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Abstract Based on the Bernoulli–Euler theory, the vibration characteristics of a 
clamped-elastic pinned beam under the elastic constraint and the compressive axial 
loads are derived and verified by finite element method. The results of examples 
show that the natural frequency of the beam decreases with loads increase and the 
frequency increases with the increase of the elastic constraint stiffness. When the 
constraint stiffness increases from 104 to 108 N/m, the first-order natural frequency 
becomes 4.24 times, the second-order natural frequency becomes 2.19 times, and 
the third-order natural frequency becomes 1.57 times; when the constraint is weak, 
the loads change is mainly reflected in the first mode shape. When the constraint 
stiffness is 104 N/m, the first-order natural frequency decreases by 20%, the second-
order modal natural frequency changes by 3%, and the third-order natural frequency 
changes by less than 1%. The range of the elastic constraints with significant changes 
in the natural frequencies of the higher-order modes is larger. When the first-order 
frequency is taken to 100EI/l3, the change tends to be flat, the second-order frequency 
is about five times that of the first-order, and the range of the third-order frequency 
is 15 times or more. 
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1 Introduction 

A great deal of research work has been done on the natural vibration characteristics 
of beams under simple working conditions. In recent years, the research on beam 
structures under complex working conditions such as elastic restraint or axial load 
has been increasing gradually. 

Clough and Penzien [1] gave the expressions of natural frequencies and mode 
functions of beams under various simple working conditions by solving the free 
vibration equation of transverse bending. Bokaian [2] proposed the natural frequen-
cies and modes of beams under general boundary conditions under axial compression 
by solving analytical or semi-analytical solutions. Banerjee and Ananthapuvirajah 
[3] and Lee et al. [4] focused on the model itself and used different methods to analyze 
the free vibration of tapered beams. Murtagh et al. [5] simplified the research model 
into a beam structure, and numerically simulated the vibration characteristics of the 
structure by finite element method. Hu et al. [6] discussed the influence of axial pres-
sure on the natural frequency of classical boundary beam structure and verified it 
by finite element method. Jafari et al. [7] analyzed the free vibration of Timoshenko 
beam by combining theory with finite element method. Chang et al. [8] studied the 
vibration characteristics of axially moving beams with fixed boundary conditions. 
Li [9] and Lin et al. [10] used the improved Fourier series method to study the free 
vibration of beams with general boundary conditions and elastic constraint boundary 
conditions. Zhao et al. [11] used the improved Fourier series method to study the 
influence of elastic constraint and axial load on the vibration characteristics of beams. 
Bao et al. [12] and Yang et al. [13] gave semi-analytical solutions of vertically elas-
tically restrained beams for different models. The former considers the influence of 
variable cross-section, while the latter discusses the influence of constraint order. 
Wang [14] considered the influence of prestress effect on the natural frequency of 
beams. Zhang [15] and others simplified the wind turbine into a beam model and 
analyzed the theoretical solution and the finite element solution based on the beam 
element. 

Considering that there is little research on the vibration characteristics of beams 
under the combined action of elastic constraint and external load, this paper analyzes 
the first three natural frequencies and corresponding vibration modes of beams by 
theoretical derivation and discusses the influence of constraint stiffness and axial 
compression load on the natural vibration characteristics of beams, which is verified 
by finite element method. 

2 Theoretical Derivation 

Figure 1 is a schematic diagram of the clamped-elastic pinned beam system, where 
EI is the equivalent bending stiffness of the beam (N × m2), m is the distributed mass 
of the beam (kg), k is the elastic constraint stiffness (N/m) in the y direction of the
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Fig. 1 Clamped-elastic pinned beam system 

hinge end, and the compressive axial loads F moves with the end, keeps horizontal 
and always acts on the geometric center line of the beam. 

