so on have also been 
presented.
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Over the last few years, there are also various suggestions for realizing optical 
sensors using different structures. Due to the sharp edge of the Fano resonance 
shape, such a resonance mode can improve the sensitivity and figure of merit (FOM) 
of optical sensors. As a result, many resonators and optical configurations have 
been presented to obtain the Fano resonance shape, including an asymmetric MIM 
waveguide structure [84], splitting ring resonator and tooth-shaped resonator [85], 
and dual ring resonators [86]. Another method that has been used in [87, 88] is using  
optical structures with Plasmon-induced transparency (PIT) resonance modes. 

In addition to the mentioned published optical switch and sensor structures, there 
are also reports on structures to realize the function of both optical switches and 
sensors simultaneously. In such structures, multifunctional devices are used as optical 
switches and sensors using two different insulator materials [80, 89–92]. The exten-
sive design of dual-functional devices (optical switch and sensor) includes plas-
monic nano-disk resonators [89], dumbbell-shaped cavity slots [90], rectangular 
resonators [91], two pairs of graphene nano-rings and a graphene nanoribbon [92], 
and a plasmonic graphene-based structure [80]. 

In this chapter, first as a case study, graphene and nanomaterial heterostructures 
(combination of plasmonic and PC structures) are used to design optical switches. 
Thereafter, to study the modulation characteristics, an optical modulator has been 
designed using plasmonic structures. Finally, the summary and conclusions are 
discussed in the last section. 

2 Graphene Optical Switch 

Optical switches are used for light routing and switching. Accordingly, they have 
found wide applications in many optical systems. On the other hand, optical switches 
can also be used for optical sensing applications. It is mainly due to the high wave-
length shifts of optical switches. Such devices have been presented in [93–95]. 
Among the most important optical structures that have found wide application for 
switching mechanisms are graphene structures. 

The optical features of graphene can be tuned by varying its Fermi level. The 
Fermi level and therefore the chemical potential (μc) and the surface conductivity 
of graphene can be changed by applying an external voltage. When the chemical 
potential is higher than the threshold value, graphene acts as a metal layer, while 
graphene can be considered as a dielectric layer for the chemical potential lower than 
the threshold value. The surface conductivity of graphene (σ ) which is composed of 
the intraband and interband parts can be calculated by the Kubo formula [96, 97]. 

σ(ω)  = σintra(ω) + σinter(ω) (1) 

where σintra and σinter are the intraband and interband transitions, respectively, and 
they can be expressed as
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where kB is the Boltzmann constant, E f demonstrates the Fermi level of graphene, h
shows the reduced Planck constant, and τ is the carrier relaxation time. In [98], all-
optical switches based on graphene plasmon structures were proposed. The general 
structure of the designed graphene plasmon switch is shown in xxx. This structure is 
composed of a novel combination of insulator–metal-insulator (IMI) and graphene 
waveguides designed in the form of a Mach–Zehnder interferometer (MZI) topology. 
In this structure, the metal material in the MZI structure is silver. The complex relative 
permittivity of silver is described by the accurate Drude–Lorentz model [99]: 

εm(ω) = 1 − ω2 
p 

ω(ω + jγ ) 
+

Σ5 

n=1 

fnω2 
n 

ω2 
n − ω2 − jωγn 

(4) 

where ωp = 2002.6 × 1012 Hz is the bulk plasma frequency of metal, γ = 11.61 × 
1012 Hz is a damping constant, ω is the angular frequency of the incident light. Also, 
values of resonant frequencies (ωn), damping constants (γ n), and weights ( f n) are 
Fig. 1 given in Table 1. The real and imaginary parts of the silver permittivity are 
shown in Fig. 2a.

The insulator material around the MZI structure is a Kerr non-linear material 
which is chosen to be GaAs. The bottom layer (black area) is a graphene layer that 
is placed on a silica substrate. The graphene permittivity is characterized by [65]: 

εg(ω) = 1 + i
(

σ(ω)  
ε0ωtg

)
(5) 

where tg is the graphene thickness, and ε0 is the permittivity of vacuum. Figure 2b 
shows the real and imaginary parts of the graphene permittivity. The structural param-
eters of the proposed optical switch (Fig. 1) are as follows: d1 = 300, d2 = 3000, d3 
= 3000, d4 = 350, d5 = 50, d6 = 500, d7 = 600, d8 = 1000, and d9 = 100 (all in 
nm). 

Figure 1 shows that there is a metal layer in the shape of an MZI above the graphene 
sheet so that the graphene region under the metal plate turns into waveguides by 
applying the DC voltage. It means that when the DC voltage is applied between two 
layers (metal and graphene), a capacitive structure in the form of the MZI is generated. 
The created capacitor is studied in two modes of DC and AC in the following. After 
applying the DC voltage, the chemical potential of the created MZI structure on the 
graphene layer modulated from 0 to 0.31 eV. Accordingly, surface plasmon waves
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GaAs 

Silver 
SiO2 

Graphene 

VDC 

x z y 

Fig. 1 General structure of the proposed all-optical graphene plasmon switch 

Table 1 Parameters of the 
Drude–Lorentz model for 
silver 

n ωn(THz) γn (THz) fn 

1 197.3 939.62 7.9247 

2 1083.5 109.29 0.5013 

3 1979.1 15.71 0.0133 

4 4392.5 221.49 0.8266 

5 9812.1 584.91 1.1133

can propagate in the graphene MZI structure, while these waves cannot excite in 
other sections of the graphene layer (μc = 0 ev). 

A. DC mode of the gate capacitor 

Figure 3a shows the order of the created capacitor layers in Fig. 1. As seen in this 
figure, two insulator materials of SiO2 and GaAs exist between the two capacitor 
plates (metal and graphene plates). It is because graphene is created by the plasma-
enhanced chemical vapor deposition (PECVD) method on a silica layer and the
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Fig. 2 Real and imaginary parts of the a silver permittivity, b graphene permittivity

non-linear material of GaAs is used for light modulation. As a result, the equivalent 
capacitance includes two series capacitors. Such an equivalent capacitance can be 
obtained as 

Cox = 1 
1 

CSiO2 
+ 1 

CGaAs 

= ε0 
dnm 
SiO2 

ε Si O2 
r 

+ d
nm 
GaAs 

εGaAs r 

(6) 

As seen in Eq. 6, the capacitance value depends on four parameters of the heights 
of the insulator layers (dnm 

SiO2 
and dnm 

GaAs) and the permittivity values of the insulator 
materials (εSiO2 

r and εGaAs r ). To achieve the appropriate dimensions of the two insulator 
materials (dnm 

SiO2 
and dnm 

GaAs), the vertical propagation length of the generated surface 
plasmon waves in the main and control waveguides (graphene and metal waveguides)
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Fig. 3 a Order of the created capacitor layers in Fig. 1, b light penetration depth of the graphene 
(main) waveguide, c light penetration depth of the metal (control) waveguide 
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should be considered. The penetration depth in z-direction for two waveguides is 
shown in Figs. 3b and c. According to Figs. 3b and c, the values more than 500 and 
20 nm should be considered for the heights of GaAs and SiO2 layers, respectively. 
It is because of two reasons. First, existing the possibility of light modulation in 
the metal waveguide and secondly avoiding interferences between the two main and 
control waveguides. 

As mentioned, two parameters of the permittivity values of SiO2 and GaAs 
also affect the capacitance value. As a result, the εSiO2 

r and εGaAs r values should 
be determined. In all conditions, the permittivity of SiO2 is constant and equal to 3.9. 
Therefore, the capacitance value can be expressed as 

Cox = εGaAs r ε0 
20 nm+d1 

3.9 × εGaAs r + 500 nm + d2 
(7) 

when light is not modulated inside the GaAs material, the permittivity of GaAs is 
equal to 12.9. By considering dnm 

SiO2 
= 100 and dnm 

GaAs = 500 nm, the DC gate capacitor 
can be calculated from Eq. 7. The obtained CDC 

ox is equal to 137.4 μf, which refers 
to chemical potential. The calculation procedure shows that the material type of the 
non-graphene gate is not important in this section. To achieve a chemical potential 
of 0.31 eV in graphene MZI structure, the applied voltage value can be calculated 
from Eq. 8 which is equal to 82 v. 

|VDC| =
(

e 

πCDC 
ox

)(
μc

hv f

)2 

(8) 

In addition, by applying the obtained DC voltage, the gate capacitance should be 
equal to 128.8 μf for the chemical potential of graphene to be equal to 0.3 eV. This 
change in capacitance value is created by the light modulation in the AC mode of 
the gate capacitor. 

B. AC mode of the gate capacitor 

The use of surface plasmons between the non-graphene capacitor plate and insulator 
material is one of the techniques to change the capacitance value. The important 
point is that the calculation of the capacitance changes the chemical potential level 
in switching structure. In the micrometer frequency range, the refractive index of 
GaAs changes as. 

n2 − 1 = 4.372514 + 5.466742 λ2 

λ2 − (0.4431307)2 

+ 0.0242996 λ2 

λ2 − (0.8746453)2 
+ 

1.957522 λ2 

λ2 − (36.9166)2
(9) 

The permittivity variations of GaAs versus wavelength are shown in Fig. 4a. This 
figure is obtained from Eq. 9. The wavelength range of 1150–1550 nm is among
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the most important frequency ranges in telecommunication applications and optical 
integrated circuits. Consequently, this range is considered for GaAs permittivity vari-
ations. The capacitance value in the range of 1150–1550 nm is calculated using Eq. 8 
and its variations are shown in Fig. 4b. Also, Fig. 4c shows the relationship between 
the wavelength of the control waves and the variation of the chemical potential. Based 
on the obtained results, the best wavelength for the control light is equal to 1300 nm. 

After studying the created capacitor in two DC and AC modes, the operation of the 
proposed optical switch based on the main and control waveguides is investigated in 
the following. As mentioned above, the main waveguide includes air, graphene, and 
silica layers. Figure 5 shows this structure. In this figure, control light is not applied 
to the structure. Accordingly, the chemical potential of the total MZI structure is 
0.31 eV. It is worth mentioning that the chemical potential of other places (black 
places) of the graphene layer is equal to 0 eV. 

Figure 6 shows the field profile of the main waveguide by applying the main 
light source. As seen in Fig. 6, when the chemical potential level of two arms of the

Fig. 4 a GaAs permittivity, b variations of the waveguide capacitance, and c variations of the 
chemical potential for the proposed switch 

Fig. 5 Main waveguide of 
the optical switch (Fig. 1) 

x 

y 

z 
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Fig. 6 Field profile of Ex at 1.42 μm for the main waveguide (with the chemical potential of 
0.31 eV for both arms) 

MZI structure is the same, the phase difference of waves between these two arms 
is 0 degrees. Consequently, the waves can transmit to the output port of the MZI 
structure. 

The next is that the main and control light sources be applied, simultaneously. In 
this case, the control signal induces the Kerr effect in the non-linear medium (GaAs 
material) and one of the arms has a different chemical potential compared to the 
whole main waveguide. Figure 7 shows the mechanism of wave propagation for the 
different chemical potential levels for the two arms of the main waveguide (0.31 eV 
for the upper arm and 0.3 eV for the lower arm). As seen, after spending almost 2 
μm from the arms, the phase difference of waves between two arms is equal to 180 
degrees. Accordingly, the waves cannot be transmitted to the output port. 

To provide a better view of the switching operation of the proposed optical switch, 
the transmission spectra of the main waveguide for the same and different chemical 
potentials of two arms have also been presented in Fig. 8. By comparison of two 
cases (Figs. 8a and b), the wavelength range of 1300–1700 nm is the best range for 
the main waves. It is because, in this wavelength range, the transmittance values 
are more than 40% and less than 10% for the identical and unequal waveguides, 
respectively.

Based on the obtained results, to achieve a phase difference of 180° between two 
arms of the graphene MZI structure, it is needed that a suitable control waveguide 
be designed. In other words, the control light should affect only one of the arms. For

Fig. 7 Field profile of Ex at 1.42 μm for the main waveguide (with the chemical potential of 
0.31 eV for the upper arm and 0.3 eV for the lower arm) 
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Fig. 8 Transmission spectrum of main waveguide for a the same chemical potentials of two arms, 
b the different chemical potentials of two arms

this purpose, two different techniques are proposed. The first one is that by grating 
one of the arms, the propagation of the surface plasmons is prevented to this arm. 
Figure 9a shows this structure (switch I). The presented structural parameters in this 
figure are as follows: d10 = 500, d11 = 750, d12 = 20, and d13 = 500 (all in nm). In the 
second technique, different plasmon frequencies are used for two arms of the metal 
MZI structure. Accordingly, one of the MZI arms is filled with vanadium material. 
The proposed structure (switch II) is shown in Fig. 9b. In the following, each of the 
mentioned methods has separately been studied. 

Figure 10 shows the field profiles of the proposed switch I for both arms (simple 
and grating arms) with two main and control light sources. As seen in Fig. 10a, the 
waves can propagate through the simple arm. For the grating arm, the incident light 
cannot reach the end of the arm. Also, Fig. 11 shows the transmission spectra of the

VDC 

x z y x z y 

VDC 

(a)                                                                                   (b)  

GaAs 
Silver 
SiO2 
Graphene 
Vanadium 

Fig. 9 The proposed all-optical graphene plasmon switch using a control waveguide with a a 
grating structure in one of the arms (switch I), b different metal material in one of the arms (switch 
II) 
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main waveguide for the simple and grating arms. As seen, the transmission value for 
the simple and grating arms are almost equal to 55% and 2%, respectively. Although 
the first proposed structure (switch I) has a suitable switching operation, it should be 
noted that the designed structure has some drawbacks. First of all, light propagation 
cannot be stopped at the beginning of the grating arm and it passes about to 1 μm 
of the arm. Secondly, due to the small size of the d12, the fabrication process of this 
structure is difficult. Therefore, the second method has also been proposed (Fig. 9b). 

As mentioned above, in the second method (switch II), two different metal mate-
rials of silver and vanadium which have different plasmon frequencies are used for 
two arms of the control waveguide. Due to the good electrical conductivity of vana-
dium, this metal is replaced in one of the silver arms. This causes that the incident 
light cannot propagate at the boundary of GaAs-vanadium. Figure 12 shows the field 
profile of this case. As seen, light propagation can be stopped at the beginning of the 
vanadium MZI arm.
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3 Nanomaterial Heterostructures-Based Switch 

To benefit from the advantages of different optical structures, the combination of such 
structures can be used to design optical switches. The idea of using two different 
optical structures (plasmonic and PC configurations) has been used to design an 
all-optical switch in [100]. The design process of the proposed switch in [100] is  
discussed in the following. 

The proposed heterostructure all-optical switch is shown in Fig. 13. As seen in this 
figure, the 1D PC structure used in this configuration is located at the intersection of 
MIM plasmonic and insulator waveguides. The insulator and metal materials in the 
horizontal MIM plasmonic waveguides are air and silver, respectively. The complex 
relative permittivity of silver is described by the Drude–Lorentz model (Eq. 4) [101]. 
In addition, the material used in the insulator waveguides is assumed SiO2. 

Air 
Silver 
SiO2 

Kerr 1 
Kerr 2 

xy z 

Fig. 13 Proposed heterostructure all-optical switch
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The zoomed view of the central section of the proposed switch (PC section) is 
shown in Fig. 14a. This 1D PC structure is composed of the alternating non-linear 
insulator layers with the high refractive index of nH = 3.4 (layers with the thickness 
of l1) and the low refractive index of nL = 1.77 (layers with the thickness of l2). The 
structural parameters of the proposed switch are as follows: l1 = 120, l2 = 290, l3 
= 700, l4 = 100, and l4 = 3836 (all in nm). Also, the lattice constant of the 1D PC 
structure is l which is equal to l = l1 + l2. 

The obtained band diagram of the used 1D PC structure using the plane wave 
expansion (PWE) method is shown in Fig. 14b. As seen, there is a PBG at the wave-
length range of extended from 1534 to 2320 nm. To verify the performance of the used 
1D PC structure, its transmission spectrum is also obtained using the finite-difference 
time-domain (FDTD) method (Fig. 14c). It can be seen that the transmission value is 
equal to zero at the mentioned PBG wavelength range. Accordingly, the sharp edges 
of the created PBG can be used for the switching mechanism. Based on the obtained
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Fig. 14 a Proposed structure of 1D PC, b its band diagram, c its transmission spectrum 
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Fig. 15 Transmission spectrum of the proposed switch (Fig. 13) a from Input 1 to Output 1, b from 
Input 2 to Output 2 for TM mode, and c from Input 2 to Output 2 for TE mode 

results, the horizontal and vertical waveguides (MIM plasmonic and insulator waveg-
uides) are used for data and control signals, respectively. Suitable isolation between 
two signals can be achieved using this method. 

After investigating the performance of the used 1D PC structure located at the 
center of the proposed topology (Fig. 13), the switching mechanism of the designed 
all-optical switch is studied. For this purpose, the transmission spectra of the designed 
switch for data (from Input 1 to Output 1) and control signals (from Input 2 to Output 
2) are obtained. Figure 15a shows the transmission spectrum of the data signal when 
only the data signal source (located at Input 1) is “on”. As seen, the created sharp 
PBG edge (low edge) can be selected for the data wavelength. Also, the transmission 
spectra of the control signals for TM and TE modes are shown in Figs. 15b and c, 
respectively. In this case, only the control signal source (located at Input 2) is applied. 
As seen in Fig. 15b and c, the wavelengths of 1606 and 1427 nm for fundamental 
TM and TE modes can be suitable choices for the control wavelengths. It is because 
these two wavelengths can propagate from Input 2 to Output 2 almost completely 
and they are located at the PBG of the data signal. 

At the next step, both data and control signal sources are simultaneously applied to 
Input 1 and Input 2, respectively. In this case, the refractive indexes of Kerr materials 
(Kerr 1 and Kerr 2) change, and the transmission spectrum of the data signal shifts 
to higher wavelengths. According to the used Kerr material type, three situations can 
occur. These three situations are as follows: 

A. Situation 1: n2L >> n2H 

When the non-linear refractive index coefficient (n2) of the wide layers (layers with 
the thickness of l2 and the refractive index of nL) is much more than the narrow layers 
(layers with the thickness of l1 and the refractive index of nH ), only the refractive 
indexes of the wide layers change. As a result, in this situation, the data transmittance 
shift is only due to the refractive index changes of nL. This case is shown in Fig. 16a. 
As seen by changing the refractive index of nL (ΔnL = 0.01 and ΔnH = 0), the data 
signal can propagate to the output port. In other words, the transmittance value at the
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Fig. 16 Transmission spectra of the proposed switch (Fig. 13) without and with control signal 
source for a situation 1, b situation 2, and c situation 3 

data wavelength (1429 nm) increases from 0.15 (blue curve) to 0.698 (red curve). 
As a result, the switching operation can occur in this case. 

B. Situation 2: n2H >> n2L 

Based on the mentioned explanations in the previous case, when n2H >> n2L, the data 
transmittance shift is only caused by the refractive index changes of nH . Figure 16b 
shows this case (ΔnH = 0.01 and ΔnL = 0). As seen in this figure, by increasing the 
refractive index of nH , the data signal shift is very imperceptible. Accordingly, the 
switching operation cannot occur in this case. 

C. Situation 3: n2H ≃ n2L 

In the last situation, the non-linear effect in the narrow layers is equal to the non-
linear effect in the wide layers of the PC structure. Consequently, by applying the 
control signal source, both refractive indexes of nH and nL increase, simultaneously. 
This case is shown in Fig. 16c (ΔnH = 0.01 and ΔnL = 0.01). This figure shows 
that the transmittance value of the data signal increases from 0.15 to 0.7, and the 
switching operation occurs. 

To give a better view of the refractive index changes on the switching mechanism 
of the proposed structure, the field profiles of Ey magnitude for two moods of “off” 
and “on” states of the designed switch are presented in Fig. 17. As seen in Fig. 17a, 
when only the data signal source is applied, the data wavelength cannot propagate 
from Input 1 to Output 1. In other words, the designed switch is at the “off” state. 
As reviewed, by applying two data and control signal sources for two situations 1 
and 3, the switching operation can occur. The field profiles of the two situations are 
shown in Fig. 17b and c, respectively. As seen in these figures, the incident light can 
pass through the structure in these cases.

After investigating the general switching operation of the proposed structure, its 
switching mechanism is studied using practical Kerr materials with the mentioned 
properties. Transmission spectra of the designed switch using different practical Kerr 
materials are shown in Fig. 18. In the first, second, and third switches (S1, S2, S3), the 
Kerr materials with the non-linear properties of n2(CS2) ≃ n2(Si), n2(AuSiO2) >> n2(GaAs),
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nL=1.77,  nH=3.4               Switch Off                    

nL=1.78,  nH=3.4              Switch On 

nL=1.78,  nH=3.41             Switch On 

(a) 

(b) 

(c) 

Fig. 17 Field profile of
|
|Ey

|
| at the data wavelength (1429 nm) a with only data signal source (“off 

state”), b with both data and control signal sources for situation 1 (“on state”), and c with both data 
and control signal sources for situation 3 (“on state”)

and n2(GGS-Au10) ≃ n2(Si) are used, respectively. Also, Table 2 shows the features of 
such switches. As seen in this table, based on the transmittance values of the “on” 
and “off” states of such switches (Ton and Toff), the switching operation occurs in all 
three cases.

To provide a better view of the proposed switch operation, its time-domain 
behavior is also presented. In this section, two non-linear Kerr materials with the 
refractive indexes of 1.77, 3.4 and the χ(3) values of 2 × 10–18, 4.8  × 10–18 m2/v2 

are used to fill the PC structure to achieve an all-optical switch. Figures 19a shows  
the time-domain data and control signal sources inserted into the input ports (Input 1 
and Input 2) of the proposed switch. Here, the wavelengths of the data signal and the 
control signal (fundamental TE mode) are chosen 1926 and 1427 nm, respectively.

As seen in Fig. 19a, the data signal source is a continuous-wave signal. Also, the 
time-domain control signal source is a continuous-wave signal with an input power 
of 29.3 MW/cm. This signal is at the “on” state from 2.75 to 4.25 ps. The transition 
time of 500 fs is considered for the rising and falling edges. Figure 19b shows  the  
time-domain output signal derived from data and control input sources. As seen, 
when only the data signal source is on, the output power is more than 0.6. In 2.75 to
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Fig. 18 Transmission spectra of the proposed switch (Fig. 13) without and with control signal 
source for two Kerr materials of a CS2, Si,  b AuSiO2, GaAs, and c GGS-Au10, Si
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Table 2 Mechanism of the heterostructure all-optical switch (Fig. 13) with different Kerr materials 

Switch Kerr 
material 

n0 n2 (cm2/w) χ(3) (m2/v2) λd (nm) Ton Toff I (MW/cm2) 

S1 CS2 
Si 

1.63 
3.5 

0.3 × 10–13 
0.43 × 
10–13 

4 × 10–20 
2.8 × 10–19 

1359 0.525 0.09 232,000 

S2 AuSiO2 
GaAs 

1.47 
3.4 

2.7 × 10–9 
1.59 × 
10–13 

2.37 × 10–15 
9.7 × 10–19 

1189 
1242 
1837 

0.692 
0.454 
0.53 

0.14 
0.06 
0.16 

22.2 

S3 GGS-Au10 
Si 

2 
3.5 

1.8 × 10–13 
0.43 × 
10–13 

3.8 × 10–19 
2.8 × 10–19 

1571 0.72 0.19 66,600
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Fig. 19 Time-domain representations of a data and control signals, b output signal for the proposed 
heterostructure all-optical switch

4.25 ps (when both data and control signal sources are on), the transmitted power to 
the output port decreases. The main drawback of the time-domain output signal is 
its low contrast ratio value. To improve the contrast ratio value, a suppression filter 
should be added to the output port which is discussed in the following. 

Figure 20 shows the proposed heterostructure all-optical switch with its suppres-
sion filter. The designed filter is composed of seven unequal stubs coupled to a MIM 
plasmonic waveguide. The structural parameters of the designed suppression filter
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Fig. 20 Proposed heterostructure all-optical switch with the suppression filter at the output port 

are as follows: s1 = 400, s2 = 360, s3 = 320, s4 = 280, s5 = 240, s6 = 200, s7 = 
160, w1 = w2 = 50 (all in nm). 

Figure 21 shows the time-domain input and output signals of the proposed 
heterostructure all-optical switch with the suppression filter at the output port 
(Fig. 20). It is worth mentioning that the data and control input signals are similar to 
Figs. 19a. As seen, here the switching operation also occurs, but the output power for 
the “off” state reduces due to the existence of the suppression filter. As a result, the 
contras value increases. Figure 21b shows that the values of the rise and fall times 
are equal to 250 fs.

To achieve higher transmittance values in edges and out of the PBG, tapered 
resonators are added to the first proposed all-optical switch. The schematic of the 
improved proposed all-optical switch is shown in Fig. 22. The values of the structural 
parameters of the tapered resonators are equal to d6 = 117 and d7 = 250 nm. Other 
parameters have been already explained.

The transmittance spectra of the data and control signals are shown in Fig. 23. 
According to Fig. 23a, the transmittance values in all of the wavelengths (obviously, 
except for the PBG) increase. Increasing the transmittance values in the PBG edges 
provides all-optical switches with more transmittance values for the “on” state which 
is because there is more coupling strength between MIM plasmonic waveguides and 
the PC structure in this all-optical switch. As known, there is a trade-off between 
designing parameters of all-optical switches. Increasing the coupling effect between
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Fig. 21 Time-domain representations of a data and control signals, b output signal for the proposed 
heterostructure all-optical switch with the suppression filter at the output port
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Fig. 22 Improved proposed heterostructure all-optical switch
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MIM plasmonic waveguides and PC leads to slower sharpness in transition from the 
maximum transmittance to the minimum transmittance. 

Since the existing coupling between the insulator waveguides and PC structure 
does not change, the transmittance spectrum of the pump signal (from Input 2 to 
Output 2) is similar to the previous all-optical switch (Figs. 15b and c). Here the 
switching mechanism of the improved proposed all-optical switch for different three 
situations is also investigated. 

Figure 24 shows the transmittance spectra for three different situations including 
n2L >> n2H, n2H >> n2L, and n2L ≈ n2H for the improved proposed all-optical switch. 
As mentioned, for two modes of n2L >> n2H (Fig. 24a) and n2L ≈ n2H (Fig. 24c) 
the switching operation occurs. In contrary, the switching operation for n2H >> n2L 
cannot be obtained (Fig. 24b). Because the higher refractive index layers have a lower 
effect on the data signal transferring from Input 1 to Output 1. It should be noted that 
due to the lower sharpness of the PBG edges for the improved proposed all-optical 
switch, more control light intensity is needed to increase the refractive index of Kerr 
layers by a value of 0.02. 
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Fig. 23 Transmission spectrum of the improved proposed switch (Fig. 22) a from Input 1 to Output 
1, b from Input 2 to Output 2 for TM mode, and c from Input 2 to Output 2 for TE mode 
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Fig. 24 Transmission spectra of the improved proposed switch (Fig. 13) without and with control 
signal source for a situation 1, b situation 2, and c situation3
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The switching wavelength for the improved proposed all-optical switch in 
Figs. 24a and c is equal to 1432 nm. The maximum transmittance values at the 
“on” state of the improved all-optical switch are equal to 0.74 and 0.735 for situ-
ation 1 (Fig. 24a) and situation 2 (Fig. 24c), respectively. Also, the transmittance 
value at the “off” state of the switch is equal to 0.185 which is close to zero. Finally, 
providing suitable isolation between data and control signals, and requiring lower 
control intensities cause that the proposed structure can be a good candidate to use 
in other integrated optical circuits. 

4 Modulation Characteristics 

To bring electrical signals to the optical domain, optical systems usually require 
an optical modulator. As a result, optical modulators have found wide application 
in many optical systems. In optical modulators, by applying the control signal, the 
phase, frequency, or amplitude of the data signal can be modulated. This mechanism 
can produce phase modulators, frequency modulators, and amplitude modulators, 
respectively. In addition, the classification of optical modulators is performed based 
on the different methods which are used to design them. These methods are the 
electro-optic method [102, 103], thermo-optic method [104], and exploration of 
non-linear effects [105]. Since the optical nonlinearity is used for the active control 
of optical signals in all-optical modulators, such modulators have high modulation 
speeds. Consequently, numerous optical topologies have been used to design all-
optical modulators so far [106–108]. The main drawbacks of the most designed 
optical modulators in the literature can be summarized as follows. First, in most of 
them, the time-domain behaviors of modulators have not been investigated. However, 
to prove the correct operation of modulators, it is necessary to present time-domain 
simulations when the non-linear Kerr effect is used. Also, most of them use a common 
path for both data and control signals, while an ideal modulator should be able to 
provide suitable isolation between the data and control signals. 

One of the most applied optical structures to design optical modulators is plas-
monic structures. In [109], a novel and simple topology has been proposed to design 
a plasmonic all-optical amplitude modulator. In this structure, it is tried to reform 
the mentioned disadvantages. The step-by-step designing procedure of the designed 
all-optical amplitude modulator is investigated in the following. 

Figure 25 shows the proposed structure of the designed basic filter which is used to 
the realization of the proposed all-optical modulator. As seen in this figure, the filter 
structure consists of a non-linear nano-disk resonator, surrounded by a silicon ring-
shaped resonator which is located inside a circular air resonator, and a horizontal MIM 
plasmonic waveguide. The metal and Kerr materials used in this structure are silver 
and InGaAsP, respectively. Silver is characterized by a comprehensive and accurate 
Drude–Lorentz model (Eq. 4). Also, the third-order non-linear susceptibility (χ(3)) 
and the linear dielectric constant (ε0) of the Kerr material (InGaAsP) are equal to
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1×10−18 m2 

V2 and 2.25, respectively. The structural parameters values of the proposed 
filter are as follows: r1 = 517, r2 = 570, r3 = 650, and w = 50 (all in nm). 

Figure 26a shows the transmission spectrum of the designed basic filter using 
FDTD simulations in the wavelength range of 600–1000 nm. As seen in this figure, the 
transmission spectrum has several resonance modes due to the presence of different 
resonance wavelengths at the designed resonator. Based on the obtained results, two 
of the generated resonance modes should be chosen for the data and control signals. 
Since it is needed that the control signal should pass almost completely through the 
structure and have gradual transitions, the resonance mode located at the wavelength 
of 702 nm can be a suitable choice for the control signal. Figure 26b shows  the  
zoomed view of the selected control mode. Furthermore, the data signal should have 
a sharp edge and a high difference between its notch and peak transmittances values. 
Therefore, the Fano resonance mode located at the wavelength of 702 nm is selected 
for the data signal. The zoomed view of this signal is also shown in Fig. 26c. 
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Fig. 25 Proposed structure of the designed basic filter 
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Fig. 26 a Transmission spectrum of the designed basic filter, b zoomed view of the selected mode 
for the control wavelength, and c zoomed view of the selected mode for the data wavelength
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Fig. 27 Field profile of Re (Hz) for the basic filter at the resonance mode of a 702 nm and b 878 nm 

As mentioned above, the goal of this design is that two isolated paths be used 
for data and control signals. As a result, it is needed that there be another waveg-
uide to pass the control signal. Due to the symmetrical structure of the proposed 
resonator, another waveguide can be vertically coupled to the resonator. Accord-
ingly, the selected data and control modes that pass through the horizontal and vertical 
waveguides, respectively should guarantee minimum cross-talk between two waveg-
uides. For this purpose, the field profiles of the basic filter at the selected data and 
control wavelengths are studied. 

Figure 27a and b shows the field profiles of the proposed basic filter at the wave-
lengths of 702 and 878 nm, respectively. As seen, both data and control wavelengths 
have even and odd symmetry along the horizontal and vertical axes, respectively. 
Therefore, each of the two selected wavelengths can pass through a waveguide 
(horizontal or vertical) without any leakage to another waveguide. 

By adding the vertical waveguide to the basic filter, an all-optical amplitude 
modulator can be designed. Figure 28 shows the general structure of the proposed 
all-optical amplitude modulator. As seen in this figure, the horizontal and vertical 
waveguides are considered to pass the data and control signals, respectively. Using 
this method, an all-optical amplitude modulator with suitable isolation between the 
data and control signals can be achieved.

The transmission spectra of the data signal (from Data input to Data output port) 
with only the data signal source and control signal (from Control input to Control 
output port) with only the control signal source are shown in Fig. 29a and b, respec-
tively. It is worth mentioning that the transmittances of the data and control signals 
be compared with the selected data and control signals of the basic filter in these 
figures. As seen, the transmission spectra of the designed modulator almost match 
the transmittances of the basic filter. In other words, the data and control wave-
lengths pass through the horizontal and vertical waveguides, respectively without 
any leakage. The next step to investigate the modulation operation of the proposed 
amplitude modulator is that the data and control signal sources be applied, simul-
taneously. This case is shown in Fig. 29c. As seen in this figure, the transmittance
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Fig. 28 Proposed structure of the all-optical amplitude modulator

value of the data wavelength (878 nm) modulates from 1.2 to 72.2% by applying the 
control signal source. It is because the control signal induces the Kerr effect in the 
non-linear medium. 

The field profile of Hz magnitude is also shown in Fig. 30 to clarify the operating 
mechanism of the proposed amplitude modulator. Figure 30a shows that the data 
wavelength cannot transmit to the output port by applying only the data signal source.
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Fig. 29 Transmission spectra of a the proposed modulator (from Data input to Data output) with 
only data signal source and basic filter, b the proposed modulator (from Control input to Control 
output) with only control signal source and basic filter, and c the proposed modulator with both 
signal sources 
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In addition, as expected, by applying only the control signal source, the control 
wavelength can propagate through the structure. As discussed, the data wavelength 
can pass through the structure in the presence of both data and control signal sources. 
Figure 30c shows this case.

After designing the proposed all-optical amplitude modulator, to provide a better 
view of the designed modulator operation, its time-domain behavior is presented. 
For this purpose, the values of the input power of the data and control signal sources 
need to be specified. To determine the input power of the data signal source (Pdata), a 
continuous wave at the wavelength of 878 nm is applied to Data input port. Figure 31a 
shows the normalized transmission of the data signal versus the variations of Pdata 

(input power of the data signal source). As seen in this figure, when Pdata increases 
from 0.195 to 0.78 W/μm, the maximum normalized transmission value does not 
change significantly, while by increasing Pdata higher than 0.78 W/μm, the maximum 
normalized transmission value starts to increase. As discussed, the data wavelength 
cannot propagate through the Data output port by applying only the data signal 
source. As a result, the best value for the input power of the data signal source is 
equal to 0.78 W/μm.

To adjust the input power of the control signal source (Pcontrol), the data and control 
signal sources are applied to the input ports (Data and Control input ports), simulta-
neously. The control signal source is a continuous-wave signal at the wavelength of 
702 nm. The variations of the extinction ratio for different values of Pcontrol are also 
shown in Fig. 31b. The extinction ratio of the proposed amplitude modulator can be 
defined as 

ER  = 10 log 
Ton 
Toff 

(10) 

where Ton and Toff are the transmittances in the presence and absence of the control 
signal source, respectively. As seen in Fig. 31b, the extinction ratio increases initially 
and then decreases by increasing Pcontrol. Therefore, Pcontrol = 34.3 W/μm for  the  
highest extinction ratio value of 18.53 dB is an appropriate choice for designing the 
proposed amplitude modulator. 

After determining the input power of the data and control signal sources (Pdata 

and Pcontrol), the time-domain behavior of the output signal is studied. The time-
domain data and control signal sources inserted into the proposed modulator are 
shown in Fig. 32a and b, respectively. Figure 32a shows that the data signal source 
be a continuous-wave signal at the data wavelength of 878 nm with the selected 
input power of 0.78 W/μm. In addition, the time-domain control signal source is a 
continuous-wave signal at the control wavelength of 702 nm and the input power of 
34.3 W/μm. As seen in Fig. 32b, this signal is “off” from 0 to 4 ps and 8 to 12 ps 
and it is “on” from 4.5 to 7.5 ps. The transition time of 500 fs is considered for the 
rising and falling edges.

The time-domain output signal derived from data and control signal sources is 
shown in Fig. 32c. As seen in this figure, in 0 to 4 ps and 8 to 12 ps (when only the data 
signal source is “on”), the output power is close to zero. When both data and control
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Fig. 30 Field profile of Re 
(Hz) at a the data 
wavelength of 878 nm with 
only the data signal source, b 
the control wavelength of 
702 nm with only the control 
signal source, and c the data 
wavelength of 878 nm with 
both data and control signal 
sources
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Fig. 31 The transmittance of the data wavelength for different values of Pdata, b the extinction ratio 
of the output signal for different values of Pcontrol

sources are “on” (in 4.5 to 7.5 ps), the amplitude of the data signal increases. In other 
words, the modulation operation occurs by applying the control signal source. 

An important point for designing optical modulators is that the control signal 
should modulate the data signal and should not leak to the output port. For this 
purpose, the Fourier transform of the time-domain output signal is also obtained 
(Fig. 33). As seen in Fig. 33, the control wavelength of 702 nm leaks to the output 
port. Consequently, the control wavelength should be filtered at the output port.

Figure 34 shows the designed suppression filter and its transmission spectrum. 
This filter is composed of five unequal stubs coupled to a MIM plasmonic waveguide. 
The structural parameters of the proposed suppression filter are as follows: a1 = 100, 
a2 = 97, a3 = 94, a4 = 91, a5 = 88, w = 60, and g = 100 (all in nm).

The transmission spectrum of the suppression filter (Fig. 34b) shows that the data 
wavelength can pass through the designed filter, while the control wavelength is 
blocked to the output port. As a result, by coupling the suppression filter at the Data
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Fig. 32 Time-domain representations of a data signal, b control signal, and c output signal for the 
proposed all-optical amplitude modulator (Fig. 28)

output port of the proposed modulator, the control wavelength cannot propagate at the 
output port. The operating mechanism of the suppression filter can be also explained 
by presenting the field profile. Figure 35 shows the field profile of Re (Hz) at both 
wavelengths of 702 and 878 nm. As seen, there is no light transmission between the 
input and output ports at the wavelength of 702 nm, while the incident light at the 
wavelength of 878 nm can pass through the plasmonic suppression filter.

By the combination of the designed all-optical amplitude modulator (Fig. 28) and 
suppression filter (Fig. 34a), the improved all-optical amplitude modulator is formed. 
Figure 36 shows this structure.
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Fig. 33 Fourier transform of the time-domain output signal for the proposed all-optical amplitude 
modulator (Fig. 28)
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Fig. 34 Proposed structure of the suppression filter, b its transmission spectrum
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Fig. 35 Field profile of Re (Hz) at the wavelength of a 702 nm b 878 nm
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Fig. 36 Proposed structure of the improved all-optical amplitude modulator 

Here, the time-domain behavior of the improved modulator is also investigated. 
The continuous-wave signals for the data and control signal sources are shown in 
Fig. 36a and b, respectively. As seen, such signals are similar to Fig. 32a and b. 

Figure 36c shows the output signal derived from these two input signals. As seen 
in this figure, the amplitude modulation with a lower output power value also occurs 
in this case. It is because of the existence of the suppression filter at the output port.
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To better analyze the results, the Fourier transform of the output time-domain 
signal of Fig. 37c is presented in Fig. 38. As seen, after adding the suppression 
filter which passes the data wavelength and prohibits the propagation of the control 
wavelength, only the data wavelength can transmit to the output port. As a result, the 
mentioned problem is solved using this method (coupling the suppression filter and 
all-optical modulator). 
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Fig. 37 Time-domain representations of a data signal, b control signal, and c output signal for the 
proposed improved all-optical amplitude modulator (Fig. 36)
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Fig. 38 Fourier transform of the time-domain output signal for the proposed improved all-optical 
amplitude modulator (Fig. 37) 

5 Summary 

Since the discovery of optical structures and initial studies on the optical switches 
for optical sensing, there have been a lot of publications to the literature on this topic, 
far more than those cited here. Optical switches can be good candidates for optical 
sensing applications. In this chapter, some of the publications have been studied. 
Finally, the main properties of the discussed structures in the previous sections are 
given in Table 3. Such features are the setup and topology of the optical devices, 
their mechanism operation, dimensions (2D/3D), and isolated waveguides. Also, it 
has been investigated whether the time-domain simulations are performed or not. In 
summary, based on the mentioned properties, these structures have the potential to 
be used as optical sensors. 

Table 3 Summary of optical structures performance 

Refs. Setup Topology Mechanism 
operation 

2D/3D Isolated 
waveguide 

Time 
simulation 

Armaghani 
et al. [98] 

Graphene 
and 
plasmonic 

MZI All-optical 
switch 

3D Yes Yes 

Khani et al. 
[100] 

Plasmonic 
and PC 

Cross 
waveguides 

All-optical 
switch 

2D Yes Yes 

Khani et al. 
[109] 

Plasmonic Disk 
resonator 
and cross 
waveguides 

All-optical 
amplitude 
modulator 

2D Yes Yes
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Empirical, Statistical, and Machine 
Learning Techniques for Predicting 
Surface Settlement Induced 
by Tunnelling 

Chia Yu Huat, Danial Jahed Armaghani, Ehsan Momeni , and Sai Hin Lai 

Abstract Tunnels have been constructed in many countries around the world for 
different purposes, such as the metro system to mitigate traffic congestion. Since 
the construction of urban tunnels is typically conducted at shallow depths, specific 
concerns such as structural damage inevitably arise. Surface settlement induced by 
tunnelling is one of the common problems encountered during and after tunnelling 
construction. Therefore, accuracy in the prediction of surface settlement induced by 
tunnelling is important to prevent damage to the existing structures. Several methods 
have been previously proposed to compute tunnelling-induced surface settlement, 
such as empirical, numerical, laboratory, statistical, and machine learning. Each of 
these models has advantages and disadvantages. This study deeply investigates the 
available techniques to estimate settlement induced by tunnelling and reviews the 
most important findings and solutions. Among the existing techniques, machine 
learning seems to be the most suitable and accurate in estimating settlement induced 
by tunnelling. These techniques, with their behind calculations and assumptions, are 
able to identify the best relations between independent and dependent parameters 
and, therefore, to solve complex and non-linear problems. The discussion provided 
in this study can be useful to those who are interested to conduct research or design 
in the same field.
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Notation 

S Surface settlement in the transverse section at a distance 
Smax Maximum surface settlement 
x Distance from the centreline of the tunnel 
i Point of inflection (settlement through) 
Vs Volume loss of the soil in m3/m 
D Tunnel diameter 
C Tunnel cover 
P Pillar width 
Q Diagonal distance between the tunnel 
Sv (x) Transverse surface settlement of twin tunnelling 
x1 Distance from the centreline of the first tunnel 
ix Point of inflection (settlement through) for 1st or 2nd tunnel 
z Tunnel depth axis 
k Empirical constant 
Z' Depth of the calculated settlement trough from the surface settlement 
R Tunnel radius 
Smod (x) Modified surface settlement 
F Modification factor 
d Distance between tunnel from center to center 
A Multiple of ix for full trough width. 
M Maximum modification factor 
α Coefficient of the construction 
Sm Mean settlement directly above the tunnel 
β Laboratory test constant 
γ Laboratory test constant 
y Output variable 
an Regression coefficient 
x'
n Independent variable 

c' Constant 
c Soil cohesion 
Φ Soil friction angle 
E Soil elastic modulus 
V Penetration rate 
F' Thrust force 
P Grouting pressure 
n Percentage of grout fill 
HR Horizontal to vertical stress ratio 
EI lining Flexural stiffness of tunnel lining
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Egrout Elastic modulus of grout 
ML Machine Learning 
VL Volume loss of the soil in % 
NATM New Austrian Tunnelling Method 
EPBM Earth Pressure Balance Machine 
CCM Convergence-Confinement method 
MLR Multiple Linear Regression 
SC Soft Computing 
GP Genetic Programming 
GEP Gene Expression Programming 
ANN Artificial Neural Network 
FL Fuzzy Logic 
GA Genetic Algorithm 
BP Back Propagation 
RMSE Root Mean Square Error 
R Correlation coefficient 
ANFIS Adaptive Neuro-Fuzzy Inference System 
PSO Particle Swarm Optimisation 
MR Multiple Regression 
FS Fuzzy System 
PCA Principal Component Analysis 
TBM Tunnelling Boring Machine 
POD Proper Orthogonal Decomposition 
ANFIS-PC Adaptive Neuro-Fuzzy Inference System-Principal Component 
BPNN Back Propagation Neural Network 
GRNN General Regression Neural Network 
ELM Extreme Learning Machine 
SVM Support Vector Machine 
RF Random Forest 
FCM Fuzzy C Means Clustering 
RSE Relative Strength of Effects 
TGML Theory-Guided Machine Learning 
IBM International Business Machines 

1 Introduction 

A tunnel is a cross-sectional structure with the opening driven through the soil, 
rock mass, or mixture [1]. High population growth and limited space have caused a 
high demand for transportation infrastructure usage. Tunnels can be built by several 
approaches, such as cut and cover, immersed, jack box tunnel, drilling and blasting, 
and mechanized tunnelling [2]. For instance, cut and cover [3–5] is one of the oldest 
methods for tunnel construction where the concepts involve excavation of the trench
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or rectangular hole from the ground surface to the required excavation depth. Then, 
the actual tunnel is constructed, and subsequently, the excavated trench is backfilled 
again. Immersed tunnelling is carried out under the sea, and this method comprises a 
prefabricated tunnel before being placed under the water. Figure 1 illustrates the old 
construction methods of tunnelling. As time has passed, technologies have improved; 
now tunnelling can also be carried out using mechanized tunnelling.

