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Abstract Planetary health research focused on vector-borne and zoonotic diseases 
often requires data on the environmental factors that influence vectors, hosts, and 
pathogens. We summarized major types of geospatial environmental data that are 
freely available and potentially useful for planetary health applications. There are 
many relevant geospatial data products that characterize weather, climate, vegetation, 
land surface temperature, land cover and land use, human population characteristics, 
and hydrology. However, these datasets differ greatly in their underlying measure-
ment techniques and spatial and temporal resolutions. Although many datasets have 
global coverage, they vary considerably in their spatial accuracy and suitability for 
local applications. We recommend that researchers carefully consider the strengths 
and limitations of alternative data sources with a particular focus on the spatial and 
temporal scales of the data relative to the specific organisms and processes of interest. 
Research that addresses the sensitivities of analytical results and model predictions 
to alternative data sources can provide additional guidance to inform these decisions. 

Keywords Climate and weather · Land cover and land use · Geographic 
information systems · Remote sensing 

7.1 Introduction 

The field of planetary health addresses myriad interconnections between global envi-
ronmental change and the health of humans, animals, and the ecosystems they inhabit 
[1]. It shares this conceptual foundation with related interdisciplinary fields such 
as One Health [2], EcoHealth [3], and GeoHealth [4]. All are based on a holistic 
framework that emphasizes the relationships between human health, the social envi-
ronment, the physical environment, and the non-human organisms that are hosts and 
vectors for disease-causing pathogens. Because of this breadth, there is a need for 
diverse sources of data to characterize multiple aspects of human and natural systems.
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Geospatial data that map the spatial patterns of relevant phenomena are particularly 
important for assessing spatial relationships and identifying hot spots with high risk 
of disease transmission. 

Vector-borne and zoonotic diseases are particularly sensitive to features of the 
physical environment that influence the reproduction, growth, and survival of vectors, 
hosts, and pathogens. Climate, weather, water, vegetation, and land use influence 
transmission cycles through their effects on vector and host habitats, pathogen devel-
opment and transmission, and human exposure to vectors [5–7]. To conduct research 
on these diseases and translate the results into applications, it is essential to measure 
the relevant environmental variables. Accurate and timely data are needed to test 
hypotheses about drivers of disease transmission, develop maps of infectious disease 
risk based on environmental factors, and forecast future disease risk resulting from 
changes in weather and climate. Even when the research is focused on other ques-
tions, such as the effectiveness of public health interventions, it is still necessary to 
control for background effects of environmental variation on spatial and temporal 
patterns of disease transmission [8]. 

These environmental factors are heterogeneous at multiple spatial and temporal 
scales. Broad climate gradients vary geographically with latitude and elevation and 
change gradually over decades. Within a given climate, weather fluctuates continu-
ously and exhibits diurnal, seasonal, and interannual cycles. More localized patterns 
related to vegetation, topography, and human land use vary at spatial scales from 
hundreds of meters to hundreds of kilometers and change over time scales from years 
to decades. These landscape features create microclimates that differ considerably 
from the broader macroclimate, and these local conditions can facilitate disease trans-
mission even when the broader macroclimate is unsuitable [9, 10]. When selecting 
the environmental data for a planetary health application, it is essential to under-
stand the scales of environmental measurements and match them with the specific 
ecological and epidemiological processes of interest. 

There are numerous geospatial data products that characterize a variety of environ-
mental characteristics. Many of these products are updated regularly and are available 
at continental to global extents, providing opportunities for widespread use in plan-
etary health. However, the underlying data are collected over a wide range of spatial 
and temporal scales. Measurement techniques and the resulting accuracies also vary 
among data products, as do the techniques used for spatial interpolation and filling of 
data gaps. All of these factors can affect inferences about environment-disease rela-
tionships and the accuracy of predictive models based on these relationships. The goal 
of this chapter is to summarize the main environmental data sources that have been 
used in planetary health applications related to vector-borne and zoonotic diseases. 
Strengths and limitations of various data products are highlighted and emerging 
trends are discussed.
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7.2 Meteorological Data 

