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Abstract Avian influenza virus (AIV) belongs to the genus Influenza A virus of 
the family Orthomyxoviridae. The virus can infect a variety of avian species, but the 
low pathogenic AIVs do not usually cause explicit symptoms in poultry. In contrast, 
the highly pathogenic avian influenza (HPAI) viruses continue to cause outbreaks 
among poultry, wild birds and occasionally humans in Asia, the Middle East, North 
America, and Africa. Environmental factors associated with cross-species transmis-
sion have been substantially reviewed before. However, acquiring the knowledge 
of a number of environmental factors with spatial structures, which usually are not 
randomly distributed, for timely implementation of control measures rely on accurate 
identification of the spatial clustering in a global or local scale. In this article, we 
review different approaches in identifying spatial or temporal-spatial clustering in 
avian influenza outbreaks. In the future perspective, we propose to develop intuitive 
tools for timely identify the dynamic changes of clustering and viral spreading. Such 
tools will assist in not just the identifying the environmental factors associated with 
the clustering or spreading direction, but also timely control measures to prevent 
further damage. 
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9.1 Introduction 

Avian influenza, caused by influenza A virus (IAV), is a zoonotic influenza that affects 
a wide variety of birds, poultry and occasionally humans. Influenza A virus is the 
only species of the genus Alpha-influenza virus of the family Orthomyxoviridae. 
The structure of influenza A virus consists of a lipid envelope and a negative-sense 
single-stranded ribonucleic acid (RNA) genome with eight segments [1]. Influenza 
A viruses can be classified into subtypes based on the combination of the spike 
hemagglutinin (HA) attachment protein and the neuraminidase (NA) protein. To 
date, 18 HA subtypes (H1 to H18) and 11 NA subtypes (N1 to N11) have been 
identified [2], while only 131 subtypes have been detected in nature [3]. Subtypes 
of IAV can be further divided into clades and subclades based on the similarity of 
HA genes [4, 5], and subtypes can also be subdivided into genotypes based on the 
combination of internal gene segments. The nomenclature of influenza viruses has 
been standardized, and the name of a new strain consists of a combination of antigen 
type, original host, geographic origin, strain name, year of isolation, and subtype 
(HxNy) [6]. 

The genome segments of IAV encode different viral proteins. The structural 
proteins express in the envelope containing the surface proteins, which are HA 
attachment proteins and NA proteins, and the membrane ion channel (M2) proteins. 
Internal proteins include the nuclear protein (NP), matrix protein (M1), and the 
polymerase complex consisting of three subunits, namely polymerase basic protein 
1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA). 
Nonstructural protein 1 (NS1) and nonstructural protein 2 (NS2), the nuclear export 
protein (NEP), are encoded by segment 8. AIVs use host proteases to cleave the 
HA0 molecule into HA1 and HA2 subunits, which are essential for the uncoating 
step of viral replication. AIVs can be defined as low pathogenic avian influenza 
(LPAI) viruses and highly pathogenic avian influenza (HPAI) viruses based on their 
virulence in chickens. Thus, if mutations result in the insertion of multiple lysine 
and arginine residues into the HA0 cleavage site of the virus, termed the multilocus 
cleavage site, which can be recognized by the ubiquitous and extensive proteases 
in host tissues, it becomes an HPAI virus. As a corollary, HPAI viruses may repli-
cate throughout the host, systematically destroying tissues, leading to multiple organ 
failure and ultimately to host death. However, LPAI viruses have only one arginine at 
the cleavage site, which can only be recognized by trypsin-like proteases. Therefore, 
replication of LPAI virus is restricted to the respiratory and gastrointestinal tracts, 
where expression of this protease occurs [7–10]. 