Tunnels are built in a variety of geological conditions, including soft ground, 
rock and soil mixtures, hard rock or weathered rock, and so on. Different tunnelling 
methods and geological conditions possess several problems and difficulties. Several 
issues can be encountered during the process of tunnel construction in soil or weath-
ered rock. In modern cities, most of the tunnelling works are carried out in urban 
areas and highly populated cities, hence, controlling the surface settlement is a crucial 
factor [6] for designing this type of structure as it can affect the on-surface struc-
ture integrity. Several methods can be used to predict surface settlement. In the 
current industry practice, the common methods for the determination of surface 
settlement can be categorized into empirical, semi-empirical and numerical, statis-
tical, and Machine Learning (ML). Among them, ML is a new area that can be used 
for prediction with a high level of prediction capacity. However, currently, the imple-
mentation of ML techniques is not common for predicting surface settlement in the 
industry. ML is an evolving branch of computational algorithms that are designed to 
emulate human intelligence based on data given by learning from the surrounding 
environment [7]. In this study, available techniques for estimating the tunnel-induced 
surface settlement are discussed and compared. The advantages and disadvantages 
of the available techniques will be further explained. A future approach for assessing 
surface settlement is also recommended to practitioner engineers. 

2 Settlements and Volume Losses Due to Tunnelling 

Different tunnel configurations have different impacts on surface settlement. In the 
early era of tunnelling, mostly single tunnels were constructed. As time passed and 
with the improvement of technology, twin tunnels can now be seen across many 
cities in various countries. In this section, the impacts of single and twin tunnels on 
the settlement will be further described. 

2.1 Surface Settlement Induced by Single Tunnels 

Peck [8] is one of the early researchers who proposed the well-known empirical 
formula for surface transverse settlement caused by tunnelling, which is widely 
used in the industry. The proposed formula is based on the field observation and 
simplification of Litwiniszyn’s [9]. formula. According to the formula, the loss of 
ground into the tunnel is the major source of surface settlements and that loss of
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Fig. 1 Illustration of the tunnel construction methods
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Fig. 2 Transverse settlement due to tunnelling 

ground is related to the method of construction, type of soil, groundwater conditions, 
geometry, and depth of the tunnel. His proposed formula indicated that the pattern 
of surface settlements caused by ground loss due to tunnels can be approximated 
by a Gaussian probability curve as illustrated in Fig. 2. The empirical formula is as 
follows: 

S = Smaxe 
−x2 

2i2 (1) 

where S is the surface settlement in the transverse section at distance, x is the distance 
from the centreline of the tunnel, i is the point of inflection (settlement trough) and 
the maximum surface settlement can be expressed using this formula: 

Smax = V 2 s 

2 × π × i 
(2) 

where Vs is the volume loss of the soil (m3/m). 
The inflection point, i can be defined as the distance from the tunnel center to the 

point where the concavity curve changes from positive to negative and it is one of 
the crucial parameters used for the calculation of the surface settlement. 

According to Peck’s [8] formula, the assumption of the settlement is based on 
the volume loss during tunnelling which is equivalent to the volume of the surface 
settlement trough for clayey soil as illustrated in Fig. 3. Thus, the volume loss, Vs of 
the excavated area can be expressed in the following formula: 

Vs = 
Volume  Loss(V L) (%) 

100 

π D2 

4 
(3)

The key inputs in the calculation of the maximum surface settlement are subject 
to the volume loss and the settlement trough. As result, several studies have been 
conducted to investigate the input of Vs for various ground conditions and tunnelling 
methods, as shown in Table 1.
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Fig. 3 Volume loss of the tunnelling

Table 1 Volume loss of the soil with various ground conditions 

Reference Ground condition VL (%) Method of tunnelling 

Attewell and Farmer [10] London clay 1.44 Hand excavation shield tunnelling 

O’Reilly and New [11] London clay 1.0–1.4 Open face shield-driven tunnels 

Kavvadas et al. [12] Weak rock 0.2 New Austrian tunnelling method 
(NATM) 

Standing et al. [13] London clay 2.9–3.3 Shield tunnelling 

Mair and Taylor [14] Stiff clay 1.0–2.0 Open face method 

Siff clay 0.5–1.5 NATM 

Sand 0.5 Closed face tunnelling boring 
machine 

Soft clay 1.0–2.0 Closed face tunnelling boring 
machine 

Wan et al. [15] London clay 0.8% Earth pressure balance machine 
(EPBM) 

For the ease of calculation of the surface settlement, Eqs. (2) and (3) can be merged 
to develop Eq. (4): 

Smax = 0.313 
(V L)D2 

i 
(4) 

It can be seen that different tunnelling approaches and ground conditions depict 
various recommendation range values and empirical equations. As shown in Table 1, 
tunnel geometry, geological formation, and tunnel excavation are some of the factors 
affecting the surface settlement induced by blasting.
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2.2 Surface Settlement Induced by Twin Tunnels 

Many metro tunnelling projects are designed and constructed with twin tunnels due to 
highly densely populated urban areas with numerous buildings on the surface [16, 17]. 
Several empirical formulas were developed for a single tunnel instead of a twin tunnel. 
In comparison with a single tunnel, surface settlements induced by twin tunnelling 
can cause wider susceptible areas and higher settlements. Unlike single tunnels, most 
twin tunnels in various countries are constructed using tunnelling machines. Similar 
to the single tunnels, surface settlement induced by the twin tunnels can be caused 
by the ground condition, tunnel geometry, and tunnelling excavation methods. 

Besides, twin tunnels have more factors that can affect the surface settlement due 
to tunnelling in comparison with single tunnels, such as the distance between two 
tunnel axes, the period of excavation between the 1st and 2nd excavated tunnels, and 
variation of the shield operation for the 1st and 2nd excavated tunnels. There are four 
(4) types of typical twin tunnel configurations, which can be seen in Fig. 4 [18]. 

For the simplification of the computation of surface settlement induced by twin 
tunnels, engineers and researchers tend to use the superposition of the individual

Fig. 4 Typical configuration of the twin tunnels 
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Fig. 5 Superposition of Gaussian settlement distribution 

settlement troughs based as shown in Fig. 5. In this figure, the shape of the surface 
settlement is based on the empirical Gaussian distribution. 

Sv(x) = Smax

[
e
− x

2 
1 

2i2 x + e− (x1−d)2 

2i2 x

]
(5) 

where d is the distance between the tunnel center, x1 is the distance from the centreline 
of the first tunnel, ix is the point of inflection (settlement trough) for 1st or 2nd tunnel. 

Under these circumstances, the approach does not consider the influence of the 
existing tunnel on the new tunnel construction movement. The concept of super-
position of the surface settlement applies to parallel twin tunnels if the ratio of the 
distance between tunnel centers to the diameter of the tunnel is larger than 2.7 and it 
is irrelevant to the ratio of the overburden depth on the tunnel [16, 19]. 

3 Methods for Predicting Surface Settlement Induced 
by Tunnelling 

In this section, available methodology categories in predicting surface settlement 
induced by tunnelling will be discussed in consequent sub-sections.
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3.1 Empirical Formula 

Peck’s [8] has been widely used by researchers to estimate surface settlement induced 
by tunnelling. O’Reilly and New [11] have further modified the empirical formula 
from Peck [8] based on more field data from the actual tunnelling works. In their 
approach, several assumptions were made, i.e., the soil movements happened along 
radial paths that were directed toward the tunnel and the condition was in plain strain 
with constant volume deformation. This assumption implies that the width of the 
zone of surface settlement decreases linearly, and the formula is as follows: 

i = kz (6) 

where i is the trough width parameter at the depth of the tunnel axis, z, and k are empir-
ical constants of the ground (trough width parameter). It is important to understand 
that this equation does not apply to very shallow tunnels with a tunnel depth-to-
diameter ratio of less than 1. Various ground conditions give different values of k, 
which can be seen in Table 2. 

O’Reilly and New [11] found that most cases show i = 0.5z irrespective of the 
tunnel in soft clay or stiff clay. This finding has shown similarities with Fujita [19], 
where the case studies were based on the tunnels constructed in clay and various types 
of construction methods were utilized, such as hand mine tunnels, blind shields, slurry 
shields, and tunnelling machines. 

Mair and Taylor found that k = 0.35 for tunnelling in granular soils [14]. 
Many researchers have worked on it and proposed empirical formulas for the 
calculation of i, which are tabulated in Table 3.

Terzaghi [22] is the first study to claim that the second tunnelling-induced settle-
ment of the twin tunnels is always bigger than the first constructed tunnel. Cording 
[23] showed that the second-driven tunnel has a greater surface settlement in compar-
ison with the first excavated tunnel. The impact of the first constructed tunnel on the 
subsequent tunnel is due to the changes in the stress state in the soil [24]. To consider 
such a situation, Addenbrooke et al. [25] and Hunt [26] have further developed a 
new empirical approach. Addenbrooke et al. [25] proposed a design chart (Fig. 6) 
that comprises the eccentricity of the maximum surface settlement and the volume 
loss that is induced by the second constructed tunnel with respect to the pillar width.

To consider the overlapping zone (i.e., the zone that is disturbed by the previously 
excavated tunnel), another empirical formula was proposed by Hunt [26] for  the  
modified superposition that takes this into consideration (Fig. 7). In the region of the

Table 2 Summary of the settlement trough for various types of soil [11] 

Soil type Tunnelling methods Empirical constant, k 

Siff fissured clays Shield tunnelling or hand excavation 0.4–0.5 

Glacial deposits Shield tunnelling with free air and compressed air 0.5–0.6 

Silty clay Shield tunnelling with compressed air 0.6–0.7 
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Table 3 Summary of empirical formulas for estimation of settlement trough width 

Reference Empirical formula Ground condition Tunnelling 
excavation method 

O’Reilly and 
New [11] 

i = kz  
Cohesive soil 
i = 0.43z + 1.1 
Granular soil 
i = 0.28z − 0.1 

Where trough width 
parameter, k varies 
according to the soil 
type 

Shield tunnelling 

Mair et al. [20] i = 

z
[
0.175 + 0.325

(
1 − Z '

z

)] Clay, Z' is the depth 
of the calculated 
settlement trough 
from the surface 
settlement 

Centrifuge model 
test 

Loganathan and 
Poulos [21] 

i = R × 1.15 × ( z 
2R

)0.9 Clay, where z is the 
tunnel depth and R is 
the radius of the 
tunnel 

Tunnelling machine

Fig. 6 Design chart to determine the settlement induced by tunnelling
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Fig. 7 Definition of the 
overlapping zone 

overlapping zone, the surface settlement above the second tunnel can be described 
as follows: 

Smod(x) = F.Sv(x) (7) 

F =
[
M

(
1 − 

|d + x | 
A.ix

)]
(8) 

where 

A multiple of ix for full trough width 
d distance between tunnel (from center to center) 
x distance to the tunnel centerline 
M maximum modification factor 

The value of maximum modification recommended by Hunt [26] is between 60 
and 150% where these values are subjected to change of volume loss for the second 
tunnel. This empirical formula shows that parameter selection plays a crucial role in 
ensuring accurate outputs. 

Based on all of the proposed empirical methods for the computation of the 
surface settlement due to tunnelling, it can be observed that the factors affecting the 
surface settlement can be classified into three (3) categories, namely tunnel geometry, 
geological conditions, and tunnelling construction approach. 

(i) Tunnel Geometry 
Many studies have shown that the tunnel dimension, the distance between two 
tunnels, and the construction sequence are the most effective factors in reducing 
surface settlement caused by tunnelling [27]. The findings also show that the 
first constructed tunnel position has an impact on the second constructed tunnel.
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Some researchers [28] demonstrated that the depth and pillar width of tunnels 
have a strong impact on the shape of the settlement from the twin tunnels. 

(ii) Geological Condition 
Geological conditions such as type of soil, profiling of the soil, and drained 
or undrained soil conditions can be considered influential factors in soil 
settlement. 

(iii) Tunnelling Construction Approach 
The sequence of tunnel construction is showing a significant impact on the 
surface settlement. Tunnelling operational parameters have an impact on the 
surface settlement [29]. However, these parameters are not considered in 
the empirical formulas. Tunnelling machine operational parameters should 
be considered in studies because many tunnelling projects currently use a 
mechanized excavation approach to excavate tunnels. 

3.2 Numerical Analysis Modeling 

Another method to determine the induced settlement due to tunnelling is the use 
of finite element methods. In the tunnel engineering field, numerical modelling of 
stresses and displacements is typically used in engineering practice. It is attributed to 
the fact that tunnel construction is related to the removal of the ground and the instal-
lation of a support system in the confined space. The process of ground excavation 
induces ground stress relief and redistribution around the tunnel circumferences and 
causes a decrease in radial stress and an increase in tangential stress. As such, these 
complex interactions between the excavation and construction steps have a strong 
impact because the distribution of stresses and strain around the tunnel periphery 
can be captured by numerical analysis. Besides, tunnels are normally excavated in 
non-homogenous ground conditions, which can be effectively considered in the finite 
element via initial stress distribution. Practising engineers always prefer to analyze 
the model using 2D finite elements because of its simplicity and economic approach 
in comparison to 3D methods, as more parameters are required to ensure the simu-
lation of construction is correct, which is time-consuming. Nevertheless, the 2D 
numerical approach is a practical tool for carrying out parametric studies and for 
the analysis and design of a site-specific problem. A varied range of findings can be 
seen from different studies, as tabulated in Table 4. In addition, Moller [30] made 
a comparison between 2D and 3D numerical analysis. The finding shows a good 
comparable result between 2D and 3D analyses.

Although numerical analysis is one of the common methods used for the deter-
mination of the surface settlement induced by tunnelling, it is good to note that the 
finite element method is time-consuming and we are not able to get a reasonable 
error between the actual surface settlement and the one obtained by these methods.
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3.3 Laboratory Works 

Laboratory tests are one of the methods for determining the surface settlement 
induced by tunnelling. A centrifuge laboratory model is required for the simulation of 
the actual field tunnelling. The laws of geotechnical centrifuge scaling were described 
by Taylor [37]. Nomoto et al. [38] performed centrifuge model tests for simulating 
the tunnelling process in dry sand using a newly developed 100 mm diameter shield 
tunnel. Three (3) types of tunnelling construction, namely the “buried-tube test”. 
“Tail void test” and “shield test” were carried out to measure the lining stresses, 
simulate the process of tail void formation and build a full complete process of 
shield construction, respectively. Based on their laboratory tests, it was found that 
laboratory results were close to the previous relevant field data. They also stated 
that this could apply to the actual tunnel design problems. Besides, they have also 
proposed equations for both transverse and longitudinal settlement. For transverse 
settlement, their proposed equation for the surface settlement induced by tunnelling 
can be defined as follows: 

Sv(x) = Sm .e−α.x2 (9) 

where Sm is the mean settlement directly above the tunnel, α is the coefficient of the 
construction in each test which can be expressed as follows: 

α = β.

(
C 

D

)−γ 
(10) 

where β and γ are the laboratory test constants. 
Other than sandy soil material, Hunt [26] carried out the centrifuge tunnelling test 

in clay with the condition of the heavily over-consolidated sample of clay. However, 
the tests conducted for this study did not reach any conclusive findings and several 
factors are the reasons for the difficulty of laboratory modeling in clay, such as sample 
preparation was very time-consuming and required a lot of labor work, as stated by 
Hunt [26]. 

In another study, Divall [39] carried out centrifuge tests for both single and twin 
tunnels. He used two approaches, which are air and water support for single tunnels. 
He found that the centrifuge model test of single tunnel results can fit the Gaussian 
curve with the variables of the point of inflection and the maximum surface settle-
ment. As for twin tunnels (i.e., side by side types), the second constructed tunnel 
volume loss has shown a consistent increase in comparison with the VL of the first 
constructed tunnel. Their findings are similar to the findings obtained by Mair and 
Taylor [14]. Although laboratory tests can be carried out to determine the surface 
settlement due to tunnelling, this method is time-consuming and costly [40].
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Table 5 Summary of the proposed statistical models to predict surface settlement due to tunnelling 

Reference Proposed equation 

Moeinossadat et al. [42] 
Smax = 

117Z 

D
+ 0.031c + 0.643ϕ − 0.469E 

+ 0.828V − 2.028F ' + 84.699P + 0.085n 

Moghaddasi and Noorian-Bidgoli [43] Smax = 1.0236 − 0.1814HR  − 0.2338c − 0.8664E 

Anato et al. [41] 
Smax = −1.1 × 10−5 E Ilining − 3.63x10−4 Egrout 

+ 3.11 × 10−4 − 3.14 × 10−3V − 35.136 

c is soil cohesion; Φ is soil friction angle; E is soil elastic modulus; V is penetration rate; F ' is 
thrust force; P is grouting pressure; n is the percentage of grout fill; HR is horizontal to vertical 
stress ratio; EI lining is the flexural stiffness of tunnel lining; Egrout is elastic modulus of grout 

3.4 Statistical Models 

Several researchers carried out statistical models for the prediction of the surface 
settlement induced by tunnelling [41–43]. A common technique, i.e., the Multiple 
Linear Regression (MLR), was used to predict the surface settlement induced by 
tunnelling. MLR is an approach that can be used to determine the linear relationship 
of the model between a dependent variable (output) and several independent variables 
(inputs). This method is similar to the regression line, which can identify the best fit 
line of the independent variables. This MLR formula can be expressed as follows: 

y = a1x '
1 + a2x '

2 +  · · ·  +  anx '
n + c' (11) 

where a is the regression coefficient, x' is an independent variable, and c' is constant. 
Some researchers have proposed several MLR equations for the prediction of surface 
settlement due to tunnelling, and this formula can be seen in Table 5. 

3.5 Machine Learning (ML) 

Soft Computing (SC) is a group of techniques that are completely different from 
conventional computing methods. SC methods can provide an approximate solution 
to complicated actual life problems [44]. ML is one of the components in the SC 
group that provides the solution based on the approximation and this method is 
tolerant to imprecision and uncertainty. In this section, four (4) ML methods namely 
Genetic Programming (GP), Gene Expression Programming (GEP), Artificial Neural 
Network (ANN), and Fuzzy logic (FL) will be briefly explained. The advantages and 
disadvantages of these techniques can be seen in Table 6.
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Table 6 Advantages and disadvantages of the main ML methods [45] 

Type of MLs Advantages Disadvantages 

ANN (i) The ability to learn and adapt 
(ii) Capability of fault tolerance 
(iii) Trained model based on historical 
data 

(i) Black box 
(ii) Applicable for quantitative 
information 
(iii) No reason capability 

FL (i) Using rules to represent the 
knowledge 
(ii) Capability of fault tolerance 
(iii) Reasoning capability 

(i) No learning capability 
(ii) Able to handle quality information 
only 

GEP and GP (i) Systematic random search 
(ii) Able to supply multiple solutions 

(i) The rate of convergence is slow and 
close to the optimal solution 

3.5.1 Genetic Programming (GP) 

Genetic Algorithm (GA) is an algorithm based on the concept of genetic and natural, 
which are genes or chromosomes, to solve search and optimization problems. GA 
was developed by Holland John [46]. Cramer [47] founded GP with the tree patterns 
to evolve the programs. Subsequently, GP was developed as part of the extension of 
GA by Koza [48]. Most of the operators from GA can be implemented in GP. The 
main difference between GA and GP is that GA is used as a parameter optimization 
tool to produce the best value with a given set of model parameters, whereas GP 
creates a structure that represents a dataset with input variables and corresponds to 
the output. The GP is also known as the tree-based GP, where the algorithm works 
in a tree approach. Figure 8 illustrates the components of GP for the analysis. 

GP uses four steps to solve problems. First, it generates the initial population 
comprised of two important elements, which are functions (operator) and terminals 
(variables and constants). The functions are identified from the set of operators, 
whereas the terminal is confirmed based on the variables and constant sets. The 
function set includes mathematical operators such as “log” and “-”. After the random 
population is created, each individual in the population is evaluated for fitness based 
on how well the problems can be solved. At this stage, GP is carrying out fitness

Fig. 8 Illustration of GP as 
tree representation 
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proportionate selection, also known as roulette wheel selection, to select the useful 
recombination solution. 

At the last stage, new populations are created based on two methods: cross-over 
and mutation. In this cross-over stage, two (2) trees are selected randomly from the 
population and each node from each tree is selected randomly where the sub-trees 
exchange for the generation of two offspring. As for the mutation stage, a random 
change to the structure in the population is introduced, and it works by randomly 
removing the subtree and replacing it with the tree structure. Finally, the process is 
ceased when no improvement in the solution can be seen or an acceptable solution 
is achieved. 

3.5.2 Gene Expression Programming (GEP) 

GEP was founded by Ferreira [49] based on the concept of GA and GP. The core 
difference between GA, GP, and GEP is as follows: GA is the individuals with linear 
strings of fixed length, also known as chromosomes; GP is a non-linear structure 
with different sizes and shapes of parse trees; and finally, GEP is the individuals with 
linear stings of fixed length and can subsequently be formed as non-linear entities of 
different sizes and shapes. Several researchers [50, 51] found that GEP can overcome 
the shortcomings of the GA and GP models. Similar to the GA and GP, the GEP model 
commences with the random generation of chromosomes in the population. The 
symbolism of these chromosomes is expressed as trees with various shapes and sizes 
(expression trees) [52]. Next, the fitness of each is evaluated by a fitness function. 
Then, the best chromosomes of the first generation are selected via the Roulette 
method and will be copied for the next generation. These new copied generations 
are subjected to similar developmental processes, which are genome expression, 
selection of the environment, and modified reproduction [49]. The process is repeated 
(for a certain number of generations) until the desired results are achieved. 

GEP has two main advantages where the genetic diversity is simplified as genetic 
operators at the chromosome level and the evolution is more complex programs that 
comprise several subprograms [53]. Figure 9 illustrates the example of the GEP 
expression tree and chromosome of a gene.

3.5.3 Artificial Neural Network (ANN) 

ANN is one of the ML methods that follow the mechanism of the human brain’s 
biological nervous system for the information-transfer process. The concept of this 
algorithm was founded by Rosenblatt [54]. ANN can solve the complex and non-
linear inputs (variables) and outputs (predictor) [55, 56]. There are many types of 
ANNs, however, multilayer feed-forward ANN is the most widely used [57, 58]. This 
ANN type consists of several layers which are input, hidden, and output layers where 
they are connected through some hidden nodes via different connection weights [59]. 
The activation function of every node act to transmit the signals to other nodes or
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Fig. 9 GEP expression tree and chromosome with one gene

the output of the network. This activation function for every node is applied to the 
net input of the node. ANN is required to be trained using other learning algorithms 
to achieve the desired outcome. The Back Propagation (BP) algorithm is the most 
common method for the training of an ANN [60]. BP comprises two passes, which are 
the forward pass and the back pass. It uses the transfer function where the outputs are 
computed and the errors of the outputs are identified. If the error is high (the error can 
be evaluated based on the Root Mean Square Error, RMSE), then the error is returned 
to the network and updates the individual weights. This is known as a backward pass. 
The process of moving forward and backward is repeated many times until reaching 
a negligible error (often assessed by RMSE). Figure 10 shows an ANN model with 
the forward and backward propagation process. 

Fig. 10 Illustration of the ANN with the forward and backward propagation
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Fig. 11 The structure of the fuzzy logic system 

3.5.4 Fuzzy Logic (FL) 

Zadeh [61] initiated FL to identify the vagueness of the information by using a 
computation approach based on the degree of truth. In general, it is formalized as 
a mathematical approach to describe the ambiguity of information. The FL mecha-
nism follows the way of making decisions when uncertainty is encountered. It also 
provides an effective way to illustrate complicated data. An outline diagram illus-
trating the FL is shown in Fig. 11. In general, FL comprises four elements, which 
are fuzzifier, knowledge base, fuzzy inference system, and defuzzified. The fuzzifier 
acts as a role to convert the crisp input to linguistic information. The database defines 
the membership functions that will be used in the fuzzy rules. Each input variable 
possesses a probability distribution function, which is known as the membership 
function. As for the rule base, it consists of several fuzzy if–then rules, which are 
also known as fuzzy rules. In short, the process commences with the input being 
fuzzy by the fuzzifier, and this will be sent to the knowledge base. In the knowledge 
base, the rule base is applied and provides the user with an answer via defuzzying. 
Nevertheless, Maier et al. [62] stated some issues that need to be overcome when 
the FL approach is used, such as the configuration of distributions of membership 
function, identification of composition operator, and setting the appropriate fuzzy 
rules in the system. 

4 ML Application in Settlement Induced by Tunnelling 

The geotechnical engineering field is related to geological materials such as soil and 
rock where these materials exhibit various properties due to the imprecise physical 
processes associated with the formation [63, 64]. To solve the complexity of geotech-
nical behavior and the spatial variability of these materials, traditional forms of 
engineering design models are simplified [65]. The inherent complexity of geotech-
nical materials has led to the replacement of tedious theoretical solutions with ML 
approaches to solve various geotechnical design problems and assessment issues 
[66]. ML allows computers to learn patterns from existing data, either from field 
instrumentation or case histories, without being explicitly programmed [67]. Because 
geotechnical problems are characterized by great uncertainties and involve various
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factors which cannot be directly determined by engineers, the rapid growth in popu-
larity of ML methods [68, 69]. The concept of machine learning is based on various 
fields such as artificial intelligence, computer science, and mathematics [70]. 

There are many types of machine learning algorithms, such as ANN algorithms, 
Clustering algorithms, Decision Tree algorithms, Ensemble algorithms, and Regres-
sion algorithms. ML techniques began in the seventeenth century, and Pascal and 
Leibniz [71] used this method to create a machine that could add and subtract like a 
human. As time passed, Samuel [72] from International Business Machines (IBM) 
coined the term “machine learning” and managed to prove that computers could be 
programmed to learn. 

ML techniques can be categorized into three (3) types, which are supervised, 
unsupervised, and semi-supervised. Supervised learning is the method of identifica-
tion for unknown input and output data that is based on known input and output data 
with an already identified output. In supervised learning, two (2) types of analysis 
can be carried out, which are classification and regression [73]. 

As years have passed, tunnel excavation has improved with various types of 
machines to suit different ground conditions. To achieve ground movement control, 
these machines comprise several operational parameters such as face pressure, pene-
tration rate, pitching angle, and grouting quality. Other factors, including tunnelling 
geometry and ground conditions, have caused some complexities in machine-ground 
interactions. Thus, many researchers have carried out the prediction of ground settle-
ment by using different machine learning methods with various inputs to predict the 
induced surface settlement due to tunnelling. 

Suwansawat and Einstein [29]employed neural networks to predict the settlement 
by using 10 input parameters, which are depth (m), distance from shaft (m), soil 
geology at the crown, soil geology at invert, invert to water table (m), average face 
pressure (kPa), average penetrate (mm/min), pitching (°), tail void grouting pressure 
(bar), and percentage of tail void grout filling (%). In their analysis, they used three 
scenarios of the data to predict the settlements, and the performance of the model 
is measured using RMSE as listed in Table 7. From Table 7, it can be seen that the 
RMSE for both training and testing data is less than 10 which indicates the prediction 
can be done with good accuracy.

Other than the research carried out by them, Pourtaghi and Lotfollahi-Yaghin [74] 
have proposed a new method based on wavenet transform theory and neural network 
basic concept called a wavenet for predicting the maximum surface settlement caused 
by tunnelling. This new method has a better performance compared to the ANN 
method with the testing data (correlation coefficient, R of 0.9562 compared to the R-
value for testing data (0.898) in the developed ANN model. This finding proves that 
other machine learning methods can be used for the prediction of tunnelling-induced 
surface settlement. 

Boubou et al. [75] have carried out additional steps for the ANN method by 
carrying out the parameters’ elimination procedure. From their study, the elimination 
of some parameters can improve the RMSE value, which can help the prediction 
performance. However, in their study, the consideration of parameters is divided into 
two categories which are tunnelling operating parameters and geological parameters.
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Table 7 Summary of the ANN performance models in different scenarios 

Scenario Type of data Training RMSE (mm) Testing RMSE (mm) 

Using data from each 
tunnel section for 
predicting surface 
settlements within the 
same section 

Section A 5.08 7.33 

Section B 2.55 6.22 

Section C 2.31 5.90 

Section D 5.98 7.56 

Using initial data for 
predicting surface 
settlements 

Trained with the first 
50% of the data to 
predict surface 
settlements in the 
remaining 50% of 
section A 

2.55 7.24 

Trained with the first 
50% of the data to 
predict surface 
settlements in the 
remaining 50% of 
section B 

2.27 7.93 

Trained with the first 
50% of the data to 
predict surface 
settlements in the 
remaining 50% of 
section C 

2.59 7.43 

Trained with the first 
50% of the data to 
predict surface 
settlements in the 
remaining 50% of 
section D 

5.01 5.24 

Using all data for 
predicting surface 
settlements of all 
sections 

All data 8.26 8.39

The geometry of the tunnelling is not included in the study where the geometry, such 
as tunnel depth, could be considered an important factor that affects the tunnelling-
induced surface settlement. 

Ahangari et al. [76] have carried out the prediction of tunnelling-induced settle-
ment using two techniques, which are the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) and GEP. However, in their analysis, tunnel operating parameters are not 
taken into consideration. The input parameters including (cohesion (kPa), friction 
angle (°), elastic modulus (MPa), tunnel depth (m), and tunnel diameter (m) were 
used by them. The data was collected from previous research data from 53 tunnels 
all over the world and the value of the settlement was obtained from numerical 
modeling (FLAC2D software). Although the final results indicate that GEP has a
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better prediction than ANFIS, the model can hardly be applied in the real tunnelling 
project because the data for the settlement is extracted from the numerical analysis 
instead of the real tunnelling project. 

Hasanipanah et al. [77] have carried out the prediction of surface settlement caused 
by tunnelling using a hybrid model, which is a Particle Swarm Optimisation (PSO)
-ANN model. Their developed model was based on the actual data sets obtained 
from the actual tunnel project. In their analysis, only three parameters are taken into 
consideration, which is horizontal to vertical stress, cohesion (kPa), and Young’s 
modulus (MPa). The results indicate that the hybrid model has a better result with an 
R2 of 0.9682 compared to the only ANN model with an R2 of 0.9403. ANN suffers 
from two disadvantages, such as getting trapped at local minima and a slow rate of 
learning [78]. As such, several researchers have proven that these disadvantages can 
be improved by using PSO to further optimize the ANN [79, 80]. PSO is the algo-
rithm that was developed as a bird swarm simulation with the ability to learn from the 
previous experiences of the swarm and the capability to move towards the optimum 
goal [81]. This algorithm works with each individual who makes decisions based 
on the best results of their personal experiences and the experiences of the swarm, 
achieving the best results for the entire population. At the commencement of the 
analysis, particles are randomly distributed in the search space in a random pattern. 
For every particle, it acts as a feasible solution. PSO can be classified into three (3) 
parts, which are current position, best position, and velocity. The current position 
represents the current coordinate of the particle, whereas the best position is the best 
coordinate. Velocity particles are the velocity of particle vectors in D-dimensional 
space. The main objective of PSO is to determine a termination criterion for termi-
nating the iterative search process. Three (3) termination criteria are frequently used 
in PSO, which are [82]: 

(i) The maximum number of iterations is exceeded 
(ii) Solutions are found according to the condition of each problem 
(iii) No improvement is achieved after many numbers of iterations. 

These criteria are applied to ensure that PSO can converge on a feasible solution. 
The ANN has the weakness of getting tapped in the local minima. On the other 
hand, the complementary PSO algorithm plays an important role in determining 
the global minima. The process of PSO begins with the initialisation of a group of 
random particles that represent the ANN weights and biases with random assignment. 
Subsequently, based on initial weights and biases, the hybrid PSO-ANN is trained 
and the errors between actual and predicted values are calculated. The calculated 
error is decreased for each iteration by altering the particle position. To update the 
velocity equation, the best individual and the best group are used. Hence, the value 
is produced by adjusting the particle positions to the best solution. Next, the updated 
position with the new error is retrieved. These stages are repeated until the termination 
criteria are met with the optimisation output is obtained. Nevertheless, the model does 
not take into consideration tunnel geometry and tunnel operating parameters, where 
these two categories could have more impact on the surface settlement caused by 
tunnelling.
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Moeinossadat et al. [42] employed two approaches (ANFIS) and multiple regres-
sion (MR) for the calculation of the maximum surface settlement induced by EPB 
shield tunnelling. From their findings, the result shows that ANFIS is more accu-
rate compared to MR. The MR method had poor accuracy because surface settlement 
depends on many parameters, which have caused interaction among different param-
eters. Besides, their finding shows that the tunnelling operating factor has the largest 
effect on the settlement, followed by tunnel geometric and soil strength factors. 
ANFIS is a hybrid model comprised of Fuzzy Systems (FS) and Neural Networks, 
and this method was developed by Jang [83]. This technique can also be used in 
other civil engineering fields [84, 85]. Fuzzy logic is a computing framework that 
consists of three frameworks, which are fuzzy set theory, fuzzy if-then rules, and 
fuzzy reasoning. ANFIS possesses the ability to map the relationship between input 
and output data into several constraint sets. This neuro-fuzzy system corresponds to 
the fuzzy model Takagi-Sugeno, and the weights of the ANN model are the same as 
the parameters of the fuzzy system [86]. To determine a set of parameters, ANFIS 
employs a hybrid learning method that combines gradient descent, backpropagation, 
and a least squares algorithm [87]. This inference system consists of five layers which 
are the fuzzy layer, product layer, normalized layer, de-fuzzy layer, and total output 
layer. The layers of each description are as follows: 

(a) Layer 1 (Fuzzy layer)—Each node in this layer can be considered an adaptive 
node. 

(b) Layer 2 (Product layer)—Every node output depicts the firing strength of a rule 
(c) Layer 3 (Normalized Layer)—Each node in this layer is a fixed neuron and 

represents the normalized firing strength of each rule. 
(d) Layer 4 (de-fuzzy layer)—This layer comprises adaptive neurons which contain 

consequence parameters. 
(e) Layer 5 (Combining Layer)—Comprises a single neuron with summation of all 

inputs. 

Bouayad and Emeriault [88] are utilizing principal component analysis (PCA) 
to describe the interrelation pattern between the tunnelling boring machine (TBM) 
parameters and geological profiles. PCA can be known as the proper orthogonal 
decomposition (POD), which is one of the multivariate statistical methods frequently 
used in data analysis [89]. The method of PCA is based on the determination of the 
variances and coefficients of a dataset by finding the eigenvalues and eigenvectors. 
The covariance matrix is used to measure how much the dimensions vary from the 
mean value of other parameters. The PCA technique is also used in other tunnelling 
research studies to reduce the number of irrelevant variables [90, 91]. The main 
purpose of using PCA is to reduce a large number of interrelated variables and at 
the same time to retain as much variation as possible in the original data set. In 
their study, fifteen parameters were reduced to six parameters. With this approach, 
six (6) variables were used in the Adaptive Neuro-Fuzzy Inference System-Principal 
Component (ANFIS-PC) for analysis and validation. After carrying out the reduction 
of the parameter, the results indicated a high correlation between the predicted and 
measured settlements. Nevertheless, it is good to know that Prasad and Bruce [92]
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Table 8 Comparison of the 
six algorithms for surface 
settlement prediction due to 
tunnelling 

Technique Training set, R Testing set, R 

BPNN 0.78 0.46 

GRNN 0.83 0.18 

ELM 0.53 0.14 

SVM 0.74 0.28 

RF 1.00 0.70 

have highlighted that PCA is not recommended for small sample size problems and 
that it applies to the linear model. 

Zhang et al. [93] have compared five machine learning methods, namely back 
propagation neural network (BPNN), general regression neural network (GRNN), 
extreme learning machine (ELM), support vector machine (SVM), and random forest 
(RF). ELM is part of the neural network which is modified with a single hidden layer 
feedforward neural network with only one hidden layer. An SVM is built using 
statistical theory to determine the best hyperplane in N-dimensional space. whereas 
RF is the average of the decision trees with a large modification of bagging. SVM 
and RF are both ML techniques. From the researchers’ findings, the results show that 
the RF algorithm outperforms the other machine learning methods for the prediction 
of tunnelling-induced settlement, and the summary of the training and testing set 
performance measured using the coefficient of determination, R is shown in Table 8. 

All the prediction work on the surface settlement, as stated earlier, is summarized 
in Table 9. Other than using an ML model for the prediction of surface settlement, 
some researchers utilize statistical approaches and/or observational methods to iden-
tify the importance of the parameters. These methods are summarized in Table 10. 
It can be seen that most researchers used ML approaches for single tunnelling.

5 Discussion 

In summary, it can be stated that there are four (4) typical methods that can be used for 
the prediction of tunnelling-induced surface settlement. Although empirical formulas 
are one of the most widely used methods by many practising engineers because 
of their ease of computation, these empirical approaches are based on simplified 
assumptions. In empirical equations, all influential factors, such as the tunnelling 
operating parameters, are not considered. It is worthwhile to know the extent of the 
numerical analysis model and computation time is limited with model boundaries 
in contexts where this can be done by redoing the model boundaries by taking the 
boundaries to be further away from the modeling object and comparing the result. 
However, this process can be more time-consuming [100]. Furthermore, to simulate 
the current field condition, several in-situ and laboratory tests are required to retrieve 
the reflective parameters for the simulation in the numerical analysis.
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Table 9 Summary of the AI model for the prediction of the surface settlement due to tunnelling 

Reference Input No of variables Analysis model No data 

Suwansawat and 
Einstein [29] 

Tunnel depth, distance 
from the shaft, soil 
geology at the crown, 
soil geology at invert, 
invert to the water 
table, average face 
pressure, average 
penetrates, pitching, 
tail void grouting 
pressure, and 
percentage of tail void 
grout filling 

10 ANN 49 

Pourtaghi and 
Lotfollahi-Yaghin 
[74] 

Tunnel depth, tunnel 
distance from shaft, 
geology at the crown, 
geology at invert, 
tunnel invert to water 
level, average face 
pressure, average 
pitching, tail void 
grouting pressure, and 
percentage of tail void 
grout filling 

9 Wavenet transform 
theory and neuro 
network 

49 

Boubou et al. [75] Time required for 
excavation and 
installation of one 
tunnel lining ring, 
hydraulic pressure 
used for the cutting 
wheel, horizontal and 
vertical guidance 
parameters (the ability 
of TBM) to follow the 
theoretical path), TBM 
advance rate, confining 
pressure at the tunnel 
face, volume of tail 
void grout filling, total 
jack thrust, and soil 
geological profile 

8 ANN 95 

Ahangari et al. [76] Cohesion, friction 
angle, elastic modulus, 
tunnel depth, and 
tunnel diameter 

5 (1) ANFIS 
(2) Fuzzy C means 
clustering (FCM) 
(3) GEP 

53

(continued)



Empirical, Statistical, and Machine Learning Techniques for Predicting… 67

Table 9 (continued)

Reference Input No of variables Analysis model No data

Moeinossadat et al. 
[42] 

Tunnel depth, tunnel 
diameter, soil 
cohesion, soil friction 
angle, soil modulus of 
elasticity, penetration 
rate, thrust force, 
grouting pressure, fill 
factor of grouting 

9 (1) MLR 
(2) ANFIS 

53 

Bouayad and 
Emeriault [88] 

TBM advanced rate, 
face pressure, tail void 
grouting pressure, 
volume of injected tail 
void grout, pressure of 
the cutting wheel 
representing the 
pressure required to 
rotate the cutter wheel, 
total jack thrust, time 
required for the 
excavation and 
installation of one 
tunnel lining ring, 
horizontal and vertical 
guidance parameters, 
total work representing 
the energy required for 
the excavation of 1 m3 

of soil, soil type, soil 
unit weight, soil 
cohesion, and soil 
friction angle 

15 PCA with ANFIS 95 

Zhang et al. [93] Tunnel depth below 
the water level, 
overburden depth, 
thrust force, torque, 
volume of grout filing, 
penetration rate, 
chamber pressure, 
blow counts of the 
modified standard 
penetration test, 
modified dynamic 
penetration test of soil 
layers, modified 
uniaxial compressive 
strength of weathered 
rocks ground condition 
and stoppage 

12 (1) BPNN 
(2) GRNN 
(3) ELM 
(4) SVM 
(5) RF 

236
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Table 10 Summary of the most impacting parameters for the tunnelling-induced surface settlement 

No Reference Technique to identify the most 
affecting parameter that 
induced surface settlement 
due to tunnelling 

Most affecting parameters 

1 Kim et al. [94] Relative strength of effects 
(RSE) 

(1) Tunnel depth 
(2) Groundwater inflow rate 
(3) Rock mass type 
(4) Tunnel type 
(5) Velocity of tunnel 
excavation 

2 Kobayashi et al. [95] Field observation (1) Passage of shield 
(2) Tail void closure 

3 Hidayat [96] ANN with Garson’s [97] 
method 

(1) Bulk density 
(2) Earth pressure 
(3) Advance rate 
(4) Stiffness 
(5) Moisture content 

5 Santos and Celestino [98] Sensitivity analysis (1) Overburden tunnel 
(2) Tunnel depth below the 
water table 
(3) Advanced rate before and 
after 

4 Ocak and Seker [99] Field observation (1) Face pressure 
(2) Penetration rate 
(3) Amount of excavated 
material per ring 
(4) Percent of tail void grout 
filling (%) for the first and 
second tunnel 

6 Hasanipanah et al. [77] Cosine amplitude method (1) Horizontal to vertical 
stress ratio

On the other hand, the centrifuge model allows actual tunnelling fieldwork to be 
simulated in laboratory work. However, there are several limitations in the centrifuge 
model test, which are variations in stress level, radial acceleration field, scaling 
effects, and boundary effects. The law of scaling of soil models for centrifuge model 
tests with the acceleration is not constant with depth, and in the centrifuge model, 
the acceleration field is radial instead of parallel with depth, Taylor [37]. Besides, the 
similar prototype soils used in the centrifuge model will cause compatibility issues 
when applying the scaling law to grain sizes as stated by Taylor [37]. Other than 
that, the side wall in the model has an impact on the test if the model is narrow [39]. 
Although the traditional statistical model can be used for the prediction of surface 
settlement, this model is limited to the linear model. 

With the presence of ML models, the prediction of surface settlement induced by 
tunnelling can be carried out at any time with three main input parameters, which are 
tunnelling geometry, engineering parameters of the ground, and tunnelling operation
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parameters. This scenario can assist engineers to make quick decisions and under-
stand the surface settlement without any required calculations. Furthermore, the ML 
model can depict high accuracy in the prediction of settlement. This is indirectly 
able to help engineers adjust the tunnelling operation parameters during the process 
of tunnelling. As such, it will significantly reduce the risk of damaging the existing 
surrounding buildings. Other than the advantages of the ML model, there are also 
several disadvantages to the ML model. 

One of the difficulties of the ML model is establishing a reliable ML model. 
To develop a good model, a relatively large and reliable set of data is required. 
The dataset includes relevant input parameters (engineering properties of the ground 
and tunnelling operation parameters) and measured surface settlement. Therefore, to 
establish a large database for an ML model, several tunnelling construction projects 
at various locations are required. Hence, it is highly recommended to collect all the 
recorded measurements of the settlement as much as possible. Besides, the in-situ and 
laboratory test results that were carried out at the site with the tunnelling operation 
parameters shall be kept properly. 

Some classical heuristic optimisation methods are not able to provide a good 
prediction. A hybrid metaheuristic algorithm such as PSO can be considered to 
improve the prediction of the ML model. For the actual tunnelling construction 
work, all the design constraints, economic value, and practicality must be taken into 
consideration. To consider all the aforementioned, an ML model can be considered 
to be implemented as a future way of method calculation and decision-making. To 
utilize and develop the ML model for practical purposes, the process of developing 
this ML model is recommended and illustrated in the flowchart as shown in Fig. 12.

This process can be classified into five (5) main stages. Stage 1 is the data collec-
tion of the field record of ground settlement markers, and subsurface investiga-
tion including laboratory work data and tunnelling operation parameters for various 
projects at different locations. Upon receiving all the information, data cleaning and 
interpretation can be carried out. The first stage is the most time-consuming because 
the data is not always ready in soft copy format and is dispersed. Next is the develop-
ment of ML models with training and testing based on all the available data. Stage 3 
deals with the assessment of ML models. Two possible scenarios are expected during 
the assessment of the ML models. If the model performance is low, utilization of 
optimisation techniques is recommended for improving the ML models. In other 
scenarios, the good performance of the ML model can proceed to the next stage, 
which is using the ML model on different projects with various conditions. At this 
stage 4, if the prediction of the ML model is not good, the user is required to check 
the input data. After checking the input data, if the prediction remains, the model 
has to return to Stage 2 and add new data collection to the ML models and restart the 
whole process. One may suggest the workability of the ML model if the ML model 
works well enough for many projects at different locations.
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Fig. 12 Flowchart for the process or steps of developing the ML model for the pile capacity

6 Future Perspective 

Applications of ML in the geotechnical engineering field have drawn considerable 
attention in the last decade, which indicates ML methods can be considered to solve 
complicated geotechnical problems. The ML approach shows concrete proof of better 
prediction performance compared to the typical statistical calculation. Even though 
many types of ML methods have been studied in the geotechnical field, this method 
is rarely used in the actual tunnelling industry. The possible reason is attributed to 
the lack of good quality data, which is required for establishing a good ML model.
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Fig. 13 Illustration of the TGML in the graph format 

Besides, practising engineers are not familiar with ML models well enough. There-
fore, it is good to further explore this method for its future application in the practical 
tunnelling field. ML model can be updated from time to time based on the availability 
of new data to achieve better performance prediction by inserting more training data. 
Based on the extensive review in this chapter, it can be concluded that ML models 
have good performance and can be considered a feasible tool for solving tunnelling 
problems. Data science models comprise high data usage but with limited scientific 
knowledge. A theory-based model is vice versa of a data science model. The differ-
ence between the theory-based model and the data science model can be seen in 
Fig. 13. Therefore, to further improve AI models, Theory-Guided Machine Learning 
(TGML) is necessary to provide better predictions compared to the other methods. 
To improve the usefulness of ML models for scientific discovery, TGML is a new 
paradigm that uses lots of scientific data. It is the main objective of TGML to ensure 
that generalizable model learning requires scientific consistency. Based on well-
known theories and empirical equations, a comprehensive database that can handle 
a wide range of effective parameters can be proposed. It will then be used to build 
a model which can be generalized with a high degree of accuracy. To the best of 
the authors’ knowledge, TGML techniques have not been applied in geotechnical 
engineering, despite their widespread application in other fields of civil engineering, 
such as water and hydrology [101, 102]. 