Ground-based meteorological stations provide in situ observations of weather, and 
long-term summaries of these data are the basis for measuring climate and tracking 
climate change. Standard variables monitored at weather stations include air temper-
ature, precipitation, humidity, atmospheric pressure, wind speed, and solar radiation. 
A critical objective in designing and siting weather stations is ensuring consistent 
observations that can be compared over time and between different locations [11]. 
Meteorological stations are therefore located in open areas where measurements are 
not influenced by buildings or tall vegetation. Instruments are enclosed to protect 
them from direct solar radiation, condensation, and precipitation while allowing 
sufficient ventilation to facilitate airflow over the sensors. Because of the expense 
of installation, equipment maintenance, and data curation, meteorological stations 
have historically been operated by government agencies [12]. However, volunteer 
observers are also an important part of the enterprise through programs like the 
National Weather Service (NWS) Cooperative Observer Program, and the avail-
ability of low-cost digital home weather stations has allowed private citizens to 
provide crowdsourced weather observations [13]. 

Station data are typically regarded as the gold standard for near-surface observa-
tions of weather and climate [14]. However, the types of instruments, frequencies 
of measurements, and completeness of the resulting data all vary between stations 
and over time. In general, high-income countries have well developed weather moni-
toring systems with higher densities of stations and more technologically advanced 
equipment and data infrastructure than lower-income countries in the Global South 
[15]. Even in countries with highly resourced weather monitoring infrastructures, 
most of the places where disease transmission occurs are located relatively far from 
extant weather stations. Thus, an important issue is determining the degree to which 
distant weather stations are representative of the environments that directly influence 
disease transmission cycles. 

One way to obtain more spatially precise estimates of local weather and climate 
is to interpolate the point data collected at meteorological stations (Fig. 7.1). This 
approach involves predicting meteorological variables at unsampled locations based 
on the spatial pattern of nearby measurements. In some cases, ancillary variables 
that are strongly associated with climate gradients, such as elevation, are incorpo-
rated to increase the accuracy and precision of local measurements. Commonly used 
techniques include various types of regression, kriging, self-organizing maps, and 
thin-plate splines [16–18]. In most cases, data users do not need to carry out this 
interpolation themselves, as there are many free gridded weather and climate prod-
ucts produced by various institutions. Meteorological variables can also be extracted 
from reanalysis data sets, which are generated using data assimilation methods that 
combine multiple sources of historical weather data with numerical weather models 
[19].

Although many of these products appear similar, there are underlying differences 
in the methods used to generate the data and the characteristics of the resulting
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Fig. 7.1 Comparison of two temperature datasets for north Georgia, USA, in June 2020. Left: 
PRISM interpolated monthly maximum near-surface air temperature (4 km cell size). Right: MODIS 
Aqua daytime land surface temperature 8-day composite from June 10–17 (1 km cell size)

meteorological grids that can influence results when they are used for planetary health 
applications [20, 21]. Gridded meteorological and climate data vary considerably in 
their spatial and temporal scales. For example, the University of East Anglia Climate 
Research Unit (CRU) datasets provide global historical monthly time series and 
climatologies at a grid cell size of 0.5° (approximately 55 km) [22]. The Climate 
Hazards Group Coupled Infrared Precipitation with Stations (CHIRPS) [23] and 
Temperature with Stations (CHIRTS) [24] datasets combine interpolated station data 
with satellite estimates of precipitation and land surface temperature to produce 
daily and monthly estimates at a much smaller grid cell size of 0.05° (approximately 
5.5 km). Other downscaled climate data products like WorldClim [25] and Chelsa 
[26] use high-resolution elevation data to downscale climate grids to a cell size of 
30 arc seconds (approximately 1 km). 

Differences in the methods used for interpolation and downscaling lead to varia-
tions in the meteorological grids that can influence results when they are used for plan-
etary health applications [19, 20]. There are also trade-offs between dataset attributes 
such as grid cell size, frequency of measurement, and the time required to process the 
data and make them available. In the United States, the Parameter-Elevation Regres-
sions on Independent Slopes Model (PRISM) climate dataset provides monthly 
meteorological data at a spatial resolution of 800 m [27]. In contrast, the National 
Land Data Assimilation System (NLDAS) forcings dataset provides many of the
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same meteorological variables on a 30-min time step with a latency of several days, 
but the grid cell size is 0.125° (approximately 14 km) [28]. The GridMET dataset 
combines these two data sources to provide gridded meteorological variables at a 
spatial resolution of 4 km and a daily time step [29]. 