Although avian influenza viruses (AIVs) replicate in wild bird reservoirs, the 
viruses spread out through the saliva, mucus, and feces of infected birds. Spillover 
AIVs can be transmitted from infected wild birds to poultry, primarily through direct 
contact with wild birds or indirect contact through human activities and contaminated 
water or other media. Most AIVs cause gastrointestinal infections in chickens, while 
those with no or minimal clinical signs are LPAI viruses, whose distribution in 
wild birds varies by subtype depending on geographic location, bird abundance,
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Fig. 9.1 The evolution and transmission routes of avian influenza virus between and among animal 
species and humans. Green arrows indicate the transmission routes of low pathogenic avian influenza 
(LPAI), red arrows indicate the transmission routes of high pathogenic avian influenza (HPAI) and 
blue arrows indicate the additional spread routes of avian influenza. Solid arrows represent frequent 
transmission events, and dashed arrows represent sporadic or limited transmission events. Once 
HPAI viruses become introduced into wild bird populations, the spread and maintenance of these 
viruses in wild birds will be determined by different factors involved the types of host birds, the 
viruses, and the ecology 

and prevalence. HPAI viruses can affect poultry as well as wild birds. Infections in 
chickens and turkeys induce severe disease with mortality rates as high as 90–100%. 
So far, only the H5 and H7 subtypes of AIVs have been recorded as causing HPAI 
outbreaks in poultry, but most of the H5 and H7 subtypes are LPAI viruses. HPAI 
viruses evolve by mutation, amino acid substitution or recombination after long-term 
circulation and efficient replication of LPAI viruses in poultry [11] (Fig. 9.1). 

9.2 Factors Associated with Zoonotic Transmission 
of Avian Influenza Virus 

Outbreaks of HPAI were first described as “fowl plague” in the 1880s, and subsequent 
outbreaks in Europe from then onwards were caused exclusively by HPAI H7N7 and 
H7N1 viruses until the first confirmed outbreak of HPAI H5N1 occurred among
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chickens in Scotland in 1959 [12]. HPAI H5Nx (N1-9) and H7Nx (N1, N3, N4, N7-
N9) viruses [13, 14] have been reported to cause thousands of outbreaks in domestic 
poultry and wild birds in more than 60 countries, killing numerous poultry through 
HPAI virus attacks or mass culling strategies and causing huge economic losses. 
During HPAI epidemics in poultry, viruses can spill back into wild birds, where 
they subsequently circulate asymptomatically or cause disease and death [15, 16], 
even generate reassortants with LPAI or wild bird-adapted strains [17–19]. These 
viruses can also spill over into mammals, including pigs, horses, whales, seals, and 
humans [20]. However, it is considered that AIVs do not replicate efficiently enough 
in humans to sustain human-to-human transmission [21] (Fig. 9.1). 

Long-distance migratory birds played an influential role in the global spread 
of HPAI viruses [22–26], while wild birds may also be involved in local HPAI 
virus amplification and reassortment [27]. The HPAI found in wild birds was highly 
associated with the geographical locations of poultry farms [20, 28, 29]. However, 
such association has been not significant since the emergence in 2014 of the HPAI 
virus Gs/Gd clade 2.3.4.4 which has dominated in outbreaks in poultry and wild 
birds with abundant genetic reassortments resulting in H5N1, H5N2, H5N3, H5N4, 
H5N5, H5N6 and H5N8 subtypes [24, 30, 31]. 

The most predominant natural reservoirs of HPAI H5 viruses are Anseriformes, 
which are responsible for the maintenance, rapid transmission, and geographic expan-
sion of these viruses. The other prominent reservoirs, Charadriiformes, are possible 
reasons for the rapid global spread of HPAI viruses due to their fast-moving, long-
distance migration and highly gregarious during migration period [32–34]. The trans-
mission rates of HPAI H5 viruses within Anseriformes and Galliformes are high, but 
transmission between these orders is limited [18, 35]. Understanding the mechanisms 
of HPAI virus transmission and maintenance in wild birds can provide a reference 
for surveillance strategies. 

Human infection with AIVs is a rare and sporadic event, however, AIVs subtypes 
H5, H6, H7, H9, and H10, have been recorded infecting humans to cause clin-
ical disease of varying severity. Exposure histories of human cases and phyloge-
netic analyses of AIVs isolated from wild birds, poultry, humans, and associated 
environments suggested that cross-species poultry-to-human transmission of AIVs 
frequently occurs on poultry farms. In addition, live bird markets are active sites for 
interspecies dissemination, where AIVs can be transmitted from birds to humans or 
reassort influenza gene segments in different host species [36, 37]. 