With Euler–Bernoulli beam model, it can be known that the transverse free 
vibration equation of the beam is a partial differential equation [1]: 

m(x) 
δ2 y(x, t) 

δt2 
+ F δ

2 y(x, t) 
δx2 

+ δ2 

δx2 

[ 
E I  (x) 

δ2 y(x, t) 
δx2 

] 
= 0 (1)  

With the method of separating variables, the general solution of the equation is 
[1]: 

y(x) = A sin δx + B cos δx + C sinh εx + D cosh εx (2) 

where A, B, C and D are constant coefficients, and δ and ε are defined as [1]: 

δ = 
{[(

mω2 /E I
) + (F/2E I  )2

]1/2 + (F/2E I  )
}1/2 

ε = 
{[(

mω2 /E I
) + (F/2E I  )2

]1/2 − (F/2E I  )
}1/2 

(3) 

The deformation of the system belongs to linear elastic small deformation motion, 
and the boundary condition of the fixed end is: 

[y(x, t)]x=0 = 0;[ 
∂ y(x, t) 

∂x 

] 

x=0 

= 0 (4)  

Considering the influence of forces generated by rotation angle and displacement 
at the elastic hinge supporting end, the boundary condition is: 

[ 
∂2 y(x, t) 

∂x2 

] 

x=l 

= 0; 
[ 
∂3y(x, t) 

∂ x3 
+ (F/E I  ) 

∂y(x, t) 
∂x 

] 

x=l 

= [−(k/E I  )y(x, t)]x=l 

(5) 

Substituting formula (4) into formula (2), we obtained the following equations:
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[y(x, t)]x=0 = B + D = 0;[ 
∂y(x, t) 

∂x 

] 

x=0 

= δ A + εC = 0 (6) 

Substituting formula (5) into formula (2), we obtained the following equations: 

[
∂2 y(x, t) 

∂x2 

] 

x=l 

= −Aδ2 sin δl − Bδ2 cos δl 

+ Cε2 sinh εl + Dε2 cosh εl = 0;[
∂3y(x, t) 

∂x3 
+ (F/E I  ) 

∂y(x, t) 
∂x 

+ (k/E I  )y(x, t) 
] 

x=l 

= −Aδ3 cos δl + Bδ3 sin δl + Cε3 cosh εl + Dε3 cosh εl 

+ (F/E I  )(Aδ cos δl − Bδ sin δl + Cε cosh εl + Dε sinh εl) 
+ (k/E I  )( A sin δl + B cos δl + C sinh εl + D cosh εl) = 0 

(7) 

Then substitute formula (6) into formula (7), and keep A and B to get: 

A
(−δ2 sin δl − δε sinh εl

) + B(−δ2 cos δl − ε2 cosh εl) = 0 
A
[−δ3 cos δl − δε2 cosh εl + (F/E I  )(δ cos δl − δ cosh εl) 

+ (k/E I  )(sin δl − δ/ε sinh εl)] + B[
δ3 sin δl − ε3 sinh εl 

+ (F/E I  )(−δ sin δl − ε sinh εl) + (k/E I  )(cos δl − cosh εl)] = 0 

(8) 

Equation (8) should have a non-zero solution, therefore, it is impossible for both 
A and B to be 0, then the corresponding determinant is 0, which can be solved as: 

δε
[
2δ2 ε2 − δε(δ2 − ε2) sin δl sinh εl + (δ4 + ε4) cos δl cosh εl] 

+k/E I
(
δ2 + ε2)(ε sin δl cosh εl − δ cos δl sinh εl) = 0 (9a) 

If we introduce the definitions of U = N/(2EI) and Ω = ω (m/EI)1/2, there are: 

δ4 + ε4 = 4U 2 + 2Ω2; δ2 − ε2 = 2U ; δε = Ω (10) 

The formula (9a) can be reduced to: 

2δε
[
Ω2 − U Ω sin δl sinh εl + (

2U 2 + Ω2
) 
cos δl cosh εl

] 
+k/E I

(
δ2 + ε2)(ε sin δl cosh εl − δ cos δl sinh εl) = 0 (9b) 

When k approaches 0, the system becomes a cantilever beam system under 
compressive axial loads, and the natural frequency characteristic equation is 
equivalent to:
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Ω2 − U Ω sin δl sinh εl + (2U 2 + Ω2
) 
cos δl cosh εl = 0 (11) 

The formula is the same as that of the cantilever beam frequency equation in 
reference [3]. 

When k tends to infinity, the system becomes a clamped-elastic pinned beam 
system under compressive axial loads, and the natural frequency characteristic 
equation is equivalent to: 

ε sin δl cosh εl − δ cos δl sinh εl = 0 (12)  

The formula is the same as the result given in reference [5]. 
The frequency characteristic Eq. (9a) is a transcendental equation, and only its 

numerical solution can be obtained instead of analytical solution. After obtaining the 
natural frequency, we can obtaine the mode function by formula (8). 

