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Part I 
Environmental Quality Monitoring



Chapter 1 
Applications of Remote Sensing for Air 
Pollution Monitoring in Thailand: 
An Early Warning for Public Health 

Arika Bridhikitti 

Abstract There are also consistent findings on the adverse effects of air pollution 
on public health in Thailand. Small size particulate matter, or PM2.5, is the  most  
pronounced air pollutant during the haze crisis. PM2.5 often comes along with other 
polluted gases, including carbon monoxide (CO), oxides of nitrogen (NOx = NO + 
NO2), sulfur dioxide (SO2), ozone (O3), and volatile organic compounds (VOCs). 
This chapter presents various applications of remote sensing technology for air pollu-
tion monitoring, warning, and forecasting. These applications can help assess human 
exposure to air pollution and determine health risks associated with air pollution. 
The presentation is divided into four sections. The first section provides an overview 
of Earth Observing Satellites and current remote sensing technology for air pollu-
tion observations. The second section is on assessing the magnitude of atmospheric 
pollutants and human exposure levels from remote sensing. The third section is on air 
pollution source identification using remote sensing technology. Finally, the fourth 
section discusses the possibility of employing satellite information for forecasting 
haze episodes as the early warning tool. The presentation is based on the recent 
deployment of remote sensing technology for air pollution monitoring, especially 
reported for the cases of Thailand and the Southeast Asian region. 

Keywords Satellite · Remote sensing · Air quality forecast · Air pollution ·
Particulate matter · Southeast Asia
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1.1 Introduction 

Air pollution in Thailand has become public attention nowadays. In the dry season 
from December to March, the pollution is often reported at harmful levels, exceeding 
the national air quality standard. Pinichka et al. [1] studied the burden of disease 
attributed to air pollution and found that NO2 and PM2.5 could account for 10% 
and 7.5%, respectively, of the disease burden for all mortality. The PM2.5 could 
also contribute to 16.8% of lung cancer cases and 14.6% of cardiovascular cases, 
whereas the NO2 was responsible for 7.8% of respiratory mortality [1]. Jenwith-
eesuk et al. [2] also showed evidence on PM2.5-induced risk of colon cancer, with 
15% risk increased for every ten micrograms PM2.5 m−3 increased. Furthermore, 
US researchers have strong evidence showing that short-term exposure to PM2.5 

could significantly increase the risk of COVID-19 cases and death [3]. Not only the 
small-size aerosol, but the coarse-size particulate matter (PM10) could also suddenly 
increase in hospital admissions as found a strong association between the PM10 level 
and the number of cardiovascular and respiratory admission in Bangkok, the most 
populated city in Thailand [4]. 

The Thai Government set up several policies and solutions to tackle haze pollu-
tion. The haze mitigation policy includes inspection and maintenance of vehicles, 
mandating higher quality fuel, and balancing productivity and environmental conser-
vation in agricultural production [5]. During the haze episode, the policy relied on 
single command-and-control, framed by the central and provincial government [6]. 
The policies include prohibiting biomass burning, applying water sprays in public 
areas, roadside inspection on vehicle exhaust emissions, etc. [7]. Moran et al. [5] 
criticized that key issues of unsuccessful haze abatement in Thailand are low public 
participation and poor enforcement of laws or regulations. Scientists recommended 
policy outlines to minimize health effects from air pollution in the short term and elim-
inate the haze in the long run. The policy outlines included improvement of capacities 
to monitor, assess source inventory, and forecast air pollution, probably by incorpo-
rating applications of satellite retrievals in combination with ground measurements 
to fill spatial monitoring gaps [7, 8]. 

Satellite technology is widely applied for environmental monitoring since it 
provides spatial advantages for understanding the atmosphere and the land surface at 
the corresponding timeframe. Since air pollution is mainly released from surface 
activities, satellite observations could be helpful to provide strong connections 
between hot spots and pollution plumes or between urban land cover and heat island 
zone. The satellites could have multiple sensors onboarded, and each sensor was 
designed to capture specific radiative bands with certain viewing angles. Many Earth 
Observing Satellites detect solar reflectance and long-wave radiation from the Earth. 
These electromagnetic spectrums are appropriate for observing Ozone, Aerosol, 
Hydrocarbons, Greenhouse Gases, and Water vapor in the atmosphere. Some satel-
lite sensors, such as Multiangle Imaging Spectroradiometer (MISR) and Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP), provide aerosol optical prop-
erties, beneficial for aerosol source identification. Furthermore, ground-based remote
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sensing, such as Aerosol Robotic Network or AERONET, is typically used to vali-
date satellite products. It can provide scattering and extinction properties of the 
atmospheric aerosols with a high temporal resolution by tracking direct sun and sky 
radiances. 

1.2 Overview Earth Observing Satellites and Current 
Remote Sensing Technology for Air Pollution 
Observations 

1.2.1 Earth Observing Satellites 

By observing the Earth at the top of the atmosphere, satellite remote sensing can 
provide aerosol and gaseous compositions in the total atmospheric column basis. 
With approximately 1 μm and smaller, the aerosol highly scatters the energy spectrum 
in the visible to the near-infrared band from 300 to 1,000 nm. In addition, some types 
of aerosol absorb energy. The absorbing aerosols include black carbon (absorb both 
solar and thermal radiation) and mineral dust (scatter sunlight but absorb thermal 
infrared) [9]. The spectrophotometer is designed to observe solar radiation, and it can 
measure the extinction (both scattering and absorption) of the solar beam attributed 
to aerosol, called aerosol optical depth (AOD). Several satellite sensors have been 
previously employed for the studies of air pollution monitoring and assessment in 
Thailand. The summary of those sensors is detailed in Table 1.1.

Among the satellites, A-train (afternoon train) satellite constellation can be 
advantageous for atmospheric observation due to its combining multiple satellite 
remote sensors to better understand atmospheric and land dynamics. The constel-
lation recently consisted of four satellites, orbiting in sequences, which are OCO-2 
(launched in 2014), GCOM-W1 (since 2012), AQUA (since 2002), and AURA (since 
2004) [10]. The satellites cross the equator around 1:30 PM local time with a 16-day 
repeating cycle. 

The OCO-2 stands for Orbiting Carbon Observatory-2. The primary mission of 
OCO-2 is to quantify atmospheric carbon dioxide by its absorption of the visible 
band [11]. The GCOM-W1 stands for the Global Change Observation Mission-
Water Satellite 1. It can explain the water cycle and climate change by observing the 
atmosphere and water bodies [12]. The GCOM-W1 is onboard with the Advanced 
Microwave Scanning Radiometer 2 (AMSR2), detecting microwave radiated from 
the ground, the water surface, and atmospheric gases, primarily greenhouse gases 
and water [12]. AQUA is designed to provide information about the Earth’s hydro-
sphere. Furthermore, AQUA also enables the observation of aerosol via Moderate 
Resolution Imaging Spectroradiometer (MODIS) instrument and greenhouse gases 
via the Atmospheric Infrared Sounder (AIRS) along with the Advanced Microwave 
Sounding Unit (AMSU-A). AURA consists of four instruments to provide compre-
hensive studies on stratospheric and tropospheric compositions, including ozone,
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water, greenhouse gases, halogen compounds, oxides of nitrogen, carbon monoxide, 
and aerosols [13]. The AURA sensors include the High Resolution Dynamics Limb 
Sounder (HIRDLS), the Microwave Limb Sounder (MLS), the Ozone Monitoring 
Instrument (OMI), and the Tropospheric Emission Spectrometer (TES) [13]. 

Besides the AQUA satellite, the MODIS instrument is also onboard the TERRA 
satellite to provide a higher temporal resolution of the atmospheric aerosol. The 
TERRA passes to tropic at around 10.30 AM (ascending) and 10.30 PM (descending), 
whereas the AQUA is around 1.30 PM (ascending) and 1.30 AM (descending). 
Thus, their combined product can be provided four times daily. Even though aerosol 
observation can only perform in the daytime due to the requirement of light scattering, 
the nighttime satellite imagery can provide helpful information on socioeconomic 
parameters, such as population density and gross domestic product, and greenhouse 
gas emissions [14]. Thus MODIS product quite temporally advantages over other 
instruments and is universally employed for ground-level air pollution monitoring. 

1.2.2 Ground-Based Remote Sensing 

With currently more than 1,000 stations (see Fig. 1.1) and the number is growing, 
the AERONET (Aerosol Robotic Network, https://aeronet.gsfc.nasa.gov/) provided 
good spatial coverage of aerosol and cloud in the atmosphere. It is widely used 
as ground truth measurement for satellite retrievals of aerosol around the world. 
Currently, a total of 21 AERONET sites are based in Thailand. The AERONET 
program was established by the National Aeronautics and Space Administration 
(NASA), and LOA-PHOTONS, the French National Observatory for Aerosol, has 
been operated for more than 25 years. The AERONET aerosol products are measured 
by sun and sky photometers to measure direct and diffuse radiation. Details on the 
AERONET products are in Table 1.2. The aerosol products include spectral aerosol 
optical depth (AOD) and aerosol inversions, which provide aerosol microphysical and 
radiative properties. In parallel, the NASA Micro-Pulse Lidar Network (MPLNET: 
https://mplnet.gsfc.nasa.gov/) operates in conjunction with the AERONET to provide 
vertical integration structures of aerosol and cloud. The MPLNET project started with 
full operation in 2000. The MPLNET has three active sites in Thailand—Princess 
Sirindhorn Astro Park in the North, Silpakorn University in the Central, and Songkhla 
Regional Observatory in the South. Nonetheless, the current aerosol model cannot 
sufficiently describe vertical aerosol extinction measured during field campaigns over 
the Indian Ocean [15].

https://aeronet.gsfc.nasa.gov/
https://mplnet.gsfc.nasa.gov/
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Fig. 1.1 AERONET sites (AERONET, 28 August 2021, retrieved from https://aeronet.gsfc.nasa. 
gov/) 

Table 1.2 Products from direct sun measurements and aerosol optical properties from sun-sky 
photometers inversion products acquired from AERONET (https://aeronet.gsfc.nasa.gov/new_web/ 
data.html) 

AERONET products Unit Range 

Direct sum measurement products 

Aerosol optical depth (AOD) Levels 
1.0, 1.5, and 2.0, AOD (λ) 

unitless Level 1.0 unscreened 
Level 1.5 cloud screened 
Level 2.0 quality assured 

Angstrom parameter, AE at 
440–870 nm 

Unitless 

Total water vapor at 940 nm cm3/cm2 or g cm−2 

Aerosol inversion products 

Volume particle size distribution, 
dV(r)/dlnr 

μm3/μm2 0.05 μm ≤ r ≤ 15 μm 

Volume concentration, Cv μm3/μm2 For total, fine, and coarse aerosol 
modes 
Note: the fine and coarse separation 
point is the minimum within 0.439 
to 0.992 μm 

Volume median radius, rv (mean 
logarithm of radius) 

μm 

Standard deviation from rv μm 

Effective radius, reff μm 

Real-part refractive index, n(λ) Unitless λ = 440, 675, 870, 1,020 nm 
83 scattering angles, ~7o ≤ Θ ≤ 
~170o

Imaginary-part refractive index, 
k(λ) 

Unitless 

Single scattering albedo, SSA(λ) Unitless 

Phase function for each scattering 
angle, P(Θ, λ) 

Unitless 

Asymmetry parameter for each 
phase function, cos(Θ) 

Unitless

https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/new_web/data.html
https://aeronet.gsfc.nasa.gov/new_web/data.html
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1.3 Assessing Magnitude and Extents of Atmospheric 
Pollutants and Human Exposure Level from Remote 
Sensing 

1.3.1 Tropospheric Ozone O3 and Its Precursors 

Once the tropospheric O3 is generated, it can disintegrate into OH-radical. Though 
both the O3 and OH-radical have short-lived in the environment, they have high 
oxidation potential, which can harm the soft tissues of plants, animals, and humans. 
Several previous studies confirmed that the O3 could significantly increase human 
mortality [20–22]. The ozone is not directly emitted from the sources. It is the product 
of the photochemical reaction, in which the precursors mainly are NOx and non-
methane volatile organic compounds. 

In Southeast Asia, biomass burning is the key source of O3 and its precursors 
[23, 24]. Mekaumnuaychai et al. [25] and Yimlamaid et al. [26] employed satel-
lite retrievals to assess the ozone precursors across Thailand. They found that the 
formaldehyde (HCHO) retrievals from the OMI/AURA satellite may not well reach 
the ground level, but the NO2 retrievals from OMI/AURA and other satellites can 
represent the ground levels well in dry seasons [25, 26]. Furthermore, the UV radia-
tion product of OMI can infer surface UV radiation with aerosol correction [27, 28]. 
The UV radiation provides energy driving photochemical reaction for O3 generation 
in the troposphere. However, since the OMI provides total-column-based O3, it may  
not sufficiently represent the ground levels. Tropospheric O3 can be estimated by 
subtracting the OMI total column ozone with the MLS stratospheric ozone, which 
both OMI and MLS sensors are onboard the AURA satellite [24]. Thus, the data 
acquired from the OMI/MLS is recommended for assessing variation in tropospheric 
ozone and suggesting mechanisms for surface ozone control. 

1.3.2 Aerosol Loading 

Aerosol optical depth (AOD) is one of the aerosol optical products retrievable from 
satellites with visible to near-infrared band detectors. Satellite remote sensing is 
advantageous for studying long-term aerosol trends in regional to global scales [29]. 
Mehta et al. [29] employ satellite retrievals (both MODIS and MISR-Multiangle 
Imaging Spectroradiometer) for studying regional trends of aerosol magnitude. 
Their finding showed a noticeable increase in annual AOD over Southeast Asia 
from September to May, covering post- and pre-monsoon season [29]. The CSR, 
United States, attempts to predict air quality from MODIS AOD observation and to 
isolate local sources from the long-range transport sources using ground observation 
networks [30]. Though AOD is strongly affected by the amount of aerosol scattering 
and absorption, the AOD may not reach the ground level. The performance of the
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new MODIS collection (6.1) aerosol products is spatially and temporally dependent 
[31]. The performance over the Asia continent is low, with less than 62% of the data 
sampling falling within the confidence intervals [31]. It could be likely due to the 
complex geography and various aerosol mixtures from natural and anthropogenic 
sources [31]. 

In northern Thailand, MODIS AOD was moderately-to-poorly correlated with 
ground-observed PM10—R2 = 0.42 during forest fire episodes [32] and R2 = 0.21 
for a normal episode [33]. Scientists and engineers have attempted to improve ground-
level PM2.5 prediction algorithm from satellite observation by developing empirical 
formula using multiple predictors, which is satellite-based AOD, land use, and mete-
orological variables, etc. With ground-based meteorological correction, the MODIS 
AOD at about 10:30 AM correlates better with the hourly ground-level PM2.5 and 
PM10 using multiple linear regression (R2 = 0.74), based on the study in Chiangmai, 
Thailand [33]. 

Since satellite retrievals are based on the pollutants’ electromagnetic scattering 
and extinction properties in the atmospheric layer, they may not promise with the 
ground-based measurements using gravitational methods or chemical analytical 
methods. Nonetheless, satellite retrievals could be well responding to the ground 
during the high aerosol episode. Sayer et al. [34] studied corresponding between the 
MODIS collection 6 AOD and the AOD from ground-based sunphotometer measure-
ments from Aerosol Robotic Network (AERONET) in the study at Doi Ang Khang, 
remote forest area in NW Thailand during the biomass burning episode. They found 
a strong correlation of R2 0.93−0.94 [34]. The AERONET sun photometer employs 
the same approach like that of the satellites, considering aerosol optical properties. 
The correlations for board arrays of land covers and aerosol loadings were slightly 
declined as found to be R2 of 0.81 for MODIS AOD and AERONET AOD and 0.68 
for VIIRS/Suomi NPP AOD and AERONET AOD across the Southeast Asia region 
[35]. 

1.3.3 Biomass Burning Smoke 

Biomass burning releases smoke plumes containing carbonaceous aerosol, CO2, CO,  
NOx, and other uncompleted burning products to the atmosphere [36]. The emission 
of biomass burning smoke in the Southeast Asian region is globally concerned in 
terms of its magnitude and its contribution to climate change [37]. The biomass 
burning contributes to 49% of total PM10 in Southeast Asian mainland, and the 
highest contribution was from Laos (73%), followed by Myanmar (69%), Cambodia 
(59%), Thailand (45%), China (33%) and Vietnam (31%) [37]. In Thailand, a total 
of 117.7 Mt of rice residue was left on the field after being harvested, and 15% of the 
amount was later burnt. The burning emitted approximately 2.19 Mt of combined air 
pollutants, and 30% of the amount was from the lower Northern Thailand, followed 
by central Thailand (26%) and western Thailand (17%) [36].
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Satellite observations can provide reasonable estimates of smoke magnitude as 
found in the studies in northern Thailand. Sukitpaneenit and Oanh [32] monitored 
forest fire smoke using MODIS and Measurement of Pollution in the Troposphere 
(MOPITT) onboard TERRA satellite. They found that the MODIS AOD can capture 
variation in ground-measured PM10 by ~42% using a linear regression model, 
whereas the MOPITT CO can explain the ground-level CO by ~35%. Lalitaporn 
and Boonmee [38] employed tropospheric NO2 column from SCIMACHY, OMI, 
GOME-2A, and GOME-2B sensors. They found that high levels of the NO2 corre-
sponded well with ground-level NO2 (R2 = 0.29 to 0.66) and a number of biomass 
burning hot spots. 

1.4 Air Pollution Source Identification Using Remote 
Sensing Technology 

1.4.1 Aerosol Optical Properties 

Radiative sensors can sense atmospheric aerosols through their scattering and absorp-
tion of incoming solar radiation. With these optical properties, the aerosols can 
influence the Earth’s radiative balance, either negative effect (cooling) or positive 
effect (warming), depending upon their composition, shape, size, and mixing state 
[9]. Absorbing aerosols include black carbon. The aerosol optical properties can be 
expressed from the single scattering albedo (SSA), aerosol optical depth (AOD), and 
Angström exponent (AE), etc. The SSA is the ratio of scattering coefficient to the 
extinction coefficient (combine scattering and adsorption effects). The AOD refers 
to the magnitude of aerosol by representing the depth of the direct solar beam lost 
when traveling through the aerosol layer [9]. AE is the log-slope exponent of the 
spectral aerosol optical depth between two wavelengths [39]. 

Recently, scientists have tried to simulate aerosol properties using various climate 
and aerosol models. Takemura et al. [39] employed an aerosol transport model 
coupled with an atmospheric general circulation model to simulate the SSA of 
primary aerosols—carbonaceous (organic and black carbons), sulfate, and soil dust 
and sea salt aerosols. Age aerosol with internal mixing (among the same type of 
aerosols) or external mixing (among different types) could exhibit lower SSA since its 
increasing adsorption efficiency. In contrast, the scattering efficiency is less affected 
by the mixing [39]. Different aerosol types can be distinguished by knowing the 
aerosol optical properties, as shown in Tables 1.3 and 1.4. Clean oceanic sea salt 
exhibits high light scattering (SSA of ~0.99, (Mallet et al. (2004) cited in [40]) and 
low light absorption (imaginary-part reflective index <0.001) [41]. Long-range trans-
port urban/industrial aerosol from East Asia to Southeast Asia also exhibited high 
SSA of >0.95 (at 440 nm) and coarser fine mode size of >0.2 μm [42].  The high SSA  
could be due to the aerosol’s hygroscopic growth and secondary aerosol formation 
along the air trajectory. Nonetheless, long-range transport of the polluted air masses
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from NE Asia and SE Asia to the remote island, Mauna Loa in HAWAII, did not 
exhibit high scattering properties, suggesting its hydrophilic properties and insignif-
icant secondary aerosol formation [43]. From January to April, the aerosol exhibited 
a lower SSA of approximately 0.90, a higher refractive index, and smaller fine-mode 
size, suggesting biomass burning smoke [42]. The urban aerosol exhibited a mean 
SSA of approximately 0.90 (440 nm) or lower. The coarse-mode aerosol, possibly 
road dust or soil dust, played a role from October to January when seasonal winds 
were strongest [42].

Scientists try to understand the aerosol optical properties and employ the knowl-
edge to indicate the potential origins of the aerosols. There are many previous studies 
employing satellite retrievals to identify sources of aerosols, as the detail was given 
in the following sections. 

1.4.2 Local Biomass Burning 

Biomass burning is the key source of haze pollution in the Southeast Asia continent, 
including Thailand. Agricultural residue burning for land preparation occurs regu-
larly before starting cropping season in May [5, 57]. In northern Thailand, forest fires 
can often be found with agricultural burning resulting in poor air quality in remote 
areas, such as Doi Ang Khang [34]. 

Remote sensing can be used to identify biomass burning sources of air pollution by 
its association among fire hotspots, air pollutant loading, and land cover. Kamthonkiat 
et al. [58] developed an empirical model using Landsat 8 imagery to estimate ground-
measured PM10. Their finding showed that the model is highly correlated with land 
use/cover, primarily agricultural land and forests, and fire hotspots. They conclude 
significant contributions of biomass burning in the air pollution in Nan, Thailand 
[58]. 

Consistently, the BASE-ASIA in 2006 and the 7-SEAS in 2010–13 campaigns 
were conducted over northern Southeast Asia by collaboration among the South-
east Asia START region center, NASA, and the University of Hawaii to understand 
aerosol and cloud properties in this region using satellite and in-situ measurements 
[59]. Based on the BASE-ASIA deployment over Thailand, Myanmar, and Laos, 
the result shows a good correlation (R2 = 0.66) between the MODIS fire activity 
and MODIS AOD, suggesting a significant smoke from forest fires and agricultural 
crop burning [59]. Furthermore, Li et al. [52] presented comprehensive biomass-
burning aerosol properties measured at a remote site of Phimai, in NE Thailand. The 
aerosol had dominant carbonaceous components and substantial loadings of SO4 

2−, 
NH4 

+, NO3
−. The aerosol also had hygroscopic properties, enhancing aerosol light 

scattering and hygroscopic growth [59].
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Table 1.4 Complex refractive indices of the aerosols reported in the literature 

Aerosol type Real (550 nm) Imaginary (550 nm) Reference 

Water soluble 1.53 0.006 [41] 

Dustlike 1.53 0.008 

Soot 1.75 0.44 

Oceanic 1.381 4.26 × 10–9 

Clean continental (water 
soluble 48% + dustlike 
52%) 

1.53 0.00704 

Urban (water soluble 
97.5% + dustlike 0.3% + 
soot 2.2%) 

1.535 0.0156 

Maritime (water soluble 
95% + Oceanic 5%) 

1.388 0.0003 

Sea salt and aged sea salt 
(Cl + Na + S > 85%) 

1.53 – [55] 

Ammonium sulfate (S > 
85%) 

1.53 – 

Silicates (Al + Si > 60%) 1.53 – 

Metal oxides/hydroxides 
(Al, Ti, Mn, Fe, Cu, Ni, 
Zn, Pb > 80%) 

2.5 0.05 

Calcium sulfate (Ca > 
30%, S > 40%) 

1.53 – 

Carbonates (Ca > 60%, S 
< 20%) 

1.53 – 

Soot 1.5 0.47 

Biological (minor 
elements: Na, Mg, P, S, 
Cl, K, Ca) 

1.4 – 

Carbon/sulfate mixed 
particles (S > 15%) 

1.5 0.05 

Rest of the carbon-rich 
particles 

1.53 – 

Soil dust, sea salt in 
Boreal forest, N Europe 

1.518 ± 0.067 0.02 ± 0.018 [49] 

Soil dust, sea salt, brown 
carbon (BC + OC) from 
wood burning in winter 
and secondary reaction in 
summer in Boreal forest, 
N Europe 

1.484 ± 0.054 0.025 ± 0.018

(continued)
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Table 1.4 (continued)

Aerosol type Real (550 nm) Imaginary (550 nm) Reference

Biomass burning aerosol 
(oxalic acid 0.6 μg m−3, 
KNO3 0.8 μg m−3, 
K2SO4 1.3 μg m−3, 
Ammonium sulphate 
2.3 μg m−3, 
Levoglucocsan 
1.4 μg m−3, EC  
5.6 μg m−3, OM  
24.7 μg m−3) 

1.54 0.013 [56] 

Organic matters 1.4 – 

Elemental carbon 1.87 0.22 

Long-range transport 
urban/industrial aerosol 
(at 440/675/870/1020 nm) 

1.403/1.416/1.423/1.418 
at Bac Giang, Vietnam 
1.402/1.416/1.423/1.420 
at Mukdahan, NE 
Thailand 
1.409/1.423/1.432/1.434 
at Pimai, NE Thailand 

0.007/0.006/ 0.005/0.005 
at Bac Giang, Vietnam 
0.007/0.007/ 0.007/0.007 
at Mukdahan, NE 
Thailand 
0.006/0.006/ 0.005/0.005 
at Pimai, NE Thailand 

[42] 

Biomass burning smoke 
(at 440/675/870/1020 nm) 

1.428/1.448/1.462/1.458 
at Bac Giang, Vietnam 
1.433/1.448/1.454/1.451 
at Mukdahan, NE 
Thailand 
1.423/1.437/1.450/1.445 
at Pimai, NE Thailand 
1.413/1.426/1.437/1.433 
at Silpakorn U., C 
Thailand 

0.014/0.011/ 0.010/0.009 
at Bac Giang, Vietnam 
0.014/0.013/ 0.012/0.013 
at Mukdahan, NE 
Thailand 
0.014/0.013/ 0.011/0.011 
at Pimai, NE Thailand 
0.012/0.011/ 0.011/0.012 
at Silpakorn U., C 
Thailand 

Local urban/industrial 
aerosol (at 
440/675/870/1020 nm) 

1.469/1.480/ 1.487/1.480 
at Silpakorn U., C 
Thailand 

0.019/0.017/ 0.017/0.017 
at Silpakorn U., C 
Thailand

1.4.3 Urban Pollution 

In urban areas, the source contributions cannot be easily identified due to multiple 
sources, complex ground reactions facilitated by urban heat island characteristics. 
The Economic and Social Commission for Asia and the Pacific (ESCAP), the United 
Nations conducted the studies to understand key sources of air pollution in the major 
cities in Thailand—Bangkok, Chiang Mai, and Nakhon Srithammarat. Their work 
incorporated both ground-based measurements (meteorological parameters and air 
quality index) and satellite retrievals (land cover and hotspots) into machine learning 
models [60]. The findings showed that biomass burning and forest fires are the 
primary sources in all cities, with minor contributions from urban activities [60].
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1.4.4 Long-Range Transport Air Mass 

Both ground-based sensing and satellite remote sensing are advantageous for esti-
mating and tracking the extent of biomass burning smoke plumes. Duc et al. [57] 
employed the integrated data from AERONET, MODIS, and CALIPSO satellites 
to assess the extent of biomass burning smoke from the Southeast Asian main-
land. They found that the smoke plumes could be transported to southern China, 
Taiwan, and farther. Smoke haze from the Southeast Asian Region can be evident 
and contribute to the air pollution problem on a global scale. NASA initiated the 
framework of biomass-burning Aerosols in Southeast Asia: Smoke Impact Assess-
ment, or BASE-ASIA, in 2006 to evaluate the impact of the aerosols [61]. The 
BASE-ASIA employs various resources from numerical simulation, the analysis of 
AERONET aerosol optical properties from multiple sites, and satellite observation. 
From 2008 to 2013, Seven Southeast Asian Studies, or 7-SEAS, campaign were 
implemented [59]. Under the 7-SEAS campaign, the NASA scientists employed 
mobile laboratories and ground-based networks (both AERONET and MPLNET) 
[59]. From BASE-ASIA to 7-SEAS, scientists observed long-range transport of the 
smoke aerosols and understood dynamics of the aerosol optical properties along with 
trajectories, affecting climate warming or cooling. 

Since polluted air masses can aloft and transport across the national boundaries. 
In such a case, the previous models developed using local parameters may not well 
explain these long-range transport air masses. Scientists and engineers use the advan-
tages of CALIOP air products to observe vertical profiles of aerosol types and later 
employ backward trajectory models to track potential sources of aerosol clouds for 
individual cases. Bridhikitti [62] employed aerosol layer scenes taken from CALIOP 
over the Bangkok Metropolitan Region (BMR) and found that the long-range trans-
port smoke was the most often found at the elevation of approximately 0.7–1.5 km 
(Fig. 1.2). The CALIOP aerosol profile also suggests long-range transport of polluted 
dust to the BMR at the elevated level of 3.0–3.2 km during monsoon season (June 
to September).

Backward trajectory analysis also assists in indicating sources of the long-range 
transport aerosol. For example, as seen from Fig. 1.3 in the work of [62], the smoke 
(in the left figure) aloft over the BMR could be transported from the E-to-SE Asian 
continent, and the polluted dust (in the right-hand figure) could be from S Asia. 
The HYSPLIT trajectory model from NOAA (https://www.ready.noaa.gov/HYSPLI 
T.php) is widely used interactively for computing the backward air parcel trajectories 
[62, 63].

https://www.ready.noaa.gov/HYSPLIT.php
https://www.ready.noaa.gov/HYSPLIT.php
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Fig. 1.2 Frequency distribution of aerosol top layer over Bangkok Metropolitan Region from 
CALIPSO Observations. Note FMAM = February to May, JJAS = June to September, ONDJ 
= October to January [62]

1.5 Satellite Retrievals for Forecasting Haze Episode 
as the Early Warning Tool 

Current approaches for air quality forecasting are applications of chemical trans-
port models, statistical methods, ground and satellite observation networks, and 
deep learning techniques [64]. The U.S. Environmental Protection Agency’s AirNow 
program employs surface observations of PM2.5 for more than 500 cities to fore-
cast Air Quality Index (AQI). The forecast also combines the satellite observa-
tions of aerosol from the Interagency Monitoring of Protected Visual Environments 
(IMPROVE) network to fill the gaps in the rural areas of the continental U.S. [65] 
Along with the forecasted AQI, the Chemical Speciation Network (CSN) has been 
operated to measure the chemical composition of ground-level PM in the urban areas 
for PM sources identifications [65]. Zhang et al. [65] also proposed the improvement 
of PM2.5 forecasts in the continental U.S. through the integrating uses of satel-
lite retrievals (including AOD products from TERRA. AQUA, and VIIRS), multi-
chemical transport models (including GEOS-Chem, WRF-Chem, and CMAQ), and 
ground observations. The integration was claimed to provide the best performance 
for today and next-day forecast [65]. Nonetheless, the study of air pollution episodes 
in Poland showed highly seasonal dependence and cloud effects on the forecasting 
performance [66]. From 2005 to 2009, European Commission funded the Global 
and Regional Earth-System Monitoring Using Satellite and In situ Data, or GEMS 
project. The project collaborates among researchers from eighteen research insti-
tutes in Europe to develop a pilot system for enhancing the forecasting capacity for
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Fig. 1.3 CALIPSO aerosol subtypes (1 = clean marine, 2 = dust, 3 = polluted continental, 4 = 
clean continental, 5= polluted dust, 6 = smoke, N/A = not applicable) for the daytime on December 
1st, 2007 (a-1) and the daytime on July 5th, 2011 (b-1) and their corresponding HYSPLIT back 
trajectories at 13.99°N100.42°E (a-2, at 700 m above mean sea level for red line and 1,500 m for 
blue line) and at 14.06°N 100.43°E (b-2, at 1,000 m above mean sea level for red line and 2,000 m 
for blue line), respectively [62]

aerosols, greenhouse gases, and reactive gases in the atmosphere and improving fore-
casts for regional air quality [67]. The GEMS production required multi-satellite and 
remote sensing datasets for developing the best-fitted forecast model. The contin-
uation of GEMS after 2009 was the Monitoring of Atmospheric Composition and 
Climate (MACC) project. One of the objectives of the MACC project was to provide 
information services on short-term forecast air quality for Europe [67]. 

Nowadays, the deep learning model gains more scientific attention for air quality 
forecast since it can extract complex interconnections using a large pool of ground-
measured and satellite-based datasets. Sharma et al. [68] show that the deep learning 
model can be used to forecast satellite-based PM10. The technique can be beneficial 
for early warning of hazards associated with air pollution from hotspots in Australia 
[68]. This method, however, is still in the early stage of development and its lack of 
interpretability needs to be accomplished to make the technique more useful [64]. 

In case of Thailand and the Southeast Asian Region, the application of satellite 
retrievals for air quality forecasting is recommended for remote areas with a sparse 
ground monitoring network [69]. Li et al. [69] developed a linear regression model
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using MODIS AOD and ground-measured meteorological factors to predict PM10 

levels in the next day. The model provided a percentage error of less than 30% 
for hindcasts for the cities in China and Thailand [69]. In 2020, SERVIR-Mekong, a 
partnership between the US Agency for International Development (USAID) and the 
US National Aeronautics and Space Administration (NASA), developed new web-
based tool, which is “Mekong Air Quality Explorer Tool” to improve air quality 
monitoring and forecasting in Thailand and other countries in the Lower Mekong 
River Basin. Users can access and visualize 3-day PM2.5 forecast derived from NASA 
GEOS global forecast model [70]. The forecast employs MODIS AOD from TERRA 
and AQUA satellites and fire products (fire radiative power and number of fires) 
from the MODIS and VIIRS/Suomi NPP. The forecast simulation for Thailand is 
bias corrected using machine learning algorithm [70]. The developer aims that the 
tools can facilitate decision-making on air quality management, especially in the 
haze season. 

1.6 Summary 

Satellite remote sensing has been widely used for air pollution monitoring nowa-
days primarily because it provides spatial advantages over ground-based monitoring. 
Previous studies in Thailand assessed the magnitude and extents of atmospheric 
pollutants from remote sensing. The studies had been focused on tropospheric O3 

and its precursors, aerosol loading, and pollutants from biomass burning. The obser-
vations, however, are primarily reported as the total atmospheric column, and in 
some cases, the retrievals may not reach the ground. Therefore, scientists are devel-
oping various algorithms using land surface properties and meteorological parame-
ters to assess magnitudes of ground-level air pollutants from satellite retrievals. The 
temporal resolution of the satellite retrievals is another limitation. The limitation can 
be accomplished by employing the retrievals from multi-satellite having similar func-
tioning sensors, such as MODIS/TERRA, MODIS/AQUA, and VIIRS/Suomi NPP. 
The integrated satellite retrievals also yield a better estimate of air pollutant magni-
tudes with different atmospheric heights. The retrievals from A-Train satellites can 
be superior since several satellites were orbiting in line, with the near corresponding 
timeframe. Furthermore, ground-based remote sensing network, such as AERONET 
for aerosol retrieval, is widely used to understand the dynamics of aerosol properties 
at particular locations and provide the data used for validating the satellite retrievals. 

Using remote sensing technology to identify air pollution sources was success-
fully implemented in Thailand for biomass burning/wildfires, urban pollution, and 
long-range transport air masses. Algorithms for the source identification have been 
relied upon either multivariate analyses of the remote-sensing aerosol optical prop-
erties and/or justified from the co-presence of air pollutants as fingerprints for 
specific sources. The recent development of satellite data analysis for forecasting 
haze is ongoing. The development requires integrations among long-term satellite 
observations, surface measurements, and chemical transport models.
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Chapter 2 
A Novel Evaluation of Air Pollution 
Impact from Stationary Emission 
Sources to Ambient Air Quality 
via Time-Series Granger Causality 

Chun-Hsiang Chan, Jehn-Yih Juang, Tzu-How Chu, Ching-Hao Mao, 
and Shin-Ying Huang 

Abstract Many heavy industrial cities in the world are suffered from serious air 
pollution problems from stationary emission sources and the spatial patterns between 
the sources and the receptors is an important environmental issue. Some existed 
studies adopted numerical models, machine learning or deep learning to characterize 
the spatial patterns and impacts of air pollution sources in urban areas. Due to the 
complexity of the air circulation system and consideration of several factors, the rela-
tionship between stationary emission sources and ambient air quality is hard to esti-
mate; as a result, limited studies discussed and gave quantitative evidence. This study 
aimed to quantify and verify the relative impacts from stationary emission sources 
to each ambient air quality station via applying time-series Granger causality. The 
study is conducted in Kaohsiung, the largest industrial metropolitan area in Taiwan. 
The results from the analysis on the role of transboundary pollutants show that 
the estimated relative impact does not significantly increase during transboundary-
dominating seasons winter and spring in the study area. We found that the spatial 
characteristics of the estimated relative impacts in seasonal and diurnal variation are 
strongly related to the geographical factors and wind field, respectively. The major 
stationary emission source is attributed to the category “Smelting and Refining of Iron 
and Steel”. Moreover, the emission amount of different industrial categories is highly 
consistent with the estimated relative impacts. This method could efficiently reveal 
the spatial relationship between stationary emission sources and ambient air quality 
with limited data; hence, the results could provide as suggestions to local residents,
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administrations of government and non-government organizations for policy plan-
ning. Nevertheless, this concept could be utilized even in low-infrastructure cities, 
regions or countries for monitoring or realizing how stationary emission sources 
affect to ambient air quality. 

Keywords Relative impact · Source-receptor relationship · Urban air quality ·
Causal analysis · Spatial–temporal pattern 

2.1 Introduction 

The air pollution of stationary emission sources is one of the most serious environ-
mental issues in many industrial cities and their vicinity area [1, 2]. Especially in 
the developing and developed countries, these stationary emission sources, including 
different types of industries for energy supply and for manufacturing process of steel, 
petroleum, chemical, paper, or many other industrial materials [3], usually produce 
numerous gaseous or particulate air pollutants, and many kinds of toxic chemicals, to 
affect the ambient air quality. In recently years, many epidemiological studies have 
reported that these compounds could induce premature mortality and reduce the life 
expectancy [4–7]. 

In consequence, the spatial linkage between the emission sources and the ambient 
air quality is becoming an important research concern in the disciplines of environ-
mental science and urban planning [8, 9]. To characterize the impact of stationary 
industrial sources on the ambient air quality over different spatial scales, many 
previous studies analyze the source-receptor relationship through different method-
ologies by considering different controlling factors [10–13], which include ambient 
concentration of air pollutants, topographic properties, built-environment factors, 
and meteorological conditions [14–17]. Most of these studies adopted numerical 
model, which integrates the emission inventory, meteorological variables and chem-
ical mechanism, to simulate ambient air quality [18, 19]. Meanwhile, some studies 
attempted to use spatial analysis and stochastic model to evaluate the impact of air 
pollution [14, 20]. However, these methods usually require complicate setting and 
parameterizations, and need many computational resources for data processing and 
calculation [21, 22]. 

To resolve these problems, some studies applied data-driven approaches to bridge 
the connection between the observation and the prediction of the ambient air quality 
by using the newly-developing machine learning [23–25] and deep learning tech-
niques [26–28]. Although these approaches could solve issues of low data resolution 
and low data quantity, they still need powerful computation equipment for data 
training and model fitting [29–32]. 

Granger causality was proposed by Granger (1969), and was used to know the 
causal relationship between dependent and independent variables by identifying 
statistical significance of the corresponding coefficients. It could test a series of 
lagging values to identify which values have causal relationship with the dependent
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variables via joint hypotheses test (F-test) [33, 34]. This method has been widely 
applied in medical, economic or tourism studies to realize whether the certain factors 
affect the specific variables [35–37]. In environmental issues, some studies quantify 
the causal relationship between air pollutants and the health expenditures, diseases 
and even mortality [38–43]. Similar concept was adopted in revealing the relation-
ship between emission sources and controlling factors (e.g. meteorology, terrain, 
land use and wind field) to ambient air quality [23, 27, 44–46]. Jiang and Bai [46] 
utilized time-series Granger causality and Pearson correlation to examine the char-
acteristics of air quality in Beijing and its surrounding cities. They explained the 
interactions of air pollution among these cities and concluded that using Granger 
causality was resources-efficient for air quality analysis in Beijing area. Wang 
[23] characterize the relationship between air pollution and environmental factors 
by using Granger causality, and they mentioned that self-aggregation and self-
diffusion process were the major impacts on ambient air quality even under different 
meteorological conditions. 