HPAI H5N1 outbreaks have occurred in a variety of ecological systems with 
economic, agricultural and environmental differences, which pose the threat to the 
poultry production sector. Factors affecting the spatial and temporal distribution of 
the outbreak of AIVs have been investigated in many studies previously. Marius 
Gilbert and Pfeiffer [38] summarized the risk factors considered for HPAI H5N1 
presence in previous studies in nine categories, including(1) farming practice and 
local biosecurity, (2) poultry and livestock census data with longitude and latitude, 
(3) anthropogenic variables, (4) socio-economic variables, (5) variables indicative 
of the presence or abundance of wild birds, (6) variables indicative of the presence 
or abundance of rivers, lakes or wetlands, (7) eco-climatic variables obtained using
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weather station data or remote sensing, (8) land-use and cropping variables, and 
finally (9) topography. Among these factors, the density of domestic waterfowl, 
anthropogenic variables (human population density, distance to roads) and indicators 
of water presence were identified positively correlated with HPAI H5N1 presence 
across studies and regions. 

9.3 Spatial Clustering Analysis of Avian Influenza Viruses 
Transmission 

Commonly used statistical clustering approaches from the literatures to identify 
spatial distribution patterns and transmission mechanisms can provide additional 
information for AIV control and prevention strategies. 

9.3.1 Cluster Analysis 

The spatial distribution pattern of HPAI cases was clustered, dispersed, or randomly 
distributed, which can be measured by global spatial autocorrelation analysis, such 
as the global Moran’s I statistics [39]. The null hypothesis of global Moran’s I is 
spatial randomness. Global Moran’s I index is the correlation coefficient between the 
eigenvalue and its surrounding values, which can be transformed into z-score and 
p-value to infer whether the overall spatial distribution has statistically significant 
clusters. A positive z-score with a statistically significant p-value indicates spatial 
clustering, and a negative z-score with a statistically significant p-value indicates 
spatial dispersion. Threshold spatial distances are analyzed by incremental spatial 
autocorrelation analysis for a series of increasing distances at intervals of interest 
over a spatial range, and spatial clustering is measured by the z-score of each distance 
interval. The z-score usually peaks at some distance where the spatial clustering is 
most salient within the specified spatial extent. The distance associated with the 
statistically significant peak is selected as the threshold spatial distance for a cluster. 

9.3.2 Hotspot Analysis 

However, these methods do not account for the location of clusters. The Local Indi-
cator of Spatial Autocorrelation (LISA) with Local Moran’s I statistics calculates 
the eigenvalues of each geographic boundary region and assesses the significance 
of the region’s similarity to its surroundings to identify statistically significant local 
clusters, such as high-high hot spots and low-low cold spots, or high-low–high local 
spatial outliers. The high positive z-scores of the test demonstrate the statistically
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significant high-high cluster of hotspots [39]. Based on global and local Moran’s I 
analyses, the distribution of H7N9 human cases in Zhejiang Province, China, showed 
statistically significant spatial autocorrelation in some epidemic waves and identi-
fied the statistically significantly high-high clusters and high-low outlier clusters 
mostly located in the northern part of this province [40]. Shan et al. [41] used global 
Moran’s I analysis to identify that the distribution of H7N9 human cases in Mainland 
China showed statistically significant spatial autocorrelation during the five epidemic 
waves. 