7.3 Satellite Vegetation Indices 

Earth-observing satellites are another source of geospatial environmental data that 
can be used to predict spatial and temporal patterns of infectious disease transmission 
[30–32]. Unlike the point-level data obtained from weather stations, satellite images 
provide spatially continuous measurements over large areas of the Earth’s surface 
and are repeated at intervals ranging from days to weeks. They are fundamentally 
different from weather station data in that they typically measure conditions on the 
land surface, not in the near-surface atmosphere. The most commonly used satellite 
remote sensing data are observations of reflected solar radiation in the visible and 
infrared wavelengths. These data are measured as radiance or reflectance in one or 
more spectral bands, where each band encompasses a specific range of wavelengths. 
These bands are then used to calculate spectral indices that characterize physical 
properties of the Earth’s surface. 

The most common spectral index is the normalized difference vegetation index 
(NDVI, Fig. 7.2), which measures green vegetation using red and near infrared spec-
tral bands [33]. In most cases, vegetation greenness itself is not a proximal driver of 
disease transmission. However, the NDVI index is highly sensitive to meteorological 
factors such as temperature and precipitation [34]. In temperate environments, NDVI 
changes in response to vegetation greenup in the spring and senescence in the fall and 
can provide information about timing and length of disease transmission seasons [35, 
36]. In water-limited environments, NDVI is sensitive to rainfall (Fig. 7.3) and can be 
an indicator of water availability and drought [37]. Several variations of the NDVI 
have been developed to improve greenness estimates in particular situations. For 
example, the enhanced vegetation index (EVI) was developed to mitigate issues with 
index saturation in dense forests [38], and the soil-adjusted vegetation index (SAVI) 
was designed to correct for effects of soil brightness in areas with low vegetation 
cover [39].

A major advantage of NDVI is that the necessary data are widely available over 
long time periods for nearly every location on Earth. The NDVI can be calculated 
using data from a variety of satellite sensors, which provide data at different spatial 
and temporal scales. The earliest applications of satellite imagery for research on 
vector-borne diseases involved the Advanced Very High Resolution Radiometer 
(AVHRR), which has been operational on United States National Oceanic and Atmo-
spheric Administration (NOAA) weather satellites since 1981 and provides daily data 
at pixel sizes of 1000–4000 m [40, 41]. The more recent MODIS sensor, on board the 
National Aeronautics and Space Administration (NASA) Terra and Aqua Satellites,
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Fig. 7.2 Normalized difference vegetation index (NDVI) for part of the Amhara region of Ethiopia 
on May 1, 2019. The index was calculated using MODIS BRDF-Adjusted Reflectance Data (500 m 
cell size). Locations with high vegetation greenness include irrigated agriculture (a), areas with 
high densities of tree cover (b), and high elevation zones (c)

has provided daily global NDVI data since 2000 at spatial resolutions between 250– 
1000 m. These data have been widely used to model infectious disease outcomes 
over relatively large areas when frequent measurement intervals are required [36, 
42]. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, carried 
aboard multiple NOAA satellites, also generates daily global estimates of NDVI at 
spatial resolutions between 500–1000 m and will provide continuity after the end 
of the MODIS mission. Data from the Landsat and Sentinel missions can be used 
to derive NDVI at spatial resolutions from 10-30 m with weekly revisit intervals. 
These data can be applied when higher-resolution environmental measurements are 
needed for more localized predictions of vector habitats, host habitats, and disease 
transmission risk [43]. 

Other advantages of using NDVI and related spectral indices to measure envi-
ronmental variability include the global availability of satellite imagery and the 
relatively high spatial resolution of the data compared to the grid size of interpo-
lated meteorological datasets [34]. However, NDVI also has important limitations 
as an environmental metric for planetary health. NDVI is an indirect environmental 
measure that is sensitive to multiple environmental factors and the ecological char-
acteristics of the observed vegetation. Therefore, the underlying mechanisms of the 
relationships between NDVI and disease risk can be obscured, and it is usually 
not possible to generalize across multiple ecosystems with different landscapes and 
vegetation. Another major challenge with NDVI is that the underlying visible and 
infrared imagery is affected by cloud cover [44]. This results in missing data, partic-
ularly in cloudy tropical regions, which must be imputed using gap filling techniques 
or otherwise accounted for in subsequent analyses.
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Fig. 7.3 Comparison of two gridded precipitation datasets that combine satellite estimates with 
ground station data for Ethiopia in March 2019. Top: IMERG (10 km cell size). Bottom: CHIRPS 
(5.5 km cell size)