As a newly developed country, Taiwan has been suffered the problem of air pollu-
tion from domestic emission (stationary and mobile sources) and the monsoon-driven 
transboundary pollutants in the past couple decades [47–50]. Among the different 
types of emission sources, the stationary sources play significant role to influence 
the ambient air quality in many cities in Taiwan [51], especially in the southwest 
coastal plain [52]. 

The objective of this study is to reveal the impact of stationary emission sources 
on ambient air quality in spatial and temporal distribution via time-series Granger 
causality and impact evaluation. Based on the consideration of the emission source 
characteristics and low chemical conditions, we selected sulfuric dioxide (SO2) as  
the air pollution indicator for analysis. Compared to the previous studies [23], this 
research proposes to utilize Granger causality analysis to quantify the seasonal and 
diurnal variation of relative casual impact on ambient air quality. In addition, this 
study aims to identify the contributions of different sources. There are three tasks 
in this study: the first is to identify the influence of transboundary pollutants on the 
causality via the seasonal comparison, the second is to characterize spatial–temporal 
features of the causality over different periods, and the third is to quantify the relative 
contributions of different industrial categories on ambient air quality in the study area. 

Therefore, a data-driven method conducting time-series Granger causality is 
adopted to measure the impact of SO2 of each stationary emission source on ambient 
air quality in a heavy-industrial city, Kaohsiung [52, 53] in southern Taiwan. The 
spatial–temporal data of stationary sources and ambient air quality observation in 
Kaohsiung are used in the causality analysis, and the results from this analysis could 
help us to quickly validate the spatial–temporal characteristics of stationary sources 
and their relative impact on the ambient air quality.



36 C.-H. Chan et al.

2.2 Characteristics of the Study Area 

Kaohsiung is the biggest metropolis and the most important heavy industrial city in 
southern Taiwan. The total area of Kaohsiung is 2,952 km2, and the population is 
approximately 2.77 million in 2017. According to Taiwan’s Ministry of Economic 
Affairs, there are 7,045 registered factories in this city in 2017. Therefore, the air 
quality in Kaohsiung has become one of the most important environmental issues 
in the past decades. To monitor the stationary sources in this major industrial city, 
Taiwan’s Environmental Protection Administration (EPA) established the country’s 
largest number of the continuous emission monitoring systems (CEMS) stations 
at each registered stationary source in Kaohsiung (105 stations in total, which is 
approximately 32.2% of total CEMS in Taiwan). The proportions of different indus-
trial categories of the registered CEMS stations in Kaohsiung in 2017 is shown in 
Fig. 2.1. From the distribution, we found that the biggest one is the category “Smelting 
and Refining of Iron and Steel” (30.5%), and is followed by “Electricity Supply” 
(18.1%), “Petrochemical Manufacturing” (13.3%), and “Treatment and Disposal 
of Waste” (12.4%). The top 4 categories of CEMS contribute roughly about three 
fourths of the total registered CEMS in Kaohsiung. In addition, there are 899,024 
vehicles and 1,999,902 motorcycles in Kaohsiung in 2017. To monitor the ambient air 
quality, Taiwan’s EPA set 12 ambient air quality monitoring system (AQMS) stations 
in different locations in this metropolis. The spatial distribution of the CEMS and 
AQMS stations in Kaohsiung is shown in Figs. 2.2 and 2.3. 

In this study, we use the data from CEMS and AQMS stations in Kaohsiung 
to conduct the analysis of causal relationship. Because the spatial causality analysis 
sensitively relies on source-receptor distance, it is important to estimate the contribu-
tions of the domestic sources and transboundary sources. To verify the performance 
of this model and distinguish the contribution from transboundary pollutions, we 
used dataset over different seasons to characterize the influence of transboundary

Fig. 2.1 Distribution of registered continuous emission monitoring systems (CEMS) stations in 
Kaohsiung, 2017
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Fig. 2.2 Study Area (Our study selected two regions in Taiwan; the upper right submap is the Taipei 
metropolitan area, validation region for the influence from transboundary pollutants, including 
Taipei City, New Taipei City and Taoyuan City, suffered from the domestic pollutants and trans-
boundary pollutants as well; the down left submap is the Kaohsiung City, major region for analyzing 
the causal relationship between stationary sources and surrounding ambient air quality, existing the 
largest heavy industrial factories in Taiwan)

pollutants. In addition, we also used the dataset from the Taipei metropolitan area as 
a test case for model validation. 

In contrast to the patterns of air pollution in Kaohsiung, the Taipei metropolitan 
area (total population: 8,857,963; area: 3,545 km2; 2,596,830 vehicles and 4,295,661 
motorcycles in 2017) has relative fewer stationary emission sources. There are 25 
CEMS stations (~7.7% of the entire country) in the Taipei metropolitan area (Fig. 2.2). 
This is because the major economic activities in Taipei is international business and 
service industry. Although the total number of heavy industrial factories in Taipei is 
much less compared to Kaohsiung, the major air quality issues in Taipei is mainly 
attributed to domestic mobile sources, and the transboundary pollutants due to the 
seasonal-prevailing monsoon during the winter and spring seasons. To monitor the 
ambient air quality, there are 19 EPA’s AQMS stations spread in this area.
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Fig. 2.3 Annual SO2 emission amount of each CEMS stations in Kaohsiung. Different colors 
indicate industry categories and maker size demonstrated annual SO2 emission amount of the 
specific CEMS stations
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2.3 Data and Methodology 

2.3.1 Data Collection 

In the past couple decades, SO2 has become one of the most major air quality issue in 
many cities in Taiwan and in Asia [54–56]. Therefore, in this study we focus on the 
spatial–temporal patterns of SO2 by quantifying the Granger causality between the 
emission sources and the ambient air quality in the study area. In the data analysis, 
we used SO2 observation from EPA’s AQMS stations and the emission inventory 
from CEMS for the year of 2017. In addition, in order to consider the effect of 
the terrain and meteorological conditions, this study utilized the digital elevation 
model (DEM) data from Taiwan’s Ministry of the Interior, and the observation of 
wind field, including wind direction and wind speed, from Taiwan’s Central Weather 
Bureau (CWB) for analysis. 

2.3.2 Data Processing 

The time interval of EPA observation data is one hour, and sampling frequency of 
SO2 data in CEMS is 15 min. In the stage of data analysis, we averaged every 15-min 
data into hourly interval to ensure the consistence of both datasets. 

In this study, both CEMS data and AQMS data were extracted during the daytime 
from 08:00 to 17:00 LT due to the significant difference in meteorological properties 
(wind field and mixed-layer height) between daytime and nighttime in the study area. 
As for the wind patterns, the wind field during the daytime in Kaohsiung is dominated 
by sea-breeze system while the wind field during the nighttime is relatively calm. 
Furthermore, the growth of mixed-layer height after the sunrise brings the pollutants 
from the aloft atmosphere to the ground surface and causes the changes in near-
surface atmospheric stability [57, 58]. Furthermore, every day in the morning each 
CEMS is regulated by EPA to examine the emission system to ensure the detectors of 
CEMS are stable. Therefore, to avoid the discontinue emission data in the analysis, 
we conducted the Granger causality analysis from 08:00 to 17:00 LT during the 
daytime. 

To conduct the source-receptor relationship in this study, we collected data from 
all AQMS stations which locate within the circular region of 10-km radius of CEMS 
stations for Granger causality estimation. The impact of mobile sources is a daily and 
regular periodic influence, so the mobile source was regarded as a background signal 
or baseline of ambient air quality. In addition, the influence of transboundary pollu-
tants in Taiwan usually happens in winter and spring [47, 48]. Hence, we set a series of 
analysis to identify the influence of transboundary pollutants via seasonal comparison 
(summer-autumn versus winter-spring) and spatial comparison (Kaohsiung versus 
Taipei).
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2.3.3 Time-Series Granger Causality 

Granger causality is a vector autoregression modeling method to evaluate whether a 
n consecutive time series of variables xts  = {xt , xt−1, ..., xt−n} can affect a variable 
yt at a specific time t [59]: 

yt = 
nΣ

a=1 

βaxt−a + εt , 

where βa is a set of corresponding fitting coefficients and εt is the error term of the 
vector autoregression model. 

The significance of each coefficient βa of vector autoregression model could 
represent whether Granger causal relationship exists between yt and {xts}. The null 
hypothesis of Granger causality is that {xts} does not affect the yt , when the p-value 
of coefficient in F-statistic is larger than the significance level (α = 0.05 under 95% 
confidence level); otherwise, the alternative hypothesis is accepted, as well as, the 
Granger causality exists. 

In the analysis, we utilized a python package, “grangercausalitytests” in  
“statsmodels”, to compute the Granger causality between AQMS observation and 
CEMS data. For a given concentration of SO2 of a specific AQMS station E (i, j) 

t 

at timestamp t, and a set of lagging emission values obtained from the latest 
consecutive six hours of emission inventory of surrounded CEMS stations, C ( j) 

ts = 
{C ( j) 

t , C ( j ) 
t−1, · · ·  , C ( j) 

t−5}, within the area of 10-km radius. Therefore, the model for 
the j-th CEMS station to the i-th AQMS station could be depicted as 

E (i, j) 
t = 

5Σ

a=0 

β( j) 
a C

( j) 
t−a + ε (i, j) t , 

where β ( j) a is the coefficient and ε (i, j) t is the error term of the vector autoregression 
model. 

2.3.4 The Evaluation of CEMS Impact 

Through the time-series Granger causality, we could obtain a set of Granger causal 
relationships GC 

C( j ') 
t ' ←E 

(i ' , j ') 
t '

between the AQMS station i ' and a specific CEMS j '

at specific time t ' as 

GC 
C( j ') 
t ' ←E 

(i ' , j ') 
t '

=
{
C( j ') 
t '

}
,
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where for all p-values of β ( j
') 

a are less than 0.05 under 95% confidence level and 
all subscript primes of i, j and t are the set of AQMS, CEMS and timestamps which 
represent there exist Granger causal relationship. Therefore, the impact of one CEMS 
PC ( j ') to ambient air quality could be given as the total count of the statistically 
significant Granger causal relationships expressed as follows, 

PC ( j ') = 
T 'Σ

t '=1 

I 'Σ

i '=1 

Count

(
{GC

C( j ') 
t ' →E(i ' , j ') 

t '
}
)

, 

where GC
C( j ') 
t ' →E(i ' , j ') 

t '
is the set of Granger causal relationship between one CEMS 

C( j ') 
t ' to all surrounded EPA E(i ', j ') 

t ' ; I’ and T’ are the number of AQMS stations 
and timestamps, corresponding Granger causal relationship between CEMS station 
j’ and AQMS station i’ at timestamp t’. 

To calculate the overall impact of each industry category, the impact of a specific 
industry category d in the specific year is aggregated by the impact of all CEMS 
PC ( j") . Finally, the overall impact of category d in that year could be defined as 

Yd = 
J "Σ

j"=1 

PC ( j") , ∀PC ( j") ∈ {
PC ( j ')

}
, 

where j" is the subset of CEMS j ' and the j" represents the number of CEMS station, 
which exists Granger causal relationship. 

2.4 Results and Discussions 

2.4.1 Seasonal Comparison 

Because the compositions of emission sources are different in the study area (Kaoh-
siung) and test area (Taipei), in this section, we focus on the difference in source 
impact, and number of GC events in these two areas over different seasons, which 
are shown in Fig. 2.4. The results indicate that the numbers of GC events in 
Kaohsiung during winter-spring seasons are about 15% more than the numbers in 
summer-autumn seasons, but the seasonal variations in Taipei is not significant.

In Taiwan, it is well known that during the winter and spring seasons, the signifi-
cant portion of air pollution issues could be attributed to transboundary pollution 
brought by the seasonal monsoon. Meanwhile, during the summer and autumn 
seasons, the contribution from the transboundary pollutant is pretty minor [47, 
60–62]. To quantify whether the transboundary pollution affect the GC events, 
we conducted ANOVA test and Post-Hoc test on results of the GC analysis. The 
results show that there is no statistical significance between these two season periods
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Fig. 2.4 The number of GC events of each season in 2017

(winter-spring and summer-autumn) in both areas in ANOVA (Levene = 0.037, p-
value = 0.990 > 0.05), and season-by-season comparison in Post-Hoc test also show 
no significant difference between two season periods (Levene = 0.093, p-value = 
0.964 > 0.05). This result confirms that the GC events were not affected by trans-
boundary air pollutants in both Taipei and Kaohsiung. These results also proved that 
all changes in large scale, daily variation or background pollutants (mobile sources) 
do not significantly influence the impact estimation. 

Moreover, the spatial distribution of GC events over different seasons has spatial 
variations (Fig. 2.5). The figure shows that high GC event area is concentrated in 
inland area for all seasons. However, the high GC event area extended from inland to 
costal area in summer and autumn. Overall, spring and winter have relatively more 
GC events than the other two seasons.

As for the contribution of source categories on the GC events in the study area, the 
category “Smelting and Refining of Iron and Steel” is the largest for the entire year, 
and “Waste Treatment and Disposal” is the second largest (Fig. 2.6). The top 5 indus-
trial categories have relatively high GC events in spring and winter seasons, while 
the GC events is relatively lower in summer. It is because during the winter-spring 
seasons in Kaohsiung, the mixed-layer height is lower for pollutants to accumulate, 
and the meteorological condition during the summer season is better for diffusion.

2.4.2 Diurnal Variation of Spatial Characteristics of GC 
Event 

In the study, we considered only the daytime data from 08:00 to 17:00 LT. Therefore, 
in the outcome of the GC analysis for each day, there are five consecutive periods 
with 6 one-hour timestamps in each period (e.g. 08:00 ~ 13:00, 09:00 ~ 14:00, …, and 
12:00 ~ 17:00). The proportions of GC events of the five periods are shown in Table 
2.1. From the results, we could find that the proportion gradually increases from
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Fig. 2.5 The spatial distribution of GC event in Kaohsiung during different seasons (a Spring; b 
Summer; c Autumn; d Winter)
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Fig. 2.6 The number of GC events of each season by industry in Kaohsiung. (A: Manufacture 
of Paper; B: Synthetic Rubber Manufacturing; C: Steam Supply/Electricity Supply; D: Electricity 
Supply; E: Manufacture of Chemical Material; F: Man-made Fibers Manufacturing; G: Manufacture 
of Edible Oils and Fats; H: Petroleum and Coal Products Manufacturing; I: Manufacture of Basic 
Chemical Material; J: Petrochemicals Manufacturing; K: Treatment and Disposal of Non-hazardous 
Waste; L: Smelting and Refining of Iron and Steel)

16.04% to 21.81% with time, and the pattern is highly correlated to the diurnal wind 
field shifting in Kaohsiung. Every day in the morning, the wind filed in Kaohsiung 
starts to change direction from the nocturnal land-breeze system to the sea-breeze 
system in this area. After around 10:00 LT, the sea-breeze dominate the wind filed 
in the vicinity. Therefore, the GC events change gradually in the morning and is 
becoming stable after the late morning (Fig. 2.7). From Fig. 2.7, the spatial distribu-
tion of high EPA GC areas during the first period (08:00–13:00) locate in the coastal 
area (between Siaogang and Cianjhen). Later, the high EPA GC area moves to the 
inland area (between Fongshan and Daliao), and this phenomenon prolongs to the 
fourth period (11:00–16:00) and reaches the highest EPA GC events. Moreover, the 
fifth period (12:00–17:00) shows that the high EPA GC events area started to move 
back to coastal area due to the decrease of sea breeze. 

Table 2.1 The GC event 
distribution of Kaohsiung in 
five consecutive periods 

Consecutive period Timestamp period GC event proportion 
(%) 

1 08:00–13:00 16.04 

2 09:00–14:00 18.73 

3 10:00–15:00 21.82 

4 11:00–16:00 21.58 

5 12:00–17:00 21.82
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Fig. 2.7 The spatial distribution of GC event in different consecutive periods (a The first consec-
utive period (8:00–13:00); b The second consecutive period (9:00–14:00); c The third consecutive 
period (10:00–15:00); d The fourth consecutive period (11:00–16:00); e The fifth consecutive period 
(12:00–17:00))
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Fig. 2.7 (continued) 

2.4.3 Industrial Comparison 

One advantage of applying GC estimation in the spatial analysis is to identify the 
relative contribution of the large number of emission sources. In this section, the 
relative local emission impact and statistic of the GC events for each industry category 
are shown in Fig. 2.8. The total number of GC events for the entire year is 14,365, 
and the biggest one is the category “Smelting and Refining of Iron and Steel”, which 
accounts for roughly about 46.77% (6,718 in total) of the total GC events. The biggest 
four industry categories account for the vast majority, about 85.6%, of the total GC 
events in Kaohsiung. The results also show that steel-related, petroleum-related or 
chemistry-related categories make major contributions on GC events.

In this analysis, the observed power is 1.000 and the partial eta squared is 0.993, 
so the performance of this GC estimation has good power of test. In addition, on 
the Levene test for equality of error variances (Levene = 3.812, p-value = 0.001), it 
rejects the null hypothesis which states that error variance of the dependent variable is 
not equal across different industry categories. According to descriptive statistics and
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Fig. 2.8 The number of GC events of each industry in Kaohsiung (A: Manufacture of Paper; B: 
Synthetic Rubber Manufacturing; C: Steam Supply/Electricity Supply; D: Electricity Supply; E: 
Manufacture of Chemical Material; F: Man-made Fibers Manufacturing; G: Manufacture of Edible 
Oils and Fats; H: Petroleum and Coal Products Manufacturing; I: Manufacture of Basic Chemical 
Material; J: Petrochemicals Manufacturing; K: Treatment and Disposal of Non-hazardous Waste; 
L: Smelting and Refining of Iron and Steel)

homogeneous subsets (Table 2.2), there are 6 subsets and it shows that the category 
“Smelting and Refining of Iron and Steel” is the highest, and followed by the category 
“Treatment and Disposal of Non-hazardous Waste”. 

From the analysis across different industry categories, we found that the waste-
related or disposal-related industries are the major emission sources in Kaohsiung. 
It is because the waste incineration facilities locate close to the city center, therefore 
the pollutants from the sources could directly affect the high-population areas. In

Table 2.2 Descriptive statistics of monthly total GC events by different industries in Kaohsiung 

Entry Industry Values 

0 Manufacture of Paper 25.75 ± 8.96a 

1 Synthetic Rubber Manufacturing 33.50 ± 14.06a 

2 Steam Supply/Electricity Supply 34.50 ± 5.45a 

3 Electricity Supply 35.75 ± 26.74a 

4 Manufacture of Chemical Material 37.75 ± 12.42a 

5 Man-made Fibers Manufacturing 67.00 ± 24.86a 

6 Manufacture of Edible Oils and Fats 130.75 ± 17.02a 

7 Petroleum and Coal Products Manufacturing 244.25 ± 76.39a, b 

8 Manufacture of Basic Chemical Material 298.25 ± 60.53b, c 

9 Petrochemicals Manufacturing 415.75 ± 46.31c, d 

10 Treatment and Disposal of Non-hazardous Waste 590.75 ± 68.05e 

11 Smelting and Refining of Iron and Steel 1680.25 ± 71.96f 

All data are presented as mean ± standard deviation 
a−f Different superscript letters in the same column indicate significant statistical differences based 
on Scheffé post hoc test (p-value < 0.05) 
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Kaohsiung, most of the factories distribute along the coastal area within few kilo-
meters from the city center. In addition, most of the AQMS stations are set in the 
populated area. Therefore, the neighbor influence is expected to amplify the GC event 
impact within the short distance. Furthermore, more AQMS stations surrounded also 
strengthen the magnitude of GC impacts on ambient air quality in this area. 

2.4.4 Comparison with Emissions and Impacts 

To quantify the relationship between the estimated emission impact and real emis-
sion volumes (Fig. 2.9), this study calculated the impact total emission volumes 
of SO2 on the AQMS stations within 10-km radius of CEMS stations. Overall, the 
emission volumes are highly consistent with the magnitudes of the GC impacts, but 
there still exist some exceptions. It is because that the locations of these stationary 
emission sources are far away from the AQMS stations; therefore the GC impact is 
not significant. 

The results show that the high emission source does not directly represent the 
higher impacts on the ambient air quality, because of the meteorological factors 
(wind field and atmospheric stability). Moreover, the spatial distributions of AQMS 
and CEMS stations directly affected the estimation of emission impacts. These results 
suggest that the proposed GC analysis in this study could sufficiently characterize 
the spatial relative contribution of different emission sources with the consideration 
of their distance to the receptors and the meteorological conditions.

Fig. 2.9 The number of GC events of each industry versus SO2 emission (A: Manufacture of Paper; 
B: Synthetic Rubber Manufacturing; C: Steam Supply/Electricity Supply; D: Electricity Supply; E: 
Manufacture of Chemical Material; F: Man-made Fibers Manufacturing; G: Manufacture of Edible 
Oils and Fats; H: Petroleum and Coal Products Manufacturing; I: Manufacture of Basic Chemical 
Material; J: Petrochemicals Manufacturing; K: Treatment and Disposal of Non-hazardous Waste; 
L: Smelting and Refining of Iron and Steel) 



2 A Novel Evaluation of Air Pollution Impact from Stationary Emission … 49

Based on the results abovementioned, for short-term, we could list all CEMS 
stations, which have high potential to influence a specific AQMS station in a specific 
study period. For long-term monitoring, the total GC events could sufficiently indi-
cate how a CEMS station influences its ambient air quality. Compared to the previous 
studies [44, 46], the approach proposed in this study is relatively simple, fast, low cost 
and low complexity on computing and is capable to support for quickly overviewing 
the relative contributions of different air pollution sources. 

Although the GC analysis in this study is relatively simple and accurate with 
low requirements on data quality and resolution, its performance still relies on the 
sampling frequency and spatial allocation of the emission sources and ambient air 
quality measurement. If the sampling frequency of the data is too low or too discrete, 
some small sources might be difficult to detect in this analysis. Furthermore, the 
spatial distribution of the ambient air quality stations in the study area directly affect 
the accuracy of analysis because of several geographical and meteorological factors 
could play important roles to affect the estimation. 

2.5 Conclusion 

This study proposed a modified Granger Causality analysis, a simple but novel data-
driven method, to estimate the impact of air pollution from stationary sources on 
the ambient air quality in the spatial scale. This method provides an efficient way 
with lower computational resources to construct the causal relationship between the 
emission sources and the air quality measurement even if the numbers of sources and 
receptors are abundant. The statistical results of seasonal comparison gave a concrete 
evidence that this method is not affected by transboundary air pollutants, therefore 
the corresponding GC impact of each AQMS could be sufficiently derived from the 
emission sources. 

In addition, this model could sufficiently characterize the temporal variation and 
spatial distribution of GC events over diurnal and seasonal cycles and it is capable 
to identify the contribution of meteorological condition (wind field). The high GC 
event area from coastal to inland area before the noon time, and in the afternoon 
the pattern of hot spots shifts from inland back to costal area due to the shift of 
sea-land-breeze system. Furthermore, the wind field in different seasons affects the 
GC event distribution. The highest number of GC events centralizes in inland area 
in spring season. 

As for the analysis on industry category comparison, it showed that this model 
could sufficiently identify the contributions of different industry category. Further-
more, the trend of total emission volume of SO2 is highly consistent with the GC 
event ranking of industry categories. Although the spatial inhomogeneity of emission 
sources and ambient air quality station might affect the estimation of GC events, this 
proposed method is still able to quantify the spatial causality between the sources 
and receptors. The theoretical contribution is to simplify and accelerate the construc-
tion of air pollution model for evaluating the relative impact from stationary sources
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to ambient air quality. The relative impact could represent the air pollution from 
the specific factory, company or industry category on ambient air quality in specific 
period. In the practical contribution, this method provides an innovative and efficient 
way for citizens, administrations of government and non-government organizations 
to quickly overview the ambient air quality and the major contributors of local air 
pollution. As a result, this method could be utilized more efficiently even in cities, 
regions or countries with low environmental infrastructure. 
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Chapter 3 
Groundwater Recharge, Monitoring 
and Finding Suitable Areas 
for Groundwater Recharge in Northeast 
Thailand 

Pariwate Varnakovida, Htet Yamin Ko Ko, Thanet Natisri, Nawin Rinrat, 
and Piyawan Nakto 

Abstract Groundwater is one of the most important natural resources but unsustain-
ably uses for agriculture in Thailand. Groundwater accounts for available freshwater 
bodies and it becomes a major freshwater resource. It can be defined as precipitation 
that has infiltrated the soil surface and collected in soil and aquifer underground. It is 
the principal water source of domestic, industrial, and agricultural purposes. Serious 
groundwater shortage is experiencing especially in Northeast of Thailand because 
groundwater usage is higher than the recharged amount. Currently, groundwater 
resources are facing two major challenges such as overexploitation and contamina-
tion. Overexploitation is caused by the overdraft usage of groundwater resources and 
contamination is caused by the pollution caused by industrial, agricultural, and other 
human activities and the salinization and waterlogging caused by improper way to 
discharge wastewater, inadequate drainage system and insufficient conjunctive use. 
Groundwater recharge becomes an important matter not only because of previously 
stated facing major issues but also it is the primary resource of fresh water for drinking 
and irrigating crops, also in Northeastern of Thailand. This chapter will discuss about 
the basic knowledge of groundwater, groundwater recharge process, and groundwater 
monitoring and current methodologies applied in groundwater recharge in Northeast 
of Thailand. 
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3.1 Introduction 

Water is the essential part of life on Earth, and it is also a major part of the climate 
system such as clouds, air, lakes, vegetation, the ocean, glaciers, and snowpack [1]. 
Water also dominants climate change and plays a key factor in drought and floods. 
To meet the requirements of society and ecosystems, it is crucial to monitor the 
balance of available water resources. Clean water is used for domestic, industrial, 
agricultural, energy, waste disposal and recreation areas. Therefore, it is important 
to protect and preserve the clean water resources for human usage and ecosystem 
health. Fresh water can constitute only 3.5% of all water which covers 71% of Earth 
and the main source of freshwater comes from groundwater, glacial, streams and 
lakes. Currently, population, intensive usage of herbicides and pesticides, sprays on 
croplands, septic tank leakages and landfills are the major causes of water supply 
depletion [1]. Before learning about groundwater, understanding about Earth’s water 
cycle can provide better understanding of how groundwater forms. 

The steady and constant movement of water within atmosphere and earth in three 
stages (liquid, solid and gas) is defined as the water cycle. Besides other activities 
such as transpiration, evaporation, precipitation, condensation, and runoff included 
in the water cycle are explained in Fig. 3.1. Evaporation is the transition of earth 
surface’s water in the liquid state to the vapor state and then entered the atmosphere 
[2]. Transpiration is the evaporation of water from the leaves of plants and evapo-
transpiration, or total evaporation is the combination of transpiration and evaporation 
from soils, ice, snow, vegetation, and other surfaces. Condensation is known as the 
process of vapor-to-liquid state transition, and it takes place when air contains more 
water vapor than it can receive. Precipitation is formed by releasing the water vapor 
in the atmosphere by condensation. Some precipitations that fall to earth can transit 
into four phases: evaporation, transpiration, percolation into soil by infiltration and 
flow directly via surface runoff into the sea [3]. Percolation into soil by infiltration 
penetrates streams as groundwater runoff and some portion of precipitation penetrate 
the ground to replenish Earth’s groundwater.

Various research has been taken place to study about different aspects of 
groundwater. Water diversion research to induce the groundwater, groundwater 
quality monitoring research, groundwater recharge estimation research, groundwater 
recharge balance monitoring research, finding the possibilities of potential ground-
water recharge zones research, finding the suitable areas for finding the groundwater 
recharge process and other research have been carried out and received a tremendous 
attention over last decade.
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Fig. 3.1 Conceptual groundwater-flow diagram (Adopted from [3])

3.2 Groundwater 

Groundwater is amongst the most prime native resources but mostly unrecognized 
resources for surface-water. Groundwater held 30% of accessible freshwater bodies 
and it becomes one of major freshwater fund. It can be defined as precipitation that 
has invaded the soil surface and collected in empty space [4]. It is the principal 
water source of domestic, industrial, and agricultural purposes. Groundwater can 
be discovered underground in the gaps and cracks in soil, rock, sand, gravel, and 
fractured rock. It can be replenished by rainfall and snow melts that seeps down during 
winter. It can be retrieved naturally by spring or recharged into lakes and streams 
by default. Groundwater can be found inside an aquifer which is an underground 
layer of porous rock or sediment. Water soaks into the ground, enters aquifer, rotate 
around the aquifer and reappear through wells and springs [4]. 

Groundwater flows underneath the water table which is the first occurrence of the 
groundwater that is called the saturated zone, in other words, Aquifer. In that zone, 
all pores and fractures are filled fully with the water. The upper layer of the water 
table is known as the unsaturated area where only pores are filled partially but not 
enough to support the enough water to discharge and only moisture the soil (Fig. 3.2).

The artificial groundwater retrieval methods are artesian well and pressure pump. 
Artesian Well is a place where groundwater is tapping under pressure and some
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Fig. 3.2 Zonation the groundwater (Adopted from [5])

artesian wells require pump to take out the groundwater while some may have enough 
pressure to bring water to the surface [4]. Flowing Artesian Wells are the traditional 
way to get water resources for usage since 1850s. But artesian well can run out if 
there is reduction in groundwater level than the water intake depth. 

Serious groundwater shortage is experiencing because groundwater usage is 
higher than the recharged amount in and a tremendous effort to monitor the ground-
water levels over time to track dock the water-level declination becomes an impor-
tant matter. Currently, groundwater resource is facing two major challenges such 
as contamination and overexploitation [6]. Overexploitation is caused by the over-
draft usage of groundwater resources and contamination is caused by the pollution 
caused by industrial, agricultural and other human activities and the salinization and 
waterlogging caused by improper way to discharge wastewater, inadequate drainage 
system and insufficient conjunctive use. 

Opposite of groundwater shortage in some areas, there are the places which 
required groundwater induction by using water diversion method. In the incident 
case of Tham Luang Cave Rescue, the cave was flooded and the level of water inside 
the cave could harm the divers to reach the boys [3]. In order to reduce the water 
inside the cave, pumping out the water from the cave was not effective and due to the 
heavy rain, it was still high. Therefore, with the help of geologists, geohydrologists 
and hydrologists, water diversion technology was applied to reduce the water level 
inside the cave by inducting the groundwater level and pumping out the surface water 
at the same time. Therefore, water level was reduced to the level which divers can 
dive to rescue the boys.
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Fig. 3.3 Artificial groundwater recharge pond 

To overcome the two major challenges (contamination and overexploitation) 
of groundwater resources, one of the possible solutions is groundwater recharge. 
Groundwater recharge process is groundwater resources replenishing process [7] 
and this is the main benefit of the groundwater recharge. Overexploitation happens 
mainly in dry wells, and it can degrade the quality of water and can lead to land 
subsidence [7]. Groundwater recharge process can be happened naturally, but over-
exploitation can occur when the draft rate is higher than the recharge rate or the 
recharge amount also reduce because of the climate change. This can be done by 
natural and artificial ways. Natural ways of groundwater recharge are to reserve the 
forest areas, to restore the forests, to increase the plantation in forests and to sustain 
the groundwater usage in agricultural sectors [7]. 

Artificial ways of groundwater recharge include collecting rainwater or flooded 
water and then added to the required/desired/appropriate areas. Later artificial 
groundwater recharge projects considered to recycle wastewater and agricultural 
runoff for the groundwater recharge resources [7]. The highly treated wastewater 
are collected and purified by three-step advanced purification techniques (microfil-
tration, reverse osmosis and ultraviolet light with hydrogen peroxide). By doing in 
this way, the contamination also reduces by not discharging the wastewater into the 
pacific ocean and not replenishing the wastewater blankly into the aquifers (Fig. 3.3). 

In order to perform the artificial groundwater recharge process, finding suit-
able areas for groundwater recharge is one of the importance steps. The detailed 
explanation about finding potential areas for groundwater recharge will discuss in 
Groundwater Recharge section. 

3.3 Groundwater Recharge 

Groundwater Recharge becomes an important matter not only because of previously 
stated facing major issues but also it is the fundamental root of fresh water for 
drinking and irrigating crops, especially in island regions [8]. Groundwater Recharge
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process is done by water entering an aquifer and it may occur from precipitation, 
rivers, lakes, canals, urbanization, and irrigation. Two types of recharge process exist, 
and they are natural process which are naturally recharge through the water cycle 
and anthropogenic process where reclaimed water and or rainwater is routed to the 
subsurface [9]. There are different kinds of natural groundwater recharge based on 
the coming flow of recharge water; these are focused and diffuse recharge. Focused 
recharge process exhibits the process of water recharge coming from a point source 
such as depressions, lakes, playas, and streams while diffuse recharge represents 
distribution of recharge water coming from a wide area by precipitation or irrigation 
[8, 10]. 

Due to the climate change and the use of the land have been assumed as some of 
the reasons for the obstacle of the natural recharge process. Rapid urbanization and 
agricultural sector demand the water more than it can supply and the groundwater is 
being cultivated more rapidly than its recharge rate. Artificial recharge methods are 
being introduced and applied to increase the groundwater supply. Artificial recharge 
to aquifers is charged by the surface water by using the augmented methods such 
as construction and spreading water into the underground. Artificial groundwater 
recharge became popular, and Thailand Authorities also considered to apply artificial 
recharge technique to reuse the floodwater in the basin area during rainy season 
to settle the stable groundwater surface and to recharge the depleted groundwater 
reserves [2]. 

Groundwater recharge by artificial recharge methods is known as groundwater 
replenishment and it is crucial to realize the physical characteristics of the study 
area. Finding the eligible area of groundwater recharge activity can perform by using 
data analysis methods that will determine the area that is expected to be suitable 
for groundwater recharge by overlapping the layers of data, for example, Geology. 
Geomorphology data, soil series data and slope data by assigning score values for 
each factor and the weight of the geological factors, geomorphology, soil and slope 
in which each area is assigned the importance of different factors according to the 
situations and physical characteristics of the study area. 

The research of locating eligible areas for groundwater replenishment will output 
the areas which are very, moderate, low and unsuitable. Mostly four types of data are 
used in the research for finding the suitable groundwater recharge areas and they are 
geology, geomorphology, soil types and topographic slopes. In each data type, variety 
of data also included. For geology data, factors about rock types, weather degree, 
joints and fractures are considered while nature of earth’s crust, faults, fractures, and 
structural density are considered as features of geomorphology. Type of soil, land 
use/land cover, spread of area and type of soil cover are factors of soil group and slope 
gradient of the study area is the feature of topographic slopes (Figs. 3.4 and 3.5).

By analyzing the data to find the eligible locations for groundwater replenish-
ment by overlaying of each factor. The eligible areas for groundwater recharge is the 
selection of suitable or inappropriate areas which will select a wide area in order to 
assess the areas that are very suitable, moderate suitable, low suitable and unsuit-
ability. Based on four primary data, namely geology, geomorphology, soil group, 
topography slope, factor values or criterion for giving different values of each factor
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Set Criteria 

Geology Geomorphology Soil Group Slope 

Regrouping the data, grading, and weighting the factors 

Geology 

Classification Data 

(Area) 

Geomorphology 

Classification Data 

(Area) 

Clay Set 

Classification Data 

(Area) 

Slope 

Classification Data 

(Area) 

Processing and analyzing data by overlaying 

Areas that are suitable for underground water recharge 

Fig. 3.4 Sample research framework for finding suitable areas for groundwater recharge

are determined by discussing with local geologist experts and also the conditions of 
the area. The scores for each factor were determined in Table 3.1 and the weights of 
the geomorphology, geology, soil set, and slope factors were 0.9, 0.8, 0.7 and 0.6, 
respectively.

The study found that in the northeastern region, the total area in the analysis 
was 166,676.80 km2. It is very suitable 4,527.78 km2 accounted for 2.72% of the 
total area. It is an area with good physical characteristics for groundwater recharge. 
Area with a moderate suitability level 52,013.82 km2 accounted for 31.22% of the 
area. A detailed study of the groundwater exploration must be carried out before the 
operation. Low suitable area 98,569.78 km2 accounted for 59.15% of the total area. 
Unsuitable area for groundwater recharge contains 115,203.41 km2 accounted for 
6.91% of the total area. If this result is applied in groundwater recharge policy, the 
water stress in this area might be better for local communities and farmers. 

3.4 Groundwater Recharge Monitoring 

Levels of groundwater are monitored by the recharge, storage, and discharge balance 
from an aquifer [11] since its variations in volume and quality take certain amount 
of times and it is not possible to determine by short time period survey alone [12].
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Fig. 3.5 Suitable areas for groundwater recharge in Northeast Thailand

The balance of groundwater is affected by the physical properties of composed 
aquifer such as porosity, permeability, hydraulic conductivity, transmissivity and rock 
thickness or sediments, and the climatic and hydrologic factors such as precipitation, 
evapotranspiration, rainfall, and release from the subsurface to surface-water bodies. 
For tropical, subtropics and temperate zones, groundwater recharge process rely on 
rainfall and for cold zones, groundwater recharge process can reply on both snow 
and rainfall. Water levels are also affected by the seasonal fluctuation, and it raised 
during spring and winter because of huge amount of precipitation and replenish but
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Table 3.1 Factor score for each criteria 

Criteria I geology 

No. Rock type Factor score 

1 Granite, Diorite, Ultra mafic 1 

2 Basalt, Rhyolite, Syenite, Andesite, Tuff 2 

3 Silt, Mudstone, Shale, Claystone 1 

4 Sandstone, Conglomerate 2 

5 Limestone 3 

6 Gneiss, Schist, Phyllite 1 

7 Quartzite 1 

8 Marble 1 

9 Clay 1 

10 Laterite and Rock fragments 4 

11 Gravel, Sand, Silt 5 

Criteria II geomorphology type 

No. Geomorphology type Factor score 

1 Mountain 1 

2 Foothills 4 

3 Stream Terrace 5 

4 Alluvial Fan 5 

5 Watershed 3 

6 Coastal plain 2 

Criteria III permeability 

No. Permeability Permeation rate (meters per day) 

1 Impermeable <0.03 

2 Slow permeation 0.03–0.12 

3 Permeate quite slowly 0.12–0.48 

4 Moderate permeability 0.48–1.50 

5 Intermediate Permeability 1.50–3.00 

6 Good Permeability >3.00 

Criteria IV slope 

No. Slope Factor score 

1 0–2 4 

2 2–5 5 

3 5–10 3 

4 10–20 2 

5 >20 1
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decreased during fall and summer because of small amount of recharge and greater 
amount of evapotranspiration. 

Beside climate related fluctuations, the rate of underground-water discharge and 
recharge rate can be also affected by human activities [11]. Deforestation, urban 
development and draining of wetlands are the main cause of surface runoff and 
it can reduce the level of recharge while depression, streams, agricultural tillage 
and artificial wetland creations can increase the rate of groundwater recharge [8, 11]. 
Estimated amount of groundwater replenishment is an important factor to manage and 
protect groundwater resource because appropriate quantification of input (recharge) 
and output (discharge) for sustainable usage of groundwater. Geological factors such 
as soil type, climate, hydrology, geology, topography, and land use are the factors to 
consider for the recharge occurrence [13]. Land use and vegetation have effects on 
groundwater recharge process because evapotranspiration rate is high for vegetated 
land surface, and it resulted in less water for recharge. 