Liang et al. [42] evaluated environmental factors associated with clusters of 
outbreaks and multiple subtypes co-circulating of HPAI H5Nx viruses in Taiwan. 
Global Moran’s I analysis was conducted to determine the grid size for covering 
Taiwan when measuring the clusters of H5Nx outbreak farms and found the optimal 
distance to be 3 km. Therefore, a 3 km square grid covering Taiwan was used for 
LISA and local Moran’s I statistics, and the results indicated that the hotspots of 
H5Nx outbreak farms were located on the west coast of Taiwan from 2015 to 2017, 
where covered more than 75% of outbreaks farms in 2015 and 2017. Multivariate 
stepwise logistic regressions comparing hotspots and non-hotspots were developed 
to analyze four categories of variables: farm-related, farm biosecurity-related, wild 
bird-related, and anthropological. Notably, this study used satellite remote sensing 
methods to establish unregistered poultry farm data and merged it with the official 
poultry farm registration database to complete the poultry farm census dataset. A 
poultry heterogeneity index was also created in this study to describe the hetero-
geneity of the total number of domesticated waterfowls versus land fowl in each 
grid. Four risk factors consistently showed a strong association with the spatial clus-
ters of HPAI H5N2 and H5N8 circulations during 2015 and 2017, including high 
poultry farm density, poultry heterogeneity index, non-registered waterfowl flock 
density, and a higher percentage of cropping land coverage. Using estimates from 
the regression models of 2015 and 2017, risk maps were generated to predict high-
risk areas and further validated by using outbreaks from the first half of 2018. The 
results showed that the risk maps for 2015 and 2017 had a prediction rate higher than 
55%. 

Unlike the local Moran’s I statistic, the Getis-Ord Gi* statistic calculates each 
feature in the context of neighboring features in the dataset to measure the degree 
of spatial clustering. Features in geographic boundary regions that are similar to 
adjacent features, and the sum of these features, including the feature itself, that 
differ significantly from the expected sum, will yield a statistically significant z-
core and p-value result. The larger the statistically significant positive z-value, the 
stronger the aggregation of hot spots, and the smaller the statistically significant 
negative z-value, the stronger the aggregation of cold spots [43]. 

In order to investigate the locations of disease clusters, Shan et al. and Huang et al. 
[41, 44] used the Kernel density estimation to present the clustering areas of human 
cases caused by infection of AIVs in China in different epidemic waves. Kernel 
density estimation is a non-parametric statistical method to estimate the probability 
density function of a random variable. It converts point features into smoothly curved 
density surfaces by calculating the sum of a kernel function on each data point.
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The kernel function calculates the surface value of each point by weighting the 
distances of all points at each specific location in the distribution. The surface value 
of each point location is the highest, and it decreases with the distance from the point 
increases. The density of each point is the sum of all surface values of that point. 
If more points cluster in one location, the higher the density of that location, as the 
higher the probability of seeing a point at that location [45]. Based on Kernel density 
estimation, the Yangtze River Delta region and the Pearl River Delta region had the 
highest density and the intensity had gradually shifted during the epidemics [41, 46]. 

9.4 Temporal Spatial Clustering Identification of Avian 
Influenza Viruses Transmission 

Approaches used to early and accurately characterize epidemiologic patterns of 
disease incidence in a temporal and spatial series are becoming increasingly impor-
tant. Statistical analysis for detecting spatial–temporal clusters of health-related 
events is often used for epidemiological and biomedical studies. Timely identifi-
cation of anomalies of disease or poisoning incidence during ongoing surveillance 
or an outbreak requires the use of sensitive statistical methods that recognize an inci-
dence pattern at the time of occurrence. The following sections reviewed analytical 
methods commonly used to study temporal-spatial patterns. 

9.4.1 Scan Statistics or Space–Time Permutation Model 

Cluster analysis, such as scan statistics, are generally designed for retrospective 
detection of epidemiologic anomalies in a temporal or space–time series. Spatial 
scan statistics is a widely-used approach to detect spatiotemporal clustering although 
several conventional cluster analysis methods such as gap-statistic or K-means have 
been developed. The scan statistic employs a moving window, possibly with varied 
shapes, of predetermined radius or geographical unit with fixed population and finds 
the maximum number of cases revealed through the window as it slides over the entire 
region [47–49]. The scan test is structured to detect the largest cluster of incidences. 
The maximum number of events occurring in a window is the test statistic for the scan 
test. However, calibrating proper spatial and temporal windows in scan statistics is 
difficult, which requires a process of model tuning. Huang et al. and Dong et al. [44, 
46] used the space–time permutation model to analyze the spatial–temporal clustering 
of H7N9 human cases. Assuming that the population changes are homogeneous, and 
the spatial extent of the cluster does not change during the scanning process, it only 
needs the spatial location and time data of the cases. Scan statistics use a varied-size 
cylindrical moving window with space as the base and time as the height to scan 
the target area in the time period of interest. Observed and expected numbers of
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cases were obtained from the scan of each location and size of the window, and the 
likelihood ratio or relative ratio statistics were used to evaluate whether there is a 
cluster in the cylinder. In the space–time permutation model, the spatial and temporal 
data of the case being studied are used to adjust multiple tests through thousands of 
random permutations. The cluster with the largest log-likelihood ratio is simulated 
for each of these permutations of the data set, and the P value for hypothesis testing 
is used Monte Carlo simulations [50]. 