7.4 Satellite Land Surface Temperature 

Satellite sensors can also measure emitted longwave infrared radiation, which 
provides information about the temperature of the Earth’s surface (Fig. 7.1). Land 
surface temperature (LST) is a characteristic of the topmost surface layer, which 
may be vegetation, soil, water, or human-built impervious surfaces depending on the 
land cover characteristics at a particular location [45]. Importantly, LST measured by 
satellites is not the same as the near-surface air temperatures (typically 2 m above the
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land surface) measured by meteorological stations and represented in gridded meteo-
rological data products. In meteorology, near surface air temperatures are sometimes 
referred to as simply “surface temperatures”, which can lead to confusion. 

LST and near-surface air temperature generally exhibit similar patterns of change 
over time, including diurnal and seasonal cycles as well as long-term trends [46]. At 
global and regional scales, LST and near-surface air temperature also follow similar 
spatial gradients with latitude and elevation. At more localized scales, LST and air 
temperature usually differ because of the effects of solar radiation, wind, and soil 
moisture [47]. For example, during the day a paved surface will be warmer than 
the air above it because it absorbs and re-radiates thermal energy, whereas well-
watered vegetation will be cooler because of latent heat loss due to evapotranspira-
tion. At night when there is no incoming solar radiation, land surface temperature 
and air temperature are usually more similar than during the day [48]. Because of 
these differences, land surface temperature may not be a precise indicator of the 
air temperature experienced by organisms above the ground surface or underneath 
a forest canopy. However, LST is often a reliable proxy for relative variation in air 
temperature over space and time and can be particularly useful in situations where 
reliable in-situ measurements of localized temperature are not available. 

As with greenness indices, LST data are available from multiple sensors over a 
range of spatial and temporal resolutions. Daily daytime and nighttime LST estimates 
are available from MODIS [49] and VIIRS at a grid cell size of 1000 m [50]. Biweekly 
daytime observations at grid cell sizes of 60–120 m are available from the Thematic 
Mapper (TM), Enhanced Thematic Mapper (ETM+) and Thermal Infrared Sensor 
(TIRS) on board Landsat 4–5, 7, and 8–9 respectively [51]. The ECOsystem Space-
borne Thermal Radiometer Experiment on Space Station (ECOSTRESS) sensor 
provides LST measurements every 4–5 days at a grid cell size of 70 m [52]. All of 
these sources provide standard data products that estimate LST by combining atmo-
spherically corrected observations of emitted radiation in the thermal wavelengths 
with measurements of emissivity. These methods are complex and are outside the 
expertise of most end users in planetary health. However, it is important to recognize 
that LST estimates can vary depending on the specific method used [53]. Although 
LST measurements are subject to missing data from cloud cover, the thermal wave-
lengths used to measure LST are less sensitive to clouds than the shorter-wavelength 
visible and near infrared bands used to compute greenness indices. 

7.5 Satellite Precipitation Estimates 

In addition to the interpolated meteorological data products discussed previously, 
gridded precipitation estimates can also be derived from satellite observations [54]. 
Satellite precipitation estimates are based on visible/infrared data, passive microwave 
data, and active microwave (radar) data. Because convecting clouds are usually 
bright and cold, they can be detected indirectly from their reflectance in the visible 
and near-infrared wavelengths combined with temperature estimates from thermal
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infrared observations. Passive and active microwave observations provide more 
direct estimates because microwaves can penetrate clouds and are scattered by water 
droplets and ice particles in the atmosphere. The algorithms used to generate satellite 
precipitation estimates typically integrate satellite data from multiple sensors. 

Planetary health researchers can obtain satellite precipitation data from multiple 
products, each of which uses different input data sources and estimation algorithms 
(Fig. 7.3). These products often have relatively coarse grid cell sizes, with measure-
ments taken hourly and made available almost immediately. The satellite data can 
be combined with ground data from weather stations to improve the estimates. For 
example, the NASA IMERGE product provides global precipitation estimates at a 
10 km grid cell size at a time step of 30 min [55]. It includes “Early Run” and “Late 
Run” datasets that are based only on satellite data and have latencies of less than one 
day, and a “Final Run” dataset that incorporates station data from the Global Precipi-
tation Climatology Centre but has a latency of >3 months. Other widely-used satellite 
precipitation data products include Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks (PERSIANN) [56], Climate Predic-
tion Center Morphing Technique (CMORPH) [57], and the Global Precipitation 
Climatology Project (GPCP) [58]. 