3.5 Current Methodologies for Groundwater Recharge 
Monitoring 

To perform estimation or analysis for groundwater recharge occurrence, deep knowl-
edge about climate zone and hydrogeological conditions about the study area is 
required. Because evapotranspiration, mean annual rainfall, climate condition and 
topography consider as significant parts in groundwater replenishment distribution 
and the methods and the equations can be difference based on the study region [13]. 
Numerous methods are proposed to calculate the amount of groundwater recharge 
but selecting the efficient methods for the region of interest is still a challenging task. 
Important factors to be considered for selecting a research methodology include 
range, time/space scales, stability of recharge estimates based on different methods 
[10]. Strengths and weakness of each technique may differ based on various spatial 
resolutions, time scales for, different time scales over which recharge estimates are 
averaged and the recharge rate measurement limits [14]. 

Estimating groundwater recharge can have different study goals such as water 
resource assessment and aquifer vulnerability evaluation [10]. Groundwater quality 
evaluation requires recharge information over large spatial scales and decade-long 
temporal scales while aquifer assessment to pollution requires spatial variability and 
preferential flow. The purpose of the aquifer management is to regulate and monitor 
the effectiveness of abstraction on groundwater system [12]. Continuous monitoring 
of aquifer water balance and groundwater abstraction are the main purpose of ground-
water resource management [12]. Therefore, different spatial scales and time periods 
of recharge estimates are one of the key factors because different research analysis 
require recharge estimates over different spatial and temporal scales.
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The very first stage of groundwater monitoring is data collection about climate 
factors, geomorphology, hydrology, and geology of the region of interest to develop 
the conceptual model of recharge system [10]. Two types of data collection techniques 
to measure and control groundwater abstraction and usage are direction and indirect 
monitoring of groundwater abstraction. Direct monitoring technique is performed by 
the water meter reading of individual wells, and it is expensive to operate and required 
water users’ cooperation. Even though it can provide accurate measurements, it is 
impossible to perform without authority. Invasive regulation of groundwater abstrac-
tion includes collection of representative information, estimations of changes and 
application of remote sensing techniques such as satellite or airborne data. Remote 
sensing data can reduce the cost of groundwater monitoring and investigation, but its 
major drawbacks are increase measurement error at low vapor fluxes, inaccurate to 
determine soil moisture deficit, actual evaporation, and recharge rate of aquifer [12]. 

Groundwater monitoring techniques can be broadly classified into three types 
based on three hydrological sources: classical assessment methods for surface water, 
unsaturated zone, or saturated zone [10, 14]. In surface water methods, stream base-
flow, watershed models, tracers, seepage meters and channel water budget measure-
ment methods are included. In unsaturated zone techniques, numerical models, 
tracers, and direct measurements technology are included whilst tracers, groundwater 
models and physical measurements are categorized as saturate zone approaches [12] 
(Table 3.2). 

Popular Methods for Estimating Groundwater Recharge are direct measurements, 
water balance calculations, Darcy approaches, deconvolution of hydrographs, Water 
table fluctuation method, Tracer techniques and other approaches, mainly empirical

Table 3.2 Types of data required for groundwater management [12] 

Type of data Baseline data Time-variant data 

Ground water occurrence and 
aquifer properties 

Water well records 
(Hydrological logs, 
Instantaneous groundwater 
levels and quality) 

Groundwater level monitoring 

Aquifer and well pumping 
tests 

Groundwater quality 
monitoring 

Groundwater use Water well pump 
installations 

Water well abstraction 
monitoring (direct or indirect) 

Water-use Inventories 

Population registers and 
forecasts 

Well groundwater level 
variations 

Energy consumption for 
irrigation 

Supporting information Climatic data River flow gauging 

Land-use inventories Meteorological observations 

Geological maps/sections Satellite land-use surveys 



66 P. Varnakovida et al.

methods. Water Balance Analysis is applied to estimate groundwater recharge. Water 
Balance Analysis equation may be different based on the climate zone of the area of 
interest. Gravity Recovery and Climate Experiment (GRACE) data is considered as 
one of the most effective satellite data available for groundwater resources manage-
ment [15]. Time-lapse electrical resistivity (ERT) is a geoelectrical survey method 
used to capture the resistivity differences by water infiltration in the unsaturated area 
for recharge characterization [8]. 

Zoomable Object Oriented Distributed Model (ZOODRM) calculate replenish-
ment by implementing soil moisture deficit (SMD) recharge technique through 
regular time periods. The SMD method determines how the actual evaporation (AE) 
is associated to the potential evaporation (PE) by the quantity of water collected 
in the soil at any time. ZOODRM model is appropriate for analysis regions where 
intend to provide lower data demands, usage of large remotely sensed records and 
more functionality for directing of overflow water corresponding to topography. The 
data points requirements of the model are land use, potential evaporation (PE), daily 
rainfall, topographical aspect directions, digital and geological elevation data. 

Water Table Fluctuation (WTF) method is simple and efficient technique in esti-
mation of groundwater recharge process [16]. It can be categorized as one of water-
budget method [17]. Sucharit Koontanakulvong [16] integrated WTF method with 
Chloride Mass Balance method (CMB) and study found out replenishment expected 
by using CMB process is greater value than WTF method because CMB is local 
scale estimation and WTF is local scale estimation method. 

Chloride Mass Balance (CMB) is founded on the concept of chloride in ground-
water is received only from atmosphere via rainfall [8] and it is used to monitor 
groundwater recharge. The calculation of recharge amount is performed by using the 
following equation: 

R = Cl p 
Clgw 

P (3.1) 

where R stands for recharge amount (mm/yr), P is the precipitation amount (mm/yr), 
Cl p is weighted average chloride concentration of precipitation (mg/l) and Clgw 
is chloride concentration in groundwater (mg/l) respectively. This method provides 
outstanding results in quantifying recharge in arid and semi-arid regions [8] but later, 
studies found out that this method is also suitable for tropical climate areas. 

Soil–water budget technique is applied to approximate groundwater recharge by 
conveying the principal of mass maintenance or linked principle where the contrast 
between inputs and outputs is identical to the variation in the system storage area 
[13]. Soil control volume is represented by using a simplified water-budget equation, 
as shown in Eq. 3.2. 

P − ET  R  − ES  − R = ΔS (3.2)



3 Groundwater Recharge, Monitoring and Finding Suitable Areas … 67

where P is the rainfall (mm), ES is the surface runoff (mm), ETR is the actual 
evapotranspiration (mm), R is the groundwater recharge (mm), and ΔS is the soil 
storage variation (mm). Equation 3.2 considers the major parts of the water balance. 

Water-budget are the basic block of hydrologic conceptual model by linking the 
recharge process and other process in the water cycle [18]. Water-budget equation 
to assess the groundwater replenishment for an aquifer is shown in Eq. 3.3 where 
R is the recharge amount, ΔSgw is the change in groundwater storage, Qbf  is the 
baseflow, ET  gw is the groundwater evapotranspiration and (Qgw,of  f  – Qgw,on) is the  
net groundwater flow out of the aquifer which includes pumping and inter-aquifer. 

R = ΔSgw + Qbf  + ET  gw + (Qgw,of  f  − Qgw,on) (3.3) 

Water-budget, hydrograph separation with Eckhardt filter and MGB-IPH hydro-
logical model analysis are performed for watershed groundwater recharge study using 
large-scale approach [13]. MGB-IPH model is based on the calculation modules of 
soil–water budget, flow distribution, flow directing through drainage network and 
evapotranspiration, as shown in Fig. 3.6: Diagrammatic Illustration of MGB-IPH 
model where HRU stands for Hydrological Response Unit (Adopted from [13]). 

MODFLOW is considered for simulating and estimating groundwater/surface 
water associations and groundwater conditions and it is known as USGS’s three-
dimensional finite difference groundwater model [16]. MODFLOW considered 
hydraulic conductivity in x,y and z coordinate axes [0] proposed to study the corre-
lation of groundwater recharge rate with monthly time series data of climate and 
hydrogeography data in the Nan Basin of the Upper Central Plain of Thailand by 
applying MODFLOW and using the bias corrected MRI-GCM data. 

Xu et al. [19] incorporated a Soil–Water–Atmosphere–Plant (SWAP) with a 
groundwater flow model (MODFLOW) where SWAP package provides the vertical 
flux for MODFLOW, and mean water table depth was calculated by MODFLOW to
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Fig. 3.6 Diagrammatic illustration of MGB-IPH model where HRU stands for hydrological 
response unit (Adopted from [13]) 
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Fig. 3.7 MODFLOW-2000 and its coupling with SWAP Zones (Adapted from [19]) 

examine the bottom surface condition for SWAP zones. Data about land use, soil type, 
topology, and water management with geographic information systems (GIS) are also 
used to derive SWAP zones in MODFLOW. Then the SWAP MODFLOW package 
was examined using a two-dimensional saturated–unsaturated water table replen-
ishment test. Outcomes revealed that the modeled water table heights equaled with 
the detected ones not including the initial phase during which they were marginally 
greater than the detected ones, probably due to ignoring lateral diffusion in the unsat-
urated zone. Lastly, SWAP package MODFLOW was applied to replicate a regional 
groundwater flow problem in Hetao Irrigation District, upper Yellow River basin of 
North China. Authors stated that MODFLOW with SWAP package can be applicable 
for sensible provincial groundwater shaping (Fig. 3.7). 

Annual Groundwater Recharge rate in Thepkasattri watershed, Nothern Thalang 
District, Phuket Thailand is analyzed by water table fluctuation (WTF) method 
and chloride mass balance (CMB) method [8]. In this study, seasonal groundwater 
recharge with time-lapse electrical resistivity analysis is integrated to explore the 
recharge mechanism of the study region. The study region has 27 observing wells 
and minimum 42 production wells and authors stated that 28 wells are used for this 
study. Fifteen rainfall data were collected via 1000 ml and 500 ml polyethylene 
bottles monthly from April to October to collect average atmospheric wet chloride 
deposition. PT2X sensor is used to collect hourly groundwater level data from 2012 
to 2015 where sensor can measure both pressure and temperature. Study found out 
that spatial distribution of groundwater recharge is affected by land use and landcover 
of the study region (Table 3.3).

The usefulness of groundwater monitoring system can be determined by three 
major components: data interpretation, system implementation and network design
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Table 3.3 Summary of literature reviews 

References Study area Data Temporal 
scale 

Method 

Tesfaldet [8] Thepkasattri 
watershed 

Satellite Image, 
Phuket shapefile, 
Digital Elevation 
Model 

March 2018 
to February 
2019, Hourly 
groundwater 
level data 
(2012–2015) 
from 
Department 
of 
Groundwater 
Resources 
Thailand 

Water Table Fluctuation 
(WTF), Chloride Mass Balance 

Maurício et al. 
[13] 

Two 
watersheds 
located over 
the Serra 
Geral 
Aquifer 
System 
(Southern 
South 
America) 

Precipitation 
(Rainfall Gauges 
from Brazilian 
Water Agency), 
Evapotranspiration 
and Landuse 
(MODIS16 with 
Penman–Monteith 
method), 
Meteorological 
data and 
emergency 
balance 
(Reanalysis), 
Surface runoff 
values (HEC-HMS 
rainfall-runoff 
model), Soil 
Moisture 
Accounting 
(SMA)model 

Yearly Water Budget Model, 
Hydrograph Separation, 
MGB-IPH Hydrological Model 

Sucharit 
Koontanakulvong 
[16] 

Nan Basin 
of the Upper 
Central 
Plain of 
Thailand 

River water level, 
observation 
groundwater level, 
well abstraction, 
Recharge rate, 
Climate data, 
Precipitation, 
Evaporation, 
Temperature, Soil 
Type 

Monthly Linear Regression Method, 
MODFLOW Groundwater 
Model, Water Budget Analysis

(continued)
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Table 3.3 (continued)

References Study area Data Temporal
scale

Method

Xu et al. [19] Hetao 
Irrigation 
District, 
upper 
Yellow 
River basin 
of North 
China 

Topography, soil 
type, land use, and 
water management 
practice 

Yearly Soil–Water–Atmosphere–Plant, 
MODFLOW

[12]. In network design component, it is important to define the research objec-
tives clearly, to adapt the program accordingly, to understand groundwater flow 
system and to select the sampling locations and monitoring parameters accordingly. 
In system implementation component, joint analysis of groundwater and surface 
water monitoring should integrate if applicable. 

3.6 Conclusion 

Like other countries, Thailand also suffers the shortage of water, and it became a 
huge problem [20]. In 2020, Thailand was faced the worst drought in 40 years, 
and it exacerbated the current economic pressures by damaging the agricultural 
sector of sugar, rice, and rubber. Rapid development of Thailand’s economic sector 
increases water demand, but climate change and deforestation caused more floods and 
droughts. Bangkok is suffering the continuous declination of piezometric levels with 
the consequences of water quality degradation and land subsidence by the extensive 
usage of groundwater [2]. Groundwater refueling in Thailand has been initiated for 
more than 30 years, and there are currently more than 10 projects that have been 
undertaken across the country for both shallow and deep groundwater recharge. 

Different methodologies are applied to calculate the hydrogeological factors of an 
aquifer to monitor the groundwater balance, but studies find out a specific technique 
is not suitable to explain the complicated hydrogeological analysis [8]. Therefore, it is 
encouraged to integrate different methods to increase the reliability of estimations and 
enhance the information [8]. Groundwater monitoring is considered as expensive and 
intensive procedure because of capital cost of well monitoring network installation, 
data collection costs (satellite data, rain gauge), sampling costs for laboratory and 
data analysis costs [12]. But in return, it can monitor the sustainability of groundwater 
usage by avoiding the loss of groundwater resources and the costly remediation of 
aquifer. Therefore, cost-effective, and accurate groundwater monitoring system for 
the longer run will be the basic requirement of maintaining groundwater resources.
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Environmental Changes and Health



Chapter 4 
Health Benefits of Air Pollution 
Reduction During the COVID-19 
Lockdown Period in Thailand Using 
a Machine Learning Algorithm 

Arthit Phosri and Mathuros Tipayamongkholgul 

Abstract Due to the COVID-19 pandemic, the Thai government implemented the 
lockdown measure to restrict the widespread transmission of SARS-CoV-2 between 
April 3 and May 3, 2020. This measure might subsequently affect ambient air quality 
and its consequent health effect. Therefore, this study aimed to examine the change 
of ambient air pollution during the lockdown amid COVID-19 pandemic and its 
consequent change in mortality. The time-stratified case-crossover design with the 
conditional Poisson model was utilized to examine province-specific effect of indi-
vidual air pollutants on non-accidental mortality and the random-effect meta-analysis 
was used to derive the national estimate of individual air pollutants on mortality 
during the period 2016–2019. The machine learning algorithm with random forests 
model was also applied to predict the business-as-usual concentration of air pollu-
tants during lockdown period adjusting for weather variables and long-term trend. 
Changing in mortality attributed to air pollution change during lockdown period was 
then calculated. Results indicated that PM10, PM2.5, NO2, and O3 concentrations 
during lockdown period were lower than the business-as-usual scenario, leading to 
a reduction in mortality attributable to air pollutants. Findings from this study imply 
that stringent implementation of the air pollution control policies could reduce health 
impacts attributable to air pollution. 
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4.1 Introduction 

Ambient air pollution is one of the global environmental health issues contributing to 
a wide range of adverse health consequences with approximately 4.2 million prema-
ture deaths per year and 91% of them was observed in low- and middle-income 
countries [23]. The emergence of COVID-19 pandemic caused by Severe Acute 
Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) has imposed many countries 
to implement the lockdown measure to restrict the widespread transmission of SARS-
CoV-2. This measure has been applied in a range of activities, including promoting 
quarantine measure [14], closing schools as well as implementing social distancing 
and staying at home to avoid large gathering [4]. These activities have consequently 
impacted the overall operation of many socioeconomic sectors such as manufacturing 
processes, logistic and supply chains, resulting in substantial decrease in anthro-
pogenic emission of air pollutants such as particulate matter, O3, NO2, SO2, and 
CO [7] and plenty improvement of air quality in many countries including China 
[27], Thailand [22], the United States [20], and Spain [21]. This improvement may 
subsequently induce public health and economic benefits [1, 26]. 

Due to the COVID-19 pandemic, the Thai government implemented a partially 
lockdown measure to restrict the widespread transmission of SARS-CoV-2 between 
April 3 and May 3, 2020 by means of restricting on the movement of people from 
their residences between 22.00 and 04.00 local time and limiting on inter-provincial 
travel. This measure has led to a substantial reduction in the concentration of ambient 
air pollution, where a previous study has indicated that the 24-h average concentra-
tion of PM2.5, O3, and CO in the Bangkok Metropolitan Area during the lockdown 
period was attenuated by 15.79%, 7.13%, and 8.01% respectively compared to the 
same period in 2017–2019 [22]. In addition, a growing body of epidemiological 
study has revealed that short-term exposure to ambient air pollution (PM10, PM2.5, 
NO2, SO2, O3, and CO) was significantly associated with increased risk of human 
morbidity and mortality in many parts of the word [11, 13, 16–18, 28]. However, the 
published papers focusing on estimating health benefits associated with air pollu-
tion reduction during the COVID-19 lockdown period are limited and there is no 
such evidence in Thailand to date. Therefore, the objective of this study is to esti-
mate the difference between observed concentrations of PM10, PM2.5, NO2, and 
O3 and their business-as-usual concentrations that would have been expected in 
the absence of lockdown measure during the lockdown periods, predicted through 
machine learning with meteorological normalization technique, and further estimate 
the change of mortality burden associated with changing in the concentration of 
ambient air pollutants.
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4.2 The Situation of Air Pollution Concentration 
in Thailand 

As of December 2020, there are 83 fixed-site air quality monitoring stations oper-
ated by the Pollution Control Department (PCD) located in 37 provinces throughout 
Thailand. The hourly concentration of air pollutants (PM10, PM2.5, NO2, and O3) 
from January 2016 to December 2020 throughout Thailand was applied in this study 
and daily concentration of individual air pollutants for each province during such 
period was calculated by taking the average of hourly concentration. This calculation 
excluded the day that had missing values more than six hours, where the concen-
tration for that particular days were assigned as missing. The missing data was then 
imputed using the expectation—maximization (EM) algorithm under the assump-
tions of multivariate normal distribution [10]. During the study period, the average 
concentrations ± standard variation of PM10, PM2.5,NO2, and O3 across 37 provinces 
was 42.92 ± 27.42, 24.43 ± 18.87, 31.42 ± 31.59, and 74.42 ± 37.26 μg/m3, respec-
tively. Daily average concentrations of PM10, PM2.5, and NO2 across 37 provinces 
during the lockdown periods (April 3 and May 3) in 2020 were lower than those 
in the same period of 2016–2019, but the average concentration of O3 in 2020 was 
slightly higher, compared with the same periods of 2016–2019. Specifically, the 
average concentrations ± standard variations of PM10, PM2.5, and NO2 during the 
lockdown periods in 2020 were respectively 43.84 ± 26.72, 24.54 ± 21.26, and 
20.98 ± 23.35 μg/m3, whereas those in the same periods of 2016–2019 were respec-
tively 45.27 ± 27.44, 26.23 ± 20.50, and 27.84 ± 26.47 μg/m3. The daily average 
concentration of O3 during the lockdown periods in 2020 was 89.08 ± 35.97 μg/m3 

and that in the same periods of 2016–2019 was 88.76 ± 40.11 μg/m3 (Fig. 4.1).

4.3 Short-Term Effect of Ambient Air Pollution 
on Mortality in Thailand 

Non-accidental mortality was used as adverse health outcome indicator in the present 
study, where data was obtained from the Strategy and Planning Division under the 
Ministry of Public Health of Thailand from 2016 to 2020. Specifically, the mortality 
data were extracted from death certificate that indicated date of death, age, sex, 
and primary diagnostic code in accordance with the International Classification of 
Disease 10th revision (ICD-10), and non-accidental cause of death (ICD-10: A00-
R99) was applied in this study. To investigate short-term effect of ambient air pollu-
tants on mortality in Thailand, the statistical analysis was divided into two stages. 
In the first stage, province-specific effects of individual air pollutants (PM10, PM2.5, 
NO2, and O3) on mortality were examined using the Distributed Lag Non-linear 
Model (DLNM) combined with the case-crossover design and were analyzed using 
conditional quasi-Poisson model taking into account overdispersion. In particular, 
the bi-dimensional cross-basis matrix between each air pollutant and its lag was
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Fig. 4.1 Concentrations (mean ± standard deviations) of air pollutants during COVID-19 lock-
down period in 2020 (labeled in green) and the average concentrations during the same period in 
2016–2019 (labeled in orange)

constructed in DLNM using linear function for each air pollutant and natural cubic 
spline function with 3 degrees of freedom for its logarithmic scale of lag over 7 days. 
This degree of freedom was selected because of minimizing the quasi-Akaike Infor-
mation Criteria (Q-AIC) [5], and a given cross-basis matrix of each air pollutants 
was then fitted in the conditional quasi-Poisson regression model designed by case-
crossover framework, where three-way interaction terms of year, calendar month, 
and day of the week of case and its many control days were matched within the 
same stratum. Specifically, a stratum was defined by matching each case day with 
many control days that are in the same day of the week within the same calendar 
month and year as case day. This epidemiological design automatically adjusts 
for day of the week, seasonality and long-term trend [2]. Moreover, temperature 
and relative humidity was used as potential confounding factors on the association 
between air pollutants and mortality by fitting natural cubic spline function with three 
degrees of freedom each. The algebraic equation applied to analyze province-specific 
association between air pollutant and mortality is shown below; 

Log
[
E

(
Yt,i

)] = α + β p,i Z p,t,l,i + ns
(
tmeant,i , 3

) + ns
(
humidt,i , 3

) + stratumt,i (4.1) 

where Log[E(Y t,i)] is the natural logarithm of the expected number of non-accidental 
mortality at day t and province i; α is model intercept; βp,i defines the coefficients of 
pollutant p associated with mortality at province i; Zp,t,l,i is the cross-basis matrix of
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air pollutant p generated by DLNM at day t lag l and province i; ns(·) indicates the 
natural cubic spline function with predefined degree of freedom; tmeant,i and hunidt,i 
is daily mean temperature and relative humidity at day t and province i, respectively; 
stratumt,i is the three-way interaction between case and its many control days at day 
t and province i. 

In the second stage, province-specific estimates obtained from the first stage were 
pooled to derive the national estimated effects of individual air pollutants on mortality 
using random-effects meta-analysis with restricted maximum likelihood (REML) 
estimation. The random-effects model is given by; 

β '
p,i = βp + δp,i + θp,i (4.2) 

β '
p,i ∼ N (βp, Dp + Sp,i ) (4.3) 

where β '
p,i indicates the risk estimate of air pollutant p on mortality for province i; βp 

is the national estimate of pollutant p that we would like to obtain; δp,i is a vector of 
between-province random sampling error associated with pollutant p and province 
i; θ p,i is a vector of within-province random error for air pollutant p and province 
i. The province-specific estimates are assumed to be normally distributed, where 
Dp indicates the covariance matrix of δp,i and Sp,i is the covariance matrix of θ p,i 
obtained from the first stage. The national estimate was shown as relative risk (RR) 
of non-accidental mortality associated with 10 μg/m3 increase of air pollutants. The 
I2 statistic and Cochran Q-test was also applied to explore the residual heterogeneity 
among province-specific estimates [6]. All statistical analyses were performed using 
the R package for statistical computing (version 4.1.0) with “dlnm”, “splines”, and 
“gnm” packages. 

The results indicated that exposure to PM10, PM2.5, NO2, and O3 was signifi-
cantly associated with an increased risk of mortality in Thailand, where the highest 
estimates were observed at cumulative lag 0–2 days. Specifically, the pooled RRs 
of mortality associated with 10 μg/m3 increase of PM10, PM2.5, NO2, and O3 were 
1.0097 (95% CI: 1.0064, 1.0131), 1.0171 (95% CI: 1.0108, 1.0234), 1.0391 (95% CI: 
1.0225, 1.0560), and 1.0106 (95% CI: 1.0054, 1.0158) at lag 0–2 days, respectively, 
and these RRs was then applied as concentration–response function to further esti-
mate mortality benefits associated with air pollution reduction during the COVID-19 
lockdown period. Findings also revealed that there was a significant heterogeneity 
among provinces with I2 statistic and p-value from Cochran Q-test of 43.4% and 
<0.001 for PM10, 44.9% and <0.001 for PM2.5, 67.2% and <0.001 for NO2, and 
32.8% and 0.0016 for O3 (Fig. 4.2), suggesting that the significant difference on the 
effect estimates of PM10, PM2.5, NO2, and O3 on non-accidental mortality among 
provinces is observed that could be explained by other external predictors.
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Fig. 4.2 Pooled RR and 95% confidence interval of mortality associated with every 10 μg/m3 

increase of PM10, PM2.5, NO2, and  O3 at different lag structures 

4.4 Business-as-Usual Concentration of Air Pollution 
During the COVID-19 Lockdown Period 

Business-as-usual (BAU) concentration is the concentration of air pollutants that 
would have been observed when lockdown measure is not implemented. The BAU 
concentration was predicted using a machine learning algorithms with meteoro-
logical normalization technique. The meteorological data, including daily average 
temperature (oC) and relative humidity (%), as well as monthly air pressure (hPa), 
and daily cumulative rainfall (mm), were obtained from weather monitoring stations 
of the Thai Meteorological Department under the Ministry of Digital Economy and 
Society located in the same provinces as of air pollution data during January 2016 
through December 2020. Nevertheless, only 29 out of 37 provinces were finally 
included to predict the BAU concentrations of PM10 and PM2.5 during the COVID-
19 lockdown period because monthly air pressure and daily cumulative rainfall data 
were not available in the rest of provinces, in which 28 provinces were ultimately 
included to estimate the BAU concentrations of NO2 and O3 since there was no NO2 

and O3 data in the rest of province during the study period. A random forests (RF) 
model is a machine learning algorithm that used to estimate the BAU concentra-
tion in this study through meteorological normalization technique. In particular, a 
number of de-correlated regression trees are basically grown from the original data 
using bootstrap sampling technique, and further average their predictions from all
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regression tress to obtain the final prediction. This method is approximately unbi-
ased, and therefore reduces the variance of an estimated prediction [9]. The RF 
model based meteorological normalization technique with 50 regression trees was 
built through development of the decision trees to predict PM10, PM2.5, NO2, and O3 

concentrations separately using ambient temperature, relative humidity, atmospheric 
pressure, rainfall, as well as day of the year, calendar year, and indicator variable 
for province as predictor variables. The training set of RF model was performed 
using the data from 2016 to 2019, and daily province-specific concentration of air 
pollutants in 2020 was predicted using the estimates obtained from the training set. 
The predicted concentrations during April 3 through May 3, 2020 were defined as 
BAU concentration. The RF model used in this study is described below; 

Z p,t = RF
(
tmeant , humidt , presst , raint , doyt , yeart , provincei,t

)
(4.4) 

where Zp,t is the concentration of air pollutant p on day t; tmeant , humidt , presst , and 
raint is level of temperature, relative humidity, atmospheric pressure, and rainfall at 
day t, respectively; doyt is day of the year at day t; yeart is calendar year at day t; 
provincei,t is indicator variable for province i at day t. 

Findings revealed that the daily average concentrations of observed PM10 and 
PM2.5 over 29 provinces and those of observed NO2 and O3 across 28 provinces 
were lower compared to predicted BAU concentration during the lockdown period 
in 2020 (Fig. 4.3). In particular, mean ± SD of observed PM10, PM2.5, NO2, and 
O3 concentrations were 43.84 ± 26.72, 24.54 ± 21.26, 20.98 ± 23.35, and 89.08 
± 35.97 μg/m3, respectively whereas that of predicted BAU concentration of PM10, 
PM2.5, NO2, and O3 was 56.13 ± 16.90, 34.51 ± 12.35, 27.86 ± 17.04, and 102.22 ± 
27.65 μg/m3, respectively. These findings indicate that implementing the COVID-19 
lockdown measures lead to a reduction of ambient air pollution.

The validity of RF model was also performed using province-stratified tenfold 
cross-validation (CV) method using the data from 2016 to 2019. The coefficient of 
determination (R2) and root mean square error (RMSE) were calculated as validating 
parameters. Results revealed that CV R2 for PM10, PM2.5, NO2, and O3 was respec-
tively 0.79, 0.79, 0.86, and 0.77, and CV RMSE for PM10, PM2.5, NO2, and O3 was 
11.53, 8.38, 10.28, and 16.70 μg/m3, respectively. This finding suggests that RF 
model based weather normalization technique is accurately predicted BAU concen-
tration of air pollutants in this study, to some extent. The RF model was performed 
using “ranger” and CV was performed using “caret” package in R (version 4.1.0). 

4.5 Health Benefits of Air Pollution Reduction During 
the COVID-19 Lockdown Period 

The number of mortality attributable to individual air pollutants over n days was 
computed using the following equation;
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Fig. 4.3 Concentration of PM10, PM2.5, NO2, and  O3 during the COVID-19 lockdown period in 
2020 in Thailand, red lines represent the predicted BAU concentration through RF based weather 
normalization technique and blue lines indicate observed concentration (Source Saengsawang and 
Phosri under review)

nΣ

t=1 

MORpt =
[
exp

(
βp∗Δxpt

) − 1
]
*Nt (4.5) 

where MORpt indicates the number of mortality attributed to air pollutant p on day t; 
βp is log relative risk of mortality associated with pollutant p obtained from condi-
tional quasi-Poisson model, therefore βp in this study is calculated from log(RRp)/10; 
Δxpt is concentration of pollutant p on day t exceeding the threshold, where the 
threshold was set as zero because the association between air pollutants and mortality 
from preliminary analysis followed the linear pattern with no threshold level, indi-
cating that increased exposure to air pollutants was associated with an increased 
risk of mortality; Nt defines the total number of mortality at day t. The mortality 
benefit associated with a reduced concentration of air pollution during the COVID-
19 lockdown periods over m provinces was then calculated using equation described 
below; 

mΣ

i=1 

nΣ

t=1

ΔMORpti = 
mΣ

i=1 

nΣ

t=1 

MORpti(observed) − 
mΣ

i=1 

nΣ

t=1 

MORpti(BAU) (4.6)
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Fig. 4.4 Number of mortality attributable to observed (orange) and predicted BAU (blue) 
concentration of air pollutants and the difference between the two (green) 

where ΔMORpti indicates the difference in the number of mortality attributed to 
air pollutant p between observed and BAU concentration at day t and province i; 
MORpti(observed) and MORpti(BAU) is the number of mortality attributed to the observed 
and predicted BAU concentration of air pollutant p on day t at province i, respectively. 

Findings revealed that implementation of the COVID-19 lockdown measures 
in Thailand leads to a reduction in number of mortality attributable to a reduced 
concentration of PM10, PM2.5, NO2, and O3 over 28–29 provinces. Specifically, a 
reduction of PM10, PM2.5, NO2, and O3 concentrations over the lockdown periods 
(i.e., From April 3 to May 3, 2020) was associated with a reduction of −150 (95% 
CI: −225, −59) deaths, −215 (95% CI: −338, −91) deaths, −134 (95% CI: −517, 
245) deaths, and −205 (95% CI: −359, −37) deaths, respectively (Fig. 4.4). 

4.6 Discussion and Conclusions 

RF model based meteorological normalization technique was used to predict the BAU 
concentration of PM10, PM2.5, NO2, and O3 during the COVID-19 lockdown periods, 
and the concentration–response function obtained from the epidemiological model 
was subsequently applied to estimate the change in number of mortality attributable 
to air pollution reduction over 29 provinces for PM10 and PM2.5, and across 28 
provinces for NO2 and O3 in Thailand. 

The results of RF model, a machine learning algorithm based weather normal-
ization technique, show that the predicted BAU concentration of PM10, PM2.5, NO2, 
and O3 was relatively accurate as indicated by CV R2 and RMSE, although many 
other potential factors that influence the concentration of air pollutants were not 
taken into consideration, such as wind speed, wind direction, sunshine duration, and 
planetary boundary layer height (PBLH) [24, 25]. This finding is similar to previous
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studies in China [26] and Spain [1], suggesting that RF model based meteorological 
normalization technique has accurately performed to predict the BAU concentration 
of air pollutants. The results also reveal that the average of observed concentration of 
PM10 and PM2.5 over 29 provinces and NO2 and O3 across 28 provinces was lower 
than their predicted BAU concentration during the COVID-19 lockdown periods, 
especially that of NO2. These results can be explained by the fact that the COVID-19 
lockdown measures substantially restrict socioeconomic activities, including indus-
trial processes and logistic and supply chains that may lead to a substantial reduc-
tion in anthropogenic emission and subsequent decrease in ambient air pollution 
concentration [22]. 

Findings from epidemiologic model indicate that the highest RR of non-accidental 
mortality associated with air pollutants was observed at lag 0–2 days, where RR 
of mortality associated with exposure to every 10 μg/m3 increase of PM10, PM2.5, 
NO2, and O3 was 1.0097 (95% CI: 1.0064, 1.0131), 1.0171 (95% CI: 1.0108, 1.0234), 
1.0391 (95% CI: 1.0225, 1.0560), and 1.0106 (95% CI: 1.0054, 1.0158), respectively. 
The magnitude of the estimates observed in this study was slightly higher compared 
to a recent study in Thailand [8]. This difference might be due in part to different 
modeling frameworks, study periods, and a limited number of monitoring stations 
and provinces included in a previous study, leading to bias the effect toward the 
null hypothesis. However, the association and lagged patterns observed in this study 
were similar to previous studies in many parts of the world, showing that the effect 
of PM10, PM2.5, NO2, and O3 on non-accidental mortality seem to be linear (no 
threshold level) with the highest magnitude observed at between lag 0 and lag 7 days 
[3, 8, 15]. 

During the COVID-19 lockdown period in Thailand, hundreds of deaths were 
avoided due to reduction in air pollution concentrations, especially in PM2.5 and 
O3. This finding is similar to a previous study in China, showing that reduction 
of PM10, PM2.5, NO2, and O3 during the lockdown period was associated with a 
reduction in the number of deaths by 2777 (95% CI: 1565, 3995), 1239 (95% CI: 
844, 1578), 4711 (95% CI: 3649, 5781), and 215 (95% CI: 116, 314), respectively 
throughout 367 Chinese cities [26]. However, the magnitude of mortality benefits 
attributable to air pollutants reduction in this study was different from that of a 
previous study. This different finding could be explained by the number of target 
populations included in the study. Specifically, previous study applied mortality rate 
and number of populations in 367 cities to estimate the number of death, but the 
current study used the total number of death obtained directly from the Ministry 
of Public Heath in 28 or 29 provinces, and further quantifies the decreased number 
of deaths attributable to air pollution reduction during the lockdown period. In this 
study, some limitations had to be acknowledged. First, RF model based weather 
normalization technique was applied to estimate the BAU concentration during the 
lockdown period, but many sources of uncertainties that influence the concentration 
of air pollutants were not taken into account. However, the model performance seems 
to be satisfied, to some extent, with CV R2 for PM10, PM2.5, NO2, and O3 of 0.79, 
0.79, 0.86, and 0.77, respectively. Second, people spend most of their time indoor 
during the lockdown period, where indoor air pollutants could mainly influence
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adverse health effects. Nevertheless, indoor air quality data was not accounted in this 
study because previous studies in Thailand has revealed that outdoor air pollutants 
were well correlated with indoor concentration and outdoor air pollutants are the 
main contributor to indoor concentration [12, 19]. Third, health benefits attributed 
to air quality improvement in this study were only estimated over 29 provinces for 
PM10, PM2.5 and 28 provinces for NO2, and O3. Moreover, other adverse health 
outcomes beside mortality, such as emergency room visits and hospital admission, 
are also associated with air pollutants. Therefore, the magnitude of health benefits 
seems to be underestimated, but finding from this study implied that improvement 
in air quality contributes to a reduction in the number of deaths associated with 
air quality improvement. In conclusion, this study highlighted that air quality was 
improved during the COVID-19 lockdown period over 29 provinces in Thailand, and 
the number of deaths was consequently avoided. Although, the COVID-19 situation 
is inappropriate for alleviating public health problems, in turn increasing public 
health crisis, this study can aid policy makers to make decision regarding air quality 
management and related interventions to solve the public health burden attributable 
to air pollution in Thailand. 
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Chapter 5 
Satellite-Derived Vegetation Indices 
as a Criterion for Assessing Green 
Exposure that is Related to Human 
Health Burdens 

Chih-Da Wu and Aji Kusumaning Asri 

Abstract Remote sensing technology is used practically in epidemiological studies. 
This chapter demonstrates how green exposure that is related to health burdens is 
analyzed. Using satellite-derived data, green exposure is represented as a Normalized 
Difference Vegetation Index (NDVI). Population and individual studies are used, 
and several green estimation methods are implemented, wherein the spatial data 
for the study object is linked to the NDVI. The variables that influence the health 
burden and the effectiveness of the effect of green exposure on health are determined. 
This study uses adjusted spatial-statistical methods to determine the relationship 
between green exposure and health burdens. The overall findings show a significant 
relationship between green exposure and health burden in both regional and global 
analyses. This study increases knowledge of remote sensing applications to preserve 
the environment and health. 

Keywords Green exposure · Human health · Regional-global analysis ·
Satellite-derived vegetation indices 

5.1 Introduction 

Increasing urbanization in various regions means that the natural environment, such 
as green spaces, has decreased significantly. Significant changes in land-use allow 
remote sensing technology and Geographic Information System (GIS) to be used 
for monitoring and determining spatial–temporal changes in land surfaces, such as 
green spaces.
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In assessing exposure to greenness, many studies use various data and tech-
nical methods. Hussein and colleagues analyzed green exposure using two satellite-
dsserived vegetation indices from a Moderate Resolution Imaging Spectroradiometer 
(MODIS), a Normalized Difference Vegetation Index (NDVI) and an Enhanced Vege-
tation Index (EVI) [1]. An NDVI is widely used to estimate greenness because this 
index is sensitive to the presence of vegetation and its dynamics [2]. Apart from the 
MODIS-NDVI, the green index is also measured using other satellite imagery, such 
as high spatial resolution, WorldView-2 [3], Landsat [4], RapidEye [5] or Sentinel-2 
[6]. 

Satellite data gives information that is broad in scope and continuous, so it is 
widely used to study environmental conditions that are related to human health. 
Satellite data is used to assess environmental green exposure for epidemiological 
observations in a study by [7], which uses a multi-temporal MODIS-NDVI to deter-
mine the association between green exposure and depressive symptoms in Korea. 
NDVI satellite data was also used to study the relationship between green space 
metrics and health and behavioral outcomes in areas with various buffer sizes [8]. 
A study in the USA assessed greenness using a NDVI to determine the relation-
ship between green exposure and volatile organic compounds, which can trigger the 
development of cardiovascular diseases [9]. 

Satellite-derived greenness that is related to health burdens has been studied exten-
sively but studies only give a local-level analysis. This study presents a developmental 
concept for ecological study for which satellite data is used to determine the effect of 
green exposure on health burdens globally. A local-level study with individual-based 
analysis and uses similar method is also performed. 

This study gives a better understanding of how the application of remote sensing 
technology can promote environment preservation and human health. The first 
section details how this study is presented. In Sect. 5.2, the methodological frame-
work that is used to determine satellite-derived green exposure that is associated with 
health burdens is proposed. Several application examples of the proposed method 
for population and individual-based studies are described in Sect. 5.3. Section 5.4 
draws conclusions. 