According to space–time permutation model scan statistics, the epidemic of H7N9 
human cases from 2013 to 2017 showed six statistically significant clusters. In 
2017, there were four clusters, with centers located in Beijing, Hubei, Sichuan and 
Shanghai. One cluster in Xinjiang from July to December 2014, and one cluster 
in Guangdong from July 2013 to March 2015 [44]. Further analysis of the first two 
epidemics in 2013–2014 with 5 days as the time unit, in the first and second epidemic 
waves, two and three statistically significant clusters were identified. In the first wave, 
the most likely cluster of epidemics was observed in the southeast region centered on 
Fujian Province from April 27 to May 11, 2013, and the second cluster of epidemics 
occurred in Jiangsu province and Shanghai from March 13 to April 11, 2013. In 
the second wave, the earlier cluster of epidemics was in Yangtze River Delta from 
January 12 to January 31, 2014. The second cluster of epidemics was in Pearl River 
delta from February 16 to March 2, 2014, and the third cluster of epidemics was in 
six provinces centered on Anhui Province from April 22 to May 31, 2014. 

Zhang et al. [51] also analyze space–time clustering of human infection with 
H7N9 virus in county level in 2013–2014. The peak z-score indicates that there 
are obvious spatial clusters at the distance of 30 and 250 km in the incremental 
spatial autocorrelation analysis, and the distinct temporal clustering at the duration 
of 14 to 26 days in the temporal autocorrelation analysis. Based on this, 250 km 
and 14 days are selected as the “Threshold” of distance in space and time for the 
next space–time hotspot analysis. Getis-Ord Gi* z-score illustrated that there were 
two statistically significant space–time clustering near Shanghai and Zhejiang in 
March 26 to April 18, 2013, and near Guangzhou and Shenzhen from February 3 
to 4, 2014. Zhang et al. also used a space–time permutation scan statistic model to 
investigate epidemic pattern of these human cases. The results showed that there were 
six statistically significant spatiotemporal clusters from 2013 to 2014. The cluster 
near Shanghai and Zhejiang from March 13, to April 9, 2013, and the cluster near 
Guangzhou and Shenzhen from February 5 to 25, 2014, were similar to the results 
of hotspot analysis, indicating the good consistency between these two methods. 

9.4.2 Knox Test 

Knox proposed a method that allows for statistical testing of the interaction of inci-
dents of infectious disease in space and time that does not use an arbitrary critical 
value of distance or time for determining local clusters [52]. The Knox statistic is 
calculated by pairing all possible data points (e.g., location in space and time of the
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death of birds) within a clearly defined geographic area and temporal interval and 
testing them against assigned values of what is “close” in space and time. The number 
of close space–time data pairs is compared with what would be expected if there were 
no space–time cluster. Based on Knox settings, Barton and David [53] proposed a 
“intersection” approach” to obtain spatial–temporal clustering. They suggested to 
connect the pairs with temporal clustering by line segments to form a temporal map, 
and then connect the pairs with spatial clustering to form a spatial map. Combining 
these two maps produces a spatial–temporal clustering [54]. This is reasonable but 
hard to implement because in a highly dense incidence region, thousands of lines 
tangled together will make the discrimination among clusters difficult. In addition 
to the “intersection approach”, Openshaw et al. [55] considered a “geographical 
analysis machine” (GAM) method which draw r-radius circles for the areas with 
dense incidence when “r” is permitted to varied (say, r = 1, 2, or 4 km). Those 
corresponding dense circles visually formed bunches of circles, and is decided to be 
spatially clustered. See also Turnbull [56] for more discussion. In this study published 
in Scientific Report (2021), Wu et al. [57] showed that Knox-based approach can still 
display spatiotemporal clusters, in particular when the outbreaks occur in multiple 
places. When circling the major spatial clusters, each circle has a “diameter” within 
3 km, which is the size of the control zone established once HPAI-infected farm iden-
tified in Taiwan. When an infected premises (IP) is reported, all poultry from that 
particular IP will be culled and all farms within 3 km radius of that infected premises 
will be targeted for intensive surveillance. Therefore, outside the 3 km control zone 
stands for the spreading of HPAI viruses requiring epidemiological investigation. 