7 Conclusion 

Single tunnels and twin tunnels have different impacts on the surface settlement. 
The twin tunnels have a larger impact on the surface settlement. Different tunnelling 
construction methods have a different impact on the surface settlement induced by 
tunnelling. There is more than one technique that can be used for the prediction of the
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surface settlement induced by tunnelling. The empirical formulas can be easily used 
to predict the surface settlement induced by tunnelling. However, these methods have 
several limitations due to the assumptions made to develop the empirical formulas. 
In addition, many numerical solutions have been proposed for the prediction of 
settlement induced by tunnelling using theoretical soil constitutive models. Although 
the simulation of the numerical models can reflect the closest scenario of the actual 
tunnelling work, these methods are time-consuming to produce the result for the 
practical engineer under different ground conditions. Centrifuge modeling can be 
considered as another category of techniques to stimulate the actual tunnelling work 
on a small scale, which could lead to a better understanding of the tunnelling work. 
However, setting up laboratory work for centrifuge modeling for every tunnelling 
project is high in cost and time-consuming. Other than that, there are many limitations 
in the scaling model to reflect the actual tunnelling work. The statistical model of 
MLR can also be used for the prediction of surface settlement. Nevertheless, the 
statistical model is limited to the certain nature of the project. Furthermore, the soil 
or rock is a complex material with a wide range of properties, which are not able to 
reflect linear properties. 

Among all the available techniques, ML has the most suitable prediction level 
for estimating surface settlement caused by tunnelling. This study provided a review 
of the various approaches used by researchers to predict surface settlement, and 
the literature review revealed that ML has remarkable accuracy. Nevertheless, the 
implementation of ML models highly depends on the quality of the input data as 
these models are data-driven. Therefore, good quality sets of data are required for 
the successful development of ML models. It is recommended to study the theoretical 
aspects of the tunnel-induced settlement before using the ML models. The authors 
suggest that ML methods can be utilized as a complement to conventional computing 
techniques rather than an alternative to their design. Lastly, in future ML models, 
the combination of the ML and the theoretical model is strongly recommended to 
consider the scientific theory in the model. 
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A Review on the Feasibility of Artificial 
Intelligence in Mechatronics 

Amin Hashemi and Mohammad Bagher Dowlatshahi 

1 Introduction 

Intelligent control strategies are very flexible for describing from an automation point 
of view. While the system performs critical functions, this concept is dynamically 
implemented in real-time. So it is different from traditional feedback. Thus, if the 
law of control is continuously updated, we can assume the classical adaptive control 
to be intelligent. This kind of system can be considered borderline according to 
the classification perspective [1]. If we trace intelligent control approaches from the 
source for mechatronics analysis, we will face analyzing and processing big data, the 
evolution of mathematic-based methods, and programming. The exponential growth 
process of this research area reached the early 2010s and did not stop declining [2]. 

Various artificial intelligence methods and areas are utilized in mechatronics 
and robotics, including artificial neural networks (ANNs), machine learning, evolu-
tionary computing algorithms, and fuzzy logic. Machine learning consists of deep 
learning, reinforcement learning, classical learning (unsupervised and supervised), 
neural networks (NN), and ensemble methods. Intelligent control algorithms analyze 
large data sets and exploit beneficial patterns from actions taken by utilizing a variety 
of probabilistic, statistical, and optimization methods [2]. In the automatic control 
field, reinforcement learning is practical. Ensemble strategies and classical learning 
are also used for classifying and processing data sets against neural networks [3– 
5]. Conversely, neural networks are practical in dealing with unlabeled features and 
complex data.
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In autonomous systems that interact with the real world, a critical challenge is the 
safety and reliability of utilizing intelligent control approaches. This problem is the 
subject of a review article [6] in which an asymptotic analysis of intelligent control 
approaches convergence is conducted. 

This chapter discusses modern intelligent control approaches in mechatronics to 
recognize open issues and trends in intelligent control. 

The chapter is constructed as follows: Sect. 2 recalls multiple intelligent control 
approaches. The applications of intelligent approaches in engineering control 
problems are presented in Sect. 3. The chapter is concluded in Sect. 4. 

2 Smart Control Methods 

Intelligent control is an apart discipline, but the application of new concepts, such as 
neural networks to control loops, utilizing different scientific approaches constructed 
based on automatic control theory, is required. Therefore, intelligent control can 
improve its performance every time by learning from previous experiences as a 
combined approach. 

In the framework of intellectual approaches, assume the most general modern 
control theory methods. This chapter pays the most attention to machine learning 
since some of them are well-known, and there is no further explanation. 

2.1 Adaptive Control Methods 

Like optimal control, adaptive control is constructed based on a well-developed 
mathematical and theoretical justification [2]. This method became the initial step 
for intelligent control, as an integration of adaptive controllers within the framework 
of the classical automatic control theory provides a quality of operation of the system 
given the conditions of the parameters of the object and the specification of the 
external environment are unknown or change indefinitely. The adaptation principle 
can be considered the heart of intelligent control processes, which evolves from 
self-optimizing controllers to adaptive learning systems [7]. 

Adaptive control algorithms for time-discrete systems were applied to artificial 
intelligence by Yakubovich, who received several algorithms for training linear clas-
sification models [2, 8–10]. The Stripe Algorithm (SA) proposed by Yakubovich 
in a recently published article [11] has shown acceptable performance in machine 
learning. SA achieves higher performance than traditional linear learning methods 
by numerical analysis in online machine learning, making it suitable for this field. 
Lipkovich [12] provides various strategies for the reduction of loss optimization 
problems in dealing with inequalities systems, considering both regression and clas-
sification problems. In reference [11], a comparison analysis is conducted between
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SA and modern linear analogs, including logistic and linear regression. Complex non-
linear models have the potential to outperform SA. However, the last one includes 
the common points of interest of linear models, like explainability, development, and 
implementation [12]. It can be noted that the presence of a hypothesis does not ensure 
practical application, especially in experimental conditions of control systems [12]. 

2.2 Optimization Techniques 

Optimization techniques emerged before machine learning historically and were 
utilized to discover the extrema of a function [13]. Most machine learning problems 
are based on the theory of optimality. This theory can be generally formulated as the 
minimization of multiple features J regarding multiple parameters θ = J (θ ) → min 

θeX 
. 

The form of the minimized value is determined by the machine learning approach. As 
an example, the prediction error on the existing sample is minimized in a regression or 
classification problem, while the greatest advantage from the activities of the plant 
is discovered in reinforcement learning. This can be accomplished by any search 
algorithm. As you can see, there are many types, methods, and uses of mathematical 
optimization. 

2.3 ANNs 

ANNs inspire biological networks as powerful artificial intelligence tools. ANN is 
an object that imitates the neural network constituting the human brain so that the 
computer can learn and make decisions like a human. An input layer, a hidden layer 
or more, and nodes or neurons as numerous simple computational components as an 
output layer construct an ANN structure. A simple ANN with two inputs and two 
hidden layers is presented in Fig. 1. This additionally includes relationships between 
neurons in consecutive layers through the weights. These weights can change the 
signal sent from one node to another and increase or decrease the impact of a particular 
relationship. A weighted input plus one bias from each neuron in the previous layer 
is received by each hidden layer neuron. The output of neurons is determined by 
their activation function. An ANN structure is shown below

Y = f

(
nΣ 

i=1 

wi vi − b

)
(1) 

In Eq. 1, f refers to the activation function, vi and wi are shown the input values 
and the weights of neurons, respectively. Also, y refers to the network’s output, b is 
the bias, and n indicates the neuron’s number in the hidden layers. The performance
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Fig. 1 A simple ANN structure

of the model can be enhanced by updating the network weights during the training 
phase. ANN’s neuron weights determine how the input data affects output data. The 
primary weights are selected randomly [14]. 

The network’s internal weights are tuned using a learning algorithm. Backprop-
agation (BP) algorithms are today’s most common form of training in ANNs. Also, 
optimization methods such as genetic algorithm and particle swarm optimization are 
practical in optimizing the ANN [14]. 

Using NNs is effective for noisy and non-linear system controls, and adaptability is 
provided for the system. The NN can work in real time after training. The constant NS 
advancement in properties and structure aims to overcome the existing shortcomings. 
The heuristic learning methods for NN can lead to deadlocks and vague solutions, and 
it needs a training sample to be prepared. Long training time is the principal disad-
vantage of NN in robotics, increasing the risk of inappropriate control of expensive 
equipment, the uniformity of training results for predictions, and the current imple-
mentation of NN can only be implemented in a very large-scale integration circuit 
form. 

2.4 Fuzzy Logic Method 

Zadeh proposed the fuzzy logic as an object with an element membership function 
in ranges [0, 1] to a set based on the fuzzy set concept [15, 16]. It turns out that fuzzy 
logic inference can be expressed in the NN form using the membership function to 
perform the task of neurons and the activation function, considering the neurons’ 
connections as signal transmission. Currently, a lot of fuzzy neural networks roughly 
explained by the widespread shape of approximators have been developed [17].
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2.5 Reinforcement Learning 

Reinforcement learning is an approach for handling hybrid optimization problems in 
machine learning, a structure in which the operator learns how to perform successive 
decision-making tasks online through interaction with the environment. Reinforce-
ment learning in agent planning is provided by receiving feedback on the outcome 
of choices made as a reward or punishment without specifying how to achieve the 
outcome. The reinforcement learning procedure is that the agent first chooses an 
action from the limited and possible action collection based on observing a situation 
in the environment and performing that action. Then, the agent receives a predeter-
mined signal from the environment, demonstrating the quality of the operator’s action 
as a reward or punishment. In the next step, the agent transfers to a new environmental 
status based on the current state [18–20]. In this approach, the agent interacts with 
the environment by performing a series of actions to find solutions [21, 22]. MDP 
provides a widely utilized mathematical framework for modeling such problems and 
consists of four stages [21–23]: 

1. A set of states, S = {s1, s2, ...., sd} 
2. A set of actions, A = {a1, a2, ...., am} 
3. A state transfer function T = (s '|s, a) is a possibility distribution function that 

a given state s and action into a state s'. 
4. A reward function R = S × A × S → R gives an instant reward when an agent 

performs an activity and moves from state to state s'. 

Using the Markov chain in reinforcement learning, the agent’s choice of action is 
subject to a policy that determines the probability of choosing the action in a specific 
status. In other words, it determines the effect of the action in an independent state in 
such a way that the reinforcing learning agent learns to maximize all future rewards 
[24, 25]. 

Rt = rt+1 + γ rt+2 + γ 2 rt+3 +  · · ·  =  
∞Σ 
k=0 

γ k . rt+k+1, (2) 

where t is the time stage and rt+1, rt+2, rt+3, … is the sequence of rewards after the 
time stage t , and γ ∈ [0, 1] is a deterrent that handles the significance of instant 
rewards compared to coming rewards and prevents the reward from going to infinity. 

One of the best techniques for solving the Markov decision chain problem is 
the temporal difference technique, which is notable for its good performance, low 
computational cost, and plain interpretation. The value of a state or action is estimated 
using the value of other states or actions [26, 27]. Since the proposed technique basis 
on temporal difference, we express TD as follows: 

V(St ) = V(St ) + α
[
rt+1 + γ V(St+1) − V(St )

]
(3)
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where parameter α is the learning rate that determines how many errors must accept 
at every step. Parameter γ is the discount rate that characterizes the influence of the 
following case. The value inside the bracket is a calculation error in the calculation. It 
calculates the difference between the worth of case V (St ) and the estimate of the 
subsequent step and the subsequent reward rt+1+γ V(St+1)−V(St ) that the operator 
tries to minimize this time. 

3 Application of Intelligent Approaches in Engineering 
Control Problems 

In this section, we will discuss the applications of intelligent approaches in 
engineering control problems by reviewing a few works in the literature. 

3.1 Stabilization and Program Control Problems 

Program control and stabilization operations require feedback in the loop. In general, 
system state vectors are not provided for evaluation, so the available measurement 
outputs define the control strategy. The robotics and mechatronics standard tasks 
are similar to speed trajectory tracking and stabilization tasks. These variables can 
be easily measured at the output of the system. Reference [28] presents a machine 
learning method for quadcopters. This article presented the approach πθ using θ 
as the parameter and is differentiable on parameters. J (πθ ) is the objective function 
differentiable to θ , for example, the optimization is conducted by the gradient method. 
For this purpose, probabilistic estimation of the strategy parameters and the mean 
reward gradient formula is used. The most common method of gradient estimation 
is formulated as follows: 

ĝ = Et

Λ[
∇θ logπθ 

(at |st ) Ât

]
(4) 

where Et

Λ

is the experimental mean for a finite set of instances, Â(st , at ) = 
Q(st , at ) − V̂ (st ) represents the advantage function value in time t by changing the 
sample generation process, and πθ is the policy enhancement. The dynamic model 
may be non-differentiable or unknown in this reinforcement learning problem. Thus, 
the model should be trained, which leads to increasing the gradient estimates vari-
ance. For policy optimization in the mentioned article, a solid approach is proposed 
by incrementally enhancing agent performance. After differentiation of Eq. 4, the  
objective function is formulated below. 

J (θ ) = Et

Λ[
min

(
r (θ ) Ât , cli p(r (θ ), 1 − ε, 1 + ε)

)]
(5)
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where r (θ ) = πθ /πθold and ε is the hyperparameter. 
By differentiation of Eq. 5, gradient ĝ is obtained. The reward function is 

formulated as follows: 

rt
(
ext  , eyt , ezt

) = α −
/
e2 xt  + e2 yt + e2 zt (6) 

where α is a constant to make sure that each quadcopter is assigned a reward, and 
ext  , eyt , ezt are the coordinates of the quadcopter. 

In reference [29], entropy-based reinforcement learning is considered with a soft 
membrane vibrating drive for ultra-fast tripod robot gait. Data collection for learning 
and controller development with feedback are needed for this type of problem. A 
Gaussian normal distribution policy is defined as the controller: fϕ(st ) = (μt , σt ) 
in which ϕ is the controller parameter, σt and μt refer to the standard deviation and 
mean, respectively. The action strategies for starting are defined as N

(
at , fϕ(st )

)
and 

function fϕ is constructed as a neural network. The reward function is presented as 
follows: 

r (st ) = −dt − δθt + c (7) 

where the root mean square error between the current position of the robot and its 
final position is shown by dt , c is the coefficient, and the angular difference between 
the current and desired position is shown by δθt . To Maximize Entropy Solution, the 
optimal solutions policy is formulated as follows: 

π ∗ 
α = arg max 

π 
Eτ P,π

[ ∞Σ 
t=0 

γ t
(
r̂ (st , at )

) + α H(π (.|st ))
]

(8) 

H
(
πϕ(.|st )

) = Eα∼πϕ

[−logπϕ(a|s)] (9) 

where α is the entropy temperature in ranges [0, ∞) and r̂ (st , at ) = 
Eś∼P(π ( .|s,a))

[
r
(
ś
)]
. The function value should be minimized by stochastic gradient 

descent. 
If we have control goal changing repeatedly, the mentioned reinforcement learning 

method is not applicable. To solve this problem, you can use a set of state-action-
reward, which can be trained to mimic a specific objective in each set. This solution 
is presented by Puccetti et al. [30] and is tried on a speed control framework. 

Bayesian statistical methods are very effective in intelligent systems [31]. A new 
hypothesis is achieved by recent data from human brain research led to that in specific 
types of sensorimotor learning, the brain uses Bayesian internal models to optimize 
performance on specific tasks. The resulting activity of a particular neuronal popula-
tion can be modeled as a coordinated Bayesian process. The concept of neural signal 
processing can be utilized in a variety of applications, from rehabilitation engineering 
to artificial intelligence.
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3.2 Controller Tuning 

Utilizing fuzzy and adaptive controllers and PID is common in the industry. In 
adaptive control schemes, both the controller parameters and structure can be changed 
in response to parameters alteration of the disturbances or controlled object. An 
overview provides a historical viewpoint on learning methods and adaptive control 
[7]. In many cases, the structure of the controller is fixed, and only its parameters 
need to be tuned. It is known how to tune the controller based on a description of 
the system dynamics. Therefore, it is not easy to obtain in practice, requiring deep 
system knowledge and potentially open-loop, large-scale measurements. The first 
proposed algorithm in this area tries to tune a PID controller with the quick reaction 
of the system model and the sufficiency and cycle of the closed control-loop natural 
oscillation [32, 33]. Subsequently, an adaptive PID controller and a discriminative 
adaptive control algorithm were proposed, and the model parameter estimates were 
used to adjust coefficients [34, 35]. In some cases, especially if the system is unstable, 
only feedback measurements are possible. The alteration gets to be cumbersome and 
wasteful in this connection as the operating conditions of the system change. It, 
therefore, relies on automated methods that can rapidly decide the parameters of the 
controller without human intercession based on the task. A self-regulating structure 
starts work in this area. 

In reference [36], a multi-parameter self-tuning controller is proposed to control an 
injection molding machine. The dynamics of a system are explained by the following 
probabilistic model of discrete time. 

A
(
q−1

)
y(t) = B

(
q−1

)
u(t − d − 1) + C

(
q−1

)
e(t) (10) 

where an output vector of dimension p is shown by y(t), an input vector of dimension 
s is indicated by u(t), q−1 is the reverse shift operator, e(t) is white Gaussian noise 
of dimension p, d is the unit time delay, and (q−1y(t)) = y(t − 1). The model 
presented in Eq. 8 is presented by the self-tuning estimation strategy with recursion 
in k-step as follows: 

ý(t + k|t) = 
naΣ 
i=1 

Âi ŷ(t + k − i |t) + 
nbΣ 
i=d 

B̂i u(t + k − i ) + 
ncΣ 
i=d 

Ĉi ê(t + k − i ) 

(11) 

where Âi , B̂i , Ĉi indicates the estimated matrices for Eq. 10 and k = 1, 2, ..., d. 
Thus, the optimization problem is reformulated as follows: 

J =
||||||D0 B̂du(t) + L̂(t)

||||||2 

Q1 
+

||||||||||G0u(t) + 
rΣ 

i=1 

Gi u(t − 1)

||||||||||
2 

Q1 

(12)
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This turns a stochastic optimization problem into a deterministic problem: 
∂ J/∂u(t), in which the output of the self-tuning controller indicates by u(t): 

u(t) = −
[(

D0 B̂d

)T 
Q1 D0 B̂d + GT 

0 Q2G0

]−1

[(
d0 B̂d

)T 
Q1 L̂(t) + GT 

0 Q2 

rΣ 
i=1 

Gi u(t − 1)

]
(13) 

The structure adjustment capabilities and additional control of the learning 
controller must be utilized to fulfill the needs of more complex machines based 
on the simulation results. 

In a study dedicated to self-tuning controllers [37], algorithms were obtained and 
analyzed by aggregating the least squares estimation (LSE) and tuning the minimum 
oscillations achieved by the dynamics model. Two theorems are achieved by the 
primary results assuming convergence of estimating parameters and defining a closed 
system. Some cross-covariance and output of the output control variable will vanish 
from the little presumptions of the registry in the first theorem. The second theorem 
assumes that the control framework may be a common linear likelihood framework 
of order n. When the parameter estimation process is converged, we show that the 
resulting control law is the control law of most minor variability that can be computed 
with the known parameters. 

3.3 Identification Problems 

In reference [38], a method using the bee swarm algorithm to identify linear systems 
described by differential equations is proposed. To get a model and parameter set 
that minimizes the prediction error between the model output and the real object, an 
optimization problem is defined based on the identification problem. The result of 
the algorithm operation is displayed on the DC motor model. 

In reference [39], to adjust the parameters of the PID controller of an evapo-
rator control system while minimizing the system tracking absolute squared error, 
a heuristic colony competition algorithm was used. The genetic algorithm and 
Ziegler–Nichols method demonstrate this algorithm’s effectiveness. 

To determine the lasting magnet synchronous motor model parameters in real time, 
Rahimi et al. [40] used a heuristic competition algorithm. For this, a minimization 
process is conducted based on the mean squared error of the system state vector 
control.
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3.4 Optimization Problems 

Gradientless search algorithms are widely utilized for all optimization problems due 
to their versatility. This also applies to NN because NN does not utilize the gradient 
of the function and does not consider it is differentiable [41]. Their characteristic 
is that the optimization problem solution is worthy but not ideal. Recently, various 
biomimetic solutions that borrow ideas from nature are gaining popularity [42, 43]. 
These include populations [44], swarm and colony algorithms [45–47], evolutionary, 
etc. A bat algorithm [44] is also known and is related to echolocation-based swarm 
intelligence. The cuckoo swarm algorithm tunes the PID controller in thyristor series 
compensation [48] and DC motor control systems [49]. The former was more efficient 
compared to the Swarm algorithm with the heuristic algorithm. 

In reference [50], using support vector algorithms, an optimal control approach 
is proposed to minimize the bipedal robot’s power consumption under a small 
data sample size and an unknown system dynamics model. The new controller has 
been integrated into the optimal controller, constraining the robot’s joint angles to 
minimize the energy-related cost function. The energy functional is 

JEE  = 
T∫

0 

1 

2 
τ T τ dt, τ  = g(Θ) (14) 

where g(.) is parameterized by NN and Q is a vector of generalized coordinates. The 
quadratic form support vector machine quality function is 

JSV M = min 
1 

2 
W T W + 

1 

2 
C 

NΣ 
i=1 

ξ 2 i as, τi = wT ϕ(Θi ) + ξi (15) 

where ξi is a positive variable, w is a vector of weights, C is a penalty factor, N refers 
to the training instances number, and ϕ(.) refers to the transformation function of 
the input space to the input space of higher-order features. The resulting functional 
includes the aggregation of JEE  and JSV M . 

In Ref. [51], an improved “learn-learn” search algorithm is utilized by multi-
objective optimization of PID controller parameters. This prevents function values 
from getting stuck in local minima. To this end, there are not only two learners in 
the learning, but it includes an additional state. Also, parameters ear to inconsistent 
targets is combined with a blocked device phase where they are blocked. This ensures 
that each objective cannot collide with another [52]. The results of comparative 
studies on optimizing the parameters of the PID controller of the DC motor control 
system utilizing the particle swarm method, the honey bee colony algorithm, and the 
learning-learning. The last one showed the best results.
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3.5 Problems of Iterative Learning 

Machine learning is known as one form of artificial intelligence, which is that rather 
than being explicitly programmed, the systems can be trained by data stored in 
memory [53]. Based on processing the training data set, a more accurate model is 
constructed. This allows you to train the model before and on an ongoing basis. The 
iterative model training process continuously improves the types of relationships 
between data items, no matter how complex or large. You can continue training in 
real time using models trained offline. 

In Ref. [54], a fault-tolerant control approach is proposed according to the itera-
tive current-loop learning control for recovering the execution of polyphase perma-
nent magnet drives under open-circuit conditions. This method does not need diag-
nostics and troubleshooting as its main advantage, and torque measurements are 
sufficient. Iterative learning management, therefore, provides comprehensive knowl-
edge on reliability for modeling uncertainty and the system. We developed a flex-
ible trajectory-assisted control scheme using iterative learning control for a cloud-
wheeled robot system to move along a given trajectory and transport cargo simulta-
neously and performed a system stability analysis [55]. In [56], a human-led iterative 
learning framework is presented for a trajectory-tracking task in which a controller 
gets input from the activities of a human agent. Hladowski et al. [57] considered the 
influence of noise to achieve new results for the dynamic enhancement of iterative 
learning control laws. 

An iterative procedure is presented for planning the milling process in reference 
[3]. For that, it is necessary to know the machine’s technical parameters and the 
parts’ geometrical parameters to form the machine tool trajectory. Tool deviation is a 
severe problem in which the milling process requires constant review and planning. 
Dittrich et al. [3] presented the following solution that reduces processing errors by 
up to 50% by predicting the error between a model of machined shape and actual 
surface measurements using machine learning methods. Thus, a statistical support 
vector machine uses the previous process dataset as the training dataset. 

4 Conclusions 

The modern world trend towards organizations of advanced production types is 
reflected in intelligent control scientific publications methods in electromechanical 
systems. Using AI methods, it is possible to solve previously impossible problems of 
controlling mechatronic systems while at the same time increasing ease of implemen-
tation and computational efficiency. The complexities of control tasks for multi-agent 
systems are inherently non-linear, uncertain, or influenced by external environments 
and require individual approaches to solving specific problems, for which many 
tools are proposed. Only by actual experiments, the effectiveness of these learning 
algorithms on complex systems can be measured. The development of the algorithm
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itself aims not only to increase the accuracy and speed of learning but also to increase 
independence from adaptation to various goals and learning strategies that humans 
strictly set. Developers try to recreate the behavior of living organisms by utilizing 
natural thoughts in algorithms. Future research establishes a task, usually referred 
to as “learning for learning,” when agents need to select learning strategies and tune 
meta-parameters. 
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Feasibility of Artificial Intelligence 
Techniques in Rock Characterization 

Mohamad Bagher Dowlatshahi , Amin Hashemi, Masoud Samaei, 
and Ehsan Momeni 

Abstract In recent past years, the implementation of artificial intelligence (AI) 
techniques in rock characterization is highlighted in the literature. This is attributed 
to the fact that direct determination of rock engineering properties such as unconfined 
compressive strength (UCS) is time-consuming, costly, and some times difficult. This 
study aimed to review the recent works which propose AI techniques, as indirect 
methods, for assessing the UCS of rock samples. For this reason, first, the well-
established AI techniques are discussed. Subsequently, the prediction performances 
of recent AI-based predictive models are underlined in this book chapter. Based on the 
reviewed works, preparing a suitable dataset and selecting proper input parameters 
for an AI-based predictive model of UCS play crucial roles in the reliability of the 
developed models. According to the reviewed studies, there should be a meaningful 
relationship between the considered input parameter and UCS. Additionally, it is 
recommended to consider input parameters that are approximately independent of 
each other. On the other hand, the reviewed studies suggest utilizing relatively large 
datasets for developing intelligent models. Apart from that, a word of caution is 
required for generalizing the prediction performances of AI-based predictive models 
of UCS, especially when the dataset size is small and the range of future data is beyond 
the range of the model’s dataset. Overall, the findings recommend the feasibility of 
artificial intelligence techniques in predicting the UCS of rock samples. 

1 Introduction 

Unconfined compressive strength (UCS) of rocks is an important parameter in 
designing rock engineering problems. There are different techniques for estimating 
the UCS of rocks, however, they are mostly categorized into direct and indirect
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techniques. Direct method for UCS estimation in the laboratory is time-consuming 
and costly. Hence, the implementation of indirect methods for assessing the UCS of 
rocks is of advantage. Indirect methods are mostly categorized into regression-based 
techniques and soft computing techniques. It is well established that rock index tests 
such as point load test and P-wave velocity test have good mutual correlation with 
UCS of rocks. Therefore, many researchers prepared a set of related experimental 
data for developing regression equations for UCS estimation. On the hand, recently 
workability of soft computing-based techniques is underlined in literature. As will 
be discussed later, many studies underlined the feasibility of various artificial intel-
ligence techniques in developing predictive models of UCS. This chapter aimed to 
shed light on the workability of soft computing methods in rock characterization. For 
this reason, some of the well-established soft computing techniques are discussed 
in the next section. Section 3 of this chapter deals with a comprehensive review 
on the workability of intelligent techniques in assessing the unconfined compres-
sive strength of rocks. The last section of this chapter underlines the summary and 
conclusion remarks. 

2 Artificial Intelligence Methods 

In this section, we intend to discuss the Artificial Intelligence (AI) methods, 
including the Neural network, Adaptive Neuro-Fuzzy Inference System (ANFIS), 
Gene Expression Programming (GEP), Random Forest (RF), and the combination 
of neural networks with Particle Swarm Optimization (PSO) as well as Genetic 
Algorithm (GA). 

2.1 ANFIS Algorithm 

ANFIS [1] is constructed based on a hybrid system consisting of FIS (Fuzzy Inference 
System) and a neural network. FIS is generally recognized for its ability to map 
prior knowledge to some constraints. The resulting set can be used to optimize 
the search space at the network topology level. In conjunction with FIS, ANFIS 
integrates neural networks with Backpropagation (BP) to automate the tuning of 
fuzzy controller parameters. ANFIS includes the necessary functions for tuning the 
network configuration using the Takagi–Sugeno (TS) controller to achieve the best 
tuning. A learning algorithm is generally embedded in ANFIS through a procedure 
consisting of two steps. The first is the offline learning phase which consists of 
forward passing with the least square error. The second step uses a gradient descent 
algorithm with BP [2]. The architecture of ANFIS is presented in Fig. 1, which has 
two inputs and one output.
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Fig. 1 ANFIS architecture 

The structure presented in Fig. 1 has five layers of neurons or perceptrons. Neurons 
or perceptrons are similar to each other with the same function within a layer, as 
follows: 

Layer 1: This layer is also called the Fuzzyfing layer. Neurons in the first layer 
contain premise parameters that are considered adaptive nodes. 

Layer 2: This layer is also called the Implication layer. Circles present neurons in 
the second layer including

Π
as their label. Thus, the input signals form the output 

node. The strength of each rule is represented by the output node wi . 

Layer 3: This layer is called the Normalizing layer and includes fixed neurons. 
Circles present neurons in the third layer, including N as their label. The i-th node 
in the third layer computes the ratio of firepower of the i-th rule to the sum of all 
firepower as the output of this layer. 

Layer 4: This layer is also called the Defuzzyfing layer. The fourth layer’s neurons 
are actually adaptive and contain the outcome parameters. 

Layer 5: This layer is called the Combining layer. The only node in the fifth layer 
calculates its total output as the sum of all its inputs.
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2.2 Artificial Neural Networks 

An Artificial Neural Network (ANN) is a system that performs the matching of prob-
lematic input and output patterns. An ANN discovers knowledge through several 
iterations in a learning process. The ANN is ready to evaluate problems with non-
linear functions, predict new behaviors, or classify new information after the learning 
process is complete. A series of interconnected neurons (represented by functions) 
construct an ANN and are organized into layers. The ANN’s input values are sent 
through layers, and the information transformation is done using corresponding 
synaptic weights (values in the range [0, 1]). The subsequent layer neurons then 
summate this information depending on whether they are connected [3]. 

Additionally, this sum includes another input called bias, whose value is 1. This 
bias is denoted by b and indicates the threshold representing the minimum level 
required for a neuron to activate [3]. An ANN structure is shown in Fig. 2. 

Y = f
(

nΣ
i=1 

wi vi − b
)

(1) 

In Eq. 1, f refers to the activation function, vi and wi are shown the input values 
and the weights of neurons, respectively. Also, y refers to the network’s output, b is 
the bias, and n indicates the neuron’s number in the hidden layers. The performance 
of the model can be enhanced by updating the network weights during the training 
phase. ANN’s neuron weights determine how the input data affects output data. The 
primary weights are selected randomly [4]. 

The network’s internal weights are tuned using a learning algorithm. Backprop-
agation (BP) algorithms are today’s most common form of training in ANNs. Also, 
optimization methods such as GA and PSO are practical in optimizing the ANN [4]. 
For this optimization, a cost function is required to evaluate the network’s perfor-
mance in each iteration. It means that the network weights should be set so that the 
predicted output is close to the actual output [5]. The mean squared error (MSE) 
function is a popular cost function defined as follows for this task: 

MSE  = 1 
2 

GΣ
k=1 

mΣ
j=1

[
Y j (k) − Tj (k)

]2 
(2) 

where m and G refer to output nodes and the number of training instances, 
respectively. Tj (k) shows the actual output and Y j (k) refers to the expected output. 

In the rest of this section, we will discuss optimization methods used to tune ANN 
weights.
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2.2.1 Designing ANN Using GA 

Genetic algorithm (GA) is a class of collective adaptation algorithms inspired by the 
evolution theory of Darwin. Each genome or individual in a population represents 
a specific location in the search space. GA uses the (objective) fitness function to 
evaluate the objective value of every individual in the population. A favorable solution 
is randomly selected to improve weak solutions using a selection mechanism (such 
as a roulette wheel). This mechanism tends to select the best solution because the 
probability is commensurate to the goodness of the objective value. Setting the initial 
population, selection, crossover, and mutation are the main steps of the GA algorithm 
[6, 7]. This section describes these steps individually. 

Initializing the population: First, several solutions are accidentally generated. The 
initial population size depends on the problem’s nature and typically ranges from 
hundreds to thousands of solutions. The initial population can be planted in a specific 
area with a high likelihood of discovering an optimal solution. The following steps 
are used to enhance the chromosomes in the initial population. 

Selection: A new generation is produced in every iteration of GA from the previous 
generation. Solutions are evaluated according to their objective values, so the likeli-
hood of selecting better solutions are higher compared to the other solutions. There 
is still a chance for selection of weak individuals which can help the population 
diversity. There are multiple selection mechanisms for GA. Tournament selection 
and roulette wheel selection are two popular methods for this task. 

Crossover: After selecting individuals, they should be utilized to produce a new 
generation. Chromosomes in female and male genes mate to form new chromosomes 
in nature. This is modeled in the GA algorithm by aggregating two solutions (the 
parent solutions) to produce two new solutions (the child solutions). There are several 
strategies to use the crossover operator, such as single-point, double-point, uniform 
crossover, to name a few. 

Mutation: The most straightforward genetic operator is mutation. This operator 
alters the bits value of a chromosome from 0 to 1 or 1 to 0 by random selection. 
This operation may lead to new solutions in the search space, which may make 
the algorithm one step closer to finding the optimal solution. In order to avoid the 
algorithm does not become a simple random search, the mutation rate should be low. 
Mutations include gene deletions, gene duplications, gene sequence inversions, and 
the insertion of part of a chromosome into another one. 

The GA algorithm first selects a random population. The three operators above 
improve the population until the termination criterion is reached. The final population 
optimal solution is the optimal solution for the given problem. Algorithm 1 presents 
the pseudo-code of the GA algorithm.
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Algorithm 1: GA 

1. Population initialization 
2. Repeat 
3. For all chromosomes in the population, Do 
4. Compute the fitness value 
5. End For 
6. If the termination criterion is reached, Then 
7. Halt 
8. Else 
9. Place copies of the best individuals in the new population 
10. Repeat 
11. Perform crossover based on the rate of crossover 
12. Perform mutation based on the rate of mutation 
13. Until the new generation is produced 
14. End If 
15. Until the termination criterion is reached 

GA algorithms can solve many optimization problems, including ANN weight 
optimization. In this regard, we can set various random values for the ANN as the 
initial GA population to achieve the best value. For better understanding, let us 
consider a simple ANN with two inputs and two hidden layers in Fig. 2. All weights 
in the network are combined into one chain. GA then uses this row as a chromo-
some. Each chromosome represents the weight of the entire network. In Fig. 3, a  
chromosome structure is shown based on the structure in Fig. 2. Thus, multiple chro-
mosomes are generated with random values as the initial population of GA based on 
the population size. The fitness function is also presented in Eq. 2. To evaluate the 
individuals, they are fed into the network to predict the output. Then based on Eq. 2, 
the fitness evaluation is performed. At last, the based weights are determined for the 
network as the result of GA [8]. 

a 

e 

f 

b 

c 

d 

e 

f 

Neuron 

Neuron 

Neuron 

Input 1 

Input 2 

output 

Fig. 2 A simple ANN structure 
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2.2.2 Designing ANN Using PSO 

PSO is a population-based search technique inspired by the social behavior of bird 
flocks and fish aggregation populations. Each individual is called a particle in the 
PSO. The particles fly through the search space and adjust their positions using their 
experience and neighbors. Particles can perform a global search by traveling fast 
away from the best location to search unknown regions, or they can be very slow 
and close to a specific location for best results (tuning). PSO is straightforward to 
implement and includes a few control parameters. The following equations are the 
two main rules for updating a standard PSO [7]. The following formula updates the 
particle’s speed: 

v (t+1) 
id  = wv (t) id  + u[0, 1]ϕ1

(
p(t) 
id  + x (t) 

id

)
+ u[0, 1]ϕ2

(
p(t) 
id  + x (t) 

id

)
(3) 

where t is the iteration index, u[0, 1] is a uniform random distribution of particles, 
and ϕ1 and ϕ2 indicate the impact rate of the local and global optima on the total 
speed of particles [7]. The position of each particle is updated according to Eq. 4 as 
follows: 

x (t+1) 
id  = x (t) 

id  + v (t) id (4) 

The PSO algorithm first generates a random population of articles using random 
values for particle positions and speeds. Until the end criterion is reached, the position 
and velocity of articles are improved by the above equations. At first, the fitness value 
is determined for all particles to discover G.best. G.best refers to the best solution in 
the population, and P.best indicates the best position of a particle that has reached so 
far. Then all particles tend to be the G.best since it is closer to the optimum solution. 
This process is repeated until no enhancement is done to the G.best particle [3, 9]. 
Algorithm 2 presents the pseudo-code of the PSO algorithm. 

Algorithm 2: PSO 

1. Population initialization (initial positions and velocities) 
2. Repeat 
3. For all particles in the population, Do 
4. Compute the fitness value 
5. If the position of particle i achives the best fitness so far for this particle, Then 
6. P.besti = xi 
7. If the position of particle i achives the best overall fitness, Then 
8. G.besti = xi 
9. End If 
10. End If 
11. End For 
12. Update the positions and velocities of all particles based on Eqs. 3 and 4 
13. Until the termination criterion is reached
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PSO algorithm can solve many optimization problems, including optimizing the 
weights of an ANN. For this matter, different random values are set for the ANN as 
the initial particles of PSO. To understand better, let us consider a simple ANN with 
two inputs and two hidden layers in Fig. 2. All weights in the network are combined 
into one chain. PSO then uses this row as a particle. Each particle represents the 
weight of the entire network. In Fig. 3, a particle structure is shown based on the 
structure in Fig. 2. Thus, multiple particles are generated with random values as the 
initial positions of PSO particles based on the population size. The fitness function 
is also presented in Eq. 2. To evaluate the particles, they are fed into the network to 
predict the output. Then based on Eq. 2, the fitness evaluation is performed. At last, 
the based weights are determined for the network as the G.best in PSO. It can be 
noted that the particle’s initial speeds are set randomly in the range [−1, 1]. 

2.3 Gene Expression Programming (GEP) 

The Genetic Programming (GP) method is proposed as a GA alternative using fixed-
length binary strings. GP algorithm is considered a promising technique due to the use 
of non-linear parse tree structures. The initial non-linearity of the data is considered 
by this algorithm. GP is inappropriate because it ignores independent genomes. The 
non-linear structure of GP works for both phenotype and genotype. It is impossible 
to develop a basic and simple model. An evolutionary population-based algorithm 
is proposed, known as the GEP method, to overcome the contradictions of the GP 
algorithm. It is a modified version of GP to overcome its weakness [10]. 

Passing the genome to the next generation is a significant change in GEP 
concerning GP. Another notable feature is using chromosomes of different genes 
to create objects. Each gene arises from arithmetic operations, fixed-length parame-
ters, and a finite set of constants used as functions in GEP. There is a stable and fluid 
interface between the relevant functions and the chromosomal level. Chromosomes 
record essential information which are needed to build models, and a new language, 
Carba, is being developed to output this information [10]. 

A flowchart of the GEP algorithm is shown in Fig. 4. The algorithm starts 
by randomly generating a fixed-length chromosome for every individual. Then it 
is similar to ET (expression tree). After that, the suitability of each individual is 
assessed. Over generations, iterations begin with multiple individuals until the best 
results are generated. Genetic functions such as mutation, reproduction, and crossover 
are performed to repeat a population [10].

2.4 Random Forest Regression (RFR) 

Random forest regression (RFR) is an improved regression method with flexibility 
and agility in developing relationships between output and input parameters. Random
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Fig. 4 The flowchart of GEP steps

forests also process large data sets more efficiently than machine learning algorithms. 
It is used in various fields such as banking, customer response prediction, and stock 
price direction, to name a few [10]. 

The RF method consists of three main steps: building a trained regression tree 
with the training data set, computing the average of the results of one regression tree, 
and testing the prediction results with the validation data set. The original trained 
set is used to compute a new trained data set of bootstrap data. In this step, some 
data points are removed and replaced with the current data points. Eliminated data 
points collected from other data sets are called out-of-bag data points. The regression 
function is then evaluated using 2/3 of the data points, and the ones outside the batch 
are used to validate the model. The process continues until the required accuracy is 
achieved [10]. 

RFR is a built-in process that uses out-of-bag data points for validation after their 
elimination as the characteristic of RFR. Finally, it calculates the total error for each 
expression tree, showing the efficiency and correctness of each expression tree [10].
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3 Application of Artificial Intelligence in Rock 
Characterization 

Laval et al. [11] highlighted the feasibility of soft computing methods in solving rock 
mechanic problems. According to their study, the limited availability of databases is 
the major problem in developing intelligent models. Baghbani et al. [12] reported that 
more than one thousand studies implemented soft computing techniques for solving 
geotechnical engineering problems. According to their study, ANN is the most 
popular technique for developing intelligent models. Nevertheless, the following 
subsections deal with a review on the related AI-based predictive model of UCS. 

3.1 ANN-Based Models for UCS Prediction 

In a study conducted by Momeni et al. [13], an artificial neural network model which 
is improved with particle swarm optimization was developed for assessing the UCS of 
granite and limestone. 66 granite and limestone samples were collected from different 
states in Malaysia for the purpose of conducting an extensive experimental program. 
In the experimental program, UCS of samples were measured directly and indirectly. 
In their study, UCS results were set as the outputs of the network, while labora-
tory results such as point load index test (IS(50)), Schmidt hammer rebound number 
(SRn), and p-wave velocity test (Vp) were set as model inputs. The proposed hybrid 
model was compared with a conventional ANN in order to determine its predic-
tion performance. An evaluation of the coefficients of determination, R2, resulting 
from conventional ANN and PSO-based ANN techniques revealed the superiority 
of the PSO-based ANN model. In the case of conventional ANN, the value of R2 

was 0.71, while it was 0.97 for the proposed hybrid predictive model. The sensitivity 
analysis revealed that Vp and SRn have a slightly larger impact on the predicted UCS 
value than other parameters. 

A paper published by Zakaria et al. [14] presented the application of Support 
Vector Machine (SVM) algorithm for UCS prediction. An algorithm was developed 
based on dry density and velocity parameters and tested on a series of rock data sets. 
160 rock samples were used to investigate the relationship between the dry density, 
the sonic velocity, and the UCS using the commercial software RapidMiner Studio. 
Based on the study’s results, it was determined that SVM can predict missing values 
with an accuracy of 75%. 

GFFN (generalized feedforward neural network) and Imperial Competitive Algo-
rithm (ICA) were used in a study conducted by Asheghi et al. [15] to predict the UCS. 
197 sets of data were compiled from almost all of Iran’s quarries, including rock class, 
density, porosity, P-wave velocity, point load index, and water absorption. Based on 
different error criteria and established confusion matrixes, the efficiency and perfor-
mance of GFFNs and hybrid ICA-GFFNs were compared to multilayer perceptrons
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(MLP) and radial basis functions (RBF) neural network models. Multivariate regres-
sions were also conducted. Their hybrid ICA-GFFN showed superior predictability 
levels with 11.37, 14.27, and 22.74% improvement in correct classification rate over 
GFFN, RBF, and MLP. A sensitivity analysis determined that P-wave velocity and 
rock class had the greatest and lowest influence on the predicted UCS. 

Using an indirect modeling approach and machine learning algorithms, Barzegar 
et al. [16] estimated the UCS of travertine rocks to address the limitations of direct 
measurements. For the prediction of UCS in travertine rocks from the Azarshahr area 
of northwest Iran, three standalone tree-based machine learning models were devel-
oped and compared (random forest (RF), M5 model tree, and multivariate adaptive 
regression splines (MARS)). An ensemble committee-based ANN model was devel-
oped to achieve further accuracy in UCS prediction. The models were constructed 
and validated using data from 93 travertine core samples, including P-wave velocity 
(Vp (Km/s)), Schmidt Hammer (Rn), porosity (n%), and point load index (Is (MPa)). 
With a ratio of 70:15:15 (train: validate: test), Vp, Rn, n%, and Is data were incor-
porated into the ensemble tree-based machine learning model. Based on the results 
of this study, a standalone MARS model outperformed all other standalone tree-
based models in predicting UCS. However, the ANN-committee model showed the 
best performance, with an r-value of approximately 0.890 and a root mean square 
error (RMSE) of 3.80 MPa, indicating that the ensemble model is more accurate 
in predicting UCS than standalone models. With a limited set of model-designed 
datasets, the ensemble committee-based model appears to be a practical approach 
for predicting the UCS of travertine rocks. 

The adaptive neuro-fuzzy inference system model was systematically optimized 
using stochastic fractal search (SFS) algorithms by Jing et al. [17]. Using three 
hybrid methodologies based on ANFIS, genetic algorithm, differential evolution 
(DE), and particle swarm optimization, the efficacy of SFS-ANFIS was assessed. 
Their study proposed that UCS can be predicted using SFS-ANFIS, GA-ANFIS, DE-
ANFIS, PSO-ANFIS, and ANFIS models. The freshwater tunnel in Pahang-Selangor 
in Malaysia was considered for this purpose, and the required sample were collected. 
Model evaluations were conducted using different metrics, such as coefficient of 
determination (R2) and mean absolute error. According to the effectiveness results 
of SFS-ANFIS, it was found that SFS-ANFIS (with R2 of 0.981) was able to predict 
the UCS better than PSO-ANFIS, DE-ANFIS, GA-ANFIS, and ANFIS models. 