5.2 Methodology 

This study uses a conceptual framework that has two main stages: estimating the 
green exposure and assessing its relationship to the health burden. Remote sensing 
data is used as the primary vegetation index to determine green exposure. The scale 
factor is adjusted to determine the valid range values for the vegetation index. In 
addition, negative values of vegetation index are removed to minimize the effect of 
water exposure in the greenness estimation. GIS is used to determine green exposure 
for each study area and to establish the spatial distribution pattern for the individuals’ 
address who are confirmed to have a particular health burden.
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Statistical association models coupled with multiple sensitivity tests are used to 
evaluate the association between exposure and outcome. The consistent results of 
the sensitivity test demonstrate the robustness of the main statistical models. Further-
more, stratified analyses are also examined to determine the effect of greenness on 
health for various conditions. The following gives a detailed description of each 
stage, 

5.2.1 Definitions of Vegetation Indices 

In terms of the global and regional analyzes that are presented, remote sensing data 
with an adjustable resolution is used to observe the spatial–temporal conditions for 
green exposure that are represented by the vegetation index. The vegetation index 
is widely used to estimate green exposure because it is very sensitive to the pres-
ence of vegetation and its dynamics. The best-known is the Normalized Difference 
Vegetation Index (NDVI) [2]. The NDVI, which is derived from satellite data is a 
dimensionless index that defines the difference between the reflectance of visible 
and near-infrared vegetation cover and is used to calculate the green density for 
an area [10]. The NDVI value varies from −1.0 to +1.0. Positive values represent 
greener areas because healthy vegetation has low red-light reflectance and high near-
infrared reflectance. An NDVI value that is close to zero and a decrease to a negative 
value indicates non-vegetative features [11]. Formally, the formula for the NDVI is 
expressed as in Eq. 5.1: 

NDVI = 
(NIR − Red) 
(NIR + Red) 

(5.1) 

where NIR is Near-Infrared Regions and Red is the spectral reflectance measurements 
that are acquired in red visible radiation. 

This study uses an NDVI that is measured using a Terra Moderate Resolution 
Imaging Spectroradiometer (Terra-MODIS) sensor Version 6 to calculate the pres-
ence of green exposure for each study area [7]. This data is provided by the National 
Aeronautics and Space Administration and includes the monitoring and measuring 
of vegetation, plants, biomass production, and the components of greenness [12]. 

5.2.2 Calculating Green Exposure Using Satellite-Based 
Vegetation Indices 

Previous studies calculate green exposure using remote sensing data from GIS [9, 
13]. Geospatial processing software is used to assign NDVI grid cell estimates in 
a particular study area. The vegetation index is calculated using MODIS satellite 
imagery by adjusting the NDVI value range from −2000 to 10,000 for raw data to
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a real NDVI value of −0.2 to 1.0, as shown in Fig. 5.1. The real NDVI value is 
calculated by multiplying the NDVI range by the scale factor (0.0001), as shown in 
Eq. 5.2: 

NDVIAdj = NDVI0 × scale factor (5.2) 

where NDVIAdj is the real value of the NDVI (after adjustment), NDVI0 is the NDVI 
values that are identified as raw data from the image in integer values and the NDVI 
scale factor is 0.0001. 

A negative value of NDVI indicates proximity to water [14] so pixels with negative 
values are excluded to avoid misclassification bias due to another environmental 
effect. The effect of water is excluded from this green exposure estimate because a 
previous study confirmed that water or blue space is beneficial to health [15], so this 
may affect the analysis. By eliminating negative values in the image, the related grid 
is identified as areas that do not have vegetation data (not 0) and the grids that have 
a vegetation index value are retained. Figure 5.2 shows valid NDVI values with a 
range of 0 to 1.

The valid values for the NDVI (0 to 1) are used to calculate exposure to green 
vegetation in the study area. For a population-based analysis, green exposure is 
calculated using the regional boundary (Fig. 5.3-left). Using boundaries at various 
levels (township, district, city/county, province, or country) allows the green exposure 
to be calculated using the average index value for all pixels that fall within a specific 
boundary.

As shown in Fig. 5.3 (right), if the estimated green exposure is calculated on a 
country level, the spatial distribution for the high vegetation index, which is greener 
exposure that is clustered in the central states, can be calculated. Countries that are 
marked with dark green are areas have high vegetation index or high green exposure 
and light green indicates countries with low green exposure.

Fig. 5.1 Adjusted NDVI value ranges from −0.2 to 1, October 2012 
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Fig. 5.2 NDVI value for analysis ranges from 0 to 1: October 2012

Fig. 5.3 Spatial distribution of estimated green exposure (NDVI): population-based study

As shown in Fig. 5.4, for analysis on an individual basis, estimates of green 
exposure are based on individual location points (x and y coordinates). In this case, 
the estimated value for the calculated vegetation index does not use an area boundary: 
the patient’s address or the area with a buffer radius around the individual’s site is 
shown in Fig.  5.4 (left and middle). The buffer rings around each individual’s location 
are used to determine the degree of green exposure to which a subject has access. 
In the example in Fig. 5.4 (right), someone living in the eastern region has a higher 
chance of accessing green space than someone in the eastern region.

To calculate the green exposure using the vegetation index, for a population and 
individual analysis, categorical quartiles of NDVI are used for the main analysis to 
determine potential nonlinearity and to minimize the effect of outliers in the NDVI 
distribution.
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Fig. 5.4 Spatial distribution of estimated green exposure (NDVI): cohort-based study

5.2.3 Assessing Green Exposure in Relation to Health 
Burden 

This section uses the statistical association to determine the relationship between 
green exposure and health burden. Several potential risk factors that are associated 
with corresponding health burdens are controlled as fixed-effect variables. Coefficient 
and risk estimates with 95% confidence intervals are reported and a p-value < 0.05 
is considered to indicate statistical significance. The statistical calculations adjusted 
to the study design are described below. 

5.2.3.1 Ecological Study 

For this population-based analysis or ecological study, green exposure NDVI is 
denoted as X (predictor) and health burden as Y (outcome). A linear mixed effect 
model is used to determine the relationship between exposure and outcome. This 
model accounts for fixed and random effects and provides a flexible approach for 
analyzing health outcome [16]. Equation 5.3 shows the general matrix notation for 
the linear mixed-effects model [17]: 

Y i j  = X '
i j  β + Z'

i j  bi + ∊ i j (5.3) 

where Yij is the link function or (N × 1) column vector, the outcome variables 
(health burden), X '

ij is a (N × p) matrix for the p predictor variables (green exposure 
NDVI), β is a (p × 1) column vector for the fixed-effect coefficients, Z '

ij is a (N × p) 
matrix for the q random effects, bi is a (q × 1) column vector for the random-effect 
coefficients and eij is a (N × 1) column vector for the residuals, which is the part of 
Yij that is not explained by the model. The random effects, bi, are assumed to have a 
multivariate normal distribution with a mean of zero and a covariance matrix G, so  
the equation becomes (Eq. 5.4):
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bi ∼ N(0, G) (5.4) 

where bi is distributed as normal with a mean of zero and a covariance matrix G. 
The mean is zero because the fixed effects, including the fixed effect intercept, are 
calculated directly so random effect complements are modeled as deviations from 
the fixed effect. G is a 2 × 2 variance–covariance matrix for the random effects with 
unique components. For random intercepts and random gradients, then variance– 
covariance matrix G is expressed as (Eq. 5.5): 

G =
[

σ 2 int σ 2 int,slo pe 
σ 2 int,slo pe σ 2 slo pe

]
(5.5) 

In terms of residual errors, eij, are assumed to have a multivariate normal 
distribution with a mean of zero and a covariance matrix Ri, so the equation becomes:

∊ i j  ∼ N(0, Ri ) (5.6) 

where eij is distributed as a normal with a mean of zero and a covariance matrix Ri, 
Ri = σ 2 I and I is the identity matrix. If conditional independence is assumed, Ri 

= σ 2I, the errors eij within a subject are uncorrelated with homogeneous variance, 
so a structured model for Ri is assumed, such as an autoregressive model. The “area 
ID” is a clustered unit that is treated as a random intercept and is used to minimize 
the temporal correlation due to repeated measurements within the area. 

To validate the model, several sensitivity tests are used to determine the robustness 
of the results. Positive–negative control analyses are also used to determine the 
strength of causal inference for an exposure-outcome association. Two methods are 
used: positive–negative outcome control and positive–negative exposure control. A 
positive–negative outcome control determines whether using the same exposure and 
replacing studied outcomes with other outcomes yields consistent results. A positive– 
negative exposure control determines whether using studied outcomes and replacing 
exposure variables generates a consistent association. Using this validation, causal 
inference is assumed to be acceptable if the positive control analysis shows an equally 
significant relationship to that in the main model and the negative control analysis 
shows an insignificant relationship. 

5.2.3.2 Cohort Study 

In terms of the analysis at the individual level, Cox proportional hazard regression 
models are used to determine the association between green exposure and health 
burden and to calculate the hazard ratio (HR) with 95% confidence intervals (CI). 
For this model, the proportionality of hazards is determined by testing interactions 
using the log of time [18]. The formula for this survival time model is:
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ht = h0(t)exp(b1 X1 + b2 X2 +  · · ·  +  bn Xn) (5.7) 

where h(t) is the expected hazard at time t and h0(t) is the baseline hazard and 
represents the hazard when all independent variables X1, X2, Xn are equal to 0 (zero). 
The estimated hazard h(t) or the suffering rate for the next event is the product of 
the baseline hazard h0(t) and the exponential function for the linear combination of 
the predictors. Therefore, the predictor (green exposure NDVI) has a multiplicative 
or proportional effect on the estimated hazard (health burden). 

Similar to the ecological study, as part of the validation, sensitivity tests using 
different covariates are performed to determine the robustness of the developed 
models. 

5.3 Example Cases: Green Exposure Related to Health 
Burdens 

Three examples of studies at the population and individual levels to determine the 
relationship between green exposure derived from satellite information and the 
burden on human health are presented. The relationship between greenness and 
cardiovascular diseases and the all-cause mortality will be described in detail as 
follows. 

5.3.1 The Relationship Between Greenness and IHD 
and Stroke: Global Ecological Study 

Since a global analysis gives stronger scientific evidence, an ecological-based study 
was undertaken by Asri et al. (2020) to determine the association between greenness 
and cardiovascular burdens, in terms of ischemic heart disease (IHD) and stroke 
globally [19]. Cardiovascular diseases are the health burden of concern because the 
Global Burden of Disease study in 2016 confirmed that IHD and stroke are the leading 
causes of mortality in the global population. Using country-level datasets, this study 
collects data from 183 countries for 2000, 2010, 2015, and 2016. Disability-adjusted 
life year (DALY) loss data from the World Health Organization is used to represent 
the health burdens due to IHD and stroke. Because the available data cover all age 
groups, the data of the population aged under 5 years are excluded due to the low 
burden and ineffectiveness of detection of cardiovascular symptoms in this age group. 

This study calculated the ratio for DALY and the spatial distribution of DALY 
loss due to IHD and stroke and the results are shown in Fig. 5.5. Based on the spatial 
plotting of DALY loss, for which darker areas indicate a higher risk of burden, the 
global IHD risk (Fig. 5.5a) is identified as high in Europe and low in African countries.
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Stroke (Fig. 5.5b) is identified as a high risk in European and Asian countries and 
low in Australia and some countries in America and Africa. 

The Terra-MODIS NDVI with 1× 1 km2 spatial resolution (in 2000–2016) is used 
to determine the presence of greenness in each country. The monthly NDVI for this 
study is MOD13A3 Version 6 and pixels with negative values are omitted to avoid 
bias estimates because of water effect on the image [14]. To determine the relationship 
between exposure and outcome, one of the mixed-effect algorithms, the generalized 
linear mixed model with a penalized quasi-likelihood, is used with a sensitivity anal-
ysis and validity analysis. In terms of potential risk factors, several covariates such 
as demographic characteristics, socioeconomic factors, lifestyle behaviors, socio-
culture, healthcare statuses, comorbidities, air pollution–PM2.5, and meteorological 
factors are controlled for model adjustment.

a 

b 

Fig. 5.5 Map of spatial distribution of DALY loss due to a ischemic heart disease (IHD) and b 
stroke for all countries worldwide (modified from Asri et al. [19]) 
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The results (Table 5.1) show that the association model predicts a significantly 
negative association between greenness and DALY loss due to IHD-stroke, with a 
coefficient estimation per unit increment for the NDVI from 0 to 1 of −11.25 (95% 
CI: −16.77, −5.72) and −4.387 (95% CI: −7.93, −0.09), respectively. These results 
show that greenness significantly reduced the health burden due to IHD and stroke. 
The six sensitivity test models show a consistently significant negative association 
between greenness and IHD and stroke for different risk factor settings. 

As part of the validation tests, the results of the positive–negative control analysis 
agree with the assumptions for this study (Table 5.2). Positive outcome control shows 
a significantly negative association between greenness and falls (p-value < 0.05) 
but does not achieve a statistically significant result for the relationship between 
greenness and road injury (negative outcome control). Positive exposure control 
shows a significantly positive association between IHD and PM2.5 and an insignificant 
association between IHD and wind speed for the negative exposure control analysis.

Knowing that greenness varies by country, this study analyzed the four regional 
groups based on the quartile of NDVI and coded Q1 as the lowest green areas. As 
shown in Table 5.3, after adjusting for covariates, the areas with the highest quartile 
of NDVI have a significantly negative association with IHD, compared to the lowest

Table 5.1 Association models between greenness and IHD-stroke in the DALY changes per unit 
increment of NDVI from 0 to 1 (modified from Asri et al. [19]) 

IHD Stroke 

β coefficient of NDVI 
(95% CI) 

p-value β coefficient of NDVI 
(95% CI) 

p-value 

Main modela −11.25 (−16.77, −5.72) <0.001 −4.39 (−7.93, −0.09) <0.05 

Sensitivity test 

Model 1 b −11.81 (−17.73, −5.88) <0.001 −5.27 (−9.06, −1.48) <0.01 

Model 2 c −11.87 (−17.73, −5.92) <0.001 −5.45 (−9.27, −1.64) <0.01 

Model 3 d −11.87 (−17.83, −5.92) <0.001 −5.73 (−9.57, −1.89) <0.01 

Model 4 e −11.53 (−17.49, −5.58) <0.001 −4.96 (−8.81, −1.10) <0.01 

Model 5 f −10.23 (−15.99, −4.46) <0.001 −4.10 (−7.71, −0.49) <0.05 

Model 6g −10.72 (−16.29, −5.14) <0.001 −4.10 (−7.68, −0.52) <0.05 

Model 7h −6.10 (−10.41, −1.80) <0.01 −1.62 (−5.52, −0.002) <0.05 

CI = confidence interval; IHD = ischemic heart disease 
aControl covariates include population size, sex (%, female), age, economic status, smoking, alcohol, 
education, PM2.5, BMI, cholesterol, blood pressure and healthcare expenditure 
bAdjusted for population size, sex (%, female) and age 
cAdjusted for Model 1 and PM2.5 
dAdjusted for Model 2 and economic status 
eAdjusted for Model 3 and alcohol 
fAdjusted for Model 4, smoking, and education 
gAdjusted for Model 5, BMI, cholesterol and systolic blood pressure 
hControlled for all covariates and data from Eastern Europe and Central Asia/Russia countries is 
eliminated 
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Table 5.2 Positive–negative control analysis (modified from Asri et al. [19]) 

Model β coefficient 
(95% CI) 

p-value β coefficient (95% CI) p-value 

IHD ~ PM2.5 (positive) IHD ~ Wind speed (negative) 

Exposure control 
model a 

0.11 (0.04, 0.17) <0.01 −1.13 (−0.36, 2.61) 0.15 

Green ~ falls (positive) Green ~ Injury (negative) 

Outcome control 
model b 

−1.62 (−2.64, − 
0.60) 

<0.001 −0.56 (−1.38, 2.50) 0.58 

CI = confidence interval; IHD = ischemic heart disease 
aControl covariates include population size, sex (%, female), age, economic status, smoking, alcohol, 
education, BMI, cholesterol, systolic blood pressure and healthcare expenditure 
bControl covariates include population density, sex (%, female), age, economic status, smoking, 
alcohol, education, PM2.5 and healthcare expenditure 

Table 5.3 Coefficient estimations of greenness by quartile attributed to DALY loss due to IHD and 
stroke in multivariable adjusted models (modified from Asri et al. [19]) 

NDVI IHD Stroke 

β coefficient of NDVI 
(95% CI) 

p-value β coefficient of NDVI 
(95% CI) 

p-value 

Quartile 1 (low) Reference Reference 

Quartile 2 −3.64 (−8.94, 1.67) 0.19 −0.12 (−0.36, 0.12) 0.34 

Quartile 3 −7.80 (−13.17, −2.44) <0.01 −0.01 (−0.24, 0.21) 0.84 

Quartile 4 (high) −9.53 (−15.21, −3.85) <0.001 −0.07 (−0.32, 0.18) 0.57 

CI = confidence interval; IHD = ischemic heart disease 
Control covariates include population size, sex (%, female), age, economic status, smoking, alcohol, 
education, PM2.5, BMI, cholesterol, systolic blood pressure and healthcare expenditure

quartile (coef., 95% CI = −9.53, −15.21 to −3.85). There is a linear relationship 
between NDVI estimates for IHD and the coefficient increases from −9.53 (Q4), − 
7.80 (Q3), to −3.64 (Q2). This study also determines a negative correlation between 
greenness and stroke for all classes, although this result is not significant. 

This study uses stratified analyses for different levels of demographic factors 
(Fig. 5.6). In terms of DALY loss based on sex, the effect of greenness on IHD 
and stroke for both females and males indicate a significant negative association 
(p-value < 0.05). There is no notable difference in the effect of greenness between 
the sexes in terms of reducing the health burden due to IHD and stroke.

Stratification by economic status confirms that greenness has a significant negative 
correlation to IHD in low and middle-income countries and is negatively correlated 
at all economic levels for stroke, although this result is insignificant. Stratification 
by age shows a significant negative association for IHD and greenness for all studied 
populations. A negative association is also identified for all age groups for stroke 
and this result is significant for ages 15–29, 50–59, and 60–69 years.
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Fig. 5.6 Subgroup analysis, stratified by a sex, b age group and c economic status for greenness 
in relation to DALY loss due to IHD and stroke (modified from Asri et al. [19])

5.3.2 The Relationship Between Residential Green Space 
and Ischemic Stroke: A Cohort Study 

The proposed method is used for an individual-level analysis of the results of a study 
by Wilker and colleagues (2014) to determine the link between green space and 
mortality following ischemic stroke in the greater Boston metropolitan area [18]. 
1763 patients of 21 years or older who were admitted to Beth Israel Deacon Medical 
Center (BIDMC) between April 1999–October 2008 and who resided within 40 km 
from the hospital are studied. The medical records during hospitalization are used 
to distinguish medical history, presenting symptoms and demographic information 
for patients. To determine the outcome, the number of mortalities until June 2012, 
as registered in the Social Security Death Index (SSDI) (929 deaths among 1645 
patients) are used. MODIS NDVI with 250-m spatial resolution as a gridded product 
vegetation index is used to determine the residential green space (Fig. 5.7). The
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Fig. 5.7 Green space calculated using the NDVI for the studied area: July 2012 

average NDVI levels for July from 2000 to 2012 (two July NDVI measures per year) 
are calculated. This produces 26 images that are used to predict the amount of green 
space. Grids around patient addresses that are surrounded by water areas are excluded 
from the analysis. 

For the statistical analysis, Cox proportional hazard algorithm is used to calcu-
late the hazard ratio (HR) for the association between green space and mortality 
following ischemic stroke. Several pertinent covariates, including age, sex, race, 
Hispanic ethnicity, smoking status, history of coronary artery disease, stroke, atrial 
fibrillation, heart failure, diabetes, dyslipidemia, hypertension, % of people older 
than 25 without a high school diploma, median household income and the natural 
logarithm of the distance to a major roadway are used for the model adjustments. 
Sensitivity analyses using various covariate settings are used as validity tests to 
determine the robustness of the models. 

The association models for green space and ischemic stroke mortality are shown in 
Table 5.4. After adjustment for age and sex, Model 1 shows a significant relationship 
between green space and ischemic stroke (HR = 0.87, 95% CI: 0.78–0.97, p-value < 
0.05), but this result is insignificant when it is controlled for all covariates.

The quartile is designated as the primary analysis to evaluate potential nonlinearity 
and to minimize the outlier effects in the NDVI distribution and Table 5.5 shows 
the association models for green space and mortality following ischemic stroke, as 
stratified by quartile of NDVI. After further adjustment for all potential covariates 
(Model 2), the hazard ratio for patients living in the highest quartile of green space 
is 0.80 (95% CI: 0.65–0.99, p-value < 0.05). This result shows that patients living in 
the highest quartile of green space have a 20% lower mortality rate due to ischemic 
stroke than those living in the lowest green space. Living in the third quartile is also 
associated with a lower mortality rate (HR = 0.79, 95% CI: 0.65–0.96, p-value < 
0.05. The robustness of the association model is confirmed by consistent results for 
the sensitivity test for Model 1.
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Table 5.4 Hazard ratio for the association between green space (NDVI) and mortality following 
ischemic stroke, with NDVI as a linear continuous term (modified from Wilker et al. [18]) 

Model HR (95% CI) p-value 

Main model a 0.92 (0.81, 1.05) 0.22 

Sensitivity test 

Model 1b 0.87 (0.78, 0.97) <0.05 

Model 2c 0.91 (0.80, 1.03) 0.12 

CI = confidence interval; HR = hazard ratios 
aControlled for age, sex, race, Hispanic, smoking, history of coronary artery disease, history of 
stroke, atrial fibrillation, heart failure, diabetes, dyslipidemia, hypertension, % of people older than 
25 without a high school diploma, median household income and the log of the distance to a road 
bControlled for age and sex 
cControlled for age, sex, race, Hispanic, smoking, history of coronary artery disease, history of 
stroke, atrial fibrillation, heart failure, diabetes, dyslipidemia, hypertension, % of people older than 
25 without a high school diploma and median household income 
dScaled to an interquartile difference in NDVI (0.22)

Table 5.5 Hazard ratio by quartile for the association between green space (NDVI) and mortality 
following ischemic stroke (modified from Wilker et al. 2014) 

NDVI Model 1a Model 2b 

HR (95% CI) p-value HR (95% CI) p-value 

Quartile 1 (low) Reference Reference 

Quartile 2 0.90 (0.75, 1.08) – 0.91 (0.76, 1.10) – 

Quartile 3 0.79 (0.65, 0.94) <0.05 0.79 (0.65, 0.96) <0.05 

Quartile 4 (high) 0.77 (0.64, 0.92) <0.05 0.80 (0.65, 0.99) <0.05 

CI = confidence interval; HR = hazard ratio 
aControlled for age and sex 
bControlled for age, sex, race, Hispanic, smoking, history of coronary artery disease, history of 
stroke, atrial fibrillation, heart failure, diabetes, dyslipidemia, hypertension, % of people older than 
25 without a high school diploma, median household income and the log of the distance to a road 
cScaled to an interquartile difference in NDVI (0.22) 

5.3.3 The Relationship Between Residential Greenness 
and Mortality in the Elderly: A Cohort Study 

Using a cohort study design, a peer study by Ji and colleagues conducted an analysis of 
greenness related to all-cause mortality for the elderly in China [20]. This study uses 
five pooled waves from the China Longitudinal Healthy Longevity Survey (CLHLS) 
data from 2000 to 2014 as the determinants of healthy longevity in the older popu-
lation. 23,754 individuals aged ≥ 80 years in 2000 and 65–79 years from 2002 are 
included in the final sample and these were interviewed to gather personal-health data.
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Interviews were also used to identify demographic factors, lifestyle behavior, socioe-
conomic status, physical activity and social-leisure activity. This study gathered all 
cause-specific mortality information for 2476 of 18,948 deaths. 

To determine exposure, the NDVI from MODIS with a 250-m spatial resolution 
and 16-day temporal resolution is used to measure residential greenness (Fig. 5.8). 
Each residential address (longitude and latitude) is plotted and linked to the NDVI 
imagery and the greenness for the 250 and 1250 m buffer radii is calculated. The 
250 m radius is a measure of the green exposure surrounding the residence and the 
1250 m buffer represents greenness within walking distance. 

Accounting for seasonal variations, this study determines the NDVI values for 
each of the four seasons from February 2000 to October 2014 (January, April, 
July, October). As measurement metrics, contemporaneous NDVI (value at the indi-
vidual’s residential address at the time closets to the incident), cumulative NDVI 
(mean value of all NDVI measured over the follow-up period) and changes in NDVI 
in the residential area over the course of the follow-up period) are used to calculate 
green exposure. Quartiles of NDVI are used for the primary analysis. 

A Cox proportional hazard model is used to calculate the mortality hazard ratio 
(HR) and survival time is calculated from the first to the last date of interview (up to 
2014). Potential covariates, such as age, sex, marital status, ethnicity, socioeconomic, 
geographic region, social and leisure activity, smoking status, alcohol consumption 
and physical activity, are accounted for in the model adjustments. Adjustments for 
age and full covariates are used as a sensitivity test to determine the robustness of 
the models.

Fig. 5.8 NDVI predictions for the studied area 
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When covariates are controlled, Table 5.6 shows the hazard ratio with a 95% 
confidence interval for the association between greenness and mortality for age-
adjusted and fully adjusted models. For fully adjusted models, the results show that 
individuals residing in an area with a 250-m radius that falls within the highest 
quartile of contemporaneous NDVI (Q4) have 27% (HR = 0.73, 95% CI: 0.70–0.76, 
p-value < 0.001) lower mortality than those in the lowest quartile. Using a radius 
of 1250 m, the results remain consistent, and 30% lower mortality is confirmed for 
those living in areas with high greenness, compared to those living in areas with low 
greenness (HR = 0.70, 95% CI: 0.67–0 0.74, p-value < 0.001). 

Using cumulative values for the NDVI (Table 5.7), this study shows that there 
is no significant association between mortality for the highest quartile of greenness 
for either a 250-m radii (HR = 1.05, 95% CI: 1.01–1.10, p-value 0.24) or a 1250-m 
radii (HR = 1.05, 95% CI: 1.00–1.10, p-value 0.17), possibly because economic 
development that is associated with a reduction in green space, such as infrastructure 
and roads, may give increased access to healthcare facilities, which indirectly reduces 
the risk of mortality. Deaths among the elderly can also be caused by acute, rather 
than long-term exposure, as this group spends more time at home.

This study also constructs association models for all-cause mortality and changes 
in greenness (NDVI) over time and the results are shown in Table 5.8. For individuals 
living in areas with a significant increase in NDVI in a 250-m or 1250-m radius, the 
results show that there is an increase in mortality, compared to those living in areas 
with decreased NDVI. The effect of modification based on socioeconomic factors is 
detailed in this study. The results show that greenness has a greater protective effect 
in females, the financially independent and those who exercise than in males, the 
financially dependent and those who do not exercise.

Table 5.6 Hazard ratio for the association between residential greenness and all-cause mortality 
for the CLHLS, using contemporaneous NDVI (modified from Ji et al. [20]) 

NDVI HR (95% CI) 250-m buffer HR (95% CI) 1250-m buffer 

Model 1a Model 2b Model 1a Model 2b 

Q1 (low) Reference Reference 

Q2 0.92 (0.89, 0.96) 0.90 (0.87, 0.94) 0.91 (0.87, 0.94) 0.89 (0.85, 0.92) 

Q3 0.91 (0.87, 0.94) 0.88 (0.84, 0.92) 0.87 (0.83, 0.90) 0.83 (0.80, 0.87) 

Q4 (high) 0.76 (0.73, 0.79) 0.73 (0.70, 0.76) 0.74 (0.71, 0.77) 0.70 (0.67, 0.74) 

p-value <0.001 <0.001 <0.001 <0.001 

CI = confidence interval; HR = hazard ratio; Q = quartile 
aAge-adjusted hazard ratio 
bFully adjusted hazard ratio 
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Table 5.7 Hazard ratio for the association between residential greenness and all-cause mortality 
in the CLHLS using cumulative NDVI (modified from Ji et al. [20]) 

NDVI HR (95% CI) 250-m buffer HR (95% CI) 1250-m buffer 

Model 1a Model 2b Model 1a Model 2b 

Q1 (low) Reference Reference 

Q2 1.06 (1.02,1.10) 1.04 (1.00, 1.09) 1.07 (1.02,1.11) 1.05 (1.01,1.11) 

Q3 0.99 (0.95, 1.03) 0.97 (0.93, 1.02) 1.01 (0.97, 1.05) 1.00 (0.96, 1.05) 

Q4 (high) 1.05 (1.01, 1.10) 1.05 (1.01, 1.10) 1.05 (1.01, 1.09) 1.05 (1.00, 1.10) 

p-value 0.10 0.24 0.09 0.17 

CI = confidence interval; HR = hazard ratio; Q = quartile 
aAge-adjusted hazard ratio 
bFully adjusted hazard ratio

Table 5.8 Hazard ratio for the association between residential greenness and all-cause mortality 
in the CLHLS using cumulative NDVI (modified from Ji et al. 2019) 

HR (95% CI) 250-m buffer HR (95% CI) 1250-m buffer 

Model 1a Model 2b Model 1a Model 2b 

Significant decrease 
(3174 participants) 

Reference Reference 

Not significant change 
(14,757 participants) 

0.99 
(0.94, 1.03) 

0.99 
(0.95, 1.04) 

0.97 
(0.93,1.01) 

0.99 
(0.94, 1.03) 

Significant increase 
(5823 participants) 

0.98 
(0.94, 1.03) 

0.98 
(0.94, 1.03) 

0.98 
(0.93, 1.03) 

0.98 
(0.93, 1.03) 

p-value >0.10 

CI = confidence interval; HR = hazard ratio 
aAge-adjusted hazard ratio 
bFully adjusted hazard ratio 

5.4 Conclusions 

Humans and nature are two fundamentally interrelated elements of life and nature 
greatly affect human welfare. In this era, the use of remote sensing to explore natural 
exposures such as greenness is a form of application that represents how technological 
advances can provide information that is useful welfare in terms of health. 

This study uses satellite-derived data to determine greenness, in terms of 
population-based and individual-based exposure. Using the boundary of areas or 
individual location coordinates, greenness is calculated and its effect on a particular 
health burden is determined. 

This study framework, which uses several case examples, gives an overview of 
the effect of green exposure on health and shows how spatial and statistical methods 
are used for epidemiological studies. However, the study has some limitations. Due 
to the lack of data, this study does not consider specific green exposures, such as
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biodiversity, green land cover, or vegetation type (field, grassland, forest, scrub, park, 
garden, cultivation, etc.). At the individual level, the amount of time that is spent in 
green spaces is also not known with certainty. 

References 

1. Hussein SO, Kovács F, Tobak Z (2017) Spatiotemporal assessment of vegetation indices and 
land cover for Erbil City and its surrounding using MODIS imageries. J Environ Geogr 10(1– 
2):31–39 

2. Zhang X, Friedl MA, Schaaf CB (2006) Global vegetation phenology from moderate resolution 
imaging spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ 
measurements. J Geophys Res Biogeosci 111(4) 

3. Nouri H, Beecham S, Anderson S, Nagler P (2014) High spatial resolution worldview-2 imagery 
for mapping NDVI and its relationship to temporal urban landscape evapotranspiration factors. 
Remote Sens 6(1):580–602 

4. Nguyen TH, Jones S, Soto-Berelov M, Haywood A, Hislop S (2020) Landsat time-series for 
estimating forest aboveground biomass and its dynamics across space and time: a review. 
Remote Sens 12:98 

5. Kross A, McNairn H, Lapen D, Sunohara M, Champagne C (2015) Assessment of RapidEye 
vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int 
J Appl Earth Obs Geoinf 34(1):235–248 

6. Devaux N, Crestey T, Leroux C, Tisseyre B (2019) Potential of Sentinel-2 satellite images to 
monitor vine fields grown at a territorial scale. OENO One 53(1):51–58 

7. Song H, Lane KJ, Kim H, Kim H, Byun G, Le M et al (2019) Association between urban 
greenness and depressive symptoms: evaluation of greenness using various indicators. Int J 
Environ Res Public Health 16(2):173 

8. Su JG, Dadvand P, Nieuwenhuijsen MJ, Bartoll X, Jerrett M (2019) Associations of green 
space metrics with health and behavior outcomes at different buffer sizes and remote sensing 
sensor resolutions. Environ Int 126:162–707 

9. Yeager R, Riggs DW, DeJarnett N, Srivastava S, Lorkiewicz P, Xie Z et al (2020) Association 
between residential greenness and exposure to volatile organic compounds. Sci Total Environ 
707:135435 

10. Weier J, Herring D (2000) Measuring vegetation (NDVI & EVI). NASA Earth Observatory, 
Washington DC 

11. Wu C-D, Chen Y-C, Pan W-C, Zeng Y-T, Chen M-J, Guo YL et al (2017) Land-use regression 
with long-term satellite-based greenness index and culture-specific sources to model PM2.5 
spatial-temporal variability. Environ Pollut 224:148–157 

12. Gascon M, Cirach M, Martínez D, Dadvand P, Valentín A, Plasència A et al (2016) Normalized 
difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological 
studies: the case of Barcelona city. Urban Forest Urban Green 19:88–94 

13. Kim S, Kim H, Lee JT (2019) Interactions between ambient air particles and greenness on 
cause-specific mortality in seven Korean metropolitan cities, 2008–2016. Int J Environ Res 
Public Health 16(10) 

14. Wheeler BW, White M, Stahl-Timmins W, Depledge MH (2012) Does living by the coast 
improve health and wellbeing? Health Place 18(5):1198–1201 

15. Britton E, Kindermann G, Domegan C, Carlin C (2020) Blue care: a systematic review of blue 
space interventions for health and wellbeing. Health Promot Int [Internet] 35(1):50–69 

16. Leung WTV, Tam YTT, Pan W-C, Wu C-D, Lung S-CC, Spengler JD (2019) How is envi-
ronmental greenness related to students’ academic performance in English and Mathematics? 
Landsc Urban Plan 181:118–124



5 Satellite-Derived Vegetation Indices as a Criterion for Assessing Green… 107

17. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963 
18. Wilker EH, Wu C-D, McNeely E, Mostofsky E, Spengler JD, Wellenius GA et al (2014) Green 

space and mortality following ischemic stroke. Environ Res 133:42–48 
19. Asri AK, Yu C-P, Pan W-C, Guo YL, Su H-J, Lung S-CC et al (2020) Global greenness in 

relation to reducing the burden of cardiovascular diseases: ischemic heart disease and stroke. 
Environ Res Lett 15(12):124003 

20. Ji JS, Zhu A, Bai C, Wu CD, Yan L, Tang S et al (2019) Residential greenness and mortality 
in oldest-old women and men in China: a longitudinal cohort study. Lancet Planet Health 
3(1):e17–25 

Dr. Chih-Da Wu is an Associate Professor at the Department of Geomatics, National Cheng Kung 
University. Currently, he is also serving as an Adjunct Associate Research Fellow at the National 
Health Research Institutes, Taiwan. Pursuing the application of Geo-AIoTs, he has expertise in the 
field of air pollution modeling, greenspace assessment, and urban heat island assessment which 
then link to health effects. 

Aji Kusumaning Asri is a Ph.D. student at the Department of Geomatics, National Cheng Kung 
University, Taiwan. Lifting applications of geographic information system and remote sensing 
technologies on environmental epidemiology studies, her expertise focus on investigating the 
impact of the environment exposures in terms of greenspace and air pollution on human health.



Chapter 6 
Five Common Myths About Land Use 
Change and Infectious Disease 
Emergence 
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Lisbeth A. Hurtado, Nicole L. Gottdenker, and Luke R. Bergmann 

Abstract The literature about emerging infectious diseases is often filled with 
assumptions that are not fully substantiated or not supported by more relational 
research. Here we present five common myths in research that has linked land use 
change with the emergence of infectious diseases. Our intention is to raise awareness 
about points that deserve special attention when contextualizing observations about 
land use change and its internal relations to the emergence of new infectious diseases. 

Keywords Population · Deforestation ·Modeling · Land sparing · Pathogen 
spillover 

6.1 Pervasive Social Constructs in Inferences About Land 
Use Change and Disease Emergence 

The concepts of modern population sciences in the western world are interdis-
ciplinary in their sources, including substantial influence by the development of 
ecology and evolutionary biology [1, 2]. As such, some abstractions that were useful
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to help build a common ground for population sciences reflect biases and misconcep-
tions that got ingrained as inherent to the field. In ecology and evolutionary biology, 
these may have been mere assumptions that were open to challenge at the time 
they were introduced [3]. Yet research around topics relating land use change and 
infectious disease emergence keep repeating, and amplifying, under-substantiated 
assumptions that need to be carefully assessed in interdisciplinary context when 
performing research about land-use change and infectious disease emergence. Here, 
we elaborate on five common ‘myths’ (in the sense of narratives that are often 
accepted but not properly evaluated) we have seen repeatedly mentioned in the liter-
ature. For each myth we cite at least one article accepting it and one article refuting 
it. 

6.2 The Five Myths 

6.2.1 Everything is Driven by Population Growth 

Probably one of the most common myths in population sciences is that population 
growth is at the root of most current environmental crises [4, 5]. For infectious 
diseases, this idea has been repeated in several instances [6, 7]. Interestingly, little 
actual reference is made to whether populations are growing, or the scale at which, 
if population growth is happening, population growth or density might be a problem 
for the emergence of new infectious diseases. Currently, we can affirm that at a global 
level, population growth and fertility rates are declining [8, 9]. Much research does 
show that ideas about either fixed global “carrying capacity” or limits to popula-
tion growth as originally suggested by Malthus [10] and think tanks like the Club 
of Rome do not reflect the potential to change the internal relations of labour with 
food production [11] or to create niches and environments that allow higher popula-
tion densities [12, 13]. Relationships between population and disease emergence are 
complex, nonlinear, and confounded by processes often not considered in research, 
such as multi-layered historic and contemporary economic, social and political forces 
[14, 15] 

6.2.2 Deforestation is Due to Landless Peasant Groups 

Deforestation has been often referred to as a major driver for infectious disease 
emergence [16–20]. Another common affirmation is that landless local, or migrant, 
populations and indigenous groups constitute a major threat to the integrity of forests. 
Some studies have argued about this point and made contextualized demographic 
connections, e.g., referring to population growth in the agricultural frontiers [21, 
22], which has been an advance in light of previous beliefs about pressures for
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deforestation where population growth was fully decontextualized [23]. However, 
little is said about factors driving migrations, for example, how land tenure disparities 
might drive such a focalized demography [24] and how land use policy for land 
tenure might drive deforestation [25, 26]. As shown by relational research, major 
pressures for deforestation increasingly are associated with large scale agribusiness 
involved in broader global circuits of capital accumulation [27–30]. Given the highly 
contextualized nature of deforestation a major question when assessing its role on 
disease emergence is inquiring about its causes and the connections with wider 
phenomena that also make populations more vulnerable to diseases [31, 32]. For 
example, we can ask: how might deforestation be one among many expressions of 
modes of production that release new pathogens into human populations? 

6.2.3 All Agricultural Land Use Change is Detrimental 
to Biodiversity—Intensification of Agriculture 
and Land Sparing are the Solution 

Ecological synthesis and meta-analysis have stressed that land use change for agri-
cultural use is detrimental to biodiversity [33, 19]. Instead of conversion of land into 
more formal agricultural use, there is pressure to intensify production on existing 
agricultural land, thereby ‘sparing’ land. There is a prominent lobby for agricultural 
intensification and land sparing as the ultimate solution to increasing rates of disease 
emergence [34] and a necessary condition for biodiversity conservation [35]. These 
are ideas that were instilled early on in ecology, presented in tandem with the myths of 
uncontrolled population growth [4] and the benefits to privatizing and commodifying 
common natural spaces [36, 37, 5]. 