9.4.3 Standard Deviational Ellipse (SDE) Method 

The standard deviational ellipse (SDE) method was a widely applied approach to 
displaying geographic distribution of occurrence of some events [58–61], including 
chronic diseases and infectious diseases, etc. [62–64]. It combines the concern 
of location, (two-dimensional) dispersion, and orientation (meaning direction plus 
shape) in a simple optimization calculation. When SDE is used repeatedly over a 
specified time period (say, every week during the emergent outbreak period), the 
mean area center is the origin of these two axes [60]. It suggests that one, two, 
and three standard deviation ellipses will cover approximately 68, 95, and 99% of 
the points [65]. The orientation of the long axis indicates the direction of the point 
distribution, therefore, the greater the difference between the long and short axis, 
the more obvious the direction trend. Connecting the centers of each ellipse offers a 
clue for disease transmission. This connecting line can be compared with long axes 
of consecutive ellipses. To sketching the spatial trends of H7N9 human cases over 
time in China during 2013–2017, SDE analysis was used by Huang et al. and Dong 
et al. [44, 46]. They analyzed the distribution of cases for each month in the epidemic 
wave. SDE analysis showed that the first wave of the 2013 epidemic started in the 
three Yangtze River Delta provinces and spread from Jiangsu to Guangdong. The
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second wave occurred in the southeastern coastal provinces from Jiangsu Province 
to Guangdong Province, and expanded the epidemic area with a coastal orienta-
tion, but spread toward the inland in the last two months. The third wave of the 
epidemic started from the southeast coastal area to Gansu Province, and then grad-
ually narrowed down to the Yangtze River Delta. The fourth wave of the epidemic 
occurred in the southeastern coastal region and then spread to the northern coastal 
region. In the fifth wave, the epidemic occurred along the eastern coast and then 
gradually spread to most of mainland China. 

9.4.4 Regression Modeling 

The interpretation of the shape of SDE need to be cautious as it might be area-
specific. While the connection between ellipses reveals a different story implying 
the development among sub-areas with dense emergent cases, it shows a temporary 
geographic pattern or latent mode of spreading of events. Using SDE method to esti-
mate the transmission direction needs mild correction when the concerned infections 
have become endemic; i.e., the virus tends to be localized and existed there all year 
round. An alternative approach to estimate the direction of spreading is a regres-
sion model proposed in Zinszer et al. [66], hereafter called Zinszer model, which 
attempted to estimate local transmission directions for Ebola epidemic. It states that 
for an outbreak event occurred at calendar time Ti and at location (Xi, Yi) with corre-
sponding explanatory variable (possibly a vector) Zi, and Ti+1 is the time of the next 
(Ebola) outbreak case so that the inter-outbreak “gap time” τi = Ti+1 − Ti can be 
modeled as: 

τi = β0 + β1Xi + β2Yi + γ ′Zi + εi. 

The parameters β1 and β2 interpret the inverse of rate of transmission in the direc-
tion of X and Y, respectively, usually adopted as the longitude (X) and latitude (Y) of 
the event spot indexed by “i”. Depicting weekly SDEs and connecting consecutive 
centers to exhibit transmission direction employs parallel idea but roles of time and 
space interchange: Time interval is now not random; it is fixed to be one week. The 
magnitude of changes in X and Y are random, implying the velocity (speed plus 
direction) of transmission. 