7.6 Land Cover and Land Use Change 

Land cover encompasses the biophysical characteristics of the Earth’s land surface, 
including natural and cultivated vegetation, bare soil, human-built impervious 
surfaces, and water bodies. Land use describes human activities on the land surface, 
which can range from development and habitation to agricultural practices to nature 
preservation. Land cover and land use are often related. Locations with a high 
coverage of impervious surfaces are likely to be residential, commercial, or indus-
trial areas, and agriculture replaces natural vegetative cover with new vegetation 
consisting of crop plants. However, land cover is not always an indicator of land 
use. Forest cover, for example, may result from low-density human habitation, forest 
management for timber production, or land preservation as a park or conservation 
area. Because satellite remote sensing measures physical characteristics of the land 
surface, it can be used to generate gridded maps of land cover and monitor changes 
over time. In some cases, it is also possible to infer information about land use from 
these land cover characteristics. The resulting data products are often referred to as 
land cover and land use (LCLU) products. 

A large number of LCLU datasets are available at extents ranging from nations or 
regions to the entire globe. Coarse-grained global LCLU maps with a grid cell size 
of 500 m and an annual time step have been developed using data from the MOderate 
Resolution Imaging Spectroradiometer (MODIS) sensors on board NASA’s Aqua and 
Terra spacecraft, which began collecting data in 2000 [59].  The grid cells  are classi-
fied into relatively broad land cover types such as deciduous and evergreen forests, 
grasslands, shrublands, croplands, and built-up areas. Because of the relatively coarse
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grid size, many cells are not homogeneous, and instead contain mixtures of multiple 
LCLU types. An alternative approach is to map LCLU as continuous fields, where the 
proportion of each grid cell containing a particular LCLU is estimated. For example, 
the MODIS Vegetation Continuous Fields (VCF) product provides global data on 
the percentage of tree cover, non-tree vegetation cover, and non-vegetated cover in 
250 m grid cells [60]. The Copernicus Global Land Cover fractional cover layers 
(Fig. 7.4) similarly provide annual fractional cover estimates for a variety of LCLU 
classes such as trees, shrubs, herbaceous vegetation, crops, bare soil, and built-up 
areas at a grid cell size of 100 m [61]. 

Although these datasets provide information about general patterns of LCLU over 
space and time, planetary health applications often require more detailed information 
at finer spatial resolutions. For example, research on the habitat associations of vector 
and host species may require maps of land use practices such as irrigated agriculture 
or details about the sizes, shapes, and connectivity of habitat fragments. Satellite 
missions with finer grid cell sizes such as Landsat (30 m multispectral), Sentinel-1

Fig. 7.4 Maps of 2019 land cover in the savanna zone of northern Ghana from the Copernicus 
Global Land Cover dataset. Land cover of trees, grasses, built-up areas, and croplands is represented 
as percent cover within 100 m grid cells 
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(10 m synthetic aperture radar) and Sentinel-2 (10–20 m multispectral) provide data 
that can be used to generate higher-resolution LCLU products. Many of these datasets 
are available globally, including data on forest cover and change [62], croplands [63], 
and cities [64]. However, global availability does not mean that a dataset is well suited 
for every location across the globe as local accuracy can vary considerably in different 
locations. In many cases, datasets developed at the regional, national, or local scales 
may be more accurate and include more relevant LCLU characteristics than global 
products [65]. These data are often more challenging to discover and access than 
global products. 

7.7 Human Populations 

Human population density is a land use characteristic that is particularly impor-
tant for planetary health research and applications. Data on the human population 
is needed to calculate the population at risk for epidemiological rates such as inci-
dence and prevalence, and the number of susceptible humans is an important factor 
influencing the transmission patterns of many infectious diseases. The most common 
sources of human population data are national censuses, in which people are enumer-
ated within administrative units. Population characteristics can be summarized and 
mapped within polygons that outline the boundaries of these areas. Although these 
datasets are produced by individual countries, aggregated global populations datasets 
such as the Global Rural–Urban Mapping Project (GRUMP) and the Gridded Popu-
lation of the World (GPW) are also available (Fig. 7.5). These products are published 
as grids with cell sizes from 1–110 km, but the true spatial resolution of the data is 
still the administrative unit within which they were aggregated.