The types of agricultural intensification are more complicated than are often recog-
nized, however, and they likely differ in their effects on ecology and disease emer-
gence. The FAO noted [38], “Agricultural intensification can be technically defined 
as an increase in agricultural production per unit of inputs (which may be labour, 
land, time, fertilizer, seed, feed or cash).” Not all studies have suggested all forms 
of agricultural intensification reduce disease emergence. Some may actually lead to 
unprecedented rates and types of disease emergence—intensified livestock opera-
tions have come into particular question [18, 39]. Others have found that land use 
change can decrease disease transmission or have variable impacts depending in the 
context of infectious disease emergence [40]. Agroecological land use can reduce 
the abundance of medically important disease vector insects such as sand flies, while 
increasing their overall diversity [41, 42]; these are patterns that extend to most 
functional groups of species in ecologically managed agricultural systems [43, 44]. 
Indeed, land sparing can be associated with forms of intensification that define the 
plantationocene [45], a system of food production that maximizes economic profit 
and externalizes the stunting of human development, equally exploiting labour from 
slaves or marginalized populations. The plantationocene as a food production model
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is an expression of the need for specialization in agricultural and other economic 
systems for capital accumulation [46] driving large scale land use change for distant 
economic growth and benefit [27, 28]. The plantationocene is in conflict with both 
biodiversity conservation and protection from infectious diseases emergence, consid-
ering vulnerabilities to infectious disease are shaped by socio-economic inequities 
[47]. 

The pursuit of ecologically- and socially- sound alternatives to land sparing 
and agribusiness-led intensification of the plantationocene is important. We suggest 
biodiversity conservation and infectious disease prevention may come from a focus 
on the agricultural matrix, the ecological space where food is produced and where 
organisms interact with the environment [48]. Agroecology, encompassing a variety 
of historical and current practices of many peoples and places, under constant experi-
mentation and exploration [49–51], offers a framework through which the landscape 
may suppress and reduce instead of catalyze and amplify disease emergence [52]. 

6.2.4 Spillover Occurs Because of Wet Markets and People 
that Eat Wildlife 

With the emergence of COVID-19 [34, 53], and other zoonotic diseases [54], 
increased calls for criminalizing traditional food markets and wildlife consump-
tion have been aired. Similarly, interactions between local populations and wildlife 
tend to be scrutinized from a limited perspective that sees wildlife animals simultane-
ously as sources of diseases and biodiversity components threatened by people living 
nearby [55]. The assertions behind these claims tend to be made without reference 
to the historical, and current, cultural and social contexts where wet markets exist 
[56]. They tend to generalize and prejudge traditional practices, failing to even try to 
understand the roles that wildlife meat might play as sustainable protein source in the 
context of food sovereignty and security [57], and the sustainability of the markets 
as not posing threats to species conservation in contexts where they are linked with 
food sovereignty [58]. For example, capybaras are well adapted to the flooding plains 
of South America, and this giant rodent has historically been an important protein 
source for local populations and an important element of food sovereignty [59]. Simi-
larly, the implementation of relatively simple hygiene measures such as having one 
day of market closure, cleaning at regular intervals, and selling or slaughtering all 
animals by the end of trading each day can significantly reduce the risk of transmis-
sion for highly virulent zoonotic pathogens [60–62]. As it happens with most spatial 
phenomena, the local context is also important to understand the risk of highly viru-
lent zoonotic pathogens. For example, for avian influenza, markets near areas with 
rivers and other habitats where birds, pathogens, and sales can co-occur may increase 
transmission risk [63].
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6.2.5 Models Tell “The Truth” 

We want to now focus on a problem that has become pervasive in population sciences, 
the fetishization of simplistic models and quantitative relationships over the less 
formalized understanding of patterns and processes in populations. The problem 
is not unique to population sciences, as it has been well identified and discussed 
in geography [64–66], where for some, quantification and mathematical modelling 
too easily ended up taking away the value both of philosophical inquiry, on the 
one hand, and on the other, of empirical descriptions foregrounding (or at least not 
devaluing) ‘mess’ and complication exceeding the grasp of models. In population 
sciences, the fetishization of models become increasingly problematic with the use 
and abuse of computationally intensive tools that analyze big datasets [67–70]. This 
type of exercise, too often foregrounding models and results over assumptions, alter-
native possible assumptions, inherent limitations, and what is empirically not well-
captured by models tends to generate research results that unconsciously reflect social 
constructs and beliefs that partially shape life sciences in general and the analytical 
methods chosen in particular; numbers do not simply speak but respond to the script 
used to analyze them. As warned by Box [71] “All models are wrong, but some are 
useful”. Moreover, models are valuable tools when they serve the goal of abstraction 
of natural phenomena [72], when abstractions can be triangulated or checked for 
robustness [73], in a process where empirical and conceptual work can lead to false 
dichotomies being debunked [74]. Confronting the risk of oversimplification with 
the need of abstraction for the apprehension of complexity requires the development 
of models and techniques that look for drivers able to explain contradictions in quan-
titative relationships. It also often requires us to think and analyze more systemically, 
representing the ‘internal relationships’ between organisms in which what appears 
to be a bounded entity is understood as always emerging through its relationships in 
larger environmental networks. Such approaches are being explored by new forms 
of geographical information systems where the representation of space can be very 
different from cartesian coordinates, instead focusing on the relations of objects over 
space defined by interactions [75]. They are also found in research reconceptual-
izing relationships between land use change and infectious disease emergence by 
modeling land ownership dynamics and disease transmission in the historical (and 
perhaps ongoing) formation of large agricultural estates, a.k.a., latifundia [76]. Thus, 
inherent to the effort of generating “useful” models, perhaps the most pressing needs 
become the examination of assumptions and the need for pushing down the walls 
around what is merely assumed, examining what is taken as granted, questioning the 
unquestionable. In that struggle, the incorporation of different and diverse viewpoints 
and personal experiences becomes a necessity.
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6.3 Inferences About Land Use Change and Disease 
Emergence and the Society We Can Build 

The five myths we discussed are illustrated in Fig. 6.1. As the figure shows the myths 
often converge together and can lead to narratives that become mythologies, in the 
sense that the narrative might be appealing for some, used for the oppression of others, 
but not well grounded on phenomena occurring in nature. At best these “mythologies” 
end up reflecting beliefs and doctrines that are necessary for the functioning of the 
world as we know it and limit the ways in which science could help to solve, or even 
alleviate, major environmental and health problems. 

Pushing the boundaries of what is commonly assumed in science is necessary 
to gain insight and understanding enabling successful solutions to current problems 
in society. In that sense demystifying truisms, as the myths we just discussed, is 
a necessary step to remove barriers for an impactful science whose understandings 
lend themselves to preventing more health problems, conserving species biodiversity, 
and improving standards of living, often by demonstrating the positive effects of 
reducing socio-economic and health inequalities. For the problem of land use change 
and infectious disease emergence, we consider that it is urgent to reframe research 
within a ‘structural one health’ [77] that seeks to understand the role that abstractions 
about capital and its dynamics have in shaping patterns of disease transmission.

Fig. 6.1 Five common myths about land use change and infectious disease emergence. When taken 
together the five myths we discussed can lead to narratives that can be appealing for certain groups 
and stakeholders. However, they can obscure the magnitude and the relation between different 
factors as well as how we can help society to reduce the emergence of diseases and, more generally, 
to solve any environmental crisis. Illustration by Nicole L. Gottdenker 
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Chapter 7 
Geospatial Environmental Data 
for Planetary Health Applications 

Michael C. Wimberly 

Abstract Planetary health research focused on vector-borne and zoonotic diseases 
often requires data on the environmental factors that influence vectors, hosts, and 
pathogens. We summarized major types of geospatial environmental data that are 
freely available and potentially useful for planetary health applications. There are 
many relevant geospatial data products that characterize weather, climate, vegetation, 
land surface temperature, land cover and land use, human population characteristics, 
and hydrology. However, these datasets differ greatly in their underlying measure-
ment techniques and spatial and temporal resolutions. Although many datasets have 
global coverage, they vary considerably in their spatial accuracy and suitability for 
local applications. We recommend that researchers carefully consider the strengths 
and limitations of alternative data sources with a particular focus on the spatial and 
temporal scales of the data relative to the specific organisms and processes of interest. 
Research that addresses the sensitivities of analytical results and model predictions 
to alternative data sources can provide additional guidance to inform these decisions. 

Keywords Climate and weather · Land cover and land use · Geographic 
information systems · Remote sensing 

7.1 Introduction 

The field of planetary health addresses myriad interconnections between global envi-
ronmental change and the health of humans, animals, and the ecosystems they inhabit 
[1]. It shares this conceptual foundation with related interdisciplinary fields such 
as One Health [2], EcoHealth [3], and GeoHealth [4]. All are based on a holistic 
framework that emphasizes the relationships between human health, the social envi-
ronment, the physical environment, and the non-human organisms that are hosts and 
vectors for disease-causing pathogens. Because of this breadth, there is a need for 
diverse sources of data to characterize multiple aspects of human and natural systems.
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Geospatial data that map the spatial patterns of relevant phenomena are particularly 
important for assessing spatial relationships and identifying hot spots with high risk 
of disease transmission. 

Vector-borne and zoonotic diseases are particularly sensitive to features of the 
physical environment that influence the reproduction, growth, and survival of vectors, 
hosts, and pathogens. Climate, weather, water, vegetation, and land use influence 
transmission cycles through their effects on vector and host habitats, pathogen devel-
opment and transmission, and human exposure to vectors [5–7]. To conduct research 
on these diseases and translate the results into applications, it is essential to measure 
the relevant environmental variables. Accurate and timely data are needed to test 
hypotheses about drivers of disease transmission, develop maps of infectious disease 
risk based on environmental factors, and forecast future disease risk resulting from 
changes in weather and climate. Even when the research is focused on other ques-
tions, such as the effectiveness of public health interventions, it is still necessary to 
control for background effects of environmental variation on spatial and temporal 
patterns of disease transmission [8]. 

These environmental factors are heterogeneous at multiple spatial and temporal 
scales. Broad climate gradients vary geographically with latitude and elevation and 
change gradually over decades. Within a given climate, weather fluctuates continu-
ously and exhibits diurnal, seasonal, and interannual cycles. More localized patterns 
related to vegetation, topography, and human land use vary at spatial scales from 
hundreds of meters to hundreds of kilometers and change over time scales from years 
to decades. These landscape features create microclimates that differ considerably 
from the broader macroclimate, and these local conditions can facilitate disease trans-
mission even when the broader macroclimate is unsuitable [9, 10]. When selecting 
the environmental data for a planetary health application, it is essential to under-
stand the scales of environmental measurements and match them with the specific 
ecological and epidemiological processes of interest. 

There are numerous geospatial data products that characterize a variety of environ-
mental characteristics. Many of these products are updated regularly and are available 
at continental to global extents, providing opportunities for widespread use in plan-
etary health. However, the underlying data are collected over a wide range of spatial 
and temporal scales. Measurement techniques and the resulting accuracies also vary 
among data products, as do the techniques used for spatial interpolation and filling of 
data gaps. All of these factors can affect inferences about environment-disease rela-
tionships and the accuracy of predictive models based on these relationships. The goal 
of this chapter is to summarize the main environmental data sources that have been 
used in planetary health applications related to vector-borne and zoonotic diseases. 
Strengths and limitations of various data products are highlighted and emerging 
trends are discussed.
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7.2 Meteorological Data 

Ground-based meteorological stations provide in situ observations of weather, and 
long-term summaries of these data are the basis for measuring climate and tracking 
climate change. Standard variables monitored at weather stations include air temper-
ature, precipitation, humidity, atmospheric pressure, wind speed, and solar radiation. 
A critical objective in designing and siting weather stations is ensuring consistent 
observations that can be compared over time and between different locations [11]. 
Meteorological stations are therefore located in open areas where measurements are 
not influenced by buildings or tall vegetation. Instruments are enclosed to protect 
them from direct solar radiation, condensation, and precipitation while allowing 
sufficient ventilation to facilitate airflow over the sensors. Because of the expense 
of installation, equipment maintenance, and data curation, meteorological stations 
have historically been operated by government agencies [12]. However, volunteer 
observers are also an important part of the enterprise through programs like the 
National Weather Service (NWS) Cooperative Observer Program, and the avail-
ability of low-cost digital home weather stations has allowed private citizens to 
provide crowdsourced weather observations [13]. 

Station data are typically regarded as the gold standard for near-surface observa-
tions of weather and climate [14]. However, the types of instruments, frequencies 
of measurements, and completeness of the resulting data all vary between stations 
and over time. In general, high-income countries have well developed weather moni-
toring systems with higher densities of stations and more technologically advanced 
equipment and data infrastructure than lower-income countries in the Global South 
[15]. Even in countries with highly resourced weather monitoring infrastructures, 
most of the places where disease transmission occurs are located relatively far from 
extant weather stations. Thus, an important issue is determining the degree to which 
distant weather stations are representative of the environments that directly influence 
disease transmission cycles. 

One way to obtain more spatially precise estimates of local weather and climate 
is to interpolate the point data collected at meteorological stations (Fig. 7.1). This 
approach involves predicting meteorological variables at unsampled locations based 
on the spatial pattern of nearby measurements. In some cases, ancillary variables 
that are strongly associated with climate gradients, such as elevation, are incorpo-
rated to increase the accuracy and precision of local measurements. Commonly used 
techniques include various types of regression, kriging, self-organizing maps, and 
thin-plate splines [16–18]. In most cases, data users do not need to carry out this 
interpolation themselves, as there are many free gridded weather and climate prod-
ucts produced by various institutions. Meteorological variables can also be extracted 
from reanalysis data sets, which are generated using data assimilation methods that 
combine multiple sources of historical weather data with numerical weather models 
[19].

Although many of these products appear similar, there are underlying differences 
in the methods used to generate the data and the characteristics of the resulting
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Fig. 7.1 Comparison of two temperature datasets for north Georgia, USA, in June 2020. Left: 
PRISM interpolated monthly maximum near-surface air temperature (4 km cell size). Right: MODIS 
Aqua daytime land surface temperature 8-day composite from June 10–17 (1 km cell size)

meteorological grids that can influence results when they are used for planetary health 
applications [20, 21]. Gridded meteorological and climate data vary considerably in 
their spatial and temporal scales. For example, the University of East Anglia Climate 
Research Unit (CRU) datasets provide global historical monthly time series and 
climatologies at a grid cell size of 0.5° (approximately 55 km) [22]. The Climate 
Hazards Group Coupled Infrared Precipitation with Stations (CHIRPS) [23] and 
Temperature with Stations (CHIRTS) [24] datasets combine interpolated station data 
with satellite estimates of precipitation and land surface temperature to produce 
daily and monthly estimates at a much smaller grid cell size of 0.05° (approximately 
5.5 km). Other downscaled climate data products like WorldClim [25] and Chelsa 
[26] use high-resolution elevation data to downscale climate grids to a cell size of 
30 arc seconds (approximately 1 km). 

Differences in the methods used for interpolation and downscaling lead to varia-
tions in the meteorological grids that can influence results when they are used for plan-
etary health applications [19, 20]. There are also trade-offs between dataset attributes 
such as grid cell size, frequency of measurement, and the time required to process the 
data and make them available. In the United States, the Parameter-Elevation Regres-
sions on Independent Slopes Model (PRISM) climate dataset provides monthly 
meteorological data at a spatial resolution of 800 m [27]. In contrast, the National 
Land Data Assimilation System (NLDAS) forcings dataset provides many of the
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same meteorological variables on a 30-min time step with a latency of several days, 
but the grid cell size is 0.125° (approximately 14 km) [28]. The GridMET dataset 
combines these two data sources to provide gridded meteorological variables at a 
spatial resolution of 4 km and a daily time step [29]. 

7.3 Satellite Vegetation Indices 

Earth-observing satellites are another source of geospatial environmental data that 
can be used to predict spatial and temporal patterns of infectious disease transmission 
[30–32]. Unlike the point-level data obtained from weather stations, satellite images 
provide spatially continuous measurements over large areas of the Earth’s surface 
and are repeated at intervals ranging from days to weeks. They are fundamentally 
different from weather station data in that they typically measure conditions on the 
land surface, not in the near-surface atmosphere. The most commonly used satellite 
remote sensing data are observations of reflected solar radiation in the visible and 
infrared wavelengths. These data are measured as radiance or reflectance in one or 
more spectral bands, where each band encompasses a specific range of wavelengths. 
These bands are then used to calculate spectral indices that characterize physical 
properties of the Earth’s surface. 

The most common spectral index is the normalized difference vegetation index 
(NDVI, Fig. 7.2), which measures green vegetation using red and near infrared spec-
tral bands [33]. In most cases, vegetation greenness itself is not a proximal driver of 
disease transmission. However, the NDVI index is highly sensitive to meteorological 
factors such as temperature and precipitation [34]. In temperate environments, NDVI 
changes in response to vegetation greenup in the spring and senescence in the fall and 
can provide information about timing and length of disease transmission seasons [35, 
36]. In water-limited environments, NDVI is sensitive to rainfall (Fig. 7.3) and can be 
an indicator of water availability and drought [37]. Several variations of the NDVI 
have been developed to improve greenness estimates in particular situations. For 
example, the enhanced vegetation index (EVI) was developed to mitigate issues with 
index saturation in dense forests [38], and the soil-adjusted vegetation index (SAVI) 
was designed to correct for effects of soil brightness in areas with low vegetation 
cover [39].

A major advantage of NDVI is that the necessary data are widely available over 
long time periods for nearly every location on Earth. The NDVI can be calculated 
using data from a variety of satellite sensors, which provide data at different spatial 
and temporal scales. The earliest applications of satellite imagery for research on 
vector-borne diseases involved the Advanced Very High Resolution Radiometer 
(AVHRR), which has been operational on United States National Oceanic and Atmo-
spheric Administration (NOAA) weather satellites since 1981 and provides daily data 
at pixel sizes of 1000–4000 m [40, 41]. The more recent MODIS sensor, on board the 
National Aeronautics and Space Administration (NASA) Terra and Aqua Satellites,
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Fig. 7.2 Normalized difference vegetation index (NDVI) for part of the Amhara region of Ethiopia 
on May 1, 2019. The index was calculated using MODIS BRDF-Adjusted Reflectance Data (500 m 
cell size). Locations with high vegetation greenness include irrigated agriculture (a), areas with 
high densities of tree cover (b), and high elevation zones (c)

has provided daily global NDVI data since 2000 at spatial resolutions between 250– 
1000 m. These data have been widely used to model infectious disease outcomes 
over relatively large areas when frequent measurement intervals are required [36, 
42]. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, carried 
aboard multiple NOAA satellites, also generates daily global estimates of NDVI at 
spatial resolutions between 500–1000 m and will provide continuity after the end 
of the MODIS mission. Data from the Landsat and Sentinel missions can be used 
to derive NDVI at spatial resolutions from 10-30 m with weekly revisit intervals. 
These data can be applied when higher-resolution environmental measurements are 
needed for more localized predictions of vector habitats, host habitats, and disease 
transmission risk [43]. 

Other advantages of using NDVI and related spectral indices to measure envi-
ronmental variability include the global availability of satellite imagery and the 
relatively high spatial resolution of the data compared to the grid size of interpo-
lated meteorological datasets [34]. However, NDVI also has important limitations 
as an environmental metric for planetary health. NDVI is an indirect environmental 
measure that is sensitive to multiple environmental factors and the ecological char-
acteristics of the observed vegetation. Therefore, the underlying mechanisms of the 
relationships between NDVI and disease risk can be obscured, and it is usually 
not possible to generalize across multiple ecosystems with different landscapes and 
vegetation. Another major challenge with NDVI is that the underlying visible and 
infrared imagery is affected by cloud cover [44]. This results in missing data, partic-
ularly in cloudy tropical regions, which must be imputed using gap filling techniques 
or otherwise accounted for in subsequent analyses.
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Fig. 7.3 Comparison of two gridded precipitation datasets that combine satellite estimates with 
ground station data for Ethiopia in March 2019. Top: IMERG (10 km cell size). Bottom: CHIRPS 
(5.5 km cell size)

7.4 Satellite Land Surface Temperature 

Satellite sensors can also measure emitted longwave infrared radiation, which 
provides information about the temperature of the Earth’s surface (Fig. 7.1). Land 
surface temperature (LST) is a characteristic of the topmost surface layer, which 
may be vegetation, soil, water, or human-built impervious surfaces depending on the 
land cover characteristics at a particular location [45]. Importantly, LST measured by 
satellites is not the same as the near-surface air temperatures (typically 2 m above the
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land surface) measured by meteorological stations and represented in gridded meteo-
rological data products. In meteorology, near surface air temperatures are sometimes 
referred to as simply “surface temperatures”, which can lead to confusion. 

LST and near-surface air temperature generally exhibit similar patterns of change 
over time, including diurnal and seasonal cycles as well as long-term trends [46]. At 
global and regional scales, LST and near-surface air temperature also follow similar 
spatial gradients with latitude and elevation. At more localized scales, LST and air 
temperature usually differ because of the effects of solar radiation, wind, and soil 
moisture [47]. For example, during the day a paved surface will be warmer than 
the air above it because it absorbs and re-radiates thermal energy, whereas well-
watered vegetation will be cooler because of latent heat loss due to evapotranspira-
tion. At night when there is no incoming solar radiation, land surface temperature 
and air temperature are usually more similar than during the day [48]. Because of 
these differences, land surface temperature may not be a precise indicator of the 
air temperature experienced by organisms above the ground surface or underneath 
a forest canopy. However, LST is often a reliable proxy for relative variation in air 
temperature over space and time and can be particularly useful in situations where 
reliable in-situ measurements of localized temperature are not available. 

As with greenness indices, LST data are available from multiple sensors over a 
range of spatial and temporal resolutions. Daily daytime and nighttime LST estimates 
are available from MODIS [49] and VIIRS at a grid cell size of 1000 m [50]. Biweekly 
daytime observations at grid cell sizes of 60–120 m are available from the Thematic 
Mapper (TM), Enhanced Thematic Mapper (ETM+) and Thermal Infrared Sensor 
(TIRS) on board Landsat 4–5, 7, and 8–9 respectively [51]. The ECOsystem Space-
borne Thermal Radiometer Experiment on Space Station (ECOSTRESS) sensor 
provides LST measurements every 4–5 days at a grid cell size of 70 m [52]. All of 
these sources provide standard data products that estimate LST by combining atmo-
spherically corrected observations of emitted radiation in the thermal wavelengths 
with measurements of emissivity. These methods are complex and are outside the 
expertise of most end users in planetary health. However, it is important to recognize 
that LST estimates can vary depending on the specific method used [53]. Although 
LST measurements are subject to missing data from cloud cover, the thermal wave-
lengths used to measure LST are less sensitive to clouds than the shorter-wavelength 
visible and near infrared bands used to compute greenness indices. 

7.5 Satellite Precipitation Estimates 

In addition to the interpolated meteorological data products discussed previously, 
gridded precipitation estimates can also be derived from satellite observations [54]. 
Satellite precipitation estimates are based on visible/infrared data, passive microwave 
data, and active microwave (radar) data. Because convecting clouds are usually 
bright and cold, they can be detected indirectly from their reflectance in the visible 
and near-infrared wavelengths combined with temperature estimates from thermal
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infrared observations. Passive and active microwave observations provide more 
direct estimates because microwaves can penetrate clouds and are scattered by water 
droplets and ice particles in the atmosphere. The algorithms used to generate satellite 
precipitation estimates typically integrate satellite data from multiple sensors. 

Planetary health researchers can obtain satellite precipitation data from multiple 
products, each of which uses different input data sources and estimation algorithms 
(Fig. 7.3). These products often have relatively coarse grid cell sizes, with measure-
ments taken hourly and made available almost immediately. The satellite data can 
be combined with ground data from weather stations to improve the estimates. For 
example, the NASA IMERGE product provides global precipitation estimates at a 
10 km grid cell size at a time step of 30 min [55]. It includes “Early Run” and “Late 
Run” datasets that are based only on satellite data and have latencies of less than one 
day, and a “Final Run” dataset that incorporates station data from the Global Precipi-
tation Climatology Centre but has a latency of >3 months. Other widely-used satellite 
precipitation data products include Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks (PERSIANN) [56], Climate Predic-
tion Center Morphing Technique (CMORPH) [57], and the Global Precipitation 
Climatology Project (GPCP) [58]. 

7.6 Land Cover and Land Use Change 

Land cover encompasses the biophysical characteristics of the Earth’s land surface, 
including natural and cultivated vegetation, bare soil, human-built impervious 
surfaces, and water bodies. Land use describes human activities on the land surface, 
which can range from development and habitation to agricultural practices to nature 
preservation. Land cover and land use are often related. Locations with a high 
coverage of impervious surfaces are likely to be residential, commercial, or indus-
trial areas, and agriculture replaces natural vegetative cover with new vegetation 
consisting of crop plants. However, land cover is not always an indicator of land 
use. Forest cover, for example, may result from low-density human habitation, forest 
management for timber production, or land preservation as a park or conservation 
area. Because satellite remote sensing measures physical characteristics of the land 
surface, it can be used to generate gridded maps of land cover and monitor changes 
over time. In some cases, it is also possible to infer information about land use from 
these land cover characteristics. The resulting data products are often referred to as 
land cover and land use (LCLU) products. 

A large number of LCLU datasets are available at extents ranging from nations or 
regions to the entire globe. Coarse-grained global LCLU maps with a grid cell size 
of 500 m and an annual time step have been developed using data from the MOderate 
Resolution Imaging Spectroradiometer (MODIS) sensors on board NASA’s Aqua and 
Terra spacecraft, which began collecting data in 2000 [59].  The grid cells  are classi-
fied into relatively broad land cover types such as deciduous and evergreen forests, 
grasslands, shrublands, croplands, and built-up areas. Because of the relatively coarse
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grid size, many cells are not homogeneous, and instead contain mixtures of multiple 
LCLU types. An alternative approach is to map LCLU as continuous fields, where the 
proportion of each grid cell containing a particular LCLU is estimated. For example, 
the MODIS Vegetation Continuous Fields (VCF) product provides global data on 
the percentage of tree cover, non-tree vegetation cover, and non-vegetated cover in 
250 m grid cells [60]. The Copernicus Global Land Cover fractional cover layers 
(Fig. 7.4) similarly provide annual fractional cover estimates for a variety of LCLU 
classes such as trees, shrubs, herbaceous vegetation, crops, bare soil, and built-up 
areas at a grid cell size of 100 m [61]. 

Although these datasets provide information about general patterns of LCLU over 
space and time, planetary health applications often require more detailed information 
at finer spatial resolutions. For example, research on the habitat associations of vector 
and host species may require maps of land use practices such as irrigated agriculture 
or details about the sizes, shapes, and connectivity of habitat fragments. Satellite 
missions with finer grid cell sizes such as Landsat (30 m multispectral), Sentinel-1

Fig. 7.4 Maps of 2019 land cover in the savanna zone of northern Ghana from the Copernicus 
Global Land Cover dataset. Land cover of trees, grasses, built-up areas, and croplands is represented 
as percent cover within 100 m grid cells 
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(10 m synthetic aperture radar) and Sentinel-2 (10–20 m multispectral) provide data 
that can be used to generate higher-resolution LCLU products. Many of these datasets 
are available globally, including data on forest cover and change [62], croplands [63], 
and cities [64]. However, global availability does not mean that a dataset is well suited 
for every location across the globe as local accuracy can vary considerably in different 
locations. In many cases, datasets developed at the regional, national, or local scales 
may be more accurate and include more relevant LCLU characteristics than global 
products [65]. These data are often more challenging to discover and access than 
global products. 

7.7 Human Populations 

Human population density is a land use characteristic that is particularly impor-
tant for planetary health research and applications. Data on the human population 
is needed to calculate the population at risk for epidemiological rates such as inci-
dence and prevalence, and the number of susceptible humans is an important factor 
influencing the transmission patterns of many infectious diseases. The most common 
sources of human population data are national censuses, in which people are enumer-
ated within administrative units. Population characteristics can be summarized and 
mapped within polygons that outline the boundaries of these areas. Although these 
datasets are produced by individual countries, aggregated global populations datasets 
such as the Global Rural–Urban Mapping Project (GRUMP) and the Gridded Popu-
lation of the World (GPW) are also available (Fig. 7.5). These products are published 
as grids with cell sizes from 1–110 km, but the true spatial resolution of the data is 
still the administrative unit within which they were aggregated.

It is often desirable to have population data with a finer spatial grain so that urban 
and rural areas can be distinguished and population density can be estimated for indi-
vidual settlements or neighborhoods. A common method for generating finer-grained 
population data is the “top down” approach, in which census data are disaggregated 
from their administrative units to smaller grid cells using spatial information on land 
cover, land use, roads, and other factors that are expected to influence population 
density [66]. These variables are used to calculate a layer of gridded weights that are 
used to distribute the population within an administrative unit to reflect differences 
between densely populated urban areas and more sparsely populated rural locations. 
An alternative is a “bottom up” approach where high-resolution imagery to census 
individual dwellings are combined with local survey data to estimate population 
density at a high resolution [67]. The WorldPop project provides a global archive of 
population and other demographic data products generated using both top-down and 
bottom-up approaches [68]. LandScan is another widely used gridded population 
data product that has used multiple sources of satellite imagery and other spatial data 
to produce annual 1km2 global population grids from 2000 to the present [69].
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Fig. 7.5 Comparison of two population density datasets for Ghana in 2020. Left: Gridded Popu-
lation of the World Version 4, which is based on administrative boundaries used for census data 
collection. Right: WorldPop, which downscales census data based on land cover, roads, and other 
localized information

7.8 Surface Water and Hydrology 

Access to clean water is essential for human health, animal health, and agricultural 
productivity. However, water also provides habitat for vector and host species and 
facilitates the transmission of many disease-causing pathogens [70]. Thus, hydro-
logical data are critical for many planetary health applications. Water bodies can 
be mapped with satellite remote sensing along with other LCLU features, and most 
LCLU data products include a classification of permanent water bodies such as lakes 
and large rivers. Understanding how surface water varies over time is also essen-
tial. For example, flowing water is not a suitable habitat for vector mosquitoes, but 
large rivers can provide suitable standing water when their flows decline and leave 
isolated pools on their floodplains [6]. In flood-prone areas, rising waters are often 
contaminated by human and animal waste, exposing local populations to a variety 
of water-borne pathogens [71]. Droughts can also facilitate water-borne pathogen 
transmission when large groups of people congregate to use the few remaining water 
sources [72]. More generally, hydrological events like droughts and floods often 
trigger large-scale human movements and resettlements that facilitate long-distance 
movement of pathogens and provide novel opportunities for transmission. 

Several types of geospatial datasets can provide useful hydrological information 
for planetary health applications. Gridded elevation datasets are produced for many 
countries by government mapping agencies, and global elevation products derived 
from satellite observations are also available. At the most basic level, these data can
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be used to identify topographic features such as valley bottoms that are subject to 
flooding and may serve as locations for water-borne disease transmission or provide 
larval habitats for mosquitoes [73]. The topographic index, calculated as a function of 
slope angle and upslope drainage area, is an important input to dynamic hydrological 
models such as TOPMODEL that can be coupled with mechanistic models of water-
associated diseases such as fasciolosis [74]. At coarser grid cell sizes (~10 km or 
larger) Land Data Assimilations Systems (LDAS) combined gridded meteorological 
data with other environmental inputs to drive hydrological models that estimate 
evapotranspiration, soil moisture, and runoff. Various LDAS datasets with different 
spatial extents, grid cell sizes, and time steps are available, and these data have been 
used in a variety of disease applications [75–77]. 

Satellite observations, including passive sensors in the optical and infrared wave-
lengths and active remote sensing with synthetic aperture radar, can be used to detect 
and map open water. Surface water is highly variable in locations with pronounced 
wet and dry seasons, and individual observations are inadequate for characterizing 
these dynamics. Surface water data products such as the Global Surface Water 
Explorer [78] and the Global Surface Water Dynamics dataset [79] use time series of 
Landsat data to map the extent, seasonality, and long-term trends in surface water at 
30 m resolution for the entire globe. Global products frequently do not capture smaller 
water bodies that may serve as larval habitats for mosquitoes or sources of drinking 
water for humans and livestock. However, they can be used to provide training data 
for the development of more precise, local maps that include both large and small 
water bodies [80]. Identifying areas with high seasonal variation in water coverage, 
including impoundments, wetlands, floodplains, and irrigated areas, is often partic-
ularly important in planetary health. These can be identified by analyzing satellite 
data over multiple seasons and by incorporating topographic variables along with 
spectral indices [81, 82]. 

7.9 Synthesis and Conclusions 

Researchers and practitioners in planetary health have access to a diverse set of 
high-quality geospatial data products that characterize environmental factors rele-
vant to human health. Many of these products are global in extent and available at 
no cost, making them ideal for planetary health assessments and applications in low-
and middle-income where locally collected data are sparse. However, it is impor-
tant to recognize that a global dataset is not necessarily optimal for every location 
on the Earth [65]. Interpolated meteorological grids and classified LCLU maps have 
inherent error, and their accuracies can vary considerably among locations. Similarly, 
the environmental sensitivities of satellite vegetation indices and land surface temper-
ature will vary with the climatic and land surface characteristics in different areas. 
Before selecting a particular dataset for specific application, potential users should 
carefully examine the spatial and temporal patterns within their areas of interest to 
verify that important regional and local features are being captured. If this is not the
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case, then it may be necessary to develop bespoke data products that are optimized 
for the particular region and application [80]. 

Although planetary health studies frequently incorporate geospatial datasets char-
acterizing climate, LCLU, and human populations, they vary greatly in the specific 
data used and the manner in which they are applied. A recent systematic review of 
malaria mapping studies found that the most commonly used covariates were rainfall 
and temperature [83]. However, the individual studies used a variety of data sources, 
including ground station measurements, gridded meteorological datasets, satellite 
vegetation indices, land surface temperature, and satellite precipitation estimates. 
The degree to which different results are contingent upon differences in the under-
lying temperature and precipitation data are not well understood. In most cases, the 
rationale for using a particular source of environmental data is not stated, and deci-
sions are presumably based at least in part on familiarity with particular datasets and 
ease of data access and use. 

This chapter has focused on geospatial environmental data for planetary health 
applications related to vector-borne and zoonotic infectious diseases. However, 
geospatial information is also essential for other aspects of planetary health, including 
natural disasters, food systems and nutrition, and exposure to toxins and pollutants. 
Timely geospatial data for monitoring meteorological and hydrological variables is 
essential for monitoring droughts and providing early warning of the risk of food 
insecurity [84]. Exposure to air pollution is one of the most important global health 
risks [85], and satellite remote sensing is widely used to obtain spatially explicit 
measurements of various pollutants [86]. For example, satellite measurements of 
aerosol optical depth are widely used to estimate ground level concentrations of fine 
particulate matter generated by combustion of fossil fuels, dust storms and wildfires 
[87]. There is growing evidence that exposure to greenspace has a variety of health 
benefits for urban and suburban populations [88], and satellite-based measurements 
of greenness are commonly used to study these relationships [89]. Although this 
chapter does not address these topics in detail, many of the data sources that were 
highlighted in the context of vector-borne and zoonotic diseases are also relevant to 
these other aspects of planetary health. 

Looking forward, more studies on the local accuracies of commonly used geospa-
tial data products would provide evidence to support the choice of geospatial datasets. 
For example, an accuracy assessment of 20 global precipitation products in Ethiopia 
found that only three could adequately characterize the spatial extent and severity of 
historical drought events [90]. An accuracy assessment of multiple gridded climate 
datasets within the United States found that the most accurate dataset varied by ecore-
gion [20]. Additionally, comparative analyses of health outcomes based on environ-
mental data from multiple products can help identify the data that are most suitable for 
specific applications. A West Nile virus risk mapping study compared three predic-
tive models based on land cover and topography data, gridded climate data, and 
remotely sensed vegetation and moisture indices [91]. Overall accuracy was similar, 
but the resulting maps based on each dataset exhibited different spatial patterns. A 
combined model that incorporated variables from all three datasets had the highest 
overall accuracy. For species range predictions of European tick species, climate
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niche models based on an interpolated meteorological dataset had higher accuracies 
than models based on satellite observations of LST and NDVI from MODIS [92]. 
Further studies like these will contribute to a broader body of evidence to inform 
the selection of geospatial environmental datasets for planetary health research and 
applications. 
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Chapter 8 
Delineating Zones of Disease Diffusion 
from the Amenity-Sharing Network 
in Peninsular Malaysia 

Wei Chien Benny Chin 

Abstract Disease diffusion happens when infected and susceptible individuals 
move around and closely interact with each other. The boundary of human move-
ment can be found by analysing the locations of amenities and people. The human 
movement boundaries can be considered as the zones of disease diffusion, which is 
essential for the establishment of disease control measures. During the COVID-19 
pandemic, Malaysia had gone through a series of nationwide Movement Control 
Orders (MCO)—multiple phases of country/city lockdown measures—starting from 
March 2020. One key order during MCO was to restrict the travel distance to a 10 km 
radius from household locations. However, this movement restriction can only elimi-
nate/reduce the long-range disease spreading (relocation) but not the disease diffusion 
within a local area (expansion). The disease can still be transmitted within a neigh-
bourhood and between closely located or densely interacted neighbourhoods. In other 
words, people who visited the same region of an outbreak cluster would still expose 
to the disease. This study analyses the boundaries of densely connected neighbour-
hoods based on the amenity-sharing relationships, i.e., the disease diffusion zones, 
and identify the vulnerable locations in terms of spreading and contracting diseases, 
i.e., the centre(s) of zones. Using Peninsular Malaysia as a case study, a four-step 
framework was established, which utilised the open-data materials and open-source 
software. The analysis results from the case study showed that while some of the 
zones resembled the administrative boundaries, a considerable proportion of the 
zones extended the city area to the neighbouring urbanised area while some zones 
split a city into separated zones. These identified zones function as a reference for 
future policymaking on disease control issues. 
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8.1 Introduction 

Contagious diseases spread between people, and people move between spaces. 
Disease diffusion occurs when infected cases increase and the people move 
throughout space and time [14, 35]. There are two major types of disease diffu-
sion: expansion and relocation. Expansion diffusion describes the spread of cases 
from one outbreak location to the spatially neighbouring area, while relocation diffu-
sion captures the jump of cases from one origin to a distant location [24]. The spatial 
spreading of diseases usually happens as a combination of the two diffusion processes 
[22], e.g., the hierarchical diffusion indicates the situation when the disease spread 
outwards from one city centre (expansion) to the neighbouring satellite towns, it also 
jumps to some other city centres and expands from there. This leads to the discussion 
of the spatial interaction boundary of people’s activities in their daily lives, i.e., the 
geographical zones of human activity [8, 9, 28]. When two locations belong to the 
same zone of human activity, it indicates that the interaction of people between the 
two places is dense, thus providing opportunities for disease to spread from one loca-
tion to another. Furthermore, as described by the hierarchical diffusion, the centres 
of zones may be the location that is more susceptible to diseases and which can 
initiate the local expansion diffusion [5, 15, 17, 26]. Therefore, delineating the zones 
of human activity and searching the centres of zones is crucial to disease control. 