Using the long short term memory (LSTM), deep neural networks (DNN), K-
nearest neighbor (KNN), Gaussian process regression (GPR), support vector regres-
sion (SVR), and decision trees (DT), Mahmoodzadeh et al. [18] attempted to predict 
the UCS of a variety of rock types acquired from almost every quarry location in Iran, 
including Claystone, Granite, Schist and Sandstone, Travertine, Limestone, Slate, 
Dolomite, and Marl. The methods were applied to 170 data sets, including porosity 
(n), Schmidt hammer (SH ), and P-wave velocity (Vp). To conclude, the results of 
the prediction methods were compared. Fivefold cross-validation was used to assess 
the performance ability of the applied methods. Results showed that computational 
intelligence approaches could be used to predict UCS. Overall, the GPR performed 
the best, with an R2 of 0.9955 and an RMSE of 0.52169.
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Several soft computing techniques were used by Gül et al. [19] for predicting 
UCS with the aid of experimental tests such as Brazilian tensile strength, ultrasonic 
wave velocity, and Shore hardness. The utilized AI methods comprises Multilayer 
Perceptron Neural Networks (MLPNN), M5 Model Trees (M5MT), and Extreme 
Learning Machines (ELM). 30 sets of data from six Turkish stones were analyzed 
using soft computing methods. MLPNN, M5MT, and ELM models were compared 
in terms of their performance using different performance criteria (RMSE, MAE, 
VAF, R2, and a10-index). Compared to other methods, MLPNN performed slightly 
better (R2 = 0.9982, RMSE = 1.3421, MAE = 0.7985, VAF = 99.7409, a10-index = 
1). Using MLPNN, M5MT, and ELM methods, Brazilian tensile strength, ultrasonic 
wave velocity, and Shore hardness were found to have the strongest influence on 
the predicted UCS values. Based on the results of the modeling studies, it was found 
that machine learning algorithms can make high-accuracy predictions in materials 
with heterogeneous structures, such as rock. 

To minimize the impact of outliers, Gupta and Natarajan [20] adopted a new 
machine learning algorithm called density weighted least squares TSVR (PDWL-
STSVR) for predicting the UCS of rock samples. KNN distance was used to 
determine the weights. Additionally, the performance of the model was compared 
with random forest (RF), extreme learning machine (ELM), least squares support 
vector regression (LSSVR), and primal least squares twin support vector regres-
sion (PLSTSVR). In their study, the results of R2 values showed that PDWLSTSVR 
outperformed RF, ELM, LSSVR, and PLSTSVR. 

Based on the serpentinization percentage, physical, dynamic, and mechanical 
characteristics of serpentinites, Moussas and Diamantis [21] developed an ANN 
model to predict the UCS indirectly. Earlier experimental data from central Greece 
were used for this purpose, including 32 block samples. The input parameters 
included effective porosity (ne), dry unit weight (γ d), saturated unit weight (γ s), 
water absorption (Wa), P- and S-wave velocities (Vp and Vs), point load index (Is50), 
and Schmidt hammer number (Sm). In order to select the best ANN model and its 
optimal structure from many candidate configurations, a Monte Carlo analysis was 
performed in their study. A comparison was made between the ANN-based results 
and the experimental results. ANN-based models were shown to be very accurate in 
predicting UCS (>94%) and were exceptionally efficient at classifying material cate-
gories (100%). Overall, ANN-based models were found to be feasible in predicting 
UCS values. 

On the other hand, the use of machine learning methods to predict UCS from 
geophysical logging data has increased significantly over the past few years. 
Li et al. [22] developed a Group-based Machine Learning (GML) method that 
performed better compared to the conventional methods. Using the unsupervised 
learning (K-means) method, the data points were classified into groups; after that, 
machine learning regression models were built for each group. In comparison with 
conventional non-grouping machine learning models, the GML performed better. 

As a result of rock drilling operations, Kumar et al. [23] developed an ANN 
model to predict the geomechanical properties of sedimentary rock types using 
dominant frequencies. This study utilized the train and test data collected during
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core drilling operations in the laboratory to predict rock properties. Approximately 
875 experimental drilling operations were used as input parameters, including drill 
bit spindle speeds (rpm), drill bit penetration rates (mm/min), drill bit diame-
ters (mm), and dominant acoustic frequencies (Hz). Outputs were set to be the 
uniaxial compressive strength, the Brazilian tensile strength (BTS), the density, 
and the abrasivity (%). Based on the training and testing data which were asso-
ciated with the minimum epochs, the resilient backpropagation algorithm had the 
highest accuracy, with Variance Accounted For (VAF) value of 96–97%, root mean 
square error of 0.00013771–1.000840687, and mean absolute percentage error of 
0.000674671–3.00774799. 

Yesiloglu-Gultekin and Gokceoglu [24], implemented AI techniques with the help 
of simple and non-destructive test results. They used various non-linear and AI-based 
prediction models for UCS and elasticity modulus (Ei) estimation of basalt. They 
implemented ANFIS, non-linear multiple regression (NLMR), and ANN for their 
non-linear prediction. Their dataset included 137 sets of data which were the results 
of laboratory tests such as unit weight, porosity, sonic velocity, E, and UCS. Various 
metrics were used to assess the performance of the developed models, including 
coefficient of determination (R2), VAF, root mean square error (RMSE), and a 20-
index. According to their conclusion, ANFIS performed slightly better compared to 
other models that predicted UCS. However, in the case of predictive models of E, 
the ANN was the most successful prediction tool. 

3.2 Tree-Based Models for UCS Prediction 

Briševac et al. [25] performed a study for estimating the UCS of mudstone. For 
modeling purposes, 30 samples of intact rock materials were collected from six 
Croatian locations. Their study compared four statistical models for estimating the 
uniaxial compressive strength, including multiple linear regression, regression tree, 
and two other regression tree models based on bagging and random forests. A number 
of properties were calculated for the sample, including density, effective porosity, 
Schmidt rebound hardness, P-wave velocity, and uniaxial compressive strength. The 
most efficient estimation of uniaxial compressive strength was obtained using random 
forests in comparison with multiple linear regression and regression trees using 
cross-validation. 

Ghasemi et al. [26] estimated the UCS and E of carbonate rocks with the aid 
of soft computing approaches, known as model trees. As a data learning tool, model 
trees are easier to use and, most importantly, represent understandable mathematical 
rules. WEKA software was used to train and test their developed models. The M5P 
algorithm was used to build and evaluate model trees (UCS and E model trees). 
According to their study, compared to the commonly used soft computing techniques, 
M5P model trees are easy to use and train, capable of handling many attributes and 
dimensions, and robust when missing data is present. Furthermore, M5P generates 
a simple tree structure and meaningful linear models in leaves, so the relationship
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between inputs and outputs is clearly explained. A first version of the models was 
developed without pruning, and then a second version was developed with pruning to 
avoid overfitting. Model trees were trained and tested using data collected in quarries 
in southwestern Turkey. Input variables of their models included Schmidt hammer, 
effective porosity, dry unit weight, P-wave velocity, and slake durability index. The 
models proved to be accurate tools in predicting UCS and E when unpruned, and 
pruned trees were tested using a variety of statistical indices (RMSE, MAE, VAF, and 
R2). Nevertheless, P-wave velocity and slake durability were the essential parameters 
for UCS and E predictions, according to the pruned model trees. 

On the other hand, in another study, the Brittleness Index (BI) was predicted 
by Samaei et al. [27]. Their study was based on the classification and regres-
sion tree (CART) and a non-linear multivariable regression model. 48 sets of data 
including rock type, UCS, and Brazilian tensile strength were used for model devel-
opment. It is worth mentioning that the data were obtained from 30 different tunnel 
projects, most of which were excavated in the U.S. There were three types of rocks: 
igneous, metamorphic, and sedimentary. Also, in order to obtain the BI, a punch 
penetration test was conducted. Overall, after a comparative study, it was found that 
the CART model with R2 = 0.94 was the best predictor and had the lowest error 
rate. In addition to the CART model, a non-linear multivariable equation with R2 

= 0.91 was proposed after the CART model. Based on a sensitivity analysis, it was 
determined that the rock type had the greatest influence on BI results. 

Wang et al. [28] developed a UCS predictive model based on the random forest 
(FT) algorithm. Based on the coefficient correlation and the their performed anal-
ysis, the proper indirect parameters for estimating UCS were determined (Schmidt 
hammer rebound value (L-type) and ultrasonic P-wave velocity). A total of 2000 sets 
of data were collected from over 50 references. In addition, to enhance the diversity 
of the proposed models different kinds of rocks were considered such as granite, 
tonalite, marble, chalk, basalt, and limestone. Overall, after implementation of RF 
algorithm, and verifying the RF-based predicted values of UCS with laboratory tests, 
it was found that the RF-based predictive model was good enough in capturing the 
UCS of aforementioned rocks. The latter conclusion was based on the values of R2 

(0.89 and 0.90 for training and testing data, respectively). 
Shahani et al. [29] developed four gradient boosting machine learning algo-

rithms to predict the UCS of soft sedimentary rocks in Block-IX at the Ar Coalfield, 
Pakistan, including gradient boosted regression (GBR), Catboost, Light GBM, and 
Extreme Gradient Boosting (XGBoost). A total of 106 datasets were used in the 
study, with parameters including wet density, moisture, dry density, and Brazilian 
tensile strength. According to their results, XGBoost-based model outperformed 
GBR, Catboost, and Light GBM models. Their conclusion was based on the value of 
R2 which was 0.99, the mean absolute error (MAE) value of 0.00062, the MSE value 
of 0.0000006, and the RMSE value of 0.00079 in training step as well as the R2 

value of 0.99, the MAE value of 0.00054, the MSE value of 0.0000005, and the 
RMSE value of 0.00069 during testing. Nevertheless, the sensitivity analysis showed 
that BTS and wet density, ρw, are positively correlated. Also, it was concluded that 
the moisture content and dry density, ρd , are negatively correlated with the UCS.
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Although several AI methods have been used to model the UCS and E, explainable 
AI (XAI) had not been considered before Nasiri et al. [30] study. A model with an 
XAI is not a black box, and it provides humans with a way to understand its approach 
to solving problems. In his study, Nasiri et al. [30] demonstrated SHAP (Shapley 
Additive Explanations) as one of the most recent XAI methods for modeling UCS 
and E. As a result of integrating SHAP with eXtreme gradient boosting (XGBoost), 
the intercorrelations between rock properties (porosity, point load index, P-wave 
velocity, and Schmidt hammer rebound number) and UCS could be demonstrated in 
each individual record, as well as a combination. From the Hajiabad mine, Iran, ten-
block samples of Travertine were collected for this study. According to the sensitivity 
analysis, the P-wave velocity was the most important factor in predicting UCS and E. 
Based on statistical analysis (coefficient of determination value of 0.99), XGBoost 
outperformed random forest and support vector regression in predicting UCS and E. 

Khan et al. [31] studied the effects of thermal radiation on marble rock’s physical, 
chemical, and mechanical properties and developed a prediction model for UCS using 
multi-linear regression (MLR), artificial neural networks, random forests (RFs), and 
k-nearest neighbors (KNN). MLR, ANN, RF, and KNN models were developed using 
temperature, P-wave velocity, porosity, density, and dynamic Young’s modulus as 
input variables. Moreover, the model’s performance was evaluated using the coeffi-
cient of determination (R2) and mean square error (MSE). In MLR and ANNs, UCS 
had R2 value of 0.90, while in KNN and RF, the corresponding R2 values were 0.97. 

Based on the GEP technique, Xue [32] developed an empirical model for 
predicting the UCS of rocks. For the construction of the GEP model, 44 datasets 
were collected from literature. There were three types of rock in the dataset: granite, 
schist, and sandstone. In the GEP model, four main parameters were used as inputs: 
(i) the block punch index (BPI), (ii) the point load strength (Is(50)), (iii) the Schmidt 
rebound hardness (SRH), and (iv) the ultrasonic p-wave velocity (USV). The output 
parameter was the UCS of rocks. In terms of three statistical indices, four conven-
tional regression models and an ANN model were used to evaluate the developed 
GEP model. A comparison between the GEP model, the conventional regression 
models, and the ANN model revealed that the GEP model had the lowest RMSE and 
the highest R2 and R values. According to the training data samples, the proposed 
GEP model had RMSE values of 10.22, R values of 0.9806, and R2 values of 0.9651. 
Overall, based to their findings, the GEP-predictive model of UCS is a capable tool 
in assessing the UCS of rock samples. 

4 Summary and Conclusion 

This chapter highlighted the workability of soft computing methods in assessing the 
UCS of rocks. Overall, findings confirmed that AI-based methods can be utilized as a 
powerful tool in capturing the UCS of rocks. The performed comprehensive review
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showed that various soft computing techniques comprising ANN, ANFIS, Tree-
based methods, PSO, ICA, and GA can be implemented for constructing intelligent-
based predictive models of UCS. Based on the conducted review, different input 
parameters such as rock index tests and petrographic data can be used for developing 
soft computing-based predictive models of UCS. Nevertheless, there should be a 
meaningful relationship between UCS and the considered input parameter. Apart 
from that, it is suggested to utilize input variables which are almost independent of 
each other. 

In rock engineering problems, collecting a large-enough database is a difficult task 
to be accomplished. Hence, collecting related data from literature is common. In fact, 
the review study revealed that the soft computing-based models can be developed 
using small or large databases. Although, most of the reviewed studies in this chapter 
confirmed the workability of AI- techniques in rock characterization, in most of these 
studies, a word of caution is required in generalizing their recommended intelligent 
models. It should be highlighted that the reliability of the soft computing-based 
techniques is not more than the reliability of the input data. In fact, the quality of the 
data plays an important role in the reliability of the proposed soft computing-based 
models. Additionally, the role of input data is of prime importance. If the range 
of future data is beyond the range of input data, the models cannot be generalized 
well enough. Apart from that, the size of the dataset is also an important parameter in 
designing reliable intelligent models. A large database can avoid model overtraining 
and overfitting. 
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A Review on the Application of Soft 
Computing Techniques in Foundation 
Engineering 

Ehsan Momeni , Masoud Samaei , Amin Hashemi , 
and Mohamad Bagher Dowlatshahi 

Abstract Determining footing design parameters is crucial in designing buildings 
and other geotechnical structures. Bearing capacity and settlement of foundations are 
two important design parameters that can be determined with the aid of experimental, 
numerical, and analytical methods. However, estimating the aforementioned parame-
ters using the above-mentioned methods can be difficult, time-consuming, and costly. 
On the other hand, recently, the importance of soft computing (SC) methods in solving 
civil engineering problems is underlined in literature. This study sheds some light 
on the workability of soft computing techniques in the quick prediction of bearing 
capacity and settlement of foundations. For this reason, in this book chapter, the first 
famous soft computing techniques are discussed. Subsequently, the recent studies 
which highlight the successful application of various SC methods for predicting 
bearing capacity and settlement of different types of foundations include shallow, 
skirted, and deep foundations. Overall, the reviewed studies suggest the feasibility of 
SC methods in predicting bearing capacity and settlement of foundations. However, 
the predicted values for the aforementioned design parameters should be interpreted 
with caution as some of the proposed predictive models are based on moderately 
unsound assumptions. 

1 Introduction 

Foundations are designed to transfer and distribute the superstructure loads into 
the ground. These structural elements can be divided into shallow (spread), skirted 
and deep foundations. Foundation is considered shallow if the embedded depth to 
width ratio of the foundation is less than four. If the aforementioned ratio is bigger 
than four, it is called deep foundation. On the other hand, skirted foundations are
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shallow foundations with skirted walls. Skirted foundations are often utilized in soft 
soils. Nevertheless, bearing capacity and settlement of foundations are two major 
parameters that play crucial roles in designing civil engineering structures. There are 
several methods for estimating the aforementioned parameters including analytical, 
semi-empirical, empirical, and numerical methods. Details on the relevant equations 
and their derivations are beyond the scope of this chapter and can be found in classic 
foundation engineering books. 

On the other hand, recently the workability of artificial intelligence methods in 
solving foundation engineering problems has drawn considerable attention. This 
chapter aimed to highlight the feasibility of artificial intelligence techniques in foun-
dation engineering. For this reason, some of the well-respected artificial intelli-
gence techniques are discussed in Sect. 2. Section 3 of this chapter deals with a 
comprehensive review on the feasibility of soft computing and simulation-based 
techniques in assessing the bearing capacity and settlement of shallow, skirted, and 
deep foundations. Section 4 of this chapter underlines the summary and conclusion 
remarks. 

2 Fundamental Methods 

In this section, we intend to discuss some of the fundamental methods, including the 
Neural network, Adaptive-Network-based Fuzzy Inference System (ANFIS), and 
the combination of neural networks with Imperialist Competitive Algorithm (ICA), 
Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). 

2.1 ANFIS Algorithm 

ANFIS [1] is an artificial neural network constructed according to the combination of 
the Takagi–Sugeno fuzzy inference system and a neural network that adapts through 
learning. It combines fuzzy logic principles and neural networks, allowing us to 
leverage both in a single framework. Multiple IF–THEN rules and a learning function 
are utilized in the ANFIS inference system for approximating non-linear functions. 
Therefore, we can consider ANFIS a universal estimator [2]. 

Let us assume a fuzzy inference system with two Takagi–Sugeno type rules for 
simplicity 

Rule 1 → x is  A1 and y i s B1, then  f1 = p1 + p1y + r1 

Rule 2 → x is  A2 and y i s B2, then  f2 = p2 + p2 y + r2
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The reasoning mechanism of ANFIS and its architecture are presented in parts 
(a) and  (b) of Fig.  1, respectively. It can be noted that the node’s operation belongs 
to the same functional family for each ANFIS level [3]. 

Layer 1: There is a set of linguistic labels for first-layer nodes, each associated with 
one node. Also, the membership value of these labels is considered the output of the 
nodes. The node’s parameters can affect the membership values. As an example, the 
i-th node function is formulated as. 

O1 
i = μAi (x) =

1 

1 +
[(

x−ci 
ai

)2
]bi (1) 

where the linguistic label is shown by Ai and the parameter set is {ai , bi , ci }. This  
layer’s parameters are named premise parameters.

Fig. 1 Fuzzy model (a), ANFIS architecture (b) 
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Layer 2: The nodes in the second layer compute the effectiveness of every rule 

O2 
i = ωi = μAi 

(x) × μBi (y), i = 1, 2. (2) 

Layer 3: The percentage of firepower of each rule to the sum of all firepowers is 
computed based on its corresponding node in the third layer 

O3 
i = ωi = ωi 

ω1 + ω2 
i = 1, 2. (3) 

Layer 4: The following node function is associated with node i in this layer 

O4 
i = ωi fi = ωi (pi x + qi y + ri )i = 1, 2. (4) 

Layer 5: The total output of the ANFIS system is computed as the sum of all its 
inputs. This is done by the only node in the fifth layer 

Overall output = O5 
i =

∑
ωi fi =

∑
ωi fi 

ω1 + ω2 
, i = 1, 2. (5) 

Therefore, an adaptive network (Fig. 1b) is constructed, and it is identical to an 
inference system (Fig. 1a) based on its function. Thus, we have a fuzzy inference 
system according to adaptive networks known as ANFIS. To compute the error rate 
in ANFIS, gradient descent backpropagation is utilized. In this approach, the error 
rate of every output node is recursively calculated as the derivative of the squared 
error to the input nodes, the same as neural networks. The overall output f can 
be represented based on the values of premise parameters based on the presented 
architecture of Fig. 1 as a linear combination as follows: 

f = ω1 f1 + ω2 f2 = (ω1x) p1 + (ω1y)q1 + (ω1)r1 
= (ω2x) p2 + (ω2 y)q2 + (ω2)r2 (6) 

The result is a hybrid learning algorithm that aggregates least squares estimation 
and gradient descent. More specifically, in the preceding step, the processing of the 
output nodes is conducted in step 4, and the resulting parameters are set based on 
the least squares and updated by gradient descent as a backward procedure. 

2.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) inspire biological networks as powerful artificial 
intelligence tools. ANN is an object that imitates the neural network constituting
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the human brain so that the computer can learn and make decisions like a human. 
An input layer, a hidden layer or more, and nodes or neurons as numerous simple 
computational components as an output layer construct an ANN structure. This 
additionally includes relationships between neurons in consecutive layers through 
the weights. These weights can change the signal sent from one node to another and 
increase or decrease the impact of a particular relationship. A weighted input plus 
one bias from each neuron in the previous layer is received by each hidden layer 
neuron. The output of neurons is determined by their activation function. An ANN 
structure is shown in Fig. 3. 

Y = f

(
n∑

i=1 

wi vi − b

)
(7) 

In Eq. 7, f refers to the activation function, vi and wi are shown the input values 
and the weights of neurons, respectively. Also, y refers to the network’s output, b is 
the bias, and n indicates the neuron’s number in the hidden layers. The performance 
of the model can be enhanced by updating the network weights during the training 
phase. ANN’s neuron weights determine how the input data affects output data. The 
primary weights are selected randomly [4]. 

The network’s internal weights are tuned using a learning algorithm. Backprop-
agation (BP) algorithms are today’s most common form of training in ANNs. Also, 
optimization methods such as GA, PSO, and ICA are practical in optimizing the 
ANN [4]. 

Multi-layer Perception is known as the most famous network architecture among 
many existing ones. In a feedforward neural network, the number of nodes in the 
input and output layers equals the number of process inputs and outputs, respectively 
[5]. The optimal network weights are obtained in the training phase, which minimizes 
the error function. The mean squared error (MSE) function is used as follows for this 
task: 

MSE  = 
1 

2 

G∑
k=1 

m∑
j=1

[
Y j (k) − Tj (k)

]2 
(8) 

where m and G refer to output nodes and the number of training instances, 
respectively. Tj (k) shows the actual output and Y j (k) refers to the expected output. 

In the rest of this section, we will discuss optimization methods used to tune ANN 
weights. 

2.2.1 Designing ANN Using GA 

Darwin’s theory of evolution inspired GA to model the survival of the fittest organ-
isms and their genes. In GA, as a population-based algorithm, the possible solutions 
are represented by chromosomes, and the gens refer to the solution parameters. GA
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uses the (objective) fitness function to evaluate the objective value of every individual 
in the population. The preferable solutions are randomly chosen using a selection 
mechanism (such as a roulette wheel) to improve the weak ones. This mechanism 
tends to select the best solution because the probability is commensurate to the good-
ness of the objective value. The GA algorithm steps are initializing the population, 
selection, crossover, and mutation [6]. We will discuss these steps individually in 
this section. 

Initializing the population: The initial population is often chosen randomly in Ga-
based algorithms. This population contains multiple solutions representing individual 
chromosomes. Every chromosome contains some variables, and each one represents 
a gene. The main goal of the initialization phase is to broadcast the solutions evenly 
in the search space to increase the population’s diversity and the likelihood of discov-
ering promising areas. The following steps are used to enhance the initial population 
chromosomes. 

Selection: Natural selection is the fundamental motivation for the GA algorithm. 
The most suitable individuals in nature are more likely to get food and a mate. 
Thus, in the production of the next generation of the same species, these genes 
are more participating. Inspired by this simple idea, using the roulette wheel, the 
GA algorithm can assign and select probabilities to individuals to generate next-
generation commensurate to their objective values. Besides the roulette wheel, other 
strategies, like Boltzmann selection, tournament selection, rank selection, etc., are 
utilized for the GA algorithm. 

Crossover: After selecting individuals, they should be utilized to produce a new 
generation. Chromosomes in female and male genes mate to form new chromo-
somes in nature. This is modeled in the GA algorithm by aggregating two solutions 
(the parent solutions) to produce two new solutions (the child solutions). There 
are several strategies to use the crossover operator, like single-point, double-point, 
uniform crossover, etc. 

Mutation: In mutation, one or more genes are modified after the generation of the 
offspring solutions. A low mutation rate is set for GA because the high rate turns 
GA into a raw random search. Mutation operators maintain population diversity by 
introducing a new level of randomness. In essence, the mutation process prevents 
the similarity of solutions and grows the probability of preventing local solutions in 
GA algorithms. Some popular mutation strategies are power mutation, uniform, and 
Gaussian. 

An initial population is first accidentally created in the GA algorithm. The above 
three operators improve the population until the stop condition is fulfilled. The best 
solution is chosen from the final population and is considered the global best for the 
given problem. Figure 2 presents the flowchart of the GA algorithm. GA algorithm 
can be used to deal with numerous optimization problems, including optimizing the 
weights of an ANN. For this matter, different random values are set for the ANN as the 
initial population of GA to reach the best values. To understand better, let us consider 
a simple ANN with two inputs and two hidden layers in Fig. 3. All weights in the
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Initializing the population 

SelectionFitness evaluation 

Generating offsprings 
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SelectRepeat End criterion 
reached? 

Fig. 2 The flowchart of GA steps

network are combined into one chain. GA then uses this row as a chromosome. Each 
chromosome represents the weight of the entire network. In Fig. 4, a chromosome 
structure is shown based on the structure in Fig. 3. Thus, multiple chromosomes are 
generated with random values as the initial population of GA based on the population 
size. The fitness function is also presented in Eq. 8. To evaluate the individuals, they 
are fed into the network to predict the output. Then based on Eq. 8, the fitness 
evaluation is performed. At last, the based weights are determined for the network 
as a result of GA [7]. 

2.2.2 Designing ANN Using PSO 

PSO is widely used in asymmetric optimization problems. This algorithm is moti-
vated by the social behavior of bird flocks and fish aggregation populations. This
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algorithm produces an initial population as a series of random solutions called parti-
cles, like a flock of birds. These particles can freely investigate an N-dimensional 
search space. Every flock member is a solution to the optimization problem, and each 
particle can be evaluated based on a fitness value. There are two essential parameters 
in PSO. P.best represents the best fitness value of each particle so far. At the same 
time, G.best is the fitness value among all particles. The position and speed of all 
particles are updated by iterating the algorithm (iterations are like a flight) until the 
algorithm converges to the optimal solution. The following i.e. (Eq. 9) updates the 
particle speed: 

v (t+1) 
id  = wv (t) id  + u[0, 1]ϕ1

(
p(t) 
id  + x (t) 

id

)
+ u[0, 1]ϕ2

(
p(t) 
id  + x (t) 

id

)
(9) 

where t is the iteration index, u[0, 1] is a uniform random distribution of particles, 
and ϕ1 and ϕ2 indicate the impact rate of the local and global optima on the total 
speed of particles. Particles’ position are updated according to Eq. 10 as follows 

x (t+1) 
id  = x (t) 

id  + v (t) id (10) 

The PSO algorithm first generates a random population of articles using random 
values for particle positions and speeds. The position and velocity of articles are 
improved by the above equations until reaching the desired results. At first, the 
fitness value is determined for all particles to discover G.best. Then all particles 
tend to be the G.best since it is closer to the optimum solution. At last, the final 
G.best represents the solution to the problem of interest [8, 9]. Figure 5 presents the 
flowchart of the GA algorithm.

PSO algorithm can be used in solving many optimization problems, including 
optimizing the weights of an ANN. For this matter, different random values are set 
for the ANN as the initial particles of PSO. To understand better, let us consider a 
simple ANN with two inputs and two hidden layers in Fig. 3. All weights in the
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Fig. 5 The flowchart of PSO steps

network are combined into one chain. PSO then uses this row as a particle. Each 
particle represents the weight of the entire network. In Fig. 4, a particle structure is 
shown based on the structure in Fig. 3. Thus, multiple particles are generated with 
random values as the initial positions of PSO particles based on the population size. 
The fitness function is also presented in Eq. 7. To evaluate the particles, they are fed 
into the network to predict the output. Then based on Eq. 7, the fitness evaluation is 
performed. At last, the based weights are determined for the network as the G.best 
in PSO. It can be noted that the particle’s initial speeds are set randomly in the range 
[−1, 1]. 

2.2.3 Designing ANN Using ICA 

ICA can solve optimization problems based on the inspiration of human socio-
political evolution. Starting with the initial population (countries of the world), 
the best countries (lower cost) are chosen as imperialist countries, and the others 
construct the colonies. In ICA, every country corresponds with a 1 × n array 
for an n-dimensional optimization problem that shows the values of that country. 
Initialization begins with several random solutions as the countries and then sorting 
them in ascending order according to the cost function values. The imperialists are 
some lower-cost solutions, and the rest are considered colonies. Then, the colony is 
distributed among the imperialists in proportion to the imperialist power obtained 
from the normalized imperialist costs. Assimilation is the colony’s movement toward 
the imperialist, constructed by the vector from colonial to imperialist. In an imperialist 
race, several fragile colonies (usually one) of the weakest empire will belong to the
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mightiest empire. If an empire has no remaining colonies, it will fall. The algorithm 
will repeat until all but the most powerful (cheapest) empire fall. The imperialism 
of this empire is the solution to the optimization problem [10, 11]. Figure 6 presents 
the flowchart of the ICA algorithm.

The ICA algorithm can solve many optimization problems, including optimizing 
the weights of an ANN. For this matter, different random values are set for the ANN 
as the ICA’s initial population (countries). To understand better, let us consider the 
structure in Fig. 3. All weights in the network are combined into one chain. ICA then 
uses this row as a country. Each country represents the weight of the entire network. 
In Fig. 4, a country structure is shown based on the structure in Fig. 3. Thus, multiple 
countries are generated with random values as the initial population of ICA based 
on the population size. The fitness function is also presented in Eq. 7. To evaluate 
the individuals, they are fed into the network to predict the output. Then based on 
Eq. 7, the fitness evaluation is performed. At last, the based weights are determined 
for the network as the result of ICA. 

3 Application of Artificial Intelligence in Foundation 
Engineering 

Baghbani et al. [12] highlighted the workability of artificial intelligence techniques 
in geotechnical engineering. They mentioned more than one thousand studies imple-
mented AI techniques for solving geotechnical engineering problems. According to 
their study, the artificial neural network technique is the most widely used technique 
in solving geotechnical problems. The effectiveness of the ANNs in robust designing 
of foundations is underlined in another study [13]. Shahin et al. [14] were among 
the earliest scholars who attempted to use artificial intelligence methods in order to 
predict the settlement of shallow foundations. In their study, the predicted settlements 
obtained by artificial neural networks (ANNs) are compared with estimated settle-
ments using conventional method. According to their results, ANNs are effective 
techniques for the prediction of settlement of shallow foundations. The following 
subsections deal with a review on the related AI-based predictive model of either 
bearing capacity or settlement of various type of foundations. 

3.1 ANN-based Predictive Models of Bearing Capacity 
for Shallow Foundations 

To estimate the bearing capacity of strip footings on reinforced non-cohesive soils, 
Soleimanbeigi and Hataf [15] used two different types of ANNs, feedforward back-
propagation (BP) and radial basis function (RBF). Their final model was developed 
and validated using 351 laboratory and field measurements of footing load tests on
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reinforced cohesionless soils. According to them, theoretical methods often simplify 
the problem by incorporating several assumptions. Overall, their conclusion showed 
that the bearing capacity can be predicted quickly with the aid of their proposed 
model. Padmini et al. [16] examined the potential of neuro-fuzzy computing to 
predict the ultimate bearing capacity of shallow foundations on cohesionless soils. 
Neuro-fuzzy models integrate fuzzy inference systems (FIS) with Artificial Neural 
Networks for learning. Nevertheless, model calibration and testing were performed 
by using data from 97 load tests on footings. Using the same data, independent fuzzy 
and ANN models were comprehensively evaluated against the neuro-fuzzy model’s 
performance. According to their results, the ANFIS model showed better prediction 
performance in comparison with the ANN and FIS models. Ornek et al. [17] analyzed 
the bearing capacity of circular shallow footings supported by compacted granular 
fill over natural clay soil using ANNs and multi-linear regression models (MLRs). 
Field tests were conducted with seven different diameters of footings, up to 0.90 m, 
as well as three different granular fill thicknesses. For predicting the bearing capacity 
of circular footings on stabilized natural clay soil, the ANN model proved to be an 
effective and straightforward tool. 

Marto et al. [18] proposed a unified approach based on the particle swarm opti-
mization algorithm to overcome the ANN’s disadvantages such as getting trapped in 
local minima and the slow rate of learning. Models were built using 40 sets of data 
including full-scale axial compression load tests on shallow foundations with gran-
ular soils. To evaluate the ultimate axial bearing capacity, parameters such as footing 
width and length, embedded footing depth, soil friction angle, and groundwater level 
were considered. Coefficients of determination (R2) were used to evaluate model 
performance. Using the PSO-based ANN model, the predicted bearing capacities 
were in excellent agreement with the measured bearing capacities with R2 values 
equal to 0.997 and 0.991 for training and testing datasets, respectively. Based on the 
results, it was concluded that the PSO-based ANN predictive models can be used to 
predict shallow foundation bearing capacities in a feasible and accurate manner. 

Researchers at Sharjah, United Arab Emirates, used artificial neural networks to 
predict shallow foundation bearing capacity and elastic settlement on granular soil 
[19]. A total of 600 borehole reports were used for training and validating their 
proposed model. A forward sequential feature selection algorithm [20] is used to  
choose the subset of parameters that influence output accuracy the most. The factors 
considered to have the greatest influence on the permissible bearing capacity and 
elastic settling of strip footings were effective unit weight, foundation width, and SPT 
blow count. Meanwhile, recent literature reviews have found similar results. Several 
studies have shown that, for example, Soleimanbeigi and Hataf [15], Padmini et al. 
[16], and Nazir et al. [21] have demonstrated that a foundation’s ability to withstand 
external loads is significantly influenced by the foundation shape, angle of friction, 
and unit weight of sand. According to Shahin et al. [14], Nazir et al. [22], and Erzin 
and Gul [23], the three main and important input variables that have a substan-
tial impact on the elastic settlement of strip footings in granular soils are the SPT 
blow count, net applied pressure, and geometrical features. SPT is one of the most 
frequently applied tests to gauge the compressibility of non-cohesive soils, despite
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not being the most precise in situ test for doing so [19]. The created ANN models 
may be utilized successfully to estimate the permissible bearing capacity and elastic 
settlement, according to comparisons of the models’ coefficients of determination, 
root mean square error, and mean absolute error. The proposed models can thus 
take the place of traditional techniques for calculating shallow foundation bearing 
capacity and settlements on granular soils in the initial stages [19]. 

ANN and multivariable regression analysis (MRA) were used by Gnananandarao 
et al. [24] to forecast the load carrying capacity and settlement of multi-edged skirted 
footings foundations on sand. They compared the settlement reduction factor (SRF), 
which is a proportion of the difference between the settlements of unskirted and 
skirted footings at a fixed pressure, and the bearing capacity ratio (BCR) of skirted 
over unskirted foundations to assess these parameters. In the case of BCR prediction, 
two input parameters were used: the angle of internal friction (φ) and skirt depth (Ds) 
to footing width (B). For SRF prediction, one additional input parameter was taken 
into account: normal stress (σ). The proposed ANN models’ finest architectures were 
2-2-1 for the BCR and 3-2-1 for the SRF. ANN models for the multi-edged skirted 
footings had coefficients of determination of 0.940–0.977, and regression models had 
coefficients of determination of 0.827–0.934. Similarly, the R2 for SRF prediction 
was between 0.913–0.985 for ANN and 0.739–0.932 for regression analysis. Overall, 
in comparison with MRA, ANN worked better. The findings of the sensitivity study 
also showed that the skirt depth, followed by the sand’s friction angle, has the biggest 
impact on the multi-edged skirted footings’ BCR and SRF. 

The study by Pham et al. [25] aimed to predict the maximum bearing capacity of 
shallow foundations in sandy soil using a hybrid model built using Random Search 
(RS) and Deep Neural Networks (DNN). 97 sets of data were used in their model 
development process which comprised foundation width (m), foundation depth (D), 
foundation length ratio (L/B), and unit weight of soil (kN/m3). As a result of hyper-
parameter tuning progress, the RS-DNN model with two hidden layers performed 
the best. As a result of the sensitivity analysis, they found that foundation width (B) 
and foundation depth (D) play a significant role in predicting the bearing capacity 
of shallow foundations. To evaluate the performance of the DNN model, R-squared 
(R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Variance 
Accounted For (VAF) were calculated. Based on R2 value of 0.988, RMSE value of 
69.563 kPa, MAE value of 45.667 kPa, and VAF value of 99.938% for testing data, 
the RS-DNN model was found to be more efficient compared to the DNN model 
with randomly chosen hyperparameters or the traditional MLP model. 

3.2 Tree-Based Predictive Models of Bearing Capacity 
for Shallow Foundations 

Artificial intelligent systems, such as gene expression programing has been used to 
solve several geotechnical problems including the axial bearing capacity of piles, soil
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deformation moduli, rock tensile and compressive strength, and settlement induced 
by tunnelling. In this regard, a shallow foundation on granular soil was predicted with 
the M5’ Model Tree by Khorrami et al. [26]. 169 experimental data were used for 
creating this model. The input parameter of their proposed model were foundation 
width, foundation length, embedment depth, internal friction angle (ϕ), and specific 
gravity. It was observed that the developed Tree Model is able to model actual and 
predicted values accurately due to its high correlation coefficient and low MAE and 
RMSE errors. Based on the sensitivity analysis, soil friction angle (ϕ) was the most 
important parameter. 

3.3 AI-Model for Skirted Foundations 

While shallow foundations are recommended in good subsurface conditions, 
geotechnical engineers are concerned about bearing capacity and settlement in unsat-
isfactory ground conditions [27, 28]. Hence, a number of studies in the past few 
years have emphasized the use of skirted shallow foundations or thin-walled spread 
foundations [29–31]. By using PSO-based ANNs, Rezaei et al. [32] developed a 
predictive model of bearing capacity for thin-walled spread foundation. Addition-
ally, the model was compared with an ANN improved with GA. To do this, four 
small-scale footing tests were performed in cohesionless soils in the laboratory. The 
required dataset for creating a prediction model included the results of the lab exper-
iments plus 145 other similar foundation load experiments that were documented in 
the literature. Their proposed model’s input variables include foundation width, soil 
friction angle, soil unit weight, and the proportion of thin-wall length to foundation 
width. Based on the testing dataset, their proposed predictive model was found to 
be superior based on the values of correlation coefficient (R) and MSE. The R and 
MSE values were 0.98 and 0.005, respectively. Standard ANN models and GA-based 
ANN models have correlation coefficients of 0.65 and 0.80, respectively. Momeni 
et al. [33] also examined the feasibility of predicting thin-walled foundation bearing 
capacities by using an adaptive neuro-fuzzy inference system. A literature-based 
data set consisting of nearly 150 documented footing load tests was assembled to 
address this issue. Inputs to the predictive model of bearing capacity were the strip 
width, wall length-to-footing width ratio, soil friction angle, and unit weight of soil. 
Furthermore, the bearing capacity of thin-walled foundations was estimated using a 
pre-developed artificial neural network (ANN) for comparison purposes. According 
to these findings, ANFIS can be used as a highly effective technique for predicting 
the bearing capacity of thin-walled footings. In estimating the bearing capacity of 
thin-walled spread footings, ANFIS had a higher precision and performance levels 
in comparison with the ANN model (R2 = 0.71, RMSE = 0.51 for the training 
dataset, and R2 = 0.420, RMSE = 0.529 for the testing dataset). Based on their 
findings, the researchers concluded that ANFIS can be used to predict thin-walled 
spread foundation bearing capacity in a feasible and quick manner.
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In order to predict the bearing capacity of thin-walled foundations, Jahed 
Armaghani et al. [34] developed a hybrid intelligent technique based on the ANFIS-
polynomial neural network (PNN) and the GA called ANFIS-PNN-GA. The GA was 
actually used to optimize the ANFIS–PNN structure in ANFIS–PNN–GA system. 
Model performance was evaluated using several performance indices, including 
correlation coefficient (R) and mean square error (MSE). For the testing and training 
sets of the ANFIS, PNN, and ANFIS-PNN-GA models, R values of 0.9825, 0.9071, 
and 0.9928; 0.8630, 0.7595, and 0.9241, respectively, were achieved. 

3.4 ANN-Based Predictive Models of Bearing Capacity 
for Piles 

Many researchers used soft computing techniques and artificial neural networks 
in order to estimate the load-bearing capacity of piles based on both static and 
dynamic data sets [35–39]. In a study by Pal and Deswal [40], AI-based models 
were used to predict the ultimate bearing capacity of concrete spun pipe piles. They 
used stress-wave data and pile geometrical properties as their dataset. It was found 
that ANN performed better in comparison with support vector machine in predicting 
pile bearing capacity. Their proposed predictive model is highly reliable due to the 
high coefficient of determination, i.e., R2 = 0.98. 

ANN-based predictive models of pile bearing capacity were enhanced by Momeni 
et al. [41] using a genetic algorithm (GA). In order to develop the model, 50 Pile 
Driving Analyzer (PDA) tests were conducted on precast prestressed concrete piles. 
For the GA-based ANN predictive model, pile set, pile cross-section area, pile length, 
hammer weight, and drop height were used as inputs. A model built with 8 hidden 
nodes in one hidden layer using the optimum GA parameters and after trial-and-error 
proved to be highly reliable in predicting the bearing capacity of piles. The GA param-
eters including single-point crossover, mutation, and recombination probability were 
90, 1, 9, respectively. Based on the R2 value of 0.990, the developed model could be 
used to predict pile foundation bearing capacities; therefore, it appears to be a viable 
and efficient tool. A GA-based ANN model shows superior performance in predicting 
pile bearing capacity in comparison with the utilized conventional ANN model. Based 
on the sensitivity analysis results, pile geometrical properties and hammer weight 
have the most significant influence on the GA-based ANN predictive model for pile 
bearing capacity. 

According to Momeni et al. [42] study, 36 PDA tests have been performed on 
concrete piles of various diameters and lengths to develop an ANN-based predictive 
model. Most of the tests were conducted on cohesionless soils. In order to construct 
the model, they incorporated PDA results, pile lengths, cross-sectional areas, and 
average SPT (N) values along the pile shaft and tip. The output parameters of their 
proposed model were the tip and skin resistances of piles. After testing several hidden 
nodes in one hidden layer, they found that a network with five hidden nodes performed
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best. Test results demonstrated that the suggested ANN models had R2 values of 
0.941, 0.936, and 0.951, respectively, for estimating the shaft, tip, and ultimate 
bearing capacities of piles. Furthermore, the pile length and cross-sectional area 
were found to be the most crucial parameters for determining the bearing capacity. 

As outlined in Moayedi and Jahed Armaghani [43] article, the objective of their 
study was to introduce and evaluate an ANN model which is optimized with an 
Imperialist Competitive Algorithm (ICA) model in order to estimate the bearing 
capacity of driven piles in cohesionless soils. It has been determined that the in situ 
studies were used as training data for the optimization of the ICA-ANN structure. 
For the development of the ICA-ANN model, the authors used 55 input parameters, 
which included the internal friction angles of soil along the shafts and tips of the piles, 
pile lengths, effective vertical stresses, and pile areas. The output of their model was 
the total bearing capacity of driven piles in cohesionless soils. To demonstrate the 
capability of the hybrid model, the predicted results were compared with a pre-
developed ANN model. ANN and ICA-ANN models, respectively, were found to 
provide correlation R2 values of 0.885, 0.894, and 0.964, 0.974 for testing and training 
data, respectively. Moreover, the ANN and ICA-ANN algorithms yielded variance 
accounts for (VAF) values of (88.212 for training and 89.215 for testing) and (96.369 
for training and 97.369 for testing). 

A number of intelligent techniques were developed in a study of Shaik et al. [44] 
to predict pile bearing capacity in cohesionless soil. Two hybrid ANN models, ICA-
ANN and ANFIS, were created to show how FIS systems and ICA affect pre-built 
ANNs. According to the performance indices, the best technique among these tech-
niques was selected. It is worth mentioning that the model inputs were the effective 
vertical tension at the pile toe, the pile area, the internal friction angle of the soil 
placed in the column and tip, and the pile length. In the testing and training datasets 
for ANN, ICA-ANN, and ANFIS models, the coefficient of determination (R2) values 
were (0.895, 0.905), (0.945, 0.958), and (0.967, 0.975). The findings showed that 
both hybrid models can estimate bearing capacity with high levels of accuracy; 
however, depending on the performance indices employed, the ANFIS-based model 
was discovered to be more appropriate. 

Harandizadeh et al. [45] developed new AI algorithms to predict pile bearing 
capacity in their research. ANFIS and the group method of data handling (GMDH) 
structure were integrated in the first model, and the ANFIS-GMDH-PSO model 
also was refined using the particle swarm optimization (PSO) methodology. A fuzzy 
polynomial neural network-based group data handling method (FPNN-GMDH) is 
employed in the second model. The database included pile properties and soil char-
acteristics collected from literature and used in model training and testing. An ANN 
model was also used as a reference model for comparison purposes. It was found 
that two models can be employed as new hybrid soft computing tools that display 
acceptable precision in the field of geotechnical engineering. The new alternative 
approaches might be a good alternative to in situ field experiments and semi-empirical 
regression-based equation methods for assessing ultimate pile bearing capacity, 
which are expensive, time-consuming, unreliable, and uncertain when executive 
conditions are complex. It was determined that the upgraded ANFIS-GMDH model
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outperformed the ANN and FPNN-GMDH models when it comes to accuracy and 
reliability. The aforementioned conclusion was based on common statistical perfor-
mance indicators like the correlation coefficient (R), mean square error, root mean 
square error, and error standard deviation. 

Harandizadeh [46] investigated the use of cone penetration test (CPT) data to esti-
mate ultimate axial pile bearing capacity (UPBC) in geotechnical engineering appli-
cations using hybrid artificial intelligence techniques. They prepared 108 sets of data 
in order to develop a new hybrid ANFIS network structure. They combined GMDH 
with ANFIS and they optimized the new hybrid system with PSO. To construct the 
proposed system, they used input parameters such as the cross-section of the pile toe, 
the average cone tip resistance along the embedded pile length, and the sleeve fric-
tional resistance along the shaft. Compared to the conventional methods proposed by 
Schmertmann [47], De Kuiter and Bringen [48], and LPC/LPCT methods [49], their 
developed ANFIS-GMDH-PSO model predicted the UPBC with acceptable preci-
sion. Additionally, CPT-based models were compared to the ANFIS-GMDH-PSO 
models in terms of statistical criteria. The results of the statistical analysis showed 
that the ANFIS-GMDH-PSO model outperformed the aforementioned CPT-based 
empirical methods in predicting pile ultimate bearing capacity. 