We may as well set C = 1, and we can get from the first equation in Eqs. (6) and 
(8): 

A = −ε/δ; B = δε sin δl + ε2 sinh εl 
δ2 cos δ + ε2 cosh ε 

; 

C = 1; D = −  δε sin δl + ε2 sinh εl 
δ2 cos δ + ε2 cosh ε 

; 
(13) 

The coefficients in the formula do not include k, and the influence of elastic 
constraint stiffness on the mode shape is reflected by the natural frequency value. 
These coefficients can also be deduced from the second equation in Eq. (8), and 
although they are expressed in different forms, their values are the same. 

3 Verification 

3.1 Model Establishment 

In order to verify the reliability of the theoretical derivation in this paper, the finite 
element method is used to carry out numerical calculation, and the model data of 
different scales are compared. A 137-m-high circular section tower was selected as 
the analysis object, and the general finite element software ABAQUS was used for 
analysis. In engineering analysis, the model can be simplified into a beam model, 
where the outer diameter and inner diameter of the tower are 4.28 and 4.23 m, the 
material is steel, the elastic modulus is 2.1 × 1011 N/m2, the Poisson’s ratio is 0.3, the 
density is 7850 kg/m3, and the critical load of Euler under cantilever state is about 
2.05 × 107 N. 

The B21 Euler beam element was chosen to establish the beam model, and the 
effects of shear deformation and moment of inertia were ignored. The whole beam
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Fig. 2 Finite element model of beam 

was divided into 20 elements and a total of 21 nodes. Considering the request of 
modal number was limited, the subspace iteration method was used to solve the 
natural frequency. The finite element model is shown in Fig. 2. 

3.2 Calculation of Natural Frequency 

Considering that in practical engineering, the structure may be unstable if the axial 
load reaches the critical load, the range of compressive axial loads variation is set as 
0 N to 2.05 × 107 N, and the maximum value corresponds to the Euler critical load of 
the first mode shapes of the cantilever beam. The comparison of natural frequencies 
obtained from different elastic constraint stiffness values and compressive axial loads 
values is shown in Table 1.

As can be seen from Table 1, the natural frequency value derived by the method 
in this paper is very close to the value obtained by the finite element method, with 
an error of less than 1%, which verifies the theoretical solution. 

The data in Table 1 show that the natural frequency values corresponding to the first 
three modes of the structure decrease with the increase of the compressive axial loads 
under these constraints. The higher the order corresponding to the natural frequency 
is, the smaller the influence brought by the axial loads is. When the compressive 
axial loads change from 0 to half of Euler critical load, the maximum range of first-
order frequency can reach 25.96%, the maximum value of second-order frequency 
is 4.20%, and the third-order frequency is 1.26%. At the same time, it can be seen 
that the stronger the top elastic constraint is, the smaller the influence of compressive 
axial loads with the same amplitude will be. When the constraint is raised from 104 

to 108 N/m, the variation range of the first-order frequency is reduced to 2.95%, and 
the variation range of the second-order and third-order frequency is less than 1%. 

The influence of compressive axial loads and elastic constraint on natural 
frequency is further discussed below, and only the first order frequency with obvious 
change is concerned. Figure 3 shows the change trend of natural frequency with the 
increase of restraint stiffness when the compressive axial loads is set. It can be seen 
that with the increase of the elastic restraint stiffness, the natural frequency also rises, 
but the rising rate gradually slows down.

Figure 4 shows the variation trend of natural frequency with the increase of 
compressive axial loads when the constraint stiffness is fixed. It can be seen that 
the natural frequency decreases with the increase of compressive axial loads, and 
the rate of decline gradually accelerates, which is consistent with the conclusion in
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Fig. 3 Relationship between 
constraint stiffness and 
natural frequency

Fig. 4 Relationship between 
axial load stiffness and 
natural frequency 

reference [2]. At the same time, it can be noticed that when the elastic constraint 
takes a small value, the decline rate is faster; when the value is larger, the decline 
rate is relatively slower, which is consistent with the change trend shown in Table 1. 

3.3 Modes Analysis 

The transverse bending mode shapes of the tower are obtained by modal analysis 
in ABAQUS. In order to study the influence of the number of divided elements on 
the results, the displacement of the node of the beam divided into 5 elements is 
used. Compared with the results of 20 elements, the maximum error of the natural
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frequency value is 1.02%. Compared with the theoretical results obtained in Eqs. (2), 
(3) and (13), the first three bending modes are shown in Figs. 5 and 6. 