The analysis of geographical zoning is discussed in the literature on activity 
spaces and functional regions. The activity space of a person is the combination 
of places where his/her daily routine occurs, e.g., the location of his/her home and 
other amenities, including workplace or schools and the supermarket or restaurant 
that he/she usually goes to purchase groceries or foods. The activity space for a set 
of residents can be delineated by the boundary of the accumulated daily activity 
spaces of the population [13, 25, 37]. A functional region describes the boundary 
of geographical spaces that contains both the supplies and demands—the locations 
of amenities that provide services (e.g., shops, hospitals, parks, schools, banks, etc.) 
and the servicing area of these amenities (e.g., the residential areas) [19, 21, 32]. 
Both concepts show a simple idea—people move between their home locations and 
places where they can access some services or functions. The locations of amenities 
are the places where people physically interact or closely contact [4]. In other words, 
these places can be the location where the transmission of disease pathogens occurs, 
and which can lead to the diffusion of disease through expansion and relocation. This 
highlights the importance of analysing the activity spaces and functional zones in 
the context of disease diffusion since the zoning of human activity and interactions 
can provide insights into the boundary of disease expansion diffusion and the centre 
point of hierarchical diffusion [8, 21]. 

COVID-19 appeared in Malaysia during the early stage of the global pandemic. 
The first incident of COVID-19 cases happened in January 2020 when three Chinese 
citizens travelled to Malaysia from an international conference event held in Singa-
pore where they were infected [33, 40]. Although these initial cases were quarantined 
from the beginning and did not cause a super-spreading situation, these cases were
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followed by a lot of other imported cases and a mass local gathering and super-
spreading event [27] which eventually lead to the nationwide lockdown in March 
2020—the Malaysian Movement Control Order (MCO) [3]—that continues with 
several phases of National Recovery Plan (NRP) and a series of state-level/national-
level lockdown until April 2022 [40–42]. During MCO, people were not allowed to 
cross states and only one person per household was allowed to leave their home for 
buying groceries or getting essential services within a 10 km radius [1]. The restricted 
number of persons was relaxed in the various phases of NRP and other extended MCO 
periods. This 10 km radius moving distance aligns with the regular daily commuting 
distance by public transit—i.e., on average 7.1 km in a single direction, and 39% of 
commuters travel over 12 km [29]—and it is about half of the distance for overall 
regular commuting distance (19.54 km) by cars (70.20% of the total commuters) 
[30] in Kuala Lumpur, the capital city of Malaysia. In other words, a 10 km moving 
radius is sufficient for people to access essential amenities for their daily life. 

In the Malaysian context, for both the regular situation and the MCO period, 
people usually (or can only) travel within a 10 km radius from their home to access 
amenities. During a disease outbreak event, diseases can spread between people who 
share the amenities when they visit the same location (co-visit). Thus, delineating 
the zones of disease diffusion is crucial in the decision and policymaking process 
for setting up disease control measures since it indicates the boundary of the impact 
area of the high-risk locations [18, 36]. The development of computing techniques 
and the open data warehouses of Geographical Information System (GIS) provides 
a workable solution to explore and delineate the boundary of human activity zones 
from the locations of amenities and people. The OpenStreetMap platform gathered 
and supplied the global-wide GIS data that contains the road network layout and 
the point-of-interest (POI) data [12]. POI data indicates the locations of various 
urban functions and services, e.g., commercial, business, education, civic related, 
health, religious, outdoors, and recreational locations. Road networks reveal more 
locations of human activity, including residential, industrial, and transportation areas. 
Therefore, the two can be considered as surrogate for the location of amenities and 
people. The remaining research gap would then be the question of how to identify the 
zones of disease diffusion. This study demonstrates a four-step framework to analyse 
the ‘zones’ of human interaction activity based on the amenity-sharing network. The 
study framework focused on the spatial interactions between places—i.e., the sharing 
of amenities between neighbourhoods—and a series of geospatial network analysis 
tools for the identification and discussion of the disease diffusion zones and city 
centres.
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8.2 Materials and Methods 

8.2.1 Study Site 

Located in Southeast Asia, Malaysia is a country composed of two parts: East 
Malaysia covers 60% (about 198, 172 km2) of the total land area, and West Malaysia 
covers about 40% (about 132, 631 km2). The South China Sea separate the two 
parts. Located on the island of Borneo, East Malaysia contains two states (Sabah and 
Sarawak) and one federal territory (Labuan). On the other side, West Malaysia (i.e., 
Peninsular Malaysia) is a peninsula that shares a land border with Thailand to the 
North; the island of Singapore lies across the Strait of Johor from the southern tip of 
the peninsula. According to the 2010 census data [10], the total population living in 
Peninsular Malaysia is around 22 million, which is about 80% of the total popula-
tion of Malaysia (27.7 million), leaving around 20% of the population living in East 
Malaysia. In this study, we focused only the Peninsular Malaysia (West Malaysia) 
because East Malaysia is geographically separated, and West Malaysia contains a 
larger proportion of the population and urban area. 

Peninsular Malaysia contains eleven states and two federal territories (FTs), which 
can be divided into the two sides of the peninsula: the west coast (eight states and 
two FTs) and the east coast (three states). The eight states on the west coast are (from 
north to south): Perlis, Kedah, Pulau Pinang (or Penang), Perak, Selangor, Negeri 
Sembilan, Melaka (or Malacca), and Johor. The two FTs—Kuala Lumpur (the capital 
city) and Putrajaya (a financial district)—locates within the Selangor state area. On 
the east coast, the other three states are (from north to south) Kelantan, Terengganu, 
and Pahang. The west coast and the east coast are divided by the Titiwangsa Range 
which runs from north to south along the peninsula. This geographical division has 
significant effects on economic development and population settlement—the main 
economic development corridor runs on the west coast. While the area sizes are 
similar between the west coast (52% of the Peninsular Malaysia area) and the east 
coast (48%), the west coast of Peninsular Malaysia is more urbanised and populated 
than the east coast. Among the population in Peninsular Malaysia (22 million), 82% 
live on the west coast and only 18% on the east coast [10]. Furthermore, the two 
FTs have even more extensive urbanisation and development progress. The two FTs 
together are the home of 7% of the population while the area is only about 0.2% 
of Peninsular Malaysia. This notable urban–rural hierarchy indicates the need for a 
separated exploration and discussion among the various parts of Peninsular Malaysia. 

8.2.2 Datasets 

Two datasets were used in this study: (1) road network and (2) POI. Both datasets were 
downloaded from Geofabrik—the platform providing the extracted OpenStreetMap 
archive files [12]. Figure 8.1 shows the size of the area, the density of the POI and road
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network data by states/FTs. The states/FTs are sorted by the area sizes in ascending 
order. The 2 FTs have the smallest area. In addition to the 2 FTs, three of the states 
also have a small area size (Perlis, Pulau Pinang, and Melaka). While the area is 
small, the five states/FTs hold a higher density of the three measurements (POI, road 
features, and junctions) than the other places. In contrast, the largest state (Pahang) 
has the least density of the three measurements. 

Figure 8.2 shows the kernel density estimation for the distribution of POI and 
junctions. Seven clusters of POIs can be observed (Fig. 8.2a): five on the west coast, 
one at the southern tip and one at the northern of the east coast. From north to south, 
the five clusters on the west coast are: (1) Kedah, (2) Pulau Pinang, (3) Ipoh, Perak, 
(4) Kuala Lumpur–Putrajaya–Selangor, and (5) Melaka. The cluster at the southern 
tip is (6) Johor Bahru, Johor. The cluster on east coast is (7) Kota Bharu, Kelantan.

Fig. 8.1 A summary of the data by states/FTs: a the area size,  b density of POI, c density of road 
features (centroids), and d density of road junctions 
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Fig. 8.2 The kernel density estimation of a POI and b road junctions. The red lines highlight the 
states/FTs boundaries 

The kernel density of road junctions (Fig. 8.2b) is the expansion of the POI clusters 
to the surrounding areas. Unlike the POI which captures only places of attraction, road 
junctions could capture other types of human activities, e.g., residential, industrial, or 
transportation. At the north of the west coast, the Perlis cluster appears and connects 
to the Kedah–Pulau Pinang clusters. The Ipoh cluster also extends in three directions: 
one to the north that connects to Pulau Pinang, one to the west that reaches the coastal 
area, and one to the south that connects to the Selangor boundary. The expansion 
to the south from the Kuala Lumpur–Putrajaya–Selangor cluster connects to the 
Melaka cluster and continues extending to the Johor Bahru cluster. On the east coast, 
two more clusters are found at (8) Kuala Terengganu, Terengganu, and (9) Kuantan, 
Pahang. 

8.2.3 Study Framework and Analyses 

The framework of this study is shown in Fig. 8.3. The framework contains two 
parts of network data processing and two parts of analysis. The two network data 
processing parts involve two levels of networks: the road network and the amenity-
sharing network (the higher-level spatial interactions capturing the human move-
ment structure). Part 1 aims to identify the neighbourhoods from the raw data—road
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Fig. 8.3 The study framework 

network. Part 2 aims to generate the amenity-sharing network from the neighbour-
hoods (as lower nodes) and POI (as upper nodes) bipartite network. The goals of the 
third and fourth parts are to identify the zones between neighbourhoods using the 
amenity-sharing network and to extract important area centres within the zones. 

The road network data were prepared and provided on Geofabrik’s website,1 

which were extracted from OpenStreetMap (on 26 July 2021) [12]. The data were 
clipped for the Peninsula Malaysia region.2 The Peninsular Malaysia administrative 
boundary data were downloaded and extracted from the database of Global Admin-
istrative Areas (GADM).3 For part 1, the dual graph was generated from the road 
network data, i.e., road segments were nodes, and intersections (junctions) were used 
to generate links. In total, 1.107 million nodes (road segments) and 1.757 million 
links were found in the road network dataset. A community detection method based 
on MapEquation (Infomap4 ) [34] was used to group densely connected nodes (i.e., 
community). Each group of densely connected nodes (road segments) was consid-
ered a ‘neighbourhood’, i.e., these road segments were more connected to each other 
than to the nodes in other groups. These neighbourhoods were then used as the study 
units in the following analyses. 

In part 2, a total of 36, 416 POI points was included. These POI data were down-
loaded from the Geofabrik website [12]. There are several types of POIs, including 
commercial, business, education, civic related, health, religious, outdoors, and recre-
ational types. Although the POIs data was strongly diverse in types and weights (e.g.,

1 Geofabrik’s free download server: https://download.geofabrik.de/asia.html. 
2 All spatial data were projected to EPSG:3375 projection from EPSG:4326. 
3 GADM database, version 3.4: https://gadm.org/download_country.html. 
4 Infomap, version 1.7.0: https://www.mapequation.org/infomap/. 

https://download.geofabrik.de/asia.html
https://gadm.org/download_country.html
https://www.mapequation.org/infomap/
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capacity, service area), this dataset was used to capture the locations of amenities 
where people might gather or interact, thus the types and weights were not consid-
ered in this study. In the construction of the bipartite network (neighbourhoods as 
lower nodes and POI as upper nodes), the pairs of neighbourhoods and POI with 
Manhattan distance below 10 km were identified and converted to links. In other 
words, the bipartite network indicated the reachable relationship between POIs and 
neighbourhoods within a 10 km travel. 

After the bipartite network was generated, it was projected to the co-occurrence 
network of the lower nodes—i.e., the network where the nodes were the neighbour-
hoods (lower nodes) and the links indicated the relationship that the two neigh-
bourhoods shared (co-visited) at least one amenity (POI), and the weight of links 
indicated the number of shared amenities. In other words, the bipartite network 
shows the accessible amenities from each neighbourhood, and the amenity-sharing 
network shows the potential interactions between neighbourhoods. When two neigh-
bourhoods shared a lot of amenities, the frequency of the people visiting the same set 
of amenities is high, hence the possibility of the people living in the two neighbour-
hoods having physical interactions or close contact is high. This can lead to disease 
spreading events. 

Using the amenity-sharing network, two analyses (parts 3 and 4) were performed. 
In part 3, the Infomap community detection algorithm was applied to the amenity-
sharing network (nodes were neighbourhoods and links were co-visit frequency). 
Here, the purpose was to identify the strongly interconnected zones of neighbour-
hoods, i.e., zones of inseparable neighbourhoods that co-visit to many amenities, 
and which indicated a high frequency of potential physical interactions. Since the 
community detection algorithm identifies chains of nodes that are densely connected, 
the nodes in different parts of a community may not be immediately connected, 
i.e., not sharing any amenity. Although the people in these neighbourhoods may 
not directly share any amenity, they are linked to a middle neighbourhood or a set 
of chained neighbourhoods. These relationships are important in disease spreading 
analysis because the neighbourhoods in the middle can become the middle place 
(namely, the zone centre) where the expansion diffusion may have started. From 
the view of disease control and management, the zones represent clusters of neigh-
bourhoods that share a large number of amenities through a transition chain in the 
amenity-sharing network structure, i.e., it would be difficult to split the neighbour-
hoods within the same zone as the residents would go to similar sets of amenities 
for their daily activities. Therefore, this zoning result could also be understood as 
disease control zones. 

In part 4, a weighted degree analysis was done for several large zones. Since the 
weights of links in the amenity-sharing network show the frequency of the ‘sharing’ 
relationship between pairs of neighbourhoods, the weighted degree of a node indi-
cates the aggregated frequencies of interactions for each neighbourhood. In other 
words, if a node’s weighted degree is high, it means that the people in this neighbour-
hood have co-visited many POIs with a large number of other neighbourhoods—the 
residents were exposed to a more dangerous situation in terms of both density and 
diversity [5]. Because of the strong urban–rural hierarchy between different parts
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of Peninsular Malaysia, the comparison of weighted degrees between zones in the 
country was not useful—all high degree nodes would be found at/near the capital city, 
causing the other regional centres to be neglected. Therefore, the local comparison is 
more useful to observe the regional zone centres of neighbourhoods—the local high 
degree nodes. 

In summary, this analysis framework was designed to explore the potential phys-
ical interaction structure based on the road network and POI data. The road network 
reflects the location of human activity, whereas the location of amenities indicates the 
supplies of daily life activities. We identify the neighbourhoods as an intermediate 
output and then based on the amenity reachable relationship, the amenity-sharing 
network is generated. This network could then be used for zone identification and 
weighted degree centrality analysis. 

8.3 Analyses and Results 

8.3.1 Part I: Delineate Neighbourhoods from Road Network 

The community detection analysis was done using MapEquation on the dual graph 
of the road network. In summary, the algorithm identified 13 levels of communities; 
some communities stopped at the 5th level—these communities could not be divided 
into a lower level. Therefore, we use the 5th level communities to capture the area 
of neighbourhoods. The centroid of the road segments in each neighbourhood was 
used to calculate the location of the neighbourhood. The convex hull of the road 
segments’ centroid was identified, and the area was calculated. Figure 8.4 shows the 
spatial distribution of the convex hulls in Peninsular Malaysia and a focus in Selangor 
with the two FTs highlighted.

Figure 8.5a shows the number of neighbourhoods in each state/FT. The states/FTs 
(on the horizontal axis) were arranged in ascending order based on the number 
of neighbourhoods. The first two states with the least neighbourhoods were small 
states or FTs (Putrajaya and Perlis were respectively the smallest and third-smallest 
states/FTs, see Fig. 8.1), whereas the third and fourth states (Kelantan and Tereng-
ganu) were the fourth- and fifth-largest states (see Fig. 8.1). The other two small area 
states—Pulau Pinang and Melaka—contained a moderate number of neighbour-
hoods. The capital city (Kuala Lumpur) has the third-largest number of neighbour-
hoods (see Fig. 8.4b). These indicated that the number of identified neighbourhoods 
was not correlated with the area size.

Figure 8.5b presents the boxplot distribution for the area sizes of each neighbour-
hood, grouped by the states/FTs. Overall, the median size of the neighbourhood was 
about 0.95 km2, and the 25th to 75th percentile range was 0.23 km2 and 5.35 km2, 
respectively. Some extra small neighbourhoods were identified in Kuala Lumpur, 
Perak, and Selangor—the top three states/FTs with the largest number of neigh-
bourhoods. The small size of the neighbourhood indicated that the urban form was



152 W. C. B. Chin

Fig. 8.4 The distribution of 
the neighbourhoods (convex 
hulls) in a Peninsular 
Malaysia, b Selangor state 
and the two FTs. The white 
lines highlight the states/FTs 
boundaries. The convex hulls 
in blue indicate 
neighbourhoods; the grey 
colour area is an empty land 
parcel that does not form any 
neighbourhood, i.e., could be 
rural, waterbody, forest, or 
only have a single road 
segment
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Fig. 8.5 The distribution of a the number of neighbourhoods by states/FT and b the size of each 
neighbourhood by states/FT. The dashed line in b is the median of all areas, and the grey area 
indicates the range of 25th to 75th percentiles

denser, and the large numbers indicated a larger proportion of urbanised areas (see 
Fig. 8.4b for the capital city and surrounding area). On the other hand, the area size of 
neighbourhoods in five states—Perlis, Kelantan, Terengganu, Kedah, and Pahang— 
tended to be larger than in other states. Three of these states (Kelantan, Terengganu, 
and Pahang) are located on the east coast, and the other two (Perlis and Kedah) 
were at the northern tip of Peninsular Malaysia. The large area size of neighbour-
hoods indicated a sparse distribution and sprawling type of urban/rural structure (see 
Fig. 8.4a). This indicated that the activity space comes in diverse sizes for different
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states. Thus, some states may need a larger moving distance to access daily services 
as the neighbourhood size itself is larger than others. 

8.3.2 Part II: Explore Reachability of Neighbourhood 
Amenities 

A two-mode bipartite network was generated in this study to capture the reacha-
bility between neighbourhoods and amenities. In particular, the neighbourhoods were 
linked to the POIs that fall within a 10 km Manhattan distance range. Figure 8.6 shows 
the number of linked neighbourhoods for each POI and the number of linked POIs 
for each neighbourhood in the 13 states/FTs. The number of neighbourhoods each 
POI is linked to can be viewed as the serving neighbourhood size for each amenity 
(Fig. 8.6a). The number of linked POIs for each neighbourhood (Fig. 8.6b) can be 
understood as the number of amenities that can be accessed by each neighbourhood.

Overall, the two boxplots presented a similar pattern. The amenity and neigh-
bourhoods in Kuala Lumpur had the largest size of servicing neighbourhoods and 
reachable amenities, respectively. In Fig. 8.6a, Selangor and Putrajaya were higher 
than the global median, showing that the amenity in the two states/FTs would have 
to serve a larger population than many other places. In Fig. 8.6b, in addition to the 
two states/FTs, Pulau Pinang and Johor also showed a distribution that was slightly 
higher than the global median, this indicated that these four states/FTs would have 
a larger group of reachable amenities. In both box plots, the three east coast states 
(Kelantan, Terengganu, and Pahang) showed a lower distribution—most of the POIs 
and neighbourhoods in the three states had fever links. These findings indicated that 
the differences between states/FTs in Malaysia were large and this heterogeneity 
should not be neglected in the following analyses. Furthermore, this also indicated 
that to optimise the effectiveness of movement control orders and to ensure the 
accessibility to essential services/goods, different moving distance needs to be set 
up according to the reachability to amenities. 

8.3.3 Part III: Identify Zones of Disease Diffusion 

The amenity-sharing network was constructed after the projection of the 
neighbourhood-amenity bipartite network to the neighbourhood (lower node) level. 
Using the MapEquation algorithm, a total of 208 zones were identified based on the 
amenity-sharing network. Among these zones, 155 were isolated neighbourhoods 
(single node communities), 8 were composed of only two neighbourhoods (formed a 
line instead of an area), and the other 45 communities held at least three neighbour-
hoods. In the following analysis, we focused on the zones that had more than 100 
neighbourhoods—the top-11 zones. Figure 8.7 shows the number of neighbourhoods
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Fig. 8.6 The box plots of the degree by the two levels: a the upper level, showing the number of 
linked neighbourhoods for each POI node; b the lower level, showing the number of linked POI for 
each neighbourhood node. The states/FTs were sorted by the number of neighbourhoods in each 
state/FT (see Fig. 8.5). The dashed lines indicated the global median and the grey region indicates 
the global range of 25th to 75th percentiles

and the weighted degree of the top-11 zones, sorted by the number of neighbourhoods 
in descending order.

In Fig. 8.7a, Zone-A contains a notable large number of neighbourhoods (2437) 
compared to the other 10 zones (less than 500). Figure 8.7b shows the boxplot of 
weighted degrees in each zone. The weighted degree distributions of the nodes in 
Zone-A were mostly higher than 105—higher than the other zones. The distribution 
of the weighted degree for Zone-B and Zone-C (both in Perak) dropped to the range 
between 103 and 104, which were lower than Zone-D (somewhere in between 104 

and 105, which was in Pulau Pinang), indicating that the former two zones had a less 
dense distribution than the latter. The neighbourhoods in Zone-H and Zone-J (both
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Fig. 8.7 a The number of neighbourhoods in each of the top-11 largest zones and b the 
corresponding distribution of weighted degree. Note that the vertical axis of b is in log scale

in Johor) had a similar range of weighted degrees to Zone-D, which were higher than 
the other places, indicating a dense spatial interaction within the zones. 

The spatial distributions of the top-11 zones were shown in Fig. 8.8. The 11 
zones were shown as red colour convex hulls, and the neighbourhoods (nodes) were 
coloured based on the categories of their weighted degree values (high, mid-high, 
mid-low, and low) according to the local (within-zone) distribution. The zone centres 
(golden ‘X’ symbols) were identified as the centroids of the neighbourhoods with 
high weighted degree values (nodes with weighted degrees greater than Q3 of each 
zone). Except for Zone-K (Kuantan, the capital city of Pahang) which was found
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on the east coast, the other ten zones were found on the west coast of Peninsular 
Malaysia. 

Zone-A covered most of the urbanised area in Selangor, including the two FTs. The 
zone centre was found in Kuala Lumpur. For Zone-B, because there were two spatially 
separated groups of high weighted degree neighbourhoods (two groups of red nodes), 
two centroids (zone centres) were identified. Zone-B was found as a narrow-shaped

Fig. 8.8 The spatial distribution of the top-11 zones (red polygons). The colours of the neigh-
bourhood (node) show the within zone categorisation by weighted degree. The golden ‘X’ markers 
indicate the centre point of each zone. The white lines highlight the states/FTs boundaries 
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zone that connects Zone-A and Zone-E—an economic corridor development—a lot 
of amenities located along the economic corridor area that merged the two subzones. 
Zone-C was located beside Zone-B—the coastal side linkage between the states of 
Selangor and Perak. While the upper part of Zone-C was geographically located 
in Perak, the neighbourhoods were more connected to the zone centre in Selangor, 
which was located at the lower and coastal side of Zone-C. Zone-E was mainly 
composed of an inland town—Ipoh, the capital city of Perak. Zone-D covered the 
Pulau Pinang state, including the island side and the peninsula side, and extended to 
the surrounding area that belongs to Kedah. Zone-I was another zone found in the 
north of Peninsular Malaysia. This zone covered the whole Perlis area—the most 
northern state—and Alar Setar, the capital city of Kedah. 

As a close neighbour of Zone-A at its southern border, Zone-F was composed of 
the Seremban city—the capital city of Negeri Sembilan. Although the neighbour-
hoods were spatially near to each other at the border of the two states, the amenity-
sharing relationship successfully captured the administrative border between the two 
states. Similar to Zone-D, Zone-G has covered the Melaka state and extended to the 
corridor region connecting to Seremban, Melaka and Muar (a northern district of the 
state of Johor). In other words, Muar was closer to Melaka state than to the capital 
city of Johor, which was at the southern tip of Peninsular Malaysia. Johor Bahru— 
the capital city of Johor state—formed two zones: Zone-H and Zone-J. Zone-H was 
found at the west of the city while Zone-J covered the east part. Here, the actual 
spatial distribution of zones is presented, which were identified based on the 10 km 
moving distance threshold. As discussed in the previous section, these zones can be 
considered as the spatial boundaries of disease control zones—inseparable neigh-
bourhoods since the residents co-visit a lot of amenities together, which implies 
complex and dense interactions between neighbourhoods in the same zone that lead 
to a high possibility of disease transmission. 

8.3.4 Part IV: Explore the Zone Centres 
of the Neighbourhoods Interactions 

One or two zone centres were identified for each of the top-11 zones using the high 
weighted degree neighbourhoods. In Fig. 8.9, the distances from each neighbourhood 
to the zone centre were calculated and compared with the weighted degree values. 
The weighted degree indicates the total frequency of a neighbourhood sharing ameni-
ties with other neighbourhoods. Overall, the weighted degree of all zones showed 
a two-step decreasing trend with the distance to the zone centres. The weighted 
degree dropped with a steep slope as the distances to zone centres increased and 
reached a low weighted degree. After a turning point, which was approximately 
15 km, the decreasing rate of weighted degree became flat, indicating the neighbour-
hoods that locate beyond this threshold distance had a similar or constant weighted 
degree value. In other words, the gradients of high neighbourhood interactions to
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low neighbourhood interactions were strongly related to the distances to the zone 
centres for the neighbourhoods located within a 15 km radius of the zone centres. The 
neighbourhoods beyond this threshold distance usually had low values of neighbour-
hood interactions, i.e., had a simpler amenity-sharing structure. In addition, this also 
indicates that the area size of most cities in Malaysia is around a 15 km radius. Neigh-
bourhoods that fall beyond this threshold radius were sparsely distributed, hence the 
low weighted degree. 

In Fig. 8.9, the four groups (high, mid-high, mid-low, and low) were shown using 
the boxes with the same colour scheme as in Fig. 8.8. The first two groups (high 
and mid-high) usually had a narrow rectangle shape that was long in the vertical 
direction. The other two groups (mid-low and low) had a wide rectangle shape that 
was long in the horizontal direction. The neighbourhoods in the high and mid-high

Fig. 8.9 The scatter plot shows the weighted degrees (vertical axis) by the distances to centre points 
(horizontal axis) for each zone. Boxes in different colours indicate the range of the four groups. 
The vertical dashed line (15 km) indicates the approximate turning point of the decreasing pattern 
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groups were usually within a 15 km radius from the zone centres. Zone-C (the coastal 
part of Perak and Selangor) contained a secondary core region that had only a few 
mid-high neighbourhoods but none of the neighbourhoods was in the high group, 
i.e., the north/inner part of the zone. These neighbourhoods were far from the coastal 
core region—located about 30 km to 40 km from the zone centre—while some of 
them had moderate values of weighted degree. For Zone-D and Zone-F, some of the 
neighbourhoods in the mid-high group exceed the 15 km threshold with a moderate 
high weighted degree, indicating that the urbanised region spread out from the zone 
centre to a larger radius. For Zone-G and Zone-I, the neighbourhoods in the mid-
high group were a short (vertical direction) and wide (horizontal direction) rectangle 
shape, which indicated that the mid-high group had entered the slow decreasing stage 
and the weighted degree was constantly low for 75% of the neighbourhoods. In other 
words, there were fever neighbourhoods (about 25% of the neighbourhoods) located 
near the core region (with higher values of weighted degree) and only the high group 
neighbourhoods experienced a quick decreasing slope. 

Figure 8.10 focused on the five zones: (a) Zone-A, a large area that was composed 
of Kuala Lumpur, Putrajaya, and Selangor; (b) Zone-D, a coastal and island state 
(Pulau Pinang) that included a connection between the peninsular region and the 
island of Penang; (c) Zone-E, an inland city (Ipoh, Perak); and (d) the two zones 
(Zone-H and Zone-J) that were closely linked to each other at Johor Bahru. In 
Fig. 8.10a, the zone centre was in Kuala Lumpur and the weighted degree reduced 
with the distance to the centre—a typical monocentric city pattern. The second FT 
(Putrajaya) was mainly covered with a mid-low weighted degree in the amenity-
sharing network, indicating a less crucial role in the spatial interaction structure. 
Zone-D (Fig. 8.10b) formed an area that was larger than the Pulau Pinang State 
(white border area), that included the Sungai Petani at the north and Kulim at the 
east; both Sungai Petani and Kulim were part of the neighbouring state (Kedah) 
but the two towns were more connected to Pulau Pinang than to the capital city of 
Kedah (Alor Setar). The zone centre was shifted slightly to the south of the central 
business districts (CBD) of the state. Both George Town and Butterworth (primary 
and secondary CBD) is located slightly to the north of the zone centre and George 
Town is on the island. The primary and secondary CBD was developed as a histor-
ical product—near the location of harbours and the bridge linking the island and 
the peninsula. The identified zone centre indicated the hinterland location where 
more neighbourhoods (especially residential areas) were found, and more spatial 
interaction happened.

Ipoh (Fig. 8.10c) is the capital city of Perak, which is the largest inland zone in 
terms of area size among the zones on the west coast of Peninsular Malaysia (the 
other inland zone is Zone-B). The north-to-south narrow shape of the spatial distri-
bution is caused by the natural landscape: the city is located in the Kinta Valley and 
surrounded by two mountain ranges—Titiwangsa Range and Kledang Range—on 
the east and west sides of the city, respectively. The zone centre is located almost 
at the centre of the city, and the weighted degree decreased from the zone centre 
along with the north and south directions. In Fig. 8.10d, the two zones were iden-
tified in the southern part of the Peninsular Malaysia—Johor Bahru. Neighbouring
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Fig. 8.10 The amenity-sharing networks of four regions: a Zone-A, which includes the two FT 
and Selangor, b Zone-D, which covers the entire Pulau Pinang and also extends to the neighbouring 
state of Kedah, c Zone-E: Ipoh, the capital of Perak, and d the Zone-H (on the left) and Zone-J (on 
the right) that covers the Johor Bahru, the capital city of Johor. The colours of neighbourhood nodes 
show the within zone groupings by the weighted degree. The golden ‘X’ markers indicate the zone 
centres. The white lines highlight the states/FTs boundaries

Singapore, Johor Bahru contained the most financial amenities and residential area 
in Johor. While the two zones belong to the same city, the separation of zones from 
the community detection algorithm based on the amenity-sharing network indicates 
that the distinction of communities occurred within the city. In other words, although 
there were a lot of cross-zone connections, the internal connections within each of 
the two zones were stronger and denser than the connection between the two zones. 
This could be observed from the nodes located at the border of the two zones—these 
neighbourhoods had a slightly lower weighted degree (mid-high group). Similar to
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the other three zones, the zone centres of Zone-H and Zone-J were located in the 
hinterland of the two zones. The decreasing of weighted degree occurred with the 
distance from the zone centre to the outer area, i.e., toward the west and north for 
Zone-H and toward the east and north for Zone-J. In summary, based on the four 
examples shown in Fig. 8.10, the zone centres were usually found in the hinterland 
or CBD of the city, which also implies the location with a high frequency of spatial 
interaction within the zone. 

8.4 Discussions 

This study demonstrated a data-driven framework for delineating zones of disease 
diffusion. The first part identified neighbourhoods that represent where people live 
from the micro-scale spatial units—road segments. The relationships of sharing 
amenities were identified in the second part, which was used to identify the zones 
of disease diffusion (part 3) and calculate the weighted degrees for identifying city 
centres (part 4). These analyses captured where people interact with each other 
heavily and that can lead to disease diffusion. The underlying structure of places 
and amenities can be analysed by a complex network analysis approach [5, 7, 39]. 
The identified spatial boundaries of human interaction and city centres can be useful 
information for the health authorities in the policymaking process, e.g., where the 
boundary of the lockdown zones should be set or where to allocate the medical 
resources [20]. While some zones’ boundaries resemble the boundary of states, 
some zones extend to the neighbouring states, and some states contain multiple 
zones. In other words, the spatial structure of human activity in the cities are not 
always following the administrative boundaries, which are drawn for political and 
administrative purposes. Therefore, making policies for disease controls according to 
administrative boundaries is not ideal. Here we presented a data-driven approach to 
the identification of the human movement boundaries that can be used as a reference. 

The movement of people from one place to another provides an opportunity for 
disease pathogens to travel and spread spatially [5, 6, 21]. In this study, the concept of 
disease diffusion and human movement was captured by analysing the locations of 
neighbourhoods and amenities within a 10 km radius—a situation that corresponds 
with the MCO (lockdown measure) and regular situation. The co-visit relation-
ship—i.e., the amenity-sharing network—indicates the possible spatial interactions 
between neighbourhoods. The identified zones using the amenity-sharing network 
and a community detection method (MapEquation) imply that the places are densely 
interconnected if they are found in the same zone, i.e., a lot of people visit a similar 
set of amenities from these neighbourhoods. The distribution of zones uncovers the 
spatial structure of urban form, i.e., the shape and size of a city/town/settlement. 
In the context of disease outbreaks, the amenity-sharing relationship indicates the 
possible spread of disease from one place to another, and the identified zones indicate 
the possible impact area of a disease cluster. When a new disease cluster is reported, 
people from other neighbourhoods in the zone should be aware of the situation and
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take corresponding actions, e.g., reduce outdoor gatherings and enhance personal 
hygiene habits to avoid catching the disease. 

The spatial distribution of weighted degrees indicates the strength of amenity-
sharing relationships. A high weighted degree means more co-visit connections that 
imply both high diversity (co-visit with various neighbourhoods) and high density (a 
large frequency of co-visit interactions). Therefore, in the disease diffusion context, 
the high weighted degree places have a high probability to be spatial super-spreaders 
or spatial super-susceptibles—the disease can easily spread from or to these places 
[5, 15, 17]. The results indicate that the locations of high weighted degrees are mainly 
found in the CBD or hinterland of the areas/states. This is because the CBD usually 
has more amenities and a more complex road network structure. In other words, 
when a disease outbreak happens, the CBD should get more attention, e.g., to reduce 
human activities, or to temporally close some non-essential shops within the area. 

The weighted degree categorisation and zone centre identification was done for 
individual zones (i.e., regional) in this study due to the strong heterogeneity between 
zones and between states. This notable difference indicates a large urban–rural hier-
archy between regions or states occurs within the country. Although the differences 
between zones/states are large, the distribution of within-zone weighted degree to the 
distances from the zone centres shows a similar pattern—a rapid decay of weighted 
degree by distance to around 15 km radius. This suggests that the size of a city/town 
in Malaysia usually has a 15 km radius size (or less), regardless of the highest value 
of the weighted degree that was derived from the number of amenities. This also 
suggests that the places within a 15 km radius from the zone centre are densely inter-
connected, with a rapid change of weighted degree (strength of spatial interaction) 
depending on the distance to the zone centre. Therefore, these areas should also be 
aware of the outbreak situations. In addition, this does not mean that places beyond 
15 km are not important in the disease control measures; it only indicates that those 
places have less complex spatial interactions, hence the risk of disease spreading is 
relatively low in comparison to the core area. However, these rural and distant places 
usually have lower accessibility to medical resources. Thus, these places should not 
be neglected in the policymaking process—some other types of policies or disease 
control measures may be helpful for these locations, e.g., more medical resources 
allocation, and more controls on the incoming/outgoing movement restrictions. 

This study provided an example of using open data and open-source software 
to develop a framework to support policymaking on disease control events. The 
presented framework uses two basic and common types of datasets—a road network 
and a set of POIs. Both are available without any cost from the OpenStreetMap 
platform, which covers the global area [12]. In other words, this framework can be 
easily applied to other cities or countries. For some countries, including Malaysia, 
a lot of spatial data was not available as open data from the official authorities. The 
official spatial data is not available because either it does not exist, it is confidential, 
or it is only available for purchasing. Therefore, it is difficult to run a micro-scale 
analysis for various purposes, including the situation during a disease outbreak. Open 
spatial data and open-source software are available for anyone and thus it may be an 
ideal solution for most countries where the official data is unavailable [2, 48]. This
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study provides a way to identify the zones of disease diffusion that can be reproduced 
with open-source software (the MapEquation tool and some Python packages) and 
open data. 

8.5 Conclusion 

The COVID-19 situation is still ongoing in Malaysia [41]. As of this writing, 
several variants and sub-variants of COVID-19, including Delta, Omicron, Omicron 
subvariant-BA-5, and Omicron subvariant-BA.2.12.1, have hit Malaysia and the 
world in the last two years [43, 44]. Understanding the spatial human activity struc-
ture can be beneficial for disease spatial modelling and policymaking. Future spatial 
epidemiology studies on COVID-19, including spatial modelling [8, 22], simula-
tion [16, 36], resource planning and allocation [20], regional lockdown measures 
assessment [11, 23, 45], risk and vulnerability assessment [18, 24, 46], identification 
of possible spatial super-spreader/super-susceptible [5, 17], and even sentiment or 
mental health impact from COVID-19 [31, 47] or building scale human movement 
and disease spreading analysis [38] etc., can be done on top of the results from this 
study, e.g., focusing on individual zones or analysing the city centre points. For prac-
tical purposes, the result from this study provides the boundaries of zones that can be 
used as disease control zoning, e.g., for reducing the cross-zones movement to avoid 
relocation diffusion, to allocate and set up the testing centres, vaccination centres 
or emergency response teams within each zone, or design different disease control 
strategies for different zones. In conclusion, the proposed analysis framework can 
delineate the zones of disease diffusion, and which can be used to support the fight 
against contagious diseases. 

There are several limitations and future research suggestions. First, no validation 
was done in the analysis because the micro-scale (e.g., neighbourhood or POI level) 
disease data was not available. In addition, there is no publicly available data for 
other types of contagious diseases that could be used as surrogate data. While this 
study aims to identify zones and the neighbourhood-level degree distribution, large 
scale (state level) data is not suitable for validation. Second, the identification of 
city centres was slightly arbitrary and not programmatic. The current method is to 
visually identify the clusters of high degree (greater than Q3) neighbourhoods and 
then calculate a centroid for each cluster. In the case study, only one zone contains two 
clusters (Zone-B) among the top-11 zones. The current method can be problematic 
for cities with multi-core structures—if two cores were close to each other, the inter-
core buffer zones area is small and the weighted degrees of the neighbourhoods in 
the buffer area are high, then only one centroid will be identified, and it would locate 
at the buffer area instead of the two city centres. To cope with this issue, a high-
resolution kernel density estimation may be useful in presenting the distribution and 
providing some hints on the numbers and locations of zone centres. 

Third, while this study focused on human activity and interactions, the situa-
tions at periphery locations (e.g., rural, agricultural, and indigenous settlements)
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were ignored. In the first step, the neighbourhoods and settlements in the middle 
area and east coast of Peninsular Malaysia were identified from the road segment 
data. However, in the amenity-sharing analyses (part-2 to part-4), these areas were 
fading-out due to the lack of amenity-sharing relationships (links); also, these neigh-
bourhoods/settlements did not connect to the main network component. In other 
words, the framework can only focus on and analyse the disease diffusion in the 
urbanised area. Fourth, the framework captures mainly the strong and dense interac-
tions—the ‘bond links’ in the amenity-sharing network. The long-range connections, 
e.g., the places that can be reached by a highway within a short amount of time, were 
ignored. These long-distance ‘bridge’ links (weak links) extend the movement radius 
to a far location and provide a possible route for disease spreading (i.e., relocation). 
Similarly, the domestic airlines and rail lines were not included in the analysis. In 
future analysis, these long-range connections can be included using a time-based 
accessibility measurement and threshold, e.g., whether the two neighbourhoods are 
reachable within 1 hour, to generate the amenity-sharing network. 
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Chapter 9 
Approaches for Spatial 
and Temporal-Spatial Clustering 
Analysis in Avian Influenza Outbreaks 

Mei-Liang Huang, Hong-Dar Isaac Wu, and Day-Yu Chao 

Abstract Avian influenza virus (AIV) belongs to the genus Influenza A virus of 
the family Orthomyxoviridae. The virus can infect a variety of avian species, but the 
low pathogenic AIVs do not usually cause explicit symptoms in poultry. In contrast, 
the highly pathogenic avian influenza (HPAI) viruses continue to cause outbreaks 
among poultry, wild birds and occasionally humans in Asia, the Middle East, North 
America, and Africa. Environmental factors associated with cross-species transmis-
sion have been substantially reviewed before. However, acquiring the knowledge 
of a number of environmental factors with spatial structures, which usually are not 
randomly distributed, for timely implementation of control measures rely on accurate 
identification of the spatial clustering in a global or local scale. In this article, we 
review different approaches in identifying spatial or temporal-spatial clustering in 
avian influenza outbreaks. In the future perspective, we propose to develop intuitive 
tools for timely identify the dynamic changes of clustering and viral spreading. Such 
tools will assist in not just the identifying the environmental factors associated with 
the clustering or spreading direction, but also timely control measures to prevent 
further damage. 
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9.1 Introduction 

Avian influenza, caused by influenza A virus (IAV), is a zoonotic influenza that affects 
a wide variety of birds, poultry and occasionally humans. Influenza A virus is the 
only species of the genus Alpha-influenza virus of the family Orthomyxoviridae. 
The structure of influenza A virus consists of a lipid envelope and a negative-sense 
single-stranded ribonucleic acid (RNA) genome with eight segments [1]. Influenza 
A viruses can be classified into subtypes based on the combination of the spike 
hemagglutinin (HA) attachment protein and the neuraminidase (NA) protein. To 
date, 18 HA subtypes (H1 to H18) and 11 NA subtypes (N1 to N11) have been 
identified [2], while only 131 subtypes have been detected in nature [3]. Subtypes 
of IAV can be further divided into clades and subclades based on the similarity of 
HA genes [4, 5], and subtypes can also be subdivided into genotypes based on the 
combination of internal gene segments. The nomenclature of influenza viruses has 
been standardized, and the name of a new strain consists of a combination of antigen 
type, original host, geographic origin, strain name, year of isolation, and subtype 
(HxNy) [6]. 