To estimate the axial bearing capacity of driven piles, Harandizadeh [45] combined 
neural-fuzzy (NF) with the group method of data handling (GMDH). Additionally, 
metaheuristic techniques such as particle swarm optimization (PSO) and gravitational 
search algorithm (GSA) were used to optimize the design of the hybrid (NF-GMDH) 
network. The input parameters of the predictive model of pile bearing capacity 
comprises flap number, soil properties, pile geometrical characteristics, and internal 
friction angles of the pile-soil interface. Based on the sensitivity analysis results, 
it was concluded that the flap number plays the most significant role in predicting 
bearing capacity. According to the results, combining the NF-GMDH model structure 
with the PSO algorithm improved the model performance. The achieved RMSE value 
of 1375 showed higher levels of accuracy in predicting ultimate pile bearing capacity 
in comparison with the GSA NF-GMDH model with RMSE value of 1740.7. Addi-
tionally, findings of their study also suggested that NF-GMDH networks developed 
in their study outperformed gene programming and linear regression models. 

Momeni et al. [50] introduced the Gaussian process regression (GPR) method 
in another study to evaluate the pile carrying capacity proposed GPR technique for 
assessing the pile bearing capacity. The database contains 296 dynamic pile load 
tests in the field, with input factors such as, pile set, ram weight, pile diameter, drop 
height of hammer, and pile length. The pile bearing capacity was forecasted using 
four different covariance types of GPR: squared exponential, exponential, Matérn 5/2, 
and rational quadratic. Three statistical performance predictions were implemented, 
including VAF, R2 and system error. According to the developed method, VAF, R2, 
and system error were ranged from 84.07 to 86.41, 0.83 to 0.84, and 0.2006 to 
0.2063, respectively for GPR models. They found that among all the covariance 
types, a rational quadratic model with a VAF value of 86.41%, an R2 of 0.84, and 
a system error of 0.2006 showed the best overall performance. Overall, their results 
showed that all models capture the pile bearing capacity good enough.
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Using a new prediction method, Dehghanbanadaki et al. [51] proposed an 
improved method in order to calculate the single driven piles’ ultimate bearing 
capacity (UBC). The effectiveness of the multilayer perception (MLP) and adap-
tive neuro-fuzzy inference system (ANFIS) models was improved with the aid of 
gray wolf optimization (GWO) technique to evaluate the UBC. A total of 100 driven 
piles were used for training the model. UBC was calculated using the input param-
eters such as pile cross-sectional area (m2), pile length (m), flap number, average 
cohesion (kN/m2) and friction angle (°), average soil specific weight (kN/m2), and 
average pile–soil friction angle (°). They observed that while ANFIS and MLP had 
good UBC model’s performance for piles, the MLP-GWO model produced superior 
outcomes. According to the test data, the model had RMSE value of 1.86 and R2 of 
0.991. An experimental dataset was used to validate the MLP-GWO model, and the 
difference between estimated and actual UBC was just 2%, confirming the model’s 
high accuracy. 

Pham and Vu [52] study centered on developing a machine learning algorithm 
known as Ensemble Learning (EL), which used weight voting (WV) and average 
voting (AV) protocols of three base machine learning algorithms, gradient boosting 
(GB), random forests (RF), and classic linear regression (LR) to predict the pile’s 
bearing capacity. For training and testing, 108 pile load tests were used. R-square 
(R2), RMSE, and MAE were used to evaluate the models’ performance in predicting 
pile bearing capacity. As compared to the base models, AV-EL and WV-EL showed 
superior performance. Among all models, the WV-EL model achieved the best 
performance and achieved the best balance. 

Hoang et al. [53] proposed a data-driven approach that combines machine learning 
and metaheuristics to address the bearing capacity of piles. Their analysis was 
performed using least squares support vector regression (LSSVR). To further enhance 
the LSSVR model, opposition-based differential flower pollination (ODFP) meta-
heuristics were also developed. Regarding the mean absolute percentage error, mean 
absolute error, and coefficient of determination, the empirical findings demonstrated 
that the ODFP-optimized LSSVR performs good enough in capturing the bearing 
capacity of piles. 

3.5 Tree-Based Predictive Models of Bearing Capacity 
for Piles 

In a study, Pham et al. [54] introduced ANNs and random forests (RFs) for predicting 
the ultimate axial bearing capacity of driven piles. A database containing the 2314 
recorded cases of static load tests was used for their model development. The input 
parameters of their model include the pile diameter, length of pile segments, natural 
ground elevation, pile top elevation, pile tip elevation, average standard penetration 
test (SPT) value along the embedded length of pile, and average SPT blow counts at 
the tip of pile. Their model output was the ultimate load at pile’s tip. The prediction
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performance of the developed model was checked against five empirical equations 
and a multivariate regression model. The comparative study showed that in general 
the RF-based predictive model performs good enough. In a sensitivity analysis, it 
was revealed that the pile tip elevation and average SPT value were the essential 
factors in predicting axial bearing capacity. 

A study by Huat et al. [55] proposed a series of tree-based forecasting tech-
niques for pile bearing capacity estimation. They introduced a process for choosing 
the most important parameters. To predict pile friction bearing capacity and selec-
tion of influential parameters, decision tree (DT), random forest (RF), and gradient 
boosted tree (GBT) models were developed. 130 dynamic high strain load tests in 
a Malaysian town were used to create the models. The input variables included pile 
diameter, hammer drop height, hammer weight, pile length, and N values of the 
standard penetration. Results showed that hammer drop height, pile length, and the 
average SPT-N value were the most effective input variables. Overall, the values 
of coefficients of determination for training and testing data (0.901 and 0.816) 
recommend the feasibility of their proposed predictive model. 

Amjad et al. [56] studied the feasibility of extreme gradient boosting (XGBoost) 
model for predicting pile bearing capacity. They used 200 recorded cases of static 
load tests for their model development. The input parameters of their model were 
diameter of the pile (D), the depth of soil embedded in the pile (X1), the depth of 
soil embedded in the second layer of soil (X2), the depth of soil embedded in the 
third layer of soil (X3), the pile top elevation (Xp), the ground elevation (Xg), the 
extra pile top elevation (Xt), the pile tip elevation (Xm), the blow count at the pile 
shaft (NS), and the SPT. The proposed XGBoost model was compared to a number 
of widely used algorithms such as Adaptive Boosting (AdaBoost), Random Forest, 
Decision Tree, and Support Vector Machines using different performance indicator 
metrics such as coefficient of determination, mean absolute error, Nash–Sutcliffe 
model efficiency coefficient, root mean square error, mean absolute relative error, and 
relative strength ratio. Additionally, sensitivity analysis was conducted to determine 
the impact of input parameters on bearing capacity. Overall, it was found that all 
predictive models can predict the output of interest. However, results showed that 
XGBoost model outperformed other models. (R2 = 0.955, MAE = 59.92, RMSE = 
80.653, MARE = 6.6, NSE = 0.950, and RSR = 0.215). It should be mentioned that 
the blow counts along the pile shaft had the biggest impact on pile bearing capacity, 
according the findings of the sensitivity analysis. 

3.6 AI-Based Predictive Models of Settlement for Piles 

In a study by Armaghani et al. [57], a neural network optimized by particle swarm 
optimization (neuro-swarm) was used to estimate pile settlements. In order to develop 
neuro-swarm models, they used datasets of several piles that were socketed into rock 
masses. In order to determine the most influential parameter on pile settlement, 
several sensitivity analyses were conducted. At last, five neuro-swarm models were
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constructed in order to assess the workability of the hybrid model in predicting pile 
settlement. In the train and test stages, the coefficient of determination (R2) and 
system error values for the best neuro-swarm model were (0.851 and 0.079) and 
(0.892 and 0.099), respectively, indicating this hybrid model is a capable tool in 
predicting pile settlement. 

Armaghani et al. [58] developed a gene expression programming (GEP)-based 
predictive model of settlement for rock-socketed piles in the Klang Valley Mass Rapid 
Transit project, Malaysia and compared the results with the MLR-based predictive 
models. In order to develop new equations using GEP and MLR techniques, 96 
datasets were collected. To predict pile settlement, they used the following factors: 
Ratio between soil layer length and rock layer length, Ratio between total length 
of pile and its diameter, uniaxial compressive strength, Standard penetration test, 
and ultimate bearing capacity. In this regard, five GEP equations and five MLR 
equations were proposed. Based on the new predictive equation, the GEP model 
showed a higher reliability for predicting the settlement of rock-socketed piles. 

4 Summary and Conclusion 

This chapter underlined the feasibility of AI techniques in solving foundation engi-
neering problems. Overall, findings showed that soft computing techniques can be 
implemented as a quick and feasible tool in predicting bearing capacity and settle-
ment of various type of foundations including shallow, skirted, and deep founda-
tions. A comprehensive review showed that different AI techniques such as ANN, 
ANFIS, Tree-based methods, PSO, ICA, and GA can be utilized for developing 
intelligent-based predictive models of either settlement or bearing capacity. Based 
on the conducted review, various input parameters comprising foundation geomet-
rical properties, soil properties, in situ tests such as standard penetration test and cone 
penetration test can be implemented for developing AI-based predictive models of 
either bearing capacity or settlement. 

In geotechnical engineering, compiling large sets of relevant experimental data 
is a difficult task to be accomplished. Hence, compiling related data from literature 
or generating data using numerical modeling techniques for model construction is 
unavoidable. In fact, the review study showed that the intelligent models can be 
constructed using small or large sets of data. Although, most of the highlighted 
studies in this chapter shed some light on the feasibility of soft computing techniques 
in foundation engineering, in many of these works, a word of caution is required 
in generalizing their proposed predictive models. It should be underlined that the 
reliability of the AI-based techniques is not more than the reliability of the models’ 
feeding data. In other words, quality of the data plays a crucial role in the reliability 
of the developed AI-based models. Apart from that, the role of feeding data is of 
prime importance. The models cannot be generalized good enough if the range of 
future data are beyond the range of feeding data. Additionally, size of dataset is also 
an influencing parameter on the reliability of the developed models. Large dataset
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(excluding the outliers) can avoid model overtraining and overfitting, and therefore, 
can guarantee the reliability of the developed model. 
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Application of a Data Augmentation 
Technique on Blast-Induced Fly-Rock 
Distance Prediction 

Biao He, Danial Jahed Armaghani, and Sai Hin Lai 

Abstract Fly-rock induced by blasting is an inevitable phenomenon in quarry 
mining, which can give rise to severe hazards, for example, causing damage to build-
ings and human life. Thus, successfully estimating fly-rock distance is crucial. Many 
researchers attempt to develop empirical, statistical, or machine learning models to 
accurately predict fly-rock distance. However, for most previous research, a worrying 
drawback is that the amount of data related to fly-rock distance prediction is insuf-
ficient. This is because the measurement work of fly-rock distance is costly for 
manpower and material resources. To deal with the problem of data shortage, we 
first separated the original data set that was collected from four granite quarry sites 
in Malaysia into two parts, i.e., the training and testing sets, and then adopted 
a data augmentation technique termed tabular variational autoencoder (TVAE) to 
augment the amount of the training (true) data, so as to generate a fresh synthetic 
data set. Subsequently, we utilized several statistical visualization methods, such as 
the boxplot, kernel density estimation, cumulative distribution function, and heatmap, 
to testify to the effectiveness of the synthetic data generated by the TVAE model. 
Lastly, several commonly used machine learning models were developed to verify 
whether the mixed data set—which is obtained by merging the training and synthetic 
data sets—can benefit from the addition of the synthetic data. The verification work 
is implemented on the testing data set. The results demonstrate that the size of the 
training data set has increased from the initial 131 to 1000 to obtain a synthetic data 
set, and the statistical methods proved that the synthetic data set not only preserves
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the inner characteristics of the training data set but also generalizes more diversities 
compared with the training data set. Further, by comparing the performance of five 
machine learning models on three data sets (i.e., the training, synthetic, and mixed 
data sets), it can be concluded that the overall performance of all machine learning 
models on the mixed data set outperforms that on the training and synthetic data sets. 
Consequently, it can be asserted that the application of the data augmentation tech-
nique on the fly-rock distance issue is fruitful in the present study and has profound 
engineering application value. 

Keywords Fly-rock distance prediction · Data augmentation · Tabular variational 
autoencoder · Machine learning prediction models 

1 Introduction 

Blasting is the main technique for fracturing consolidated mineral deposits in the 
mining and construction sectors. However, the blasting process continues to pose a 
number of risks to nearby things and people, for example, the fly-rock. The fly-rock 
is defined by that the excessive random toss of rock pieces from an explosion that 
can go miles outside the blast protection region. According to the cast type of rock, 
fly-rock can be classified into three categories: face bursting, rifling, and cratering 
[1], as shown in Fig. 1. Among them, face bursting occurs when the explosive charges 
intersect the geological structures or the weak zones. Owing to the release of high-
pressure gases, it is inevitable to generate the fly-rock. For this case, an effective way 
to control the fly-rock distance is to regulate the burden conditions; rifling occurs 
when stemming material is invalid or even absent, which can cause the stemming 
ejection and ejection of the collar rock; cratering occurs when the stemming length is 
insufficient or the collar rock is fragmentized. For this case, fly-rock can be projected 
in any direction [2]. 

Fig. 1 Categories of fly-rock in open-pit mines
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Generally, the fly-rock projection is abysmal since it is a random phenomenon 
and cannot be allowed for experimental purposes [3]. Therefore, accurate prediction 
of fly-rock distance, based on the measured data sets, is productive and profitable 
for practical engineering. The fly-rock issue has been investigated by a large number 
of researchers to forecast the potential travel distance of the rock fragment. The 
research methodologies for predicting fly-rock distance include empirical, statistical, 
and machine learning (ML) methods. Among them, the empirical formula (method) 
is simple to build and use, but the major shortcoming of the empirical method is that 
it is site-dependent, which means the given empirical formulas are merely suitable 
for the site-measured range of data. Moreover, the empirical formulas consider the 
limited numbers of factors influencing the fly-rock distance, and thus they are not 
satisfactory for addressing the complicated nature of the fly-rock issue [4]. As for 
the statistical method, it is established according to the available data set and can 
generally characterize the association between fly-rock distance and the influential 
factors. However, the shortcoming of statistical methods, such as linear or non-linear 
multiple regression for predicting FRD, is when newly available data are different 
from the original one, which is used to fit the regression function, the established 
regression function needs to be updated, otherwise, its performance would encounter 
collapse. At present, the mainstream for the estimation of fly-rock distance is to 
develop the ML models, as shown in Table 1.

Compared to the empirical and statistical methods, the ML models can well handle 
high-dimensional and large volume data sets as well as non-linear problems. This is 
due to the fact that intelligence-based prediction models benefit from their flexibility, 
which allows for simple model calibration when new data becomes available. Some 
researchers have proved the superiority of ML models in different areas of science 
and engineering [18–21, 22, 23, 24, 25, 26, 27, 28]. For instance, Armaghani et al. 
compared the predictive performance between the machine learning model (i.e., PSO-
ANN) and several empirical models, and they concluded that the developed PSO-
ANN showed better accuracy than the empirical model. This is because the PSO-
ANN model leverages more variables that affect the generation of fly-rock, whereas 
the empirical models merely consider several of them [7]. Armaghani et al. developed 
an adaptive neuro-fuzzy inference system (ANFIS) model and an empirical model 
based on the measured fly-rock data set. The results indicated that the predictive 
accuracy of the ANFIS model is better than that of the empirical model. The ANFIS 
model can provide favorable capacity in predicting fly-rock distance [4]. Hasanipanah 
et al. utilized the particle swarm optimization (PSO) algorithm and multiple linear 
regression (MLR) to develop the statistical functions for predicting fly-rock distance 
based on a database containing 76 blasting events. The function obtained by the 
PSO algorithm showed a good capacity for fly-rock distance prediction compared 
with the MLR function [29]. Rezaei et al. compared the performance of the fuzzy set 
theory (FST) model with the MLR model and found that the FST model significantly 
outperformed the MLR model. 

Despite the ML model showing a good ability to predict fly-rock distance, one 
fact that should be noted is that the ML model is sensitive to the available data set. In 
other words, if the quality of the data set is good enough, the developed ML model
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Table 1 Relative studies on the prediction of fly-rock distance 

Literature Techniques Input parameters Dataset samples 

Rezaei et al. [5] FST B, S, HL, SD, St, MC, RD, 
PF 

490 

Manoj and Monjezi [6] SVM HL, S, B, St,  PF, SD 234 

Armaghani et al. [7] PSO-ANN HD, HL, MC, S, B, St, PF, 
RD, Sd, NR 

44 

Marto et al. [8] ICA-ANN HL, BS, St, MC, PF, RD, 
SN 

113 

Ghasemi et al. [9] FL HL, B, S, St,  PF, MC 230 

Faradonbeh et al. [10] GEP B, S, St, HL, PF 97 

Saghatforoush et al. [11] ACO-ANN B, S, HL, St, PF 97 

Jahed Armaghani et al. [4] ANFIS MC, PF 232 

Kumar et al. [12] PSO-ANN HL, S, RL,  B,  PF, RD / 

Nguyen et al. [13] EANNs MC, PF,  St, S, B 210 

Nguyen et al. [1] WOA-SVM-RBF W, B, PF, St, S 210 

Jamei et al. [14] KELM S, B, St, PF 73 

Murlidhar et al. [15] HHO-MLP HD, PF, CPM, St/B, HL, 
RQD, WI, GSI 

152 

Bhagat et al. [16] CART HL, B, SD, NH, MCPB, St, 
St/B, W, SC, D, V 

61 

Shamsi et al. [17] GEP B, HL, MC, St, NH, NB 33 

SVM: support vector machine, PSO: particle swarm optimization, ANN: artificial neural network, 
ICA: imperialist competitive algorithm, KELM: kernel extreme learning machine, EANNs: 
ensemble of ANN models, WOA: whale optimization algorithm, RBF: radius basis function, FL: 
fuzzy logic, ACO: ant colony optimization, FST: fuzzy set theory, ANFIS: adaptive neuro-fuzzy 
inference system, GEP: gene expression programming, CART: classification and regression trees. 
HL: hole length, HD: hole diameter, S: spacing, RL: reducing length, B: burden per delay, PF: 
powder factor, RD: rock density, BS: burden to spacing, St: stemming, MC: maximum charge 
per delay, SN: Schmidt hammer rebound number, W: the amount of explosive used per blast, Sd: 
sub-drilling, NR: number of rows, SD: specific drilling, MCPB: mean charge per blasthole, NH: 
number of holes, NB: number of boosters, CPM: explosive charge per meter, RQD: rock quality 
designation, GSI: geological strength index, WI: site-specific weathering index, D: density of rock, 
SD: specific drilling, SC: specific charge, V: volume of the boulder

can be generalized and robust. In contrast, if the quality of the data set is poor, the 
developed ML model would be faced with the issue of overfitting, which indicates 
that the applicability of the developed ML model is poor. The quality of the data set 
much depends on the size of the data, because sufficient data samples mean that it 
covers more instances and can provide the ML model with more useful information. 
As shown in Table 1, different databases, ranging from 33 to 490 data samples, were 
used by previous researchers. In effect, for these researches, the available data is 
limited because the measurement work of fly-rock distance is costly manpower and 
material resources. Therefore, it is not easy for the researcher to collect enough data
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samples from practical engineering, which means the established ML model cannot 
meet this requirement of good generalization. 

To deal with the problem of data shortage, some data augmentation methods, such 
as generative adversarial networks (GANs) and variational autoencoders (VAEs), 
have been proposed in recent years. For example, Ohno used VAEs to generate data 
samples based on seven benchmark datasets. The results show that the multi-task 
learning of VAEs relating to data augmentation is effective and improves the gener-
alization performances of models [30]. Huang et al. proposed a boosting resampling 
technique based on the conditional VAE, and the results show that the conditional 
VAE model can generate and supply the minority samples in the data set, so as to 
improve the predictive performance of the minority data samples [31]. The popularity 
of the VAE model can be gleaned by the fact that it has been applied in many prac-
tices, such as image identification, random transformation, pattern mixing, natural 
language processing, etc. 

Based on the above analysis and inspired by previous research, we can find that 
the superiority of the VAE model is obvious. Meanwhile, as far as the authors are 
aware, there is no study developing a data augmentation model for the generation of 
a fly-rock database. Thus, in the present study, we utilized a variant of the vanilla 
VAE model, namely tabular variational autoencoder (TVAE), to augment the original 
fly-rock data set. After that, we adopted several statistical indices to evaluate the 
generated data set by the TVAE model. Finally, we verified the effectiveness of the 
generated data set using several classical ML models. 

The rest of the paper is organized as follows. Section 2 describes the factors 
affecting the generation of fly-rock projection. Section 3 presents the basic infor-
mation and source of the data set used in the present study. Section 4 elaborates on 
the principle of the TVAE model and the demonstration of five used ML models. 
Section 5 expounds on the effective verification of the generated data set by the 
TVAE model. In Sect. 6, conclusions are drawn. 

2 Factors Influencing Fly-Rock 

The main factors mastering the generation of fly-rock can be summarized as two 
aspects, i.e., the controllable parameters such as blasting design parameters, and 
uncontrollable parameters such as rock properties. More specifically, controllable 
parameters resulting in fly-rock projection include insufficient burden, improper 
delay timing, inadequate stemming, inaccurate drilling, improper blast hole layout, 
inappropriate delay time, unwarranted powder factor, and so on [9, 32, 33], while 
uncontrollable parameters causing fly-rock projection include the discontinuity in 
the rock mass, fracture, localized fault, joint spacing and orientation, aperture, pres-
ence of voids, an anomaly in the geology and rock structure, loose rock on the top 
of the bench, and so on [34–36, 35–37]. 

For the influence of the blast design parameters, Nayak et al. stated that the case 
when the burden dimension is less than 25 times the charge diameter, it will give
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rise to a high specific charge, so as to release much energy which can incur great 
fly-rock distances [33]. In other words, too large a burden can result in the ejection of 
stemming materials and the improper fracturing of the rock mass, thereby incurring 
the cratering effect. Besides, they also stated that the specific charge in a hole is 
proportional to the fly-rock distance, which indicates that the fly-rock distance will 
increase with an increase in specific charge. Besides, the size of stemming materials 
is also of great importance. The role of stemming material is to provide confinement 
and prevent the escape of high-pressure gases from the blasting holes. For the case 
that the size of stemming materials is greater than 10 mm, it can result in greater 
fly-rock distances compared to fine particles. Gomes-Sebastiao and De Graaf pointed 
out that the exact size of stemming materials should be in compliance with 10–15% 
of the blast hole diameter [38]. Likewise, Ghasemi et al. reported that an increase in 
spacing, hole length, stemming, hole diameter, and powder factor can result in more 
fly-rock projection, whereas an increase in amounts of burden and mean charge per 
hole can reduce the fly-rock distance [2]. Mohamad et al. found that the closer the joint 
spacing distance, the higher the potential of the occurrence of fly-rock projection; 
the larger the aperture gap, the more the fly-rock generates; the existing voids in 
a rock mass can lead to high consumption of explosives, thereby causing a large 
amount of fly-rock projection; Rock face with low mean spacing and large aperture 
can also cause excessive fly-rock projection [34]. Additionally, the orientation of the 
face angle also plays a significant impact on the throwing and distance of fly-rock. 
The blasting design parameters in a quarry site are portrayed in Fig. 2. 

For the influence of the rock properties, Kecojevic and Radomsky found that 
loose rock with numerous cracks can cause serious fly-rock hazards and the existing 
discontinuities in different rock structures may engender a discrepancy between 
explosive energy and rock resistance [32]. This is because the discontinuity in the

Fig. 2 Blasting design influential parameters on fly-rock 
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geology and rock structure causes a mismatch between the explosive energy and 
the resistance of the rock, and thus the released energy induced by blasting would 
increase due to the existing discontinuities. when an explosive’s available energy is 
more than the energy needed to shatter a rock, fly-rock will be produced. The more 
discontinuities that exist in the rock mass, the more excessive fly-rock generates [2]. 

3 Data Source and Pre-Processing 

3.1 Study Area 

Four granite quarry sites in the Johor area, Malaysia were investigated in the present 
paper. The goal of these quarries’ blasting operations is to generate aggregate with 
a monthly capacity of 160,000 to 380,000 t. The information on these four quarry 
sites is shown in Table 2. Specifically, the Taman Bestari quarry has the lowest bench 
height of 7 m, while the Bukit Indah quarry had the highest bench height of 28 m. In 
all these quarries, a variety of rock mass weathering zones were discovered, ranging 
from moderately worn (MW) to fully weathered (CW). To identify the weathering 
zones, the Schmidt hammer test was implemented to estimate the rock mass strength. 
The test results revealed that the lowest and maximum uniaxial compressive strength 
(UCS) was 40.7 and 99.8 MPa, respectively. Besides, the geological discontinuities, 
i.e., the rock quality designation (RQD) values, were quantified as a percentage of 
the drill core in lengths of 100 mm or more. The RQD findings had the lowest and 
highest values of 22.5 and 61.25, respectively. 

3.2 Overview of Data 

In the present study, a comprehensive data set that consists of 166 data samples 
were collected from the granite quarry sites. The available data set includes the 
blasting design parameters, such as the number of holes, hole length, burden to 
spacing, stemming, powder factor, the maximum charge per delay, and rock property, 
such as the Schmidt hammer rebound number. According to the prior summary of

Table 2 Description of 
granite quarry sites [39] 

Quarry name Latitude Longitude Bench height 
(m) 

Taman Bestari 1° 60' 41'' N 103° 78' 32'' E 7–17 

Senai Jaya 1° 36' 00'' N 103° 39' 00'' E 13–24 

Kulai 1° 39' 21'' N 103° 36' 11'' E 10–22 

Bukit Indah 1° 93' 12'' N 103° 35' 08'' E 15–28 
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the parameters used by researchers to implement fly-rock distance prediction work, 
herein, the blasting design parameters, e.g., the number of holes, hole length, the 
burden to spacing, stemming, powder factor, and maximum charge per delay, were 
considered in this study, which will be utilized to execute the development of ML 
models. The statistical information of the selected parameters is tabulated in Table 3. 
As shown in the table, the range of hole length (HL) is between 7.0 and 28.4 m, the 
range of burden to spacing (BS) is between 0.486 and 0.913, the range of stemming 
(St) is between 1.4 and 4.0 m, the range of powder factor (PF) is between 0.24 
and 0.98 kg/m3, the range of maximum charge per delay (MC) is between 69.79 
and 309.09 kg, the range of the number of holes is between 22 and 60, and fly-
rock distance (FRD) has a range between 39.0 and 258.0 m. Figure 3 depicts the 
distribution of each parameter. It can be found that, for most of the blasting events, 
the values of HL are clustered between 20 and 25 m; the values of BS are commonly 
greater than 0.6; the values of St length are commonly greater than 2.0 m; the values 
of PF are clustered between 0.6 and 0.9 kg/m3; the values of MC are commonly 
greater than 150 kg; the values of NH are commonly less than 50, and the values of 
FRD are clustered between 125 and 200 m. 

Before developing the ML models, one important work is to conduct data cleaning, 
which contributes to eliminating the considerable influence of outliers. In the present 
study, a boxplot was used to detect the outliers of the available data set. Boxplot 
can show an obvious visualization of the five-number summary which includes the 
extreme lower (Min), the extreme upper (Max), the first quartile (Q1), the third 
quartile (Q3), and the median as well as the mean [40]. As shown in Fig. 4, the box 
extends from the first quartile (Q1) to the third quartile (Q3) of the data, with a red 
line at the median and a rhombus point at the mean, and flier points (circle points), 
define as outliers in given data set, are those past the end of the whiskers [41]. As 
a result, it can be seen that only the parameter BS has two outliers that need to be 
removed from the original data set. After removing the two samples with outliers 
from the original data, there are a total of 164 data samples remaining and they will 
be used for the subsequent analysis.

Table 3 Characteristics of the collected data set 

Variables Symbol Unit Range Mean Std. Dev 

Hole length HL m (7.0, 28.4) 19.066 5.59 

Burden to spacing BS – (0.486, 0.913) 0.757 0.096 

Stemming St m (1.4, 4.0) 2.874 0.617 

Powder factor PF kg/m3 (0.24, 0.98) 0.688 0.197 

Maximum charge per delay MC kg (69.79, 309.09) 201.805 64.25 

Number of holes NH – (22, 60) 39.933 11.071 

Fly-rock distance FRD m (39.0, 258.0) 139.78 48.51
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Fig. 3 Histogram of the individual variables

Fig. 4 Boxplot of the available data set 

3.3 Data Classification 

For the development of ML models, one pivotal task is to ensure the generalization 
capacity of the models. To achieve this aim, we selected a portion of data samples 
from the original data set to train the ML models and use the remaining data samples 
to validate the developed ML models. In the present study, 80% (131 data samples) 
of the entire data is assigned as the training data set and the remaining 20% (33 data 
samples) of the entire data are assigned as the testing data set. Table 4 shows some 
statistical indices of the training and test sets. It can be found that the statistical indices 
like the range, mean, and standard deviation of the training set are approximate to 
those of the testing sets. To have an intuitive visualization of the data distribution of
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the training and testing sets, a boxplot is used herein to achieve this aim. As shown in 
Fig. 5, it can be observed that the discrepancies between the training and testing sets 
are the Q1 and Q3 values, for example, the Q1 and Q3 values of variables HL, MC, 
NH, and FRD, which indicates the data distribution of the training and testing sets is 
subtly different. Further, a kernel density estimate (KDE) plot is utilized to visualize 
the distribution of observations in the two data sets. KDE represents the data through 
a continuous probability density function or curve in one or more dimensions [42]. 
As can be seen in Fig. 6, for variables HL, MC, NH, and FRD, the shape of their 
probability density curves of the training and testing sets are similar. Nevertheless, for 
variables BS, St, and PF, the shape of their probability density curves of the training 
and testing sets is diverse, for example, although the probability density curves of 
variables BS and PF of both training and testing sets are bimodal distribution, the 
positions of the crest differ considerably. Besides, regarding the variable St, the peak 
intensity of the training set is higher than that of the testing set. 

Table 4 Characteristics of the training and testing data sets 

Symbol Unit Training set Testing set 

Range Mean Std. Dev Range Mean Std. Dev 

HL m (8.0, 28.4) 19.282 5.514 (7.0, 28.0) 18.209 5.803 

BS – (0.486, 0.913) 0.754 0.097 (0.5, 0.909) 0.769 0.09 

St M (1.5, 4.0) 2.884 0.604 (1.4, 3.9) 2.835 0.662 

PF kg/m3 (0.24, 0.98) 0.692 0.196 (0.27, 0.95) 0.674 0.202 

MC kg (74.78, 309.09) 204.373 63.655 (69.79, 301.61) 191.612 65.578 

NH – (22, 60) 39.786 10.95 (23, 60) 40.515 11.521 

FRD m (39.0, 258.0) 141.744 48.817 (44.8, 239.8) 131.982 46.458 

Fig. 5 Boxplot of the training and testing data sets
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Fig. 6 KDE plot of the training and testing data sets 

According to the above analysis, we can sum up that there are both similarities 
and slight differences between the training and test sets, which is beneficial for 
the development of the ML models. This is because we can use the similarities 
between the data sets to verify the predictive performance of the ML models, while 
the differences between the data sets can provide an evaluation of the generalization 
capacity. 

4 Methodology 

4.1 Study Step 

After the training and testing data are successfully prepared, they will be used to 
implement the modeling and validation tasks, respectively. The research method-
ology in the present study is mainly composed of two parts. More specifically, the 
first part is that a data augmentation technique termed tabular variational autoen-
coder (TVAE) will be used to synthesize the new data samples for the prediction 
of fly-rock distance, while the second part is to test the validity of the generated 
data set using some famous ML models, i.e., support vector regression (SVR), light 
gradient boosting machine (LightGBM), extreme learning machine (ELM), group 
method of data handling (GMDH), and multilayer perceptron (MLP). The flowchart 
of methodology in this study is illustrated in Fig. 7 and a detailed description of these 
techniques will be given hereinafter.
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Fig. 7 Flowchart of the methodology used in this research 

4.2 Tabular Variational Autoencoder (TVAE) 

Variational autoencoder (VAE) is a kind of neural network generative model [43, 
44]. VAE utilizes two neural networks to model two probability density distribu-
tions. One, called the inferential network, is used for variational inference of the 
original input data to generate the variational probability distribution of the latent 
variable z, the other, called the generative network, restores to generate an approxi-
mate probability distribution of the original data based on the variational probability 
distribution of the generated latent variable [45]. The VAE can be regarded as a 
hybrid of a neural network and a Bayesian network [31]. In the VAE, the nodes 
corresponding to the latent encoding can be regarded as random variables and the 
other nodes are considered ordinary neurons. In this way, the encoder becomes a vari-
ational inferential network, while the decoder can be seen as a generative network 
that maps latent variables to observed variables. Compared with traditional deep 
generative networks, VAE has two most prominent advantages: (1) by introducing a 
variational lower bound, it avoids the direct calculation of complex marginal likeli-
hood probabilities; (2) The complex Markov chain sampling process is avoided by 
parameter transformation. 

The TVAE model is specially designed for tabular data. It uses two neural networks 
to model pθ

(
r j |z j

)
and qφ

(
z j |r j

)
[46]. pθ

(
r j |z j

)
is the prior distribution of the latent 

variable z and qφ

(
z j |r j

)
is the approximate posterior. Compared to VAE, TVAE uses 

the same pre-processing method as VAE, but the loss function of TVAE is modified 
on the basis of the loss function of VAE. The loss in TVAE is evidence lower-bound



Application of a Data Augmentation Technique on Blast-Induced … 147

(ELBO) loss [43, 47], shown as follows. 

logpθ

(
X j

) ≥ L(
θ,  φ; X j

)

= Eqφ(z j |X j )
[
logpθ

(
X j |z j

)] − KL
[
qφ

(
z j |X j

)||p(z j
)]

(1) 

where logpθ (X ) = logpθ (X1, X2, . . . ,  Xn) = ∑n 
j=1 logpθ

(
X j

)

The second term of the right-hand side of Eq. (1) is the KL divergence of the 
approximate posterior and prior. Generally, p

(
z j

)
is multivariate Gaussian distri-

bution, and pθ

(
X j |z j

)
and qφ

(
z j |X j

)
are parameterized by neural networks and 

optimized by gradient descent algorithm. A more detailed description of the TVAE 
model can be found in [47]. 

4.3 Prediction Models 

To verify the effectiveness of the applied data augmentation method (i.e., the TVAE 
model), several common ML models are adopted to develop fly-rock distance predic-
tion models. The given data sets used for the development of ML models are 
comprised of three parts, i.e., the true (training) data set, the synthetic data set 
obtained by the TVAE model, and the mixed data set which consists of both true 
(training) and synthetic data sets. The validity of the synthetic data is demonstrated 
by comparing the predictive performances of the mentioned ML models on these 
three kinds of data sets. The description and structure of these five ML models are 
given hereinafter. 

4.3.1 Support Vector Regression (SVR) 

SVR, one of the traditional ML techniques, can solve big data regression problems, 
maximize predictive accuracy, and avoid overfitting simultaneously [48]. Essentially, 
SVR is built on the basis of target values and aims to find a function that can map data 
to a flat space. In SVR, linear and non-linear regression are used to solve complex 
problems. More specifically, linear regression problems can be solved by means of 
a convex optimization with solutions and constraints, while non-linear regression 
problems can be solved by a convex optimization with a kernel function that is 
capable of transforming the data into a high-dimensional space. The crucial concepts 
of SVR include four points: (1) the separating hyperplane, (2) the maximum-margin 
hyperplane, (3) the soft margin, and (4) the kernel function [49]. The notion of a 
separating hyperplane is a specific straight line in a high-dimensional space that 
separate the data sets according to their respective characteristics. The maximum-
margin hyperplane refers to selecting a particular hyperplane that maximizes the 
SVR’s ability to obtain the correct results of previously unseen instances as many 
as possible. The soft margin is a user-specified parameter that can allow some data
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points to push their way through the margin of the separating hyperplane without 
affecting the final results. In essence, the soft margin represents a trade-off between 
hyperplane violations and the size of the margin. As for the kernel function, its role is 
to project data from a low-dimensional space to a high-dimension space. In order to 
obtain the separable data in the resulting higher dimensional space, the important step 
is to select the suitable kernel function. The most commonly used kernel functions 
are polynomial and radial basis functions. 

4.3.2 Light Gradient Boosting Machine (LightGBM) 

LightGBM is a fast and efficient boosting model based on the framework of the GBDT 
algorithm [50]. Although the traditional boosting algorithm already has better effi-
ciency, in today’s situations of large samples and high dimensionality, the traditional 
boosting algorithm cannot meet the current demand in terms of efficiency and scala-
bility. Its main drawback is that it needs to scan all the features of each sample when 
selecting the optimal splitting point, which is a very time-consuming and memory-
consuming process. To amend this problem, LightGBM, on the one hand, adopts 
the histogram algorithm, which discretizes the floating-point feature values in the 
samples into K integers, forming a histogram of width K [51]. When LightGBM 
traverses all samples, the discrete values are counted as cumulative indexes, and then 
the best splitting nodes are captured based on the discrete values. At the same time, 
the LightGBM model uses a histogram for the discretization to accelerate the model 
computation. During the differencing process, only K time calculations are required, 
which results in a significant increase in computational speed. On the other hand, 
LightGBM uses a more efficient leaf growth strategy (Leaf-wise), i.e., find the one 
with the largest splitting gain to split from all the current leaves, and then find another 
one that produces the largest splitting gain, and so on in a continuous loop. At the 
same number of splits, the Leaf-wise strategy can obtain better accuracy compared 
to Level-wise [52]. Also, to prevent overfitting, a maximum depth limit parameter is 
added to the Leaf-wise strategy. 

4.3.3 Extreme Learning Machine (ELM) 

Extreme learning machine (ELM), as a new single hidden layer feedforward neural 
network (SLFN) learning scheme, has obtained extensive attention and has been 
widely used in many applications [53]. ELM can be extended to generalized multi-
layer feedforward neural networks in which a hidden node could be a subnetwork 
of nodes. The learning theories of ELM show that when learning parameters of 
hidden layer nodes are generated independently of training samples, as long as the 
activation function of the feedforward neural network is non-linear and continuous, 
it can approach any continuous objective function. In ELM, the input weights and 
hidden biases connecting the input layer and the hidden layer can be independent and 
randomly generated from any continuous probability distribution. The output weight
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matrix between the hidden layer and the output layer is obtained by minimizing the 
squared loss function and solving the Moore–Penrose generalized inverse operation. 
The parameter that only needs to be optimized is the number of hidden layer nodes. 
Different from traditional gradient-based neural network learning algorithms, which 
are sensitive to the combination of parameters and easy to trap in local optimum, 
ELM has a faster learning speed, least human intervention, and is easy to implement 
[54]. The mathematical model of ELM is shown as follows: 

fL (x) = 
L∑

i=1 

βi hi (x) = h(x)β (2) 

where fL (x) denotes the output function, β = [β1, . . . , βL ]T denotes the vector of 
the output weights, h(x) = [h1(x), . . . ,  hL (x)]

T denotes the output vector of the 
hidden layer with respect to the input x, which is also called a feature mapping 
because it maps the data from the d-dimensional input space to the L-dimensional 
hidden-layer feature space (i.e., the ELM feature space) [55]. 

4.3.4 Group Method of Data Handling (GMDH) 

GMDH is a self-organizing data mining algorithm based on inductive learning algo-
rithms. GMDH can find the optimal structure of the mathematical description of a 
complex object by sorting many variants according to a certain ensemble of external 
criteria [56]. Its main idea is to start from a partial model (or function) composed 
of reference functions; then, according to certain laws, it generates the first genera-
tion of the candidate models by inheritance and mutation; next, it selects the optimal 
number of items from the first generation of the candidate models, and then generates 
the second generation of the candidate models, so as to make the generated models 
keep evolving. Repeating such a process, that is, inheritance, mutation, selection, and 
evolution, GMDH can make the complexity of the intermediate models increase until 
the optimal complexity model is obtained [57]. Essentially, GMDH can establish a 
higher-order polynomial relationship between the independent and dependent vari-
ables to obtain a polynomial model with a good explanation for the dependent vari-
able. GMDH generally uses the Kolmogorov–Gabor polynomial function to estab-
lish the functional relationship between the input variables and the target output. The 
mathematical model of GMDH is shown as follows: 

y = a0 + 
M∑

i=1 

ai xi + 
M∑

i=1 

M∑

j=1 

ai j  xi x j + 
M∑

i=1 

M∑

j=1 

M∑

k=1 

ai jk  xi x j xk +  · · · (3) 

where (x1, x2, . . . ,  xM ) represent the input variables, (a1, a2, . . . ,  aM ) represents the 
weight vector or matrix, and y is the target output. GMDH model typically uses a 
multilayer iterative algorithm for the selection of neurons in the modeling process,
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thereby achieving a non-linear mapping between input variables and output. Besides, 
the GMDH model uses a minimum deviation criterion to select the optimal model. 

4.3.5 Multilayer perceptron (MLP) 

MLP, as one type of neural network, can be trained to approximate virtually any 
smooth function [58]. MLP consists of a system of simple interconnected nodes 
and can be considered as a model representing a non-linear mapping between input 
variables and target output. The weights and output signals connecting the nodes in an 
MLP are a function of the nodes’ total input variables, as adjusted by a straightforward 
non-linear transfer or activation function. The nodes in the MLP model are fully 
connected, with each node connected to every node in the next and previous layer. 
A commonly applied activation function is the logistic function because of its easily 
computed derivative. The architecture of an MLP is generally composed of several 
layers of neurons [59]. 

By selecting a suitable set of weights and activation functions, an MLP can fit any 
measurable functions between the input and output variables. Training an MLP is the 
process to capture the connection weights to obtain minimal differences between the 
true target and the network output [60]. To achieve this aim, the backpropagation (BP) 
algorithm is the most used technique. BP algorithm transfers the mapping problem 
between the input and output variables into a non-linear optimization problem. The 
network starts training by setting small random interconnection weights, and by 
repeatedly loading training samples and adjusting the weights until the loss function 
drops to an acceptable threshold. The learning process of the BP algorithm consists 
of forwarding propagation and backward propagation. In the forward propagation 
process, the input information is passed from the input layer through the hidden layer 
and then to the output layer, with the state value of each layer only affecting the state 
value of the neuron in the next layer; if the desired output value cannot be obtained 
in the output layer, it is transferred to the backward propagation, where the error 
signal is returned along the reverse path, and the total error of the network is made to 
converge to a minimum by correcting the weights of the neurons in each layer [61]. 

5 Results and Analysis 

5.1 Data Synthesis 

This section demonstrates the generation of the synthetic data, as well as the corre-
lations and discrepancies between the true data and the synthetic data. The training 
data set with 131 samples, also known as the true data set, is adapted to train the 
TVAE model. It should be noted that data augmentation is an unsupervised learning 
technique so that all features in the training data set are used to fit the TVAE model,
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which indicates that there is no labeled data in this stage. In addition, the TVAE 
model applied in the present study is provided by one open-source Python library, 
namely the synthetic data generation ecosystem SDV-The Synthetic Data Vault [62]. 
The configuration of the TVAE model is mainly composed of an encoder and a 
decoder. The encoder has three hidden layers and the layer sizes are 128, 128, and 
128, respectively. The decoder has the same architecture as the encoder. Besides, the 
size of the random sample passed to the generator of the TVAE model is 128, and the 
value of the regularization term is 1e−5. The TVAE model is trained using Adam 
(adaptive moment estimation) with a batch size of 60, epochs of 5000, and a learning 
rate of 1e−3. More detailed information regarding the TVAE model is demonstrated 
in [46]. 

After data augmentation, the sample size of the synthetic data is 1000 samples, 
which is around 10 times the size of the true data set. The features/variables of true 
and synthetic data sets consist of HL, BS, St, PF, MC, NH, and FRD. As the data 
dimension is seven, it is difficult to visualize the sample space. Herein, we applied 
t-SNE (t-distributed stochastic neighbor embedding [63]) to have an insight into 
the distribution of true and synthetic data samples in an equivalent two dimensions 
domain, as shown in Fig. 8. It can be observed that the green points (true data samples) 
are almost fused with the orange points (synthetic data samples). Additionally, we 
can also find some orange points which are not intersected with the red points, which 
means the TVAE model fitted by true data is capable of generalizing the true data, 
so as to introduce some unknown data instances. Consequently, a vital task arising 
from this is to judge the reasonableness and veracity of the synthetic data compared 
to the true data. 

Fig. 8 Visualization of data samples of different data sets (i.e., the true and synthetic data sets)
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Table 5 Characteristics of the true (training) and synthetic data sets 

Symbol Unit True data set Synthetic data set 

Range Mean Std. Dev Range Mean Std. Dev 

HL m (8.0, 28.4) 19.282 5.514 (7.731, 28.898) 19.181 4.809 

BS – (0.486, 0.913) 0.754 0.097 (0.525, 0.918) 0.763 0.088 

St m (1.5, 4.0) 2.884 0.604 (1.62, 3.89) 2.837 0.477 

PF kg/m3 (0.24, 0.98) 0.692 0.196 (0.24, 0.98) 0.683 0.169 

MC kg (74.78, 309.09) 204.373 63.655 (74.78, 309.09) 203.462 56.849 

NH – (22, 60) 39.786 10.95 (22, 60) 38.899 9.726 

FRD m (39.0, 258.0) 141.744 48.817 (39.0, 255.8) 146.296 42.451 

To clearly elucidate the latent correlation between the true and synthetic data 
sets, some statistical metrics or methods, such as the data characteristics, boxplot 
method, data distribution, cumulative distribution, and data relationship, are utilized 
herein. The characteristics of the true and synthetic data sets are summarized in Table 
5. Obviously, the statistical indices like range, mean, and standard deviation of the 
true data are approximate to those of the synthetic data, which indicates there exist 
pronounced similarities between these two data sets. Of course, we can also observe 
some discrepancies between them. For instance, the HL of the synthetic data set has 
a wider range than that of the true data set; the upper bound of BS of the synthetic 
data set is expanded but its lower bound is shrunken; both upper and lower bounds 
of St of synthetic data set are covered by that of true data set; while for PF, MC, NH, 
and FRD, their ranges in true and synthetic data sets are identical but with different 
mean values and standard deviations. 