9.5 Future Perspectives 

For infectious diseases such as avian influenza, spatial clustering of outbreaks plays 
a highly significant role in ecological dynamics and viral spread. However, accurate 
identifying the spatial cluster and predicting the direction of viral spread requires the 
knowledge of a number of environmental factors with spatial structures, which are
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not only non-randomly distributed across a country but also change through time. 
Instead of applying complex spatial statistics for clustering tests to detect a series of 
epidemiological anomalies, development of intuitive tools for timely identification of 
spatial–temporal clusters will assist control measures to prevent further damage. Wu 
et al. [57] proposed two visual approaches to identify spatial–temporal cluster with its 
dynamic change through two-stage methods. In the first stage, they utilized common 
concepts of Knox test and scan likelihood ratio statistics to determine spatiotemporal 
cluster. Although there is no universally feasible method to estimate the direction of 
transmission, the use of SDE in the second stage to visualize the geographical distri-
bution of a series of social, biological or environmental events is still very attractive 
[64, 67–69]. Geographically, the scale wider than local infections was presented 
by simply connecting the centroids corresponding to each week’s ellipse. If the 
initial pattern was influenced by local factors, the direction connecting centroids 
can be exerted by a later “strength” existing among ellipses. Time-varying SDEs 
are applied to individual spatial clusters, defined by the Knox method, to reveal its 
local transmission by week. By connecting the consecutive centers of weekly SDEs, 
the direction of transmission can be easily visualized, which may imply the playing 
roles of local factors, such as wild bird movement, transportation vehicles, human 
activities or other meteorological factors acted within the spatial clusters [22, 38, 
46, 70–72]. Other non-local factors, such as factors related to poultry market supply 
networks or the long-distance movement of certain bird species, contributing to the 
HPAI transmission between spatial clusters can be investigated and differentiated 
from the local factors [73–75]. Careful identification of influencing factors can help 
precautionary measures, public health control and prevent further outbreaks. There-
fore, a Knox-based combined SDE visualization tool is suggested to identify the 
spatial-temporal clustering of poultry farm HPAI outbreaks in Taiwan. 

On the other hand, AGC (Fig. 9.2)-based second-order aggregation maps based 
on scan statistics likelihood ratio as two-stage approach in a regular interval provide 
a quantitative risk in regional level and its dynamic change further indicates the 
direction of transmission [55]. The likelihood ratio statistic constructed in the first 
stage considers two “reference populations” to serve as the basis for statistical testing 
on global and local spatial clustering. A map based on drawing the AGC index, which 
can capture the aggregation pattern of disease clusters is very useful for displaying 
hotspots. That is, the aggregation of those sub-regions with higher Rj or AGC index 
is called hotspots. The identified major clusters are similar in both Knox-based and 
AGC mapping methods. Although the AGC map inevitably depends on the choice of 
the critical value of the AGC index, the difference between two results is small. These 
major spatial clusters or hotspots could share common environmental risk factors 
contributing to the poultry farm outbreaks by HPAI as we published previously [42]. 
By monthly depicting the AGC maps, the changes in the hotspot pattern over a period 
of time also provide clues of the direction of HPAI viral transmission. If the AGC 
maps of different months remain unchanged, it means that the hotspot is very “stable” 
in a sense. Note that the formation of AGC map depends on the choice of the cutoff 
point for the number of clusters. The traditional elbow method based on minimizing
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Fig. 9.2 The aggregation of clustering (AGC) index. It is based on the ratio of the difference 
between the spatial scan statistics of two reference areas and is used to estimate the clustering of 
outbreaks in an area in a regular interval 

the overall within-cluster variation can be applied, or the more modern gap statistics 
can be used in the future [76, 77]. 

In conclusion, various approaches to study spatial or temporal-spatial clustering 
in infectious diseases have been proposed. However, the knowledge of a number of 
environmental factors with spatial structures is necessary to accurately identify the 
spatial clustering in a global or local scale. Development of a visual tool in a webpage 
will assist in accurate identification of such clustering and predicting the direction 
of viral spreading. 
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