The genome segments of IAV encode different viral proteins. The structural 
proteins express in the envelope containing the surface proteins, which are HA 
attachment proteins and NA proteins, and the membrane ion channel (M2) proteins. 
Internal proteins include the nuclear protein (NP), matrix protein (M1), and the 
polymerase complex consisting of three subunits, namely polymerase basic protein 
1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA). 
Nonstructural protein 1 (NS1) and nonstructural protein 2 (NS2), the nuclear export 
protein (NEP), are encoded by segment 8. AIVs use host proteases to cleave the 
HA0 molecule into HA1 and HA2 subunits, which are essential for the uncoating 
step of viral replication. AIVs can be defined as low pathogenic avian influenza 
(LPAI) viruses and highly pathogenic avian influenza (HPAI) viruses based on their 
virulence in chickens. Thus, if mutations result in the insertion of multiple lysine 
and arginine residues into the HA0 cleavage site of the virus, termed the multilocus 
cleavage site, which can be recognized by the ubiquitous and extensive proteases 
in host tissues, it becomes an HPAI virus. As a corollary, HPAI viruses may repli-
cate throughout the host, systematically destroying tissues, leading to multiple organ 
failure and ultimately to host death. However, LPAI viruses have only one arginine at 
the cleavage site, which can only be recognized by trypsin-like proteases. Therefore, 
replication of LPAI virus is restricted to the respiratory and gastrointestinal tracts, 
where expression of this protease occurs [7–10]. 

Although avian influenza viruses (AIVs) replicate in wild bird reservoirs, the 
viruses spread out through the saliva, mucus, and feces of infected birds. Spillover 
AIVs can be transmitted from infected wild birds to poultry, primarily through direct 
contact with wild birds or indirect contact through human activities and contaminated 
water or other media. Most AIVs cause gastrointestinal infections in chickens, while 
those with no or minimal clinical signs are LPAI viruses, whose distribution in 
wild birds varies by subtype depending on geographic location, bird abundance,
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Fig. 9.1 The evolution and transmission routes of avian influenza virus between and among animal 
species and humans. Green arrows indicate the transmission routes of low pathogenic avian influenza 
(LPAI), red arrows indicate the transmission routes of high pathogenic avian influenza (HPAI) and 
blue arrows indicate the additional spread routes of avian influenza. Solid arrows represent frequent 
transmission events, and dashed arrows represent sporadic or limited transmission events. Once 
HPAI viruses become introduced into wild bird populations, the spread and maintenance of these 
viruses in wild birds will be determined by different factors involved the types of host birds, the 
viruses, and the ecology 

and prevalence. HPAI viruses can affect poultry as well as wild birds. Infections in 
chickens and turkeys induce severe disease with mortality rates as high as 90–100%. 
So far, only the H5 and H7 subtypes of AIVs have been recorded as causing HPAI 
outbreaks in poultry, but most of the H5 and H7 subtypes are LPAI viruses. HPAI 
viruses evolve by mutation, amino acid substitution or recombination after long-term 
circulation and efficient replication of LPAI viruses in poultry [11] (Fig. 9.1). 

9.2 Factors Associated with Zoonotic Transmission 
of Avian Influenza Virus 

Outbreaks of HPAI were first described as “fowl plague” in the 1880s, and subsequent 
outbreaks in Europe from then onwards were caused exclusively by HPAI H7N7 and 
H7N1 viruses until the first confirmed outbreak of HPAI H5N1 occurred among
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chickens in Scotland in 1959 [12]. HPAI H5Nx (N1-9) and H7Nx (N1, N3, N4, N7-
N9) viruses [13, 14] have been reported to cause thousands of outbreaks in domestic 
poultry and wild birds in more than 60 countries, killing numerous poultry through 
HPAI virus attacks or mass culling strategies and causing huge economic losses. 
During HPAI epidemics in poultry, viruses can spill back into wild birds, where 
they subsequently circulate asymptomatically or cause disease and death [15, 16], 
even generate reassortants with LPAI or wild bird-adapted strains [17–19]. These 
viruses can also spill over into mammals, including pigs, horses, whales, seals, and 
humans [20]. However, it is considered that AIVs do not replicate efficiently enough 
in humans to sustain human-to-human transmission [21] (Fig. 9.1). 

Long-distance migratory birds played an influential role in the global spread 
of HPAI viruses [22–26], while wild birds may also be involved in local HPAI 
virus amplification and reassortment [27]. The HPAI found in wild birds was highly 
associated with the geographical locations of poultry farms [20, 28, 29]. However, 
such association has been not significant since the emergence in 2014 of the HPAI 
virus Gs/Gd clade 2.3.4.4 which has dominated in outbreaks in poultry and wild 
birds with abundant genetic reassortments resulting in H5N1, H5N2, H5N3, H5N4, 
H5N5, H5N6 and H5N8 subtypes [24, 30, 31]. 

The most predominant natural reservoirs of HPAI H5 viruses are Anseriformes, 
which are responsible for the maintenance, rapid transmission, and geographic expan-
sion of these viruses. The other prominent reservoirs, Charadriiformes, are possible 
reasons for the rapid global spread of HPAI viruses due to their fast-moving, long-
distance migration and highly gregarious during migration period [32–34]. The trans-
mission rates of HPAI H5 viruses within Anseriformes and Galliformes are high, but 
transmission between these orders is limited [18, 35]. Understanding the mechanisms 
of HPAI virus transmission and maintenance in wild birds can provide a reference 
for surveillance strategies. 

Human infection with AIVs is a rare and sporadic event, however, AIVs subtypes 
H5, H6, H7, H9, and H10, have been recorded infecting humans to cause clin-
ical disease of varying severity. Exposure histories of human cases and phyloge-
netic analyses of AIVs isolated from wild birds, poultry, humans, and associated 
environments suggested that cross-species poultry-to-human transmission of AIVs 
frequently occurs on poultry farms. In addition, live bird markets are active sites for 
interspecies dissemination, where AIVs can be transmitted from birds to humans or 
reassort influenza gene segments in different host species [36, 37]. 

HPAI H5N1 outbreaks have occurred in a variety of ecological systems with 
economic, agricultural and environmental differences, which pose the threat to the 
poultry production sector. Factors affecting the spatial and temporal distribution of 
the outbreak of AIVs have been investigated in many studies previously. Marius 
Gilbert and Pfeiffer [38] summarized the risk factors considered for HPAI H5N1 
presence in previous studies in nine categories, including(1) farming practice and 
local biosecurity, (2) poultry and livestock census data with longitude and latitude, 
(3) anthropogenic variables, (4) socio-economic variables, (5) variables indicative 
of the presence or abundance of wild birds, (6) variables indicative of the presence 
or abundance of rivers, lakes or wetlands, (7) eco-climatic variables obtained using
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weather station data or remote sensing, (8) land-use and cropping variables, and 
finally (9) topography. Among these factors, the density of domestic waterfowl, 
anthropogenic variables (human population density, distance to roads) and indicators 
of water presence were identified positively correlated with HPAI H5N1 presence 
across studies and regions. 

9.3 Spatial Clustering Analysis of Avian Influenza Viruses 
Transmission 

Commonly used statistical clustering approaches from the literatures to identify 
spatial distribution patterns and transmission mechanisms can provide additional 
information for AIV control and prevention strategies. 

9.3.1 Cluster Analysis 

The spatial distribution pattern of HPAI cases was clustered, dispersed, or randomly 
distributed, which can be measured by global spatial autocorrelation analysis, such 
as the global Moran’s I statistics [39]. The null hypothesis of global Moran’s I is 
spatial randomness. Global Moran’s I index is the correlation coefficient between the 
eigenvalue and its surrounding values, which can be transformed into z-score and 
p-value to infer whether the overall spatial distribution has statistically significant 
clusters. A positive z-score with a statistically significant p-value indicates spatial 
clustering, and a negative z-score with a statistically significant p-value indicates 
spatial dispersion. Threshold spatial distances are analyzed by incremental spatial 
autocorrelation analysis for a series of increasing distances at intervals of interest 
over a spatial range, and spatial clustering is measured by the z-score of each distance 
interval. The z-score usually peaks at some distance where the spatial clustering is 
most salient within the specified spatial extent. The distance associated with the 
statistically significant peak is selected as the threshold spatial distance for a cluster. 

9.3.2 Hotspot Analysis 

However, these methods do not account for the location of clusters. The Local Indi-
cator of Spatial Autocorrelation (LISA) with Local Moran’s I statistics calculates 
the eigenvalues of each geographic boundary region and assesses the significance 
of the region’s similarity to its surroundings to identify statistically significant local 
clusters, such as high-high hot spots and low-low cold spots, or high-low–high local 
spatial outliers. The high positive z-scores of the test demonstrate the statistically
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significant high-high cluster of hotspots [39]. Based on global and local Moran’s I 
analyses, the distribution of H7N9 human cases in Zhejiang Province, China, showed 
statistically significant spatial autocorrelation in some epidemic waves and identi-
fied the statistically significantly high-high clusters and high-low outlier clusters 
mostly located in the northern part of this province [40]. Shan et al. [41] used global 
Moran’s I analysis to identify that the distribution of H7N9 human cases in Mainland 
China showed statistically significant spatial autocorrelation during the five epidemic 
waves. 

Liang et al. [42] evaluated environmental factors associated with clusters of 
outbreaks and multiple subtypes co-circulating of HPAI H5Nx viruses in Taiwan. 
Global Moran’s I analysis was conducted to determine the grid size for covering 
Taiwan when measuring the clusters of H5Nx outbreak farms and found the optimal 
distance to be 3 km. Therefore, a 3 km square grid covering Taiwan was used for 
LISA and local Moran’s I statistics, and the results indicated that the hotspots of 
H5Nx outbreak farms were located on the west coast of Taiwan from 2015 to 2017, 
where covered more than 75% of outbreaks farms in 2015 and 2017. Multivariate 
stepwise logistic regressions comparing hotspots and non-hotspots were developed 
to analyze four categories of variables: farm-related, farm biosecurity-related, wild 
bird-related, and anthropological. Notably, this study used satellite remote sensing 
methods to establish unregistered poultry farm data and merged it with the official 
poultry farm registration database to complete the poultry farm census dataset. A 
poultry heterogeneity index was also created in this study to describe the hetero-
geneity of the total number of domesticated waterfowls versus land fowl in each 
grid. Four risk factors consistently showed a strong association with the spatial clus-
ters of HPAI H5N2 and H5N8 circulations during 2015 and 2017, including high 
poultry farm density, poultry heterogeneity index, non-registered waterfowl flock 
density, and a higher percentage of cropping land coverage. Using estimates from 
the regression models of 2015 and 2017, risk maps were generated to predict high-
risk areas and further validated by using outbreaks from the first half of 2018. The 
results showed that the risk maps for 2015 and 2017 had a prediction rate higher than 
55%. 

Unlike the local Moran’s I statistic, the Getis-Ord Gi* statistic calculates each 
feature in the context of neighboring features in the dataset to measure the degree 
of spatial clustering. Features in geographic boundary regions that are similar to 
adjacent features, and the sum of these features, including the feature itself, that 
differ significantly from the expected sum, will yield a statistically significant z-
core and p-value result. The larger the statistically significant positive z-value, the 
stronger the aggregation of hot spots, and the smaller the statistically significant 
negative z-value, the stronger the aggregation of cold spots [43]. 

In order to investigate the locations of disease clusters, Shan et al. and Huang et al. 
[41, 44] used the Kernel density estimation to present the clustering areas of human 
cases caused by infection of AIVs in China in different epidemic waves. Kernel 
density estimation is a non-parametric statistical method to estimate the probability 
density function of a random variable. It converts point features into smoothly curved 
density surfaces by calculating the sum of a kernel function on each data point.
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The kernel function calculates the surface value of each point by weighting the 
distances of all points at each specific location in the distribution. The surface value 
of each point location is the highest, and it decreases with the distance from the point 
increases. The density of each point is the sum of all surface values of that point. 
If more points cluster in one location, the higher the density of that location, as the 
higher the probability of seeing a point at that location [45]. Based on Kernel density 
estimation, the Yangtze River Delta region and the Pearl River Delta region had the 
highest density and the intensity had gradually shifted during the epidemics [41, 46]. 

9.4 Temporal Spatial Clustering Identification of Avian 
Influenza Viruses Transmission 

Approaches used to early and accurately characterize epidemiologic patterns of 
disease incidence in a temporal and spatial series are becoming increasingly impor-
tant. Statistical analysis for detecting spatial–temporal clusters of health-related 
events is often used for epidemiological and biomedical studies. Timely identifi-
cation of anomalies of disease or poisoning incidence during ongoing surveillance 
or an outbreak requires the use of sensitive statistical methods that recognize an inci-
dence pattern at the time of occurrence. The following sections reviewed analytical 
methods commonly used to study temporal-spatial patterns. 

9.4.1 Scan Statistics or Space–Time Permutation Model 

Cluster analysis, such as scan statistics, are generally designed for retrospective 
detection of epidemiologic anomalies in a temporal or space–time series. Spatial 
scan statistics is a widely-used approach to detect spatiotemporal clustering although 
several conventional cluster analysis methods such as gap-statistic or K-means have 
been developed. The scan statistic employs a moving window, possibly with varied 
shapes, of predetermined radius or geographical unit with fixed population and finds 
the maximum number of cases revealed through the window as it slides over the entire 
region [47–49]. The scan test is structured to detect the largest cluster of incidences. 
The maximum number of events occurring in a window is the test statistic for the scan 
test. However, calibrating proper spatial and temporal windows in scan statistics is 
difficult, which requires a process of model tuning. Huang et al. and Dong et al. [44, 
46] used the space–time permutation model to analyze the spatial–temporal clustering 
of H7N9 human cases. Assuming that the population changes are homogeneous, and 
the spatial extent of the cluster does not change during the scanning process, it only 
needs the spatial location and time data of the cases. Scan statistics use a varied-size 
cylindrical moving window with space as the base and time as the height to scan 
the target area in the time period of interest. Observed and expected numbers of
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cases were obtained from the scan of each location and size of the window, and the 
likelihood ratio or relative ratio statistics were used to evaluate whether there is a 
cluster in the cylinder. In the space–time permutation model, the spatial and temporal 
data of the case being studied are used to adjust multiple tests through thousands of 
random permutations. The cluster with the largest log-likelihood ratio is simulated 
for each of these permutations of the data set, and the P value for hypothesis testing 
is used Monte Carlo simulations [50]. 

According to space–time permutation model scan statistics, the epidemic of H7N9 
human cases from 2013 to 2017 showed six statistically significant clusters. In 
2017, there were four clusters, with centers located in Beijing, Hubei, Sichuan and 
Shanghai. One cluster in Xinjiang from July to December 2014, and one cluster 
in Guangdong from July 2013 to March 2015 [44]. Further analysis of the first two 
epidemics in 2013–2014 with 5 days as the time unit, in the first and second epidemic 
waves, two and three statistically significant clusters were identified. In the first wave, 
the most likely cluster of epidemics was observed in the southeast region centered on 
Fujian Province from April 27 to May 11, 2013, and the second cluster of epidemics 
occurred in Jiangsu province and Shanghai from March 13 to April 11, 2013. In 
the second wave, the earlier cluster of epidemics was in Yangtze River Delta from 
January 12 to January 31, 2014. The second cluster of epidemics was in Pearl River 
delta from February 16 to March 2, 2014, and the third cluster of epidemics was in 
six provinces centered on Anhui Province from April 22 to May 31, 2014. 

Zhang et al. [51] also analyze space–time clustering of human infection with 
H7N9 virus in county level in 2013–2014. The peak z-score indicates that there 
are obvious spatial clusters at the distance of 30 and 250 km in the incremental 
spatial autocorrelation analysis, and the distinct temporal clustering at the duration 
of 14 to 26 days in the temporal autocorrelation analysis. Based on this, 250 km 
and 14 days are selected as the “Threshold” of distance in space and time for the 
next space–time hotspot analysis. Getis-Ord Gi* z-score illustrated that there were 
two statistically significant space–time clustering near Shanghai and Zhejiang in 
March 26 to April 18, 2013, and near Guangzhou and Shenzhen from February 3 
to 4, 2014. Zhang et al. also used a space–time permutation scan statistic model to 
investigate epidemic pattern of these human cases. The results showed that there were 
six statistically significant spatiotemporal clusters from 2013 to 2014. The cluster 
near Shanghai and Zhejiang from March 13, to April 9, 2013, and the cluster near 
Guangzhou and Shenzhen from February 5 to 25, 2014, were similar to the results 
of hotspot analysis, indicating the good consistency between these two methods. 

9.4.2 Knox Test 

Knox proposed a method that allows for statistical testing of the interaction of inci-
dents of infectious disease in space and time that does not use an arbitrary critical 
value of distance or time for determining local clusters [52]. The Knox statistic is 
calculated by pairing all possible data points (e.g., location in space and time of the
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death of birds) within a clearly defined geographic area and temporal interval and 
testing them against assigned values of what is “close” in space and time. The number 
of close space–time data pairs is compared with what would be expected if there were 
no space–time cluster. Based on Knox settings, Barton and David [53] proposed a 
“intersection” approach” to obtain spatial–temporal clustering. They suggested to 
connect the pairs with temporal clustering by line segments to form a temporal map, 
and then connect the pairs with spatial clustering to form a spatial map. Combining 
these two maps produces a spatial–temporal clustering [54]. This is reasonable but 
hard to implement because in a highly dense incidence region, thousands of lines 
tangled together will make the discrimination among clusters difficult. In addition 
to the “intersection approach”, Openshaw et al. [55] considered a “geographical 
analysis machine” (GAM) method which draw r-radius circles for the areas with 
dense incidence when “r” is permitted to varied (say, r = 1, 2, or 4 km). Those 
corresponding dense circles visually formed bunches of circles, and is decided to be 
spatially clustered. See also Turnbull [56] for more discussion. In this study published 
in Scientific Report (2021), Wu et al. [57] showed that Knox-based approach can still 
display spatiotemporal clusters, in particular when the outbreaks occur in multiple 
places. When circling the major spatial clusters, each circle has a “diameter” within 
3 km, which is the size of the control zone established once HPAI-infected farm iden-
tified in Taiwan. When an infected premises (IP) is reported, all poultry from that 
particular IP will be culled and all farms within 3 km radius of that infected premises 
will be targeted for intensive surveillance. Therefore, outside the 3 km control zone 
stands for the spreading of HPAI viruses requiring epidemiological investigation. 

9.4.3 Standard Deviational Ellipse (SDE) Method 

The standard deviational ellipse (SDE) method was a widely applied approach to 
displaying geographic distribution of occurrence of some events [58–61], including 
chronic diseases and infectious diseases, etc. [62–64]. It combines the concern 
of location, (two-dimensional) dispersion, and orientation (meaning direction plus 
shape) in a simple optimization calculation. When SDE is used repeatedly over a 
specified time period (say, every week during the emergent outbreak period), the 
mean area center is the origin of these two axes [60]. It suggests that one, two, 
and three standard deviation ellipses will cover approximately 68, 95, and 99% of 
the points [65]. The orientation of the long axis indicates the direction of the point 
distribution, therefore, the greater the difference between the long and short axis, 
the more obvious the direction trend. Connecting the centers of each ellipse offers a 
clue for disease transmission. This connecting line can be compared with long axes 
of consecutive ellipses. To sketching the spatial trends of H7N9 human cases over 
time in China during 2013–2017, SDE analysis was used by Huang et al. and Dong 
et al. [44, 46]. They analyzed the distribution of cases for each month in the epidemic 
wave. SDE analysis showed that the first wave of the 2013 epidemic started in the 
three Yangtze River Delta provinces and spread from Jiangsu to Guangdong. The
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second wave occurred in the southeastern coastal provinces from Jiangsu Province 
to Guangdong Province, and expanded the epidemic area with a coastal orienta-
tion, but spread toward the inland in the last two months. The third wave of the 
epidemic started from the southeast coastal area to Gansu Province, and then grad-
ually narrowed down to the Yangtze River Delta. The fourth wave of the epidemic 
occurred in the southeastern coastal region and then spread to the northern coastal 
region. In the fifth wave, the epidemic occurred along the eastern coast and then 
gradually spread to most of mainland China. 

9.4.4 Regression Modeling 

The interpretation of the shape of SDE need to be cautious as it might be area-
specific. While the connection between ellipses reveals a different story implying 
the development among sub-areas with dense emergent cases, it shows a temporary 
geographic pattern or latent mode of spreading of events. Using SDE method to esti-
mate the transmission direction needs mild correction when the concerned infections 
have become endemic; i.e., the virus tends to be localized and existed there all year 
round. An alternative approach to estimate the direction of spreading is a regres-
sion model proposed in Zinszer et al. [66], hereafter called Zinszer model, which 
attempted to estimate local transmission directions for Ebola epidemic. It states that 
for an outbreak event occurred at calendar time Ti and at location (Xi, Yi) with corre-
sponding explanatory variable (possibly a vector) Zi, and Ti+1 is the time of the next 
(Ebola) outbreak case so that the inter-outbreak “gap time” τi = Ti+1 − Ti can be 
modeled as: 

τi = β0 + β1Xi + β2Yi + γ ′Zi + εi. 

The parameters β1 and β2 interpret the inverse of rate of transmission in the direc-
tion of X and Y, respectively, usually adopted as the longitude (X) and latitude (Y) of 
the event spot indexed by “i”. Depicting weekly SDEs and connecting consecutive 
centers to exhibit transmission direction employs parallel idea but roles of time and 
space interchange: Time interval is now not random; it is fixed to be one week. The 
magnitude of changes in X and Y are random, implying the velocity (speed plus 
direction) of transmission. 

9.5 Future Perspectives 

For infectious diseases such as avian influenza, spatial clustering of outbreaks plays 
a highly significant role in ecological dynamics and viral spread. However, accurate 
identifying the spatial cluster and predicting the direction of viral spread requires the 
knowledge of a number of environmental factors with spatial structures, which are
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not only non-randomly distributed across a country but also change through time. 
Instead of applying complex spatial statistics for clustering tests to detect a series of 
epidemiological anomalies, development of intuitive tools for timely identification of 
spatial–temporal clusters will assist control measures to prevent further damage. Wu 
et al. [57] proposed two visual approaches to identify spatial–temporal cluster with its 
dynamic change through two-stage methods. In the first stage, they utilized common 
concepts of Knox test and scan likelihood ratio statistics to determine spatiotemporal 
cluster. Although there is no universally feasible method to estimate the direction of 
transmission, the use of SDE in the second stage to visualize the geographical distri-
bution of a series of social, biological or environmental events is still very attractive 
[64, 67–69]. Geographically, the scale wider than local infections was presented 
by simply connecting the centroids corresponding to each week’s ellipse. If the 
initial pattern was influenced by local factors, the direction connecting centroids 
can be exerted by a later “strength” existing among ellipses. Time-varying SDEs 
are applied to individual spatial clusters, defined by the Knox method, to reveal its 
local transmission by week. By connecting the consecutive centers of weekly SDEs, 
the direction of transmission can be easily visualized, which may imply the playing 
roles of local factors, such as wild bird movement, transportation vehicles, human 
activities or other meteorological factors acted within the spatial clusters [22, 38, 
46, 70–72]. Other non-local factors, such as factors related to poultry market supply 
networks or the long-distance movement of certain bird species, contributing to the 
HPAI transmission between spatial clusters can be investigated and differentiated 
from the local factors [73–75]. Careful identification of influencing factors can help 
precautionary measures, public health control and prevent further outbreaks. There-
fore, a Knox-based combined SDE visualization tool is suggested to identify the 
spatial-temporal clustering of poultry farm HPAI outbreaks in Taiwan. 

On the other hand, AGC (Fig. 9.2)-based second-order aggregation maps based 
on scan statistics likelihood ratio as two-stage approach in a regular interval provide 
a quantitative risk in regional level and its dynamic change further indicates the 
direction of transmission [55]. The likelihood ratio statistic constructed in the first 
stage considers two “reference populations” to serve as the basis for statistical testing 
on global and local spatial clustering. A map based on drawing the AGC index, which 
can capture the aggregation pattern of disease clusters is very useful for displaying 
hotspots. That is, the aggregation of those sub-regions with higher Rj or AGC index 
is called hotspots. The identified major clusters are similar in both Knox-based and 
AGC mapping methods. Although the AGC map inevitably depends on the choice of 
the critical value of the AGC index, the difference between two results is small. These 
major spatial clusters or hotspots could share common environmental risk factors 
contributing to the poultry farm outbreaks by HPAI as we published previously [42]. 
By monthly depicting the AGC maps, the changes in the hotspot pattern over a period 
of time also provide clues of the direction of HPAI viral transmission. If the AGC 
maps of different months remain unchanged, it means that the hotspot is very “stable” 
in a sense. Note that the formation of AGC map depends on the choice of the cutoff 
point for the number of clusters. The traditional elbow method based on minimizing
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Fig. 9.2 The aggregation of clustering (AGC) index. It is based on the ratio of the difference 
between the spatial scan statistics of two reference areas and is used to estimate the clustering of 
outbreaks in an area in a regular interval 

the overall within-cluster variation can be applied, or the more modern gap statistics 
can be used in the future [76, 77]. 

In conclusion, various approaches to study spatial or temporal-spatial clustering 
in infectious diseases have been proposed. However, the knowledge of a number of 
environmental factors with spatial structures is necessary to accurately identify the 
spatial clustering in a global or local scale. Development of a visual tool in a webpage 
will assist in accurate identification of such clustering and predicting the direction 
of viral spreading. 
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Chapter 10 
Detecting Urban form Using Remote 
Sensing: Spatiotemporal Research Gaps 
for Sustainable Environment and Human 
Health 

Tzu-Hsin Karen Chen, Alexander V. Prishchepov, and Clive E. Sabel 

Abstract Remote sensing offers large-scale and longitudinal assessment of the 
size, density, and function of cities associated with the sustainable environment and 
human well-being. In this chapter, we synthesize 376 peer-reviewed studies on urban 
land cover, building density, three-dimensional (3-D) structure, and land use using 
remote sensing approaches. We evaluated the sources of data, detection methods, as 
well as the spatiotemporal characteristics (e.g., locations and spatiotemporal scales). 
Our review identifies three research gaps: (1) Many urbanization studies monitor 
urban/non-urban change for a long period but not for the patterns of 3-D urban struc-
ture; (2) Increasing number of studies use deep learning approaches to detect urban 
land cover in large scales, especially with Sentinel-2, but there is a lack of time-series 
analysis and temporal accuracy assessment; (3) most of the urban land change studies 
focused on North America and East Asia but not in the Global South. A dilemma lies 
behind these research gaps: newer, high-resolution imagery, able to detect nuanced 
urban attributes, has a relatively short temporal span. In contrast, older imagery can 
detect long-term changes but has a lower resolution. This problem has led to a consid-
erable paucity in investigating long-term urban dynamics. For instance, most of the 
studies investigating 3-D urban form covered less than five years. Dealing with these 
issues, recent developments in data fusion, temporal accuracy assessment, object-
based image analysis, and deep learning methods are showing promise to enhance 
spatial resolution, extend temporal coverage, and to characterize land use intensity
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and 3-D structure, which are important factors affecting temperature, physical activi-
ties associated with public health. The increasing availability of computational power 
such as via Google Earth Engine allows analysis at large spatiotemporal scales such 
as comparing urban form and sustainable/health outcomes across multiple cities. 
We foresee increasing importance of remote sensing in providing evidence-based 
knowledge for policies and science of health cities. 

Keywords Urban form · Sustainable cities · Urban remote sensing ·Machine 
learning · Urban dynamics · Time series analysis 

10.1 Introduction 

Urbanization is amongst the top challenges faced globally, adding another approx-
imately 2.5 billion urban dwellers between 2018 and 2050, which represents an 
increase in the global population from 56 to 68% [1]. The unprecedented urban 
land expansion competes with agricultural and natural lands, with the total area 
of land predicted to be converted to urban areas exceeding 600,000 km2 between 
2015 and 2050 [2], affecting how the Earth physical system functions today, how it 
supports life, and how conditions might change to alter climate. Not only does urban 
expansion drive environmental change, but urbanization and the changing built envi-
ronment also shape urban form—the shape, size, density, and layout of cities. These 
urban form attributes affect dweller’s daily experience, salutogenic or harmful to 
their health and well-being: heat stress [3, 4], air quality [5], food consumption [6, 
7], disease outbreaks [8, 9], and biodiversity and access to green space [10], mood 
and psychological distress [11, 12]. One urban form attribute might be favorable for 
a sustainable goal but not for another. For instance, denser environments, one of the 
features of compact city theory, may potentially promote walking reduce the risk of 
obesity [13, 14]. 

Therefore, the development of sustainable urban form needs backing up by scien-
tific knowledge and comprehensive information [15]. There have been attempts to 
evaluate urban form impacts on coupled human-environment systems, from global 
change [10, 16] to health sciences [9, 17, 18]. A recent review, however, found that 
the evidence-based knowledge of sustainable urban form does not reach a consensus 
between locations and times [19]. For instance, how high-density development relates 
to energy consumption is contested in the literature and varies by study area. Compact 
cities were found to promote short-distance daily travel and reduce emissions in many 
US cities [20–23]. At the same time, another study in Norway considering leisure 
trips at the weekend showed lower urban density could reduce energy consumption 
[24, 25]. The relationship between air pollution and densification is also disputed in 
the literature. A US study found that high-density cities were associated with lower air 
pollution [26], while air quality was negatively correlated with high-density devel-
opment in India [27] and European large urban zones [28]. Some studies, using 
the same methodology, within US metropolitan regions, have pointed to opposite
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correlations between population density and outdoor concentrations of fine partic-
ulate matter (PM2.5) when one used data for a single year [29] and another used 
data for five years [5]. Going forward with evidence-based solutions, scientists face 
a significant challenge when there are inconsistencies in the temporal and spatial 
scales for measuring characteristics of the built environment and desired sustain-
able outcomes. More harmonized data collection and interpretation are urgent for 
improving the understanding of our living environment and provide knowledge that 
is useful for scientists, urban planners, and policymakers, to create a sustainable 
urban future. 

Remote sensing is a valuable source of data, which is complementary to survey 
data due to its high temporal and spatial resolution. On average, a household in Africa 
waits for over 1000 years to be surveyed once, and in North America it is 50–100 
years [30]. In contrast, the frequency of publicly available earth observations ranges 
from daily to monthly. With its global availability and low costs, time-series satellite 
image analysis has been used to identify urban sprawl and shrinkage in many parts 
of the world. For instance, urban expansion has been investigated with Landsat time 
series over more than two decades in India [31], the United States [32, 33], Japan 
[34], and China [35]. Cross-country research also accelerates with the release of 
global multitemporal urban data, such as Global Annual Urban Dynamics (GAUD) 
[36], Global Artificial Impervious Area (GAIA) [37], and Global Human Settlement 
Layer (GHSL) [38], World Settlement Footprint [39], and European Space Agency’s 
Climate Change Initiative (CCI) land cover data. 

In contrast to remote sensing approaches, there have also been several studies 
that used simulation models, such as Markov chains and cellular automata, to quan-
tify urban growth. Remote sensing, nevertheless, remains an indispensable approach 
because the simulation models are based on historical data often derived from satel-
lite or airborne imagery [40, 41]. Additionally, continuous earth observations are 
essential to capture nonlinearities in time, because simulation models often fail to 
capture shifting points in urban systems when policies move in another direction 
[42]. For instance, satellite imagery allowed to detect the building damage and land-
use changes due to environmental disturbances, such as the 2015 Gorkha earthquake 
in Nepal [43] and the 2011 Fukushima nuclear disaster in Japan [44]. 

Existing review articles provide a valuable synthesis of how remote sensing data 
can allow and limit the analysis of urban form spatially and temporally. For example, 
Weng [45] highlighted the impact of spatial resolution on urban mapping. With a 
lack of high-resolution images before 2000, there had been scarce research in remote 
sensing of the built environment due to the requirement of a minimum resolution of 
~1 m to detect buildings using pixel-based classification methods. Bhatta et al. [46] 
underlined the role of spatial resolution in measuring urban sprawl, referring to a 
problem where low- and high-density developments may not be distinguishable using 
30 m-resolution images. Recently, Zhu et al. [47] pinpointed high-frequency anal-
ysis as a key research gap in urban remote sensing, undermining the understanding 
of vital urban processes. Reba and Seto [48] clarified that some studies observed 
urban land change at high frequencies, but they mostly cover a short time period, 
thus not providing comprehensive information about the non-linear and long-term
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process of evolution of the urban environment. Most of the reviews acknowledged that 
spatiotemporal characteristics are the major restraining factors of urban form detec-
tion research associated with urban sustainability. However, a synthesis of how data 
and methods affect the spatiotemporal focuses of urban form studies and potential 
solutions is still lacking. 

Our goal in this chapter is to provide a review of the literature on urban form 
detection to identify spatiotemporal patterns of these studies and their association 
with adopted data and methods. We define the scope of urban form by the following 
attributes: urban land cover, building density, three-dimensional (3-D) structure, and 
land use, which are the fundamental components for deriving other urban form 
characteristics, such as continuity, nuclearity, and land use mix [15]. These four 
components can be remotely sensed and reflect a continuum of the ways of thinking, 
from binary, continuous, to contextual features of the built environment. We aim to 
answer the following questions: (1) Which data have been used for mapping key 
urban land attributes at certain scales in space and time? (2) Whether commonly 
used remote sensing data are suited for characterizing simple and complex urban 
form features at various spatiotemporal scales? And (3) What are the emerging 
methods and data that could help to fill the spatiotemporal research gaps? Thus, 
we identify spatial characteristics in the remote sensing literature for each urban 
form component, by comparing at which spatial unit comparisons were made, and 
at what scale the features were analyzed. We also dissect the temporal properties 
of the research—whether the dynamics of cities are assessed, and if so, over what 
frequency and time scales changes have been investigated. 

We structure the chapter by first describing the background of the four components 
of urban form and specifying the methods of the systematic review. In the results 
section, we start with the bibliometric sources of selected papers (Sect. 4.1). Then, 
we synthesize prevalent remote sensing data sources, data integration (Sect. 4.2), and 
classification techniques (Sect. 4.3). Lastly, we visualize the global distribution and 
time scale of studied cities, and present statistics of spatiotemporal characteristics 
thorough out the four categories of urban form literature (Sect. 4.4). Based on the 
results, we rethink how commonly used remote sensing data have constrained urban 
form studies and propose recommendations for future studies from a perspective of 
environmental health and sustainable urban development. 

10.2 Background of Conceptualizing Urban Form 

Urban land cover 

Urban land cover occupies less than 1% of Earth’s land surface area [2], but its extent, 
distribution, and evolution have enormous impact on environmental and socioeco-
nomic dynamics worldwide [10, 16, 49–51]. Detailed and accurate measures of urban 
land cover have been fundamental for estimating resource consumption of human 
activities and the impacts of urban land expansion on arable land, natural habitats,
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and environmental degradation. The definitions of urban areas vary by country in 
United Nations documentation, which considers a range of factors such as popula-
tion, industry, or urban infrastructure [47]. Many environmental studies use remote 
sensing approaches to consistently map urban extent by classifying impervious 
surface, represented by the physical state of the land surface [15, 52, 53]. 

Building density 

Building density defines the amount of built-up area in each geographic area, which 
is also known as built-up area ratio or fractional built-up areas. The thresholds of 
building density have been commonly used to define levels of urban development 
for government data, such as the National Land Cover Database in the United States 
[54]. Building density is fundamental parameter in urban planning and design [19], 
related to spacing between buildings [55], and other landscape metrics such as edge 
density [56]. Often landscape ecologists use urban patch and edge density to evaluate 
impacts of urban expansion on ecosystem function and biodiversity [57, 58], while 
urban planning researchers use compactness and sprawling metrics to evaluate urban 
form’s impacts on economic, energy, environmental quality, and public health goals 
[16, 59]. 

3-D structure 

Three-dimensional structure reflects building height, building volume, canyon geom-
etry, and surface roughness (see Table 10.1). In climate science, the height to floor 
area ratio has been used to evaluate the thermal mass of the built environment [60] 
and has been found useful for simulating local climate within cities [61, 62]. Air flow 
and wind simulations also require surface roughness parameters such as roughness 
length and porosity [63, 64]. Other three-dimensional structure proxies related to 
canyon geometry, such as the height to (road) depth ratio and the sky view factor, are 
associated to crowding stress, thermal comfort, and safety perception people expe-
rience in their daily life [12, 65, 66]. Recently, a notable framework Local Climate 
Zone has mingled the horizontal and vertical dimensions by compactness and height 
(e.g., compact high, compact, sparse high, sparse low) [62]. This framework has 
been increasingly used in the urban heat island and climatology literature [67, 68].

Land use 

Urban land use or functional zoning represent the types of socio-economic functions 
and human activities in cities [75]. It has been typically categorized, for instance, 
in the USGS classification system, as residential, commercial, industrial, transporta-
tion or other land use [76]. However, such classifications can also depend on the 
geographical context. While regular the classification of land use is more formal in 
countries where land use is largely regulated by urban planning laws [77], the diverse 
characteristics of land use in informal settlements or/and developing countries are 
found [78–80].
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Table 10.1 Common metrics to measure 2-D and 3-D built-up intensity 

Attribute Metric Definition Representative studies 

Two-dimensional 
density 

Built-up area ratio Proportion of built-up 
from the total area 

[42] 

Floor area ratio Ratio of total floor area 
to lot area 

[69] 

Housing density Number of 
house/household per 
land unit 

[55] 

Patch density Number of patches per 
unit area 

[70] 

Road density Number of roads per 
unit area 

[71] 

Edge density Total length of edge per 
unit area 

[72] 

Three-dimensional 
structure 

Building volume 
density 

Ratio of the volume of 
building to lot area 

[61] 

Height to depth ratio Ratio of the average 
height of the buildings 
along a road to the depth 
of the road 

[65] 

Height to floor area 
ratio 

Ratio of the height of 
buildings to the total 
floor area 

[73] 

Sky view factor Ratio of the area of the 
visible sky to the area of 
a hemisphere centered 
at a certain location 

[60] 

Roughness length Height where the wind 
velocity is equal to zero 

[64, 74] 

Urban porosity Ratio of the open air 
volume in the urban 
canopy layer

10.3 Methods 

The systematic literature search was conducted using Scopus databases to search 
journal articles published after 1990. Very few studies in urban form detection were 
found in the early 1990s because high-resolution images were not available yet, and 
medium-resolution images such as Landsat and SPOT were expensive at that time 
[45]. We designed three criteria and used search terms of publication title, abstract, 
or keywords to collect relevant literature:

• The publication had to use remote sensing data (e.g., “images”, “street view”).
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• The method used for urban form detection had to be an automatic approach (e.g., 
“classification”, “machine learning”).