Boxplot results of true and synthetic data sets are illustrated in Fig. 9. It can be 
seen that Q1 and Q3 of true and synthetic data sets are similar, which indicates that 
their data structures are approximative. Further, the KDE plot is applied to illustrate 
the conditions of data distribution of true and synthetic data sets, as shown in Fig. 10. 
Intuitively, for variables BS, St, NH, and FRD, the shape of their probability density 
curves of the true and synthetic data sets are similar. Nevertheless, for variables HL, 
PF, and MC, the shape of their probability density curves is diverse, for example, 
the probability density curves of variables HL, PF, and MC of the synthetic data set 
are bimodal distribution while their probability density curves of the true data set 
are unimodal distribution, which implies that the TVAE model generates different 
data structures for these variables. Apart from that, we can also observe that the peak 
intensities of variables of the synthetic data set are all higher than those of the true 
data set. This is because more data samples are generated by the TVAE model around 
the peak.

Further, the cumulative distribution of variables in true and synthetic data sets 
is given in Fig. 11. The cumulative distribution function (CDF) essentially allows 
plotting a variable of the given data in order from least to greatest and seeing the whole 
feature as if is distributed across the data set. CDF plots are useful for comparing
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Fig. 9 Boxplot of the true (training) and synthetic data sets 

Fig. 10 KDE plot of the true and synthetic data sets

the distribution of different sets of data [64]. As a result, one quick insight is that the 
cumulative distribution curves of true and synthetic data sets are generally similar. 
For variables like BS, St, and NH, the cumulative distribution curve of the synthetic 
data set is smoother compared to that of the true data set, which is attributed to the 
TVAE model filling some of the gaps between the data points. Overall speaking, 
the cumulative distribution of the synthetic data set conforms to the cumulative 
distribution of the true data set.

Eventually, in addition to comparing the differences of single variables of the 
synthetic and true data sets, we also analyze the column-wise correlation of variables 
using the heatmap method, as shown in Fig. 12. The values in the box represent the 
Pearson correlation coefficient (PCC) [65, 66]. When the value of PCC is greater
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Fig. 11 Cumulative distribution plots of the true (training) and synthetic data sets

than 0 but less than 1, it represents positive linear correlations between variables; 
when the value of PCC is greater than −1 but less than 0, it represents negative linear 
correlations between variables. Further, the closer the value of PCC is to 1/−1, the 
stronger the positive/negative correlation is. Figure 12a and b illustrate the column-
wise correlation of true and synthetic data sets, respectively, and Fig. 12c shows  the  
absolute differences between the true data set and the synthetic data set. As a result, 
it is copiously clear that, for the majority of variables, the column-wise correlation of 
the synthetic data set approximates that of the true data set. While for PCC between 
BS and FRD, PCC between MC and PF, as well as PCC between NH and FRD, 
although their absolute differences are greater compared to others, these values are 
all smaller than 0.20, which is acceptable owing to the indistinctive correlations 
between these variables. 

To sum up, based on the evaluation results of the aforementioned statistical 
methods, one can assert that the TVAE model performed well in generating the 
synthetic data. Synthetic data complies with the inherent characteristics of true data.

Fig. 12 Correlations between the variables of the true (training) and synthetic data sets 
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Next, we will apply several ML models to verify the effectiveness of the synthetic 
data on the task of predicting fly-rock distance. 

5.2 Validation and Analysis 

In this section, five commonly used ML models, i.e., SVR, LightGBM, ELM, 
GMDH, and MLP, are employed to evaluate the quality of the synthetic data. To 
train the ML models, three data sets are prepared, that is, the true data which has 
131 data samples, the synthetic data which has 1000 data samples, and the mixed 
data which is consisted of the true and synthetic data sets and thus has 1131 data 
samples. In these three data sets, the input parameters include HL, BS, St, PF, MC, 
and NH, while the output is FRD. As a result, SVR, LightGBM, ELM, GMDH, and 
MLP are used to establish the fly-rock distance prediction models. The modeling 
steps are conducted as follows: first, three data sets (i.e., true, synthetic, and mixed 
data sets) are used to fit five ML models, respectively. Here, the Grid-search method 
was applied to determine the optimal hyperparameters or architectures of the ML 
models and the hyperparameters of the ML models are shown in Table 6; then, the 
fitted ML models are assessed on the testing data set which has 33 data samples; 
finally, through comparing the assessment results, we can clarify the effectiveness of 
the synthetic data set and further determine whether the synthetic data can be used 
as a complement to, or even more so, as an alternative for the true data. 

To precisely quantify the accuracy of these five ML models on the testing data set, 
three widely used evaluation metrics for regression tasks are applied herein, i.e., the 
coefficient of determination (R2), the root mean squared error (RMSE), and mean 
absolute percentage error (MAPE). The following formulas are utilized to calculate 
these metrics: 

R2 = 1 −
∑N 

i=1

(
yi − yi

Λ)2
∑N 

i=1 (yi − y)2 
(4)

Table 6 Hyperparameters of the ML models 

Model Key hyper-parameters or architecture 

SVR kernel = ‘rbf’, C = 80,000, gamma = ‘scale’, epsilon = 0.1 
LightGBM n_estimators = 500, subsample = 0.5, boosting_type = ‘gbdt’ 
ELM hidden_units = 16, activation_function = ‘sigmoid’, C = 0 
GMDH ref_functions = ‘quadratic’, criterion_minimum_width = 5, L2 = 0.5 
MLP Input-FC(256)-FC(256)-FC(256)-Dropout(0.20)-Output, learning_rate = 1e−4, 

weight_decay = 1e−5 
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RMSE =
[||]1 

n 

N∑

i=1

(
yi − yi

Λ)2 
(5) 

MAPE = 
1 

N 

N∑

i=1

|
|||
yi − yi

Λ

yi

|
||| (6) 

where N denotes the sample size, yi represents the true FRD, yi
Λ

represents the 
predicted FRD, y represents the average of yi . For an excellent model, the values 
of R2 should be closer to 1 and the value of the RMSE and MAPE should be 
closer to 0. 

As shown in Fig. 13a, for SVR, LightGBM, and MLP models, the same pattern 
is that with the increase of input data samples (i.e., from true data to synthetic data 
to mixed data), the R2 between the models’ prediction results and the true fly-rock 
distance on testing set is gradually increased. More specifically, the R2 of SVR 
models fitted by true, synthetic, and mixed data sets is 0.606, 0.690, and 0.700, 
respectively; the R2 of LightGBM models fitted by true, synthetic, and mixed data 
sets is 0.401, 0.655, and 0.716, respectively; the R2 of MLP models fitted by true, 
synthetic, and mixed data sets is 0.615, 0.709, and 0.757, respectively. For the ELM 
model, the performance ranking is: ELM model fitted by true data > ELM model 
fitted by synthetic data > ELM model fitted by mixed data, which can be proved by 
that their R2 values are 0.635, 0.622, and 0.580, respectively. For the GMDH model, 
the performance ranking is: GMDH model fitted by mixed data > GMDH model 
fitted by true data > GMDH model fitted by synthetic data, which can be proved by 
that their R2 values are 0.622, 0.610, and 0.538, respectively. Besides, we can also 
find that the best-fitted model for the true data set is ELM, and the best-fitted model 
for synthetic and mixed data sets is MLP. In the end, we compute the average R2 

values of these models on the testing data set, which are 0.573, 0.643, and 0.675, 
respectively. Compared to the ML models fitted by the true data set, the R2 values 
of the ML models fitted by the synthetic and mixed data sets obtain an improvement 
of 12.216% and 17.801%, respectively.

As shown in Fig. 13b, for SVR, LightGBM, and MLP models, with the increase 
of input data samples (i.e., from true data to synthetic data to mixed data), the RMSE 
between the models’ prediction results and the true fly-rock distance on testing set is 
gradually decreased. In particular, the RMSE of SVR models fitted by true, synthetic, 
and mixed data sets are 29.165, 25.847, and 25.443, respectively; the RMSE of 
LightGBM models fitted by true, synthetic, and mixed data sets are 35.967, 27.306, 
and 24.762, respectively; the RMSE of MLP models fitted by true, synthetic, and 
mixed data sets are 28.823, 25.076, and 22.917, respectively. While for ELM and 
GMDH models, different cases appeared. For example, for the ELM model, the 
performance ranking is: ELM model fitted by true data > ELM model fitted by 
synthetic data > ELM model fitted by mixed data, which can be proved by that their 
RMSE values are 28.053, 28.556, and 30.105, respectively; for GMDH model, the 
performance ranking is: GMDH model fitted by mixed data > GMDH model fitted
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Fig. 13 Comparison results of ML models on testing set: a R2; b RMSE; c MAPE
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by true data > GMDH model fitted by synthetic data, which can be proved by that 
their RMSE values are 28.553, 29.001, and 31.565, respectively. Additionally, we 
can also find that the best-fitted model for the true data set is ELM, and the best-fitted 
model for synthetic and mixed data sets is MLP. In the end, we also compute the 
average RMSE values of these models on the testing data set, which are 30.202, 
27.670, and 26.356, respectively. Compared to the ML models fitted by the true data 
set, the RMSE values of the ML models fitted by the synthetic and mixed data sets 
obtain reduced errors of 9.151% and 14.593%, respectively. 

As shown in Fig. 13c, for LightGBM and MLP models, with the increase of input 
data samples (i.e., from true data to synthetic data to mixed data), the MAPE between 
the models’ prediction results and the true fly-rock distance on testing set is gradually 
decreased. In particular, the MAPE of LightGBM models fitted by true, synthetic, and 
mixed data sets are 0.277, 0.238, and 0.204, respectively; the MAPE of MLP models 
fitted by true, synthetic, and mixed data sets are 0.221, 0.188, and 0.159, respectively. 
While for SVR, ELM, and GMDH models, different cases appeared. For example, 
for the SVR model, the performance ranking is: ELM model fitted by true data > 
ELM model fitted by mixed data > ELM model fitted by synthetic data, which can 
be proved by that their MAPE values are 0.215, 0.216, and 0.225, respectively; for 
ELM model, the performance ranking is: ELM model fitted by synthetic data > ELM 
model fitted by true data > ELM model fitted by mixed data, which can be proved by 
that their MAPE values are 0.206, 0.226, and 0.234, respectively; for GMDH model, 
the performance ranking is: GMDH model fitted by true data > GMDH model fitted 
by mixed data > GMDH model fitted by synthetic data, which can be proved by that 
their MAPE values are 0.211, 0.220, and 0.268, respectively. Additionally, we can 
also find that the best-fitted model for the true data set is GMDH, and the best-fitted 
model for synthetic and mixed data sets is MLP. In the end, we also compute the 
average MAPE values of these models on the testing data set, which are 0.230, 0.225, 
and 0.207, respectively. Compared to the ML models fitted by the true data set, the 
MAPE values of the ML models fitted by the synthetic and mixed data sets obtain 
reduced errors of 2.222% and 11.111%, respectively. 

Consequently, it can be inferred that the mixed data set shows the best perfor-
mance and applicability in predicting fly-rock distance, followed by the synthetic 
data set, but the true data set, has the worst performance. From this point, the fly-
rock distance prediction work can benefit the superiority of the mixed data which is 
mainly generated by the TVAE model. This type of data combines the characteristics 
of the original data with the information added by the synthetic data, which has a 
promising prospect when implementing similar prediction works. 

Here, we also provide the detailed prediction results of these five ML models, 
as shown in Fig. 14. The plot on the left of each row represents the measured fly-
rock distance (i.e., the testing set) versus the predicted fly-rock distance. It should 
be noted that the measured fly-rock distance is sorted in an ascending form and the 
corresponding predicted fly-rock distance is given simultaneously, as suggested by 
Sadrossadat et al. [67]. Intuitively, for all ML models fitted by three data sets, the
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Fig. 14 Detailed prediction results and residual error of all methods on the testing set

predicted fly-rock distance values are remarkably different from the measured fly-
rock distance values. It is difficult to distinguish the advantages and disadvantages 
of these models. Given this point, we provide the KDE plot of the absolute residual 
errors between the measured fly-rock distance and predicted fly-rock distance of 
each ML model, which aims to compare the model’s performance, as shown in the 
plots on the right of each row. Specifically, for SVR models, the optimal SVR model
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is obtained by fitting the mixed data set, followed by the SVR model fitted by the 
synthetic data, and the SVR model fitted by the true data has the worst performance, 
which can be proved by that the average of the corresponding residual errors are 
19.885, 20.276, and 20.625, respectively. Likewise, LightGBM and MLP models, 
show the same patterns as the SVR model, that is, the models fitted by the mixed 
data show the best performance while the models fitted by the true data show the 
worst performance. It should be noted that, for SVR, LightGBM, and MLP models 
fitted by the true data, their KDE plots show that there are individually large values 
of absolute residual errors, which are close to around 100. This could be the reason 
why the ML models fitted by the true data do not show good accuracy on fly-rock 
distance prediction.

For ELM models, it shows the inverse result, that is, the ELM model fitted by 
the true data shows the best performance, followed by the ELM model fitted by 
the synthetic data, while the ELM model fitted by the mixed data shows the worst 
performance. For GMDH models, the GMDH model fitted with the mixed data shows 
the best performance, followed by the GMDH model fitted with the true data, while 
the GMDH model fitted with the synthetic data shows the worst performance. 

In summary, apart from the ELM models, the remaining four ML models fitted 
with the mixed data all show the best performance, which indicates that the mixed 
data is effective and robust to conduct the prediction task of fly-distance prediction. 

From the above analysis, it can be concluded that the data augmentation method 
(i.e., the TVAE model used in the present study) is quite effective, and is capable 
of enhancing the diversity of the original data. It can greatly enlarge the size of the 
data set and improve the performance of the fly-rock distance prediction models. 
Thus, we highly recommend using the data augmentation technique to remedy the 
drawbacks of the original data set, so as to gain a comprehensive data set. 

6 Future Direction 

According to [68], theory-guided machine learning (TGML) is a new paradigm that 
aims to leverage the wealth of scientific knowledge in order to enhance the efficacy 
of ML models in enabling scientific discovery (Fig. 15). Whenever a component 
of scientific theories and/or well-known empirical equations is added to the data 
samples or model output, TGML is built. Commonly, in geotechnical engineering, 
the databases required for ML techniques are collected from pure laboratory tests 
or field investigations. On the other hand, there is an imperative need to have a 
substantial number of data samples for ML techniques, and providing these numbers 
of reliable data samples is not typically possible in the laboratory/field because it 
would be expensive and time-consuming. Therefore, using the previous empirical 
equations in the area of blasting environmental issues such as fly-rock, the number of 
data samples can be increased. Then, the new database which is actually constructed 
based on previous relevant theories/empirical equations is ready to be applied in 
suitable ML techniques for prediction or classification purposes. The developed



Application of a Data Augmentation Technique on Blast-Induced … 161

Fig. 15 A representation of 
knowledge discovery 
methods in scientific 
applications by TGML 

models in this way are more familiar to civil and geotechnical engineers and they 
can apply these models in real-life problems. The goal of TGML in this situation 
is to make scientific consistency a necessary component of learning generalizable 
models with the utilization of well-known theories or empirical equations to establish 
a comprehensive database which is able to cover a wide range of effective parameters. 

7 Conclusion 

In this work, a data augmentation technique has been applied to tackle the blast-
induced fly-rock issue in the quarry. A fly-rock data set, consisting of seven variables, 
i.e., hole length, the burden to spacing, stemming, powder factor, the maximum 
charge per delay, number of holes, and fly-rock distance, was prepared and split into 
two parts. One, i.e., a training data set containing 131 samples, is used to implement 
data augmentation, and the other, i.e., a testing data set containing 33 samples, is used 
to test the model performance. At the data augmentation stage, the TVAE model was 
used to generate the synthetic data set. Specifically, the synthetic data is synthesized 
on the basis of the training data set and consists of 1000 samples. Through the 
verification of some statistical indices, such as boxplot, kernel density estimation, 
cumulative distribution function, and heatmap, it is proved that the synthetic data 
set is suitable and effective. Subsequently, at the model testing stage, five classical 
ML models are trained using the training, synthetic, and mixed data sets, and then 
tested on the testing data set. The evaluation results show that the R2 values of the ML 
models fitted by the synthetic and mixed data sets obtain an improvement of 12.216% 
and 17.801% compared with the models trained by the training data set, respectively; 
the RMSE values of the ML models fitted by the synthetic and mixed data sets obtain 
the reduced errors of 9.151% and 14.593% compared with the models trained by the 
training data set, respectively; the MAPE values of the ML models fitted by the 
synthetic and mixed data sets obtain the reduced errors of 2.222% and 11.111% 
compared with the models trained by the training data set, respectively. Likewise, 
the evaluation results of absolute residual show that the ML models trained by the 
mixed data set have the greatest predictive performance compared with other data
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sets. Thus, we can conclude that the mixed data is effective and robust to conduct 
the prediction task of fly-distance prediction and the data augmentation technique is 
highly recommended when encountering similar cases. 
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Forecast of Modern Concrete Properties 
Using Machine Learning Methods 

Yashar Asghari, Golnaz Sadeghian, Seyed Esmaeil Mohammadyan-Yasouj, 
and Elahe Mirzaei 

1 Introduction 

In past decades, investigations have been conducted about the mechanical, fresh, 
and durability properties of concrete in terms of predictions by using ML methods. 
Researchers have extensively considered Self-consolidating concrete (SCC), ultra-
high performance concrete (UHPC), alkali-activated concrete (AAC), recycled 
aggregate concrete (RAC), and geopolymer concrete (GC) in recent years. Machine 
learning algorithms have been broadly applied in different fields to evaluate predic-
tive outcomes that are closely related to experiments. The results of a test could, 
however, be affected by a complex matrix of parameters, of which the majority 
contribute little to the test results. Consequently, computer scientists are required to 
develop novel selection algorithms based on data-driven models in order to identify 
the most relevant independent variables and reduce the dimensionality of the input 
matrix as quickly as possible. There is increasing use of soft computing tools in 
predicting engineering components, systems, and materials, with ANNs being one 
of the most popular soft computing paradigms that have been successfully applied 
in many areas of engineering [1].
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2 Machine Learning Concept 

The concept of ML refers to a group of methods for discovering affinities between 
quantities of interest from data. ML approaches are used in different fields to under-
stand how a system works and make predictions about unobserved quantities by 
using relationships between inputs and outputs [2]. 

Four examples of using ML in civil engineering. 

• In geotechnical field: It is crucial to forecast the resistance of the sites that have 
not been observed using discrete observations of soil resistances. 

• In the environment: To comprehend the influences of temperature and fertilizers 
on the prevalence of cyanobacteria, fish mortality, and the color of the water. 

• In the transportation field: Surveys and transit card use are used to predict the 
demand for public transportation. 

• In structures: It is essential to detect anomalous behavior in a structure based on 
observations of its displacement over time [2]. 

There are some different standards that can be used to categorize ML tech-
niques. Methods of ML can be categorized based on the need for human supervision 
throughout the training period. With regard to . 

Figure 1, based on the type of learning being performed, ML techniques are 
generally categorized into three groups including supervised, unsupervised, and 
reinforcement learning [3]. 

A supervised learning method trains on a labeled dataset before generating fore-
casts on an unlabeled dataset. The usage of unsupervised learning consists of training 
a model on the unlabeled dataset in a way that it can learn automatically from it 
by extracting characteristics and trends. Reinforcement learning involves training 
an agent on the environment, which allows the agent to identify the most suitable 
solution in a complicated case [4, 5]. 

In response to the constantly changing demands of the construction industry, the 
increased development of novel concrete types has encouraged further investigation 
into forecasting models that are able to foresee different properties of concrete. In 
order to meet the requirements of various design codes and guidelines, researchers 
have been attempting to anticipate the mechanical properties of concrete. In prior

Fig. 1 The major 
classification of ML 

Machine Learning 

Supervised learning 

Reinforcement Learning 

Unsupervised learning
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Fig. 2 An overview of the ML process in concrete science [9–11] 

techniques, linear and non-linear regression approaches were utilized to predict 
different properties of concrete through analytical analysis of laboratory data [6, 7]. 

The use of ML models has been extensively utilized in recent years for forecasting 
the mechanical properties of concrete as an effective tool. The models are usually 
applied to large datasets separated into training, validation, and testing groups. While 
the training datasets are used for model training, the validation datasets provide an 
unbiased assessment of the model concerning the training data and avoid overfitting 
by preventing the training phase as error levels rise. As a final step, the model is used 
for the testing dataset in order to assess its predictive power [8]. 

As shown in Fig. 2 a typical ML study consists of six steps: 

• Problem description 
• Data collection 
• Data pre-processing 
• Model development 
• Model assessment 
• Model deployment. 

Several statistical methods have been applied to evaluate the performance of ML 
methods. Based on Table 1, ML models can be evaluated using statistical indices 
that indicate how closely predicted values match actual values [8].

Recently, ML methods have been developed to forecast a wide range of concrete 
properties. The most commonly used ML methods are artificial neural network 
(ANN), fuzzy logic (FL), decision tree (DT), support vector machine (SVM), gene 
expression programming (GEP), and Bagging and Boosting. 

Figure 3 shows the different ML techniques subjected to investigation in terms 
of predicting different properties of concrete in this study. As Fig. 3 indicates, ML 
methods can be divided into three major types: methods that can be categorized as
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Table 1 Statistical index 
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Fig. 3 Machine learning models 

both supervised and unsupervised learning, methods based on supervised learning, 
and ensemble learning. 

2.1 Supervised Learning Methods 

Machine learning algorithms consider every dataset instance as a collection of 
features. These features can be categorical, binary, or continuous. In supervised
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Fig. 4 An overview of the fundamental structure of supervised learning 

learning, instances are labeled in the process of learning [12]. Supervised learning 
involves training the model on labeled data and testing it on unlabeled data. A funda-
mental aspect of its architecture is the collection of datasets; the datasets are divided 
into testing and training data, and then the data are pre-processed. To learn the features 
associated with each label, an algorithm is fed the extracted features and then trained 
with the data. As shown in Fig. 4, once the model is provided with the test data, it 
makes predictions based on the data by providing the expected labels. 

2.2 Support Vector Machine 

A SVM is a supervised learning method popular for performing classification and 
regression analyses based on data analysis and pattern recognition. Various methods 
are available depending on the structure and attributes of the classifier. A linear 
classifier is the most commonly known SVM, predicting the class of each input 
between two possible classifications. 

Figure 5 illustrates that SVMs are constructed by building a hyperplane or set of 
hyperplanes to categorize all input data in a high-dimensional or infinite space. A 
support vector is a set of values closest to the classification margin. The SVM aims to 
maximize the margin between the hyperplane and the support vectors. Among many 
off-the-shelf classifiers, SVMs are top-rated. Additionally, SVM can be implemented 
in a variety of environments and toolboxes. These reasons led us to choose SVM as 
the method of classification of infeasible test cases [13].

It should be noted, however, that some classes are unable to be divided using a 
linear hyperplane, as shown in Fig. 6. To achieve linear class separation, the input 
space must be mapped into a higher-dimensional feature space [14].

An essential characteristic of the non-linear mapping technique is that it is typi-
cally conducted through non-linear functions. A kernel function is used to determine 
the output of the algorithm from non-linear space [15, 16]. 

It is possible to categorize these functions into five groups:

• Polynomial 
• exponential radial basis 
• radial basis
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Support Vectors 

Support Vectors 

Fig. 5 Hyperplane classification

Kernel function 

Fig. 6 Non-linear mapping in SVM

• Sigmoid 
• linear [17]. 

This technique enables the determination of a non-linear decision boundary 
without calculating the optimum hyperplane parameters within the feature space. 
As a result, the solution can be represented as a combination of the weighted values 
of kernel functions at a support vector [15]. 

In general, support vector regression (SVR) is referred to as SVM when it is 
applied primarily for regression analysis.
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2.3 Hybrid SVM-Based Models 

The modified firefly algorithm (MFA), which is based on the flashing charac-
teristics and behavior of tropical fireflies, is a recently developed nature-inspired 
metaheuristic method [18]. 

There are three main idealized rules that MFA follows: 

• A firefly, because of its unisex gender, can be attracted by another firefly of any 
gender. 

• Brightness and attractiveness are correlated, so the less bright fireflies will be 
attracted to the more brilliant ones, and the more distance a firefly is from another, 
the less attractive it becomes. 

• An objective function is used to measure the brightness of a firefly [19]. 

By incorporating SVM into hybrid approaches, it is possible to enhance the perfor-
mance and efficiency of individual SVM techniques. A number of investigations 
have employed MFA, for example, as an optimization method to assess compressive 
strength and the shear strength of concrete [8]. 

Bui et al.  [19] utilized the MFA-ANN model to predict the mechanical properties 
of High-performance concrete (HPC). The authors compared the ANN hybrid model 
with the smart firefly algorithm-based Least Square Support Vector Regression (SFA-
LSSVR) developed by Chou et al. [20]. The MFA-ANN hybrid system can better 
predict HPC performance concrete properties and solve problems more quickly based 
on the results. 

The response surface methodology (RSM) involves optimizing factorial variables 
so that the output achieves the desired peak or lowest value. Keshtegar et al. [21] 
generated an RSM-SVM hybrid model based on SEM and SVM. The model was used 
to predict the shear strength of steel fiber-unconfined reinforced concrete beam. The 
hybrid RSM-SVM model was compared with different individual ML techniques, 
including RSM, SVR, and classical neural networks. Compared to the other models, 
the RSM-SVR model was more accurate. 

2.4 Decision Tree Model 

Decision trees consist of models that integrate basic tests, individually evaluating 
a numerical attribute with a threshold value or a nominal metric with a range of 
probable values. Unlike the numerical weights of the links between the nodes of a 
neural network, the logical rules followed by DT are much more straightforward to 
understand. It is more comfortable for decision-makers to use models they are familiar 
with. A DT classifies data points within a partitioned region according to the most 
prevalent class within that region. An error rate is calculated by dividing the number 
of misclassified data points by the total number of data points, and an accuracy rate 
is calculated by subtracting the error rate from one. Several programs have been
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developed that perform automatic induction of DT. Typically, these programs need 
labeled instances, that is, a collection of previously acquired data characterized by a 
class label. Algorithms are designed to describe or find patterns in data. As a result, 
it determines which tests (questions) best divide the instances into separate classes, 
resulting in a tree-like structure [22]. 

Table 2 is an instance of the training set to generate DT. Developing the DT 
illustrated in Fig. 7 as an example, it is assumed that xt1 = x1, xt2 = y2, xt3 = x3, 
and xt4 = y4 would sort to the nodes: xt1 to xt3, which would categorize the instance 
as being positive (shown by Yes). 

The DT induction process has two significant steps:

Table 2 An example of training set 

xt1 xt2 xt3 xt4 Class 

x1 x2 x3 x4 Yes 

x1 a2 x3 b4 Yes 

x1 b2 x3 x4 Yes 

x1 b2 y3 y4 No 

x1 z2 x3 x4 Yes 

x1 z2 x3 y4 No 

y1 y2 y3 y4 No 

z1 y2 y3 y4 No 

Fig. 7 A general DT 

No 

xt1 

xt2 

xt3 xt4Yes 

Yes 
Yes 

No 
No 

No 

x2 y2 z2 

x3 y3 
x4 y4 

x1 y1 z1 
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• Growth phase 
• Pruning phase. 

The growth step involves a recursive division of the training dataset resulting in a 
DT such that either each leaf node is connected with a single class or further division 
of the given leaf results in at least child nodes being below some specified threshold. 
The pruning step seeks to develop the DT that was developed in the growth step by 
creating a sub-tree that sidesteps overfitting to the training data. As opposed to the 
pre-pruning that happens during the growth phase and seeks to control splits that do 
not meet certain thresholds, the pruning phase is usually a post-pruning phase. 

2.5 Gene-Expression Programming (GEP) 

Gene Expression Programming is a well-established evolutionary algorithm for auto-
matic generation computer programs. In GEP, chromosomes/expression trees form 
a truly functional, indivisible system. It should be noted that in GEP there is no 
such thing as an invalid expression tree or program. It is evident that the interac-
tion between GEP chromosomes and expression trees requires a system that can 
translate the language of chromosomes into the language of expression trees without 
ambiguity. Additionally, the structural organization of GEP chromosomes allows for 
unconstrained genome modification, which makes evolution possible. Gene expres-
sion programming is an uncomplicated artificial life system that has been developed 
beyond the replicator threshold due to the diverse set of genetic operators designed to 
familiarize genetic modification into populations [23]. As a result of rapid advance-
ments in GEP over the past few decades, the method has been widely adopted for 
forecasting the mechanical properties of concrete, so different researchers utilized 
GEP to forecast the compressive strength of concrete [19, 24–27]. 

2.6 Artificial Neural Network Methods 

Artificial neural network methods are extensively employed in the field of artificial 
intelligence as well as for the solving of engineering problems. It is mainly used as 
a forecasting model because it requires no prior knowledge and has high accuracy. 
Artificial neural network models predict an output based on a set of input data from 
a given problem domain after learning from past data the patterns of an underlying 
process and generalizing the knowledge gained (or the mathematical relationships 
between the input and output data) [28, 29]. 

Parallel-interconnected neurons have been used to design ANNs. Weights have 
been assigned to the connections. As Fig. 8 illustrates in general, the ANN has three 
layers, namely input, hidden, and output. Input patterns are fetched from an external 
environment by the input layer. The hidden layer separates input and output. There
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may be more than one hidden layer. The number of hidden layers has been calculated 
by various methods, but no exact formula has been published. The output layer is 
responsible for gathering and transferring information as modeled [30]. 

In the input layer, neurons receive inputs and process them with the chosen weights 
before passing the weighted sum through some activation function to produce the 
final ANN output. Table 3 reviews different activation functions which frequently 
used to develop ANN models [31]. Furthermore, the error term is calculated based 
on the output of the ANN and the target. The weights are updated based on the error 
term after it has been calculated. Further, the procedure continues until the desired 
result is achieved or the error has been minimized [30]. 

According to Fig. 9, the bias bk raises or decreases the net input of the activa-
tion function, depending on its positive or negative, respectively. Equations 1 and 2 
illustrate the mathematical representation of the neuron k, which Fig. 9 represented.

Fig. 8 A simple architecture 
of ANN 

Input layer Hidden layer Output layer 

Table 3 Summery of activation functions in ANN 

Activation function φ(x) φ'(x) Values 

Signum function sgn(x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

−1 f or  x  < 0 
0 f or  x  = 0 
1 f or  x  > 0 

δ2(x) [−1, 1] 

ReLu R(x) =
⎧
0 f or  x  < 0 
x f  or  x  ≥ 0

⎫ ⎧
0 f or  x  < 0 
1 f or  x  ≥ 0

⎫

[0, ∞) 

Sigmoid S(x) = 1 
1+e−x φ(x)(1 − φ(x)) (0, 1) 

Heaviside function H(x) =
⎧
0 f or  x  < 0 
1 f or  x  ≥ 0

⎫

δ(x) [0, 1] 

Hyperbolic tangent tanh(x) = ex−e−x 

ex+e−x 1 − φ(x)2 (−1, 1) 

Softmax yi = exi∑n 
j e

x j 
∂yi 
∂ j = yi

(
δi j  − y j

)
(0, 1) 
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X1 

Xm 

X2Input 
signals 

Output 
yk 

Activation 
function 

Summing 
function 

Bias 
bk 

Synaptic 
weights 

Fig. 9 An illustration of a mathematical artificial neuron named k [32] 

uk = 
m∑

j=1 

wkj  x j (1) 

and 

yk = ∅(uk + bk) (2) 

An Overview of Network Architectures 
Different network architectures are used in different situations as ANN models, such 
as: 

• Convolutional Neural Networks (CNNs) 
• Deep Belief Networks (DBNs) 
• Deep Feedforward Neural Networks (D-FFNN) 
• Auto encoders (AEs) 
• Long Short-Term Memory networks (LSTMs) [31]. 

Learning Rules 
It is the main objective of ML to make a machine intelligent. For a machine to be 
intelligent, it must be able to learn from its experiences or from examples. Learning 
in ANN is generally divided into three types: 

• Supervised 
• Unsupervised 
• Reinforcement learning [30]. 

It has been reported in several studies that ANNs have demonstrated superior 
abilities for modeling and solving complex civil engineering problems after the 
publication of the first article that applied ANNs to civil engineering in 1989. For 
instance, ANNs have been successfully applied to investigate hardened, fresh, and
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durability properties such as compressive [25], flexural [33], tensile strengths [34], 
elastic modulus [35], electrical resistivity [36], chloride penetration resistance [37], 
mass-loss and volume-loss under HCl attack [38], rheological behavior of SCC [39], 
and self-healing capacity [40]. 

2.7 Hybrid ANN-Based Models 

Hybrid approaches are based on the idea of combining several algorithms so that the 
performance and efficiency of the model can be significantly improved by combining 
these algorithms. Researchers are increasingly interested in hybrid approaches 
because they combine the advantages of several models [8]. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a well-known Hybrid ANN-
based model in which ANN and FL are combined to give a universal approximation. 
In this model, ANN is utilized to increase membership capacities to reduce error rates 
in the output, while FL rules are applied to provide expert knowledge [41]. ANFIS 
models are widely used in concrete science to predict the compressive strength of 
Ordinary Concrete (OC) [7], SCC [42], HPC [43], and GC [41]. 

It is possible to optimize the weights and thresholds of ANN by using genetic 
algorithms (GA). GA is a metaheuristic technique concerning the concept of natural 
evolution and selection [7, 44, 45]. 

The GN-ANN model was used by Yuan et al. [7] to forecast the compressive 
strength of concrete. The results indicated that the GN-ANN model performed 
well regarding desirable accuracy and applicability in real-life engineering practice, 
demonstrating its potential to replace conventional regression models. An expert 
system generated by Bui et al. [19] used the ANN model in conjunction with MFA 
to predict the mechanical properties of HPC. In conclusion, the hybrid system 
combining MFA and ANN could better predict HPC concrete properties. Addi-
tionally, the MFA-ANN solves problems much faster. Consequently, the proposed 
approach could be used to predict and design HPC in an efficient and accurate manner. 

2.8 Fuzzy Logic (FL) 

The FL theory is a relatively new study and is widely applied to the classification of 
remotely sensed images, as well as the classification of multiple land use and land 
cover classes. It is possible to apply a fuzzy approach in the context of supervised 
and unsupervised classification. 

A broad fuzzy system is illustrated in. 
Figure 10 comprises four main components, including fuzzification, fuzzy rule 

base, fuzzy output engine, and defuzzification. By using one or more membership 
functions, fuzzification converts each piece of input data into degrees of membership. 
In fact, FL is based on the idea that objects can belong to different subsets of a
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Fuzzifiction Defuzzifiction 

Fuzzy output engine 

Fuzzy base rule 

Input data Output 

Fig. 10 General fuzzy system 

universal set instead of belonging to that single entirely. It is possible to quantify 
partial belonging to a set numerically by a membership function, which is a function 
that assumes values between 0 and 1. Among many techniques, intuition, inference, 
rank ordering, angular fuzzy sets, neural networks, genetic algorithms, and inductive 
reasoning can be ways to assign membership values or functions to fuzzy variables. 
It is possible to construct fuzzy membership functions in various ways, but simple 
linear functions, such as triangular ones, are preferred for practical applications [46]. 

2.9 Ensemble Learning Methods 

Typically, ensemble methods consist of a set of learning machines that combine their 
decisions, their learning algorithms, different views of data, or any other unique 
feature that results in more accurate and reliable predictions for supervised and 
unsupervised learning problems [47, 48]. Ensemble learning methods are divided 
into three main groups, including bagging, boosting, and stacked generalization. 
An ensemble-based algorithm called bagging is one of the earliest and simplest 
algorithms on the market. Despite its simplicity, the bagging algorithm is highly 
efficient and is best suited to problems with limited training datasets [49]. 

A boosting algorithm is an iterative process for generating a strong classifier that 
can achieve arbitrarily low training error from an ensemble of weak classifiers, each 
of which is barely better than random guessing. A significant difference between 
boosting and bagging is the way it differs from combining weak classifiers with 
simple majority voting. As a result of bagging, each instance selected for classifier 
training has an equal chance of being in any of the training datasets. It should be 
noted, however, that in boosting, the training dataset for each successive classification 
algorithm focuses increasingly on instances that the previous classification algorithm 
had misclassified [49, 50]. Wang et al. [33] used several ensembled ML techniques 
to predict UHSC flexural strength. In this study DT was compared to ensembled 
ML models include bagging, gradient boosting (GB), extreme gradient boosting 
(XGBoost), and Adaboost. The authors reported that when compared to the individual 
DT model, ensemble ML techniques had better performance.
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3 Using ML Methods in Concrete Science 

As shown in Fig. 11, based on the review in this study, OC is the most common 
concrete and SCC, UHPC, GC, AAC, and RAC as the modern concretes are the 
concrete types noticed by using ML methods. 

3.1 Ordinary Concrete 

A common form of concrete is OC which is regularly used in building pavements 
and buildings that do not need very high tensile strength. Many studies have been 
conducted on the investigation of its properties using different ML techniques. 
Regarding Table 4, some researchers investigated the potential of ML algorithms such 
as ANN, DT, GEP, Multi Logistic Regression (MLR), Gaussian Process Regression 
(GPR), and Full Quadratic (FQ) methods to predict different properties of OC.

3.2 Self-Consolidation Concrete 

In the late 1980s, SCC emerged in Japan as a material capable of flowing and 
compacting under its own weight without vibrating. In complex formwork, rein-
forced structural elements with congested reinforcement, and hard-to-reach areas, 
SCC can be placed without additional mechanical compaction. 

Compared to conventional concrete, unit SCC has three main features:

UHPC OC SCC AAC RAC 

Type of concrete 

Most commonly used 
type of concrete 

Flowing and 
compacting under its 
own weight without 

vibrating 

Using alternatives to 
ordinary Portland 
cement (OPC) in 

order to limit CO2 
emissions 

Minimum compressive 
strength of 120 MPa and 

minimum flexural 
strength of 14 MPa 

Using Waste concrete 
materials as recycled 
aggregates for new 
concrete in order to 
limit CO2 emissions 

Fig. 11 Concrete types reviewed in this study 
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Table 4 Summary of using ML in OC 

Refs. Year Input Output Prediction methods 

Penido et al. [51] 2022 Cement, fine steel slag, 
coarse steel slag, fine 
aggregate, coarse 
aggregate, water, 
superplasticizer (SP), 
pozzolanic admixtures, 
supplementary 
cementitious materials 
(SCMs), filler, age 

Compressive strength GPR, SVR, 
XGBoost, ANN 

Piro et al. [36] 2022 Water to cement ratio 
(w/c), steel slag, ground 
granulated blast-furnace 
slag (GGBFS), age, 
cement, fine aggregate, 
coarse aggregate, SP 

Electrical current, 
compressive strength 

MLR, FQ, ANN 

Song et al. [24] 2021 Cement, fly ash, SP, 
water, Fine aggregate, 
coarse aggregate, age 

Compressive strength ANN, Boosting 
regressor, GEP, DT 

Ahmad et al. [26] 2021 Cement, fine aggregate, 
coarse aggregate, water, 
waste material, age, 
water to binder ratio 
(w/b), SP 

Compressive strength GEP, DT, Bagging 

Kandiri et al. [52] 2020 Cement, granulated 
blast furnace slag 
(GBFS), water, GBFS 
grade, coarse aggregate, 
fine aggregate, age 

Compressive strength ANN, Salp swarm 
algorithm 

Ling et al. [53] 2019 Cement, fly ash, slag, 
magnesium-ion, 
sulfate-ion, chloride-ion 

Compressive strength SVM 

Hendi et al. [38] 2018 SP, micro silica, fine 
glass powder, 28-day 
compressive strength, 
water absorption ratio, 
voids of permeable 
pores, days of exposure, 
an intercept (constant 
value) 

Mass-loss and 
volume–loss under HCl 
attack 

ANN 

Özcan et al. [54] 2009 Cement, silica fume, 
water, plasticizer, 
aggregate, age 

Long-term compressive 
strength 

FL, ANN 

Bilim et al. [55] 2009 Cement, blast furnace 
slag, SP, aggregate, 
water, age 

Compressive strength ANN
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• Flowing under its own weight without vibrating. 
• Passing through formwork sections that are narrow and crowded with reinforce-

ment. 
• Having the ability to become homogeneous and highly resistant to segregation 

[56, 57]. 

In order to achieve the required characteristics, SCC usually requires a high 
powder content. Using only cement will result in a high cost for SCC, as well as 
its vulnerability to attack and thermal cracking. To achieve an effective SCC, it is 
essential to choose and use suitable supplementary cementitious and filler materials, 
such as fly ash, silica fumes, metakaolin, and limestone. [58] 

Regarding Table 5, some researchers investigated the potential of ML algo-
rithms such as ANN, RSM, ANFIS, and GEP to predict mechanical and rheological 
properties of SCC.

3.3 Ultra-High-Performance Concrete 

Ultra-high-performance concrete is a relatively novel composite material of HPC, 
which is characterized by ultra-high strength, outstanding toughness, and excellent 
durability due to low w/b of around 0.2 and the use of SP and steel fibers. Stan-
dards and specifications on the design, testing, and applications of UHPC have been 
formulated by France, China, the United States (USA), Japan, and South Korea 
[65–68]. 

According to the Asian Concrete Federation (ACF), UHPC is a cementitious 
composite that consists of discrete fibers and has a minimum compressive strength 
of 120 MPa, a minimum flexural strength of 14 MPa, and a minimum direct tensile 
strength of 5 MPa. According to Japan and France criteria, UHPC has a compressive 
strength of 150 MPa, and its tensile strength is 5 and 8 MPa. The USA recommends a 
minimum compressive strength of 120 and 180 MPa is recommended by South Korea 
for UHPC. UHPC can, however, reach a compressive strength of up to 250 MPa 
in practice and 400 MPa in laboratory conditions [69]. Regarding Table 6, some  
researchers investigated the potential of ML algorithms such as ANN, Random forest 
(RF), bagging, and boosting methods to predict different properties of UHPC.

3.4 Alkali-Activated Concert 

Alkali-activated materials (AAM) are recognized as potential alternatives to ordinary 
Portland cement (OPC) in order to limit CO2 emissions as well as beneficiate several 
wastes into useful products [73]. Over the last several decades, many different alkali-
activated types of cement have been created. Alkaline cement may be divided into
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Table 5 Summary of using ML in SCC 

Refs. Year Input Output Prediction 
methods 

Ben Aicha et al. 
[39] 

2022 Slump flow diameter, 
V-funnel flow time, 
L-box ratio 

Yield stress, viscosity Multivariable 
regression, ANN 

Ofuyatan et al. 
[34] 

2022 Silica fume, plastic 
waste, cement, Sand, 
Granite, SP, water 

Compressive strength, 
tensile strength, 
impact strength 

RSM, ANN 

Mohamed et al. 
[37] 

2021 Cement, fly ash, silica 
fume, Slag, age, water, 
SP, Fine aggregate, 
coarse aggregate, w/b 

Compressive strength, 
chloride penetration 
resistance 

ANN 

Farooq et al. [27] 2021 Cement, w/b, coarse 
aggregate, fine 
aggregate, fly ash, SP 

Compressive strength ANN, SVM, GEP 

Al-Mughanam 
et al. [59] 

2020 Cement, water, w/b, 
palm oil fuel ash, fine 
aggregate, coarse 
aggregate, SP 

Compressive strength ANFIS 

Elemam et al. 
[60] 

2020 Total binder content, 
fly ash, silica fume, 
limestone powder, 
w/b, SP 

L-box test, 
Compressive strength, 
slump flow test, 
segregation test 

ANN 

Vakhshouri and 
Nejadi [42] 

2018 Aggregate volume, 
aggregate maximum 
size, powder volume, 
paste volume, slump 
flow, w/b, volume of 
powder to volume of 
mortar 

Compressive strength ANFIS 

Hendi et al. [38] 2018 SP, micro silica, fine 
glass powder, 28-day 
compressive strength, 
water absorption ratio, 
voids of permeable 
pores, days of 
exposure, an intercept 
(constant value) 

Mass-loss and 
volume–loss under 
HCl attack 

ANN 

Safiuddin et al. 
[61] 

2016 Cement, water, coarse 
aggregate, fine 
aggregate, palm oil 
fuel ash, SP, viscosity 
modifying admixture 

Compressive Strength ANN

(continued)
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Table 5 (continued)

Refs. Year Input Output Prediction
methods

Uysal and 
Tanyildizi [62] 

2012 Cement, natural 
aggregate, aggregate 
type 1, aggregate type 
2 fly ash, GBFS,  
zeolite, limestone 
powder (LP), basalt 
powder (BP) and 
marble powder, 
polypropylene fibers, 
heating degree 

Compressive strength ANN 

Uysal and 
Tanyildizi [63] 

2011 Cement, fly ash, 
Limestone powder, 
marble powder, 
natural powder, 
natural aggregate, 
aggregate type 1, 
aggregate type 2, SP, 
unit weight, water 
absorption 

Core compressive 
strength 

ANN 

Siddique et al. 
[64] 

2011 Cement, sand, coarse 
aggregate, w/b, SP, 
water, bottom ash, fly 
ash 

Compressive strength ANN

two major groups based on the characteristics of their cementitious components 
(CaO-SiO2-Al2O3 system): 

• High calcium cement 
• Low calcium cement 

Each group has a different pattern of activation. In high calcium cement system, 
materials that are high in calcium and silicon, like blast furnace slag, are activated 
in conditions that are not too alkaline. In this case, the main product of the reaction 
is a gel made of C–S–H (calcium silicate hydrate), which is similar to the gel made 
when Portland cement hydrates and takes up Al. In low calcium cement systems, 
mostly aluminum and silicon are used to activate the materials. Metakaolin or type 
F fly ash from coal-fired steam power plants are some of the materials used in this 
second alkali activation process. These materials have low amounts of CaO. In this 
case, the reactions need to be kicked off with more aggressive working conditions, 
such as highly alkaline media and curing temperatures of 60–200 °C. In this case, 
the main reaction product is a 3D inorganic alkaline polymer called N–A–S–H gel, 
which stands for alkaline aluminosilicate hydrate and can be thought of as a zeolite 
precursor. This gel has a lot of different names, such as geo- or inorganic polymer 
[74].
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Table 6 Summary of using ML in UHPC 

Refs. Year Input Output Prediction 
methods 

Wang et al. [33] 2022 Cement, fly ash, slag, 
silica fume, nano 
silica, limestone 
powder, sand, coarse 
aggregate, quartz 
powder, water, SP, 
steel fiber diameter, 
steel fiber length, age 

Flexural strength Adaboost, 
XGBoost, GB, 
Bagging 

Han et al. [70] 2019 Fly ash, blast furnace 
slag, coarse aggregate, 
water, Age, fine 
aggregate, cement, SP 

Compressive strength RF 

Chou et al. [32] 2011 Water, age, cement, SP, 
blast furnace slag, fly 
ash, fine aggregate, 
coarse aggregate 

Compressive strength ANN, Bagging 
regression trees, 
Multiple additive 
regression trees, 
SVM, Multiple 
regression 

Öztaş et al.  [71] 2005 Silica fume, fly ash, 
air-entraining, water, 
w/b, SP 

Slump, compressive 
strength 

ANN 

Gupta et al. [72] 2006 Water, cement, fine 
aggregate, coarse 
aggregate, average 
workability, average 
slump, w/c 

Compressive strength ANN

Due to its early compressive strength, low permeability, high chemical resis-
tance, and exceptional fire-resistant behavior, geopolymer has garnered a lot of 
interest recently among binders. Due to these beneficial qualities, the geopolymer 
is a promising candidate to replace ordinary Portland cement in the development of 
various sustainable products for the construction industry, including concrete, fire-
resistant coatings, fiber-reinforced composites, waste immobilization solutions, and 
building materials [75]. It should be considered that because these materials have 
different chemical features and characteristics, the products of their reactions will 
be different. Therefore, the mechanical properties of materials with low calcium and 
alkali activation, like alkali-activated fly ash, and materials with high calcium and 
alkali activation, like alkali-activated GGBFS, are very different. For example, the 
drying shrinkage of alkali-activated fly ash is lower than that of Portland cement 
concrete, and high calcium AAC [76]. 