Fig. 5 Comparison of the first three modes of finite element and theoretical solution 

Fig. 6 Comparison of the first three modes derived from theory
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It can be seen that the influence of compressive axial loads on the first mode is 
more significant than that on the higher mode, and the elastic constraint also has a 
more obvious influence on the higher mode. 

3.4 Influence of Coupling of Constrained Stiffness 
and Compressive Axial Loads on Natural Frequency 

As can be seen from the above results, the degree of influence of axial pressure 
on structural vibration characteristics decreases significantly with the increase of 
constraint stiffness, and the higher order mode is not sensitive to the change of 
axial pressure. This may be due to the different critical loads corresponding to the 
different modes of the calculation model. The larger the critical load is, the smaller 
the modal change caused by compressive axial loads with the same change amplitude 
is. Considering that the parameters of different beams are different, the constraints 
stiffness, axial pressure and natural frequency are dimensionlessly processed in the 
following analysis. Each parameter is written as: 

F = aPcr k = b E I  

l3 
ω = c 

/
E I  

ml4 
(14) 

In the formula, a is a constant with a value between 0 and 1, and Pcr is the first 
order Euler critical load of the structure under the cantilever beam condition; b and 
c are constants with values greater than 0. 

The influence of the constraint stiffness and the compressive axial loads on the 
natural frequencies of the beam is as follows: 

As can be seen from Fig. 7, compared with the low-order modes, the elastic 
constraint value range of the natural frequency of the high-order modes with signif-
icant changes is larger. When the first order frequency reaches 100EI/l3, the change 
tends to be gentle; when the second order frequency reaches 500EI/l3, the change 
tends to be gentle; and the third order frequency will gradually gentle when it reaches 
over 1500EI/l3. Theoretically speaking, the natural frequency will not increase 
infinitely with the increase of constraint stiffness. Finally, when the constraint stiff-
ness is large, the elastic end displacement is small, and the structure can be approx-
imated as a clamped-elastic pinned beam. In addition, it can be seen from the figure 
that when the axial compression is not greater than the first-order Euler critical 
load, its influence on the natural frequency of the structure is mainly reflected in the 
first-order modes, but it is not obvious in the higher-order modes, and the natural 
frequency of the second and third order modes decreases by no more than 10%.
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Fig. 7 Influence of coupling 
of axial pressure and 
constraint stiffness on the 
first three modes

The first order mode 

The second order mode 

The third order mode 
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4 Conclusions 

In this paper, theoretical derivation and finite element method are used to study 
the vibration characteristics of clamped-elastic pinned beams, and the following 
conclusions are drawn: 

(1) Based on the Euler beam theory, the natural frequency characteristic equation 
and mode shape expression of the clamped-elastic pinned beam are obtained 
and verified by finite element analysis. 

(2) When the compressive axial load on the beam increases, the beam’s natural 
frequency decreases, and the first-order frequency decreases from 2.95 to 
25.96% corresponding to 0–50% Euler critical load under different elastic 
restraint stiffness. When the lateral elastic restraint stiffness of the elastic end of 
the beam increases, the natural frequency increases. When the restraint stiffness 
increases from 104 to 108 N/m, the first natural frequency becomes 4.24 times, 
the second natural frequency becomes 2.19 times and the third natural frequency 
becomes 1.57 times. 

(3) When the elastic end constraint of the beam is strong, the change of axial 
compression in a certain range will not have great influence on the vibration 
characteristics. When the constraint stiffness is 108 N/m, the influence of 50% 
Euler critical load on the first-order frequency is less than 3%, and the high-
order frequency is less than 1%. When the constraint of the elastic end of the 
beam is weak, the influence of the change of axial pressure is mainly reflected 
in the first mode shape. When the constraint stiffness is 104 N/m, the influence 
of the variation amplitude of the axial compression can reach more than 20%, 
while the influence of the variation amplitude of the higher order mode is small. 
The variation of the natural frequency of the second order mode is about 3%, 
and the variation amplitude of the third order mode is less than 1%. 

(4) The elastic constraint value range with significant change in the natural 
frequency of the higher order mode is larger. When the first order frequency 
reaches 100EI/l3, the change tends to be flat, the second order frequency is 
about five times than that of the first order, and the third order frequency value 
range is 15 times or more. 
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