It is often desirable to have population data with a finer spatial grain so that urban 
and rural areas can be distinguished and population density can be estimated for indi-
vidual settlements or neighborhoods. A common method for generating finer-grained 
population data is the “top down” approach, in which census data are disaggregated 
from their administrative units to smaller grid cells using spatial information on land 
cover, land use, roads, and other factors that are expected to influence population 
density [66]. These variables are used to calculate a layer of gridded weights that are 
used to distribute the population within an administrative unit to reflect differences 
between densely populated urban areas and more sparsely populated rural locations. 
An alternative is a “bottom up” approach where high-resolution imagery to census 
individual dwellings are combined with local survey data to estimate population 
density at a high resolution [67]. The WorldPop project provides a global archive of 
population and other demographic data products generated using both top-down and 
bottom-up approaches [68]. LandScan is another widely used gridded population 
data product that has used multiple sources of satellite imagery and other spatial data 
to produce annual 1km2 global population grids from 2000 to the present [69].
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Fig. 7.5 Comparison of two population density datasets for Ghana in 2020. Left: Gridded Popu-
lation of the World Version 4, which is based on administrative boundaries used for census data 
collection. Right: WorldPop, which downscales census data based on land cover, roads, and other 
localized information

7.8 Surface Water and Hydrology 

Access to clean water is essential for human health, animal health, and agricultural 
productivity. However, water also provides habitat for vector and host species and 
facilitates the transmission of many disease-causing pathogens [70]. Thus, hydro-
logical data are critical for many planetary health applications. Water bodies can 
be mapped with satellite remote sensing along with other LCLU features, and most 
LCLU data products include a classification of permanent water bodies such as lakes 
and large rivers. Understanding how surface water varies over time is also essen-
tial. For example, flowing water is not a suitable habitat for vector mosquitoes, but 
large rivers can provide suitable standing water when their flows decline and leave 
isolated pools on their floodplains [6]. In flood-prone areas, rising waters are often 
contaminated by human and animal waste, exposing local populations to a variety 
of water-borne pathogens [71]. Droughts can also facilitate water-borne pathogen 
transmission when large groups of people congregate to use the few remaining water 
sources [72]. More generally, hydrological events like droughts and floods often 
trigger large-scale human movements and resettlements that facilitate long-distance 
movement of pathogens and provide novel opportunities for transmission. 

Several types of geospatial datasets can provide useful hydrological information 
for planetary health applications. Gridded elevation datasets are produced for many 
countries by government mapping agencies, and global elevation products derived 
from satellite observations are also available. At the most basic level, these data can
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be used to identify topographic features such as valley bottoms that are subject to 
flooding and may serve as locations for water-borne disease transmission or provide 
larval habitats for mosquitoes [73]. The topographic index, calculated as a function of 
slope angle and upslope drainage area, is an important input to dynamic hydrological 
models such as TOPMODEL that can be coupled with mechanistic models of water-
associated diseases such as fasciolosis [74]. At coarser grid cell sizes (~10 km or 
larger) Land Data Assimilations Systems (LDAS) combined gridded meteorological 
data with other environmental inputs to drive hydrological models that estimate 
evapotranspiration, soil moisture, and runoff. Various LDAS datasets with different 
spatial extents, grid cell sizes, and time steps are available, and these data have been 
used in a variety of disease applications [75–77]. 

Satellite observations, including passive sensors in the optical and infrared wave-
lengths and active remote sensing with synthetic aperture radar, can be used to detect 
and map open water. Surface water is highly variable in locations with pronounced 
wet and dry seasons, and individual observations are inadequate for characterizing 
these dynamics. Surface water data products such as the Global Surface Water 
Explorer [78] and the Global Surface Water Dynamics dataset [79] use time series of 
Landsat data to map the extent, seasonality, and long-term trends in surface water at 
30 m resolution for the entire globe. Global products frequently do not capture smaller 
water bodies that may serve as larval habitats for mosquitoes or sources of drinking 
water for humans and livestock. However, they can be used to provide training data 
for the development of more precise, local maps that include both large and small 
water bodies [80]. Identifying areas with high seasonal variation in water coverage, 
including impoundments, wetlands, floodplains, and irrigated areas, is often partic-
ularly important in planetary health. These can be identified by analyzing satellite 
data over multiple seasons and by incorporating topographic variables along with 
spectral indices [81, 82]. 