Table 7 summarize the input and output that some researchers used to develop 
ML algorithms such as ANN, RF, ANFIS, and RSM to predict various properties of 
AAC.
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Table 7 Summary of using ML in AAC 

Ref. Year Input Output Prediction methods 

Upreti et al. [77] 2022 Fly ash, extra water, 
slump, density, coarse 
aggregate, fine 
aggregate, NaOH 
solution, sodium 
silicate, SP, GGBFS 

Compressive 
strength, splitting 
tensile strength, 
flexural strength 

ANN, RF 

Tang et al. [78] 2022 Na2SiO3, NaOH, 
water, curing types, 
w/b, ground 
granulated 
blast-furnace slag, 
blaine fineness, Na2O, 
silica modulus of the 
activator, fine 
aggregate to total 
aggregate ratio 

Compressive 
strength 

ANN 

Qin et al. [79] 2022 Alkali concentration 
of activator (Na2O%), 
modulus of activator, 
w/b, surface area of 
slag, basicity index of 
slag 

Compressive 
strength 

ANN, alternating 
conditional 
expectation 

Ahmad et al. 
[26] 

2021 Fly ash, coarse 
aggregate, fine 
aggregate, NaOH, 
sodium silicate, 
silicon dioxide, 
sodium oxide, NaOH 
molarity, curing time 

Compressive 
strength 

Adaboost, ANN, 
boosting 

Ibrahim et al. 
[80] 

2021 Nano silica, time Strength and weight 
loss under acid 
resistance 

ANN. RSM 

Van Dao et al. 
[41] 

2019 Fly ash, Na2SiO3, 
NaOH, water 

Compressive 
strength 

ANFIS, ANN 

Nagajothi and 
Elavenil[81] 

2019 Manufactured sand to 
natural river sand 
ratio, GGBFS, fly ash 

Compressive 
strength, splitting 
tensile strength, 
Flexural strength 

ANN 

3.5 Recycled Aggregate Concrete 

People have been concerned with keeping the environment clean for many years. In 
order to maintain a clean environment, solid waste must also be recycled. From the 
standpoint of environmental preservation and effective resource utilization, recycling
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waste concrete is beneficial and necessary. Waste concrete has to be used as recycled 
aggregates for new concrete in order to be effectively utilized. 

In some cases, adding recycled material to concrete might result in a 40% reduction 
in its compressive strength [82–85]. As a result of replacing 25–30% [86] or 100% 
[87] of the natural aggregate with recycled aggregate, compressive strength can be 
reduced by 12–25%. By replacing 30% of coarse or fine natural aggregate with 
recycled aggregate, the impact is minimal. It was observed that the compressive 
strength of recycled aggregate decreased due to the replacement of recycled aggregate 
(due to the old mortar content) and a poor interfacial transition zone [88, 89]. 

Regarding Table 8, some researchers investigated the potential of ML algorithms 
to predict various properties of RAC. 

In recent years, there have been numerous investigations on the role of ML in 
the prediction of different properties of concrete. Penido et al. [51] used four ANN, 
SVR, XGBoost, and GPR models to forecast the compressive strength of concrete

Table 8 Summary of using ML in RAC 

Refs. Year Input Output Prediction methods 

Zeng et al. [90] 2022 Cement strength class, 
w/b, paste to aggregate 
ratio, recycled coarse 
aggregate replacement 
proportion, fly ash 
replacement 
proportion, silica fume 
replacement 
proportion, slag 
replacement 
proportion, slump, 
sand to aggregate ratio 

Compressive 
strength 

ANN 

Hammoudi et al. 
[91] 

2019 Cement, recycled 
aggregate, slump 

Compressive 
strength 

ANN, RSM 

Golafshani and 
Behnood [92] 

2018 28-day cube 
compressive strength, 
volume replacement of 
natural aggregate by 
recycled aggregate, 
coarse aggregate to 
cement ratio, saturated 
surface dry specific 
gravity, water 
absorption, fine 
aggregate to total 
aggregate ratio, w/c 

Elastic modulus ANN, SVR, FL 

Topçu and 
Saridemir [93] 

2008 Silica fume, cement, 
water, sand, recycled 
aggregate, SP, 
aggregate, age 

Compressive 
strength, splitting 
tensile strength 

FL, ANN 
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containing steelmaking slag at 1–360 days. The R2 values related to all ages were 
0.89, 0.91, 0.93, and 0.83 for GPR, ANN, XGBoost, and SVR, respectively. In 
addition, the R2 values were reduced for only 28 days which were 0.68, 0.79, 0.73, 
and 0.73 for GPR, ANN, XGBoost, and SVR, respectively. It is significant to note 
that the R2 values for validation were not satisfactory due to negative values for GPR, 
XGBoost, and SVR. These unsatisfactory R2 values for validation highlighted some 
crucial aspects of ML usage: 

• Homogeneity and size of the dataset 
• Input parameter selection 
• Adjusting models with cross-validation. 

The compressive strength of concrete containing silica fume was predicted to 
develop ANN and FL by Özcan et al. [54]. As demonstrated by the R2 analysis, both 
the ANN and FL models significantly predicted compressive strength. However, the 
ANN model supplied better results than the FL model. According to Wang et al. 
[33], ensembled ML methods and DT were compared in terms of their performance 
in predicting UHSC flexural strength. For the purpose of evaluating models in their 
study, MAE, RSME, and R2 were used. Bagging was found to perform better with 
R2, RSME, and MAE equal to 0.95, 8.26, and 2.05, respectively, followed by GB, 
Adaboost, and XGBoost. The performance of ensemble ML techniques was superior 
to that of individual DT models. 

Song et al. [24] utilized GEP, ANN, and DT to predict the compressive strength 
of concrete incorporating fly ash. In their study R2, RME, and RMSE were evaluated 
to compare ANN with DT methods also cement, fly ash, SP, water, fine aggregate, 
coarse aggregate, and age were introduced as inputs. The R2 values of the GEP, ANN 
and, DT were 0.86, 0.81 and, 0.75, respectively. It is significant to note that bagging 
regressor as an ensemble algorithm had a higher R2 value equal to 0.95 compared to 
individual ML techniques. The lesser values of the errors, MAE (3.69 MPa), MSE 
(24.76), and RMSE (4.97), also confirmed the high accuracy of the bagging regressor, 
while other algorithms show higher values for these errors. Amiri and. Hatami [94] 
investigated compressive strengths and the durability test of rapid chloride migration 
test (RCMT) of concrete containing GGBFS and recycled concrete aggregate using 
ANN. A three-layer multilayer perceptron (MLP) was utilized in their study with the 
structure of an input layer, a hidden layer, and an output layer. The authors reported 
that R2 values were 0.9958 and 0.9912 for compressive strength and RCMT, which 
showed that provided ANN model could strongly predict the properties of concrete. 

Uysal and Tanyildizi [62] investigated the potential of different ANN algorithms 
to forecast the compressive strength of SCC containing polypropylene fiber and 
mineral additives such as fly ash, GBFS, zeolite, limestone powder, basalt powder, 
and marble powder in various proportioning rates exposed to high temperature. For 
predicting the compressive strength of SCC, the authors used some ANN algorithms, 
including Levenberg–Marquardt backpropagation, BFGS quasi-Newton backprop-
agation, Powell-Beale conjugate gradient backpropagation, Fletcher–Powell conju-
gate gradient backpropagation, and Polak–Ribiere conjugate gradient backpropaga-
tion, all with R2 values of 0.9587, 0.9757, 0.9652, 0.9674, 0.9616, and 0.9559,
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Fig. 12 Core areas on the SCC wall

respectively. Due to the good correlation between experimental results and the 
ANN model, BFGS quasi-Newton backpropagation algorithm was the best algo-
rithm for calculating the compressive strength of SCC exposed to high temperatures. 
In another study, Uysal and Tanyildizi [63] developed an ANN model to predict the 
core compressive strength of SCC incorporating fly ash, limestone powder, marble 
powder, and natural powder. The core spots on the wall and the architecture of the 
ANN model are present in Figs. 12 and 13. To develop the ANN model, the authors 
used the Fletcher-Powell conjugate gradient backpropagation algorithm as well as 
the Levenberg–Marquardt backpropagation algorithm. As a result of the analysis, the 
fletcher powell conjugate gradient backpropagation algorithm was found to have a 
better performance in terms of prediction than the Marquardt backpropagation algo-
rithm, with R2 values of 0.95 and 0.92. A high correlation coefficient was found in 
the ANN models when predicting SCC core compressive strength. 

Ben Aicha [39] predicted the rheological behavior of SCC utilizing multivariable 
regression and ANNs. In their study slump flow diameter (SFD), V-funnel flow 
time (VFT), and L-box ratio (LBR) were introduced as inputs, and yield stress and 
viscosity were considered as outputs. The correlation between viscosity and VFT, 
SFD, and LBR was 0.967, 0.955, and 0.916 also, the correlation between yield stress 
and VFT, SFD, and LBR were 0.963, 0.86, and 0.0.914. The results showed that in 
the case of data with only one output or small datasets, multivariable linear regression 
can be utilized instead of ANN. The usage of the multivariable linear regression is 
not suitable for big datasets, particularly those with multiple outputs. 

Hendi et al. [38] utilized ANN to study the effect of glass powder and micro silica 
usage in SCC and OC under HCl attack. In their study mass-loss and volume-loss 
were investigated to identify the beneficial or harmful effects of input parameters on 
the outputs and even to minimize the ANN function; the particle swarm optimization 
(PSO) method was implemented with 20 iterations and 10,000 particles. The R2



190 Y. Asghari et al.

Fig. 13 ANN architecture

values were 0.9982 and 0.9957 for Mass-loss and Volume-loss, which indicated a 
high actuary of ANN in terms of prediction. An analysis of the average mass-loss of 
related mixtures in OC was conducted to determine their effects on glass powder and 
micro silica. It should be noted that adding more SCMs raised mass-loss values, and 
that micro silica had a more significant impact than glass powder. Concerning PSO 
results, the optimum compressive strength value equaled 33.84 MPa to minimize 
Mass-Loss. 

The Compressive strength and chloride penetration resistance of SCC were inves-
tigated by Mohamed et al. [37] using ANNs. To forecast chloride penetration resis-
tance and compressive strength, the authors used data between 249 and 1031 datasets. 
Chloride penetration was determined at 7, 14, 28, and 40 days, and compression 
strength of SCC specimens was determined at 3, 7, and 28 days. Comparing the 
ANN predicted values with compressive strength values of SCC specimens, most 
specimens demonstrated greater than 80% prediction accuracy, while a few speci-
mens demonstrated greater than 90% accuracy. In the case of chloride penetration 
prediction, the ANN model with a learning rate of 0.3, a momentum of 0.5, and 5000 
epochs demonstrated the highest overall prediction accuracy of 95%.
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The Convolutional Neural Network (CNN) is a type of deep learning neural 
network that has been developed over the past two decades. This technology signif-
icantly contributed computer vision to the field of artificial intelligence. Zeng et al. 
[90] used CNN to predict compressive strength OC, high strength concrete (HSC), 
and RAC with data set of 380 groups of concrete mixtures. Figure 14 compares 
the CNN model with SVM, ANN, and Adaboost methods based on their statis-
tical parameters values. It is clear that CNN with a higher value of R2 has the best 
performance among the four ML methods. 

Ahmad et al. [25] investigated the potential of the ANN method to forecast the 
compressive strength of GC incorporating natural zeolite and silica fume. Table 9 
indicates the Values of various parameters in the developed ANN. To develop the 
ANN model, 117 concrete mixtures were used as outputs, and specimen age, NaOH 
concentration, and content of natural zeolite, silica fume, and GGBS were analyzed 
as inputs. According to the predicted results, the proposed model was highly accurate 
and capable of making accurate predictions. Also, the results of the developed ANN 
model were compared with the GEP model developed by Shahmansouri et al. [95]
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Table 9 The values of 
various parameters in the 
developed ANN 

Parameters Number 

Neurons (input layer) 5 

Hidden layers 2 

Neurons (hidden layer) 6 

Neurons (second hidden layer) 5 

Neurons (output layer) 1 

in order to examine the performance of the model versus another soft computing 
method. In terms of statistical indexes, the R values for the proposed ANN and the 
GEP were 0.980 and 0.959, respectively, while the MSE values were 4.7769 and 
9.5294, illustrating the high performance of the proposed ANN in comparison with 
the GEP to predict the strength of pozzolanic GC with silica fume and natural zeolite. 

In recent years, RSM has become one of the most typical optimization methods, 
with high importance among researchers. Recent years have seen a substantial 
increase in the use of numerical optimization tools in civil engineering, particu-
larly to optimize the mechanical and durability properties of concrete using RSM. 
The resistance of AAC against acid attack was investigated by Ibrahim et al. [80]. An 
ANN model was generated in order to predict the weight and strength loss of AAC 
as a result of acid attacks in this study. Additionally, RSM models were developed 
to determine the minimum weight and strength loss of nSiO2. High correlation and 
minimum error were obtained considering the predicted and experimental values 
showed that Models based on ANN and RSM could effectively predict the weight 
and strength loss of AAC. The elastic modulus of concrete is one of the essential 
properties of the material and is widely used to calculate the deformation of struc-
tures due to earthquakes [96]. Yan and Shi et al. [97] used SVM to predict elastic 
modulus of ordinary Portland concrete and HSC. Since in previous studies by Demir 
[98, 99] mathematical regression models, ANN, and the FL model have been used 
for the prediction of elastic modulus for OPC and HSC, the authors compared the 
SVM results with regression, ANN, And Fuzzy model based on RSEM and MAPE 
for OPC and HSC. Figures 15 and 16 Show MAPE and RMSE values of different 
models for training and testing. It was evident that SVM is responsible for the lowest 
values in both OPC and SCC which shows that SVM has better performance in terms 
of prediction.

Ahmad et al. [26] used ML algorithms to forecast compressive strength of high 
calcium fly-ash-based GC. In their study ANN, boosting, and Adaboost were utilized 
based on python coding. Regarding the R2, MSE, RMSE, and MAE values, boosting 
indicated the higher value of R2 equals 0.96, while Adaboost and ANN were less 
accurate. In addition, the boosting method had lesser error values than the other 
two methods, which proved to have a better performance in compressive strength 
prediction. Topçu and Saridemir [93] used ANN and FL to predict compressive 
strength and splitting tensile strength of RAC containing silica fume at 3, 7, 14, 28, 56, 
and 90 days. Their study introduced age, cement, sand, aggregate, recycled aggregate, 
water, SP, and silica fume as inputs, while compressive strength and splitting tensile
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strength values were used as outputs. In addition, 140 data of experiment results 
were used for training whereas 70 were employed for testing. The results in Table 
10 compare the performance of ANN and FL using RMSE, R2, and MAPE values. 
Although both methods significantly predicted RAC mechanical properties, ANN 
performed significantly better than FL due to more acceptable statistical index values.

Tang et al. [78] developed different ANN models to forecast the compressive 
strength of alkaline-activated slag Concretes. The authors used four ANN models
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Table 10 RMSE, R2, and MAPE values of ANN and FL for compressive and splitting tensile 
strength 

Statistical 
parameters 

Compressive strength Splitting tensile strength 

ANN FL ANN FL 

Training Testing Training Testing Training Testing Training Testing 

RMSE 2.0465 2.3948 2.6557 3.8655 0.1406 0.1968 0.2020 0.2955 

R2 0.9989 0.9984 0.9981 0.9959 0.9989 0.9979 0.9977 0.9952 

MAPE 2.8302 3.3699 3.5973 5.5245 2.6287 3.5516 4.2165 5.7306

with 8-8-1, 9-10-1, 9-16-1, and 10-14-1 structures. In addition, 181 datasets were used 
to develop ANN models: 80%, 15%, and 5% were utilized for training, validation, and 
testing, respectively. The values of R, R2, RMSE, MAE, and MAPE indicated that 
the model with an 8-18-1 structure had better performance in terms of compressive 
strength prediction. 

Mhaya et al. [100] used the GA-ANN model to forecast the mechanical properties 
and impact resistance of concrete incorporating GBFS and discarded rubber tire 
crumbs. In terms of the mechanical properties of the modified rubberized concretes, 
the GA-ANN provided satisfactory results in terms of their mechanical properties. 
As is evident from the results of this paper, the GA-ANN could also be applied as 
a solid tool to optimize the weights in the ANN. Hendi et al. [101] used ANN to 
predict mass-loss and volume-loss of OC and SCC containing glass beads and micro 
silica which were replaced with cement due to sulfuric acid (H2SO4) attack. The 
authors utilized the feed-forward ANN method and backpropagation algorithm for 
predictions and error assessment, respectively. The structure of the ANN model was 
9-8-6-1 using 60%, 20%, and 20% of all data as the training set, 20, validation dataset, 
and tasting dataset, respectively. The R2 values between experimental mass-loss and 
predicted mass-loss using ANN were 0.8782 and 0.8212 for OPC and SCC, while 
considering volume-loss as an output, the R2 values were 0.7988 and 0.7415 for 
OPC and SCC. According to ANNs analysis, higher micro silica and glass powder 
contents, as well as concretes with lower compressive strength, performed better in 
the H2SO4 acid medium. As a result, higher compressive strengths did not necessarily 
translate into better durability. 

Suleiman and Nehdi [102] used the GN-ANN model to investigate Self-Healing 
cracks in concrete by introducing cement content, w/c, type, and dosage of SCMs, 
bio-healing materials, and expansive and crystalline additives as inputs. The authors 
reported that the GA–ANN model could provide an alternative solution for modeling 
the highly complex self-healing phenomena in cement-based materials as a powerful 
computational tool with high efficiency. Genetic algorithms were successfully 
applied to the ANN model to identify the most appropriate weights and biases. In 
addition, the proposed technique provided a reliable prediction for the self-healing 
ability of a cementitious material, which can be utilized to improve the design of 
concrete that is more durable and sustainable.
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Pham et al. [103] used a Hybrid SVM-based model to predict the compressive 
strength of HPC. In their study, 215 and 24 samples were used for trading and testing 
sets to develop the FA-LSVR model, the combination of the firefly algorithm (FA) 
and the least squares support vector regression (LS-SVR). The authors compared the 
hybrid model with ANN and SVM models based on RMSE, R2, and MAPE values. 
With respect to statistical indexes, the FA-LSVR model could predict compressive 
strength compared to SVM and ANN. It is significant to note that, following the first 
experiment, a tenfold cross-validation process was performed. Since all subsamples 
were mutually exclusive, this method could provide a more accurate evaluation of 
the proposed FA-LSVR and other analysis techniques. The results of the second 
experiment showed that the hybrid models achieved the highest R2 values of 0.93 
and 0.87 for both training and testing datasets and the lowest RMSE and MAPE 
values for both training and testing datasets, which indicated that the hybrid model 
was the most accurate and SVM was the second best method. 

Golafshani and Behnood [92] utilized ML methods for predicting the 28-day 
elastic modulus of concrete containing recycled aggregate. The authors used ANN, 
FL, SVR, and radial basis function neural network (RBFNN) in this regard. In addi-
tion, nine different training algorithms in other to provide a reliable ANN were 
investigated. Table 11 indicates compression of statistical indexes related to referent 
training algorithms of ANN, Levenberg–Marquardt had a better performance than 
the other eight training algorithms. To compare the performance of ANN with 
other techniques, they used the Levenberg-Marquard algorithm as the most efficient 
algorithm. 

Regarding Table 12, which compares different ML methods used in this study 
based on their statistical indexes, by comparing RMSE and r-value statistical param-
eters, ANN is found to perform better than the other techniques, while SVR shows 
superior performance on MAE and MAPE. As a result, all four statistical parameters 
of the developed RBFNN model outperformed the FL. The OBJ value was calcu-
lated by taking into account the RMSE, MAE, and r-value statistical parameters of

Table 11 Statistical indexes of nine training algorithms 

Training algorithms Statistical indexes 

RSME r-value OBJ 

BFGS Quasi-Newton 2.7790 0.8804 2.5645 

Resilient backpropagation 2.7222 0.8854 2.5203 

Levenberg–Marquardt 1.7143 0.9561 1.5957 

Scaled conjugate gradient 3.0153 0.8572 2.8089 

Variable learning rate backpropagation 3.0076 0.8585 2.8281 

One step secant 3.1175 0.8476 2.9648 

Conjugate gradient with powell/Beale restarts 2.8656 0.8721 2.6610 

Polak-Ribiere conjugate gradient 2.8809 0.8707 2.6278 

Fletcher-Powell conjugate gradient 2.9844 0.8605 2.7767 
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Table 12 Statistical indexes of different ML methods 

ML methods Statistical indexes 

RMSE MAE MAPE r-value OBJ 

ANN 1.7143 1.1591 4.5759 0.9561 1.5957 

FL 2.5189 1.6748 6.6711 0.9028 2.2550 

SVR 1.7941 1.1403 4.5586 0.9548 1.6920 

RBFNN 1.9655 1.4668 5.9627 0.9423 1.8966 

the training and testing datasets. The developed ANN model showed the highest 
efficiency, followed by the developed SVR model, after comparing the OBJ values 
of four developed soft computing models. 

Different researchers utilized different ML methods to compare their perfor-
mance with respect to statistical indexes. Table 13 summarizes some studies in which 
different algorithms of ML were compared.

4 Conclusion 

A review on the use of machine learning as a strong tool by various researchers 
to predict concrete properties was conducted. Through this study, the following 
conclusions are drawn: 

• Different researchers used different ML methods to predict the properties of 
concrete and compressive strength is the most frequent property which is 
investigated as output. 

• Numerous ML models could be used as prediction tools in concrete science, yet 
ANNs were more frequently used. 

• Previous researchers show that ML techniques have better performance than 
classical regression models. 

• Researchers widely used hybrid SVM-based and Hybrid ANN-based models for 
prediction, and generally, they performed better than individual methods.



Forecast ofModern Concrete Properties UsingMachine LearningMethods 197

Ta
bl
e 
13
 
A
 c
om

pa
ri
so
n 
of
 M

L
 m

od
el
s 
ba
se
d 
on
 s
ta
tis
tic

al
 in

de
xe
s 

R
ef
s.

Ty
pe
 o
f 
co
nc
re
te

M
L
 m

et
ho
d

D
at
a 
se
t s
iz
e

O
ut
pu
t

(S
ta
tis
tic

al
 in

de
x)
 

R
R
2

M
SE

R
M
SE

M
A
E
 

W
an
g 
et
 a
l. 
[3
3]

U
H
SC

A
da
bo
os
t

31
7

FS
–

0.
93

–
8.
69

2.
12
 

B
ag
gi
ng

–
0.
95

–
8.
26

2.
05
 

G
B

–
0.
93

–
8.
25

2.
10
 

X
G
B
oo
st

–
0.
85

–
4.
25

3.
12
 

Ö
zc
an
 e
t a
l. 
[5
4]

O
C

A
N
N

24
0

C
S

–
0.
99
44

–
–

– 

FL
–

0.
92
74

–
–

– 

Pe
ni
do

 e
t a
l. 
[5
1]

O
C

G
PR

40
6

C
S

–
0.
68

–
7.
09

4.
98
 

A
N
N

–
0.
79

–
6.
52

4.
73
 

X
G
B
oo
st

–
0.
73

–
6.
76

5.
02
 

SV
R

–
0.
7

–
7.
44

5.
51
 

A
hm

ad
 e
t a
l. 
[2
6]

G
C

A
N
N

15
4

C
S

–
–

20
.1
6

4.
49

3.
86
 

B
oo
st
in
g

–
–

4.
16

2.
04

1.
69
 

A
da
bo
os
t

–
–

6.
84

2.
62

2.
16
 

A
lg
ai
fi 
et
 a
l. 
[1
04
]

B
ac
te
ri
a-
ba
se
d 
se
lf
-h
ea
lin

g 
co
nc
re
te
 

R
SM

58
C
S

0.
97
3

0.
97
2

0.
70
4

0.
83
9

– 

A
N
N

0.
98
6

0.
98
5

0.
62
8

0.
79
3

– 

A
N
FI
S

0.
98
6

0.
98
6

0.
61
6

0.
78
5

– 

A
sa
di
 S
ha
m
sa
ba
di
 e
t a
l. 

[ 1
05
] 

O
C

M
ul
tip

le
 L
in
ea
r 
R
eg
re
ss
io
n

63
0

C
S

–
0.
44

92
.4
9

9.
62

7.
71
 

SV
R

–
0.
91

17
.4
5

4.
18

2.
48
 

R
F

–
0.
94

13
.8
1

3.
72

2.
73

(c
on
tin

ue
d)



198 Y. Asghari et al.

Ta
bl
e
13

(c
on
tin

ue
d)

R
ef
s.

Ty
pe

of
co
nc
re
te

M
L
m
et
ho
d

D
at
a
se
ts
iz
e

O
ut
pu
t

(S
ta
tis
tic

al
in
de
x)

R
R
2

M
SE

R
M
SE

M
A
E

G
B

–
0.
97

6.
48

2.
55

1.
81
 

X
G
B

–
0.
98

4.
6

2.
15

1.
49
 

A
N
N

–
0.
97

5.
26

2.
29

1.
35
 

B
ui
 e
t a
l. 
[1
9]

H
PC

G
E
P

11
33

C
S

0.
91

–
–

–
5.
2 

FA
-L
SS

V
R

0.
94

–
–

–
3.
86
 

M
FA

-A
N
N

0.
95

–
–

–
3.
41
 

Fe
ng

 e
t a
l. 
[1
06
]

O
C

A
da
bo
os
t

10
30

C
S

–
0.
98
2

–
2.
2

1.
64
 

A
N
N

–
0.
90
3

–
5.
14

3.
41
 

SV
M

–
0.
85
5

–
6.
28

4.
44
 

C
ho

u 
et
 a
l. 
[3
2]

H
PC

A
N
N

10
30

C
S

–
0.
90
9

–
5.
03

– 

SV
M

–
0.
88
5

–
5.
61
9

– 

Y
u 
et
 a
l. 
[1
07
]

H
PC

A
N
N

17
61

C
S

–
0.
96

–
–

5.
03
8 

A
N
FI
S

–
0.
90
6

–
–

4.
18
3 

SV
M

–
0.
79
3

–
–

5.
95
 

Y
ua
n 
et
 a
l. 
[7
]

O
C

A
N
N

18
0

C
S

–
0.
68

–
3.
21

– 

G
A
-A

N
N

–
0.
81
3

–
2.
22

–

(c
on
tin

ue
d)



Forecast ofModern Concrete Properties UsingMachine LearningMethods 199

Ta
bl
e
13

(c
on
tin

ue
d)

R
ef
s.

Ty
pe

of
co
nc
re
te

M
L
m
et
ho
d

D
at
a
se
ts
iz
e

O
ut
pu
t

(S
ta
tis
tic

al
in
de
x)

R
R
2

M
SE

R
M
SE

M
A
E

A
N
FI
S

–
0.
95

–
1.
46

– 

B
eh
no
od
 e
t a
l. 
[1
08
]

R
ei
nf
or
ce
m
en
t c
on

cr
et
e

A
N
N

98
0

T
S

–
0.
87
4

–
0.
52
6

0.
40
8 

SV
M

–
0.
89

–
0.
52
4

0.
4 

K
es
ht
eg
ar
 e
t a
l. 
[2
1]

R
ei
nf
or
ce
m
en
t c
on

cr
et
e

A
N
N

13
9

SS
–

–
–

0.
46
1

0.
32
2 

SV
R

–
–

–
1.
01

0.
62
2 

R
SM

-S
V
R

–
–

–
0.
23
3

0.
18
6 

C
S:
 C
om

pr
es
si
ve
 s
tr
en
gt
h 
SS

: S
he
ar
 s
tr
en
gt
h 
T
S:
 T
en
si
le
 s
tr
en
gt
h



200 Y. Asghari et al.

References 

1. Haykin S (2008) Neural networks and learning machines, vol 3. 978-0131471399 
2. Goulet J-A (2020) Probabilistic machine learning for civil engineers, vol 1. MIT 

Press, pp 1–25. https://www.cambridge.org/core/product/identifier/CBO978110741532 
4A009/type/book_part 

3. Karthikeyan A, Priyakumar UD (2022) Artificial intelligence: machine learning for chemical 
sciences. J Chem Sci 134(1). https://doi.org/10.1007/s12039-021-01995-2 

4. Kotsiantis SB, Zaharakis I, Pintelas P et al (2007) Supervised machine learning: a review of 
classification techniques. Emerg Artif Intell Appl Comput Eng 160(1):3–24 

5. Sutton RS, Barto AG (1999) Reinforcement learning: an introduction. Robotica 17(2):229– 
235 

6. Cheng M-Y, Chou J-S, Roy AFV, Wu Y-W (2012) High-performance concrete compressive 
strength prediction using time-weighted evolutionary fuzzy support vector machines inference 
model. Autom Constr 28:106–115 

7. Yuan Z, Wang LN, Ji X (2014) Prediction of concrete compressive strength: research on 
hybrid models genetic based algorithms and ANFIS. Adv Eng Softw 67:156–163. https://doi. 
org/10.1016/j.advengsoft.2013.09.004 

8. Ben Chaabene W, Flah M, Nehdi ML (2020) Machine learning prediction of mechanical 
properties of concrete: Critical review. Constr Build Mater 260:119889. https://doi.org/10. 
1016/j.conbuildmat.2020.119889 

9. Li Z et al (2022) Machine learning in concrete science: applications, challenges, and best 
practices. NPJ Comput Mater 8(1). https://doi.org/10.1038/s41524-022-00810-x 

10. Tao Q, Xu P, Li M, Lu W (2021) Machine learning for perovskite materials design and 
discovery. NPJ Comput Mater 7(1):1–18 

11. Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications 
of machine learning in solid-state materials science. NPJ Comput Mater 5(1):1–36 

12. Muhammad I, Yan Z (2015) Supervised machine learning approaches: a survey. ICTACT J 
Soft Comput 5(3) 

13. Gove R, Faytong J (2012) Machine learning and event-based software testing: classifiers 
for identifying infeasible GUI event sequences, vol 86. Elsevier Inc. https://doi.org/10.1016/ 
B978-0-12-396535-6.00004-1 

14. Zheng B, Myint SW, Thenkabail PS, Aggarwal RM (2015) A support vector machine to 
identify irrigated crop types using time-series Landsat NDVI data. Int J Appl Earth Obs 
Geoinf 34:103–112 

15. Moraes R, Valiati JF, Neto WPG (2013) Document-level sentiment classification: an empirical 
comparison between SVM and ANN. Expert Syst Appl 40(2):621–633 

16. Deka PC et al (2014) Support vector machine applications in the field of hydrology: a review. 
Appl Soft Comput 19:372–386 

17. Zendehboudi A, Baseer MA, Saidur R (2018) Application of support vector machine models 
for forecasting solar and wind energy resources: a review. J Clean Prod 199:272–285 

18. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Lecture notes computer 
sciences (including Subseries Lecture notes artificial intelligence and Lecture notes in 
bioinformatics), vol 5792. LNCS, pp 169–178. https://doi.org/10.1007/978-3-642-04944-
6_14 

19. Bui DK, Nguyen T, Chou JS, Nguyen-Xuan H, Ngo TD (2018) A modified firefly algorithm-
artificial neural network expert system for predicting compressive and tensile strength of 
high-performance concrete. Constr Build Mater 180:320–333. https://doi.org/10.1016/j.con 
buildmat.2018.05.201 

20. Chou J-S, Chong WK, Bui D-K (2016) Nature-inspired metaheuristic regression system: 
programming and implementation for civil engineering applications. J Comput Civ Eng 
30(5):4016007

https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_part
https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_part
https://doi.org/10.1007/s12039-021-01995-2
https://doi.org/10.1016/j.advengsoft.2013.09.004
https://doi.org/10.1016/j.advengsoft.2013.09.004
https://doi.org/10.1016/j.conbuildmat.2020.119889
https://doi.org/10.1016/j.conbuildmat.2020.119889
https://doi.org/10.1038/s41524-022-00810-x
https://doi.org/10.1016/B978-0-12-396535-6.00004-1
https://doi.org/10.1016/B978-0-12-396535-6.00004-1
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1016/j.conbuildmat.2018.05.201
https://doi.org/10.1016/j.conbuildmat.2018.05.201


Forecast ofModern Concrete Properties UsingMachine LearningMethods 201

21. Keshtegar B, Bagheri M, Yaseen ZM (2019) Shear strength of steel fiber-unconfined rein-
forced concrete beam simulation: application of novel intelligent model. Compos Struct 
212(December):230–242. https://doi.org/10.1016/j.compstruct.2019.01.004 

22. Kotsiantis SB (2013) Decision trees: a recent overview. Artif Intell Rev 39(4):261–283. https:// 
doi.org/10.1007/s10462-011-9272-4 

23. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving 
problems. cs/0102027. 

24. Song H et al (2021) Predicting the compressive strength of concrete with fly ash admixture 
using machine learning algorithms. Constr Build Mater 308. https://doi.org/10.1016/j.conbui 
ldmat.2021.125021 

25. Shahmansouri AA, Yazdani M, Ghanbari S, Akbarzadeh Bengar H, Jafari A, Farrokh Ghatte 
H (2021) Artificial neural network model to predict the compressive strength of eco-friendly 
geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697. 
https://doi.org/10.1016/j.jclepro.2020.123697 

26. Ahmad A et al (2021) Prediction of geopolymer concrete compressive strength using novel 
machine learning algorithms. Materials (Basel) 14(4):1–21. https://doi.org/10.3390/ma1404 
0794 

27. Farooq SC, Farooq F, Czarnecki S, Niewiadomski P, Aslam F (2021) A comparative study for 
the prediction of the compressive strength of self-compacting concrete modified with fly ash 

28. Zavrtanik N, Prosen J, Tušar M, Turk G (2016) The use of artificial neural networks for 
modeling air void content in aggregate mixture. Autom Constr 63:155–161 

29. Jiang G, Keller J, Bond PL, Yuan Z (2016) Predicting concrete corrosion of sewers using 
artificial neural network. Water Res 92:52–60 

30. Chakraverty S, Jeswal SK (2021) Applied artificial neural network methods for engineers and 
scientists 

31. Emmert-Streib F, Yang Z, Feng H, Tripathi S, Dehmer M (2020) An introductory review of 
deep learning for prediction models with big data. Front Artif Intell 3(February):1–23. https:// 
doi.org/10.3389/frai.2020.00004 

32. Chou J-S, Chiu C-K, Farfoura M, Al-Taharwa I (2011) Optimizing the prediction accuracy of 
concrete compressive strength based on a comparison of data-mining techniques. J Comput 
Civ Eng 25(3):242–253. https://doi.org/10.1061/(asce)cp.1943-5487.0000088 

33. Wang Q, Hussain A, Farooqi MU, Deifalla AF (2022) Artificial intelligence-based estimation 
of ultra-high-strength concrete’s flexural property. Case Stud Constr Mater 17(April):e01243. 
https://doi.org/10.1016/j.cscm.2022.e01243 

34. Ofuyatan OM, Agbawhe OB, Omole DO, Igwegbe CA, Ighalo JO (2022) RSM and ANN 
modelling of the mechanical properties of self-compacting concrete with silica fume and 
plastic waste as partial constituent replacement. Clean Mater 4(February):100065. https:// 
doi.org/10.1016/j.clema.2022.100065 

35. Duan ZH, Kou SC, Poon CS (2013) Using artificial neural networks for predicting the elastic 
modulus of recycled aggregate concrete. Constr Build Mater 44:524–532. https://doi.org/10. 
1016/j.conbuildmat.2013.02.064 

36. Piro NS, Mohammed AS, Hamad SM (2022) The impact of GGBS and ferrous on the flow of 
electrical current and compressive strength of concrete. Constr Build Mater 349(July):128639. 
https://doi.org/10.1016/j.conbuildmat.2022.128639 

37. Mohamed O, Kewalramani M, Ati M, Al Hawat W (2021) Application of ANN for 
prediction of chloride penetration resistance and concrete compressive strength. Materialia 
17(May):101123. https://doi.org/10.1016/j.mtla.2021.101123 

38. Hendi A, Behravan A, Mostofinejad D, Sedaghatdoost A, Amini M (2018) A step towards 
green concrete: effect of waste silica powder usage under HCl attack. J Clean Prod 188:278– 
289. https://doi.org/10.1016/j.jclepro.2018.03.288 

39. Ben Aicha M, Al Asri Y, Zaher M, Alaoui AH, Burtschell Y (2022) Prediction of rheolog-
ical behavior of self-compacting concrete by multi-variable regression and artificial neural 
networks. Powder Technol 401. https://doi.org/10.1016/j.powtec.2022.117345

https://doi.org/10.1016/j.compstruct.2019.01.004
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1016/j.conbuildmat.2021.125021
https://doi.org/10.1016/j.conbuildmat.2021.125021
https://doi.org/10.1016/j.jclepro.2020.123697
https://doi.org/10.3390/ma14040794
https://doi.org/10.3390/ma14040794
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.1061/(asce)cp.1943-5487.0000088
https://doi.org/10.1016/j.cscm.2022.e01243
https://doi.org/10.1016/j.clema.2022.100065
https://doi.org/10.1016/j.clema.2022.100065
https://doi.org/10.1016/j.conbuildmat.2013.02.064
https://doi.org/10.1016/j.conbuildmat.2013.02.064
https://doi.org/10.1016/j.conbuildmat.2022.128639
https://doi.org/10.1016/j.mtla.2021.101123
https://doi.org/10.1016/j.jclepro.2018.03.288
https://doi.org/10.1016/j.powtec.2022.117345


202 Y. Asghari et al.

40. Zhuang X, Zhou S (2019) The prediction of self-healing capacity of bacteria-based concrete 
using machine learning approaches. Comput Mater Contin 59(1):57–77. https://doi.org/10. 
32604/cmc.2019.04589 

41. Van Dao D, Ly HB, Trinh SH, Le TT, Pham BT (2019) Artificial intelligence approaches for 
prediction of compressive strength of geopolymer concrete. Materials (Basel) 12(6). https:// 
doi.org/10.3390/ma12060983 

42. Vakhshouri B, Nejadi S (2018) Prediction of compressive strength of self-compacting 
concrete by ANFIS models. Neurocomputing 280:13–22. https://doi.org/10.1016/j.neucom. 
2017.09.099 

43. Golafshani EM, Behnood A, Arashpour M (2020) Predicting the compressive strength 
of normal and high-performance concretes using ANN and ANFIS hybridized with grey 
wolf optimizer. Constr Build Mater 232:117266. https://doi.org/10.1016/j.conbuildmat.2019. 
117266 

44. Kramer O (2017) Genetic algorithm essentials. Springer International, Cham (Switzerland) 
45. Tsai C-F, Hsu Y-F, Lin C-Y, Lin W-Y (2009) Intrusion detection by machine learning: a 

review. Expert Syst Appl 36(10):11994–12000 
46. Lin YH, Lin CC, Tyan YY (2011) An integrated quantitative risk analysis method for 

major construction accidents using fuzzy concepts and influence diagram. J Mar Sci Technol 
19(4):383–391. https://doi.org/10.51400/2709-6998.2179 

47. Dietterich TG (2000) An experimental comparison of three methods for constructing ensem-
bles of decision trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157 

48. Kuncheva LI (2014) Combining pattern classifiers: methods and algorithms. Wiley & Sons 
49. Zhang (2012) Ensemble machine learning. https://doi.org/10.1007/978-1-4419-9326-7 
50. Bao L, Zhou M, Cui Y (2005) nsSNPAnalyzer: identifying disease-associated nonsynonymous 

single nucleotide polymorphisms. Nucleic Acids Res 33(suppl_2):W480–W482 
51. Penido REK, da Paixão RCF, Costa LCB, Peixoto RAF, Cury AA, Mendes JC (2022) 

Predicting the compressive strength of steelmaking slag concrete with machine learning— 
considerations on developing a mix design tool. Constr Build Mater 341(May). https://doi. 
org/10.1016/j.conbuildmat.2022.127896 

52. Kandiri A, Mohammadi Golafshani E, Behnood A (2020) Estimation of the compressive 
strength of concretes containing ground granulated blast furnace slag using hybridized multi-
objective ANN and salp swarm algorithm. Constr Build Mater 248:118676. https://doi.org/ 
10.1016/j.conbuildmat.2020.118676 

53. Ling H, Qian C, Kang W, Liang C, Chen H (2019) Combination of Support Vector Machine and 
K-Fold cross validation to predict compressive strength of concrete in marine environment. 
Constr Build Mater 206:355–363. https://doi.org/10.1016/j.conbuildmat.2019.02.071 
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Reliability-Based Design Optimization 
of Detention Rockfill Dams 
and Investigation of the Effect 
of Uncertainty on Their Performance 
Using Meta-Heuristic Algorithm 

Mohammad Mehdi Riyahi, Hossien Riahi-Madvar, 
and Iman Bahrami Chegeni 

Abstract Flood is one of the natural disasters which is of particular importance due 
to the financial, human, and environmental damages which directly and indirectly 
inflicts on human societies. For this reason, researchers today have turned to appro-
priate solutions for flood management to reduce the effects of floods. One of the most 
suitable structural solutions is the construction of detention rockfill dams to control 
and mitigate flood damage. Such dams are very popular due to their rapid construc-
tion and easy operation. At first, for designing detention rockfill dams, one must 
select suitable locations for dams. In the second step, the preliminary design of the 
dam is done to obtain the height and length of the dam, and in the last step, the final 
design and optimization of the dam are done. In this research, the second and third 
design steps, i.e., the preliminary and final designs, are performed to obtain the initial 
height and length of the dam. Then the optimization of the dams is done to provide 
structural safety factors. For the preliminary design, the input hydrograph equations, 
the reservoir’s volume-height relationship, the dam’s stage-discharge equation, and 
the flow routing equation in the detention rockfill dams and their combination with 
each other are used. Metaheuristic algorithms are also used for the final design and 
optimization of the detention rockfill dam. In this research, a self-adaptive genetic 
algorithm has been used to optimize the dimensions of the detention rockfill dam. 
Then, using the Monte Carlo simulation method, the effects of uncertainty of design 
parameters on the hydraulic and structural performance of detention rockfill dam 
are investigated. It has been shown how uncertainty can change hydraulic perfor-
mance by studing the dam storage volume and flow through the dam. The structural
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implementation is also evaluated due to the uncertainty propagation on the safety 
factors. At the end of this chapter, a reliability-based design optimization (RBDO) 
of the detention rockfill dam was carried out using self-adaptive NSGA-II. 

Keywords Detention rockfill dams · Optimization · Uncertainty · Flood 
management · Reliability-based design optimization 

1 Introduction 

Today, floods are one of the extreme events that cause several financial and life 
threats worldwide. Climate change is one of the leading causes that create the flood 
crisis. There are two main methods for flood control and management, structural 
and non-structural. The non-structural methods include developing flood warning 
systems, decision support systems, flood forecasting models, and integrated water-
shed management methods [1–6]. The structural methods use physical structures to 
control and mitigate flood peaks, including detention rockfill dams. Due to their easy 
construction, environmentally friendly, and flexibility in operation, detention rockfill 
dams have high acceptability. The detention dams in flood events attenuate the flood 
peak and increase the time to flood peak. The detention rockfill dams are constructed 
from rock pieces, pebbles, and permeable dam bodies. The coarse porous media 
of these dams deplete the stored water automatically without any operator action 
required. Also, dam break risk in these structures is smaller than in earthfall dams 
[7–9]. 

The design procedure for these dams has three main steps: 

1. In the first stage, the dam location finding determines the dam storage needed 
to reduce the flood peak with a predetermined return period based on the safe 
conditions downstream. 

2. Designing the detention rockfill dam to derive the preliminary dimensions and 
sizing of the dam. 

3. In the third stage, the optimum dam design based on the preliminary design 
is done and single or multi-objective optimization algorithms can be used in this 
stage. 