• The publication provides empirical results of one of the urban form compo-
nents: urban extent, two-dimensional density, three-dimensional morphological 
attributes, or land use (terms listed in Table 10.2). 

The full query to ensure an extensive collection of literature of the three criteria is 
listed in Table 10.5 (Appendix). The search cutoff was on December 31, 2018. The 
initial search led to the selection of 1,044 papers. Following the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [81], we 
recorded bibliographic data (e.g., authors and journal), the context of study cases (i.e., 
place and time), data (i.e., sensor and resolution) and methods enabling urban form 
detection (Table 10.6). Publications that failed to provide the necessary information, 
did not conduct urban form detection (i.e., only analyzed urban form products from 
another study), or did not report empirical results, were excluded. In addition, we 
found a few studies that covered more than one urban form component. For instance, 
some studies drawing on 3-D structure and land use also presented the extent of urban 
land cover. These cases, containing urban form attributes more detailed than the 
dichotomy, were accounted for in the 3-D structure or land-use groups and removed 
from the urban land cover group. 

We analyzed the trend of academic activities of the urban form detection liter-
ature by calculating citation counts, the number of articles for each year, and the 
annual citation counts per article. For comparison, we additionally present annual 
citation counts per article for two larger communities: remote sensing and urban 
sustainability. The general remote sensing community was represented by articles 
published by journals including “remote sensing” in the journal title. The urban 
sustainability community was represented by research articles found with “urban

Table 10.2 Summary of reviewed articles on urban form attribute extraction 

# Attribute Terms Initial result Final result 

1 Land cover Impervious surface OR urban 
extent OR built-up area 

489 208 

2 Building density Building density OR urban 
density OR building cover ratio 
OR subpixel impervious surface 

164 64 

2 Three-dimensional structure Building height OR urban 
structure OR urban morphology 
OR building volume OR sky 
view factor OR roughness length 
OR urban porosity 

167 38 

3 Land use Urban land use mapping 
(classification) OR functional 
zone OR urban land use change 

224 66 

Total 1,044 376 
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Table 10.3 Scheme for surveying spatiotemporal characteristics 

Characteristic Definition Example 

Spatial resolution Clarity of spatial data that are 
analyzed for attribute extraction, or 
clarity of the resulted map 

30-m resolution images 

Spatial unit Unit of single observations A county-scale study, comparing 
observations in 36 counties 

Spatial scale Included area of observations An international study 

Temporal frequency Density of multi-temporal 
observations 

Every-five-year survey 

Time scale Length of time between the first and 
the last observation 

25-year observation of urban 
expansion 

sustainability”, “sustainable urban development”, or “sustainable urbanization” in 
their title, abstract, or keywords. 

To present the spatiotemporal characteristics of the urban form literature, we 
counted the distribution of studies over time and space. While scientists sometimes 
use intermingled definitions of scale, we adopted overarching definitions to help 
communication between remote sensing and sustainability sciences (Table 10.3). 
Five spatiotemporal characteristics of data and studies, including spatial resolution, 
scale, extent, temporal frequency, and coverage, were analyzed. 

10.4 Results 

10.4.1 Synopsis of the Reviewed Study Cases 

In total, 376 articles that mapped urban form were published between 1990 and 2018. 
Most reported was urban land cover (208 papers), followed by land use (66 papers), 
two-dimensional building density (64 papers), and finally three-dimensional structure 
(38 papers). In total, the publications covered 810 cities globally. An increasing 
interest in quantifying urban form was observed (Fig. 10.1), which was reflected 
in the growth of citation counts per article per year. Since 2000, publications have 
gradually risen in number, associated with when medium-resolution images such 
as Landsat and SPOT were more readily available. Following the 2007 launch of 
the urban-focused satellites TerraSAR-X and WorldView-1, followed soon after by 
many others, the number of urban form studies has substantially increased. Another 
boost of publications was observed between 2016 and 2017, again, after the launch of 
Copernicus Sentinel-1 and Sentinel-2 satellites. In contrast with the remote sensing 
and urban sustainability fields, the overlapping area of urban form detection was very 
dynamic. The average annual citation among the summarized studies was higher than
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Fig. 10.1 Yearly publications and citations from 1990 to 2018 of the literature on urban form 
detection. The average annual citation (number of citation per article per year) is presented at the 
bottom to compare with the remote sensing and the urban sustainability community 

4.5 since 2011, while at the same time, it was 2.9 for the whole field of remote sensing 
and 1.2 for the urban sustainability literature. 

10.4.2 Remote Sensing Data Used to Detect Urban Form 

Data used for mapping urban land cover 

Passive remote sensing was the most commonly used data for mapping urban land 
cover in the past two decades (Fig. 10.2). Multispectral imagery alone can be used to 
distinguish the impervious surface from green space without other supporting data 
sources [82, 83]. Among optical imagery sensors, freely accessible imagery from 
Landsat satellites, which covers a long time span, was predominantly used (129 
case studies), followed by SPOT (18), QuickBird (15), MODIS (13), WorldView 
(8), IKONOS (8), and Sentinel-2 (4) (Table 10.4). Nighttime light data, such as the 
Defense Meteorological Satellite Program–Operational Linescan System (DMSP-
OLS) data, available since 1992, has been used for mapping global urban land cover 
before data from MODIS and most of the SAR sensors were released [84]. Freely 
available data with an increase in spatial resolution, such as Sentinel-2 (2015) and 
Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data (2012), 
have brought a noticeable improvement of urban mapping accuracy [85, 86], and 
consequently we observed more applications in the past five years (Fig. 10.2). Fewer 
papers use coarse resolution (>100 m) imagery in urban studies, but MODIS data is 
worthy of discussion, as its high temporal resolution (daily), allowing to compensate 
for cloud cover, and the coarse resolution minimizes computation costs, combine to 
make global urban mapping feasible [87].
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Fig. 10.2 The remote sensing data used, over time, for mapping urban land cover. The data include 
images collected by active sensors and passive sensors, at low (>=5 m) and high resolution (<5 m)

We use Fig. 10.3 to present an overview of data sources commonly used for 
urban land cover mapping for different spatiotemporal needs. We noticed that high 
frequency urban land cover analyses (annual or seasonal) relied on Landsat datasets. 
Although MODIS has the capacity for frequent assessments, its coarse resolution 
prohibits detailed delineation of settlements and thus was not a popular data source 
for urban land cover mapping. In contrast, Landsat imagery is one of the data sources 
mostly used for studies at longer time scales (more than 15 years), along with SPOT 
imagery and DMSP nighttime light data. A few studies used QuickBird imagery to 
map long-term urban change but were limited to local scales.

With the improvement of computer hardware in recent years, many urban land 
cover products are produced using Landsat (e.g., European commission’s Global 
Human Settlement Layer, Global Artificial Impervious Area, Global Annual Urban 
Dynamics, and World Settlement Footprint). Others also use Sentinel-1 radar infor-
mation to improve detailed mapping of building boundaries, such as Global Urban 
Footprint and World Settlement Footprint created by teams from the German 
Aerospace Center. But these enhanced global products based on Sentinel satellites 
are limited to a single time point, at least currently, because the first Sentinel satellite 
was launched in 2014. QuickBird, IKONO, and WorldView imagery are common 
sources for urban land cover mapping with a high resolution (<5 m). These data 
do not have global availability regularly because commercial satellite data usually 
require pre-orders to make sure an image was taken at the selected location and time. 
As a result, temporal availability of these data is inconsistent at large scales. 

The fusion of multi-sensor data helped identification of specific urban conditions 
(e.g., functional zones), which may not be possible to accurately detect with only a
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Table 10.4 Prevalent data and methods used for detecting urban form. The sources and techniques 
are presented in the order of the number of publications (with brackets). The sum of proportion 
used exceeds 100% since some papers used multiple sources 

Data type Major sources Models/techniques Proportion in the 
reviewed literature (%) 

Urban land cover 

Passive low (>=5 m) Landsat(130), 
SPOT(18), 
MODIS(13), 
DMSP(12), VIIRS(6), 
Sentinel-2 (5) 

MLC(32), SVM(19), 
CART(16) 

81 

Passive high (<5 m) QuickBird(15), 
IKONOS(8), 
WorldView(8) 

Object-based(13), 
MLC(7), SVM(4) 

14 

Active TerraSAR-X(8), 
ALOS-PALSAR (6) 

SVM(5), 
Object-based(3), 
RF(4) 

12 

Building density 

Passive low (>=5 m) Landsat(36), 
ASTER(7), MODIS(4), 
Hyperion(3) 

LSMA(22), 
MESMA(11), 
CART(6) 

78 

Passive high (<5 m) IKONOS(3), 
WorldView(3) 

LSMA(3), OBIA(2) 15 

Active TerraSAR-X(3), 
LiDAR(3) 

OBIA(2) 9 

3-D structure 

Passive low (>=5 m) Landsat(4), SPOT(2) Shadow analysis(3), 
CART(2) 

21 

Passive high (<5 m) WorldView(7), 
QuickBird(4), 
IKONOS(2) 

Shadow analysis(5), 
stereo analysis(5), 
OBIA(3) 

45 

Active TerraSAR-X (4), 
LiDAR (4) 

Stereo analysis(4) 32 

Street view Baidu street view(3), 
Google street view(1) 

CNN(2) 11 

Land use 

Passive low (>=5 m) Landsat(18), SPOT(6) MLC(11), OBIA(5) 39 

Passive high (<5 m) Aerial 
photographs(14), 
QuickBird(7), 
WorldView(7) 

OBIA(16), SVM(8), 
RF(6), CNN(3) 

53 

Active LiDAR(6) OBIA(4), CART(3) 14 

Street view Google street view(3) CNN(2) 6

(continued)
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Table 10.4 (continued)

Data type Major sources Models/techniques Proportion in the
reviewed literature (%)

Other urban data Street map(6), parcel 
map(6), point of 
interest(5), 
elevation(4), cellphone 
signal(3) 

RF(3), CART(3) 27 

Note MLC—maximum likelihood classifier; CART—classification tree or regression; RF—random 
forest; SVM—support vector machine; CNN—convolutional neural network; LSMA—linear spec-
tral mixture analysis; MESMA—multiple endmember spectral mixture analysis; OBIA—object-
based image analysis

Fig. 10.3 Common remote sensing data used for mapping urban land cover at different spatial 
scales, resolutions, time scales, and temporal frequencies

single remote sensing product (e.g., optical imagery). Popular approaches for urban 
form detection included fusion of images from passive and active sensors and images 
taken in the day and the night. Compared to the spectral signals, SAR signals are 
more sensitive to roughness and geometric characteristics [88]. Optical and SAR 
data have been integrated to map urban extent to reduce the confusions between 
bright impervious surface and bare soil [89], and along fast-developing urban-rural 
fringes [90]. Recently, features extracted by combining nighttime light and optical 
imagery have been developed, such as Vegetation Adjusted Nighttime-light Urban 
Index (VANUI) [91] and the Normalized Difference Spectral Vector (NDSV) [92]. 
Moreover, with the emerging free service of cloud computing to process planetary-
scale Landsat imagery, a method fusing DMSP nighttime light and Landsat imagery 
has been developed for global urban mapping at 30-m resolution [93].
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Mapping building density and 3-D structure 

We aggregated the analysis of building density and 3-D structure in this subsection 
as both of them describe the intensity of built-up areas. A variety of remote sensing 
data, including images collected by passive and active sensors and at high as well 
as low resolution, have been used to address urban land use intensity (Fig. 10.4). 
Spectral mixing analysis, a technique producing fractional estimate of land cover 
types which can represent building density, usually requires images of two different 
spatial resolution to provide fractional samples [94–97]. Airborne LiDAR data at 
very high resolution (<1 m) has been used for modeling the 3-D structure of cities 
and extracting two-dimensional building footprints [98, 99]. NASA provides one of 
the publicly available LiDAR data—Geoscience Laser Altimeter System (GLAS) 
onboard Ice, Cloud, and land Elevation Satellite (ICESat), which can be used to 
model building height [100]. 3-D morphological variables (e.g., building height and 
floor area ratio) can also be derived by stereo images that comprise a pair of multi-
spectral imagery taken from different angles [101, 102], by SAR images recording 
the double-bounce reflection of a building [103, 104], by high resolution optical 
imagery that includes shadows of high-rise buildings [105], or by medium-resolution 
optical imagery (e.g., Landsat) using spatial configuration of the landscape as predic-
tors [106]. Although optical imagery’s spectral features do not direly reflect height 
information, the classification of high-, mid-, low-rise buildings can be indirectly 
predicted through the spatial configuration of land uses. The SeaWinds scatterom-
eter onboard the QuikSCAT satellite launched in 1999, was designed to measure 
the speed and direction of winds that cause ocean waves but also have been used to 
characterize building volumes and height [107, 108]. Additionally, Fig. 10.4 shows 
that street view data began to be popular in the last decade for characterizing cities’ 
3-D space. By using Baidu [109, 110] and Google street view [111], studies have 
captured street-level sky view factor in high-density urban environments, such as 
Shanghai, Manhattan Island, and Hong Kong.

It is clear that the selection of data sources affects the spatial resolution and scale 
of 3-D mapping results (Fig. 10.5). TerraSAR-X and WorldView stereo are few 
common sources for extracting high-resolution 3-D attributes. While these data are 
not freely-available, the ICESat-1 and -2 data provided by NASA is free to be used 
for height extraction at medium-coarse resolution (20–70 m). As the above three 
datasets only partially cover the land surface, alternative data sources for large-scale 
3-D mapping mostly rely on European Space Agency (ESA)’s Sentinel-1and -2 and 
NASA’s Landsat and SeaWinds microwave scatterometer data. SeaWinds microwave 
scatterometer data covers the Earth fully but has a coarse resolution. For large-scale 
mapping, however, the ICESat data’s partial cover can still serve as validation for 
3-D mapping using Sentinel or Landsat data [112].

Few 3-D structure studies consider the dynamics of urban form with frequent 
mapping as very few free satellite data are useful for this purpose (Fig. 10.5). 
SeaWinds data have multitemporal information at a one-year interval, but they were 
only used to estimate building height change at lower temporal frequency (>8 years). 
Chen et al. used Landsat time-series to predict building height and density at a
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Fig. 10.4 The remote sensing data used, over time, for mapping built-up intensity (i.e., building 
density or 3-D structure). The data include street view and images collected by active sensors and 
passive sensors, at low (>=5 m) and high resolution (<5 m)

Fig. 10.5 Common remote sensing data used for mapping urban 3-D structure at different spatial 
scales, resolutions, time scales, and temporal frequencies. Note that the number of the studies 
analyzing change in 3-D structure shown in the right panel were small (n = 3)
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Fig. 10.6 The remote sensing data used, over time, for mapping urban land use, including street 
view and images collected by active sensors (LiDAR) and passive sensors, at low (>=5 m) and high 
resolution (<5 m) 

one-year interval [106]. While these datasets have potential to be used for high 
frequency assessments of 3-D structure, temporal accuracy of these assessments 
remain understudied. 

Mapping land use 

Studies before 2007 have mostly relied on optical images at resolution lower than 
5 m to map urban land use, while studies afterwards shifted to predominantly use 
high-resolution images (Fig. 10.6). Also, it is challenging to extract nuanced urban 
land use through a single remote sensing product. Mapping urban land use, such as 
urban functional zones, places more demands on the quantity of information required. 
Adding LiDAR elevation [113], street view [114], points of interest [115], or mobile 
signal density data [116] to passive spectral signals, has helped to distinguish between 
residential, commercial and other land use. 

10.4.3 Methods Used to Detect Urban Form 

Common detection methods vary depending on the target attribute of urban form 
and the properties of imagery data, such as spectral, spatial, and temporal resolution 
(Table 10.4). 

Detecting urban land cover 

Supervised machine learning approaches have gained interest recently with the 
increased accessibility of satellite data and improvement of computation power,
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many urban extent studies used maximum likelihood classification (MLC) (e.g., 
[117]), which is fast and often available on remote sensing software. To overcome 
the limitation of the normal distribution assumption of MLC that is usually violated 
in real-world data, support vector machine (SVM), a non-parametric classifier, has 
demonstrated its ability to incorporate multi-sensor data and achieving high accuracy 
of mapping [118]. In comparison, other non-parametric classifiers with lower compu-
tation cost, such as decision tree [119] and ensemble classifiers (e.g., random forest) 
[120], have shown their performance in global urban mapping. As the data science and 
remote sensing communities began to align over the past decade, machine learning 
using spatial information (e.g., Convolutional Neural Networks) shows significant 
improvement than models manually incorporate texture indices. 

Detecting building density and 3-D structure 

To overcome the resolution limitation of freely available satellite imagery, scientists 
usually incorporated sub-pixel analysis to explore built-up area density. Inspired by 
the conceptual vegetation-impervious surface-soil (V-I-S) model [121], many studies 
applied spectral mixture analysis (SMA) by targeting impervious surface mapping at 
subpixel levels. Several methods for urban mapping have been developed, including 
linear spectral mixture analysis (LSMA) [122], and multiple endmember spectral 
mixture analysis (MESMA) that allows various urban compositions [96]. Further-
more, a method combining temporal mixture and the spectral mixture was developed 
to take advantage of multi-date imagery that was found to successfully reduce noise 
[123]. Unlike categorical urban extent or land use mapping, predicting urban density 
usually relied on regression approaches. Besides parametric statistical regression 
(e.g., linear regression), researchers also utilized machine-learning methods to solve 
continuous urban density problems (e.g., regression tree [124] and support vector 
regression [125]). 

For 3-D structure mapping, the methods mainly include theoretical and empirical 
models. Theoretical models rely on the physical mechanism between spectral signal 
(e.g., SAR) and height to establish a generalizable formula [112], while empirical 
models (e.g., machine learning) use some real-world examples (i.e., training data) 
of image features and heights to construct a relationship and therefore are able to 
predict heights for other areas where heights were unknown [106, 126, 127]. 

Detecting land use 

Deep learning methods using spatial information such as convolutional neural 
networks (CNNs) are useful to detect contextual urban attributes that are not easy to 
observe by spectral signal alone. The main advantage of using CNNs over MLC, RF, 
and NN is that it enables building a hierarchy of local to global features at the spatial 
dimension [128]. Because of CNN’s capabilities in recognizing the spatial patterns of 
image patches, recent studies applied CNN to street view and aerial photographs for 
quantifying sky view of street canyons [109], mapping complex urban land use [129, 
130] and classifying specific types of building instance (e.g., church and garage) 
[131].



10 DetectingUrban formUsingRemote Sensing: Spatiotemporal Research… 201

Object-based image analysis (OBIA) has been largely used for high-resolution 
urban extent and land-use mapping (Table 10.4). The applications include passive 
as well as active remote sensing data. The main advantage of object-based analysis 
in urban form detection is to offer meaningful objects in cities that help to utilize 
texture features for capturing complex urban classes [132]. Another advantage is to 
reduce noise (e.g., shadows of buildings, cars on the road) in a high-resolution urban 
image [133]. Object-based CNN approaches have also been developed to improve 
irregular urban block mapping [75]. 

10.4.4 Spatiotemporal Characteristics of the Urban Form 
Studies 

Assessed urban land cover studies—high variety in spatiotemporal scales 

Studies that monitored urban form with remote sensing imagery covered all populated 
continents but unevenly (Fig. 10.7). The studies detecting urban extent were primarily 
common in East Asia, including Beijing (30), Shenzhen (24), and Guangzhou (23). 
Similarly, the studies particularly concerned with the temporal aspect (i.e., urban 
expansion, occupying around 54% of the urban extent studies) were based in East 
Asia. Among a range of spatial scales of analysis, the majority of the urban extent 
studies investigated a single city (Fig. 8b). On the other hand, they generally covered 
higher time depths than other subjects of urban form research. More than a quarter 
observed urban areas for more than 20 years (Fig. 8a). 

Fig. 10.7 Studied cities, by attributes of urban form, over time
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Fig. 10.8 Proportion of papers with analysis related to different a temporal frequency and time 
scale and b spatial unit and scale (I = Subset of a city; II = City; III = Multiple cities; IV = 
Countrywide; V = Cross-country) in the reviewed literature in four categories, urban land cover, 
building density (2-D), 3-D structure, and land use. The height of the box plots is proportional to 
the amount of the literature 

Studies assessing urban extent cover are composed of various temporal coverages 
ranging from a single observation to a time series longer than a half century (e.g., 
[134]). About half of the studies on urban extent had several time steps to trace 
changes in urban form (Fig. 8a). Most studies on urban expansion monitored changes 
in urban boundaries every 6–10 years. However, in several rapidly urbanizing regions, 
changes in the impervious area were detected annually [35] or even seasonally [135]. 

Assessed studies on building density and 3D structure—primary geographic scopes 
are neighborhood and individual city 

The majority of the papers detecting two-dimensional density investigated only a 
single city (Fig. 8b). Those cities were mainly located in North America and East 
Asia, for instance Indianapolis (9) and Guangzhou (9) (Fig. 10.7). Three-dimensional 
structure studies were primarily conducted on cities in Eurasia (e.g., [136]). Notably, 
six were in Beijing and three in Hong Kong. These three-dimensional studies often 
researched within a subset of a city; rarely studies of these interests surveyed the full 
extent of a city and much less examined multiple cities (Fig. 8b). Only six studies 
presented between-city comparison to validate their proposed methods (e.g., [136, 
137]).
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Regarding the time aspect, around 43% of the two-dimensional density studies 
used multi-temporal observations, and most were every 1–5 years. In contrast, the 
three-dimensional studies were predominately studied at a single time point (94%). 
There were only three publications on three-dimensional densification over time. One 
of them investigated changes of three-dimensional infrastructure through correlating 
microwave scatterometer data with height across global mega-cities for nearly one 
decade [107, 108]. 

Assessed land use studies—least characterization of dynamics and trends 

Regarding spatial characteristics, 46% of case studies aggregated pixel-based land-
use outcomes to another spatial entity (i.e., block, neighborhood, or an administrative 
unit) that is more relevant to planning and decision-making. Urban land use was 
frequently studied in Austin/ Texas (7) and Beijing (6). However, the extent of the 
study area did not expand as the scale of analysis aggregated. We observed that 
between-city comparison and between-country comparison were lacking attention 
in the urban land use literature (Fig. 8b). 

While there have been numerous studies on the changes of land cover, the biophys-
ical state of the earth’s surface, we found only a few (12%) studies urban land 
use change, including in Istanbul (2) (e.g., [138]). These studies usually adopted 
bi-temporal detection over a short period. 

10.5 Discussion: Research Gaps and the Way Forward 

10.5.1 Dilemma of the Spatial and Temporal Needs 

Availability of data has always shaped our scientific questions. Here we have provided 
an overview of urban form detection using remote sensing, going back 30 years. 
The spatial resolution and temporal depth of remote sensing data present urban 
form studies with a dilemma: newer, high-resolution imagery, able to detect nuanced 
urban attributes, has a relatively short temporal span. Following this, three research 
gaps have emerged: (1) characterizing long-term urban dynamics, (2) synchro-
nizing within-city variation with between-city diversity, and (3) comparative studies 
between long-standing research hotspots and underexplored regions. 

First, the temporal aspect of urban dynamics remains underexplored. Especially in 
studies concerning more nuanced features, including three-dimensional structure and 
urban land use, time depth was usually limited. Although there are around 1-km reso-
lution urban luminosity data observed from the DMSP nighttime satellite since 1992 
(e.g., [139]) and 30-m resolution optical imagery from Landsat satellites for more 
than three decades, these data were mostly used to distinguish urban dichotomy and 
to measure density by viewing cities as flat surfaces. Extracting three-dimensional 
structure or activity-based attributes requires high-resolution imagery or other urban 
information covered from crowdsourced data, for instance, from cellphone signals
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or Open Street Map [140]. Those data are usually not retrospectively available and 
thus prohibit assessing urban form transitions. 

Second, the mapping of fine-scale attributes lacks between-city comparison. 
High-resolution imagery has supported spatially explicit mapping and characterizing 
within-city variations, such as the distribution of building footprints and different 
types of land use. However, it is uncertain whether such methods are transferable 
to other types of cities and whether the empirical findings can be generalized. For 
instance, is a method detecting fast construction in the coastal regions in China appli-
cable to the small-scale urban regeneration in the Nordic countries? The cost of high-
resolution imagery undermines comparisons of methods in diverse cities. Up to now, 
sensors with freely accessible data were primarily designed to monitor vegetation, 
but not detailed urban form. The urban landscape is typically composed of features 
that are smaller than the spatial resolution of commonly utilized data from USGS 
30-m Landsat and the up to 10-m ESA Copernicus Sentinel 1,2 missions, namely, 
a mosaic picture of roads, garden, water, and a wide variety of buildings. Previous 
studies approach this challenge by using subpixel analysis to explore within-pixel 
composition [96, 122]. However, to our understanding, the subpixel approaches for 
urban mapping are mainly used to separate impervious areas from vegetation and 
soil following the V-I-S model proposed by [121], but tell very little, for instance, 
about the classification of the built environment features and urban functional zones. 

Last, the urban form of fast urbanizing regions has been unevenly explored. For 
instance, although there were many studies in East Asia, very few were in Africa, 
which is also experiencing fast urbanization. The research needs to address urban 
form in a comparable manner, because the quality and performance of training 
data, the parameters of segmentation and classifiers, and the resulting map accu-
racy, all depend on the location [93, 141]. The input data, features, and models can 
better perform in some places of the world, but not in others. However, 39% of 
studies detecting three-dimensional structure, and 34% detecting two-dimensional 
building density, were only validated in cities in East Asia. Another 43% of methods 
for mapping two-dimensional density and 45% for detecting urban land use were 
developed based on the North American context. Comparative studies that adopt 
similar models and data on varying types of urban environments across geographies 
are urgently needed to inform sustainable solutions and to open communication 
internationally. 

10.5.2 Strategies Forward 

We foresee that three trends of remote sensing research can deal with the dilemma, 
providing more comprehensive coverage over spatial and temporal scales: (1) inte-
grating multiple data, (2) enhancing spatial and temporal transferability, (3) shifting 
from pixels to other meaningful analytic scales, and (4) applying advanced computer 
vision technologies. Improving the scientific approaches of urban form detection
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brings two critical advancements in the understanding of sustainable urban develop-
ment for human health. First, causality between public health and the built environ-
ment can be better understood when dynamic exposure assessment is built upon a 
long-term time frame. Researchers would be interested in exploring how, for example, 
local scale urban form, such as census block architecture, height and density, detected 
and classified remotely, could be linked to individuals’ wellbeing acquired using 
personal sensors. With long-term urban form measurement, researchers can further 
explore how change in the built environment are related to change in health outcome. 
Second, transferable methods of urban form detection can help compare urban form 
features across multiple cities and deepen our understanding of healthy city designs 
for underexplored regions. 

Combinations of street view data and survey/field data, are emerging approaches 
that help to understand people’s living experience, including tree exposure [142], 
the living quality of neighborhoods [66]. In addition, combinations of images from 
satellites of a similar design can increase the period of observations. Image fusion 
using machine learning approaches can predict a high-resolution image by using a 
low-resolution image as a predictor [143]. We foresee emerging approaches fusing 
newly available Sentinel-2 at 20-m resolution with the long-standing sensors from the 
Landsat satellite program back to 1972. Long-term high-resolution information facil-
itates a deeper understanding of the urbanizing process and causality between urban-
ization and the environment–whether urbanization drives environmental change or 
the other way around. On a regional scale, for instance, how long-term patterns of 
natural hazards (e.g., landslide [144]) and human settlement patterns interacts can be 
investigated. Other questions at local scales, such as how microclimate, urban land 
use, and peoples’ recreational activities reshape each other, are also crucial for urban 
planning. 

We have seen a progressive development in the spatial transferability of urban 
form mapping, as models developed using reference data collected in a limited 
number of cities have been validated by data for other geographic regions [127, 
145, 146]. Transferable models can allow for investigation in underexplored regions 
such as the Global South. These regions are often lack urban form training data, 
which has made it difficult to map urban form over a large area or a long period. 
With a transferable model, it would be possible to predict the urban form of a data-
deficient region using a model trained on a data-rich region. At the meanwhile, we 
need to enhance the robustness of our methods in terms of temporal transferability. 
As collecting reference data with temporal profiles is tremendously labor-intensive, 
temporal transferability needs to be addressed, namely: Can models developed using 
data collected at one point in time be applied to map urban attributes at another point 
in time? Stemming from this core question, two others come up: Can models using 
training data limited in temporal density accurately predict turning point of urban 
growth? And, can models trained by data limited for recent years retrospectively 
map urban form in the previous years? We expect methods for mapping urban form 
dynamics to mature when strategies for temporal sampling become better developed 
and commonly applied.
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For the spatial dimension, fused images with enhanced spatial resolution can 
better reflect urban complexity. The distribution of public services and the inner-city 
variations of building density can be detected at a higher accuracy with fine-resolution 
imagery. Another way is to enrich urban-relevant information by integrating different 
data, from active (e.g., SAR) and passive (e.g., optical) sensors, or from satellites 
and non-satellite sources (e.g., social media). To date, the majority of image fusion 
approaches developed to enhance the spatial resolution of freely accessible earth 
observation data are designed for ecological studies, urban sciences have yet to 
contribute fully. 

Wisely selecting a spatial unit for analysis can be another solution to under-
stand urban complexity. Instead of making predictions from pixels, researchers could 
label, train, and classify features at block, patch, or neighborhood unites. Such unites 
make it easier to predict three-dimensional features of urban form and human activ-
ities because spatial relations and inter-pixel texture are useful predictors. Object-
based approaches utilize spatial information besides spectral information, and deep 
learning techniques enable automated spatial feature extraction [106, 147]. Recently, 
more advanced deep learning based semantic segmentation approaches, such as fully 
convolutional networks, UNet, and DeepLab, are gaining popularity in the remote 
sensing field [148–150]. Unlike traditional CNN-based scene classifications, these 
semantic segmentation algorithms allow localizing predictions while using the most 
of contextual information, thus help to detect local urban objects [151, 152]. Object-
based deep learning methods, such as mask R-CNN is suitable for extracting building 
boundaries in complex urban landscapes [153]. 

By capturing urban complexity, scientific questions can move forward from where 
urban areas have expanded to more nuanced features, such as how housing and archi-
tecture have transformed. Previous literature reviews provided the foundation of the 
concepts and empirical findings on sustainable urban form. References [15, 19] have  
summarized the urban form attributes for several sustainable environmental goals. 
Reviews on resilience, with more focus on disaster risk reduction and adaptation, 
have addressed resilient urban attributes from a city scale [154] to a neighborhood 
scale [155]. The strategies we propose can support debates closer to the scale of 
people’s daily life. To join the debate of classical urban planning theories such as 
‘compact city’, it is important to discuss how an individual’s experience deviates from 
a city-scale point of view. This way, we measure how different groups of people can 
be exposed to different types of neighborhood (e.g., building height, accessibility to 
open space). The measurement of individual experience can help answer factors of 
human well-being, such as how individual experience of urban form relates to their 
commuting behavior and their cardiovascular and stress-related diseases. 

Lastly, improvements in computation power and the availability of varying satel-
lite datasets, via Google Earth Engine for instance [146], opens opportunities to 
study urban transitions in greater spatial and temporal details. The improvement in 
hard technology also makes deep learning approaches, such as convolutional neural 
networks, more efficient. The raised capacities in computation bring our questions to 
large-scale and long-term observations of the Anthropocene. We are on the cusp of 
exploring impacts of urbanization on human society from the perspective of space.
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10.6 Conclusions 

This review synthesizes urban form studies on mapping urban land cover, building 
density, three-dimensional structure, and land use, from a remote sensing perspective. 
Spatially explicit urban information can support scholars to investigate urban form 
dynamics and their impacts on human health and well-being. We found it integral 
to move beyond the global research hotspots, namely East Asia and North America, 
particularly in areas where urban form has different urban traditions, and thus may 
have different spatiotemporal features, such as the types of buildings, the spatial 
configuration of urban land use and transformation paths, particularly in Africa, 
Europe, and South America. Additionally, our review reveals that there has been 
progress in urban extent mapping, with much less research focus on “the contexts of 
the urban environment” in terms of three-dimensional structures and the patterns of 
varying urban activities. The gap is further enlarged when it comes to a consideration 
of high frequency and long-term mapping of 3-D structure. 

Our review culminates posing a question, whether commonly used remote sensing 
data are suited for detailed urban form mapping. We found that remote sensing 
science has a dilemma: newer, high-resolution imagery, able to detect nuanced urban 
attributes, has a relatively short temporal span. In contrast, older imagery can detect 
long-term change, but has a lower resolution. Until recently, Landsat imagery was the 
primary workhorse of urban form studies, but with a limited capability to detect urban 
form detail due to its resolution. Multisource data fusion and deep learning could 
be the solutions for urban form research. As big geo-data and artificial intelligence 
methods become available, urban form studies can better handle the spatiotemporal 
dilemma, such as the long-term mapping of urban form in two- and three-dimensions, 
and transferable urban form detection for the Global South. We foresee the possibility 
of a change in paradigm: instead of formulating research questions by what we can 
see from pixels, urban scientists can deal with what the needs of people are. For 
instance, how individuals experience urban redevelopment (e.g., from town housing 
to high rises) and how does this contribute to their chronic diseases that appear at their 
later life stages, and how hazard patterns change over time and how does it interact 
with urbanization. The urban remote sensing community should bring its expertise to 
collaborate with other urban scholars in health, hazard, climate, and social sciences, 
and thereby to engage with the sustainable urban development agenda, by upscaling 
urban form studies in space and time. 

Appendix 

See Tables 10.5 and 10.6
.
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Table 10.5 Full query to search relevant literature on Scopus 

# Attribute Query 

1 Urban land cover (KEY(“machine learning” OR “classification” OR 
“deep learning” OR “image analysis” OR 
“mapping” OR “object-based image analysis” OR 
“extraction” OR “prediction” OR “detection”) 
AND TITLE-ABS-KEY(“Satellite data” OR 
“remote sensing” OR “images” OR “imagery” OR 
LiDAR OR SAR OR “aerial photos” OR “street 
view”)AND (TITLE-ABS-KEY (“impervious 
surface” OR “urban extent” OR “built-up area”)) 
AND TITLE-ABS-KEY(urban OR city)AND 
PUBYEAR > 1989 AND PUBYEAR < 2019 AND 
DOCTYPE(ar)) AND (LIMIT-TO (LANGUAGE,“ 
English”)) 

2 Two-dimensional building density (KEY(“machine learning” OR “classification” OR 
“deep learning” OR “image analysis” OR 
“mapping” OR “object-based image analysis” OR 
“extraction” OR “prediction” OR “detection”) 
AND TITLE-ABS-KEY(“Satellite data” OR 
“remote sensing” OR “images” OR “imagery” OR 
LiDAR OR SAR OR “aerial photos” OR “street 
view”)AND (TITLE-ABS-KEY (building density 
OR “urban density” OR “building cover ratio”) OR 
TITLE-ABS-KEY(“impervious surface” AND 
“spectral mixture analysis”)) AND 
TITLE-ABS-KEY(urban OR city)AND 
PUBYEAR > 1989 AND PUBYEAR < 2019 AND 
DOCTYPE(ar)) AND (LIMIT-TO 
(LANGUAGE,“English”)) 

2 Three-dimensional structure (KEY(“machine learning” OR “classification” OR 
“deep learning” OR “image analysis” OR 
“mapping” OR “object-based image analysis” OR 
“extraction” OR “prediction” OR “detection”) 
AND TITLE-ABS-KEY(“Satellite data” OR 
“remote sensing” OR “images” OR “imagery” OR 
LiDAR OR SAR OR “aerial photos” OR “street 
view”) AND TITLE-ABS-KEY(“building height” 
OR “height of building” OR “building volume” OR 
“sky view factor” OR “urban structure” OR “urban 
morphology” OR “roughness length” OR “urban 
porosity”) AND TITLE-ABS-KEY(urban OR 
city)AND PUBYEAR > 1989 AND PUBYEAR < 
2019 AND DOCTYPE(ar)) AND (LIMIT-TO 
(LANGUAGE, “English”))

(continued)
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Table 10.5 (continued)

# Attribute Query

3 Land use (KEY(“machine learning” OR “classification” OR 
“deep learning” OR “image analysis” OR 
“mapping” OR “object-based image analysis” OR 
“extraction” OR “prediction” OR “detection”) 
AND TITLE-ABS-KEY(“Satellite data” OR 
“remote sensing” OR “images” OR “imagery” OR 
LiDAR OR SAR OR “aerial photos” OR “street 
view”)AND TITLE-ABS-KEY(urban AND (“land 
use mapping” OR “land use classification” OR 
“land use extraction” OR “functional zone”) OR 
(“urban land use” AND change) OR (“urban 
landuse” AND change)) AND 
TITLE-ABS-KEY(urban OR city)AND 
PUBYEAR > 1989 AND PUBYEAR < 2019 AND 
DOCTYPE(ar)) AND (LIMIT-TO (LANGUAGE, 
“English”)) 

Table 10.6 Checklist of general items (ID #1 to #11) and spatiotemporal characteristics (ID #12 
to #24) used when constructing the review database for urban form detection 

# Fields Definition Type Categories 

1 Study ID ID of reviewed study Numeric 

2 Title Title of the article Text 

3 Year Year of publication Text 

4 Authors Author(s) Text 

5 Research 
institute 

Name and place of 
research institutes 

Text 

6 Source title Journal name Text 

7 Citations No. of citations Numeric 

8 Category Category of urban 
form 

Classes Urban land cover; 2-D building 
density; 3-D structure; land use 

9 Model The machine learning 
or image classification 
method 

Threshold-based; MLC; SVM; 
decision tree; RF; CNN; OBIA 

10 Data type Name of data type(s) Classes Multispectral imagery; 
Hyperspectral imagery; SAR; 
LiDAR; Nighttime light; DEM; 
Street view; Others 

11 Data Name of sensor(s) or 
non-satellite data 

Text 

12 Geotag The original name of 
the study area 

Text 

13 Study city Cities where the study 
area is located 

Text

(continued)
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Table 10.6 (continued)

# Fields Definition Type Categories

14 Study country Countries where the 
study area is located 

Text 

15 Resolution The spatial resolution 
of the data 

Numeric Unit: m 

16 Passive low Whether low 
resolution (>=5 m) 
data from passive 
sensor was used 

Binary 0;1 

17 Passive high Whether high 
resolution (<5 m) data 
from passive sensor 
was used 

Binary 0;1 

18 Active Whether data from 
active sensor was used 

Binary 0;1 

19 Street view Whether street view 
data was used 

Binary 0;1 

20 Other data Whether other 
ancillary data was 
used 

Binary 0;1 

21 Spatial unit Spatial unit of single 
observations 

Classes Grid; 
Building; 
Neighborhood/district/patch; 
City; 
Regional 

22 Spatial scale Total area of 
observation 

Numeric Subset of a city; 
City; 
Multiple cities; 
Countrywide; 
Multiple countries 

23 Temporal 
frequency 

Density of 
multi-temporal 
observations 

Classes No revisit; 
1–5 years; 
6–10 years; 
11–15 years; 
>15 years 

24 Time scale Length of time 
between the first and 
the last observation 

Numeric Unit: years
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