7.9 Synthesis and Conclusions 

Researchers and practitioners in planetary health have access to a diverse set of 
high-quality geospatial data products that characterize environmental factors rele-
vant to human health. Many of these products are global in extent and available at 
no cost, making them ideal for planetary health assessments and applications in low-
and middle-income where locally collected data are sparse. However, it is impor-
tant to recognize that a global dataset is not necessarily optimal for every location 
on the Earth [65]. Interpolated meteorological grids and classified LCLU maps have 
inherent error, and their accuracies can vary considerably among locations. Similarly, 
the environmental sensitivities of satellite vegetation indices and land surface temper-
ature will vary with the climatic and land surface characteristics in different areas. 
Before selecting a particular dataset for specific application, potential users should 
carefully examine the spatial and temporal patterns within their areas of interest to 
verify that important regional and local features are being captured. If this is not the
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case, then it may be necessary to develop bespoke data products that are optimized 
for the particular region and application [80]. 

Although planetary health studies frequently incorporate geospatial datasets char-
acterizing climate, LCLU, and human populations, they vary greatly in the specific 
data used and the manner in which they are applied. A recent systematic review of 
malaria mapping studies found that the most commonly used covariates were rainfall 
and temperature [83]. However, the individual studies used a variety of data sources, 
including ground station measurements, gridded meteorological datasets, satellite 
vegetation indices, land surface temperature, and satellite precipitation estimates. 
The degree to which different results are contingent upon differences in the under-
lying temperature and precipitation data are not well understood. In most cases, the 
rationale for using a particular source of environmental data is not stated, and deci-
sions are presumably based at least in part on familiarity with particular datasets and 
ease of data access and use. 

This chapter has focused on geospatial environmental data for planetary health 
applications related to vector-borne and zoonotic infectious diseases. However, 
geospatial information is also essential for other aspects of planetary health, including 
natural disasters, food systems and nutrition, and exposure to toxins and pollutants. 
Timely geospatial data for monitoring meteorological and hydrological variables is 
essential for monitoring droughts and providing early warning of the risk of food 
insecurity [84]. Exposure to air pollution is one of the most important global health 
risks [85], and satellite remote sensing is widely used to obtain spatially explicit 
measurements of various pollutants [86]. For example, satellite measurements of 
aerosol optical depth are widely used to estimate ground level concentrations of fine 
particulate matter generated by combustion of fossil fuels, dust storms and wildfires 
[87]. There is growing evidence that exposure to greenspace has a variety of health 
benefits for urban and suburban populations [88], and satellite-based measurements 
of greenness are commonly used to study these relationships [89]. Although this 
chapter does not address these topics in detail, many of the data sources that were 
highlighted in the context of vector-borne and zoonotic diseases are also relevant to 
these other aspects of planetary health. 

Looking forward, more studies on the local accuracies of commonly used geospa-
tial data products would provide evidence to support the choice of geospatial datasets. 
For example, an accuracy assessment of 20 global precipitation products in Ethiopia 
found that only three could adequately characterize the spatial extent and severity of 
historical drought events [90]. An accuracy assessment of multiple gridded climate 
datasets within the United States found that the most accurate dataset varied by ecore-
gion [20]. Additionally, comparative analyses of health outcomes based on environ-
mental data from multiple products can help identify the data that are most suitable for 
specific applications. A West Nile virus risk mapping study compared three predic-
tive models based on land cover and topography data, gridded climate data, and 
remotely sensed vegetation and moisture indices [91]. Overall accuracy was similar, 
but the resulting maps based on each dataset exhibited different spatial patterns. A 
combined model that incorporated variables from all three datasets had the highest 
overall accuracy. For species range predictions of European tick species, climate
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niche models based on an interpolated meteorological dataset had higher accuracies 
than models based on satellite observations of LST and NDVI from MODIS [92]. 
Further studies like these will contribute to a broader body of evidence to inform 
the selection of geospatial environmental datasets for planetary health research and 
applications. 
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