Based on these steps, there are several graphical or mathematical methods for the 
preliminary design of detention rockfill dams. The graphical methods were developed 
and used in early studies [10–16]. In these studies, the designs use single or double
-orifice outputs without infiltration from the dam body. In these studies, the depth-
storage relation of the dam is linear assumed, while in the detention rockfill dams, this 
relation is non-linear. Another graphical method provided by the United States Soil 
Conservation Service (SCS) uses two curves for the preliminary design of a detention 
rockfill dam. One of the curves is the relationship of the storage, which is obtained 
from the ratio of peak storage to the total volume of the flood. The other curve is 
the coefficient of peak flood, which shows the ratio of the maximum output flow to 
the maximum input flow [12]. In the 1990s, Akan [10] presented a graphical method
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that was used to obtain the structure’s size using the input hydrograph obtained 
from the SCS method. Another graphical method of SCS uses two curves of peak 
storage ratio to total flood volume and proportion of peak flood discharge to peak 
inlet discharge [12]. In addition to the graph-based methods mentioned above, other 
equations have been developed to determine the reservoir volume according to the 
downstream conditions and the type of hydrograph. Baker [17] presents one of these 
equations suitable for where the inlet and outlet hydrographs are triangular. This 
equation is mentioned below [11]. 

S f 
V f 

= 1 − 
Q p 
Ip 

(1) 

where V f is the flood volume, S f is the required dam storage, Ip is the peak of 
the input hydrograph, Q p is the discharge peak of the outlet. Abt and Grigg [12] 
proposed the following equation where the inlet hydrograph is triangular, and the 
outlet hydrograph is trapezoidal: 

S f 
V f 

=
(
1 − 

Q p 
Ip

)2 

(2) 

Wycoff and Singh [13], based on numerical simulation of floods and some 
parametric analysis, developed the following equation: 

S f 
V f 

= 
129

(
1 − Q p I p

)0.753

( tb 
T

)0.411 (3) 

where tb and T are the base time and time to peak in flood hydrograph. It is worth 
mentioning that in Eq. (3), the effect of the type of output structure is not considered. 

McEnrro [11] developed Eqs. (4) and (5) for dams with an overflow weir and 
detentions dams with bottom orifice outlet, respectively: 

S f 
V f 

= 0.97 − 1.42 
Q p 
Ip 

+ 0.82
(
Q p 
Ip

)2 

− 0.34
(
Q p 
Ip

)3 

(4) 

S f 
V f 

= 0.97 − 1.17 
Q p 
Ip 

+ 0.77
(
Q p 
Ip

)2 

− 0.46
(
Q p 
Ip

)3 

(5) 

These equations are derived based on a non-permeable body of dams, and the 
depletion is done using single or double-output orifices or wires. In contrast, in the 
detention rockfill dams, the body of the dam is porous, and depletion is automati-
cally done based on the non-Darcian flow behavior of these structures. Riahi et al. 
[18] developed a simple preliminary design procedure for detention rockfill dams by 
combining non-linear flood routing with the non-Darcian non-linear flow in rockfill
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media, and based on a parametric study, some design equations are developed. While 
in the previous studies, the multi-objective design and multi-purpose optimizations in 
detention rockfill dams are neglected; therefore , based on the metaheuristic optimiza-
tion methods and uncertainty analysis in dam stability and reliability of hydraulic 
performance, a new design framework is developed. And a Reliability-based design 
optimization (RBDO) procedure is developed. The aims of the models are the mini-
mization of dam costs and an increase in the reliability of the dam. The Monte Carlo 
Simulation method has been used to calculate the reliability index. Also, the Latin 
hypercube sampling (LHS) coupling with the rejection rule is used for generating 
samples. It should also note that single and multi-objective self-adaptation GA is 
used to perform single and multi-objective optimization. 

2 Material and Methods 

The developed model uses single-objective optimization for preliminary design and 
multi-objective optimization for reliability-based design optimization and investi-
gating the effects of uncertainty on the hydraulic performance of the dam. In the first 
stage, a preliminary design is done using the developed method by Riahi et al. [18]; 
then, the preliminary dimensions of the dam are used as lower bounds in the opti-
mization algorithm, which is based on self-adaptive optimization. This novelty causes 
increasing the convergence speed of the optimization model. The effects of uncer-
tainty on designs and hydraulic performance are investigated using Monte-Carlo 
simulation, LHS, and rejection rule. Finally, the detention rockfill dam is designed 
based on RBDO using multi-objective optimization. Figure 1 shows the steps of this 
research.

2.1 Governing Equations in the First Design Step 

This section presents the governing equations in the preliminary hydraulic design of 
detention rockfill dams. 

2.1.1 Inflow Flood Hydrograph 

The gamma distribution function has been used in many studies for the inflow flood 
hydrograph [19–24]. The equation of the gamma probability distribution function is 
written below [20]. 

I = Ip
(

t 

tp

)m 

exp

(
−m

(
t 

tp 
− 1

))
(6)
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Fig. 1 Research steps
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where tp is the time when the inflow flood hydrograph reaches the inflow flood peak 
discharge, m is the dimensionless coefficient of the hydrograph shape, I represent the 
inlet hydrograph discharge, and Ip indicates the inlet hydrograph peak. By integrating 
Eq. (1) over time the flood volume derived is: 

V f = Iptpm−(m+1) exp(m)Γ(m + 1) (7) 

where Vf is the flood volume and Γ is the gamma function. 

2.1.2 Depth-Volume Relationship in the Reservoir 

The depth-volume equation of the dam derived from the depth-area equations (A = 
k(H + z0)n ) and A = dS/dh is follows: 

S = k 

n + 1
[
(H + z0)n+1 − zn+1 

0

]
(8) 

where S is the dam volume, H is the water depth, A is the area, and Z0, k, and n are 
constants. 

2.1.3 Stage-Discharge in Detention Rockfill Dam 

The analytical non-linear stage-discharge equation of detention rockfill dams derived 
by Samani et al. [25] is:  

Q = W

[
Hb+3 

1 − Hb+3 
2 

L − 0.7H1 cot θ 
× 1 

α(b + 3)

] 1 
b+2 

(9) 

In which, α is: 

α = 
a(d − σ )b−1 

2gvbnb+1 
p 

(10) 

where α and β are the constant coefficients, d shows the dam material size (grain size), 
σ is the standard deviation of the dam material size, g is the gravity acceleration, and 
np indicates the material porosity. L demonstrates the dam length in the flow direction, 
W is the dam width perpendicular to the flow direction, H1 and H2 are the water 
depths upstream and downstream, and θ is the upstream and downstream slope angle. 
In a study by Samani et al. [25], the optimal values of α and β using optimization 
were obtained as 54 and −0.077, respectively.
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2.1.4 Non-Linear Flow Routing in Rockfill Dam 

The non-linear flood routing in rockfill dams was performed using a continuity 
equation hybridized (dS/dt = I-Q) with Eqs. (1–5) is:  

dS  

dt  
= Ip

(
t 

tp

)m 

exp

(
−m

(
t 

tp 
− 1

))

−
(
W

(
α 

b + 3

) 1 
b+2

)⎛ 

⎜⎝
(
(A0S + A0) 

1 
n+1 − Z0

)b+3 − Hb+3 
2 

L − A2

(
( A0S + A1) 

1 
n+1 − Z0

)
⎞ 

⎟⎠ 

1 
b+2 

(11) 

Riahi et al. [18] developed a numerical model with the parametric study based 
on this non-linear flood routing and derived the following equation for preliminary 
designs: 

S f 
V f 

= 1.0166 − 0.231 
Q p 
Ip 

− 2.2433
(
Q p 
Ip

)2 

+ 1.4661
(
Q p 
Ip

)3 

(12) 

where Sf is the required reservoir volume and Qp is the outlet discharge peak. 

2.2 The Structural Stability of the Dam 

In this section, based on the acting forces on the dam body as a rigid structure, the 
stability and safety factors of the dam are determined [26–30]. 

2.2.1 The Acting Forces 

As shown in Fig. 2, the acting forces over the dam can be summarized in Table 
1. The acting forces and moments, with their components in vertical or horizontal 
directions, affect the dam’s stability, as presented in the following sections.

2.2.2 Safety Factors in Detention Rockfill Dams 

In this section, based on the acting forces and moment in Table 1, the safety factors 
against overturning, sliding, and friction are calculated as follows. 

• Safety factor against overturning 

The total resistant moments of dam toe toward the total overturning moments of dam 
toe are equal to the safety factor against overturning for the rockfill dam as follows:
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Fig. 2 Detention rockfill 
dam cross-section

SF  O  = 
Me(R) 
Me(O) 

(13) 

Me(R) = M(W1) + M(W2) + M(W3) + M(F2) + M(F3) + M(F4) (14) 

Me(O) = M(F1) + M(U ) + M(Fe1) + M(Fe2) + M(Fe3) + Me (15) 

When SFO exceeds 1.5, the detention rockfill dam is resistant to overturning. 

• Safety factor against sliding 

The total vertical forces toward the total horizontal are equal to the safety factor 
against the slide of the rockfill dam as follows: 

SF  S  = 
μFV 

FH 
(16) 

FV = F2 + F4 + W1 + W2 + W3 − U (17) 

FH = F1 − F3 + F1e + F2e + F3e + Fe (18) 

When SFS exceeds 1.5, the detention rockfill dam is resistant to sliding. 

• Safety factor against friction 

The total ratio of vertical force and allowed shear stress of rockfill dam foundation 
toward total horizontal force equals the safety factor against friction. 

SF  F  = 
μFV + qL  

FH 
(19)
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where q is the allowable shear stress of the material, the detention rockfill dam is 
resistant to friction when SFF is greater than 3. 

2.3 Reliability-Based Design Optimization of Detention 
Rockfill Dams 

In this section, the design procedure based on the concept of reliability is developed. 
According to Fig. 3, three computing steps should be taken for reliability-based 
design optimization, which is mentioned below. 

(1) The simulator engine for simulating the hydraulic performance of the dam using 
Eqs. 6 up to 15. 

(2) Determine the reliability based on the Monte Carlo Simulation engine. In this 
step, LHS is used for generating samples, and the rejection rule is implied for 
deleting some samples which are greater than 15% uncertainty. 

(3) Multi-objective self-adaptive NSGA-II to find the possible optimum solutions. 

2.4 Optimization of Detention Rockfill Dam 

In this section, the objective functions of the model are presented. The first objective 
function is the minimization of the dam cost: 

Minimize  C  = ADRD  × γS (20) 

where ADRD  is the dam area and γS is the specific height of materials and the decision 
variable is as follows: 

X = [x1, x2, T , h] (21) 

The x1, x2, T, and h parameters are shown in Fig. 1. The constraints are safety 
factors, and the initial sizing of the dam are mentioned below. 

SF  O  ≥ 1.5, SF  S  ≥ 1.5, SF  F  ≥ 3 (22)  

H1 ≥ H '
1, L ≥ L ' (23) 

The values of our initial length and height of the dam were derived from the 
preliminary design step. The second objective function is the reliability objective, 
which must be maximized, as presented in the Sect. 2.5.



218 M. M. Riyahi et al.

2.4.1 Multi-Purpose Optimization of Rockfill Dams 

In this study, the NSGA-II is used for multi-objective optimization, as presented in 
Fig. 4 [31, 32]. 

The following steps are used for the multi-objective self-adaptive genetic 
algorithm [33]. 

1. Adjusting the GA parameters such as initial population size, number of 
iterations, mutation rate, etc. 

2. Generation of the initial population randomly based on initial predetermined 
bounds. 

3. Evaluation of the objective functions for all populations. 
4. Determination of the rate of violation of each member of the population from 

the constraints. 
5. Ranking the populations using non-dominance sorting. 
6. Determining the crowding distances for the population. 
7. Parent selection. 
8. Offspring production. 
9. Mutation. 
10. Selection of the population using the non-dominance sorting and crowding 

distances. 
11. Repeat the algorithm from step 3 until convergence. 

The Self-adaptive NSGA-|| algorithm is used for optimization, which uses a self-
adaptive strategy for constraints instead of a penalty function. In this algorithm, parent 
selection is made using Roulette Wheel Selection. The Roulette Wheel Selection is 
used for the parent selection of chromosomes x and y. The x chromosome is selected 
as the parent chromosome when the x is feasible and y is infeasible, or x and y are 
infeasible but the violation of x is lower, or when x and y are feasible and the x cost 
is lower, else the y is selected. 

2.5 Reliability Determination 

In a hydraulic system, reliability is the probability of resistance of the system against 
the loadings presented by Mays [34]: 

R = P(G(X) > 0) = P(r > l) (24) 

where R is the reliability, P is the probability, G(X) is the representing function 
between safety and failure conditions, r and l represent resistance and loadings, X is 
(X1, X2, .., Xn)

T as a random variable. Using the mass density function, reliability 
can be written as [35, 36]:
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R =
∫

G(X )>0 

fx (X )dx (25) 

where fx is the probability density function of random variables, and the Monte-Carlo 
Simulation is used for the sample-based determination of R. 

2.5.1 Monte-Carlo Simulation 

The Monte-Carlo Simulation is one of the most efficient methods in reliability calcu-
lation, and its simple-to-use procedure caused frequent applications [37, 38]. This 
method determiness the probability density function of input parameters, and the 
sample generation engine is used to produce random values for model parameters. 
The MCS equation based on the safety probability can be written as follows: 

pR =
∫

...

∫
I [G(X) > 0] fx (X )dx  ≈ 

1 

N 

nΣ
i=1 

I [G(X) > 0] ≈ 
ns 
N 

(26) 

where ns is the number of samples located in the safe region, N is the total sample 
numbers, and I is the counter function with one value for the safe region and zero 
value for the failure region. 

3 Results 

This part examines the results of numerous analyses on the detention rockfill dam. 
Following is a description of an example extracted from the literature. Next, the 
preliminary design of detention rockfill dams is evaluated. The uncertainty in the 
design parameters and their effects on the preliminary design are addressed. Then 
the case study is optimized utilizing the dimensions derived from the preliminary 
design. In the end, the reliability-based design optimization of the detention rockfill 
dam will be done. 

3.1 Case Study 

The case study in all of the steps discussed in this research is extracted from Riahi 
et al. [18]. The details of the case study are shown in Table 2.
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Table 2 The case study parameters 

Parameters b a n k z0 m tp Q p Ip 

Value −0.077 54 2 11,000 0 10 3600 11 28 

Parameters θ w n p σ d ν 
Value 90 2 2 0 0.25 0.000001 

3.2 Preliminary Design 

The preliminary design of the detention rockfill dam is obtained using Eqs. 6–15. The  
initial dam height (H) and initial dam length (L) are determined using these equations. 
Using the case study parameters, listed in Table 2 and designing the detention rockfill 
dam as preliminary, H and L are equal to 3.76 and 3.44 m, respectively. Using 
Eqs. 16 through 20 can determine the values of the dam’s safety factors. For the 
preliminary design, the SFS, SFO, and SFF safety factors have corresponding values 
of 0.7211, 0.9473, and 3.3801. The values of the safety factors of the preliminary 
design show that the safety factors are not satisfied for this case, except for SFF, 
which demonstrates the importance of optimization in reaching an acceptable and 
safe design. 

3.3 Uncertainties of Design Parameters 

In order to evaluate the impacts of uncertainty on the structural and hydraulic perfor-
mance of the detention rockfill dam, it is necessary first to identify the design parame-
ters that are subject to uncertainty and assign them the appropriate uncertainty value. 
To this end, Table 3 lists all design parameters that are susceptible to uncertainty 
and affect the structural and hydraulic performance of the rockfill dam. The input 
parameters are included in this table with their categories, units, standard devia-
tion values, distribution patterns, and average values for each parameter. This study 
employs three probability distribution functions: the uniform distribution function, 
the Gaussian distribution function, and the Generalized extreme value distribution. 
The Generalized extreme value distribution function was applied to variables such as 
the input hydrograph’s maximum flow rate, the time the hydrograph reaches its peak, 
and the maximum value of the output hydrograph flow. The Gaussian distribution 
function is used for constant coefficients, whereas the uniform distribution function 
is applied to the rockfill dam’s materials.
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3.4 The Impact of Uncertainty on the Structural 
and Hydraulic Performance of Preliminary Design 

This section examines the implications of design parameter uncertainty on the struc-
tural and hydraulic performance of a preliminary design detention rockfill dam. To 
achieve this goal and take advantage of the Monte Carlo simulation method, we 
should generate a significant number of input parameters of the detention rockfill 
dam. In this study, 100,000 samples were generated for the input parameters based 
on their probability distribution using the LHS method. Then based on the sampling 
rejection principle, values with more than 15% uncertainty were ignored, and the 
data set was formed. The dataset is input into the simulation model to generate the 
desired outcomes. 

First, applying Eqs. 7, 10, and 13–15, the outputs relevant to the hydraulic perfor-
mance of the rockfill dam are derived. Figure 5 depicts the histogram values V f , H1, 
and S f . As shown in Fig. 5, the upper and lower bounds for V f are 143,650 and 
63,048, for H1 are 6.31 and 2.23, and for S f are 113,170 and 25,025, respectively. 
Furthermore, the average and standard deviation for V f are 85,391 and 7891, respec-
tively; for H1 are 3.92 and 0.3859, respectively, and for S f are 57,044 and 7926 
0.7606, respectively. Uncertainty in the input parameters propagates uncertainty in 
the detention rockfill dam’s hydraulic output and also produces uncertainty in the 
detention rockfill dam’s hydraulic performance. The associated uncertainty values 
for V f , S f , and H1 are (+78.29, −21.75), (+110.11, −53.54), and (+67.82, −40.22), 
respectively. 

The effects of uncertainty on the structural performance of the detention rockfill 
dam are calculated using Eqs. 16–20. Figure 6 shows the histogram of safety factors. 
According to the histogram obtained from the effects of uncertainty on SFO values, 
it can be concluded that the presence of uncertainty in the design parameters has 
caused an impact on the safety factor of SFO to the extent of + 47.61 and −21.78% 
(compared to the average value of 1.1276). Moreover, the presence of uncertainty 
in the design parameters has resulted in the propagation of uncertainty on the SFS 
and SFF values of (+87.81, −32.63), and (+65.07, −28.05), respectively (respec-
tively, compared to 1.0274 and 3.5567). As a result, the safety factors with the most 
significant uncertainty are +87.81 and −32.63, which are both associated with SFS. 

3.5 Optimal Design and the Impact of the Preliminary Design 
on the Increasing of Optimization Algorithm Efficiency 

This section examines the optimal design of the detention rockfill dam. Additionally, 
the implications of the preliminary design on the optimization algorithm speed are 
investigated. A self-adaptive GA algorithm is applied for the detention rockfill dam’s 
optimal design. Equation 20 represents the objective function of the optimization 
algorithm and Eqs. 21–23 provide the optimization problem’s constraints that must
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be satisfied. The optimization procedure is divided into two approaches: (1) without 
using the preliminary design dimensions and (2) using the preliminary design dimen-
sions as the lower bound of the decision variables (Eq. 23). In both approaches, the 
optimization algorithm is run ten times for this purpose. After ten runs, the best run, 
which has the best cost function, is determined for both approaches. Figure 7 depicts 
the results of 10 runs for both approaches. The cost value in the optimal solution for 
the first approach (without considering the optimal design’s dimensions) is 691009, 
and the h and L are 5.8358 and 4.3855 m, respectively. Additionally, the SFS, SFO, 
and SFF for this optimal solution are 1.5668, 1.5000, and 4.4163, respectively. The 
cost value in the optimal solution for the second approach (taking the dimensions 
of the preliminary design into account) is 690970, and the h and L are 5.8575 and 
4.3690 m, respectively. Additionally, the SFS, SFO, and SFF for this optimal solution 
are 1.5692, 1.5000, and 4.4081, respectively. The optimal dimensions of this design 
are very similar to the dimensions of the preliminary design. So, the preliminary 
design can be considered a preliminary plan to identify the initial dam dimensions, 
eventually leading to the optimal design. 

Comparing the results of the two approaches reveals that the first approach requires 
2.1677 s to achieve the optimal value in the optimization algorithm, whereas the 
second approach requires only 1.9037 s. This result demonstrates a 13% reduction 
in runtime by utilizing the preliminary design dimensions in the second optimization 
procedure. In addition, the most optimal cost achieved by the first approach is 691009. 
In contrast, the most optimal cost achieved by the second approach is 690970.13, 
demonstrating that the speed of the second optimization procedure is enhanced when 
the preliminary design is considered in the optimization algorithm. Comparing Fig. 5a 
and b can be seen that in the second approach, the value of the objective function 
in the first iteration is considerably smaller than in the first approach. As a result, 
using preliminary design to generate preliminary dimensions and then using these 
dimensions as the Lower Bound in the optimization algorithm has sped up and 
boosted the algorithm’s efficiency in finding the best feasible solution. 

3.6 The Impact of Uncertainty on the Structural 
Performance of Optimal Design 

The effects of uncertainty on the preliminary design of the detention rockfill dam 
were addressed in earlier sections. It was stated that the safety factors were not 
completely satisfied in the preliminary design of the detention rockfill dam. As a 
result, to avoid accidents during operation and obtain the safety of the detention 
rockfill dam, we are attempting to achieve an optimal and safe design from single-
objective optimization by using the safety factors as constraints of the optimization 
problem. The effects of design parameter uncertainty on the structural and hydraulic 
performance of the optimal detention rockfill dam design are examined in this section 
using the Monte Carlo simulation method. To this end, Table 3 in Sect. 3.3 is used here
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to assign uncertainties to the design parameters. In this section, sampling data were 
generated using the LHS method, and the rejection rule was applied to any data with 
an uncertainty of more than 15%. Equations 13–19 can be used to determine the 
detention rockfill dam’s structural performance under uncertain conditions. These 
equations can be used to determine the histogram values for SFO, SFS, and SFF, 
which are displayed in Fig. 8. 

Figure 8 shows the upper and lower bounds of SFO, SFS, and SFF values, which 
are equal to (0.7988, 2.4062), (0.5890, 3.2807), and (1.8905, 8.8715), respectively. 
The propagation of uncertainty on the dam’s hydraulic performance may be obtained 
using the upper and lower bounds of the values of SFO, SFS, and SFF. The uncertainty 
propagation for SFO, SFS, and SFF are (+60.41, −46.75), (+109.07, −62.46), and 
(+101.25, −57.11), respectively. In addition, the values of SFO, SFS, and SFF are 
depicted using the Violin plot in Fig. 9. 

3.7 Reliability-Based Design Optimization of the Detention 
Rockfill Dam 

In the preceding sections, the shortcomings of the preliminary design and the optimal 
design approaches in the presence of uncertainty in the design parameters, as well 
as the propagation of uncertainty on the hydraulic and structural performance of 
the detention rockfill dam, were demonstrated. By linking the simulation model 
to the optimization model and employing the Monte Carlo Simulation method, an 
attempt has been made in this section to perform the optimal design of the detention 
rockfill dam with different degrees of reliability. A multi-objective optimization 
algorithm known as self-adaptive NSGA-II was employed for this purpose; it offers 
the constraints of the structure’s safety factors for the new method. In addition, the 
first objective function, the construction cost of a detention rockfill dam, is equal 
to Eq. 20, and the second objective function, which is the reliability of the dam, is 
equivalent to Eq. 26. The flowchart for this process is depicted in Fig. 3.

To implement the reliability-based design optimization, a dam with the charac-
teristics listed in Table 2 was utilized. This section has calculated four scenarios 
with different dam angles, corresponding to 90, 80, 75, and 70 degrees, respectively. 
The parameters of the multi-objective optimization algorithm for all scenarios of the 
detention rockfill dam are as follows: initial population size is 50, the number of 
iterations is 1000, the mutation rate of 5%, and the crossover rate of 90%. The Pareto 
front generated by this method is depicted in Fig. 10.

Figure 10 illustrates the output of the optimization algorithm, a Pareto Front 
consisting of a wide range of feasible answers. An answer with a reliability level of 
around 70% was selected for each scenario of the detention rockfill dam to evaluate its 
performance and compare the best scenario between the four scenarios for designing 
a detention rockfill dam based on RBDO. The values of these selected solutions for 
different scenarios are shown in Table 4.
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Fig. 3 The flowchart for reliability-based design optimization

Table 4 shows when the detention rockfill dam angle falls, the amount of material 
utilized, which is regarded as the construction cost of the detention rockfill dam, 
increases dramatically. For instance, when the angle of the dam is 70°, the cost 
of constructing a rockfill dam is approximately 40% higher than in the first case, 
where the dam angle is 90°. On the other hand, by decreasing the dam angle, the 
safety factors increase. For instance, when the angle is 90°, the corresponding SFO, 
SFF, and SFS values in the detention rockfill dam are 1.6736, 4.7441, and 1.8598. 
These values change to 1.7079, 2.2947, and 7.4947, respectively, when the dam angle 
reaches 70°. Moreover, as the angle of the dam lowers, the length of the dam body 
increases, and its height drops.
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Fig. 4 The optimization algorithm of NSGA-|| 

b) histograma) histogram 

c) 1 histogram 

Fig. 5 The histograms of V f , S f , and H1 in the MCS model
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b) The histogram of SFSa) The histogram of SFO 

c)The histogram of SFF 

Fig. 6 The histogram of SFO, SFS, and SFF

4 Discussion and Conclusion 

Detention rockfill dams are one of the most popular utilized engineering structures 
for flood control and decreasing and delaying flood peaks due to their ease of oper-
ation. Unlike scientific literature, which considers the body of rockfill dams to be 
impermeable, this research employs the stage-discharge equation of non-Darcian 
flow in the detention rockfill dam, which incorporates leakage from the dam body 
in the simulation model. In this study, some equations of detention rockfill dams, 
such as the input hydrograph equations, the reservoir depth-volume relationship, the 
stage-discharge relationship of the non-Darcian flow, and the non-linear flow routing, 
were applied in the simulation. In a general outlook, there are three primary steps for 
designing the detention rockfill dams: (1) identifying the most suitable location for 
constructing a detention rockfill dam, (2) preliminary design, and (3) optimal design 
of the dam. In this work, the second and third steps of the design of a rockfill dam are 
examined, as well as the impact of design parameter uncertainty on the preliminary 
and optimal designs is studied. 

Initially, it was determined that if the dam is designed in a preliminary form, 
the safety factors of the dam are not provided, and the stability of the dam is at 
risk. In addition, it has been demonstrated that if there is uncertainty in the design 
parameters, it may lead to the propagation of uncertainty in the safety factor SFF to
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b) SFS histograma) SFO histogram 

c) SFF histogram 

Fig. 8 The histograms of SFO, SFS, and SFF in the MCS model

the amount of (+87.81, −32.63) percent, which is the most significant propagation of 
uncertainty between safety factors. The second step in designing the detention rockfill 
dam was to employ optimization to minimize the dam’s construction cost and satisfy 
all safety factors. Two approaches were employed for this purpose: (1) not utilizing 
the dimensions of the preliminary design in the optimization algorithm and (2) using 
the dimensions of the preliminary design in the optimization algorithm. The outcome 
of this comparison revealed that if the second approach is utilized for designing the 
detention rockfill dam, the cost will be reduced, and the time to get the optimal 
solution will be cut by roughly 13%. After the optimal design was determined, the 
impacts of design parameter uncertainty on the hydraulic and structural performance 
of the detention rockfill dam were explored. It was proved that the presence of 
uncertainty in the design parameters leads to the propagation of uncertainty to the 
level of (+78.29, −21.75) percent in the X and Y, respectively. Finally, the multi-
objective optimization of the detention rockfill dam was accomplished by coupling 
the simulator model with the Monte Carlo Simulation method and employing Self-
adaptive NSGA-II. The output of this step was the Pareto Front, which displayed the 
construction cost of a detention rockfill dam against its reliability. The findings of 
this step indicate that the construction cost of a detention rockfill dam rises as the 
angle decreases. In addition, as the dam body’s angle reduces, the dam body’s length
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b) The violin pot for SFS a)The violin plot for SFO 

c)The violin plot for SFF 

Fig. 9 The violin plots for SFO, SFF, and SFS

increases, and its height falls. In the case where the angle of the detention rockfill dam 
is 80°, it was also demonstrated that this is the most economically optimal design.
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"" 
Fig. 10-2 Optimal Pareto Front for Dam with 80 

degrees" 
Fig. 10-1 Optimal Pareto Front for Dam with 90 

degrees 

"" 
Fig. 10-4 Optimal Pareto Front for Dam with 70 

degrees" 
Fig. 10-3 Optimal Pareto Front for Dam with 75 

degrees" 

Fig. 10 Optimal Pareto Front for four scenarios with different dam angles

Table 4. Selected solutions for different scenarios of detention rockfill dam 

L(m) H (m) Cost Reliability (%) SFS SFF SFO 

θ1 4.7393 6.5393 836,780 72.2450 1.8598 4.7441 1.6736 

θ2 5.7140 5.7964 734,290 69.5782 1.9403 5.3572 1.6300 

θ3 7.3661 5.3126 852,410 69.4231 2.0943 6.6227 1.6905 

θ4 10.4824 4.8885 1,148,700 72.1150 2.2947 7.4947 1.7079
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Machine Learning in Mechatronics 
and Robotics and Its Application 
in Face-Related Projects 

Saeed Najafi Khanbebin and Vahid Mehrdad 

1 Introduction: Machine Learning 

Making machines think and make decisions similar to humans is a problem that 
creates the core of a concept, namely Machine Learning (ML). ML is a keyword that 
accounts for a considerable part of the research these days. Since this concept is used 
in solving issues in many different tasks and contexts, there is a separate field of study 
for ML-based research. The ML tools, all the subtests of a global concept, namely 
artificial intelligence (AI), work as helpful aids with various economic and scientific 
advantages. The problems that can be solved using machine learning include a broad 
spectrum. In such a way, from separating images of different fruits to fundamental 
problems such as astronomical data and calculations of spaceships can be done with 
the help of a machine learning concept. 

Machine learning and machine vision are incorporated with mechatronics and 
robotics fields for system design and other industry challenges. Many aspects of 
mentioned industries take advantage of machine learning and machine vision algo-
rithms to address the issues in different sections, such as using machine vision in 
fault diagnosis and designing a robot navigation system [1]. 

Many books and articles have been written on machine learning, and the math-
ematical relationships of these concepts are repeatedly and in full detail in these 
writings. However, the reasons for writing such a book chapter in this context can 
explain the motivation for writing the present text. In this chapter, after receiving 
general information about machine learning and its basics and concepts, the main 
focus is on the applications of this beneficial concept. The application-based nature
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of this writing is the reason that proves the need for this writing. In addition, the 
main focus is on one of the critical and beneficial applications of this field, i.e., face 
images in machine learning and mechatronics fields, which can explain the critical 
issues of this field well, along with the concepts of machine learning. 

The following sections contain an explanation of face-related studies in different 
types of research. 

2 Face Related Tasks 

One of the most famous and valuable issues being completed in the machine learning 
world is the face-related problem. Facial images consist of information that can be 
used in many different applications. Many challenges in this field are addressed 
by using machine learning in each part and section of the face-related systems. 
The face-related tasks can be separated into different and identical subjects, which 
can be a significant issue for researchers in the ML field. These subjects are face 
detection, facial recognition, facial expression recognition, gender recognition, etc. 
In this chapter, we will describe these face-related tasks within the research done in 
each field. 

2.1 Face Detection 

A face recognition system works in a procedure that, before recognizing the person 
from facial images, it is needed to detect the face region from images for later uses. 
As video and image databases have overgrown, intelligent systems are becoming 
increasingly crucial for auto-interpreting and analyzing information. 

As a primary means of expressing identity and feelings, the face plays an essen-
tial role in social interactions. Humans are not very good at identifying different 
faces compared to machines. So, Face Detection is one of the critical steps of mane 
face-related systems such as face recognition, facial expression recognition, head-
pose estimation, human–computer interaction, etc. [2]. Video and imaging databases 
have grown dramatically, requiring automatic understanding and analysis of data. In 
terms of social communication, one crucial factor that has a key role is the changes 
that happen in the faces, such as feelings and attitudes. Differentiating between 
various faces is not that easy for humans with their vision and recognition system 
compared to machines. [3]. Human–Computer Interaction (HCI) is made possible 
by face detection, one of the most fundamental techniques. It is necessary to detect 
faces to perform all facial analysis algorithms, such as face alignment, face modeling, 
face relighting, face recognition, face verification/authentication, head pose tracking, 
facial expression tracking, gender identification, and so on [2]. Face detection tech-
nology begins by identifying an image area where a face or face can be found. 
Face detection is hampered by occlusions, illuminations, and complex backgrounds
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[4]. Detecting faces is generally referred to as face localization. During the local-
ization of a face, the object’s location and size are primarily determined [3]. The 
solutions to these challenges have been proposed by a wide variety of algorithms. In 
general, existing algorithms are classified into two categories: those based on features 
and those based on images. Unlike feature-based approaches, which use windows 
or subframes for locating features (image edges, corners, and other structures), 
image-based approaches depend largely on image scanning [4]. 

2.1.1 Feature-based Approaches 

Active Shape Model (ASM) 

The ASM illustrates the actual substantial appearance of features at a higher level. 
A facial image is linked with facial features, such as the nose, mouth, etc., as soon 
as the system finds proximity to these features. In order to generate a mask, the 
coordinates of these parts are used as a map. It is possible to change the mask 
manually. User adjustments are possible even if the system determines the shape. An 
improved map can be created by training with more images. Four types of ASMs 
exist snakes, deformable template models (DTM), deformable part models (DPM), 
and point distribution models (PDM) [4]. 

Point Distribution Model 

An essential part of The Point Distribution Model (PDM) is the recognition of vectors’ 
shapes and the representation of those shapes. A standard statistical approach can 
be applied, like the multivariate object. In general, basic components are used for 
the construction of these models in order to learn the aforementioned constellations 
from training for the shape points. These are known as PDM or Point Distribution 
Model [3]. 

Deformable Templates 

It is challenging to locate a facial feature boundary using generic contours since the 
local evidence of facial edges cannot be consolidated into a sensible global entity. It 
is also challenging to detect edges around some of these features because of their low 
contrast. As a result of the snake concept, the extraction process is more reliable since 
it incorporates global information about the eye. The solution to this problem is to use 
deformable templates. There are four types of deformation: narrow valleys, narrow 
edges, narrow peaks, and bright peaks. It is a great challenge for face recognition to 
extract salient features from faces (eyes, nose, mouth, eyebrows) in addition to the 
face boundary [2].
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Fig. 1 Haar-like features in face detection [5] 

2.1.2 Image-based Approaches 

Neural Network 

When an image is analyzed by a rationally attached neural network, each window is 
examined to determine whether it contains a face [2]. Models of neural networks are 
used to determine whether faces are in each window by analyzing the entire image 
[3]. There was an earlier suggestion for a hierarchical neural network. As part of the 
first stage, two parallel sub-networks are used to filter the inputs and obtain intensity 
values from the images. The extracted feature values create the input of the second 
stage and the outputs gained from subnetworks. The second stage’s output obtains 
whether there is a face in the desired region of the image. [3] 

One of the most famous and well-known face detection algorithms is the Viola-
Jones [5] face detection algorithm which uses haar-like features besides the concept 
of the integral image for rapid detection. This algorithm has been a part of many 
face-detection approaches during the last decade. When the subject is face detection 
algorithms, it is necessary to mention a deep learning-based one in this field: the 
Multi-Task cascaded CNN (MTCNN) [6]. Its power and accuracy made it famous 
and very useful in recent projects (Fig. 1). 

The face detection issue and related research are conducted based on well-studied 
datasets. Some face detection datasets; FDDB [7], ALFW, and WIDER FACE. In the 
next section, face recognition uses the result of the face detection step for recognizing 
an individual based on features and deep networks.
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2.2 Face Recognition 

The technology of face recognition is a system in which the use of faces does biolog-
ical characteristics-based identity recognition. The advantages of face images as 
a biometric system are based on their reliability, social acceptance, and security, 
which overcomes the well-known biometric systems such as DNA, fingerprint, etc. 
[8]. Accurate individual detection with high efficiency is applied in facial recognition 
systems where facial features are used as principal information. Such a system works 
well in different environments and data types, like images, videos, and real-time [9] 
(Fig. 2). 

Representation of the faces is performed in one or two layers using traditional 
approaches. The histogram of feature codes, distribution of dictionary atoms, and 
filtering responses can be considered these traditional strategies. The desired routine 
transformation and feature extraction steps are performed in a cascade of multiple 
layers in a CNN-based deep learning method [9]. As explained before, an exciting 
field such as face recognition attracts researchers’ attention to solve its challenges.

Fig. 2 Steps of MTCNN face detection algorithm [6] 



240 S. N. Khanbebin and V. Mehrdad

Earlier efforts in this field were based on feature extraction techniques to which a 
vast number of researches have been applied. One of the most valuable approaches 
was the Local Binary Patterns (LBP) [10] which extracts the textural information of 
the facial images to be used in the classification part of the desired model. The LBP 
was also a basis for many LBP-based approaches, such as [11–14] each one tried 
to modify the LBP and make their model more accurate. Calculating the difference 
between neighboring pixels and the central one for each block of the image is the 
basis of LBP (Figs. 3 and 4). 

As mentioned before, lots of approaches have been proposed based on the LBP 
method. The DR-LBP [15] used LBP operator in a different calculation to achieve 
a more discriminative feature vector. Its different calculation for the neighborhood 
pixels is shown in Fig. 5.

In the age of deep learning, the Convolutional Neural Network (CNN) had a 
massive effect on the direction of research in this field. This kind of network worked 
well with image data and attracted researchers to use it as a basis for later improve-
ments. CNN-based approaches can be gathered in two types; one type is that proposed 
algorithms result in a new network with more options and more accurate results. 
The other type is a fusion of traditional feature extraction-based approaches with 
CNN-based ones.

LBP histogram LBP imageInput image 

Fig. 3 Example of LBP image and its histogram [15] 

Fig. 4 Neighborhood pixels 
used in the LBP in two 
different values 

a b  



Machine Learning in Mechatronics and Robotics and Its Application … 241

Fig. 5 The pixel difference 
calculation in DR-LBP [15]

c 

p 
p1 p2 

d1 d2 
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Like any other fields in pattern recognition and machine learning, face recog-
nition tasks also have special databases. The face databases consist of numerous 
facial images from many subjects in different situations. These data are used to train 
the model in deep learning-based models and extract information from traditional 
approaches. Datasets such as ORL [16], Yale [17], VGGFace [18], LFW [19] etc.  

Numerous efforts have been made in the 2D face recognition domain. The sensi-
tivity of the 2D face recognition approaches to pose, illumination, expression, and 
other challenges make it clear that 3D face recognition systems must be presented 
to overcome these challenges. Such limitations are addressed by reliable geom-
etry information obtained in the 3D face recognition strategies, and this advantage 
attracted researchers to this subject [8]. There are particular datasets for 3D face 
recognition tasks such as Bosphorus, BU-3DFE [20], etc. 

The spectrum of face recognition methods exists, from traditional to deep learning 
to 3D methods. The LBP face descriptor [21] Facenet [22], and Led3d [23] can be 
presented as different face recognition methods from different types of strategies. 

2.3 Facial Expression Recognition (FER) 

Non-verbal information plays an essential role in daily communication between 
people. Facial expression accounts for the most considerable portion of these non-
verbal communications compared to other types, such as hand gestures, body 
gestures, and texts [24]. Each person can appear his feelings by changing his 
facial expression, which results from changes in facial muscles. The FER is one 
of the most interesting face-related issues. Its application is proven necessary in 
various fields such as security, advertisement, E-learning, etc. There are seven basic 
facial expressions in literature: anger, happiness, surprise, fear, sadness, disgust, and 
neutral.
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In facial expression recognition problems, since analyzing people’s emotions 
shows the influence of psychological factors in this type of problem, this aspect 
of the problem justifies many applications for facial expression recognition. 

As we know, in most pattern recognition and machine learning problems, a general 
process is considered to solve such problems, which consists of three main parts; 
Receiving the input, which should be cropped images of the face area. After that, the 
feature extraction stage from the face images begins. Finally, the classification stage 
identifies different states and assigns each image to the corresponding category. In 
order to obtain images of the face area, the methods explained in the face detection 
section are used as the initial stages of a FER process. In the feature extraction section, 
similar to the issues discussed in face recognition, in FER, the feature extraction 
process has started with traditional methods based on extracting textural, spatial, 
frequency, geometric, etc., features from the image. These methods naturally work 
without the need to train the model and provide vital information about the images 
based solely on mathematical definitions. The feature vector obtained from this step is 
used for classification instead of the image itself. If more details about these methods 
are needed, other parts of these strategies that work with the feature extraction stage 
can be described. Dimension reduction is one of these parts that complement the 
feature extraction stage. Since the smaller the dimensions of the feature vector given 
to the classification part, the speed and sometimes the accuracy of the recognition 
model increases, so after the feature extraction stage, dimension reduction algorithms 
are used. Based on the existing relationships between parts of the data and some based 
on mathematical definitions, these algorithms keep those parts of the data that are 
more important and carry more critical and helpful information and remove the less 
important parts. This work increases the model’s speed and avoids confusing the 
classification model by removing the extraneous and unimportant data parts. 

With the emergence of new methods, especially in the period when deep learning 
methods entered the field, the explained process changes. Convolutional networks 
and their success in working with image data led to the presentation of many methods 
based on these networks. 

CNN networks operate based on convolutional layers instead of fully connected 
ones. In general, a convolutional network has convolutional layers and fully 
connected ones simultaneously. In this way, the convolutional layers play the role of 
feature extraction, and the fully connected layers play the role of the classification 
part in the explained pipeline. Meanwhile, Pooling layers are also used to reduce the 
cost of calculations. Also, to improve the training and testing processes, methods are 
used in addition to the mentioned layers, one of which is the batch normalization 
layer. 

Many methods have been presented based on CNNs, with reasonable accuracy. 
Nevertheless, as the power of algorithms has increased with the help of deep learning 
methods and CNN networks, due to the significant increase in computing cost in these 
models, more processing power and processing resources are needed to implement 
these algorithms. 

The methods have gradually moved towards revealing the characteristics of these 
networks, i.e., the need for more processing power and more powerful hardware.
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Since the core of CNN-based methods is to make changes in the number and order 
of the layers explained above, many types of research are presented to perform 
the convolution operation in a more optimal mode and increase the model’s speed. 
This category of methods is called microstructure. This category includes DWS1 

convolutions, 1*1 convolutions, etc., which are the basis of famous structures such 
as Mobilenet [25], GoogleNet [26], etc. 

Since small changes in the face must be detected to detect facial expressions 
correctly, the effort to increase the ability to detect these changes in CNNs is 
considered the basis of another part of the methods in this field. 

One of these methods combines some traditional methods (as described earlier) 
with CNN methods. In this case, instead of raw images being given as input to the 
network, the feature space produced by feature extraction methods is entered into 
the network as input. This feature space includes images in which details and small 
changes are highlighted. 

Another way to combine deep learning-based and manual feature methods is to 
input the input image to the feature extraction part and the network in parallel. Then 
the features extracted from manual methods are combined with features based on 
deep learning in one of the fully connected layers and form a unit feature vector. 
This feature vector enters the classification part of the model after going through 
several fully connected layers. In this way, the model’s accuracy can be increased 
without the double training process, and the computational costs of the model can 
be adjusted. Also, in all the described CNN-based methods, the Softmax part is 
responsible for calculating the probabilities related to the category and performing 
the classification process. Different classification methods instead of Softmax can 
produce a model with higher accuracy. SVM [27], Random Forest, KNN, etc., can 
be mentioned among these classifiers. 

The facial expression also has its related datasets used in the FER problems. The 
FER2013 [28] is one of the most famous and well-studied datasets in this field that 
contains challenges of real-world situations. The CK+ [29] is the other one in which 
its images are in more controlled conditions. Some other known datasets are affectnet 
[30], MMI [31], etc. 

Figure 6 shows the types of methods that work based on combining traditional 
methods and deep learning.

In recent years, many efforts have been made to identify facial expressions and 
present new models. Some of these methods focus on increasing accuracy, while 
others increase the model’s resistance to scene changes and environmental conditions. 
Another part of the efforts in this field is also focused on reducing computational 
costs to make it possible to run the models on less powerful hardware. 

One of the recent exciting research papers in this field is the DeepEmotion [32] 
method. In this method, with a small number of convolutional layers, using a mech-
anism called spatial transformer network [33], the focus of the network is directed 
to the crucial areas of the image so that the model can obtain proper accuracy. It has

1 Depth-Wise separable. 
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Fig. 6 Different strategies for fusing traditional and deep learning-based approaches are discussed 
in this section

obtained good accuracy in different data sets in the field of FER, which shows the 
validity of this method (Fig. 7).

Besides strategies used for creating models with lower computational costs by 
changing the network structures, there is another way for this purpose. Transfer 
learning is the other way of lowering computations for training a model to achieve 
enough accuracy. This strategy works in a way that the CNN is trained before with a 
dataset consisting of many images. The network layers carry accurate features earned 
by the training phase. When using these layers and their features, some layers stay 
unchanged, and some new layers are added, and then a new training phase is started
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Fig. 7 The structure of the DeepEmotion network [32]

based on gathering old features and newly added layers simultaneously. Freezing a 
layer means that no changes are made in this layer during the training phases. 

After reviewing various efforts in the field of face issues and introducing chal-
lenges and data for this field, a new need is raised. Solving all the previously 
mentioned problems in a single model can be an attractive goal to present in studies. 
Research [34] presents a model in which face recognition, facial expressions, gender 
recognition, etc. are done simultaneously. 

Figure 8 shows the different parts of this exciting network. 
After examining all aspects of face-related issues in machine learning and its 

application in mechatronics and robotics, we finish the discussion by examining some 
of these issues in the real world. The use of face-related methods can be implemented

Fig. 8 Multi-task facial attributes recognition [34] 



246 S. N. Khanbebin and V. Mehrdad

and justified in various fields. In the automotive industry, facial images can be used 
to increase car security, insurance trends, etc. Also, by analyzing facial emotions 
and details, driving safety can also be increased, and one of the ways is to detect the 
driver’s fatigue by face-related algorithms. In these years and with the COVID19, 
it is important for people to wear masks, especially in closed environments. Using 
face-related projects in face mask detection can improve people’s mask-wearing 
and give us more accurate control. In the mechatronics and robotics field, facial 
recognition algorithms have applications. One of these applications is to design a 
robot-controlling system using facial expressions [35] that takes advantage of the 
explained routines. 
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